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Abstract

This thesis reports on the realization of two novel optical trapping schemes that allow for
the confinement of dense atomic ensembles close to a material surface. The microtraps
use the strong optical dipole force arising from large intensity gradients of evanescent
wave light fields and of a strongly focussed beam. The resulting trapping conditions
are favorable to implement efficient evaporative cooling or to create a system of reduced
dimensionality.

The first microtrap, the focussed beam surface trap, tightly confines an atomic cesium
ensemble using a repulsive evanescent wave light field, a strongly focussed far-detuned
beam and gravity. The focussed beam is oriented vertically with respect to the dielectric
surface and its attractive dipole force provides the horizontal confinement of the trap.
The combination of repulsive evanescent wave and gravity confines the atomic ensemble
vertically. This conservative microtrap potential is loaded with atoms from a large and
dense reservoir of atoms near the dielectric surface via elastic collisions. The combination
of the large reservoir and the small dimple potential leads to a local increase in density
and phase-space density by up to a factor of 300 and gives rise to elastic scattering rates
of about 2 kHz. Subsequent efficient evaporative cooling is applied to further increase
the phase-space density of the unpolarized ensemble of initially several million cesium
atoms. At T = 400 nK a phase-space density of 1.6 × 10−2 is observed showing this
approach’s potential to reach the Bose-Einstein condensation point.

In a second microtrap scheme, the double evanescent wave surface trap, two over-
lapping evanescent waves, one repulsive and short-ranged and the other attractive and
long-ranged, are used to create a three-dimensional microtrap potential close (≈ 1 µm)
to the dielectric surface. Up to 1.5 × 105 atoms can be transferred from the focussed
beam surface trap and are then evaporatively cooled to around 100 nK by ramping down
the attractive dipole potential. Under these conditions the vertical motion of the atoms
in the strongly confining, highly anisotropic potential is inherently quantum mechanical.
The vertical ground-state population at this point is 63 % and the phase-space density
has increased to about 0.1. Consequently the crossover to two-dimensionality has been
reached.

3



4



Zusammenfassung

Im Rahmen dieser Arbeit wurden zwei neuartige optische Oberflächenmikrofallen en-
twickelt und die damit verbundenen physikalischen Fragestellungen untersucht. Bei
diesen Fallentypen werden die starken optischen Dipolkräfte evaneszenter Lichtfelder
und eines stark fokussierten Laserstrahls benutzt, um neutrale Atome in einem kleinen
Volumen nah einer materiellen Oberfläche einzuschließen. Die resultierenden Einschluss-
bedingungen ermöglichen effizientes evaporatives Kühlen oder die Erzeugung eines zwei-
dimensionalen Atomgases.

Die erste Mikrofalle, die “focussed beam surface trap”, erzeugt einen starken Ein-
schluss der Atome durch die Kombination einer repulsiven evaneszenten Lichtwelle, eines
stark fokussierten Laserstrahls und der Gravitation. Der fokussierte Strahl ist senkrecht
bezüglich der horizontalen dielektrischen Oberfläche orientiert und erzeugt durch seine
anziehende Dipolkraft das horizontale Potenzial der Falle. Das Zusammenwirken der Er-
danziehung und der abstoßenden evaneszenten Welle sorgt für den vertikalen Einschluss
der Atome. Das konservative Mikropotenzial wird aus einem dichten Reservoir kalter
Atome nah der Oberfläche über elastische Stöße geladen. Die Kombination aus großem
Reservoir und kleinem Dimplepotenzial führt zu einer maximalen lokalen Überhöhung
von Dichte und Phasenraumdichte um den Faktor 300 und erzeugt elastische Stoßraten
von 2 kHz. Mit anschließender evaporativer Kühlung wird die Phasenraumdichte des
unpolarisierten Ensembles weiter erhöht. Bei einer Temperatur von 400 nK beträgt die
Phasenraumdichte schließlich 1.6× 10−2. Die hohe Effizienz der Evaporation deutet das
Potenzial dieser Methode zum Erreichen der Bose-Einstein Kondensation an.

In einem zweiten Mikrofallenschema, der “double evanescent wave trap”, werden
zwei evaneszente Lichtwellen, eine repulsiv und kurzreichweitig die andere attraktiv und
langreichweitig, überlagert um ein dreidimensional einschließendes Mikropotenzial nah
der Oberfläche (≈ 1 µm) zu erzeugen. Bis zu 1.5 × 105 Atome können aus der focussed
beam surface trap transferiert und anschließend durch Absenken des Dipolpotenzials
evaporativ auf etwa 100 nK gekühlt werden. Bei diesen Bedingungen ist externe Be-
wegung der Atome im vertikal stark einschließenden Potential der Falle inhärent quan-
tenmechanisch. Die Bevölkerung des Grundzustands der vertikalen Bewegung beträgt
63 % während die Phasenraumdichte bei etwa 0.1 liegt. Der Übergangsbereich in das
zweidimensionale Regime ist damit erreicht.
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Chapter 1

Introduction

At first sight “cooling atoms” does not seem in any way useful to bring about new
physics or enhance understanding of it. The reason is probably that the intuitive picture
of cooling usually includes the reduction of a system’s energy and thus the slowing down
or suppression of processes that might be potentially interesting. However, considering
how many physicists work today with ultracold atoms and recalling that the Nobel prizes
of the years 1997 and 2001 were awarded for research done in this field, it is obvious
that this picture is wrong.

The reason that cooling on the contrary can be a useful means to bring out new
physics, lies in the fact that removing the thermal energy of an atom allows for its
preparation in a well-defined and deliberately chosen state and in the fact that cold
atoms can be held and manipulated in traps [Met99]. At very low temperatures the
thermal de-Broglie wavelength which represents the spatial spread of an atom due to
quantum mechanics, becomes large enough to create a situation in which atoms “feel”
each other without interacting through classical forces. Quantum-statistical effects like
Bose-Einstein condensation (BEC) or Fermi degeneracy drastically modify the behavior
of an atomic ensemble and lead to a new and interesting field of physics [Ket99a].

In a sense atoms are an ideal system to study physics: They are small enough to live
in the realm of quantum mechanics, their constituents interact with each other in a way
that allows insights into quantum electrodynamics and other theories. They can be used
as basic units to form more complex structures from molecules to mesoscopic systems to
macroscopic bodies while gradually changing their behavior from intrinsically quantum
mechanical to classical. They willingly interact with electromagnetic fields which makes
manipulation and the extraction of information easy. And finally they come in a variety
of elements, so that for a wide range of demands concerning transition energy, statistics,
magnetic properties, collision properties, mass, complexity etc. most often at least one
element exists that satisfies the requirements.

The practical issue of cooling neutral atoms is tackled by the invention of various
kinds of atom traps. Most importantly the magneto-optical trap (MOT) has lead to
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an explosive growth of this field but since then a wide spectrum of traps for neutral
atoms has become available [Met99]. They are tools for all sorts of experiments and
consequently have evolved to a wide range of different trapping schemes and geometries.
Aside from the MOT there are magnetic trapping schemes, dipole trap schemes and all
sorts of hybrid traps.

In recent years a new direction in the development of traps has been established:
Microtraps constitute versatile tools with useful properties that can be exploited in
various physical contexts. They are an attempt to combine the well established atomic
quantum system with the technologically advanced field of nanofabrication in order to
be able to comply with the increasingly complex tasks of modern experiments and to
develop practical applications. The possibility of loading them with coherent matter
as well as the option to create such traps with either magnetic fields or light fields
has already inspired many new physical questions ranging from interferometry over
atom-surface interactions to quantum computing [Fol02]. While after several years the
evolution of magnetic microtraps has recently culminated in the realization of BEC
in these devices [Ott01, Hän01b], optical microtraps are still at the beginning of a
development which can be expected to be equally vigorous.

The work reported on here constitutes a major experimental step in a development
of versatile optical microtraps. Two new schemes, the focussed beam trap and the
double evanescent wave trap (DEW) were experimentally demonstrated and character-
ized. The combination of an efficient loading mechanism with the tight confinement
of the focussed beam trap allows for the creation of large and very dense atomic en-
sembles. The resulting conditions facilitate efficient evaporative cooling and make this
trap scheme a promising approach to provide coherent degenerate matter waves in an
optical microtrap environment. The DEW-trap confines the atomic ensemble in a tight
and highly anisotropic potential, making it a suitable tool to reach the transition to a
two-dimensional gas. Efficient evaporative cooling from this potential is used to “freeze
out” the vertical motion. Combining both microtrap schemes to provide Bose-Einstein
condensates in this two-dimensional environment will allow for the investigation of many
interesting physical questions related to reduced dimensionality in the future.

Starting with a brief introduction of microtraps in general, Chapter 2 will discuss
what properties microtraps offer and for what they are used. Chapter 3 then fills in
the details that are needed to understand the particular trap schemes and the physical
questions that are addressed. Various technical aspects of the experiment will be pre-
sented in Chapter 4 before the Chapters 5 and 6 discuss the measurements related to
the characterization of the traps as well as to the progress that has been made with the
physical goals. A summary and an outlook will finally be given in Chapter 7.
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Chapter 2

Overview: Microtraps for Neutral
Atoms

This short chapter intends to provide a brief overview of the properties, implementations
and physical questions that are addressed with present microtrap experiments in order
to set the stage for the discussion of the evanescent wave surface microtraps of this
experiment. An more extensive discussion of microtraps in general can be found in
[Fol02].

2.1 Properties of Microtraps

Although microtraps can result from magnetic as well as optical potentials, some gen-
eral properties are found in most or all schemes. These properties are usually what
makes their use appealing. We are interested in those microtraps that feature an atomic
ensemble in close proximity to a material surface. The tightly confining potentials are
created a short distance from material structures such as wires in free space, wires on
substrates or dielectric surfaces.

Tight Confinement

Their most basic property, a small size, comes together with large field gradients of the
magnetic or optical fields involved. This leads to large forces which hold atoms in tiny
volumes or accurately manipulate their external motion. In magnetic microtraps the
steep-gradient fields usually stem from nanofabricated current carrying structures or
from thin wires and can reach values of up to 107 Gauss/cm [Fol02]. Optical microtraps,
on the other hand, usually generate steep intensity gradients by evanescent waves on
dielectric surfaces [Dow96].

The tight confinement that microtraps provide can be exploited in various ways.
They facilitate the achievement of large atomic densities and therefore speed up processes
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that are mediated by collisions. Furthermore they can “freeze out” external degrees of
freedom of an atom gas by splitting energy levels to more than the thermal energy of the
gas. And finally they are an important ingredient to make use of the so-called “dimple
trick” which is the subject of discussion in Section 3.4.3.

Manipulation of External Motion

The strong forces at hand can also be used as means to accurately manipulate the
external motion of an atom trapped in a microtrap. Structures such as conveyor belts
for neutral atoms [Hän01c] or waveguides [Den99] have already been demonstrated and
future plans envision neutral atoms trapped in interconnected waveguides on atom chips
as one possible implementation of a quantum computer with many qubits. Even the
controlled collision of atoms and the subsequent formation of a molecule is within the
reach of microtrap schemes.

Proximity of Material Surface

As many microtrap schemes feature the proximity of a material surface at much higher
temperature, the interaction of ultracold atoms with this surface has been a subject
of intensive investigations (eg. [For02, Fol02]). Besides unwanted effects such as losses,
heating or decoherence, the situation might provide means to connect the atomic system
to its environment in a controlled way. In the context of quantum computing this might
constitute a possible interface between the quantum system and the classical world.

Another consequence of the small size of microtraps that frequently caused problems
and has limited their usefulness in some cases, is the difficulty to load atoms into these
traps efficiently. Section 3.4.2 addresses this subject in more detail and presents a quite
general loading mechanism that improves the situation for many schemes.

2.2 Implementations

Miniaturization of atom traps has lead to a wide range of different geometries and trap
schemes. The ability to exert strong forces on the atoms and to manipulate the details
of their motion makes the implementation of complicated designs possible. Still, within
the variety of different microtraps we can distinguish two basic categories: magnetic
microtraps and optical microtraps.

Magnetic Microtraps

The first magnetic microtraps were created by thin current carrying wires, whose mag-
netic field was superimposed with an external magnetic field to provide elongated po-
tential minima [Den99]. Since then the technology has evolved to the present state-of-
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the-art “atom chip” devices [Fol00] that feature a whole set of different trap geometries
for different kinds of experiments on their surface. The availability of well established
nanofabrication techniques to produce them has proven to be an important advantage
of these devices. Their versatility frequently makes them appear in proposals related to
quantum computers or integrated interference devices.

Another advantage of these microscopic magnetic traps is the need for much less
electric power and the correspondingly eased problem of heat dissipation. Currents of
few Ampères are usually sufficient to create trapping potentials of reasonable depth.
The large trap frequencies achieved in magnetic microtraps along with the availability
of radiofrequency evaporation has proven to be an excellent combination for the creation
of Bose-Einstein condensates [Ott01, Hän01b]. The fact that now also coherent matter
becomes available in magnetic microtraps offers a wide spectrum of new interesting
experiments.

Due to the close proximity of conducting room temperature material many magnetic
microtraps suffer from a detrimental interaction between the cold atoms and the surface.
Usually this leads to reduced lifetime or heating of the atoms [For02].

Optical Microtraps

Due to the fact that the creation of an optical microtrap potential is technically more
challenging than realizing a magnetic microtrap, the development of optical microtraps
is still in its early stages. In this case the profound technical background of modern
electronics cannot be used to devise sophisticated optical microtrap schemes. This has
impeded the experimental advancement so far. However, the rising number of interesting
proposals and theoretical contributions indicates a growing interest in optical microtraps
and eventually will lead to a similar technical progress as experienced with the magnetic
microtraps.

A class of optical microtraps, which is similar in geometry to the magnetic micro-
traps are the optical surface microtraps based on evanescent waves. Up to now relatively
simple designs have been experimentally exploited [Gau98, Ham02a] and new propos-
als on integrated optical waveguides [Jr.02] have been made. Compared to magnetic
microtraps, the coupling between the dielectric surface and the atoms is much weaker
in optical microtraps so that even at very small distances between the atoms and the
surface of about one optical wavelength heating and losses due to surface interactions
are small. Another very interesting prospect for an optical microtrap are microspheres
[Mab94]. Although no atom trap has been demonstrated with these devices up to now,
there is extensive research on this field which makes future atom trap devices based on
microspheres probable.
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2.3 Physical Questions

The wide range of physical topics addressed with microtraps comes with the availability
of a variety of different geometries and their useful properties. Without being complete
we will name a few applications that have emerged in the past years.

Interferometry and Surface Effects

A subject that has been the main focus of magnetic wire traps and atom chips is interfer-
ometry with cold atoms or Bose-Einstein condensates. Efforts have been made to realize
the basic constituents such as Y-junctions and with the availability of coherent matter
in magnetic microtraps one can expect this field to produce new physical insight very
soon. Especially interesting for this type of experiment are questions related to atom-
surface interactions. A nice example of the possibilities and the sensitivity of microtrap
schemes has been provided by researchers in Tübingen [For02] where the fragmentation
of a BEC indicated very weak magnetic fields close to the substrate surface. Partic-
ularly important are the implications of surface effects for the coherence properties of
cold atoms in microtrap interferometers or quantum computers based on atom chips.

Quantum Computing

Quantum information processing has recently become a hot topic of the microtrap com-
munity as microtraps might combine the advantages of slowly decohering neutral atoms
with the technologically advanced field of microstructuring. This way researchers work-
ing with atom chips hope to eventually create quantum computers which are scalable
and allow for the precise manipulation well established in many quantum optics systems.
A detailed discussion along with suggestions for a realization can be found in reference
[Fol02].

Systems with Reduced Dimensionality

The study of low-dimensional systems has been of interest ever since such systems could
be realized in solid state devices and showed markedly different behavior than the usual
three-dimensional systems. The fact that quantum statistical effects are strongly in-
fluenced by the dimensionality of a system has sparked various efforts to realize this
situation with ultracold atoms. Microtraps, whose tight confinements are particularly
suited to create environments of reduced dimensionality have been at the focus of these
directions. Some initial work has been done with standing wave traps [Bou02] where
atoms in the periodical microtrap potentials show altered scattering behavior, and in
strongly anisotropic dipole traps that allow studies of the coherence properties in one- or
two-dimensional systems [Det01, Gör01]. The double-evanescent wave surface microtrap
presented in Section 3.4.5 constitutes a new way to create a two-dimensional atom gas
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in a single potential well close to the material surface. It allows for efficient evaporative
cooling and in the future will provide Bose-Einstein condensates in this peculiar envi-
ronment. The physical implications of reduced dimensionality in the context of cesium
are discussed in more detail in Section 3.6.3.

The versatility and the fast technological advancement of microtraps will certainly
lead to the adding of new applications to this list in the future.
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Chapter 3

Physical Background

Laser cooling experiments include a broad spectrum of physical disciplines. As atoms or
sometimes molecules are the main object of interest, atomic physics can be considered
its foundation. But the field has grown to include several other directions as well.
Since lasers are the tool for virtually everything in this context, quantum optics is an
integral part of the needed repertoire. Fundamental quantum mechanics and quantum
statistics openly manifest themselves in collisional properties or quantum degeneracy and
even many-body physics has emerged in this scope since laser cooling experiments can
provide model systems which are theoretically and experimentally equally accessible.
The following chapter intends to give an overview of how these different disciplines
intersect in the context of this particular experiment, and fills in some details necessary
to understand the experimental methods and results.

Atomic physics will be addressed in Section 3.1 as it introduces relevant properties
of the cesium atom – our object of interest. Section 3.2 will then focus on the quantum
optics part and explains the basic principles of the dipole force. Since in particular
evanescent waves determine the character of our dipole traps, Section 3.3 is dedicated
to their properties and implementations. How atoms and laser fields interact to create
ultracold atomic ensembles near a room-temperature surface is the subject of Section 3.4.
As not only interactions between atoms and photons but also between atoms themselves
determine the dynamics of the system, Section 3.5 is dedicated to the issue of ultracold
collisions. Finally Section 3.6 will briefly explain the BEC-state itself and what physics
is expected for a two-dimensional ensemble.

3.1 Properties of the Cesium Atom

Up to today laser cooling is applicable only to the alkali atoms and a handful of other
elements, such as some metastable noble gases and alkaline earth metal atoms. This
is due to the fact that laser cooling heavily relies on energetically convenient closed
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electronic transitions in order to achieve the large excitation rates needed to exert suffi-
ciently strong forces on an atom. Although magnetic traps or some dipole trap schemes
such as CO2-laser traps in principle are able to hold also other elements, complete trap
schemes are rarely realized. This is because the magneto-optical trap (MOT) as a crucial
intermediate trapping and cooling step is not available.

The gravito-optical surface trap (GOST) experiment is dedicated to cooling, trapping
and investigating cesium-133. It is the heaviest of all stable alkali atoms and as in
lithium, sodium, potassium and rubidium the outer 6S1/2-electron determines electronic
transitions and collisional dynamics. However, due to its large mass, fine-structure and
hyperfine-structure are much more pronounced. Figure 3.1 shows the relevant part of
the cesium level scheme.

133
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repumping transition
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3/2
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Figure 3.1: Overview of the Cs D-transitions

The 133 nucleons couple to a nuclear spin of I = 7/2 and in combination with
the 55 electrons make cesium-133 a boson. The 62S1/2 ground-state is split into two
hyperfine levels (F = 3, 4) which are energetically separated by the well known 9.18 GHz
determining the modern time standard. The excited 62P3/2 state features four closely
spaced hyperfine states (F ′ = 2, . . . , 5) and its lifetime of 30.6 ns leads to a natural line
width of the 62S1/2 → 62P3/2 transition of Γ3/2/2π = 5.22 MHz. The 62P1/2 state with
its two hyperfine states (F ′ = 3, 4) has a lifetime of 35.1 ns which leads to a natural
line width of the 62S1/2 → 62P1/2 transition of Γ3/2/2π = 4.56 MHz. Indicated are the
closed cooling transition F = 4 → F ′ = 5 at 852.12 nm and the repumping transition
F = 3 → F ′ = 3. For most considerations in this context the D1 line at 894.3 nm can
completely be ignored.
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3.2 Optical Dipole Potential

The interaction of light with atoms can be categorized in two different regimes that can
both be understood by simple intuitive pictures.

The radiation pressure force arises from repetitive cycles of absorption and subse-
quent emission of photons by an atom. During many such cycles a net average momen-
tum is transferred onto the atom and consequently leads to a force that is exploited in
a MOT or a Zeeman slower. This force can create accelerations of up to 106 m/s2 (for
cesium) but has the disadvantage of heavily disturbing the atomic state. It is in general
stronger the closer the laser frequency ω is to the atomic transition frequency ω0. The
difference ω0 − ω is called detuning δ and will play an important role in the following
considerations. The radiation pressure force will not be the object of discussion from
hereon as it plays a minor role for the experiment and the literature extensively covers
this topic ([Met99]).

At sufficiently large laser detuning the radiation pressure force tends to become weak
and the optical dipole force takes over as the dominant interaction mechanism. To get
an intuitive picture of the dipole force it is sufficient to consider the classical model of
an atom with a harmonically bound electron (Lorentz model). All important effects
manifest themselves in this model and in the case of alkali atoms even quantitative
statements can be made up to a good accuracy [Ask62, Kaz73, Coo79, Gor80].

When a polarizable atom is introduced into an electrical field, the field will induce
an electric dipole moment in the atom by pulling on its electron. The same happens in
case of a laser field except for the fact that this leads to an oscillating dipole moment
instead of a static one. The potential energy of the atomic dipole inside the field can be
written as

Udip = −1

2
〈�p · �E〉, (3.1)

where �p is the induced dipole moment and �E the electric field. The factor 1/2 takes
into account that the dipole moment is induced and thus energy for its creation has to
be provided. In case of a resonant excitation of the dipole oscillation with the harmonic
frequency ω0 (which is equal to the atomic transition frequency in the Lorentz model) the
dipole oscillation is shifted by a phase of π/2 with respect to the driving field and thus

the time average 〈�p· �E〉 vanishes. In case of a driving field frequency below (red detuning)
or above (blue detuning) the atomic frequency, Udip takes a negative (red detuning) or
positive (blue detuning) value. An intensity gradient of the laser field now translates into
a dipole force on the atom and in particular will lead to an attractive force if it is red-
detuned and to repulsive force for blue detuning. Since the dipole force is derived from
a potential it is a conservative force and hence the need for a MOT or other dissipative
mechanisms to load a dipole trap. In addition to this dispersive part of the dipole force
there is an absorptive component that leads to photon scattering and thus introduces
a non-conservative part to the force. These incoherent processes will either lead to
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heating through transfer of photon momentum or else to cooling through dissipative
mechanisms as for instance the evanescent wave Sisyphus cooling described in Section
3.3. The absorptive part can easily be included in the Lorentz model by introducing
damping. A complete classical treatment that calculates the atomic polarizability α(ω)
using the equation of motion of a damped harmonic oscillator finally yields expressions
for the dipole potential Udip and the photon scattering rate Γsc for the case of a two-level
atom at large detuning (i.e. low saturation) [Gri00]:

Udip(�r) =
3πc2

2ω3
0

·
(

Γ

ω0 − ω
+

Γ

ω0 + ω

)
· I(�r), (3.2)

Γsc(�r) =
3πc2

2h̄ω3
0

·
(

ω

ω0

)3

·
(

Γ

ω0 − ω
+

Γ

ω0 + ω

)2

· I(�r). (3.3)

ω0 denotes the atomic transition frequency, Γ the damping rate, ω the actual laser
frequency and I(�r) the position dependent laser intensity. In most practical cases where
the absolute value of the detuning δ ≡ ω − ω0 is much smaller than ω0 the contribution
from the so-called counter rotating term Γ/(ω0 + ω) can be neglected and the equations
take the simplified form:

Udip(�r) =
3πc2

2ω3
0

·
(

Γ

δ

)
· I(�r), (3.4)

Γsc(�r) =
3πc2

2h̄ω3
0

·
(

Γ

δ

)2

· I(�r). (3.5)

The valid relation h̄Γsc = Γ/δ · Udip reveals the intimate connection between dispersive
and absorptive part of the dipole force.

To get from this simplified classical model to a correct quantum mechanical ex-
pression one merely has to replace the classical result of the damping rate Γ with the
quantum mechanical transition rate

Γ =
ω3

0

3πε0h̄c3
· |〈e|p̂|g〉|2. (3.6)

〈e| and 〈g| are the excited state and the ground state of the two level system. They are
coupled by the dipole operator p̂. An important feature of the dipole force is its scaling
with intensity and detuning. Notably Udip scales as I/δ whereas Γsc goes as I/δ2. Dipole
traps exploit this fact by operating at large detunings and large intensities as this shifts
the balance between heating and potential depth in favor of potential. Therefore at very
large detunings dipole traps are to a good approximation conservative traps.

All considerations up to now were limited to the case of a two-level system. And
in spite of its usefulness for certain approximations, in some special cases of multi-
level atoms and laser detunings a more general model which gives credit to the atomic
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substructure is needed. As a realistic atom with many electronic transitions, fine struc-
ture, hyperfine structure and magnetic sublevels constitutes a prohibitively complicated
system, one cannot avoid making certain simplifications and approximations to obtain
useful results.

A useful concept to arrive at expressions for light potentials for multilevel atoms is to
calculate the perturbative shift of the ground-state in the presence of a light field (AC-
Stark shift). Since the detuning is assumed to be large and thus saturation is negligible,
the spatially dependent shift of the atomic ground-state can be regarded as a potential
the atom is moving in [Dal85]. Quantum mechanics provides an expression for this shift
which is of second order in the driving field and therefore goes linear with intensity:

∆Eg =
∑
g �=i

|〈i|er̂ · �E|g〉|2
εg − εi

. (3.7)

εg and εi are the energies of ground- and excited state, �E is the classical electrical field
and r̂ is the quantum mechanical position operator. In order to find the actual shift for
the ground-state |g〉 one has to determine all relevant matrix elements 〈i|er̂· �E|g〉 and sum
up their contributions. This can still be a formidable task. Life becomes considerably
easier as one limits the discussion to alkali atoms and distinguishes between certain cases
of different detunings. Omitting any details and referring to the literature [Gri00] we
summarize two cases of relevance for this particular dipole trap.

In case of a linearly polarized light field with a detuning large compared to the
hyperfine splitting of the excited state but small compared to the fine structure splitting
between D1 and D2 line, the dipole potential is given by the expression:

Udip(�r) =
πc2

2
·
(

Γ2

ω3
2

2

δ2

+
Γ1

ω3
1

1

δ1

)
· I(�r). (3.8)

δ1 (δ2), Γ1 (Γ2) and ω1/2π (ω2/2π) are detuning, natural line width and frequency of
the D1 (D2) transition. Due to the ω3 dependence of Γ (see Equation 3.6) we find that

Γ1

ω3
1

≈ Γ2

ω3
2

, (3.9)

and thus can simplify Equation 3.8 to yield the following expression:

Udip(�r) =
πc2Γ2

2ω3
2

·
(

2

δ2

+
1

δ1

)
· I(�r). (3.10)

If additionally the laser frequency is much closer to the D2 line than to the D1

line, this can further be simplified to yield the final expression applicable for both blue-
detuned evanescent waves and the hollow beam introduced in Section 3.4.1:

Udip(�r) =
πc2Γ2

ω3
2δ2

· I(�r). (3.11)
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Note that this is just the result of a two-level atom times 2/3. This factor can be viewed
as a weight factor that takes into account the line strength of the D2 line compared to
the D1 line.

At even larger detunings a different approximation has to be used. When the laser
light satisfies the condition that the detunings with respect to both D lines greatly
exceed the fine structure splitting of ∆λFS = 42 nm both transitions have to be taken
into account. However, one can model the system as a two-level atom with an effective
transition defined by the weighted average of both D lines:

ωeff =
2

3
ω2 +

1

3
ω1, (3.12)

and a weighted line width defined by

Γeff =
2

3
Γ2 +

1

3
Γ1 = 2π · 4.98 MHz. (3.13)

Contrary to the considerations for small detunings, one can usually not neglect the
counter rotating term in this case. For a laser at 1064 nm (D1 : ∆λ = 170 nm, D2 : ∆λ =
212 nm) which is used to create the attractive microtrap potentials the contribution of
this term is 16%. Finally Udip turns out to be:

Udip(�r) = − 3πc2

2ω3
eff

·
(

Γeff

ωeff − ω
+

Γeff

ωeff + ω

)
· I(�r). (3.14)

The formulas given above are valid for linearly polarized light only. Circular polar-
ization leads to correction terms that shift the different Zeeman sublevels similar to the
magnetic Zeeman shift. Still, the average level shift is equal to the value for the shift
caused by linearly polarized light.

Except for the evanescent waves, each light field involved in any of the dipole traps is
linearly polarized. But because the evanescent wave beams have their electric field vector
oscillate along the plane of incidence (TM-polarization) there are small modifications to
the expression for Udip. We still use the result for the linear case as it is a sufficiently good
approximation and experiments have not indicated any significant mf -state dependence.

3.3 Evanescent Waves

Evanescent waves are a characteristic feature of all three dipole trap designs introduced
in the next section. We create an evanescent wave by total internal reflection of a laser
beam at the vacuum-dielectric interface of a fused-silica prism (see inset of figure 3.3).
It offers two important features that make it a very useful tool. Firstly the intensity
gradient of an evanescent wave is extremely large. As the light field drops exponentially
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in a distance of the order of the optical wavelength the resulting dipole force is very large
and allows for the realization of nearly ideal hard wall potentials or other wavelength-
sized potential wells (see Section 3.4.5).

Secondly one finds that in the case of a multi-level atom the reflection from an
evanescent wave can be inelastic and lead to cooling. Confining atoms in the gravito-
optical potential created by an evanescent wave and earth’ gravitational field can under
certain circumstances include a so-called Sisyphus cooling process and provide a useful
trapping scheme to create cold and dense atomic samples near a material surface. Section
3.4.1 will provide details on the realization of this idea.

When a light field is refracted at the interface between a dielectric medium and
vacuum, the angle of refraction is determined by Snell’s law:

n · sin Θi = sin Θt. (3.15)

Θi and Θt denote the angle of incidence and the angle of refraction while n is the index
of refraction of dielectric medium (in our case n = 1.45). At a particular angle of
incidence Θcrit the left hand side of the equation becomes 1 and all incident light is
totally internally reflected back into the dielectric medium. As obviously the electric
field of the light wave cannot drop to zero instantaneously across the surface we have
to take a closer look at what is happening at this boundary as Θi ≥ Θcrit. In this case
Equation 3.15 can still be obeyed when we allow Θt to take complex values. One finds
(see e.g. reference [Bor91]) that for angles Θi ≥ Θcrit a light wave propagates inside
the vacuum along the dielectric-vacuum interface with its field amplitude exponentially
declining with distance from the interface. The mathematical expression for the electric
field component of this evanescent wave takes the following form [Bou94]:

�Et(�r, t) = εt · �εt · e−z/Λ · ei(ktx−ωLt). (3.16)

εt denotes the electric field amplitude and �εt the polarization vector. Λ is the 1/e-decay
length of the evanescent wave and can be computed using the relation

Λ =
λ

2π
√

n2 sin2 Θi − 1
. (3.17)

λ represents the wavelength of the incident light. The exponential factor exp(iktx −
iωLt) is the phase of a plane wave propagating along x, the coordinate defined by the
intersection of the surface plane with the plane of incidence. ωL/2π is the frequency of
the light and kt the evanescent wave’s wave number determined by kt = 2πn/λ · sin Θi.

In order to find expressions for the electric field amplitude εt and the polarization
vector �εt that characterize the evanescent wave, one has to match incident and evanescent
wave at the boundary. Since we are particularly interested in the intensity It of the
evanescent wave the following results have been written accordingly. The results are
limited to the two relevant cases of polarization �εi perpendicular (TE) and parallel
(TM) to the plane of incidence.
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TE-polarization

In this case the polarization of the evanescent wave matches that of the incident light

�εt = �εi, (3.18)

and the expression for It takes the following simple form:

It =
4n cos2 Θi

n2 − 1
· I0. (3.19)

I0 is the intensity of the light before it enters the prism. Equation 3.19 assumes that
the laser enters the prism perpendicular through an anti-reflection coated face. Note
that since the first factor in Equation 3.19 can be larger than one, the intensity of the
evanescent wave and thus also the dipole potential can exceed that of the incident beam.

TM-polarization

The calculations in this case turn out to be more complex and yield the following
expressions [Bou94]:

�εt =
1√

2n2 sin2 Θi − 1
(n sin Θi�ez − i

√
n2 sin2 Θi − 1�ey), (3.20)

It =
4n cos2 Θi

n2 − 1
· 2n2 sin2 Θi − 1

(n2 + 1) sin2 Θi − 1
· I0. (3.21)

The polarization of the evanescent wave is elliptic now with a phase-shifted component
perpendicular to the surface of the prism. According to Section 3.2 this leads to ground-
state potentials that depend on the value of the magnetic quantum number mF . The
evanescent wave’s intensity however, is still larger than in the case of TE-polarization
and therefore it is favorable to use this configuration in the experiment in order to
maximize the dipole potential. Figure 3.2 shows the 1/e2-decay length Λ of intensity
as a function of the deviation ∆Θ from the critical angle Θcrit = 43.6◦ (upper graph)
and the intensity ratio It/I0 for TM- (solid line) and TE-polarization (dotted line) as a
function of ∆Θ. The vertical dashed line indicates a ∆Θ of 1◦ as used with the near-
resonant evanescent wave. In this case we find Λ to be 0.71 µm and a ratio It/I0 of
5.40.

The complete vertical potential an atom experiences, is a combination of gravity, the
dipole potential of the evanescent wave and at extremely short distances from the prism
surface (∼ 0.1 µm) the attractive Van-der-Waals interaction between the atom and the
dielectric surface. Their effects will be discussed in the following two subsections.
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Figure 3.2: Decay length Λ and enhancement factor It/I0 versus deviation from critical
angle.

Van-der-Waals interaction

The attractive Van-der-Waals force arises from the electromagnetic interaction of an
atomic dipole with its mirror image on the dielectric surface. The multilevel structure
of the atom, retardation effects and QED corrections make this seemingly simple system
interesting but also rather complicated to treat exactly [Har91, Wyl84]. For our purposes
it is sufficient to use certain approximations: Firstly we will model the cesium atom as a
two-level atom with an effective transition wavelength λeff = 866 nm. This corresponds
to an approach where we disregard any atomic structure except for the D-transition and
furthermore replace both individual contributions by their weighted average (see Section
3.2). In addition to that, we will separately treat both distance regimes (z � λeff/(2π)
and z 	 λeff/(2π)) and use an approximate expression to match them in their transition
region. Finally most expressions derived in the literature refer to the case where the
surface is perfectly conducting. One can reasonably well describe the dielectric case by
simply multiplying the conducting surface results with the expression (n2 − 1)/(n2 + 1).
n denotes the index of refraction of the dielectric. This implicitly assumes, that no
resonances of the dielectric coincide with any atomic resonances.

In the case of the atom being very close to the dielectric surface we find a relatively
simple expression describing the Van-der-Waals potential. This regime is called Lennard-
Jones regime and for the two-level approximation of the cesium atom can be accurately
described by the following expression [Cou96]:

UV dW (z) = −n2 − 1

n2 + 1

3

16
h̄Γeff

(
1

keffz

)3

= 5.44 · 10−49 kgm5/s2 · z−3. (3.22)

Γeff/2π = 4.98 MHz and keff denote the line width and the wave number of the effective
transition.
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If the distance z between atom and surface is much larger than λeff/2π the surface
attraction is proportional to z−4 and the regime is called Casimir-Polder regime [Cas48].
In this case relativistic corrections and QED effects significantly modify the classical
result and usually don’t allow for simple analytical expressions [Wyl84]. Numerical
values for UV dW are tabulated in reference [Mar97]. Using this data to find a complete
expression for the two-level atom close to a dielectric surface which accurately describes
the Lennard-Jones regime and reasonably well approximates the Casimir-Polder regime
yields

UV dW (z) = −αV dW z−3(1 + 2πz/λeff )
−1, (3.23)

with the coefficient αV dW = 5.44 × 10−49 kg m5s−2.

Since atoms usually don’t penetrate very far into the repulsive evanescent wave light
field, their trajectories are hardly influenced by the Van-der-Waals attraction. Its only
significant effect is a reduction of the height of the total potential barrier.

��

� crit

Figure 3.3: Potential curves for the dipole repulsion alone (dashed line) and the com-
bined potential of dipole repulsion and Van-der-Waals attraction for the three laser
powers 45mW, 25mW and 5mW. The other experimental parameters were ∆Θ = 1◦,
δEW /2π = 3GHz and w = 700µm.

Figure 3.3 shows a plot of the combined potential of Van-der-Waals attraction and
dipole repulsion for different laser intensities. At the parameters ∆Θ = 1◦, I0 = 45 mW,
δEW /2π = 3 GHz and a waist of w = 700µm the potential barrier of U/kB = 795µK
is 75 % of the value without Van-der-Waals attraction. At lower intensity (or larger
detuning) the surface attraction becomes increasingly important until at I0 ≈ 0.1 mW
the potential barrier vanishes completely.
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Gravitation

Adding gravitation to this combined evanescent wave potential results in a potential
that vertically traps the atoms. It is given by the expression:

U(z) = mgz + Ûdipe
−2z/Λ + UV dW (z). (3.24)

m and g denote the mass of the cesium atom the gravitational acceleration respectively.
Ûdip(z) is the maximum value of the dipole potential and UV dW (z) the expression given
by 3.23.

Releasing atoms into this potential well will result in a bouncing motion. For cesium
atoms the thermal energy of kBT = 1 µK corresponds to a bounce height in the gravita-
tional potential of z0 = kBT/mg = 6.4 µm whereas the range of the dipole potential is
only about 1µm. This justifies the approximation of this potential by a wedge-shaped
potential in certain cases. In general this approximation is better the higher the ensem-
ble temperature is. The eigenenergy of the n-th mode in this idealized potential is given
by [Wal92]

En = h̄ωv

(
n − 1

4

)2/3

, (3.25)

with ωv = (9π2mg2/8h̄)1/3 being the characteristic frequency of the system. For cesium
atoms one finds ωv/2π = 2080 Hz which corresponds to an energy of h̄ωv/kB ≈ 95 nK.
For low temperatures the approximation of a hard wall potential is less accurate (see
Section 5.2). A numerical calculation of the trap frequency then yields a value of
ωv/2π ≈ 1.1 kHz and thus a corresponding temperature of only h̄ωv/kB ≈ 50 nK.

Assuming a classical trajectory for the atom, one can derive the rate for spontaneous
photon scattering during one reflection by integrating the intensity dependent scattering
rate over the trajectory of the atom in the repulsive light field. The probability psp for
such an incoherent reflection process is in general (at negligible saturation) small and
given by [Söd95]:

psp =
mΛΓ

h̄δ
v⊥. (3.26)

v⊥ denotes the velocity component perpendicular to the dielectric surface. In order to
derive the average photon scattering rate Γ̄sc this result has to be multiplied by the
bounce rate Γb.

Γ̄sc = psp · Γb =
mΛΓ

h̄δ
v⊥ · g

2v⊥
=

mgΛΓ

2h̄δ
. (3.27)

Notably this result is independent of the vertical velocity of the atom which is a special
feature of the exponential evanescent wave potential. The reduced scattering probability
of an atom with a small vertical velocity is exactly compensated by its increased bounce
rate. A simple calculation shows that this result is even valid for the extreme case of
zero temperature where atoms stay motionless in the potential minimum.
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3.4 Optical Surface Microtraps

This section introduces the concept of optical surface microtraps whose interesting prop-
erties are the main focus of this thesis. It starts with a explanation of the gravito-optical
surface trap and discusses how its large trap volume and the efficient optical cooling
mechanism provide a dense and cold reservoir ensemble for the consecutive microtrap
stages. The interesting issue of loading these conservative microtraps is presented in
Section 3.4.2 before Section 3.4.3 explains how the reservoir and the loading process
can be combined to exploit the so-called dimple trick. Two implementations of optical
surface microtraps realized in this experiment are introduced in sections 3.4.4 and 3.4.5
before Section 3.4.6 summarizes the relevant properties of the different trap schemes.

3.4.1 The Reservoir: Gravito-optical Surface Trap

At this point we summarize all relevant properties of the GOST. The trap has been
extensively studied and discussed in a previous thesis [Man99]. It is used as a tool to
provide a dense and cold reservoir of cesium atoms close to the dielectric surface. The
subsequent microtrap stages draw atoms from this ensemble during the loading process
and later replenish losses from it.

The GOST is a trap whose confinement results from a combination of dipole po-
tentials and gravity. Its shape is that of a cylindrical container and its walls consist of
repulsive light fields. Atoms are loaded into this trap by steering an atomic cloud pre-
pared in a MOT to a position inside the trapping volume and releasing them. Gravity
then pulls the atoms into the GOST where a Sisyphus cooling process based on inelas-
tic collisions from the bottom light field starts to dissipate away most of their energy.
This scheme allows for the preparation of more than 20 million cesium atoms at a tem-
perature of less than ten microkelvin, leading to atomic densities of about 1012 cm−3.
This section will explain in some detail the potentials, then discuss the Sisyphus cooling
mechanism and finally summarize important ensemble properties in this trap.

Confinement

Vertical confinement in the GOST is provided by the gravito-optical potential discussed
in the previous section. The evanescent wave is blue-detuned by initially 3 GHz with
respect to the F = 3 → F ′ transition, has a power of 45 mW and a 1/e2-intensity radius
of 0.7 mm. Being incident at Θi = 44.6◦ (1◦ deviation from Θcrit) and TM-polarized, this
amounts to a total potential in the center of the evanescent wave spot of U/kB = 780µK
including Van-der-Waals interaction. The potential barrier is sufficient to repel atoms
that are released from a height of almost 5 mm.

Without any horizontal confinement atoms would escape from the trap within mil-
liseconds due to their lateral velocity and diffuse reflections from the evanescent wave
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atom mirror. Horizontal confinement is realized by a repulsive light field with a ring
shaped cross section at the prism surface (hollow beam). An axicon optic (see Section
4) creates this 820µm wide (diameter) perimeter of about 20 µm thick light walls that
are placed concentrically on the evanescent wave spot and complete the 3D-confinement
of the GOST. The hollow beam contains about 400 mW of 1.6 − 3 nm detuned light, is
linearly polarized and creates a potential barrier of up to U/kB = 93 µK. This potential
is not very large compared to the approximately 80µK that atoms gain during a fall
from a height of 0.5 mm. Thus the need arises for fast dissipation of this gravitational
energy before it is coupled from the initially vertical motion into the horizontal plane
and leads to trap loss through the hollow beam walls. The detuning of the hollow beam
is much larger than the 3 GHz of the evanescent wave because its comparably small
intensity gradient allows atoms to penetrate deep into the light walls where they would
be subject to strong photon scattering and thus heating if the detuning was small. The
photon scattering rate at the center of the hollow beam wall is around 100 photons
per second but since an atom stays most of the time in the dark inner region of the
trap where virtually no photon scattering occurs the average value is much below that.
Figure 3.4 shows the geometry of the vertical and horizontal potential of the GOST.

Figure 3.4: Scheme of the GOST

Vertically the combination of the hard repulsive wall of the evanescent wave and the
long-ranged gravity create a wedge-shaped potential while the hollow beam confines the
atoms in a cylindrical box potential. It is evident that the huge trapping volume of the
GOST which is of the order of cubic millimeters along with its advantageous property
of holding atoms undisturbed by light in dark inner regions of the trap, favors trapping
of large and dense atomic ensembles. A challenge that remains, is how to load atoms
into the trap and getting rid of transfer energy that originates from releasing atoms at
a distance from the trap minimum.
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Cooling

A central feature of the GOST is the aforementioned Sisyphus cooling mechanism. Its
cooling is based on inelastic reflections of the atoms from the evanescent wave which
transfers vertical kinetic energy into internal degrees of freedom and then radiates this
excess energy away using a repumping process. Figure 3.5 explains the details of the
cooling cycle.
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Figure 3.5: Sisyphus cooling process in the GOST

Shown is a simplified level scheme of the two ground-states (F = 3, 4) and the
excited state manifold with their corresponding light shifts in the field of the evanescent
wave. The evanescent wave detuning with its 3 GHz is small enough to resolve the
hyperfine splitting of the ground-state while being large in comparison to the splitting
of the 6 P3/2 state. This justifies the simplification of a three level atom. As atoms
are predominantly kept in their absolute ground-state manifold (F = 3) an atom will
likely enter the evanescent wave in this state during a reflection process. Due to the
repulsive force of the light field it has to climb a potential hill and in most cases is
reflected coherently by the dipole potential. This process is entirely elastic, occurs at a
rate of about 1 kHz and neither leads to cooling nor to heating of the atom. But with
a small probability the atom will be excited into the 6P3/2 state by an evanescent wave
photon during its passage through the intense region of the light field. It will stay in
this state for about 30 ns without significantly moving and will then deexcite into either
the |F = 3〉 state or the |F = 4〉 state. Returning into the |F = 3〉 state constitutes
a heating process as a photon recoil energy is deposited on the atom. The interesting
case is the deexcitation into the upper |F = 4〉 state. In this case the atom leaves
the evanescent wave light field on a less strongly curved potential because the detuning
of the evanescent wave laser is larger by 9.18 GHz with respect to the F = 4 → F ′

transition. This optical pumping process therefore transferred vertical kinetic energy
into internal energy of the atom and damped its mechanical motion. The average loss
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of vertical kinetic energy during such a cooling reflection is found to be [Söd95]:

∆E⊥
E⊥

= −2

3
· δHfs

δHfs + δEW
≈ 0.5. (3.28)

∆E⊥/E⊥ is the relative loss of vertical kinetic energy, δHfs the hyperfine structure split-
ting and δEW the detuning of the evanescent wave. To prevent the release of internally
stored energy back into the atomic motion and to prepare the atom for another such
cooling process the cycle is closed by a repumping laser. This very weak laser resonant
on the F = 4 → F ′ = 4 transition pumps the atom back into the |F = 3〉 ground-state
and thereby makes it transfer the internal energy into photon energy. It is important
that the repumping process does not occur while the atom is still inside the light field
because this would impede the cooling process. The probability for such a premature
repumping is however small since the repumping laser is weak and the light of the
evanescent wave shifts the atom out of resonance. It is now straightforward to arrive
at expressions for the cooling rate β and the limit temperature Tmin. Once the atoms
are released into the GOST with their excess gravitational energy the cooling process
starts to dissipate away this energy and continues until an equilibrium between cooling
through this Sisyphus process and heating by the inherent photon scattering is reached.
To get an expression for the temperature limit one sets cooling and heating rate equal
and solves for the temperature Tmin. The cooling rate is the product of the probability
of an incoherent reflection the relative energy dissipated and the reflection rate of the
atoms. This leads to the expression [Söd95]:

β = pcool · ∆E⊥
E⊥

· νrefl =
q

3
· δHfs

δEW

· mgΛ

h̄(δEW + δHfs)
· Γ. (3.29)

pcool denotes the probability of an incoherent reflection, νrefl the reflection rate and q
is the probability of a scattering process ending in the upper hyperfine state (0.25). m
is the cesium mass, Λ the decay length of the evanescent wave and Γ the natural line
width of the transition. At a detuning of 3 GHz and an evanescent wave decay length
of 0.71 µm β results to be 1.62 s−1.

To get an expression for the heating rate we first have to find the heating arising
from a single scattering event. Reference [Min87] states that at large detunings the
increase of thermal energy due to one scattered photon equals the recoil energy of the
photon

Erec =
h̄2k2

2m
=

kBTrec

2
. (3.30)

The desired expression for the heating rate can now easily be derived by counting
the number of scattered photons per cooling reflection multiplying this number with the
increase in temperature and finally multiplying it with the rate at which such a process
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occurs. The final result for the temperature limit then becomes:

Tmin =

(
1

q
+

1

qr

)
·
(

1 +
δEW

δHfs

)
· Trec. (3.31)

qr denotes the branching ratio of a transition from the |F ′ = 4〉 state into the absolute
ground-state |F = 3〉. With qr = 0.34 and δEW /2π = 3 GHz we find a theoretical
temperature limit of about 2µK.

In addition to the Sisyphus cooling process the ensemble temperature is influenced
by a few other contributions. Firstly the fact that repumping photons are predominantly
absorbed while an atom is bouncing upwards leads to a geometric cooling in the same
way that the absorption of photons from the evanescent wave leads to a heating due
to the directional nature of this light field. Secondly heating through photons from the
hollow beam slightly increases the limiting temperature and finally a photon reabsorp-
tion process in dense atomic samples gives rise to an atom number dependent increase
of the equilibrium temperature [Ham99].

Note that the Sisyphus cooling process only works on the vertical motion of the
atom. Overall cooling is then mediated through coupling of horizontal and vertical
motion by elastic collisions and diffuse reflections from the evanescent wave. In case
of a further detuned hollow beam (∆λ up to 3 nm) the reduced potential can allow for
plain evaporation from the trap and cooling will be due to a combination of Sisyphus
and plain evaporative cooling. For large atomic samples of more than 107 atoms we find
experimentally that the temperatures are in the range of 5 − 10 µK depending on the
detuning and intensity of the hollow beam.

Ensemble Properties

Assuming thermal equilibrium of the atomic ensemble one can derive expressions for
the needed thermodynamical quantities. The number density is of particular interest as
it for instance determines via the elastic scattering rate the pace at which evaporative
cooling can take place. The position dependent density is given by a basic expression
from statistical physics:

n(�r) = n̂ · exp

(
U(�r)

kBT

)
. (3.32)

U(�r) is the local potential and n̂ a normalization constant. n̂ is chosen such that the
density is normalized to satisfy N =

∫
n(�r)dV . In the following we will assume the

ideal potential shapes of a box potential horizontally and a hard wall potential in case
of the evanescent wave. For the temperatures that one deals with in the GOST this
approximation is sufficient. However as temperatures fall below 1µK certain refinements
of the model become necessary as we will see in Section 5.2. Due to the box-like potential
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laterally, the density is constant in this direction and one arrives at an expression for n
that only depends on the height z:

n(�r) = n0 · exp
(

mgz

kBT

)
. (3.33)

Now we can make use of the normalization to find that the peak density can be written
as

n0 =
Nmg

πkBTr2
HB

. (3.34)

rHB represents the radius of the hollow beam. The two quantities determining the
density are therefore the atom number N and the ensemble temperature T .

Aside from the peak density n0 one is interested in the average density 〈n〉 as it is
an important quantity for the analysis of losses due to ultracold collisions (see Section
3.5). It is defined by

〈n〉 =

∫
n(�r)2dV∫
n(�r)dV

, (3.35)

and turns out to be exactly n0/2 for the GOST potential.
The equipartition theorem states that each atom carries on the average 3/2 kBT in

kinetic energy and the virial theorem relates this to the energy stored in the potential.
The average potential energy Ūpot in a combined potential of 2D-box and 1D-wedge
amounts to exactly 2/3 of the average kinetic energy and hence the average total energy
is 5/2 kBT . This is for instance used to calculate the temperature increase of a trapped
ensemble due to the scattering of one photon per atom. The 200 nK of recoil energy are
distributed over the degrees of freedom and lead to an increase of ∆T = 2/5 · 200 nK=
80 nK.

The peak phase-space density of a completely unpolarized gas in the GOST can be
calculated by

D =
1

7
· n0 · λ3

dB, (3.36)

with λdB = h/
√

2πmkBT being the thermal de-Broglie wavelength. The factor of 1/7
takes into account that the ground-state is seven-fold degenerate. We finally get

D =
1

7
· gh̄3(2π)3/2

πr2
HB

√
m

· N

(kBT )5/2
. (3.37)

As density and thus also peak phase-space density depend on the details of the potential
these expressions take different forms in case of the microtraps.

3.4.2 Loading of Microtraps

Now that we have a cold and dense atom reservoir at hand, the next step is to transfer
as many atoms as possible into the microtraps. All trap schemes discussed here, feature
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very far-detuned light fields in order to prevent heating and losses. In this sense their
potentials are conservative. An important consequence is, that an atom entering a
microtrap from outside will right away leave the light field at some other point with
unchanged kinetic energy. Although the microtrap potential has changed the atom’s
motion, it did not trap the atom due to the lack of a dissipative mechanism. However,
there are still two mechanisms that can lead to a reduction of an atom’s kinetic energy
and thus to trapping even in a conservative trap.

At the instant, the microtrap laser is switched on, the atom is exposed to a time-
dependent potential. During this process energy can be transferred from outside into
the system or vice versa. In this particular case it depends on the position and motional
state of an atom whether it looses enough energy to remain trapped in the light field
or, on the contrary, gain energy in this altered potential.

The following considerations demonstrate how the transfer efficiency of this loading
scheme is derived for the focussed beam trap described in the next section. This trap
is implemented by focussing a red-detuned laser beam to the center of the GOST trap
volume (see figure 3.7) and thus modifying the horizontal potential according to figure
3.8. The attractive well is an example of a so-called “dimple” which gives rise to the
astonishing properties of the microtraps discussed below.

Only atoms that are inside the light field at the moment it is switched on and
whose kinetic energy is below the potential energy at this point will remain trapped
in the dimple. It is obvious that both the spatial overlap between reservoir ensemble
and microtrap volume as well as the reservoir temperature are crucial parameters that
determine the efficiency of this loading scheme. Adjusting these parameters in order to
optimize the atom transfer is called “phase-space matching”.

In order to derive a transfer efficiency one has to integrate the phase-space distri-
bution function ρ(�p, �r) in the shape it takes before the dimple is switched on over the
relevant region in phase-space. We can restrict ourselves to a two-dimensional calcula-
tion since neither the potential shape of the microtrap nor the horizontal density profile
vary significantly with the vertical coordinate z. ρ(p, r) then takes the form

ρ(p, r) =
1

Ω
· exp

(
− p2

2mkBT

)
, (3.38)

for r < rHB and ρ(p, r) = 0 elsewhere. Ω is the partition function defined by Ω =∫
d2p

∫
d2r exp(−p2/2mkBT ). The phase-space coordinates used are the modulus of

momentum p and the radial distance from the trap center r. This distribution function
is now integrated over the region of phase-space that leads to an atom being trapped.
The criteria for this to occur are:

r < rHB, (3.39)

p2

2m
< Û · exp

(
−2r2

w2

)
. (3.40)
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The second equation expresses the requirement that the total energy of a trapped atom
must be below zero. m denotes the cesium mass, Û the maximum of the dimple potential
and w is the 1/e2-intensity radius of the beam. After simplifying and evaluating the
p-integral we arrive at the expression

ε =
2π

πr2
HB

∫ ∞

0
dr

(
r − r · exp

(
− Û

kBT
· exp

(
−2r2

w2

)))
, (3.41)

for the transfer efficiency ε. This integral can now be evaluated numerically. For the
experimental parameters of our trap, Û/kB = 48 µK, T = 4 µK and w = 32 µm this
yields a transfer efficiency of 0.9 %. The poor transfer efficiency is mainly due to the
bad spatial overlap between reservoir and microtrap.

In order to improve this number one could think of increasing the size of the microtrap
(provided that its depth can be kept constant) and thus to overcome the limitation
imposed by the spatial overlap. However there is a drawback of this approach. The
large gain in density and peak phase-space density that the dimple provides (see next
section) is conditional on the fact that the dimple (i.e. the modification of the potential)
is small compared to the size of the reservoir. As one increases the microtrap size and
manages to transfer a larger fraction of atoms into it, the less gain in density and peak
phase-space density results from it. The two different dimple trap configurations studied
in this experiment somewhat represent the opposite extremes of this statement.

Fortunately the GOST provides another mechanism that can further increase the
transfer efficiency without suffering from this problem. Because of the large and dense
ensemble trapped in the GOST, elastic collisions between two initially untrapped atoms
frequently occur within the light of the red beam. As such a collision redistributes the
kinetic energy of the collision partners there is a certain probability that one of the
colliding atoms finds itself trapped inside the dimple while the other carries away its
missing energy. Obviously also the opposite process where an initially trapped atom is
kicked out of the dimple by the collision with a fast atom exists. The exact dynamic
of this loading process is rather complicated and will be further discussed in Chapter 5.
However it is possible to derive a steady state result for the transfer efficiency assuming
a completely thermalized gas.

In a thermalized ensemble the phase-space distribution function is modified according
to the newly introduced potential:

ρ(p, r) =
1

Ω′ · exp

(
− p2

2mkBT

)
· exp

(
Û

kBT
· exp

(
−2r2

w2

))
. (3.42)

The partition function Ω′ is now calculated from the accordingly modified phase-
space integral. The transfer efficiency ε results from the identical steps as in the previous
calculation and like before, the final integral has to be evaluated numerically. The same
experimental parameters of Û/kB = 48 µK, T = 4 µK and w = 32 µm now yield a much
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larger transfer efficiency of 4.2 %. At a reservoir size of 3.5 × 106 atoms the collision
loading provides 1.5 × 105 atoms held in the dimple trap.

Up to now we have discussed the loading of a microtrap that has abruptly been added
to the reservoir. From what has been said above, this leads to a transfer of energy from
outside the system onto a certain fraction of the atoms. Depending on the strength of
the microtrap potential and on the fraction of atoms involved, this consecutively heats
the ensemble. In order to prevent this, the microtrap potential has to be ramped up
adiabatically. In fact, two relevant time scales can be distinguished in this context.

The time scale of single particle motion, i.e. the smallest oscillation period of an
atom in the idealized harmonic potential, determines an upper limit for how fast the
microtrap potential can be applied without significantly transferring energy onto the
atoms. At trap frequencies of usually few hundred Hertz this is not a requirement that
is hard to meet.

Strictly speaking adiabatic is equivalent to reversible which in turn means, that
the entropy of the system remains unchanged during this process. In that sense the
introduction of the microtrap has to take place slow enough for the ensemble to be
in thermal equilibrium at all times. This thermodynamic definition which applies to
the whole ensemble rather than to single particles therefore imposes a much stricter
requirement on the timing of the loading process: The introduction of the microtrap
has to take place on a time scale which is slow compared to the thermalization time of
the reservoir ensemble and therefore is on the order of seconds.

Reference [Wen00] contains a theoretical treatment of this dimple loading and pro-
vides numerical results on the differences between abrupt and adiabatic loading. It
shows that these differences a astonishingly small. Particularly in case of the strong
and wide dimple trap we have taken care to satisfy the above stated requirements for
adiabatic transfer.

3.4.3 The Dimple Trick

It is well known that adiabatically varying the strength of a potential without changing
its shape does not lead to a change in phase-space density of a trapped atom gas. A
compression will in general be compensated by an increase in temperature and vice
versa. In case of an adiabatic modification of the shape of a potential, however, this
restriction does not hold any longer and locally the density and phase-space density
might be significantly different. This so-called “dimple trick” was first suggested and
experimentally confirmed by P. Pinkse et al. [Pin97]. The authors report the increase
of the peak phase-space density of an ensemble of magnetically trapped hydrogen by
2 during an adiabatic transition of the trapping potential between two distinct shapes.
In contrast to evaporative cooling (Section 3.6.1) this approach constitutes a way to
reversibly change the local phase-space density. D. Stamper-Kurn et al. have made use
of this fact and investigated the reversible formation of a Bose-Einstein condensate by
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adiabatically increasing the peak phase-space density of a sodium gas by more than 50
[SK98].

The dimple trick relies on two constituents: A large reservoir of interacting (elasti-
cally colliding) atoms and a local modification of the trap potential. As the potential
is adiabatically transformed into a combined reservoir-dimple system, the reservoir en-
semble will adjust the local density by thermalization in such a way that the density
n(�r) satisfies the relation n(�r) ∝ exp(U/kBT ). A local modification of the potential as
shown in figure 3.6 will therefore strongly increase the density within the dimple. An
increase of the phase-space density now results from the fact that while density as a
local quantity increased, the global quantity temperature stayed nearly constant. This
is due to the reservoir that absorbs excess energy introduced during this process. In
principle this scheme allows for arbitrary increases of the peak phase-space density as
has been shown in reference [SK98]. It is important that the dimple potential is not
deep enough to accommodate all reservoir atoms, as this will remove the reservoir and
prevent an enhancement of the peak phase-space density. A theoretical discussion of
this useful effect can be found in references [Pin97] and [Wen00].

a) c)b)

reservoir
microtrap

Figure 3.6: The three stages of microtrap preparation: Preparation of the reservoir (a).
Thermalization loading of the microtrap (b). Removal of the reservoir (c).

In order to make use of the dimple trick, the microtrap experiments discussed below
used the preparation stages depicted in figure 3.6. After the GOST has prepared a
dense and cold reservoir ensemble, the dimple potential is added either adiabatically
or abruptly depending on the particular case. Thermalization then loads the dimple
potential and causes peak density and peak phase-space density to drastically increase.
Finally the reservoir is removed by switching off the hollow beam and about 200 ms later,
when all reservoir atoms have laterally escaped, consecutive evaporation steps from the
microtrap can be initiated.
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3.4.4 The Focussed Beam Surface Trap

A straightforward implementation of a microtrap is the focussed beam surface trap or
“dimple trap”. Figure 3.7 shows how it is realized by placing a tight focus of a far
red-detuned laser beam inside the center of the GOST trapping volume. The laser

Figure 3.7: Scheme of the focussed beam surface trap (dimple trap).

propagates through the prism from below in order to prevent reflection from the prism
surface which would lead to interference structures at the place of the atoms. In a first
set of experiments this was a 330 mW Nd:YAG beam focussed to 32 µm. The resulting
potential is U/kB = 48 µK deep and modifies the total horizontal potential according to
figure 3.8.

Figure 3.8: Horizontal potential of the combination of hollow beam and dimple trap.
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Note that in addition to the horizontal attraction a vertical force caused by the
intensity gradient along the propagations line of the beam exists if the beam focus does
not coincide with the dielectric surface. We can estimate the magnitude of this force by
looking at the harmonic approximation of the z-component of the potential:

U(z) ≈ U0 · z2

z2
R

. (3.43)

This approximation is reasonable, if the focus is less than the Rayleigh length zR =
πw2

0/λ ≈ 3 mm away from the prism. U0 is the minimum value of the potential and w0

denotes the 1/e2 radius of the beam at the focus. We can compare the effect of gravity
to this dipole force by calculating the potential energy corresponding to a displacement
of 10 µm for both cases. The corresponding gravitational potential energy is 1.56 µK
whereas the dipole potential in this case is only ∆U/kB = 5.3× 10−4 µK. Evidently this
force is negligibly small compared to the evanescent waves’s dipole force and even smaller
than the gravitational force so it can be disregarded in all following considerations. The
dimple potential arises from a far-detuned laser at 1064 nm and is therefore nearly
conservative.

The fact that the atomic density inside the dimple trap is very large compared to
the reservoir, makes atoms vulnerable to density dependent loss mechanisms. In order
to suppress the light induced collision loss discussed in Section 3.5.2 the standard 3 GHz
blue-detuned evanescent wave of the GOST is replaced by a very far detuned one in the
dimple. Most of the measurements discussed below have been performed with a 1.6 nm
blue-detuned evanescent wave whereas the results from the tight dimple configuration
have been obtained with a evanescent wave at a detuning of only 128 GHz.

Ensemble Properties

The following considerations will provide some useful formulas describing ensemble prop-
erties in the dimple. A very important parameter in this context is the trap frequency
ω at which an atom oscillates inside a microtrap. Depending on the configuration, the
dimple features trap frequencies of few hundred Hertz. Measurements determining ω are
discussed in Section 5.3. Strictly speaking the trap’s potential is not harmonic in shape
and thus gives rise to a broad spectrum of trap frequencies. Atoms of higher energy
in general oscillate with lower frequencies. However, since the ensemble temperature in
this case is much lower than the trap depth the potential can be approximated by a
harmonic potential up to a good accuracy. All following formulas refer to the harmonic
case In this approximation the combined potential of the dimple is harmonic in the
horizontal x-y-plane and wedge-shaped along the vertical z-direction. The density of
the atomic sample is therefore given by

n(�r) = n0 · exp

(
−r2

r2
0

)
· exp

(
− z

z0

)
. (3.44)
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To arrive at this expression one makes use of the fact that the potential is cylindrically

symmetric. r2 ≡ x2 + y2 is the radial coordinate in the x-y-plane, r0 ≡
√

2kBT/(mω2
r)

the radius and z0 ≡ kBT/(mg) the height at which the density has decreased to 1/e. ωr

is the radial trap frequency in the dimple trap while m and g denote mass and earth’
acceleration respectively. By introducing an effective volume V0 ≡ πr2

0z0 one can write
the peak number density conveniently in terms of the number of trapped atoms:

n0 =
N

V0

. (3.45)

The mean density 〈n〉 = 1/N · ∫
n2(�r)dV and mean quadratic density 〈n2〉 = 1/N ·∫

n3(�r)dV are related to n0 by the following simple expressions:

〈n〉 =
n0

4
, (3.46)

〈n2〉 =
n2

0

9
. (3.47)

The determining parameters of these quantities are the atom number N , temperature
T , and the trap frequency ωr. Peak- as well as average density scale as

n0 ∝ Nω2
r

T 2
. (3.48)

Note that differently from the case of the GOST, the density now depends quadrat-
ically on the inverse temperature which has important consequences for evaporative
cooling. Namely this leads to a stronger compression of the sample as temperature is
decreased and thus simplifies the task of evaporative cooling at constant or increasing
thermalization rate.

The resulting peak phase-space density can be obtained from expression 3.36 which
takes the form

D =
1

7
·
√

2πmgω2
r h̄

3 · N

(kBT )7/2
. (3.49)

It shows that also the peak phase-space density has a more favorable dependence on T
than in case of the GOST potential.

3.4.5 The Double Evanescent Wave Trap (DEW)

The double evanescent wave trap (DEW trap) is a second interesting microtrap scheme
that addresses a somewhat different physical topic. It has been proposed by Y.B. Ovchin-
nikov et al. already in 1991 [Y.B91]. The microtrap potential is formed by adding a
red-detuned evanescent wave with a large decay length to the gravito-optical potential
of the GOST (see Figure 3.9). This attractive light field alters both the vertical and the
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Figure 3.9: Scheme of the double evanescent wave trap

horizontal potential in a way that very close (≈ 1 µm) to the prism surface an attractive
potential well is formed whose vertical extension is only about one optical wavelength
while horizontally being a few hundred micrometers wide. This extreme anisotropy can
be exploited to realize an atomic system close to two-dimensionality.

Figure 3.10 shows the vertical part of this potential. Horizontally it resembles that
of the dimple trap. The total potential of this combination can be written as

Figure 3.10: Potential of the DEW-trap close to the prism surface for the experimental
parameters specified in the text. The short-ranged Van-der-Waals interaction has been
omitted.

U(�r) = Ub(x, y) exp
(
−2z

Λb

)
− Ur(x, y) exp

(
−2z

Λr

)
− αV dW · z−3

(
1 +

2πz

λeff

)−1

+ mgz,

(3.50)
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where Ub and Ur are the optical potentials of blue- and red-detuned evanescent wave
directly at the surface (z = 0) given by Ui(x, y) = Ûi exp(−2x2/w2

i − 2y2/w2
i cos2 Θi),

(i = b, r). wi is the waist of the beam, Θi its angle of incidence and Λi the 1/e2-intensity
decay length. The approximate expression for the Van-der-Waals attraction has been
introduced in Section 3.3. The experimental parameters used for the measurements of
Chapter 6 were as follows: The blue-detuned evanescent wave is created by a 1.15 W
laser beam at a detuning of 1.6 nm. It is focussed to a waist of wb = 400 µm and hits the
prism surface at an angle Θb deviating by 3.2◦ from the critical angle of Θcrit = 43.6◦.
The evanescent wave decay length Λb is therefore 395 nm and the potential barrier
at the center of the light spot is Ub/kB = 325µK. The attractive part of the DEW
potential stems from a 1.2 W beam at a wavelength of 1064 nm focussed to only wr =
160 µm. At an angle of incidence of Θr = 43.8◦ which corresponds to a small deviation
of ∆Θ = 0.2◦ from the critical angle, the resulting evanescent wave features a decay
length of Λr = 2.0 µm and gives rise to a total potential at the center of the light spot of
Ur/kB = 43 µK. The combined potential of both light fields together with gravity and
Van-der-Waals interaction creates a well of 13 µK depth at a distance of 0.9 µm from
the dielectric surface.

In order to load the trap one has to overcome the same problems as before in the
dimple trap since the trapping volume is small and the trap conservative. In principle
the same thermalization loading scheme could be applied to load this vertical “dimple”
by elastic collisions. However since the lifetime of atoms inside the DEW-trap is only of
the order of 1.4 seconds (see Chapter 6) the enhancement effect of this scheme is very
small. Best loading results from a good matching of the phase-space distribution in the
previous dimple trapping stage with the region of phase-space that leads to trapped
atoms in the DEW-trap.

In order to determine the absolute values of peak density and phase-space density, it
is necessary to derive expressions for the different trap frequencies in the DEW trap. In
general the procedure is as follow. First, one determines the harmonic approximation
of the potential at its minimum position x0:

U(x) =
1

2

d2U

dx2

∣∣∣∣
x=x0

(x − x0)
2 + . . . , (3.51)

and then extracts the trap frequency ω/2π by comparing this result to the general
expression of the harmonic oscillator:

U(x) =
1

2
mω · (x − x0)

2. (3.52)

In case of the vertical potential of the DEW-trap we start out with the slightly simplified
expression

U(z) = Ub exp
(
−2z

Λb

)
− Ur exp

(
−2z

Λr

)
, (3.53)
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which neglects the influence of gravity and Van-der-Waals attraction and assumes that
no horizontal motion takes place during the oscillation. For a very weak attractive
evanescent wave this approximation breaks down as gravity becomes comparable to
the attractive dipole force. Performing the somewhat tedious calculation as sketched
above finally yields the approximate expression for the vertical trap frequency ωz in the
DEW-trap:

ωz

2π
=

1

π

√√√√ 1

m

(
Ur

Λr

) Λr
Λr−Λb

(
Ub

Λb

) Λb
Λb−Λr

(
1

Λb

− 1

Λr

)
(3.54)

For the parameters provided above, we calculate a vertical trap frequency of 10.6 kHz.
Figure 3.11 shows the dependence of this quantity on the power Pr of the red evanescent
wave beam. Notably the trap frequency at Pr = 0 is zero in this model. A more realistic
approach including gravity and the attractive Van-der-Waals interaction would yield a
trap frequency of ω/2π = 1.1 kHz at Pr = 0 as expected from the considerations in
Section 3.3.
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Figure 3.11: Calculation of the vertical and horizontal trap frequency in the DEW-
trap as a function of the red-detuned laser power excluding the influence of gravity and
Van-der-Waals. The experimental parameters are given in the text.

The horizontal trap frequency is obtained from a similar approach as explained
above. In this case the gaussian intensity profile of the laser determines the shape of
the trap potential. Under the assumption of an atomic ensemble whose temperature is
significantly below the trap depth, the harmonic approximation is reasonably good and
yields

U(r) = 2U0

(
r

w0

)2

. (3.55)

U0 is the potential at the center of the beam and w0 is its 1/e2 radius. Note that U0

depends on the vertical position of the oscillating atom, as the laser intensity and thus
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also U0 fall off exponentially with the distance from the dielectric surface. Therefore,
for each set of experimental parameters the vertical trap minimum has to be calculated,
before a trap frequency can be obtained1. Starting with the simplified vertical potential
given in Equation 3.53 we obtain an expression for value of the potential in the minimum:

U0 = Ub

(
ΛrUb

ΛbUr

)− Λr
Λr−Λb − Ur

(
ΛrUb

ΛbUr

)− Λb
Λr−Λb

. (3.56)

Inserting this expression into Equation 3.55 and simplifying, yields the following result
for the horizontal trap frequency ωh/2π:

ωh

2π
=

1

πw0

√√√√− 1

m
Ub

(
ΛbUr

ΛrUb

) Λr
Λr−Λb

(
1 − Λr

Λb

)
. (3.57)

Figure 3.11 shows the trap frequency as a function of the red-detuned laser power with
the experimental parameters provided above and a beam waist w0 = 160 µm. Due to
fact that the laser beam hits the prism at an angle Θ, the trap frequency in the direction
defined by the plane of incidence is lower by a factor of 1/ cos Θ.

The tight vertical potential of the DEW-trap offers comparable conditions in terms
of peak density and peak phase-space density as the dimple, even though the number
of trapped atoms is usually much smaller. In order to find expressions for density and
peak phase-space density in the DEW-potential one can use a similar approach as was
employed before. In this case, however, the vertical potential is of harmonic form instead
of the wedge-shape of the gravito-optical potential. The overall potential is therefore
that of a 3D harmonic oscillator and gives rise to a density distribution of the form

n(�r) = n0 · exp

(
−x2

x2
0

)
· exp

(
−y2

y2
0

)
· exp

(
−z2

z2
0

)
, (3.58)

introducing the 1/e-radii X0 =
√

2kBT/mω2
X (X = x, y, z). Normalization again yields

the peak density n0:

n0 = N ·
(

m

2πkBT

)3/2

· ωxωyωz. (3.59)

The mean density and mean squared density are given by 〈n〉 = n0/
√

8 and 〈n2〉 =
n0/

√
27. The peak phase-space density can be written as

D =
1

7
· N

(
h̄ω̄

kBT

)3

, (3.60)

1Strictly speaking, this approach still includes further approximations. Because of the different beam
waists of red- and blue-detuned evanescent wave, a horizontal displacement from the center of the light
spots invariably results in a shift of the minimum of the vertical potential. The horizontal potential
therefore slightly deviates from a true gaussian profile. If, however, the blue-detuned evanescent wave
spot is considerably larger than the red-detuned one, this effect is of minor importance and can be
neglected.
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with the average trap frequency ω̄ = 3
√

ωxωyωz. Section 3.6.3 will further address the
two-dimensionality aspect of this trap.

3.4.6 Summary of Trap Properties

Since the specific trapping potential determines the functional relation between the
experimentally accessible parameters N , T and ω0 and the figures of merit, n0 and D,
each trap has its own mathematical expressions for these. Table 3.1 summarizes which
idealized potential shapes constitute the full trapping potential and to what expressions
for n0 and D this leads. The last column relates the mean total energy per particle to
the ensemble temperature.

Trap Potential Peak density Phase-space density Ē

GOST
2D-box +
1D-wedge

n0 ∝ N/T D ∝ N/T 5/2 5/2kBT

Dimple
2D-H.O. +
1D-wedge

n0 ∝ Nω2
0/T

2 D ∝ Nω2
0/T

7/2 7/2kBT

DEW-trap 3D-H.O. n0 ∝ Nωxωyωz/T
3/2 D ∝ Nωxωyωz/T

3 3kBT

Table 3.1: Summary of the relevant properties of the different traps.

Another relevant property, that is specific for each trapping potential is the scaling of
the temperature T with the laser power P during an adiabatic change of the strength of
the potential2. When lowering the laser power in order to apply some evaporation ramp,
the ensemble temperature is simultaneously reduced by two independent mechanisms.
Contrary to the evaporative cooling which reduces temperature and increases phase-
space density at the cost of trapped particles, the adiabatic cooling reduces temperature
and peak density in such a way that phase-space density stays constant. This condition
can be used to find a scaling law between laser power P and temperature T that allows
for a clear separation of both mechanisms during evaporative cooling.

We start with a general expression for the peak phase-space density and demand
that it remains unchanged by a variation of P .

D ∝ n0 · T−3/2 = const. (3.61)

The specific details of the trapping potential now enter via the dependence of n0 on
the laser power P . The situation becomes very easy when considering the standard

2It is important to demand that the shape of the potential remains unchanged. If this is not the
case, an adiabatic modification of the potential can still cause the local phase-space density to change.
Exactly this fact is exploited by the dimple trick.
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GOST. In this case, the 2D-box potential and the hard-wall of the evanescent wave
render the peak density completely independent of P and therefore we find that there
is no adiabatic expansion (or adiabatic compression) in the GOST.

The situation changes as we consider the dimple trap. Here, the density is influenced
by a change of the laser power via the trap frequency. Substituting the relation

n0 ∝ ω2

T 2
, (3.62)

into Equation 3.61 we find

D ∝ ω2

T 7/2
. (3.63)

Since ω2 ∝ P (see Chapter 5) we immediately find that during an adiabatic change of
the dimple laser power, T varies as

T (P ) = T (P0) ·
(

P

P0

) 2
7

, (3.64)

with P0 being the initial laser power. During an evaporation ramp which features both
mechanisms, exactly a contribution given by Equation 3.64 has to be attributed to the
adiabatic change.

In case of the DEW-trap this relation is slightly more complicated due to the fact
that no simple expression describes the functional relation between ωz and P . Using
the same arguments as before we find that an adiabatic change of the red-detuned laser
influences the ensemble temperature according to the following equation:

T (P ) = T (P0) · 3

√√√√ ωz(P ) · P
ωz(P0) · P0

. (3.65)

ωz denotes the vertical trap frequency. For practical use one has to plug in the numeri-
cally or experimentally determined values for ωz(P ) (see Section 6.3).

Obviously in all three traps the dependence of T on P is small and this suggests
that significant temperature changes during evaporative cooling are indeed mainly due
to the removal of energetic atoms.

3.5 Ultracold Collisions

Ultracold collisions play a very important role for the dynamics of the atomic ensemble.
On the one hand they mediate thermalization, facilitate evaporative cooling and load
the conservative microtraps while on the other hand inelastic collisions are responsible
for losses, heating and limitations in the efficiency of evaporative cooling. These two
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aspects of interatomic encounters are particularly pronounced in cesium because the
atom exhibits anomalous scattering behavior. The details of this peculiarity are dis-
cussed later in the text. The following sections will briefly explain elastic and inelastic
collisions and its consequences for this experiment.

The main distinction between collisions of atoms at room temperature and those
at a few microkelvin is the relative velocity of the colliding atoms. Ultracold collisions
however, are not only the low-energy extension of processes already known from thermal
atoms but rather show some new properties that have been extensively investigated in
recent years [Wal94, Wei99]. New scattering aspects in ultracold collisions mainly arise
from the fact that the collision time, due to the small relative velocity, is long enough for
optical excitation times to become comparable to the collision time and secondly because
the collision energy is small enough that long range details of the interatomic potentials
become important for the scattering process. The dynamics of these low-energy pro-
cesses are inherently governed by quantum mechanics which fortunately makes life easy
in most relevant cases. At low temperatures these collisions with few exceptions occur
purely isotropic and can be described by a single parameter called the scattering length
a.

3.5.1 Elastic Collisions

Elastic collisions or “good collisions” as they are sometimes called are the only signif-
icant process that makes an atomic ensemble relax to its equilibrium state after being
externally disturbed. They eventually lead to the cooling effect during evaporation and
provide low-energetic atoms that can be filled into the conservative microtraps. The
most important feature of elastic collisions is that they only redistribute the kinetic en-
ergy of both colliding atoms without releasing energy from internal sources or light fields
(exothermal) or removing kinetic energy (endothermal) by exciting internal degrees of
freedom. Consequently these collisions can only lead to heating or cooling of an atomic
ensemble if at the same time atoms are removed. The rate at which thermalization
and thus evaporative cooling can occur is determined by the rate of elastic collisions in
the sample. One can say that they are the pacemakers of dynamics. In this context
especially the elastic scattering cross section σ, the elastic collision rate γel and the
thermalization time Tth are relevant parameters and will be discussed in the following.

The collision process between two low-energetic atoms is most suitably treated by
a partial wave expansion of the scattering wave function. Due to the small relative
momentum of the collision partners only a few partial waves at small angular momentum
numbers (l = 0, 1, 2) play into the dynamics and usually even a reduction of the problem
to s-wave scattering (l = 0) is sufficient. In this case all scattering is purely isotropic
and most consequences can be summarized by a few parameters, most importantly
the s-wave scattering length a. For some situations (scattering of identical fermions,
shape resonances, some Feshbach resonances or particularly long-ranged interatomic
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potentials) higher orders of partial waves have to be taken into account.
Scattering theory [Sak94] states the simple result that as the relative momentum ap-

proaches zero the total cross section of two non-identical atoms colliding in an arbitrary
(but short-ranged) potential is given by 3

σ = 4πa2, (3.66)

where the s-wave scattering length a is defined by

a = − lim
k→0

tan δ0(k)

k
, (3.67)

and δ0 is the scattering phase. k is the wave number of the de-Broglie wave related to the
relative motion of the atoms. Note that all specific information about the interatomic
potential is contained in a and that σ becomes constant at small k. This can intuitively
be understood if we recall that at small k or ka � 1 the de-Broglie wavelength of the
scattering wave packet is much larger than the “range” of the potential represented by
a and thus cannot resolve any details of it. The scattering length a and its implications
on scattering properties will be revisited in later sections.

The Cesium Atom

The potentials that govern the detailed collision in our case are the singlet and the
triplet potential which apply to the two cases of relative orientation of the electronic
spins of the colliding atoms. In this situation the coupling between the two electron
spins replaces the coupling between electron spin and nuclear spin of a single atom. The
free atom state |F,mF 〉 is projected onto the singlet and triplet states which determine
the scattering process. The singlet (aS) and the triplet (aT ) scattering length are the
main parameters that summarize the details of the collision process. Experimentally
their values have been determined to aS = 280± 10 a0 and aT = 2400± 100 a0 (a0 being
the Bohr radius) using high-resolution Feshbach spectroscopy [Chi00, Leo00]. Obviously
both are positive and exceptionally large in cesium. Due to the large values for aS and
aT the scattering between two ground-state cesium atoms, which is usually a mixture of
singlet and triplet scattering, will in general feature a large scattering length regardless
of the specific mF -states of the collision partners. The anomalously strong scattering
influences elastic as well as inelastic scattering and is caused by several effects:

Firstly both molecule potentials are of such a form that they support a bound state of
the cesium dimer close to the dissociation threshold and this in turn leads to a so-called
zero-energy resonance [Arn97] that gives rise to the large values for aS and aT . This last

3If we consider scattering between atoms in a single mF -state we have to take into account that we
are then dealing with identical bosons which leads to a doubling of the total s-wave scattering cross
section and excludes p-wave scattering.
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bound state is particularly close to the dissociation energy for the triplet potential. Due
to this resonance also the expression for the elastic scattering cross Section 3.66 has to
be modified and now becomes [Dal99]:

σ =
4πa2

1 + k2a2
. (3.68)

The two important limiting cases are

ka � 1, σ(k) ≈ 4πa2 low-energy limit (3.69)

ka 	 1, σ(k) ≈ 4π

k2
unitarity limit (3.70)

With moderate values for the scattering length a around few ten a0 in other alkali
atoms the low-energy limit is applicable already at a few microkelvin temperature. In
cesium, however, the transition between both regimes defined by k2a2 = 1 takes place
only at around T ≈ 1 µK due to the extremely large scattering length. The result
is a more complicated quantitative analysis since all expressions that contain σ now
also implicitly depend on temperature. The thermalization serves as an example to
illustrate this point. In the low-energy limit of constant elastic scattering cross section,
Monte Carlo simulations [Arn97] have shown that about three collisions per atom are
sufficient to rethermalize an ensemble originally not in equilibrium. In cesium however,
collisions at small relative velocities have a larger elastic scattering cross section but
hardly contribute to thermalization since only little kinetic energy is transferred by them.
Consequently a cesium ensemble needs on the average about ten elastic collisions per
atom to rethermalize. In order to calculate the time Tth needed for such a thermalization
we first derive an expression for the elastic collision rate γel from the expression [Jea82]

γel = n̄ · σ(v̄rel) · v̄rel. (3.71)

n̄ is the average atomic density, σ the elastic scattering cross section and v̄rel the average
relative velocity between two atoms. Inserting expression 3.68 and the relation v̄rel =√

16kBT/πm for a Maxwell-Boltzmann distribution we arrive at an expression for γel

which depends on the mean density and temperature:

γel = n̄ ·
√

16kBT

πm
· (2πah̄)2

πh̄2 + 16ma2kBT
. (3.72)

Tth can then be derived from the approximate relation [Arn97]:

Tth ≈ 10 · γ−1
el . (3.73)

A second unusual property of cesium is the large influence of its so-called indirect
spin-spin coupling [Mie96]. This coupling mechanism between the spins of the two
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valence electrons of the colliding ground-state atoms is mediated by a coupling between
electron spin and excited electronic states of the dimer with angular momentum via
the spin-orbit interaction. The coupling breaks the spherical symmetry of the collision
process as it couples the total electron spin to the axis of the molecule. In lighter
alkali atoms this mechanism is strongly suppressed and can in general be neglected. In
cesium however, this coupling is strong [Leo00] and leads to two important consequences:
Firstly it explains the strong dipolar relaxation loss observed in magnetic traps [Söd98]
and secondly it gives rise to a relatively strong coupling between s-wave scattering states
and rotating molecular states of the molecular dimer and thus to a rich spectrum of more
than 30 Feshbach resonances found for the various states of cesium [Ker01].

Feshbach Resonances

Feshbach resonances are scattering resonances that arise from the fact that an unbound
scattering state and a bound state of a different molecular potential have similar energy
and are coupled by some mechanism [Fes62, Tie92]. If in addition to that, both states
have different magnetic moments, one can energetically shift them against each other
using an external magnetic field and therefore drastically change the scattering proper-
ties of this state. Figure 3.12 which is taken from reference [Ker01] shows the scattering
length a of the polarized |F = 3,mF = 3〉 state of cesium versus the applied magnetic
field. Scattering of this state is a mixture of singlet and triplet processes. Several narrow
Feshbach resonances can be seen. A strong increase of a starting from −2000 a0 at zero
field leading to vanishing scattering at 17 Gauss and to large and positive scattering
length above this value is due to a broad Feshbach resonance at around −10 Gauss (or
equivalently at 10 Gauss for the |F = 3,mF = −3〉 state). This feature is useful to tune
the scattering properties of a polarized cesium ensemble or the mean field interaction of
a Bose-Einstein condensate. Using a resonance to increase the absolute value of a leads
to a strong increase of σ until the unitarity limit is reached (ka 	 1) and the elastic
scattering cross section takes the approximate a-independent form

σ(k) ≈ 4π

k2
. (3.74)

Feshbach resonances are a useful and easy to implement tool to enhance evaporation
but have not yet been used in this experiment. Any measurements have been performed
on unpolarized samples up to now.

3.5.2 Inelastic Collisions

When talking about inelastic collisions in the context of laser cooling the cesium atom
can serve as a very illustrative example. Only due to its inelastic collision processes which
are generally up to three orders of magnitude more severe as compared to Rubidium-
87 have attempts to create a cesium BEC failed until recently. Again the zero-energy
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Figure 3.12: Several Feshbach resonances of the F = 3,mF = 3 state of cesium
[Ker01]. The large feature at low fields arises from a broad Feshbach resonance at
−10Gauss.

resonance together with the strong spin-spin coupling mechanism described above are
responsible for these problems. It prevents the creation of a BEC in magnetic traps
[Söd98] and has similarly foiled efforts in many dipole traps so far [Han01a].

Inelastic collision processes can be categorized according to the number of cold atoms
involved in such a process. Independent of ensemble density, atoms can always be
removed from a trap by collision with thermal background gas atoms. The transfer
of kinetic energy is generally much larger than the trap depth and therefore this kind
of collision inevitably leads to trap loss. Background gas collisions can effectively be
suppressed by establishing vacuum conditions of the order of 10−11mbar. The resulting
lifetime limit is of the order of minutes and usually longer than any other relevant
timescale.

Most important for this particular experiment are two-body processes in which two
cold atoms collide and by some coupling mechanism transfer energy from an external
(e.g. a light field) or an internal energy reservoir into the relative motion. This usually
leads to the removal of both atoms from the trap or at least heats the ensemble. A
wide spectrum of mechanisms is available for such a process and we will restrict the
discussion to the ones relevant for this trap.

mF -State Changing Collisions

Binary collisions that change the magnetic substate of the |F = 3〉 ground-state can,
depending on their energy splitting and on the trap depth lead to loss of atoms from the
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trap. In the current experiments unpolarized samples with a non-vanishing population
in all seven mF -substates (mF = −3, . . . , 3) are used and are thus subject to exothermal
collisions as soon as the degeneracy of these states is lifted by the Zeeman shift. At the
present experimental parameters these effects should however be of importance only at
very low potentials and also heating should not occur as this mechanism would equally
lead to exothermal and endothermal collisions. In future experiments the atoms will
be polarized to the |F = 3,mF = 3〉 state so that angular momentum and energy
conservation prevent these collisions. The energy splitting between neighboring mF -
states is ∆E/kB = 16.8 µK per Gauss and thus will sufficiently separate the mF -states
at the B-field values above a few Gauss.

Collisions at Blue Detuning

Another important inelastic process that has already been extensively investigated
[Ham99] in this trap, are collisions that occur in the presence of a blue-detuned light
field. This type of inelastic collision couples energy from the vast reservoir of the evanes-
cent light field into the atomic motion using the following mechanism. Apart from the
attractive Van-der-Waals interaction between two neutral atoms in the ground-state
there are long-ranged excited state molecular potentials that show a C3/R

3 dependence
and are due to the resonant dipole-dipole interaction. The fact that they involve at
least one electronically excited atom makes the coupling to a light field inevitable. This
can either be a red-detuned light field which comes into resonance with an attractive
molecular potential or a blue-detuned light field that excites the colliding pair into a
repulsive molecular state. Figure 3.13 illustrates how these light-assisted collisions take
place in case of an alkali D line.

While light-assisted collisions in red-detuned lasers have important implications for
instance in a MOT, the collision mechanism of interest in the GOST and the microtraps
involves the blue-detuned light of the repulsive evanescent wave. As two atoms collide
they can be resonantly excited into the repulsive S1/2 + P3/2 molecular potential by
an evanescent wave photon around the classical Condon point Rc where the resonance
condition is met. The strong repulsion between the atoms in this potential curve subse-
quently transforms part of the energy corresponding to the detuning of the evanescent
wave into kinetic energy and generally ejects both atoms from the trap. The detuning
of δEW /2π = 3 GHz corresponds to a thermal energy of 144 mK which is much larger
than the trap depth.

To derive the dependence of the rate coefficient β of this process on the detuning
and the intensity of the laser field involved, we make use of a simple semiclassical model.
First we assume that the rate coefficient β is proportional to the probability pRc for an
atom to approach its collision partner up to a distance Rc and to the probability pexc

for the excitation by the light field:

β ∝ pRc · pexc. (3.75)
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Figure 3.13: The two relevant electronic transitions involved in light-assisted inelastic
collisions. The repulsive molecular potential is excited by blue-detuned light, whereas the
attractive potential can be excited by red-detuned light fields.

One finds that pRc ∝ δ
−1/3
EW (from the shape of the potential) and uses a semiclassical

Landau-Zener model [Bal94] to obtain pexc ∝ I · δ−4/3. I represents the intensity of
the evanescent wave. The overall dependence of β on intensity and detuning of the
evanescent wave thus turns out to be

β ∝ I

δ2
EW

. (3.76)

This result has been confirmed by measurements reported on in reference [Ham99]. Rate
coefficients for the near-resonant evanescent wave are of the order of 10−12 cm3/s and
can be significantly reduced by using the far-detuned evanescent wave instead. The light
of the red-detuned microtrap laser is so far from resonance, that it virtually does not
cause any light-assisted collisions.

Three-body Collisions

Another sort of inelastic collision process that now involves three ultracold atoms in
one incidence is appropriately labelled three-body collision. In such an event two of the
colliding atoms form a dimer while the third partner carries away binding energy and
momentum. Usually this leads to a removal of three atoms from the trap although in rare
incidences where the binding energy is below the trap depth it can also result in heating.
Due to the difficulty of experimentally distinguishing three-body losses from binary loss
processes there exist few data on rate coefficients and their role has constantly been the
object of speculations. The event rate generally depends on whether identical particles
or mixed states collide and it also has a strong dependence on the temperature of the
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sample. Theoretical considerations imply that the rate coefficient for three-body loss
L3 scales as the scattering length a to the fourth power and has a strong dependence
on temperature. A recent experiment by T. Weber et al. [Web02] has experimentally
confirmed this model in the case of cesium by exploiting the tunable scattering length
and measuring the three-body loss in a CO2-laser trap.

All three categories of collisions in general contribute to the loss from a trap. A
differential equation describing the atom loss takes the form [Wal94]:

Ṅ

N
= −α − β〈n〉 − L3〈n2〉. (3.77)

α is the coefficient representing background gas collisions, β summarizes the effects
of all binary loss processes and L3 is the loss coefficient due to three-body collisions.
Depending on the actual scaling of 〈n〉 and 〈n2〉 with N , one can either analytically or
numerically solve this equation and use the solution as a model whose fit parameters
α, β, L3 are adjusted to give agreement with the experimental decay curve. Due to the
strong dependence of L3 on temperature and the degree of polarization, and because of
the difficulty to experimentally separate binary and three-body processes, the value for
L3 obtained from a fit is usually sufficient only to provide an upper bound for the rate
of these processes.

3.6 Towards Two-Dimensionality and Quantum De-

generacy

This final section of the chapter will give an overview of the experimental goals and
prospects and explain how the important tool of evaporative cooling is applied to pursue
them.

Each of the two microtrapping schemes represents one of the two relatively indepen-
dent physical topics that are addressed. While the strong anisotropy of the DEW-trap
is exploited to investigate two-dimensional behavior and how it affects scattering and
issues connected to BEC, the dimple trap is aimed at achieving a BEC in three dimen-
sions and investigate stability and scattering issues that have become accessible in the
context of Feshbach tuning.

Since the reduction of dimensionality and the phase transition to BEC inherently rely
on extremely low temperatures and high phase-space densities, the program to achieve
these goals essentially reduces to further cooling and increasing phase-space density.
Optical cooling schemes usually run into problems at phase-space densities close to the
condensation threshold because of density related problems such as for instance radiation
trapping. When it finally comes to the last cooling step it necessarily has to be taken
by evaporative cooling. At this point it should be emphasized that whenever we talk of
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cooling it essentially means phase-space cooling, i.e. the reduction of temperature with
a simultaneous increase of phase-space density.

3.6.1 Evaporative Cooling

Due to its efficiency and suitability in a wide range of temperatures and density regimes
evaporative cooling is up to date the only feasible method to reach quantum degeneracy.
Evaporation in magnetic traps [Ket96] covers typically around seven orders of magnitude
in phase-space density and its usefulness also for hybrid traps [Web02] or pure dipole
traps have made evaporative cooling a widespread and universal tool. In the context of
atomic gases it has first been proposed in 1986 by H.Hess [Hes86] and was demonstrated
on laser cooled samples by Davies et al. [Dav95] and Petrich et al. [Pet95] independently.
It marks a major breakthrough in laser cooling experiments as can be seen by the
prompt attainment of BEC in the same year [And95]. A comprehensive review article
on evaporative cooling can be found in [Ket96].

The underlying principle of evaporative cooling is the selective removal of energetic
atoms from an atomic ensemble and subsequent thermalization. While the first step
leads to a reduction of the average energy of the ensemble the second step takes care
of a translation of this reduced energy into a reduced temperature. If the truncation
parameter η defined by the value of the energy (in units of the thermal energy kBT ) that
leads to a removal of an atom from the trap is large enough, the evaporative cooling
leads not only to a reduction in temperature but also to the demanded increase in peak
phase-space density. It is obvious that the main drawback of evaporative cooling is the
inherent loss of atoms.

Plain and Forced Evaporation

One distinguishes between two cases of evaporative cooling: Plain evaporative cooling
occurs when a potential hosts an ensemble whose temperature is large enough that a
significant fraction of the atoms has sufficient energy to leave the trap. In this case
hot atoms will escape from the trap and cool the remaining sample until a temperature
of about T ≈ 1/10 · U/kB is reached and evaporation stops. The potential itself is
unchanged during this process. This form of evaporation takes place for instance when
atoms are transferred from a deep into a shallow trap or when a continuous heating
process exists that boils atoms from the trap until a balance between heating and cooling
through loss of hot atoms is established.

In contrast to this plain evaporation, forced evaporation is applied by a continuous
reduction of the trapping potential which forces the ensemble to continuously accommo-
date to the progressively shallower potential. The reduction speed of the potential depth
is usually chosen in such a way that the ratio between the selection parameter η defined
by the potential brim and the thermal energy of the ensemble kBT stays constant.
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The various implementations of forced evaporative cooling in general only differ in
how the energetic atoms are removed from the ensemble. While the standard method
in magnetic traps and some hybrid traps is RF-evaporation that uses radiofrequency
transitions between different mF -states to drive energetic atoms into untrapped states,
the most common way in dipole traps is lowering some optical potential. An often
encountered problem of this scheme is the simultaneous reduction of density and thus
elastic collision rate while the potential is being lowered. Only hard wall potentials such
as the evanescent wave don’t suffer from this disadvantage. Because of this reduction
of the collision rate it is much harder to attain conditions for runaway evaporation in
dipole traps which is most likely the reason that only two experiments have managed to
create BEC in a dipole trap up to this day [Bar01, Web02]. The microtrapping schemes
initially have such large elastic collision rates (∼ 1 kHz) and short thermalization times
that even though evaporation progressively slows down, it is still fast enough to ensure
good efficiency.

Time Scale of Evaporation

If one considers forced evaporative cooling, an important point is how fast the potentials
can be lowered while still maintaining efficient evaporation. This essentially boils down
to the question of how fast high energetic atoms that are removed by the energy selection
can be replenished by elastic collisions within the ensemble. The faster this replenish-
ment takes place the faster can the potential be lowered without affecting the efficiency
of evaporation. Reference [Ket96] states the result for the case of a large truncation
parameter η which is kept fixed relative to the thermal energy of the ensemble:

Ṅ

N
=

√
2γelηe−η. (3.78)

N is the number of trapped atoms. This rate of evaporating atoms is therefore a
function of the elastic collision rate γel and the truncation parameter η. The larger the
elastic collision rate of the atomic sample, the faster are high energetic atoms produced.
The η dependence stems mainly from the Boltzmann distribution that determines how
probable the production of a high energetic particle is. Evidently one can reasonably
fast cool an ensemble at large truncation parameters if only the elastic collision rate is
sufficiently large.

Evaporation Efficiency

The evaporation efficiency is an important parameter that determines what gain in
phase-space density can be achieved with a given number of atoms. It is the deciding
parameter of whether an attempt to create a BEC is successful or fails. Defined by the
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relation

ε ≡ ln
(

D′
D

)
ln

(
N
N ′

) , (3.79)

it can be understood as the orders of magnitude gain in phase-space density per order
of magnitude of lost atoms. D′ and D are the values of the phase-space density at
the end and the beginning of the evaporation respectively, while N ′ and N denote the
corresponding atom numbers. In the ideal case of an isotropic selection of energetic
particles the expected efficiency is found to be ε = η − 3 with the truncation parameter
η. The most efficient forced evaporation experiments in magnetic traps reach ε-values
of about three which corresponds to a factor 1000 increase in phase-space density for
each order of magnitude of lost atoms. So the higher its value the larger is the gain in
phase-space density per lost atom.

There are several factors that determine the efficiency of evaporative cooling. A very
important one is the ratio of “good” to “bad” collisions. While the elastic collisions that
mediate thermalization are labelled “good” collisions, all inelastic collisions that lead
to losses constitute the “bad” ones. Evaporative cooling is therefore essentially a race
between thermalization and losses. A favorably large ratio of “good” to “bad” collisions
leads to a situation where losses on the timescale of thermalization are small or even
negligible. In this case the selection parameter η can be chosen to be large in order to
obtain a good evaporation efficiency. In case of a poor ratio of “good” to “bad” col-
lisions this parameter has to be relatively small and consequently the evaporation has
to be fast in order to achieve any gain in phase-space density at all. This usually leads
to a poor evaporation efficiency. Particularly helpful in this context is the attainment
of “runaway” evaporation that is defined by a progressively increasing thermalization
rate during the evaporation. In this case the evaporation can be performed progres-
sively faster with constant efficiency and unless new severe loss mechanisms set in, the
attainment of BEC is straightforward.

Another aspect of importance for the efficiency of the evaporation is how energetic
atoms are selected for removal. If the selection mechanism probes the kinetic energy
of a particle in only one or two degrees of freedom, atoms moving with a large kinetic
energy along another direction will not be removed. The fact that a certain fraction
of the energetic atoms is unaffected by the selection mechanism leads to a reduced
evaporation efficiency. In general it is desirable that the solid angle from which the
selection mechanism can remove atoms is as large as possible.

3.6.2 Bose-Einstein Condensation

Bose-Einstein condensation is the quantum statistical phenomenon that a bosonic en-
semble satisfying the requirement

D = n · λ3
dB = 2.612, (3.80)
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for its phase-space density D, macroscopically populates the absolute ground-state of
the system. λdB is the thermal de-Broglie wavelength defined by

λdB =
h√

2πmkBT
. (3.81)

Equation 3.80 can be interpreted as a criterion for the parameters density n and temper-
ature T at which an atomic wave packet with the extension λ3

dB overlaps with adjacent
atomic wave packets. The BEC phase transition has first been observed in a dilute
atomic vapor of Rubidium-87 atoms [And95] in the year 1995. Since then a variety
of excellent review articles (e.g. [Ket99b]) have been published that describe the as-
tonishing properties of this coherent state. Bose-Einstein condensates from a number
of different elements have been created, mostly by the standard technique of using ra-
diofrequency evaporation in a magnetic trap.

The peculiar properties of the cesium atom (see Section 3.5) make it an interesting
candidate for the production of a BEC but due to these very same properties standard
methods of RF-evaporation are bound to fail [Söd98]. After cesium has also resisted
many attempts to create a BEC in optical dipole traps, which are not subject to the
detrimental dipolar relaxation, very recently a Bose-Einstein condensate of cesium has
been achieved by T. Weber and coworkers [Web02]. The prospect of being able to tune
the scattering properties as well as the mean field interaction of the condensate make it
a very fruitful object to study. Particularly in combination with a 2D environment this
will lead to interesting new physics. The next section will focus on this subject.

In the GOST experiment only unpolarized samples have been used up to now. This
implies that expression 3.80 for the phase-space density has to be multiplied with a
degeneracy factor of 1/7 since the atoms presumably populate all seven substates of the
|F = 3〉 ground-state. In the next stage of the experiment we will polarize the atomic
ensemble to the |F = 3,mF = 3〉 state. This will remove the degeneracy factor of
1/7 and allow for Feshbach tuning of the interaction properties according to what was
said in Section 3.5. In particular, choosing the sign of the scattering length determines
whether the condensate has an attractive (negative a) or a repulsive (positive a) mean
field interaction and therefore determines whether it is stable or not.

3.6.3 Two-Dimensionality

Reducing the dimensionality of an atomic gas does not imply the reduction of interesting
physical questions. On the contrary this brings about the existence of new effects and
altered behavior as compared to the three-dimensional case. Two-dimensionality in this
context essentially means kinematically two-dimensional or “freezing out” the vertical
motion. In that sense a two-dimensional atomic gas is created as soon as the thermal
energy kBT of the gas is much smaller than the lowest excitation energy of one direction
of the confinement and thus this degree of freedom becomes energetically unavailable
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for the atoms. Although atoms don’t move along this direction the extension of their

ground-state wave function l0 =
√

h̄/mω0 is nonzero. (ω0 denotes the trap frequency of

the strongly confined direction.) One can distinguish between three separate regimes in
the context of 2D:

Scattering in 2D, l0 � a

For a thermal energy far below the vibrational energy the vertical extension of the wave
function is essentially equal to this extension of the ground-state l0. If additionally
the scattering length a is much larger than l0, the scattering has to be treated purely
two-dimensional. In this situation the elastic as well as the inelastic scattering behavior
is strongly modified. Reference [Pet01] calculates the altered properties of scattering
in such a two-dimensional environment and states that it has to be treated truly two-
dimensional in the sense that one spatial dimension is completely disregarded. In this
case for instance the dependence of the elastic scattering rate γel on the scattering length
a exhibits a pronounced resonance behavior as opposed to the 3D case in which γel ∝ a2.
This offers interesting prospects for the case of cesium which allows for tuning of a. Up
to now this regime of two-dimensionality has not been accessible for experiments with
cold atoms and theories have yet to be confirmed experimentally.

Boundary to 2D, kBT ≤ h̄ω0

In the experimentally easier accessible temperature regime of kBT ≤ h̄ω0 scattering can
still be treated with the standard methods of three-dimensional scattering theory. The
strong confinement however, leads to significant deviations from the 3D behavior for
instance in the dependence of the elastic scattering cross section on temperature. While
in 3D in the unitary limit (|a| → ∞) the elastic scattering cross section is σ = 4π/k2

and thus strongly increases with decreasing temperature the elastic scattering cross
section in the tightly confined situation is practically temperature independent due to a
constant contribution of the zero-point oscillation to the relative momentum during the
scattering process. One also expects thermalization between the tightly confined and
the more or less free degrees of freedom to go exponentially less rapid with decreasing
temperature

∆Ṫ

∆T
∝ exp

(
− h̄ω0

T

)
, (3.82)

as due to simple symmetry arguments only collisions that change the total number
of vibrational quanta by an even multiple of h̄ω0 are allowed. This strong restriction
leads to a thermal decoupling of the degrees of freedom at kBT ≈ h̄ω0. It proves to
be hindering for the case in which cooling is not applied simultaneously to all degrees
of freedom. Partly, these theoretical predictions have been tested and confirmed by
experiments at Stanford and Paris [Vul99, Bou02].
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A Degenerate Gas in 2D, µ � h̄ω0

The thermal energy of a degenerate gas is usually negligible compared to the mean field
energy of the condensate. Therefore the criterion for a transition into the 2D regime is in
this case given by the requirement µ � h̄ω0, where µ is the interaction energy of a weakly
interacting BEC which in 3D corresponds to the chemical potential of the condensate
[Gör01]. In the context of a degenerate gas the restriction of the atoms to one or two
dimensions leads to a modified coherence behavior. While a characteristic property
of a standard 3D BEC (aside from the macroscopic population of a single quantum
state) is its global phase coherence, a condensate of reduced dimensionality exhibits
spatial phase fluctuations in a degenerate state that has been labelled quasi-condensate
(QC) [Kag87]. The coherence length in such a case is not equal to the extension of
the condensate in contrast to the 3D case [Blo00]. Only at temperatures well below the
transition temperature Tc can a BEC in the three-dimensional sense be established. The
reason for this peculiarity is the fact that in a two-dimensional homogeneous system no
long-range order can be established [Mer68] and only due to the modification of the
density of states by the atom confinement [Bag91] can a true condensate be created at
some temperature T � Tc. First experimental indication for such a quasi condensate
has been received in a two-dimensional system of atomic hydrogen adsorbed on a liquid
helium surface through the suppression of inelastic losses [Saf98]. Other experiments
have loaded 3D BECs into 1D or 2D traps to investigate the coherence properties in
situations of reduced dimensionality [Gör01, Det01].

Cesium is a particularly interesting case in the context of reduced dimensionality, as
the tunability of its interaction properties via the Feshbach resonance can be exploited
to reversibly cross the transition from the 3D to the 2D case according to the criterion
µ � h̄ω0. The interaction energy µ depends on the scattering length of the atoms
and can therefore be adjusted in a wide range as has been demonstrated by reference
[Web02].

Another prediction that arises from a theoretical analysis is made in reference [Pet00].
In two dimensions the mean field interaction of a degenerate gas is claimed to depend
on the frequency ω0 of the tight confinement which implies the possibility of tuning
the condensate interaction similar to a Feshbach resonance by simply changing trap
parameters such as laser power.

In our experiment questions related to two-dimensionality can be addressed by ex-
ploiting the strong anisotropy of the DEW-trap. In the horizontal directions with their
approximately 50 Hz trap frequency the atoms move essentially free at a few hundred
nanokelvin ensemble temperature (50 Hz trap frequency correspond to an energy split-
ting of about 2.4 nK). On the other hand, the tight vertical confinement of approximately
12 kHz leads to a transition into the 2D regime (kBT = h̄ω0) at more than 500 nK which
is well within the range of attainable temperatures in the GOST. Cooling is done through
evaporation by lowering the laser intensity which in turn also lowers the trap frequen-
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cies. Therefore the actual temperatures for the transition are closer to 100 nK than to
500 nK. Chapter 6 shows experimental results and further discusses them.
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Chapter 4

Experimental Setup and Procedures

A modern laser cooling experiment has to comply with a variety of technical demands.
It has to decelerate atoms from the extreme thermal velocities, cool them to virtually
zero Kelvin, keep them for seconds or even minutes without significantly disturbing their
delicate state and finally be able to extract information from the feeble signals emitted
by a few as 1000 atoms. In view of these requirements it is not surprising that even
though the theoretical background and initial experimental ideas were already present
for decades, it was the technical progress in vacuum and especially laser technology that
sparked the beginning of the field of laser cooling.

Stable and easily tunable lasers provide the means to exert strong forces for the
deceleration of atoms and to accurately address and manipulate atomic substates for
cooling and diagnostics. At the same time the combination of ultrahigh vacuum (UHV)
environment, magnetic fields and light forces fulfill the imperative requirement of ther-
mally isolating the laser-cooled atoms from room temperature surfaces sometimes as
little as 1 µm apart.

This chapter will provide an overview of what the most important technical ingre-
dients of the GOST project are, explain the measurement procedures and describe the
preparation of the cold atom reservoir for the microtraps. Emphasis will be placed
on the most recent improvements and newly introduced setups while details of already
established parts can be found in the references [Mos99, Man99, Ham99, Ryc00].

Section 4.1 explains the vacuum system that is used to maintain a vacuum of pres-
sures below 10−11 mbar while at the same time providing a steady flux of 108 cold Cs-
atoms per second from the atomic source. Section 4.2 is dedicated to the various lasers
used for MOT, Zeeman slower and the three dipole trap stages. It addresses issues like
stabilization, optical setup, intensity and frequency control. As virtually all manipu-
lation, cooling and diagnosis relies on lasers, this section constitutes the main part of
this chapter. Section 4.3 focusses on how the measurement cycle is structured and what
means of diagnosis are used to extract information from the atoms. Finally Section 4.4
will characterize the reservoir of cold atoms provided by the GOST.
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4.1 Vacuum System

The main purpose of the vacuum apparatus is to isolate the ultracold atoms from the
environment. The predominant challenge arising in this context is maintaining UHV-
conditions while at the same time allowing for a constant and high flux of Cs-atoms into
the trapping region. This problem is solved by using separate sections of the apparatus
for the creation of an effusive atomic beam and for the trapping and cooling experiments.
The two parts are connected via a differential pump section that maintains a pressure
gradient of up to three orders of magnitude between its ends. A photograph and a
schematic overview of the complete apparatus is shown in figure 4.1.
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Figure 4.1: Picture and schematics of the vacuum apparatus.

It has a length of about 1.5 meters and sits on a vibration damped optical table.
The following sections will go into more detail concerning the various components.
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4.1.1 Atom Source and Atomic Beam

The cesium atoms are stored and released from ten Cs-dispensers inside a heated oven
chamber. The dispensers are hollow metallic sticks of about 4 cm length which contain
chemically bound cesium-133 along with some getter material. The release of atoms
is initiated and controlled by an electrical current of 2 ampéres through the dispensers
which heats them to several hundred degrees and breaks the chemical bond of the cesium
compound. This method allows for clean and controlled handling of the very reactive
and poisonous cesium. At an oven temperature of 85 ◦ C cesium has a vapor pressure of
10−4 mbar. A 2 mm wide hole then creates the effusive atomic beam that passes through
the various parts of the apparatus and supplies the MOT with Cs-atoms. Attached to
the oven behind the nozzle is a 6-way-cross which hosts an inverted magnetron vacuum
gauge, an ion-getter-pump, a step-motor driven wobble stick serving as an atomic beam
shutter and a vacuum valve used to connect a turbo pump for dispenser exchange.
After passing this section the atomic beam propagates through a short flexible tube
introduced to relief stress between the different parts of the apparatus and to have the
possibility of aligning the atomic beam with the differential pump section. A valve
used to seal off the experiment section during dispenser exchange connects the flexible
tube with the differential pump section. This section consists of a stainless-steel tube
of 45 cm length whose inner diameter increases in five steps from 4 mm up to 9 mm.
This section has two purposes: Firstly it maintains large pressure gradients of more
than three orders of magnitude between its ends and thus allows for experiments to
take place in a UHV-environment of 10−11 mbar with corresponding storage times of
minutes while at the same time vast amounts of atoms are released at comparatively
high pressures of 10−4 mbar at its opposite end. Secondly it hosts the Zeeman slowing
section, where a combination of four magnetic coils placed coaxially around the vacuum
tube and a near resonant laser beam counterpropagating the atomic beam decelerate
the fast thermal atoms down to a few meters per second. The atom source and atomic
beam section create a flux of 108 slow atoms per second which directly proceed into the
experiment chamber.

4.1.2 Experiment Section

The core piece of the apparatus that hosts all traps is a spherical stainless-steel cham-
ber which has openings on two opposite sides; one being the entry point of the atoms
and the other a passage into a large pump section. In addition to these there are 16
anti-reflection coated viewports (for 852 nm) used to shine lasers into the chamber and
to detect fluorescence from the atoms using a CCD-camera. 0.5 cm below the center of
the chamber lies the surface of a fused-silica prism that serves as the vacuum-dielectric
interface on which the evanescent waves are created. The prism has a trapezoidal base-
line, a five on four centimeters surface and is situated on a titanium holder which sits
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on the bottom viewport of the chamber. Both the bottom surface and the angled sides
of the prism are anti-reflection coated for 852 nm and 1064 nm. The top surface is left
uncoated in order to prevent any unwanted interference effects of the evanescent waves.

Two magnetic coils of 250 windings each are wound directly on the outer surface
of the chamber. They are placed 9 cm apart from each other and connected in anti-
Helmholtz configuration to create the quadrupole field for the MOT. The coil axes lie
perpendicular to the plane defined by the atomic beam and gravity. Three pairs of
additional coils are attached to the chamber in three perpendicular orientations in order
to be able to create small nearly homogeneous field components in any direction at
the location of the atoms. That way one can compensate earth magnetic field and
additionally position the atom cloud of the MOT arbitrarily by shifting the point of
zero magnetic field.

A large pump section is connected to the main chamber opposite of the entry point of
the atomic beam via a 5 cm wide opening. Its purpose is to efficiently pump the volume
of the experiment chamber and to remove the part of atoms that due to their initially
large velocity could not be slowed and trapped. A viewport situated on the opposite side
of the pump chamber serves as entry point for the Zeeman slowing laser. Additionally
the pump chamber hosts a valve to connect a turbo pump and a UHV-gauge. Finally two
pumps provide the necessary pumping power needed to meet the vacuum requirements.
One of them being a strong ion-getter pump attached to the bottom of the apparatus
and the other a pair of Non-Evaporative-Getter modules (NEG-modules) that provide
most of the pumping power and conveniently after once being activated don’t rely on
electrical power.

4.2 Laser Setup

The various lasers used for the different traps play a key role in this experiment. They
exert strong forces and allow for a deceleration of the atoms with several thousand
times earth acceleration g, they take care of energy dissipation and cool atoms from
about 100◦ C to microkelvin within milliseconds, they provide a variety of different trap
designs for all kinds of experimental purposes and finally enable the experimentalist to
extract accurate information from the system, in some cases even without disturbing it
significantly. The reason that laser light plays this universal role, is that it constitutes a
large energy reservoir (compared to the kinetic energy of the atoms) that can be coupled
to either internal or external degrees of freedom of the atom in a very controlled way.
Depending on detuning and intensity it can give rise to either dissipative or conservative
forces and with a sufficiently small linewidth can separately address atomic substates
as little as MHz apart. The fact that it can couple the external motion of an atom
to internal electronic transitions using the photon recoil or spatially dependent light
shifts gives rise to sophisticated and efficient cooling schemes. In order to exploit these
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possibilities one has to be able to control intensity and particularly frequency very well.
The following sections discuss the implementation of the different lasers associated with
the various traps and how the requirements concerning stability and geometry are being
met. Some of the less recent parts of the experimental setup have been explained in other
sources before ([Mos99, Man99, Ham99, Ryc00]) and have turned out to be standard by
now, so that most details can be omitted here.

4.2.1 MOT and Zeeman Slower

This section will briefly discuss the technical ingredients that make up the MOT and
the Zeeman slower. Both are by now considered standard tools in many laser cooling
experiments and are routinely used as an atom collecting and pre-cooling stage for other
trap types such as dipole traps or magnetic traps. Even though explanations will be
kept short, this should not suggest that MOT and Zeeman slower play a minor role in
the experiment. Only due to the impressive capture velocity of the MOT is it possible
to bridge the huge gap between thermal atom velocities and those that can be held in a
dipole- or magnetic trap. Besides, only during the MOT-phase is it possible to gather
information from the atoms using fluorescence detection.

Light Sources

The light used for all near resonant applications such as the MOT, Zeeman slower,
different repumping beams, absorption imaging or the evanescent wave is provided by
laser diodes (SDL-5712-H1) operating near 852 nm. These so-called DBR-diodes feature
a layer of spatially periodical index of refraction behind the laser-active semiconductor
material that selectively reflects light of a narrow frequency band back and thus passively
stabilizes the frequency to a few ten MHz. Up to 100 mW of near-infrared light at
852 nm are available from each laser diode. The frequency can be tuned by either
adjusting the current through the diode or by changing the diode temperature using
an integrated peltier element. While modifying the diode current allows for for fast
(kHz-MHz) frequency modulation within a small frequency interval, tuning the diode
temperature changes frequency in a several hundred GHz wide range without mode hops
at a rate of ∼ 70 GHz/s. During the standard mode of operation, the diode temperature
is stabilized at a certain value, while the diode current is used to actively lock the laser
frequency to an atomic reference.

Frequency Lock

Operating a MOT at a few MHz detuned below the atomic transition makes accurate
and reliable frequency stabilization imperative. Since both transfer into the GOST and
all diagnostics depend on a stable MOT operation and in particular on stable laser
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frequencies, considerable effort has been made to replace the former polarization lock
scheme [Mos99] with a new scheme where the laser frequency is locked to a grating
stabilized master laser of about 100 kHz linewidth. This scheme has the advantage of
both preventing slow drifts of the lock frequency and providing a smaller frequency
width as compared to the former setup. The introduction of this scheme proved to be a
major improvement in terms of reproducibility of measurement results and will therefore
be explained in some detail at this point.

Both the diode laser providing light for the closed cooling transition F = 4 → F ′ = 5
of the MOT and the diode laser used as a light source for the Zeeman slowing beam are
locked to a stable reference laser (master laser) by comparing the beat signal between
master laser and secondary laser with an external frequency reference generated by a
voltage controlled oscillator (VCO). Since the frequency of the repumping transition
(F = 3 → F ′ = 3) proved to be uncritical in terms of stability the corresponding laser
diode is still stabilized by the polarization lock scheme.

The master laser consists of a laser diode (SDL-5410) which has its frequency locked
to 170 MHz below the F = 4 → F ′ = 5 transition. It is stabilized using the diode
current for fast frequency adjustments and an external grating (Littrow configuration)
for slow ones in a wider range. The frequency reference is provided by a modulation-
transfer spectroscopy signal obtained from a 170 MHz blue shifted beam passing through
a cesium vapor cell. This RF-scheme provides a Doppler free, robust signal with a good
signal to noise ratio. In particular it is subject to much less long term drift as for
instance the polarization lock scheme. Details of this spectroscopy scheme can be found
in [Raj80, Shi82]. The frequency width of this laser is about 100 kHz with no significant
long term drift of its absolute frequency.

In order to lock MOT- and Zeeman laser to this reference a beat signal between the
reference laser and one of the secondary lasers is obtained according to figure 4.2. After
the collimated and shaped beam has passed through an optical diode, two weak (few
mW) parasitical beams are extracted from the main beam at the front and rear surface of
a beamsplitter substrate. One of these beams passes through a saturation spectroscopy
setup and is detected on a photodiode. This spectroscopy signal serves as an absolute
frequency reference. The second beam of about 3 mW power is overlapped with the
reference laser beam on a fast photodiode (bandwidth 1 GHz) after its polarization
and beam parameters have been adjusted to match those of the reference laser. The
fast beat signal between both light fields of about two hundred MHz is translated into
an electronic RF-signal by the photodiode and further processed by a chain of RF-
electronics as shown in figure 4.3. The scheme, that is used here has been introduced
in reference [Sch99]. The aim is now to create an error signal from this beat signal that
features a steep slope and an adjustable zero crossing at the desired laser frequency. To
accomplish this, the beat signal is first compared to a reference frequency provided by
a VCO using an RF-mixer. Since the mixer generates both the sum- and the difference
frequency as output signal, a lowpass filter is added to the chain that removes the
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Figure 4.3: Schematics of the RF electronics used to generate an error signal [Sch99].

higher sum frequency. The remaining signal is the amplified and split in two parts by
a power splitter. While one branch directly proceeds to a phase detector the other
branch features a delay line (3 m BNC-cable) that causes a frequency dependent phase
shift between the two signal parts. The phase detector now translates this shift into
a DC-voltage between -1 and 1 volt thus providing the desired error signal. The slope
steepness can be adjusted by changing the length of the delay line while the position
of the zero crossing is conveniently tunable through the frequency of the VCO. Figure
4.4 shows the spectroscopy signal and the error signal obtained by a frequency sweep
over the relevant range. The VCO voltage and thus the oscillator frequency is adjusted
such that the error signal has a zero crossing slightly (8 MHz for the MOT laser and
25 MHz in case of the Zeeman slower laser) to the left (red detuning) of the bottom dip
of the spectroscopy signal (F = 4 → F ′ = 5 transition). Shifting the detuning during
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Figure 4.4: Reference signal from the saturation spectroscopy and error signal as ob-
tained by the beat lock scheme

transfer into the dipole trap to −60 MHz is accomplished by ramping the VCO voltage
to the corresponding value. This results in the zero crossing of the error signal and thus
the laser frequency being dragged along. In the current setup the accessible frequency
ranges from −122 MHz up to +44 MHz with respect to the F = 4 → F ′ = 5 transition
and is limited by the VCO frequency range. In order to measure the frequency width of
a secondary laser a beat signal between a second stable reference laser and the locked
secondary laser was taken. Its width of about 1 MHz indicates a similar frequency width
for the secondary laser. (As this is significantly larger than the frequency width of the
reference laser the main contribution stems from the secondary laser.) Besides from the
improved long term stability this implies a factor of ten improvement of the frequency
width.

MOT Geometry

After being frequency stabilized the laser light has to be brought into the vacuum
apparatus. The following section briefly discusses the geometrical setup of MOT and
Zeeman slower.

In order to prevent stray light from any near-resonant laser during the dipole trap-
ping stage, these lasers have been set up on a separate table apart from the vacuum
apparatus and the atoms. During MOT operation this light is coupled into polarization
maintaining single-mode fibers and guided onto the main experiment table. Aside from
the suppression of potentially harmful near-resonant stray light this has the advantage
of geometrically decoupling the optical setup on opposite sides of the fiber leading to
enhanced stability. Separate fibers are used for the beams driving the MOT-cooling and
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MOT-repumping transitions whereas both Zeeman slower beams are simultaneously cou-
pled into one fiber. After leaving the fiber, both MOT beams are collimated to a waist
of 0.7 cm, overlapped at a polarizing beam splitter cube and then split into five separate
beams. One is shone horizontally through the center of the experiment chamber while
the other four beams symmetrically enter the vacuum in a plane perpendicular to the
horizontal MOT beam. The intensity of each beam amounts to 10.4 mW/cm2 which is
9.4 times the saturation intensity of cesium. In this configuration the intersection of the
six beams lies about 0.5 cm above the center of the prism surface and approximately
coincides with the point of zero field strength of the MOT quadrupole field. At a cur-
rent of 4 A running through the quadrupole coils the atoms experience a field gradient
of ≈ 20 Gauss/cm in the strong (horizontal) axis and half of it in the weak axis.

The combined cooling-repumping beam of the Zeeman slower is formed in such a
way that it optimally overlaps with the atomic beam. This is realized by making it
converge to a small focus at the place of the oven nozzle after entering the vacuum
apparatus with a waist of approximately 1.5 cm. Its power at this point is 30 mW. It is
circularly polarized by a quarter waveplate at the entrance viewport. Since it is passing
right through the MOT cloud with a detuning of only 25 MHz there is a visible effect of
pushing the atoms into the direction of the atomic oven.

4.2.2 The Gravito-optical Surface Trap

Technically the GOST consists of only three laser fields. The evanescent wave providing
the vertical confinement and the Sisyphus cooling process as described in Chapter 3, the
hollow beam confining the atoms laterally and finally the repumping laser that closes the
Sisyphus cooling cycle. The relative simplicity of this trapping scheme manifests itself in
terms of reproducibility and forgiveness regarding alignment or frequency adjustment.
The following paragraphs discuss technical aspects related to these three lasers and their
relevant experimental parameters.

Evanescent Wave

Two different laser sources alternatively provide light for the evanescent wave, depending
on whether optical Sisyphus cooling is applied or far-detuned and nearly conservative
potentials are required. The light used for the dissipative evanescent wave is derived
from a 150 mW output laser diode similar to the ones used for the MOT and the Zeeman
slower. Actively locking the frequency is not necessary in this case since the detuning
of +3-+6 GHz with respect to the F = 3 → F ′-transition is much larger than the
passive stability of the temperature stabilized DRB-diode of roughly few ten MHz. The
evanescent wave laser can be detuned at a rate of 70 GHz per second by changing the
diode temperature using the integrated peltier element. This option is used to apply
an evaporation ramp of up to 200 GHz detuning as discussed in Section 4.4.2. The
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optical setup is illustrated in figure 4.5. A set of anamorphic prisms and an optical
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Figure 4.5: Optical setup for the near resonant evanescent wave

diode take care of beam shaping and prevent back reflection into the laser diode. A
200 MHz acousto-optical modulator (AOM) allows for fast switching operations (within
microseconds) which are needed to accurately measure the ensemble temperature in the
GOST (see Section 4.3.5). Before the laser light is finally shaped using an anamorphic
prism (creating an elliptical beam cross section to yield a circular evanescent wave spot
on the prism surface) and a focussing lens to adjust the beam waist to the desired value,
it has to pass through a heated cesium vapor cell that absorbs any remaining fraction
of resonant photons [Ham01]. This filter cell becomes necessary because otherwise a
detrimental fraction of photons that is emitted into side modes of the diode laser through
amplified spontaneous emission will cause strong heating any time the evanescent wave
detuning is at a multiple of the 36 GHz corresponding to the mode spacing of the diode
laser cavity and a side mode comes into resonance. At a temperature of 50◦ C the
cesium vapor inside the cell is optically thick for resonant light and that way gets rid
of unwanted heating. A half-waveplate sets the polarization to TM in order to optimize
the evanescent wave intensity according to the considerations in Section 3.3. Finally the
evanescent wave spot is placed at the desired spot on the prism surface using a mirror
fixed on top of a linear translation stage. Shifting the translation stage and changing
the horizontal angle of the mirror allows for moving of the spot without changing the
angle of incidence of the evanescent wave beam. The evanescent wave beam has a power
of typically 45 mW, is focussed to a spot size of 700µm (waist) in both directions and
for optical cooling features a detuning of 3 − 6 GHz above the F = 3 → F ′ transition.
At an angle of incidence of one degree above the critical angle of Θcrit = 43.6 ◦ this
amounts to a peak dipole potential at the center of the spot of around U/kB = 800 µK
The 1/e-decay length of intensity turns out to be Λ = 0.71 µm.

In case a conservative evanescent wave potential is needed, two options are at hand.
In experiments concerning the evaporation from the GOST or the tight dimple (see Sec-
tion 5), the same laser diode as previously used for the optical cooling was temperature
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tuned to provide light of up to 200 GHz detuning. At 200 GHz detuning the potential
is reduced to about U/kB = 12 µK. Later, in experiments studying the wide dimple
configuration and the DEW-trap, light from the titanium:sapphire laser was extracted
from the hollow beam setup and prepared by a similar setup as used for the diode laser.
In this case no filtering vapor cell is needed. As already listed in Chapter 3 the beam
parameters are as follows: The beam has a power of 1.15 W at a detuning of typically
1.6 nm. It is focussed to a waist of wb = 400 µm and hits the prism surface at an angle Θb

deviating by 3.2◦ from the critical angle of Θcrit = 43.6◦. Its decay length Λb is therefore
395 nm and the potential barrier at the center of the light spot Ub/kB = 325µK.

Hollow Beam

Horizontal confinement is provided by the hollow beam. Although its axicon optics
manages to create light walls of a focus quality comparable to a Laguerre-Gaussian
beam of the order 100 it naturally cannot achieve field gradients similar to the one
created by an evanescent wave. It is therefore necessary to operate the laser at much
larger detunings in order to avoid detrimental photon scattering rates and thus the need
for much more laser power arises in order to create sufficiently large potential walls. In
the current setup a titanium:sapphire laser which is pumped by a 10 W laser at 532 nm
(Coherent Verdi-V10) provides up to 1.6 W of light at a wavelength of between 849.1 nm
and 851.1 nm corresponding to a blue detuning of between 1 and 3 nm with respect to
the Cs D2 line at 852.1 nm. The output beam passes through an optical diode and a
200 MHz AOM which splits the light into a zeroth, a first and a second order beam that
are used as the hollow beam, a far detuned evanescent wave (see Section 3.4.4) and a
wavelength monitoring beam respectively. The experiments on evaporative cooling in
the GOST reported on in Section 4.4.2 were performed in a different configuration. In
order to be able to decrease the hollow beam intensity using the AOM it was necessary
to use the first order beam as hollow beam. In these cases no far detuned evanescent
wave derived from the titanium:sapphire laser was applied.

The light intended for the creation of the hollow beam is coupled into a polarization
maintaining single-mode fiber to clean the transverse mode (TEM0,0 being desired) and
geometrically decouple the axicon optics from the section in front of the fiber. Figure
4.6 gives a schematic overview of the optics used to create the ring-shaped focus. After
leaving the fiber the light is collimated and again focussed to an intermediate image plane
by two achromatic lenses (AC). The axicon is introduced slightly behind the focussing
achromat and leads to the creation of a ring instead of a point-like focus. The distance
between the achromat and the axicon determines the diameter of the ring focus. To
remove stray light from the inner perimeter of the hollow beam a coated glass substrate
with a dark spot of almost the same size as the ring focus is placed inside the ring in
this image plane. This plane is then imaged onto the prism surface in a near 1 : 1 image
by two achromatic lenses of 300 mm focal length. The light enters the vacuum chamber
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Figure 4.6: Optical setup used to generate the ring-shaped focus.

through the top viewport and leaves it through the bottom. For alignment purposes it
is then identically imaged onto the CCD-chip of a monitor camera. This camera shows
the relative positions of the hollow beam, all three evanescent waves and the red focus
on the prism surface. It is a useful and extensively used tool to overlap the different
light fields.

The parameters of the hollow beam unless otherwise specified are the following: Its
total power of about 400 mW at the surface of the prism is distributed over a ring with
a diameter of 820µm and a 1/e2-wall thickness of about 20 µm. At a detuning of 1.6 nm
this amounts to a potential depth of U/kB = 93 µK. In measurements where the hollow
beam intensity has to be stabilized or dynamically changed, a photodiode is placed in
the beam instead of the monitoring camera. Its signal is used as a feedback for the
intensity lock electronics.

It turned out that the most critical part of the hollow beam setup is the single-mode
fiber as the inserted power is far beyond specified tolerances. This leads to significantly
higher insertion loss and a slow degradation of the fiber. Details on the setup and in
particular on the alignment can be found in [Ham99].

Repumping Beam

In addition to the two retaining lasers a repumping beam that transfers atoms gotten
into the F = 4 state back into the F = 3 ground state is needed. This very weak
(few µW) repumping beam is resonant with the F = 4 → F ′ = 4 transition and is
continuously applied during the GOST and the dimple phase. As it is 250 MHz below
the F = 4 → F ′ = 5 transition it can be derived from the beam of the Zeeman slowing
laser by extracting a small part and shifting it 225 MHz further to the red using an
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AOM. An optical fiber guides the light to the vacuum apparatus where it illuminates
the trapping region from above.

4.2.3 The Focussed Beam Surface Trap

The aim of the surface microtraps is to create very dense atomic ensembles close to
the surface of the prism. Since inelastic collision processes which are assisted by trap
light of any kind get progressively worse as the density of the ensemble increases it is
necessary to use far-detuned light fields in order to suppress these processes. In the
case of the attractive microtraps in which atoms are kept in places of maximum light
intensity it is advisable to use very far-detuned light fields to prevent heating through
photon scattering.

In a first implementation of the dimple trap the vertical confinement is realized by a
160 GHz blue-detuned evanescent wave. The detuning is dynamically set by changing the
laser diode temperature through an external control input of the laser diode temperature
controller. It however turns out that the lifetime of the trap significantly decreases as
detuning increases and at the same time a strong heating of the ensemble is observed.
Possibly this is due to defects in the evanescent wave which begin to become important
as the depth of the evanescent wave decreases. The heating might be due to a selective
removal of cold atoms (anti-evaporation) as these atoms probe the evanescent wave
surface more frequently due to their larger bounce rate. In all consecutive experiments
the repulsive evanescent wave was generated by light from the 1.6 nm blue-detuned
titanium:sapphire laser. This beam originates as first order beam from the AOM of the
hollow beam setup and is directly brought into the vacuum chamber via four mirrors.
Two lenses focus the evanescent wave beam down to 400µm waist and a half-waveplate
adjusts the polarization to be TM. At the 1.15 W of available power and an angle of
incidence of 3.2 ◦ above the critical angle this amounts to a maximum potential (Van-
der-Waals attraction included) of U/kB = 325 µK at the center of the evanescent wave
spot. The AOM allows for fast switching within microseconds and provides means to
modulate the intensity of the beam. All implementations of the dimple trap design used
light at 1064 nm for the attractive light field. At the corresponding detuning of almost
200 nm heating by photon scattering can be utterly neglected compared to the effect of
the evanescent wave.

A part of the dimple trap experiments was performed using a 400 mW single lon-
gitudinal mode Nd:YAG laser (CrystaLaser) until it was replaced by a 10 W Yb-Fiber
laser (IPG-Laser, model PYL-10) with a clean transverse mode (M2 < 1.1) but a spec-
tral width of more than 1 nm. The optical setup is straightforward and is depicted in
figure 4.7. After the beam emerges from the fiber laser collimation optics, its plane of
polarization is rotated to vertical by a half-waveplate and it is then focussed onto the
crystal of an AOM. This AOM splits the beam into a zeroth order beam that is used as
the red evanescent wave and a first order beam that proceeds through two lenses and

73



A
O

M

AOM

fiber laser output � /2

500mm

HR

PD

0
th

o
rd

e
r

1
s
t
o
rd

e
r

HR

HR

HR

HR

200mm -150mm
HR

-150mm200mm

HR

to experiment chamber

red focus beam

red evanescent
wave beam

PD

HR

HR

fast switch and
intensity control

fast switch and
intensity control

Figure 4.7: Optical setup for the dimple laser and the red evanescent wave

is reflected into the vacuum chamber by a mirror underneath the apparatus. The first
lens is placed on a translation stage so that enlarging the focus size on the prism surface
from 30 µm to 200µm becomes possible by shifting the lens along the beam axis. As the
Rayleigh range of the beam at a focus size of w0 = 30 µm is only 2.7 mm it is necessary
to accurately position the optics so that prism surface and focus exactly coincide. Since
with the 400 mW laser the potential depth and thus the atom transfer into the red focus
strongly depends on the focal size, one obtains a clear signal as to how accurate the focus
placement is. After atom transfer has been optimized using the position of the first lens
the beam can be extracted after the second lens and its focus size be determined.

The AOM is used for three purposes. Firstly it is used to switch the beam. Sec-
ondly it is needed to accurately blank the beam for few milliseconds with microsecond
resolution for horizontal trap frequency measurements described in Section 5.3. And
finally it is used to implement an evaporation ramp by reducing the laser intensity in a
controlled way. For this purpose a photodiode that is placed behind a dielectric mirror
picks up the weak transmitted signal and feeds it back into a control unit adjusting the
applied RF-power of the AOM. In experiments with the Nd:YAG laser about 330 mW
of light at 1064 nm were available and focussed to 30µm at the prism surface yielding
an attractive potential of U/kB = 48 µK depth. The fiber laser beam provides up to
7.2 W but with a waist of w = 160µm is not as tightly focussed. The resulting potential
in this case is U/kB = 45 µK.
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4.2.4 The Double Evanescent Wave Trap

Since the light used for the red evanescent wave originates from the zeroth order beam of
an AOM a good transverse beam profile can only be obtained when the AOM is turned
off. This imposes the restriction that dimple laser and red evanescent wave cannot be
used at the same time in a defined way. However since the red evanescent wave provides
horizontal confinement of its own both beams can be used independently in consecutive
trapping stages.

The red evanescent wave beam passes through a second AOM whose purpose is again
to allow for independent switching and intensity control. In case of the DEW trap it
is crucial to be able to switch off the light within less than a microsecond because in
temperature measurements (see Section 6) slower switching would affect the obtained
results. It is necessary to use special photodiodes (Hamamatsu 5832-01) to monitor fast
intensity changes of the 1064 nm light because standard photodiodes show excessively
long reaction times (≈ 50µs) due to the creation of electron-hole pairs deep within the
bulk of the semiconductor material by the infrared light. Two lenses create the 160µm
large focus of the beam at the prism surface. As the Rayleigh range in this case is 7.6 cm,
measuring the length of the beam path is sufficiently accurate to place the focus on the
prism surface. The red evanescent wave enters the vacuum chamber through the same
viewport as the near resonant evanescent wave whereas the evanescent wave stemming
from the titanium:sapphire laser enters from the opposite side. In order to have good
optical access for the red evanescent wave the final dielectric mirror reflecting the near-
resonant evanescent wave into the vacuum chamber is transparent for the 1064 nm light.
Therefore the last mirror for the red evanescent wave can be placed behind it and sends
the beam right through it. The angle of incidence is only 0.2 ◦ above the critical angle
and thus leads to a very large 1/e-decay length of the intensity of 2.0 µm. At a power of
1.2 W as used in all measurements the attractive dipole potential of the red evanescent
wave is U/kB = 43 µK. The combination with attractive Van-der-Waals interaction and
repulsive far off resonant evanescent wave gives rise to a U/kB = 13 µK deep potential
well located 0.9 µm above the surface.

4.3 Measurement Procedures

4.3.1 Experiment Control

The many experimental parts of the GOST project have to be coordinated and synchro-
nized sometimes with an accuracy of microseconds. Therefore each dynamical part is
controlled by either a TTL input for switching or a control input for analogue adjust-
ments such as the intensity ramps of various lasers. The control signals are generated by
a separate timing board (Adwin-4LD with an Inmos T400 digital signal processor) after
the desired control sequence has been entered through the LabView interface on a PC.
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The timing processor is able to provide timing information through 48 digital channels
and applies arbitrary time-dependent voltages between −10 and 10 Volts to two ana-
logue ports. Although the temporal accuracy is better than 1µs the minimum time step
between consecutive switching processes is 50 µs which turned out to be a limitation
for the accuracy of trap frequency measurements and temperature measurements in the
DEW-trap.

Currently the two analogue ports are used to apply the intensity ramps of the dimple
laser and the red evanescent wave but in the measurements discussed in Section 4.4.2
they were used to ramp the intensity of the hollow beam and the diode laser temperature
of the near resonant evanescent wave.

4.3.2 Measurement Cycle

Loading relatively weakly confining and nearly conservative dipole traps with atoms
that are initially at temperatures of several hundred degrees celsius is not a trivial task.
Various intermediate cooling and trapping stages bridge the vast gap between initial
atom velocities and capture velocities of the traps.

In the initial MOT stage about 3 × 108 atoms are collected in six seconds from
a Zeeman-slowed atomic beam. Shortly before they are transferred into the GOST a
polarization gradient cooling stage further reduces the temperature to few microkelvin
and compresses the atomic cloud. This cooling stage is employed by a 50 ms linear
increase of the MOT laser detuning from initially −8 MHz up to −60 MHz directly
before the laser light is switched off. At the same time offset magnetic fields shift the
zero point of the magnetic field and consequently the compressed atomic cloud close to
(< 0.5 mm) the evanescent wave and inside the hollow beam perimeter. Due to the large
size of the atomic cloud, only its central region can be placed inside the confining ring.

After their release the atoms drop onto the evanescent wave and gain approximately
Upot/kB = 80 µK of kinetic energy corresponding to their initial potential energy in the
field of gravity (z = 0.5 mm). One second of Sisyphus cooling and plain evaporation
through the hollow beam prepares up to 30 million trapped atoms at 20µK in the
GOST.

In case of forced evaporative cooling experiments in the GOST itself, the Sisyphus
cooling is employed for four seconds until either one of the potentials is ramped down.
When the GOST serves as a reservoir for the microtraps the hollow beam will be switched
off five seconds after the initial transfer and the evanescent wave will be replaced by the
far-detuned evanescent wave. At this time the focussed dimple laser has been on for
1.5 seconds which is ample time for the elastic collision loading to be completed (see
Section 5.1). In more recent experiments its intensity was linearly increased during
these 1.5 seconds to ensure adiabatic loading. After the reservoir is removed at t = 5 s
plain evaporation relaxes the dimple trapped ensemble to its new equilibrium state
until at t = 6 s the forced evaporative cooling in the dimple is initiated. An exponential
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intensity ramp down to a few percent of the initial density drives the evaporation. This
ramp is completed after somewhere between 400 ms and 4 s depending on the initial
trapping conditions.

For DEW-trap measurements the dimple laser is only moderately attenuated within
two seconds to 2 W total power. At this point about 1.8 × 106 atoms remain in the
dimple at a temperature of 3.0 µK. Transfer into the DEW-trap is accomplished by a
reduction of the dimple laser power in 50 ms to zero and a simultaneous increase of the
red evanescent wave power to 1.2 W. It takes about 200 ms for atoms untrapped by the
DEW-trap to laterally escape. After this time we observe at maximum 105 trapped
atoms in the DEW-trap. Evaporative cooling is applied directly after the transfer by
ramping down the power of the red laser beam.

The measurement cycle is closed by switching on the MOT-laser beams and the
quadrupole magnetic field which drives the atoms back into the MOT. After the re-
maining atom number has been determined the atomic beam block is removed and a
consecutive experiment cycle begins.

4.3.3 Diagnosis Tools

Obtaining information from only a few thousand atoms about their temperature, den-
sity or other experimentally accessible parameters can only be accomplished by using
resonant light and forcing the few atoms to strongly interact with it and provide clear
signals. This inherently means measuring in a way that destroys the ensemble state as
it was before. Another consequence is the need for repetitive measurements in order
to extract information on indirectly accessible quantities such as temperature. During
any of the dipole trapping stages the lasers involved are detuned sufficiently far from
resonance so that they don’t disturb the delicate ensemble state significantly. This im-
plicitly means that the atoms don’t communicate information about their state during
these phases. A standard practice for measuring a desired quantity is to recapture the
atoms back into the MOT and determine their number as a function of various param-
eters. How this can yield information on temperature, trap frequencies etc. will be
explained below.

The fluorescence of the atoms is measured by a CCD camera (Princeton Instruments
RTE/CCD-768-K/1) in a 30 ms exposure of the atomic cloud in a -8 MHz detuned MOT.
The CCD camera has been calibrated using an absolute atom number determination by
absorption imaging which we estimate is good up to a factor of 1.5. The possible
error affects atom number and depending quantities such as density or phase-space
density whereas temperature or trap frequencies are deduced from relative atom numbers
and thus not subject to this systematic error. The method of absorption imaging is
extensively described in other references (e.g. [Ham99]) so that this paragraph will be
limited to technical details relevant in this setup. The probe beam that illuminates
the atom cloud is derived from the stable reference laser and shifted on resonance by
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double-passing an AOM (85 MHz). It is then inserted into a single mode fiber to make
the probe beam geometrically insensitive to mechanical vibrations. After emerging from
the fiber the probe beam polarization is cleaned using a polarizing beam splitter cube
and the beam is horizontally shone through the atom cloud and into a CCD camera.
The camera lens images the absorption profile of the atom cloud onto the CCD chip.
The intensity of the probe beam is chosen such that a 1 ms pulse optimally uses the
dynamic range of the camera. This is far below saturation intensity and of the order
of 1 µW/cm2. The final calibration factor turns out to be 13600 atoms per thousand
fluorescence counts in a camera picture of 30 ms exposure at an aperture of 5.6.

4.3.4 Measuring Atom Number

Measuring the atom number of an ensemble is straightforward. The fact that retransfer
from the GOST or the microtraps back into the MOT is very efficient, opens up the
possibility of measuring the number of atoms by resonance fluorescence detection. Back-
ground light and CCD-dark currents are responsible for a detection noise that limits the
minimum number of detected atoms to a few thousand which is good enough for all rel-
evant purposes. Measurement results are ultimately limited in quality by shot-to-shot
fluctuations of the atom number between consecutive cycles. In the current experiment
we find them to be roughly 5 %. Since a measurement of the atom number under various
experimental conditions is the basis of all other relevant quantities this statistical error
also effects them. In spite of these small fluctuations the experiment has evolved to be
considerably stable.

4.3.5 Thermometry

The measurement scheme which is applied in the GOST experiment is a release-and-
recapture method: For a short time interval ∆t one of the confining potentials is removed
and the ensemble can ballistically expand. After restoring the confinement a certain
fraction κ of the atoms remain in the trap. The size of this fraction depends on the
release time ∆t and also on the ensemble temperature T . Recording this fraction for
various release times yields a dataset of the function κ(∆t) that can now be used to
extract T as a single fit parameter of a theoretical model.

This method is inherently very time consuming. For each value of κ(∆t) at least two
experiment cycles have to be completed (one cycle with a release pulse and one without
pulse for normalization). The complete temperature determination usually requires at
least about 20 cycles and takes roughly five minutes.
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Vertical versus Horizontal Temperature

In most cases only the “vertical temperature” is measured by a release/recapture from
the evanescent wave. If the ensemble is thermalized this kinematic “temperature” is
equal to the thermodynamical temperature. The reason that in most cases a vertical
measurement of T is performed lies in the growing difficulties and inaccuracies of the
horizontal method at low T . At temperatures below about five microkelvin the vertical
oscillation period in the trap is much smaller than the time it takes an atom to move
laterally out of the hollow beam perimeter. Therefore it will experience many reflections
from the evanescent wave before getting away. Since occasionally such a refection is not
specular the overall motion of a slow atom resembles a diffusion rather than a ballistic
trajectory. In addition to that, the horizontal escape time is also comparable to the
elastic collision time 1/γel (hydrodynamic regime). Like a diffuse reflection from the
evanescent wave, an elastic collision with another atom will alter the motion of an
escaping atom in a way that is hard to take into account theoretically. The model we
use does not include these complications and thus results of a horizontal measurement
will become progressively inaccurate as T decreases.

Approximations

In some cases one can use approximations to simplify the theoretical model and reduce
the numerical effort that is necessary to extract T . The GOST allows for such a simplified
model which is derived below. Most cases however, require a more detailed discussion
that adapts the general approach to the specific situation. The considerations necessary
to extend the model to the focussed beam trap and to the DEW-trap are given in
sections 5.2 and 6.2.

The approximations and assumptions that simplify the case for the GOST are the
following: Firstly we approximate the evanescent wave potential by a hard wall and
secondly we assume a thermalized ensemble. The first approximation is in general rea-
sonably well justified if the ensemble temperature is higher than about one microkelvin.
In this case the actual time an atoms spends inside the evanescent wave is small com-
pared to that of the ballistic bouncing motion outside the light field. The density profile
and the trajectories are therefore hard to distinguish from the case of an ideal hard
wall potential. Usually also the second assumption is reasonable well satisfied if exter-
nal modifications of the potentials (e.g. during evaporative cooling) take place slowly
compared to the thermalization time of the ensemble.

Theoretical Model

The general approach to derive a fit function κ(∆t) starts with the phase-space distri-
bution function ρ. Using the assumptions given above the potential in which the atoms
are trapped is the sum of gravity and an ideal hard wall potential. The problem is
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completely one-dimensional:

ρ(z, v) =
1

Ω
· exp

(
− z

z0

)
· exp

(
−v2

v2
0

)
· Θ(z). (4.1)

Θ(z) is the unit step function which equals one if z > 0 and zero elsewhere. It takes care
of the fact, that atoms cannot be below the prism surface. Analogous to the considera-
tions in Chapter 3, Ω is defined by Ω ≡ ∫ ∞

−∞ dv
∫ ∞
0 dz exp(−z/z0) · exp(−mv2/(2kBT )).

z0 and v0 are given by z0 ≡ kBT/(mg) and v0 =
√

2kBT/m. ρ(z, v) is then normalized
to one.

As soon as the evanescent wave is switched off, the ensemble ballistically expands.
An atom that was initially (t = 0) at z = z′ and v = v′ can at a later time t = ∆t be
found at z = z′ + v′t− gt2/2 and v = v′ − gt. This leads to the phase-space distribution
function for a time t = ∆t [Man99]:

ρ(z, v, ∆t) = ρ(z′, v′, 0) = ρ(z − v∆t − g∆t2/2, v + g∆t). (4.2)

The fraction of remaining atoms κ(∆t) for a time ∆t can now be obtained by carrying
out the integral

κ(∆t) =
∫ ∞

−∞
dv

∫ ∞

0
dz ρ(z − v∆t − g∆t2/2, v + g∆t). (4.3)

The z-integration starts at z = 0 because atoms with a coordinate z < 0 have come in
contact with the prism surface and are immediately lost. The integral solution can not be
expressed in terms of analytical functions and therefore has to be evaluated numerically
to extract the fit parameter T . Figure 4.8 shows a typical dataset along with the fit
function for the temperature T = 2.9 µK. In order to obtain a “horizontal” temperature,
one uses a similar approach. A release-and-recapture method can be applied by switching
the hollow beam instead of the evanescent wave. The theoretical model is derived along
the same lines described above and a detailed discussion can be found in [Man99].

4.4 Preparation of the Reservoir

The cold and dense reservoir of atoms that is needed to load the microtraps and to
exploit the advantages of the “dimple trick” is prepared in the GOST. The details of
this reservoir preparation are provided in the following. Although similar measurements
have been performed and documented earlier [Ryc00, Man99], it is useful to present some
general results again because the experimental setup has been rebuild and modified since
then. The subsection on storage and Sisyphus cooling will briefly summarize the be-
havior of the reservoir ensemble and characterize the starting conditions for subsequent
transfer into the dimple trap or evaporative cooling. The section on evaporative cooling
then presents results of forced evaporation through either one of the dipole potentials
and discusses the limitations that finally motivate the introduction of the dimple trap.
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Figure 4.8: Temperature measurement in the near resonant GOST. The open circles
are experimental data points and the solid line is a fit based on the model described in
the text with the single fit parameter T .

4.4.1 Storage and Sisyphus-Cooling

Right after the atoms are transferred from the MOT into the GOST potential the en-
semble is heavily disturbed in the sense that a vast amount of excess energy is deposited
in the atoms. The Sisyphus cooling stage is an important intermediate step that re-
moves this energy, builds up density and provides the necessary elastic scattering rates
for evaporative cooling or collision loading of the microtraps. Figure 4.9 shows the
evolution of atom number and temperature after the transfer has taken place.

The experimental parameters in this and all following measurements (unless other-
wise specified) were as follows: The evanescent wave was detuned by 3 GHz to the blue
side of the F = 3 → F ′ transition, had a total power of 45 mW and a circular spot size
of 700 µm (1/e2-radius). Its angle of incidence deviated by one degree from the critical
angle at 43.6◦ and the light field was TM-polarized. The hollow beam was blue-detuned
by 3 nm had a total power of roughly 300 mW and featured a diameter of 820µm.

In the initial storage phase the atom number declines relatively fast on a timescale
of ≈ 3.5 s. The observed losses are mainly due to two mechanisms: Firstly, atoms that
rapidly transfer vertical excess energy into the horizontal motion will be able to penetrate
the hollow beam and secondly, inelastic collisions mediated by the blue-detuned light
field (see Section 3.5) will frequently occur due to the small evanescent wave detuning.
Other measurements that have been performed at smaller hollow beam detunings and/or
at higher intensities have shown that the lifetime can be increased up to ten seconds.
Switching the evanescent wave detuning to 6 GHz at a later time (≈ 1 − 2 seconds

81



1 2 3 4 5
10

6

10
7

10
8

a
to

m
n
u
m

b
e
r

time (s)

0

10

20

30

T

N

te
m

pe
ra

tu
re

(�
K

)

Figure 4.9: Time evolution of N and T in the near-resonant GOST. Cooling is due to
a Sisyphus process and plain evaporation through the hollow beam.

after transfer) can also increase the lifetime as it reduces the collision losses. A detailed
treatment of the collisional loss and further measurements can be found in reference
[Ham99].

The ensemble temperature drops very rapidly from an initial value above 50µK to
an equilibrium of below 7 µK after five seconds. Up to one second after the transfer the
obtained temperature must be considered an upper bound, because the thermalization
between horizontal and vertical motion is not completed at this time. The temperature
reduction is not exponential as expected from the Sisyphus process alone. This is not
surprising considering the fact that plain evaporative cooling significantly contributes
to the overall cooling effect. The significance of both mechanisms becomes evident as
one increases the hollow beam potential or further detunes the evanescent wave. Both
measures give rise to a higher equilibrium temperature and a smaller cooling rate. Since,
however, they also increase the sample lifetime in the GOST, we’re ultimately faced
with a tradeoff between large atom number and low temperature. As a compromise, the
experimental parameters specified above lead to a sample of approximately 107 atoms
at a temperature of 7µK after five seconds storage in the GOST. The peak density is
4.2×1011 cm−3, the phase-space density amounts to 1.1×10−5 and the atoms elastically
collide at a rate of 12.6 s−1. At this point either forced evaporative cooling or transfer
into the dimple trap is initiated.
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4.4.2 Evaporative Cooling

Evaporative cooling in the GOST can be employed by reducing either one of the dipole
potentials. Each method has its own merits and problems.

Forced evaporation through the evanescent wave is inherently one-dimensional (see
Section 3.6.1) and therefore suffers from reduced efficiency. And because the temperature
measurement is insensitive to whether the sample is thermalized or not, one cannot
check if thermalization has been completed and in particular whether the horizontal
temperature has been reduced. On the other hand this method of evaporative cooling
allows for a fast removal of atoms whose vertical energy surpasses the limit defined
by the potential. Within less than one oscillation (T ≈ 1 ms) the atom will penetrate
the evanescent wave and hardly get a chance to transfer excess energy onto a trapped
collision partner.

Hollow beam evaporation exhibits somewhat contrary properties: Atoms are selected
two-dimensionally and the combination of horizontal evaporation and vertical temper-
ature measurement ensures that the temperature value is in the worst case an upper
bound. For a properly optimized evaporation ramp both temperatures exactly match.
The oscillation frequency in the wide hollow beam potential, however, is so small that
a hot atom has ample time to transfer kinetic energy on to other trapped atoms by
elastic collisions. That way it might stay in the trap although its kinetic energy was
initially above the removal threshold. Both approaches have been tested and the results
are documented below.

Forced evaporative cooling through the evanescent wave can in principle be imple-
mented by either reducing the intensity or by increasing the detuning. Although the
later technique is experimentally more challenging than the first (see [Ryc00]), it is
the preferred one for two reasons: Both, photon scattering processes and the rate for
light-assisted collisions are suppressed linearly with increasing detuning, whereas the
reduction of the intensity would have no suppression effect. (A reduced intensity is
compensated by the fact that atoms will penetrate deeper into the light field.)

The optimization procedure of the evaporation ramp went as follows. In steps of
one second length the detuning was linearly increased by a variable value. At the end
of each step the evaporation efficiency ε for this interval was determined and the ramp
with the highest value of ε chosen.

The optimized evaporation ramp increased the evanescent wave detuning in three
linear one-second steps from initially 3 GHz via 82 GHz and 160 GHz to finally 210 GHz.
At the same time the intensity of the hollow beam was reduced to half of its initial value
in order to further reduce heating. Figure 4.10 shows the resulting evolution of atom
number N , temperature T , peak density n0 and phase-space density D until one second
after the end of the evaporation ramp at t = 3 s.

The first second of evaporation causes only a minor reduction of N and T which
is due to the fact that it takes about one second until the potential is reduced far
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Figure 4.10: Atom number, temperature, peak density and phase-space density during
evaporation through the evanescent wave.

enough to allow atoms to escape. The remaining two seconds of evaporation then bring
about the drastic decrease of both N and T until at the end of the evaporation ramp
the temperature stagnates at T = 1 µK while the atom number further drops with an
ensemble lifetime of roughly one second. During the whole evaporation process the peak
density and therefore also the elastic collision rate have declined. The useful runaway
regime could not be attained. In spite of this, phase-space density increased by a factor
of five and reached a value of D = 5 × 10−5. The evaporation efficiency of ε < 0.5
turns out to be relatively poor. Because of the initially too small elastic collision rate
and the progressively decreasing lifetime of the sample during forced evaporation it is
hard to gain in phase-space density and seems impossible to build up elastic collision
rate. Furthermore it is not evident that the sample was thermalized during the whole
process so that the results might even be less favorable. The crucial problem one is
faced with here, is the short lifetime of the sample. The faster thermalization takes
place in comparison to losses the more efficient can forced evaporation cool and increase
the phase-space density.

We find a similar situation in case of evaporative cooling through the hollow beam.
In this case the forced evaporation is implemented by abruptly reducing the intensity
of the hollow beam to about 50 % and then ramping it exponentially further down to
5 % of its maximum value. Optimization is performed by varying the length of the
evaporation ramp. During the whole process the evanescent wave is detuned to about
30 GHz to reduce heating and light-assisted collisions. Figure 4.11 shows the results of
an optimized three seconds long evaporation ramp.

Again one finds that the atom number declines progressively fast during evaporation
and continues to do so even after the intensity is no longer reduced at t = 3 s. The
temperature simultaneously decreases but cannot be reduced below 1.5 µK. In this case
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Figure 4.11: Atom number,temperature, peak density and phase-space density during
evaporation through the hollow beam.

however, this value is an upper bound for the true temperature since the measurement
takes place vertically whereas the energy selection is horizontal. The temperature stag-
nation near the end of the ramp can therefore either result from a breakdown of the
evaporation process or from an incomplete thermalization between the degrees of free-
dom (strictly speaking, these two options are basically the same thing). Concerning the
peak density and phase-space density, it is therefore not surprising to find the first de-
cline during the whole evaporation ramp while the later initially increases a little before
rapidly dropping.

Again we find that the initial elastic collision rate is too small compared to the losses
from the trap in order for the evaporation process to be sufficiently efficient. At first
sight the evaporation through the hollow beam seems even less efficient than forced
evaporation through the evanescent wave. But considering the effect of the inaccurate
temperature measurement and the tendency to assess the evanescent wave evaporation
too optimistic might already even out this difference.

In summary, evaporation through the evanescent wave seems little promising because
at small potential barriers defects in the evanescent wave light field cause the lifetime
and therefore inevitably the evaporation efficiency to drop. The approach through the
hollow beam suffers from the arguments given above and so it seems promising to al-
ter the horizontal potential in a way that avoids these limitations. The result of this
considerations is the introduction of the dimple laser.
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Chapter 5

Focussed Beam Surface Trap

The focussed beam surface trap has proven to be a very powerful tool to implement
efficient evaporative cooling in this experiment. Due to the dimple trick it is possible to
create very dense ensembles and achieve very large the elastic collision rates and thus
increase the efficiency of the evaporation.

The results that are presented hereafter have been obtained from two different con-
figurations of the dimple trap. In a first set of experiments a relatively weak (330 mW)
Nd:YAG-laser was focussed to only 30 µm beam waist. In this case the approximation
of a large reservoir with a small perturbation is well justified. It was used to investigate
general properties such as the loading mechanism and compare them to the theoretical
expectations. The second configuration was realized with a strong (7.2 W) ytterbium-
fiber laser focussed to a much wider spot of 160µm waist. More than six million atoms
could be trapped in this focus. Although the approximation of a small perturbation to
a large reservoir breaks down in this case, this approach proves useful for subsequent
evaporative cooling.

The following three sections address general properties of the dimple trap (5.1),
introduce some new aspects of the temperature measurement scheme (5.2) and discuss
the experimental conditions that are created (5.3). Section 5.4 is dedicated to the issue
of evaporative cooling and what progress has been made in both configurations. Current
limitations are finally discussed in Section 5.5.

5.1 Transfer and Storage

This section discusses measurements concerning the details of the microtrap’s loading
process. The theoretical expectations of the loading efficiency are confirmed and the
time-dependence of the loading is investigated and modelled using a simple model based
on rate equations. All investigations concerning the loading process were done with the
tightly focussed Nd:YAG laser. The results of this investigation have also been published
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in reference [Ham02b].

Loading Measurements

The experimental scheme that was used to obtain the data presented here slightly differs
from the experiment cycle described in Section 4.3.2. Four seconds after the atomic
sample has been transferred into the GOST the evanescent wave is detuned from initially
3 GHz to 128 GHz by fast temperature tuning of the laser diode. The linear detuning
ramp of two seconds length prepared a sample of 3.5 × 106 atoms at a temperature
of T ≈ 4 µK in a nearly conservative trap. The ensemble lifetime in this far-detuned
stage is only 1.4 seconds but still sufficient for this purpose. After the detuning ramp
is completed the dimple is suddenly switched on at t = 6 s and collision loading begins.
A variable time ∆t later the reservoir is removed by switching off the hollow beam and
letting any atom untrapped by the dimple escape. 200 ms later all reservoir atoms have
left and one can determine the number of dimple trapped atoms by recapture into the
MOT. Naturally also some atoms that were initially trapped in the dimple can escape
due to plain evaporation and inelastic collisions. Figure 5.1 shows the evolution of the
number of dimple trapped atoms N (•) and the number of reservoir atoms Nres (◦).

Figure 5.1: Collision loading of atoms into the dimple. The solid lines are fits obtained
from the model decribed in the text.

The solid lines are fits of a simple exponential decay in case of Nres and a model
derived from the following differential equation in case of N

Ṅ = −κNres(N − aNres) − bN2. (5.1)
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This model assumes that the dimple does not significantly affect the reservoir and in
particular does not alter its temperature. κNres is the loading rate that explicitly con-
tains the number of reservoir atoms in order to take into account that loading depends
on elastic collisions in the reservoir. Loading measurements at smaller reservoir sizes
indeed confirmed the dependence on Nres. The term (N − aNres) represents the dif-
ference between the momentary number of trapped atoms and the equilibrium number
aNres. The last term (−bN2) is due to binary inelastic collisions which are assumed to
be the major loss contribution. Nres can be substituted by the independently measured
exponential decay Nres = Nres,0 exp(−t/τres) with Nres,0 = 3.5 × 106 and τres = 1.4 s.
An additional decay measurement in the dimple (see figure 5.2) provides the parameter
b = 7.2 × 10−6 s−1. A fit with the two remaining parameters κ and a finally yields
κ = 3.3 × 10−7 s and a = 0.08.

While initially only 4 × 104 atoms (≈ 1 %) are trapped inside the dimple, collision
loading increases the fraction by almost an order of magnitude to 8 % of the reservoir
atom number within 0.5 seconds. The thermalization rate κNres,0 ≈ 1 s−1 perfectly
agrees with the thermalization time calculated from an elastic collision rate of γel ≈
10 s−1. The maximum number of 105 trapped atoms is reached after about 0.5 seconds
before the fast reservoir decay prevents further loading. The lifetime of the dimple
trapped atoms surpasses that of the reservoir atoms because of a higher evanescent
wave potential in the center of the evanescent wave spot where the dimple is created.
The number of trapped atoms can be increased by switching the dimple on at the
beginning of the evanescent wave detuning ramp. In this case a maximum of 2 × 105

atoms is observed after 200 ms storage in the dimple.
The wide focus created by the 7.2 W fiber laser in combination with the 3 nm detuned

1.15 W evanescent wave derived from the titanium:sapphire laser is able to load up
to 40 % (6.4 × 106) of all atoms on a similar timescale (≈ 1.5 s). In this case the
time dependence of the loading process is much more complicated and has not been
investigated in detail.

Decay Measurements

Once the atoms are trapped inside the focus one can remove the reservoir and investigate
the decay. Candidates for relevant loss mechanisms are light-assisted collisions, three-
body collisions and right after the removal of the reservoir also losses due to plain
evaporative cooling. In case of a reservoir temperature that satisfies Tres ≤ 1/10 ·
Udimple/kB this last mechanism can be neglected.

Although we obtained excellent decay data for both configurations (Figure 5.2) it is
not possible to entirely separate the loss contributions from two-body and three-body
processes.

In order to extract the relevant rate coefficients β and L3 from the data, we use the
method explained in Section 3.5.2. Equation 3.77 is used to fit the data with the two
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Figure 5.2: Decay of atoms from the tight dimple (a) and the wide dimple (b).

fit parameters β and L3 and a fixed value α. The fit shows reasonable agreement with
the experimental data for a range of values for α between zero and about 0.1 s−1. Due
to this ambiguity we can only specify estimates and upper limits for β and L3. The
mean density 〈n〉 and mean quadratic density 〈n2〉 are substituted by the expressions
3.46 and 3.47. Because the temperature enters in both, it is important to know its value
and guarantee that it does not change during the decay.

In the first configuration we are confronted with a tightly confined ensemble at a
temperature of 2.9 µK. The peak density at t = 200 ms can be calculated to 7.8 ×
1013 cm−3 by inserting the expected and experimentally confirmed (see Section 5.3)
horizontal trap frequency of ω0/2π = 555 Hz into expression 3.45. The fit to the data
(solid line in figure 5.2 a)) then yields the values β = 4.6 × 10−14 cm3/s and L3 = 5.9 ×
10−28 cm6/s for a fixed α = 0. Varying the value for α and repeating this fit procedure
provides an estimate of β = 5×10−14 cm3/s and an upper bound of L3 = 3×10−27 cm6/s.

In agreement with previous results [Ham99], the β coefficient can be attributed to
collisions mediated by the 128 GHz detuned evanescent wave. The bound for L3 is in
reasonable agreement with the estimates of other experiments [Ker01, Web02].

In case of the wide dimple trap with a trap frequency of approximately 110 Hz we
initially trap more than six million atoms. Due to the high reservoir temperature in this
case (≈ 8.6 µK) plain evaporative cooling reduces this value to T = 5.1 µK after 1.2 s
when an equilibrium is reached. At this time 4.3 × 106 atoms remain in the trap. This
corresponds to a peak density of 3.2 × 1013 cm−3. The evaluation of the decay has to
exclude data from within this plain evaporation phase because the changing temperature
renders the dynamics at that time prohibitively complicated. The evanescent wave is
now at a much larger detuning of 660 GHz (∆λ = 1.5 nm) but with its 1.1 W of total
power and the smaller spot size of 400µm still gives rise to a larger potential barrier. A
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decay measurement shown in figure 5.2 b) evaluated by the same method used for the
tight dimple yields a coefficient β = 3.5 × 10−14 cm3/s and an upper bound for L3 of
10−27 cm6/s.

The large initial number of atoms along with the large density and the long lifetime
in the trap are useful properties to implement efficient evaporative cooling.

5.2 Temperature Measurements

Using evaporative cooling in the dimple trap, one can get to temperatures significantly
below 1 µK. At this point the theoretical model discussed in Section 4.3.5 has to be
refined as the details of the evanescent wave potential have to be taken into account
now. Figure 5.3 b shows, that at low enough temperatures the density distributions
for the cases of a hard wall potential and of an exponentially decaying evanescent wave
potential are clearly distinct. At three microkelvin (Figure a) the approximation is very
reasonable and the details of the potential don’t enter significantly into a temperature
measurement. However at T = 0.5 µK the density distribution and thus also κ(∆t)
considerably differs from the ideal hard-wall case.

0 2 4 6 8 10
0.0

0.1

0.2

0.3
b)

de
n
si

ty
(a

rb
.u

.)

z (� m)
0 10 20 30 40

0.00

0.02

0.04

0.06

a)

d
e
n
si

ty
(a

rb
.u

.)

z (� m)

Figure 5.3: Atomic densities for the ideal hard wall case and the more realistic, expo-
nentially decaying potential of the evanescent wave. Figure a) corresponds to a temper-
ature of T = 3 µK and figure b) to T = 0.5 µK

At T = 0.5 µK the peak density is about 15 % smaller with its density peak about
2 µm above the prism surface. Especially this last point leads to a significantly altered
behavior in the context of vertical temperature measurements. One can roughly estimate
the temperature at which these effects come into play; most certainly the atoms will
“feel” the detailed shape of the evanescent wave when the vertical extension kBT/mg
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is comparable to or smaller than the decay length Λ of the evanescent wave. The
experimental value for Λ (0.71 µm) leads to a temperature of T = 111 nK although
already at around T = 1 µK we find slight modifications to the idealized model. Note
that a refined model depends on the experimental details of the evanescent wave and in
particular on its angle of incidence.

The fit function for this low temperature case can be derived using exactly the same
arguments that have been used for the ideal hard wall evanescent wave. The only
modification is the replacement of the idealized potential with the realistic one. The
additional parameters that determine the detailed shape of the potential can be obtained
from an independent measurement. Therefore T is still the only fit parameter in this
refined model.

In the previous calculation the lower limit of integration was z=0, as all atoms that
fall below this height hit the surface and are lost. In a calculation that takes into
account the detailed shape of the potential, this limit has to be replaced by the position
zmax ≈ 0.1 µm of the maximum of the potential as atoms falling below zmax cannot be
retrieved. Performing a virtually identical numerical calculation as in Section 4.3.5 with
the new potential shape and the changed lower limit of integration leads to a numerical
fit function. A subsequent fitting procedure finally yields the result for T . Figure 5.4
shows the experimental data together with the theoretical model for an ensemble at
T = (410 ± 20) nK.

Figure 5.4: Experimental data and theoretical temperature curve for 0.41 µK. A refined
model that includes the details of the evanescent wave potential markedly differs from
the ideal hard-wall approximation.

Characteristic for these low temperatures is the plateau at short release times. Due
to the distance between the atom cloud and the recapture boundary few atoms will
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be lost for release times ∆t shorter than the time t0 that an atom needs to cover this
distance in free fall. This refined model is in excellent agreement with the data obtained
from the experiment. Note that T is still the only fit parameter entering here.

One important simplification that still enters into these considerations is the assump-
tion of a classical ensemble in the sense that any vertical motion takes place classically
and the discrete nature of the motional states in the vertical potential can be neglected.
The gravito-optical potential leads to a splitting between the ground-state and first
excited state of the vertical motion of about 95 nK and therefore justifies this simplifi-
cation.

5.3 Trap Parameters

The important figures of merit, peak density n0 and phase-space density D, depend
directly on the three quantities atom number N , temperature T and the trap frequency
ω0. The trap frequency summarizes the conditions that are created by the individual
shape and strength of the nearly harmonical confinement. It is accessible by different
types of measurements of which two are explained in the next sections.

Measurement of Collective Oscillations

In the dimple trap this parameter is determined by exciting a collective oscillation of
the ensemble and subsequently probing its phase as a function of time. A focussed
laser beam with a gaussian intensity profile gives rise to a potential that is harmonic
to a good approximation for energetically low-lying states. However, the closer the
energy of a certain bound state is to the escape energy, the lower will be its oscillation
frequency. Therefore it is imperative to reduce the ensemble temperature significantly
below the value of the trap depth (T � U/kB) in order to avoid the population of
these “anharmonic” states. Atoms populating anharmonic states tend to dephase and
damp the collective oscillation and will ultimately limit the measurement precision.
Another unwanted effect concerning this measurement is the collision of atoms during
the oscillation. Since the technique described in the following depends on the collective
ballistic motion of the ensemble, any atom that is removed from this collective state
of motion by a collision will lead to reduced contrast and damping. In some cases it
is therefore advantageous to work with an ensemble of few atoms for this purpose. As
a general rule, one has to ensure that the oscillation frequency ω0 is much larger than
the elastic collision rate γel, (ω0 	 2πγel). This explains why it is considerably hard to
directly measure small trap frequencies using this method.

The technique we use is based on two short (1−2 ms) switch-off pulses of the confining
light field separated by a variable time delay ∆t. While the first pulse excites a collective
oscillation the second pulse probes its phase. Varying the time separation between the
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two pulses then allows for the recording of the entire oscillation. The experimental data
obtained from such a measurement is shown in figure 5.5.

Figure 5.5: Measurement of the collective oscillation of an ensemble to determine the
trap frequency in the tight dimple.

Phase-Space Representation

In order to understand the details of this process, it is useful to consider a phase-space
representation of the ensemble in one dimension. The equilibrium ensemble occupies a
circular region in phase-space (after appropriate scaling of x- and p-axis) as is shown in
figure 5.6a.

The dotted circle bounds the region in phase-space that corresponds to trapped
particles. Any particle outside this perimeter will leave the trap. Individual particles
inside the trap move on circular phase-space trajectories as long as they don’t collide
with other atoms.

In order to excite a collective oscillation the confinement is removed and atoms
move along straight lines parallel to the x-axis (p is unchanged in the absence of forces).
This leads to a shearing of the phase-space distribution according to figure 5.6b. The
angle ϕ between the long axis of the distribution and the x-axis gets smaller the longer
the sample expands. After some 1.5 ms the confinement is restored and atoms that
crossed the phase-space boundary of the trap are lost. The remaining fraction N0 now
resumes the circular motion and the collective oscillation is expressed by the fact that the
distribution’s long axis now rotates around the origin. Elastic collisions will slowly relax
the elongated ensemble back to its circular equilibrium shape and eventually destroy
the collective motion.
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Figure 5.6: Phase-space distribution of a one-dimensional harmonic oscillator in equi-
librium (a), after a short release pulse (b), in a state of minimum (c) and maximum (d)
momentum width.

The rotating phase ϕ(t) can be monitored by applying a second release pulse and
measuring the remaining fraction of atoms N/N0. This fraction will be at a local max-
imum if the phase-space ellipse is oriented horizontally along the x-axis (ϕ = 0, π). In
this case the shearing motion is small because the the initial momentum of the atoms is
small and few atoms can cross the trap boundary (figure 5.6c). The opposite case of a
recapture minimum is given when the phase-space distribution is aligned with the p-axis
and thus results in a particulary large momentum spread (ϕ = π/2, 3/2π). The initially
large momentum quickly removes atoms during the release pulse (shearing phase) and
the remaining fraction is small (figure 5.6d). The starting phase ϕ(0) of the rotation
is determined by the length of the excitation pulse and lies between π/2 (pulse length
zero) and zero (infinitely long pulse).

The trap frequency can now be obtained by measuring the time between consecutive
maxima or minima (corresponds to T/2) or between a maximum and a minimum (T/4).
The visible increase of the trap frequency ω0 in the course of the oscillation (figure 5.5)
is due to the fact that the initial ellipse reaches into the outer region of the trapping
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zone where the anharmonicity of the trap leads to a reduced trap frequency. As the
oscillation progresses and elastic collisions slowly contract the ellipse towards its circular
equilibrium state these outer trajectories are depopulated and the average oscillation
frequency rises. We therefore disregard the first cycle in our evaluation.

Numerical Values

We find a trap frequency of ω0/2π = (555 ± 30) Hz for the tight focus configuration.
This agrees nicely with the expected value of 540 Hz for the parameters given above.
The trap frequency scales as ω0 ∝ √

P/w2 with the laser power P and the focus waist
w. For the wide dimple (P = 7.2 Watt, w = 160µm) we therefore expect a trap
frequency ω0/2π = 110 Hz. A measurement similar to the one discussed above yielded
a much larger trap frequency than this expected value. We believe that some error
in the measurement caused this inconsistency. Elastic collision rates extracted from
thermalization measurements as well as the experimentally accessible value for the trap
depth of U/kB ≈ 50 µK along with the reliable beam waist of w = 160µm consistently
suggest a trap frequency of about 110 Hz. A significantly larger value would lead to an
unreasonably small three-body loss coefficient and an unrealistically large peak density.
In the following we will therefore use a value of ω0/2π = 110 Hz.

These numbers can now be used in combination with the expressions 3.45 and 3.49
to find the values for the peak density and the phase-space density. During an evap-
orative cooling ramp the trap frequency and all depending quantities are affected by
the decreased intensity and in general have to be rescaled (n0, D ∝ I/I0). The tight
configuration with initially 1.2 × 105 atoms at T = 2.7 µK thus yields an impressive
8 × 1013 cm−3 peak density with a corresponding phase-space density for a completely
unpolarized sample of D = 8 × 10−3. Note that these numbers are about 300 times
larger than what one finds in the reservoir alone. The elastic collision rate also drasti-
cally increases to above 2 kHz and thus allows forced evaporative cooling to take place
on a sub-one-second time scale.

The ω0/2π = 110 Hz trap frequency of the wide configuration along with the initially
4.3 × 106 atoms at T = 5.1 µK give rise to a peak density of n0 = 3 × 1013 cm−3 and a
phase-space density of D = 0.001.

5.4 Evaporative Cooling

The dimple loading itself has greatly increased density and phase-space density. Now
the excellent starting conditions for forced evaporative cooling can be used to take
the next step towards quantum degeneracy. In the tightly focussed configuration we
cool the ensemble by exponentially reducing the laser power within 400 ms to 10 % of its
maximum value. The evanescent wave detuning was at 160 GHz during the evaporation.
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Figure 5.7 documents the evolution of atom number, temperature, peak density and
phase-space density during the course of the ramp.

Figure 5.7: Atom number, temperature, peak density and phase-space density during
evaporation from the tight dimple. The detuning of the evanescent wave was 160 GHz.

The ensemble starts with 1.2 × 105 atoms at a temperature of 2.7 µK. This corre-
sponds to a peak density of n0 ≈ 1014 cm−3 and a phase-space density of D = 0.008
in case of equal distribution over all mF -substates. In the beginning a steady cooling
down to 0.9 µK in 300 ms accompanied by a loss of 80 % of the atoms is observed. At
this point however, losses strongly increase while the temperature levels off. The abrupt
termination of the evaporative cooling process indicates the onset of a strong inelastic
collision loss. Possible mechanisms have been investigated and are discussed in Section
5.5 but a conclusive and thorough investigation will only be possible with a polarized
ensemble in a future series of experiments.

Up to the termination point of the evaporative cooling the phase-space density was
increased to slightly below 0.01 before it rapidly dropped in the last 100 ms of the ramp.
The peak density n0 only moderately declined but stayed at all times above 1013 cm−3.
Evidently the introduction of the dimple and the forced evaporation applied here already
constitute a major improvement compared to the standard GOST configuration.

In the wide focus configuration the ensemble starts with 3.2 × 106 atoms at a tem-
perature of 5.8 µK (figure 5.8). Due to the fact that no GOST evaporation phase has
preceded and that the dimple is not small compared to the reservoir the starting tem-
perature is significantly higher now. The optimized evaporation ramp is four seconds
long and reduces the potential to 10 % of its original value. The first part of the evapora-
tion cools the ensemble within three seconds to below 0.5 µK and maintains a constant
peak density of about 2 × 1013 cm−3. In the section between one and three seconds
the atom number is reduced by a factor of less than five while the phase-space density
increases by more than a factor of 20. This corresponds to a very large evaporation
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Figure 5.8: Atom number, temperature, phase-space density and peak density during
evaporation from the wide dimple. The evanescent wave was detuned by 3 nm.

efficiency of ε ≈ 2. The constant density along with the strongly reduced temperature
indicate that the elastic collision rate significantly increased during these two seconds.
After 3.5 s of forced evaporative cooling the phase-space density has drastically increased
from initially 6.5 × 10−4 to 0.02.

At t = 3 s the loss of atoms rapidly increases and eventually leads to a deteriorating
evaporation efficiency and a fast destruction of the ensemble. Both peak density and
phase-space density drop rapidly shortly before the evaporation stops.

The fact that both configurations show very similar behavior in spite of their different
configurations and evanescent wave light fields indicates a common loss process that sets
in below T = 1 µK. Possible explanations and ways to solve this problem are discussed
in the following section.

5.5 Limitations

Influence of the Dipole Potential

In order to understand the limitations arising from the encountered losses and to find a
remedy, we have investigated the nature of the loss process. A first set of measurements
recorded the decay of the sample in the wide dimple configuration after the evaporation
was finished. At an evanescent wave detuning of 3 nm the dimple laser power was
adiabatically ramped to different levels between maximum power corresponding to a
potential depth of U/kB = 45 µK and the 10 % level of the evaporation ramp. Figure
5.9 nicely demonstrates how the very small lifetime of a weak trap (3-4 s) continuously
increases to a much larger value (≈ 17 s) for full laser power. No significant difference
between full power and half power exists which indicates some saturation behavior.
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As the decay is obviously non-exponential the losses seem to be caused by a collision
mechanism.

Figure 5.9: Decay measurement of an evaporatively cooled and then adiabatically com-
pressed ensemble at various laser powers. At low laser power of 10 % the lifetime is
strongly reduced compared to the stronger confining cases.

Surprisingly this measurement suggests a lifetime increase with increasing density.
One would expect collisional losses to get more severe as density and consequently
the collision rate is increased. A possible explanation is the simultaneous increase of
the temperature during this adiabatic transformation. If the collision cross section
strongly depends on T the adiabatic heating could affect the collision rate and thus
could compensate for the increased density. In view of the fact that the decay is clearly
non-exponential collisional losses seem the most probable mechanism.

We considered two mechanisms: One is the loss through three-body collisions and
the other a binary collision process that changes the magnetic substate of an atom and,
if residual magnetic fields are present, releases Zeeman energy.

As for the three-body collisions, this process strongly depends on the density of the
sample. Therefore also the effect of the ensemble temperature on the collision cross
section has to be extremely large to be able to compensate the density dependence.
With our current knowledge of three-body collisions this cannot be ruled out but seems
unlikely. A currently performed series of investigations of this subject by T. Weber et
al. [Web] will be able to shed some new light on this problem in the near future.
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Influence of the Magnetic Field

The alternative of mF -state changing collisions seems the most probable explanation at
the current state of investigations. The relation between sample lifetime and laser power
can be explained by the fact, that at a certain laser power the resulting potential depth
is larger than the Zeeman energy released in one such collision and therefore the colliding
atoms are retained. No sharp threshold behavior is expected, because even in a potential
whose depth is below the release energy, an atom undergoing such a process can remain
trapped if its excess energy is predominantly deposited in the vertical degree of freedom.
The observed saturation of the lifetime sets in as the potential depth becomes larger
than the release energy.

We investigated heating of the sample at different laser power levels but found no
significant difference between them. If the event rates are equal for exothermal (Zeeman
energy is released and transformed into kinetic energy) and endothermal (the opposite
process) inelastic collisions the net heating effect is zero and the observation can be
explained. The amount of energy stored in the Zeeman splitting can be obtained from
the expression

∆E = −µB · gF · ∆mF · B. (5.2)

With the Bohr magneton µB = 5.789× 10−9 eV/Gauss, the g-factor for cesium (F = 3)
of gF = −1/4 and an assumed value of ∆mF = 1 we find that a residual B-field of 0.27
Gauss is sufficient to remove atoms from the 4.5 µK deep potential well at the end of the
ramp. Still this value is above of what we expect to be present in this experiment. All
external magnetic fields except those that are carefully applied to compensate for earth’
magnetic field have been switched off at that time. The possible compensation error
is certainly below 10−3 Gauss and therefore way below the value that could explain
the loss. Since also circularly polarized light can give rise to a lifted degeneracy of
the Zeeman sublevels we carefully checked and confirmed the linear polarization of the
focussed beam and tested whether changing the evanescent wave polarization from TM
to TE made any difference. It did not. (Strictly speaking these tests are only conclusive
if some vertical external B-field defines the quantization axis of the atomic system and
therefore the polarization of the light with respect to it.) In order to investigate the
explicit dependence between B-field and ensemble lifetime we went the opposite way and
applied a vertical magnetic field of variable strength. In a relatively crude measurement
with an uncalibrated field we recorded the remaining atom number N after some storage
time t = 6 s as a function of the applied magnetic field for two different laser powers
(P = Pmax, Pmax/2) The data shown in figure 5.10 demonstrates that above a certain
field strength B the lifetime in the reduced potential suddenly becomes smaller than the
one in the full strength potential.

It continuously drops until at a still stronger field also the lifetime in the full-strength
potential drops. The clear threshold behavior further supports the hypothesis of mF -
state changing collisions as predominant loss mechanism.
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Figure 5.10: Atom number after six seconds at various magnetic field levels. Open
circles correspond to 3.6W and filled circles to 7.2W laser power.

In spite of these indications there might still be other mechanisms that contribute to
the loss. A much better suited and more convincing way to investigate the role of this
process will be the utilization of a polarized sample of atoms in the |F = 3,mF = 3〉
state. A magnetic field along the vertical direction will push the |3, 3〉 state energetically
so far below neighboring mF -states that mF -state changing collisions are excluded both
energetically and because of angular momentum conservation.

The question on what process limits the evaporation progress will conclusively be
answered only with polarized atoms. If the indications about the mechanism prove to be
right, polarizing the atoms would conveniently provide an easy remedy for this problem.
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Chapter 6

Double Evanescent Wave Trap

Experiments in the DEW-trap are aimed at investigating two-dimensional behavior.
Its efficient evaporative cooling leads to the attainment of equally high phase-space
density as what could be achieved in the dimple so far and reaches the crossover to two-
dimensionality. Before sections 6.4 and 6.5 provide detailed results on these subjects, we
will discuss loading and storage properties (Section 6.1), thermometry in the DEW-trap
(Section 6.2) and explain the measurement of the trap frequency (Section 6.3). The
results discussed here will also be published in reference [Ham02a].

6.1 Transfer and Storage

The trapping potential that was created and used for all experiments reported on here-
after originates from the 1.15 Watt blue-detuned laser at 850.5 nm (1.6 nm blue detuning)
and the 1.2 Watt red-detuned laser at 1064 nm (≈ 212 nm red detuning). With a waist
of wb = 400µm and a deviation of Θb = 3.2◦ from the critical angle of total internal
reflection the blue-detuned light field creates an evanescent wave with a repulsive dipole
potential of Ub/kB = 325µK and a decay length of Λb = 395 nm. The red-detuned
beam is focussed to only wr = 160 µm and its deviation from the critical angle ∆Θr

of 0.2◦ is much smaller. The resulting attractive evanescent wave features a potential
of Ur/kB = 43 µK and a decay length of Λr = 2 µm. According to Equation 3.50 the
combination of both counteracting dipole potentials together with gravity and Van-der-
Waals attraction give rise to an attractive potential pocket 0.9 µm above the material
surface and with a total depth of U/kB = 13 µK. Its potential as a function of z at the
common center of both evanescent wave spots can be seen in figure 6.1. The different
lines illustrate how the potential changes during forced evaporative cooling when the
red-detuned laser’s power is reduced. At Pr = 0 the gravito-optical potential is restored
(dashed line).

In spite of its dimple-like structure and the positive experiences made with the
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Figure 6.1: Potential of the DEW-trap for different laser powers Pr as a function of
distance z from the prism.

loading of the focussed red beam, experiments show that collision induced loading from
a reservoir (in this case a trapped ensemble in the dimple) does not significantly enhance
the loading efficiency. This is due to the fact that in contrast to the case of the dimple
trap where the lifetime inside the dimple was larger than that of the reservoir we find
the lifetime of 1.4 s inside the DEW-trap to be much shorter.

The loading scheme that finally yields the best results therefore provides temporal
overlap between reservoir and DEW for only 50 ms. During this limited time interval
the dimple laser intensity is linearly ramped from initially 2 Watts to zero while at the
same time the red evanescent wave’s laser power is increased to 1.2 Watt. Transfer into
the DEW-trap is mainly optimized by matching the phase-space region occupied by the
ensemble with the region that leads to trapping. In detail this means slow reduction
of the dimple intensity from 7.2 Watt down to 2 Watt which results in cooling with a
simultaneous decompression. This combined evaporative and adiabatic cooling stage of 2
seconds prepares a sample of 1.8×106 atoms at 3.0 µK in the dimple. The corresponding
peak number density amounts to 1013 cm−3 and the phase-space density is about 10−3

if the sample is fully unpolarized. About 5 % of this ensemble and a total of 105 atoms
can be observed 150 ms after transfer into the DEW-trap when untrapped atoms have
laterally escaped.

The ensemble decay then strongly depends on the details of the confinement. We
measured decay curves at different laser powers of the red-detuned beam (figure 6.2) by
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using the transfer scheme described above and then ramping the laser power from the
initial value of P = 1.2 W to the desired value in 50 ms. We found that a slightly more
powerful laser at 2.2 Watt will yield a significantly shorter lifetime (0.33 s) whereas the
weaker confinement shows comparable lifetimes as the standard power of 1.2 W.

Figure 6.2: Decay measurements for different laser powers Pr of the red-detuned
evanescent wave laser (Pr = 2.2W (•), Pr = 0.22W (♦), Pr = 0.88W (◦), Pr = 0.44W)

In a less intense light field at around Pr = 1 W the decay behavior markedly differs
and exhibits a comparatively slow and clearly non-exponential loss. The shallow poten-
tial does not affect the transfer but due to the longer lifetime one observes significantly
more atoms at later times. At only 200 mW of red laser light the transfer efficiency is
affected and although trapped atoms are kept equally long the total number is consider-
ably lower. This indicates that the limiting factor for the transfer efficiency is the small
spatial overlap between dimple and DEW-trap rather than the depth of the potential.
The strong nearly exponential loss at large laser intensity suggests a dominant single
particle effect and probably can be attributed to the fact that atoms stored in the deep
potential close to the surface will start to feel the defects of the repulsive evanescent
wave.

The non-exponential decay in a shallower potential most likely arises from the same
collision mechanisms that were discussed in the context of the dimple trap. In particular
light-assisted collisions most certainly play a crucial role since atoms are pulled into the
intense region of the excitation light by the attractive evanescent wave. A thorough
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investigation of this issue is postponed until a polarized ensemble can be utilized to
clearly separate collisional and single particle losses via the Feshbach resonance and to
separate light-assisted collisions from mF -state changing collisions.

6.2 Temperature Measurements

The temperature measurement in the DEW-trap is in principle similar to the case of
the GOST and the dimple trap. The ensemble is released for a variable time ∆t by
simultaneously removing both the repulsive and the attractive evanescent wave. Then
the repulsive evanescent wave is restored and atoms are recaptured into the MOT where
the remaining atom number is determined. Experimentally it is important to extinguish
the evanescent waves simultaneously within one microsecond because an unbalanced
potential of only one light field can drastically increase an atom’s vertical energy within
less than one oscillation period (≈ 100 µs) and thus influence the temperature result.
The complete dataset can then be compared to the theoretical model. The fit function
is derived by replacing the gravito-optical potential in the considerations above with the
combined potential of attractive and repulsive evanescent wave (gravitation and Van-
der-Waals attraction can be neglected in this case), and proceeding along the same lines
as before. This, again leads to a numerical expression for the fit function.

When the ensemble temperature is significantly smaller than the potential well of
the DEW-trap the atoms are confined to a very thin layer at a distance d from the prism
surface. In this case one can obtain a conveniently simple approximated fit function by
starting from a δ-function as initial density distribution:

ρ(z, v) =
1

Ω
· δ(z − d) · exp

(
− mv2

2kBT

)
. (6.1)

Ω denotes the normalization constant. Ballistic expansion and integration over the
region of phase-space that leads to recapture finally yields an expression for the fraction
of recaptured atoms as a function of the release time

κ(t) =
1

2

(
1 − erf

(√
m

2kBT

(
gt

2
− d

t

)))
. (6.2)

The error function erf(x) is defined by erf(x) ≡ 2/
√

π
∫ x
0 e−t2dt. This approximation

yields excellent results for temperatures somewhat below 3 µK. In order to fit the data
it is much easier to start from this analytical expression instead from a purely numerical
one. As the temperature results of both approaches below 3µK are identical within the
statistical error, we use the analytical expression for all following evaluations.

Like for the dimple trap, temperature measurements in the DEW-trap depend on
the specific details of the potential. In this approximation all experimental parameters
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are summarized in the minimum position d that can be obtained from the evanescent
waves’ angles of incidence and their intensities. In addition to the temperature T this
method introduces d as a second fit parameter. This becomes necessary as during
evaporative cooling the attractive potential and thus also d is changed and separately
calculating d for each situation would be unpractical. However, T and d are only very
weakly correlated in the fit and no ambiguous results arise from this evaluation. We
have compared the calculated values of d for several different experimental situations
with the ones obtained from a fit and found excellent agreement between them. Figure
6.3 demonstrates the good agreement between experiment and theory for two different
temperature measurements using this procedure.

Figure 6.3: Two temperature measurements in the DEW-trap for ensembles at 2.7 µK
and 97 nK using the low temperature approximation explained in the text.

In case of the “hot” (2.7 µK) ensemble, half of the atoms are lost almost immedi-
ately while the remaining part is slowly declining. This behavior reflects the fact, that
half of the atoms have an initial velocity component directed towards the prism which
removes them almost instantaneously while the other half initially moves away from the
prism. The timescale on which they return to the surface, is determined by the ensemble
temperature.

A “cold” (97 ± 11) nK ensemble exhibits a clearly distinct behavior. At very short
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release times of up to 300µs no significant loss of atoms occurs and the curve features
a plateau as in the low temperature case of the GOST. Its origin is again the fact, that
the atoms need approximately 300µs to reach the recapture boundary during their fall.
At longer times the fraction of remaining atoms steeply declines with a slope increasing
with falling temperature.

While classically one would expect a step function at zero temperature, quantum me-
chanically the zero-point oscillation prevents this situation and maintains a finite width
of the curve. As the temperature information is mainly extracted from the slope, this
fact already indicates that this measurement technique is bound to become inaccurate
at temperatures where kBT ≈ h̄ω0. The next paragraph will discuss this issue in a more
quantitative way.

Quantum Effects

At temperatures around T = h̄ω0/kB when quantum mechanical behavior can no longer
be neglected, mainly two effects come into play: Firstly the atomic motion contains a
zero-point energy contribution that is comparable to the thermal energy of the atoms
and secondly the motion itself does not follow the laws of classic ballistic expansion but
rather obeys quantum mechanics rules. In some sense fortunate is the fact that the
measurement technique that is used here is very insensitive to the details of the atomic
motion. Figure 6.4 shows a comparison of theoretical temperature curves for two very
different ensemble states in the GOST and the DEW-trap. One is the result from an
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Figure 6.4: Theoretical temperature measurement curve κ(∆t) for a monoenergetic and
a thermal ensemble in the GOST (a) and the DEW-trap (b).

ensemble in thermal equilibrium while the other represents the extreme (hypothetic)
case of a sample of monoenergetic atoms with randomly distributed phases of their
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oscillation. Even these extreme cases can only be distinguished by the details of a
measurement curve and therefore it is justified to say that this technique determines the
mean kinetic energy of an ensemble rather than its temperature.

The modifications of the detailed motion of the atomic ensemble due to quantum
mechanical corrections are likewise hardly resolved by this scheme and therefore we only
have to concern ourselves with the modification of the mean kinetic energy due to the
zero-point oscillation. The problem can therefore be restated as follows: How can we
derive a thermodynamical temperature T from a quantum mechanical system whose
mean kinetic energy Ē is known? The potential is assumed to be purely harmonic with
an oscillation frequency ω0 since we are only interested in the case where kBT ≈ h̄ω0

and thus the anharmonicity of the trap is negligible. According to statistical physics
the probability for an atom to be found in a state corresponding to the energy En =
h̄ω0(n + 1/2) is given by

p(n) =
1

Ω
· exp

(
h̄ω0

kBT
(n + 1/2)

)
, (6.3)

with the partition function

Ω ≡
∞∑

n=0

exp

(
h̄ω0

kBT
(n + 1/2)

)
=

1

2
· sinh−1

(
h̄ω0

2kBT

)
. (6.4)

The mean energy for a given T can be calculated from the well known formula

Ē = − ∂

∂β
(ln Ω). (6.5)

β denotes the inverse temperature β ≡ 1/kBT . One finds

Ē =
h̄ω0

2
· cosh

(
h̄ω0

2kBT

)
sinh

(
h̄ω0

2kBT

) , (6.6)

and solving for T we finally get the correction formula that relates the mean kinetic
energy obtained experimentally to the true thermodynamic temperature:

T =
h̄ω0

2kB

· arccoth−1

(
2Ē

h̄ω0

)
. (6.7)

Figure 6.5 demonstrates how our measurement technique is rendered inaccurate at
2Ē/h̄ω0 ≈ 1 due to the diverging slope of the function at this point.

Reduced kinetic energy means the ratio between Ē and the vibrational energy quan-
tum h̄ω0. Reduced temperature stands for the expression kBT/h̄ω0 that relates the
thermal energy to the vibrational energy. At around Ē = h̄ω0 the resulting correc-
tions are moderate and of the order of 10 % whereas this method becomes useless as Ē
approaches h̄ω0/2.
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Figure 6.5: Correction function for low temperatures in the DEW-trap that translates
the experimentally measured mean kinetic energy into a thermodynamic temperature.
The dashed line represents the classical expectation.

6.3 Trap Parameters

In order to specify the ensemble properties inside the DEW-trap we have to know the
trap frequencies in addition to the number of trapped atoms and the temperature. A
method that enables us to measure expected trap frequency of around 10 kHz was first
used by S. Friebel et al. [Fri98] in Munich. It is based on the parametric heating of atoms
by a sinusoidal modulation of the trapping potential with a frequency ωmod = 2ω0/n (n
being an integer). ω0 denotes the vertical oscillation frequency. Figure 6.6 shows the
raw data of a measurement performed with Pr = 0.9 W.

After the DEW-trap has been loaded, the power Pr of the red-detuned laser beam
is ramped to a variable value within 50 ms. Then the repulsive evanescent wave is
intensity-modulated with a modulation depth of 10 % and a variable frequency for a
duration of 150 ms. Another 100 ms later when all released atoms have escaped, the
remaining fraction is measured.

If the modulation frequency equals ω0 or 2ω0 the remaining fraction of atoms exhibits
clear minima that arise from the efficient heating at these frequencies. Due to the lateral
spread of the atoms inside the trap the width of these minima is considerably large.
In outer regions of the evanescent wave spots the vertical potential is less deep and
features a smaller trap frequency than in the center. Additionally the anharmonicity of
the vertical potential itself contributes to this spectrum of oscillation frequencies. As
both effects introduce only smaller frequencies, the average trap frequency obtained by
this method lies slightly below the calculated value for a harmonic approximation in the
trap center. The solid line in figure 6.7 shows such a calculation as a function of the red
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Figure 6.6: Measurement of the fraction of atoms remaining in the DEW-trap (Pr =
0.9W) after 150ms of trap modulation. The measurement shows broad minima at the
trap frequency ν and its second harmonic 2ν.

laser power Pr.

Each value of the function has been obtained by numerically locating the potential
minimum of the vertical potential and extracting the trap frequency from a harmonic
approximation to this minimum. The experimental data points have been obtained from
various measurements similar to the one shown in figure 6.6. The systematic deviation
of the experimental data can be explained by the considerations given above. Notably
the trap frequency does not become zero at vanishing laser power Pr. The offset value
of ω0/2π = 1.1 kHz is the oscillation frequency in the gravito-optical potential that is
always present in addition to the DEW potential.

The oscillation frequency in the horizontal confinement is expected to be around
50 Hz. In this case one has to rely on a calculated value as the frequency is too low
to be accessible by a measurement using parametric heating. Exciting and probing a
collective oscillation of an ensemble similar to the method presented in Section 5.3 is
also excluded because the release pulse would leave the atoms in an unbalanced vertical
potential and eject them from the trap. At Pr = 1.2 W we calculate a vertical trap
frequency of ω0/2π = 10.2 kHz and horizontally we find values of 59 Hz and 42 Hz. The
elongated shape of the red evanescent wave spot gives rise to a factor cos Θi between the
two perpendicular horizontal axes. Θi is the angle of incidence of the red laser beam.
The aspect ratio of around 200 newly expresses the fact that this very anisotropic trap
is well suited to address two-dimensionality related topics. With the knowledge of all
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Figure 6.7: Calculated and measured values for the vertical trap frequency for different
laser powers Pr.

required trap frequencies one can now turn to the issues of evaporative cooling and
two-dimensionality.

6.4 Evaporative Cooling

In order to increase phase-space density and to cool the atomic ensemble into a single
vertical vibrational state, forced evaporative cooling is applied. This is done by expo-
nentially ramping down the laser power Pr of the red-detuned evanescent wave from
initially 1.2 W down to 42 mW (3.5 %) in 400 ms.

This evaporation method is in principle three-dimensional because the light field
that is ramped down provides the confinement for all three dimensions. Since however,
in addition to the tightly confining potential also the standard gravito-optical potential
retains atoms vertically, released atoms are bound to leave the trap laterally. Atoms leav-
ing the tight confinement vertically have only reduced spatial overlap with the trapped
ensemble, but it is not entirely clear to what extend these untrapped atoms can still
transfer kinetic energy to trapped ones. The efficiency of this scheme lies between that
of the two- and the three-dimensional case.

The evaporation ramp starts immediately after loading (at t = 0) but the 150 ms
needed to have initially untrapped atoms escape, prevents reliable measurements of the
particle number N and temperature T in the beginning. The time evolution of all
relevant quantities can be seen in figures 6.8 and 6.9.
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Figure 6.8: Atom number (◦) and temperature (•) during evaporation from the DEW-
trap.

The results look very promising between the first dataset at t = 150 ms (Pr = 28 %)
and t = 270 ms (Pr = 8 %). During this time we observe an exponential decline of the
atom number accompanied by a drastic reduction of the temperature from 1µK down
to ≈ 100 nK. The cooling is a combined effect of evaporative cooling and of adiabatic
expansion. At 8 % of the initial laser power the vertical trap frequency has dropped
to about 2.5 kHz with evident consequences for the density. The strong contribution of
evaporative cooling can be seen in figure 6.9. Between t = 150 ms and t = 270 ms the
phase-space density increases by two orders of magnitude and almost reaches 0.1 (still
assuming equal distribution among all seven magnetic substates of the ground-state).
Together with the moderate decrease of N by only a factor of three this makes the
evaporation process highly efficient. The maximum value of D ≈ 0.1 is comparable to
the highest phase-space densities obtained with cesium ensembles so far [Han01a].

After t = 270 ms the temperature is not reduced any further and the particle loss
progresses at an increased rate. After t = 320 ms atom numbers and statistics are
insufficient to obtain reliable temperature data. It seems that one is again faced with
an inelastic loss process that prevents further progress towards the BEC-threshold. We
believe that also in this case will the transition to a polarized sample be helpful for both
the evaporation itself and for the investigation of the limitations observed here.
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Figure 6.9: phase-space density and peak density during evaporation from the DEW
trap

6.5 Two-Dimensionality

In order to analyze these results in the context of two-dimensionality it is useful to
introduce a reduced temperature τ ≡ kBT/h̄ω0. It relates the thermodynamic temper-
ature T to the vibrational energy splitting between ground-state and first excited state.
The filled circles (•) in figure 6.9 indicate how this reduced temperature drops in the
course of evaporative cooling and finally approaches one at t = 270 ms. The vibration
frequency ω0 changes during evaporation and is taken from the calculation shown in
figure 6.7. The final value of τ = 1 corresponds to a mean vibrational number of only
n̄ = 0.58 and to a ground-state population of 63 %. This situation can be regarded as
the crossover regime to a quasi two-dimensional system.

Notably the evaporation stops right at τ = 1 and recalling the statements of reference
[Pet01] this is not surprising. At τ = 1 the thermalization between strongly confined
and nearly free degrees of freedom is expected to break down due to the reasons given in
Section 3.6.3. Even if the evaporative cooling continues to cool the horizontal motion,
it would not show in our measurement because the technique we use is insensitive to
the horizontal temperature and the decoupling inhibits the communication between
horizontal and vertical degree of freedom. We therefore believe to see first effects of
two-dimensionality in this measurement.

This concludes the report on what has been achieved with unpolarized atoms and
what insights have been obtained with respect to limitations and future improvements.
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Chapter 7

Summary and Outlook

This last chapter is intended to summarize what has been achieved with the surface
microtraps so far, and it will outline the future directions of the experiment.

7.1 Summary

We have successfully implemented two different types of surface microtraps and in-
vestigated their behavior in terms of loading, trapping conditions, thermometry and
evaporative cooling towards BEC and two-dimensionality.

The Focussed Beam Surface trap

The implementation of the focussed beam surface trap has been a major experimental
breakthrough to overcome efficiency problems of evaporative cooling encountered in ear-
lier experiments with the GOST. Its strong local compression and the efficient collision
loading mechanism that selects predominantly low-energetic atoms from the reservoir
create ensembles of a peak-density of 7 × 1013 cm−3, a phase-space density of 3 × 10−3

and a dramatically increased elastic collision rate of ∼ 2 kHz. The enhanced thermaliza-
tion speed then allows for very efficient evaporative cooling that leads to a phase-space
density of 0.01.

Experimentally we have worked with two distinct configurations of the dimple. A
tightly focussed (w = 30 µm) 330 mW Nd:YAG beam gave rise to an approximately
50 µK deep potential well, that hosted up to 1.8 × 105 atoms. At 2.9 µK and with an
experimentally determined trap frequency of 555 Hz it provided conditions well suited for
a detailed study of the collisional loading process and for consecutive evaporative cooling.
A much stronger (7.2 W) but also wider (w = 160µm) laser focus in combination with a
much further detuned (> 660 GHz) evanescent wave created a potential of similar depth
but due to the favorable spatial overlap with the reservoir trapped up to 6.5×106 atoms.
At a trap frequency of 110 Hz comparable peak density and phase-space density have
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been achieved but the much larger ensemble and the extended lifetime further improve
the prospects of evaporation.

The Double Evanescent Wave Trap

A second surface microtrap scheme called the DEW-trap was, more than ten years after
its first proposal by Y.B. Ovchinnikov et al., experimentally implemented. This highly
anisotropic and strongly confining potential is particularly suitable for studies on two-
dimensionality. The trap frequencies of around 10 kHz vertically and 50 Hz horizontally
lead to an aspect ratio of 200 and separate states of the vertical motion by a temperature
equivalent of several hundred nanokelvin. A multi-stage loading process including an
intermediate dimple phase transfers up to 105 atoms into the trap where they can be
stored for few seconds.

The fact that a single laser is involved in the confinement of all three dimensions
makes the consecutive forced evaporative cooling stage highly efficient. At a cost of less
than 90 % of the atoms phase-space density is increased by two orders of magnitude up
to almost 0.1. The combination of evaporative and adiabatic cooling manages to push
the temperature down to below 100 nK and even though the vertical trap frequency is
simultaneously reduced, a situation is created where the vibrational energy is equal to
the thermal energy. At this point 63 % of the atoms populate the motional ground-state
and the mean vibrational number is only 0.58. Further increase of phase-space density is
prevented by the breakdown of thermalization between horizontal and vertical freedom
at the crossover to the two-dimensional regime.

7.2 Future Goals

After these surface microtraps have been implemented and characterized, their useful
properties now open up new interesting prospects for the future.

Quantum Degeneracy

A first step will be the attainment of Bose-Einstein condensation in the focussed beam
trap. In order to achieve this goal, we will polarize the atoms to the absolute ground-
state |F = 3,mF = 3〉. An immediate consequence of polarizing the ensemble is the
increase of the phase-space density by the degeneracy factor 7 and the doubling of the
elastic collision rate due to the symmetrization factor of identical bosons. In addition
to that, it will avoid the binary collisions that so far prevented further progress of
evaporative cooling. At a field strength of several Gauss the energetic splitting between
neighboring mF -states is sufficiently large to exclude any mF -state changing collisions
that have have most likely been responsible for the losses so far. Without the loss from
these collisions, evaporation is expected to proceed to the condensation point. With a
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polarized sample systematic investigations of decay processes become possible and will
provide reliable values for the rate coefficients of the different collision processes.

Tuning Scattering Properties

In the |F = 3,mF = 3〉 state the scattering length of the particle and thus its entire
scattering behavior becomes a tunable parameter and the whole range of scattering
lengths can be accessed with moderately strong magnetic fields of between zero and 50
Gauss. Depending on the specific application it can be favorable to switch to either
negative, positive or zero scattering length.

Increasing a to large positive values can for instance compensate for the slowing
thermalization and decreased density in the microtraps during evaporation. A rising a
will strongly increase the elastic collision rate until the unitary limit is reached. Also
three-body collisions which depend on a as L3 ∝ a4 will be an important factor to
consider for the choice of a. Close to the Feshbach resonance, where the value of a
jumps from +∞ to −∞ the last molecular bound state (see Section 3.5) is close to the
dissociation threshold and in turn will render the release energy of such a collision very
small. In certain cases it might therefore be advisable to choose a to lie in a region
around 49 Gauss and minimize the thermal energy input into the system.

A negative scattering length even completely eliminates this thermal energy and
would otherwise be of interest for studies of the dynamics of a BEC-collapse. Creating
the condensate at positive scattering length and then switching to a negative value will
probably be the easiest way to achieve this.

Quantum Degeneracy in 2D

As soon as a BEC becomes available in the focussed beam trap it will be interesting to
transfer it into the DEW-trap and study coherence properties and other aspects related
to 2D. A condensate would immediately make also the far two-dimensional regime avail-
able and enable us to test theories on scattering in this regime. Of main interest will
be the connection between tunability of the condensate and the reduced dimensionality.
Section 3.6.3 already discussed how the transition into this regime could conveniently
be investigated by tuning the mean field interaction of the condensate via a Feshbach
resonance.

Improved Diagnostics

A future topic of more practical nature will be the improvement of diagnostics of the
experiment. Polarized atoms offer the possibility of applying a magnetic levitation field.
At a vertical gradient of 31.3 Gauss/cm the force acting on the magnetic dipole moment
exactly compensates gravity and at a field gradient above this value even lifts the atoms
up. This can be used to implement a new temperature measuring technique that would
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enable us to accurately measure very low temperatures and detect a later BEC. For
this approach the ensemble would be levitated in a magnetic gradient field so that after
some release time the expanded atom cloud can be imaged. This time-of-flight method
has in principle been used in many experiments and accurately measures to very small
temperatures.

Aside from the issue of thermometry a levitation field can enhance the evapo-
ration from the DEW-trap by removing vertically unbound atoms that are retained
in the gravito-optical potential. The evaporation process would then be truly three-
dimensional. Slow increase of the levitation field might even lead to an adiabatic cool-
ing effect once the intensity of the red-detuned evanescent wave has been significantly
ramped down.
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