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Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Bose-Einstein-Kondensat (BEC) aus Molekülen
realisiert. Ausgangspunkt waren optisch gefangene, ultrakalte fermionische6Li-
Atome, deren Wechselwirkung untersucht wurde. Durch gezielte Manipulation der
Wechselwirkung mithilfe einer Feshbach-Resonanz konnten die fermionischen Atome
zu bosonischen6Li2-Molekülen gepaart werden, die durch evaporatives Kühlen kon-
densiert wurden.

Um eine große Anzahl von6Li-Atomen aus einer magneto-optischen Falle zu
laden, wurde eine neuartige optische Dipolfalle wurde entwickelt, die die resonante
Überḧohung in einem optischen Resonator ausnutzt, um mit nur zwei Watt Leistung
eines Nd:YAG Lasers eine tiefe Falle mit großem Volumen zu erzielen.

Eine breite Feshbach-Resonanz für eine Mischung der zwei niedrigsten
Spinzusẗande des6Li-Grundzustands f̈uhrt zu resonanter quantenmechanischer Streu-
ung in Magnetfeldern um 800 G. Die elastischen Stoßeigenschaften in Magnetfeldern
bis 1500 G wurden zun̈achst durch Evaporationsverluste beobachtet, wobei ein Null-
durchgang der Streulänge bei 530(3) G bestimmt werden konnte, bei dem keine Eva-
porationsverluste auftraten.

In den nachfolgenden Experimenten gelang es, durch gezielte Abstimmung
der Wechselwirkung in der N̈ahe der Feshbach-Resonanz durch Dreikörper-
Rekombination stabile, schwach gebundene6Li2-Moleküle zu bilden. Um diese
Moleküle evaporativ zu k̈uhlen wurde eine zweite optische Dipolfalle aufgebaut,
die aus einem fokussierten Laserstrahl besteht, dessen Leistung sich von 10.5 W
präzise um mehr als vier Größenordnungen reduzieren lässt. Die niedrigen inelastis-
chen und hohen elastischen Stoßraten der Moleküle erm̈oglichten es, das moleku-
lare Gas zur Bose-Kondensation zu kühlen. Die Existenz des Kondensats konnte
durch die Anregung eines kollektiven Schwingungszustands und die Abstimmbarkeit
der Wechselwirkungsenergie des Kondensatsüber das Magnetfeld bestätigt werden.
Der Phasen̈ubergang zum BEC manifestierte sich in einer bimodalen räumlichen
Verteilung in der Falle, die aus einem schmalen, kondensierten Anteil und einer breit-
eren thermischen Verteilung besteht.

Das molekulare Kondensat, das den Abschluss dieser Arbeit bildet, repräsentiert
das stark gekoppelte Extrem des sogenannten BEC-BCS-Übergangs. Weiterführende
Experimente konnten zeigen, dass die Stärke der Kopplung durch das Magnetfeld adi-
abatisch verringert werden kann und derÜbergang zu einem schwach wechselwirk-
enden, hoch entarteten Fermigas möglich ist. Dieses abstimmbare Quantengas ist ein
ideales Modell f̈ur vielfältige physikalische Systeme wie Neutronensterne, Hochtem-
peratursupraleiter, und für schwere Kerne.
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Abstract

This thesis reports on the first Bose-Einstein condensation (BEC) of molecules starting
from optically trapped fermionic6Li atoms. The control of the interaction properties
by means of a Feshbach resonance allowed us to pair the fermionic atoms to bosonic
6Li2 molecules that were Bose condensed by evaporative cooling.

To load a large number of6Li atoms from a magneto-optical trap, a novel opti-
cal dipole trap was developed that employs the resonant enhancement in an optical
resonator to achieve a very large trap depth and trapping volume from moderate two
Watts of laser power.

A broad Feshbach resonance for a mixture of the two lowest spin states of the6Li
ground state leads to resonant quantum mechanical scattering at magnetic fields near
800 G. The elastic collision properties in magnetic fields up to 1500 G were initially
observed through evaporative loss of atoms from our dipole trap. In that way we
could observe a zero crossing in the scattering length at 530(3) G that manifested itself
through the absence of evaporative loss.

In subsequent experiments, the tunability of the interactions in the vicinity of the
Feshbach resonance proved to be ideal to form stable weakly bound6Li2-molecules
through three-body recombination. The high collisional stability of these molecules
together with an expected very large elastic collision rate allowed us to evaporatively
cool the molecules into a molecular BEC in a second focused beam optical dipole trap.
Two independent manifestations of the presence of the condensate were the excitation
of a characteristic collective oscillation mode, and the tunability of the mean field of
the condensate using the magnetic field. The phase transition to the BEC was observed
by imaging the characteristic bimodal spatial distribution of our cloud that represents
a narrow condensed fraction and a broader thermal distribution.

The molecular condensate that was the final achievement of this thesis represents
the strong-coupling limit of the so-called BEC-BCS crossover. Subsequent experi-
ments showed that by tuning the magnetic field, the coupling strength can be adiabati-
cally reduced and a crossover to a weakly interacting highly degenerate Fermi gas can
be realized. This tunable quantum gas is an ideal model for such diverse systems as
neutron stars, high-Tc superconductors, and heavy nuclei.
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Chapter 1

Introduction

Nature divides all particles into two distinct categories depending on their intrinsic
angular momentum, the spin. Depending on whether the spin is half-integer or inte-
ger, particles are called fermions or bosons. Their distinct properties become apparent
when identical particles get so close to each other that they can no longer be distin-
guished because their wave packets overlap. Fermions then tend to repel each other,
while bosons “socialize” and tend to accumulate in the same state. For this reason,
bosons confined in a trap at very low temperatures undergo a phase transition where
all particle condense into a single, macroscopic matter wave, a Bose-Einstein conden-
sate (BEC). BEC is a purely statistical phenomenon where no interaction is required
for the phase transition to occur.

The first Bose-Einstein condensates of bosonic atoms could be produced in 1995
[And95, Bra95, Dav95] and their study proved to be extremely exciting in the follow-
ing years. While studying their Bose-Einstein condensates, physicists were impressed
again and again of how fundamental ideas of the early days of quantum mechanics
could be realized and proven to be true in experiments. Among some of the greatest
achievements were the observation of macroscopic matter wave interference [And97],
the creation of vortices [AS01], dark [Den00, Bur99] and bright [Kha02, Str02] soli-
tons. The observation of the Mott insulator transition [Gre02] was particularly exciting
as it opened new avenues for research and applications.

Trapped Fermi gases at ultralow temperatures behave fundamentally different from
Bose gases. Without any interaction present, fermions simply fill up the lowest quan-
tum states of the trap one by one up to the Fermi energy, forming a degenerate Fermi
gas. For a phase transition to a superfluid state, an attractive interaction is required that
leads to the formation of pairs which then behave like bosons because of their integer
total angular momentum and Bose condense. Bardeen, Cooper and Schrieffer (BCS)
were able to explain superconductivity by the formation of pairs of electrons, so-called
Cooper pairs that form a superfluid [Bar57]. At ultralow energies identical fermions
do not interact (see chapter2.1). Therefore it is generally required that a mixture of
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1 Introduction

particles be present to form pairs, which is in most cases a mixture of two spin states
of the same particle.

The interactions are of crucial importance in a Fermi gas. For weak interactions,
the critical temperature depends exponentially on the interaction strength, and if it is
made strong enough to support a two-body bound state, bosonic molecules are formed
that can form a BEC. In fact a Bose-Einstein condensate of bosonic atoms is nothing
else than a BEC of tightly bound pairs of fermionic ions and electrons. The most inter-
esting regime is the crossover regime between the BCS-type gas of weakly interacting
fermions and the BEC of molecules. There exist many physical systems that are in
this regime, for example high-Tc superconductors and neutron stars. However, it is
very difficult to study most of these systems experimentally as very few parameters
can be varied. With ultracold atomic Fermi gases, the interactions can be tuned widely
through so-called Feshbach resonances, near which the scattering properties can be
tuned by varying an external magnetic field. For the first time a physical system is
available that allows a systematic study of the properties of the BEC-BCS crossover.

During the past years, researchers working towards atomic Fermi gases concen-
trated mainly on6Li and 40K, as they can be cooled and trapped by established laser
cooling techniques. Both atoms feature a Feshbach resonance in a stable spin mixture
that can be trapped in an optical trap. The spin mixture of interest in6Li has its Fesh-
bach resonance at 834 G and is more than 100 G wide, while the Feshbach resonance
in 40K is at 201 G and is only a few Gauss wide. For lithium, which we chose for our
experiments, there is the challenge to produce the large fields required to access the
resonance.

This thesis is structured in the following way. In chapters2 and3 the main physi-
cal concepts of interactions in ultracold gases and of BEC and degenerate Fermi gases
are presented. These two chapters are meant as a summary of the well-known ideas,
and references are given for a more detailed description of the topics. Chapter4 de-
scribes the experimental setup with a strong emphasis on those parts that were set up
during this thesis and that have not been described elsewhere. The following chapters
describe the experimental results that were obtained during this thesis. The magnetic-
field tunability of the interactions in our lithium spin mixture is described in chapter5,
the major result being the determination of a zero crossing of the scattering length at
530 G. In subsequent experiments we exploited the tunability of the interactions to pro-
duce a molecular gas of6Li2 (chapter6). The major achievement of this thesis is then
presented in chapter7, where evaporative cooling of our molecules to a Bose-Einstein
condensate is described. The Bose-Einstein condensation of molecules has paved the
way for new exciting experiments with strongly interacting Fermi gases. In chapter
8 I summarized the major achievements of our experiment since I started writing this
thesis and some ideas for future experiments.
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Chapter 2

Interactions in an ultracold gas

The control over the interaction properties of ultracold particles plays an important
role in every stage of our experiment. A so-called Feshbach resonance gives us the
ability to tune collisions over a broad range. While the atoms are evaporatively cooled
in the optical dipole trap, we would like the elastic collision cross section to be as large
as possible to accelerate thermalization. At the same time, inelastic collisions leading
to loss from the trap have to be minimized to achieve a high evaporation efficiency.
Moreover, the possibility to resonantly tune the interactions is used to produce weakly
bound dimers with tunable binding energy that are eventually cooled into a Bose-
Einstein condensate (BEC) of molecules formed from fermionic atoms. It is the unique
tunability of its interactions which make this BEC a very special one. By tuning the
binding energy, the Bose-condensed cloud of bosonic molecules can be continuously
transformed into a highly degenerate cloud of fermionic atoms.

This chapter summarizes the basic concepts of ultracold scattering. An elementary
introduction to low energy scattering theory can be found for example in [Sak94]. An
excellent introduction to collisions in ultracold atomic gases is given by [Dal99b]. A
quite comprehensive review of cold collisions in both experiments and theory is given
in [Wei99], but being published in 1999, the developments of the last five years are not
covered. More recent treatments can be found in [Chi01, Bur02].

2.1 Elastic scattering

We are interested in the scattering process of two particles with energyEk =

~2k2/(2mr) in a potentialV(r) with the relative coordinater, wheremr = m/2 is the
reduced mass of the particles. We therefore look for a solution of the Schrödinger
equation (

p2

2mr
+ V(r)

)
ψk(r) = Ekψk(r). (2.1)
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2 Interactions in an ultracold gas

For a spherically symmetric potential, the asymptotic form of the solution can be writ-
ten in the form

ψk(r) ∼ eik·r + f (k, θ)
eik·r

r
. (2.2)

The first term of this expression is the incoming plane wave, while the second term
describes the outgoing wave. All the physics is contained in the scattering amplitude
f (k, θ), which depends on the scattering energy throughk and on the scattering angleθ
between the incoming particle and the observation direction. The total scattering cross
section is then obtained by integratingf (k, θ) over the solid angleΩ,

σ(k) =
∫
Ω

| f (k, θ)|2 dΩ. (2.3)

For studying the low-energy collision limit, it is useful to expand the wave function
in terms of partial wavesl = 0,1,2, ..., also nameds, p,d, ... . One can then write
down a one-dimensional (1-D) Schrödinger equation for each angular momentum state
uk,l(r),

∂2uk,l(r)
∂r2

+

(
k2 −

2mr

~2

(
V(r) +

~2l(l + 1)
2mrr2

))
uk,l(r) = 0. (2.4)

In this 1-D representation the higher partial waves experience an effective potential
Veff = V(r) + Ec that includes a repulsive centrifugal barrierEc = ~2l(l + 1)/(2mrr2).
An illustration of this is shown in Fig.2.1. If the collision energy is much lower than
this barrier, particles with angular momentuml > 0 cannot see the potentialV(r), and
thus cannot be scattered∗.

The zero-energy limit

The different partial waves acquire different phasesδl that determine the scattering
process. The total cross sections are given by [Sak94]

σl(k) =
4π
k2

(2l + 1) sin2 δl , (2.5)

assuming nonidentical particles. One finds [Sak94] that these phases are proportional
to

δl ∝ k2l+1, (2.6)

causing the scattering cross section for higher partial waves to drop asσl ∝ k4l, when
k approaches zero whileσ0 becomes independent of the collision energy. The cross
section can now be written as

lim
k→0

σ0(k) = 4πa2, (2.7)

∗For lithium, this centrifugal barrier is∼ kB × 7 mK [Jul92]
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2.1 Elastic scattering

Veff(r) Veff(r)

r r

l=0 l=1,2,...

a) b)

E E

Figure 2.1: Schematic of the effective potential of the 1D radial Schrödinger equa-
tion. a) Shows the situation for s-wave scattering, in b) the centrifugal barrier
Ec = ~2l(l + 1)/2mrr2 is added. If the collision energyE is much lower than this
barrier, collisions withl > 0 are suppressed (figure adapted from [Dal99b]).

where the scattering lengtha is defined by

a = − lim
k→0

tanδ0(k)
k

. (2.8)

In the following, onlys-wave scattering will be considered because all collision ener-
gies in the experiments described in this thesis are well below the centrifugal barrier.
Typical s-wave scattering lengths for alkali atoms are on the order of 10− 100a0. The
exact value of the scattering length is very sensitive to the long-range van der Waals
potential [Dal99b], which is described by theC6-coefficient asVvdW = C6/r6. Espe-
cially when a bound state lies just below or above the continuum the scattering length
is large and positive or large and negative, respectively. A small change in theC6-
coefficient can then have a very large effect on the scattering length, it can even change
from large and positive to large and negative.

Energy dependence of the cross section

The scattering cross section is given by the zero-energy limit, equation2.7, as long as
sin2 δ0 � 1. At higher collision energies, the scattering cross section has to be limited,
as sin2 δ0 cannot become larger than unity. Assuming that characteristic radius of
interactionrc is much smaller than the scattering length and the de Broglie wavelength,
which is true for most cases, one can approximate the potential by a point-like so-called
contact potential [Dal99b]

Vcp = gδ(r), (2.9)

where the coupling constant g depends on the scattering lengtha as

g =
4π~2

m
a. (2.10)
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2 Interactions in an ultracold gas

The phase shiftδ0 and thus the total cross section can then be calculated as [Dal99b]

σ(k) =
4πa2

1+ k2a2
. (2.11)

Fork2a2 � 1, one recovers the expected zero-energy limitσ = 4πa2, whereas the limit
k2a2 � 1 yields the so-called unitarity limitσu(k) = 4π/k2, which is the maximum
possible cross section for s-wave collisions that is obtained when sin2 δ0 = 1. This
result is not surprising, asσu(k) is just about as large as the spread of the wave packet
and a larger cross section would have to involve nonzero angular momentum.

Identical particles

For the above considerations we assumed that the two colliding particles were distin-
guishable, which is not the case if one considers identical particles. In this case, the
two scattering processes shown in Fig.2.2 cannot be distinguished, and thus the two
corresponding scattering amplitudes interfere. This leads to an extinction of the scat-
tering cross section for the symmetric even partial waves in the case of fermions and
of the symmetric odd partial waves in the case of bosons, while the remaining cross
sections are doubled. An important conclusion of this is that at very low temperatures,
identical fermions do not collide and form an ideal gas. The absence ofs-wave scatter-
ing in an ultracold fermi gas was observed for the first time in40K in D. Jin’s group at
JILA [DeM99a], which enabled them to observe theσp ∝ E2 threshold law for p-wave
collisions.

pi -pipi-pi

pf

-pf

pf

-pf

θ

π−θ

Figure 2.2: The two different scattering processes are indistinguishable for iden-
tical particles, causing their scattering amplitudes to interfere (adapted from
[Dal99b]).

Mean-field interaction

At high densities and very low thermal energies as for example in a BEC, the colli-
sions lead to an interaction energy that is considerably larger than other energies of
the system such as the thermal energy. This interaction energy can be approximated
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2.2 Feshbach resonances and weakly bound molecules

n = N/V

ri

r

V

N

Figure 2.3: The red particle experiences a mean field due to the presence of the
neighboring particles

by a mean field, even if the interparticle separation is much larger than the range of
the potentials. In this case we can again use the approximation that the scattering is
due to a point-like potential as in equation2.9. Then we can easily calculate the mean
field that is experienced by an atom immersed in a gas with density n, as depicted in
Fig. 2.3∗:

Vmf = lim
V→0

1
V

N∑
i=1

∫
gδ(r − r i) dr = gn=

4π~2

m
a n. (2.12)

It should be noted that the approximations used here are only valid in the dilute gas
regime, whenna3 � 1.

2.2 Feshbach resonances and weakly bound molecules

In the last few years, so-called Feshbach resonances have emerged as a versatile tool to
manipulate the scattering properties in ultracold gases [Ino98]. Using an external mag-
netic field, the scattering length can be tuned to arbitrarily large positive and negative
values. This has been exploited already in various experiments. In85Rb for exam-
ple, tuning the scattering length from negative to positive made evaporative cooling
to a BEC possible [Cor00] and intriguing dynamics of the condensate could be stud-
ied by altering the scattering length in the condensed cloud [Don01, Don02]. With
7Li Khaykovich et al. [Kha02] and Streckeret al. [Str02] were able to create matter
wave solitons when they changed the interaction from repulsive to attractive. O’Hara
et al. [O’H02a] tuned the scattering length of their6Li spin mixture to create the first
strongly interacting Fermi gas where the scattering length exceeds the inverse Fermi
wave number 1/kF

Feshbach resonances opened the way for the study of ultracold molecular gases.
Pioneering work was done at JILA where40K2 molecules were formed [Reg03]. These
findings triggered a race to form Bose-Einstein condensates of molecules [Joc03a,

∗Due to the exchange symmetry, this mean field interaction has to be multiplied by a factor of two
for identical, noncondensed particles [Gri96].
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2 Interactions in an ultracold gas

Gre03, Zwi03], which now serve as a starting point to study the strongly interacting
regime in ultracold fermionic gases [Bar04c, Reg04, Zwi04, Bar04b, Kin04a, Chi04a].

The concept of Feshbach resonances was first studied in nuclear physics by Her-
man Feshbach [Fes58]. The main idea of a magnetic-field Feshbach resonance, as they
are used in ultracold atom experiments is illustrated in Fig.2.4a) [Tie93]. Consider a
pair of atoms scattering in their mutual potential, which we call the open channel. For
the same pair of atoms in different internal states, the potential can be different and
represent so-called closed channels if their continuum lies above the incident scatter-
ing energy. When the atoms are scattered in the open channel, they may be coupled to
the closed channel for example through hyperfine interactions. But as the continuum
of the closed channel lies above the total energy, the atoms have to finally end up in
the open channel, leading to a second-order coupling. If now the closed channel has a
different magnetic moment than the open channel, the two potentials are tuned against
each other by∆E = ∆µ × B by applying an external magnetic fieldB. Tuning a bound
state in the closed channel into degeneracy with the continuum results in resonant scat-
tering if there is a coupling between the two states. The scattering length can then be
written in the form

a(B) = abg

(
1+

∆

B− B0

)
, (2.13)

whereabg is the off-resonant background scattering length,∆ the width andB0 the
position of the resonance.

The coupling mixes the continuum of the open channel and the bound state
in the closed channel to form two new states as shown in Fig.2.4 b). In anal-
ogy to the avoided crossing in a two level system, the resulting molecular state
is connected adiabatically to the free-atom continuum, when the closed channel
is tuned into the continuum. This means that by adiabatically ramping the mag-
netic field across the resonance, pairs of atoms can be converted into molecules and
vice versa. Such experiments could recently be performed in a number of groups
[Reg03, Her03, Dür04, Cub03, Str03, Xu03]. However, there is an important differ-
ence to the case of a simple two-level crossing as here, one of the states is a continuum
state. This means that a stable molecular state can only exist below the continuum,
while the molecular state embedded in the continuum can only be a virtual state.

Feshbach resonances in6Li

Between the two lowest hyperfine states|1〉 and |2〉 of 6Li ∗, an exceptionally broad
Feshbach resonance was first predicted in 1998 by Houbierset al. [Hou98] at∼850 G,

∗At low magnetic field, these two states correspond to the states|F = 1/2;mF = ±1/2〉, well above
30 G, they are defined as|s= 1/2,ms = −1/2; I = 1,mI = 1〉 and|s= 1/2,ms = −1/2; I = 1,mI = 0〉 in
the Paschen-Back regime, seeA.2
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2.2 Feshbach resonances and weakly bound molecules

molecular state

continuum

virtual bound state

en
er

gy
magnetic field

b)

incident energy

∆E = ∆µ x B

closed channel

open channel

interatomic distance

en
er

gy

a)

Figure 2.4: a) A Feshbach resonance occurs, when a bound state of a closed
channel is tuned into degeneracy with the continuum of the open scattering channel
using an external magnetic field. b) The coupling of the two channels leads to an
avoided crossing, adiabatically connecting the molecular state with the free-atom
state.

that modifies the scattering length in a range of several hundred Gauss (Fig.2.5). Be-
ing zero at zero magnetic field, the scattering length first decreases with increasing
magnetic field to a local minimum of∼-300a0 at∼325 G. It then increases again and
crosses zero at 530(3) G [Joc02] before diverging on the broad Feshbach resonance
near 850 G. Throughout this thesis, I will use the values obtained from a calculation
by V. Venturiet al. [Ven01] for the scattering length near the Feshbach resonance that
was found to be at∼856 G. Recent results from our experiment locate the Feshbach
resonance at 834 G [Bar04d] and allow a more accurate determination of the scattering
length. However, for most experimental results presented in this thesis, the resulting
differences in scattering length are not significant. Above the resonance the scatter-
ing length then approaches from−∞ the anomalously large triplet scattering length
of ∼2200a0 [Abr97] above∼1500 G. A second, very narrow resonance was discov-
ered later [Die02, O’H02b, Str03]. It is marked by the vertical line at∼543 G and is
∼100 mG wide.

To understand how these two resonances come about, let us first look at the scat-
tering state. At low magnetic fields, the scattering state is a superposition of the singlet
and triplet states due to the hyperfine coupling of the atoms in the Zeeman regime.
At high fields�30 G in the Paschen-Back regime, the scattering potential is almost
completely determined by the electronicms = −1/2 state of the two atoms and conse-
quently, the scattering potential is triplet in nature. The off-resonant background scat-
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2 Interactions in an ultracold gas
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Figure 2.5: S-wave scattering length between the two lowest spin states|1〉 and
|2〉 of the 6Li ground state as a function of the magnetic field. The broad reso-
nance at∼834 G tunes the scattering length over a wide range. The vertical line at
543 G marks another, very narrow Feshbach resonance. Beyond 1500 G, the scat-
tering length is well approximated by the near-resonant triplet scattering length of
∼2200a0 (The data shown are calculated by V. Venturiet al. [Ven01]).

tering length is then determined by the singlet and triplet scattering lengths that have
been determined spectroscopically in photoassociation measurements at Rice Univer-
sity to be+45a0 and−2200a0, respectively [Abr97]. This causes the background scat-
tering length to vary smoothly from zero to the large triplet scattering length as the
magnetic field is increased. The large triplet scattering length stems from a virtual
bound state just above the resonance. Consequently this scattering length is very sen-
sitive to the triplet potential. Less than a 10−3 change of the potential depth would
cause the scattering length to change sign!

The two Feshbach resonances occur when the highest vibrational stateν = 38 in
the singlet potential coincides with the continuum of the scattering state. This singlet
state is split into two hyperfine states that give rise to the two Feshbach resonances.
The hyperfine splitting results from the coupling of the two nuclear spins of the atoms.
Their unity nuclear spins add to eitherI = 0 or I = 2, resulting in total angular mo-
mentaF = 0,MF = 0 andF = 2,MF = 0, respectively. In principle, the nuclear spins
can also couple toI = 1, but this state is symmetry forbidden as it is antisymmet-
ric. The antisymmetric singlet electron wave function requires the nuclear spin wave
function to be symmetric to result in a totally antisymmetric wave function.

The Zeeman energies of the continuum state and the molecular states are shown in
Fig. 2.6. The scattering potential above 500 G is almost perfectly triplet in nature. The
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Figure 2.6: Zeeman energies of a pair of free6Li atoms in the two lowest spin
states and the two highest singlet molecular states with vibrational quantum num-
berν = 38. They cross into the continuum above the free atom pair at 543.3 G and
at 834 G respectively, where the two Feshbach resonances occur (The data shown
represent calculations by V. Venturiet al. [Ven01]).

coupling to the triplet state leads to the bending down of the initially purely singlet
states, in particular theF = 0 state, causing the actual resonance position associated
with that state to occur at 834 G, outside the range of Fig.2.6.

The large width of the 834-G Feshbach resonance is caused by the large triplet
scattering length, as theF = 0 molecular state is adiabatically connected to the vir-
tual triplet state, which is approached asymptotically, slowly crossing the continuum
threshold [Mar04].

Weakly bound molecules

A resonantly large scattering length is always caused by a bound molecular state that
is very close to the continuum. The binding energy of this state can be calculated to be
[Lan77]

EB =
~2

ma2
. (2.14)

This formula is correct as long as the scattering length is much larger than the extent
of the van der Waals potential between the atoms. The range of the van der Waals
potential is characterized by the effective range, defined as

reff =

(mC6

~2

)1/4

, (2.15)
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2 Interactions in an ultracold gas

whereC6 determines the van der Waals potential asVvdW = −C6/r6. For lithium,C6

has been calculated to beC6 = 1.3340× 10−76 Jm6 [Yan96], resulting in an effective
range of the potential ofreff = 62.5a0. According to Gribakin and Flambaum [Gri93],
the validity of equation2.14 can be extended to lower values ofa by subtracting a
so-called mean scattering lengtha from a that is given by

a =
Γ(3/4)

2
√

2Γ(5/4)
reff ≈ 0.478reff (2.16)

which accounts for the finite extent of the scattering potential. For lithium atoms,a is
≈ 29.9a0. The resulting binding energy is given by [Gri93]

EB =
~2

m(a− a)2
. (2.17)

For the broad Feshbach resonance in the6Li spin mixture, the binding energy calcu-
lated using Eq.2.17is shown in Fig.2.7. By changing the magnetic field over a range
of ∼200 G, the binding energy can be tuned continuously by more than two orders of
magnitude, fromEB < kB × 1µK to EB > kB × 100µK. Below ∼600 G, the approxi-
mation of Eq.2.17starts to fail as the zero crossing in the scattering length at 530 G is
approached. Above 800 G, the uncertainty of the resonance position makes it impos-
sible to obtain a good estimate for the binding energy. The properties of this unique,
highly excited molecular state were studied theoretically by D. Petrov [Pet03a, Pet04].
Our experimental study is presented in chapter6, including the formation, the mag-
netic moment, and the surprisingly long lifetime of these molecules against decay into
lower-lying vibrational states.
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Figure 2.7: Binding energy of the weakly bound molecular level below the Fesh-
bach resonance at 830 G, calculated from the scattering length in Fig.2.5 using
equation2.17.
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Chapter 3

Degenerate quantum gases

The statistics of a gas is governed by quantum mechanics as soon as the wave packets
of the individual particles start to overlap, which means that the phase space density,
defined as

D = λ3
dB n, (3.1)

approaches unity. In this equation,

λdB =

√
2π~2

mkBT
(3.2)

is the thermal de Broglie wavelength andn the density of the gas. The quantum me-
chanical properties are a result of the indistinguishability of identical particles and
lead to drastically different behavior depending on whether the particles are bosons
or fermions. A qualitative illustration is shown in Fig.3.1. When a classical gas is
cooled down, particles no longer behave like billard balls, their collisions are governed
by quantum mechanics as described in the previous chapter. By further cooling the
gas to quantum degeneracy, the strikingly different behavior of bosonic and fermionic
gases becomes apparent. While bosons quickly condense into the ground state of the
trap, forming a BEC, the fermions slowly start filling up the lowest lying states of the
trap with unity occupation, forming a Fermi sea. Experiments in Houston [Tru01] and
Paris [Sch01] showed this in a very beautiful way by producing a mixture of a BEC of
7Li atoms and a Fermi sea of6Li atoms.

As there is extensive literature available covering degenerate gases, this chapter
summarizes only the main findings that are important for this thesis. The textbooks by
Pitaevskii and Stringari [Pit03], Pethik and Smith [Pet02] as well as the experimental
and theoretical review articles by Ketterleet al. [Ket99] and Dalfovoet al. [Dal99a]
provide an excellent introduction to this field.
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3 Degenerate quantum gases

c) d)

bosons
a) b)

billard balls wave packets

fermions

λdB
3 n ~ 1 T = 0

cooling

Figure 3.1: A gas of identical particles at different temperatures: a) At high tem-
peratures, the particles behave like classical “billard balls”. b) By lowering the
temperature, the wave packet nature of the particles leads to quantum mechanical
scattering. c) Whenλ3

dBn ∼ 1, bosons start to condense into the ground state of the
trap, while fermions avoid each other and start filling up the lowest lying states of
the trap. d) At zero temperature, the bosons are fully condensed in a single, macro-
scopic matter wave, while the fermions form a Fermi sea filling the trap potential
up to the Fermi energy.

3.1 Bose-Einstein condensation

3.1.1 BEC of an ideal gas

For trapped, non-interacting bosons in thermal equilibrium, the mean occupation num-
ber for a given quantum stater is given by the Bose distribution function

Nr,Bose=
1

exp
(
εr−µ

kBT

)
− 1

, (3.3)

whereεr is the energy of the respective state andµ is the chemical potential. It is fixed
by the constraint that the sum over all states r must yield the total particle number,
N =

∑
r Nr .

For a specific trap, the chemical potential depends on the particle number and the
temperature. At high temperatures, when the mean occupation number of the ground
state is much smaller than one, the chemical potential must be much smaller thanε0

to reflect this low ground state population. But once the temperature is lowered, the
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3.1 Bose-Einstein condensation

chemical potential has to approachε0 to fulfill the normalization conditionN =
∑

r Nr .
At this point, the occupation of the ground state becomes non-negligible.

Let us write the number of particles in the formN = N0 + NT, whereNT(µ,T) =∑∞
r=1 Nr is the number of excited particles. For a given temperature,NT reaches its

maximum whenµ→ ε0. Thus, the maximum number of excited particles is

NT,max =

∞∑
r=1

1

exp
(
εr−ε0
kBT

)
− 1

. (3.4)

Once this number drops below the total numberN, a macroscopic number of particles
has to be in theN0 ground state. The temperature for this to occur is the critical tem-
peratureTc for Bose-Einstein condensation. Note that for a large number of particles,
kBTc is in most cases much larger than the energy level spacing and the ground state en-
ergyε0, which also defines the chemical potential. We therefore assume the chemical
potential to be zero in the following discussion. In a harmonic trap with trap frequency
ω, we can now write equation3.4in an integral form using the known density of states
g(ε) = ε2/(2~3ω3). The maximum number of thermal atoms then becomes

NT,max =

∫ ∞

0

ε2

2~3ω3
(
exp

(
ε

kBT

)
− 1

) dε. (3.5)

Solving the integral and settingNT = N yields

Tc =
~ω
kB

(
N
ζ(3)

)1/3

≈ 4.5

(
ω/2π
100Hz

)
N1/3 nK, (3.6)

whereζ(3) ≈ 1.202 is Riemann’s Zeta function,ζ(x) =
∑∞

k=1 k−x. The peak phase
space density for a classical gas in a harmonic trap is

D(T) = N

(
~ω
kBT

)3

. (3.7)

If we calculateD atTc we get

D(Tc) = N

(
~ω

kBTc

)3

= ζ(3) ≈ 1.202. (3.8)

This means that Bose-Einstein condensation occurs when the mean occupation number
in the center of the trap becomes larger than one.

The fraction of condensed atomsN0/N = (N − NT)/N is also readily calculated
using equation3.5, the result is

N0

N
= 1−

(
T
Tc

)3

(3.9)
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3 Degenerate quantum gases

The wave function of an ideal gas BEC

For an ideal gas with no interactions, we have the very simple HamiltonianH =

−~2/2m∇2 + U(r). The wave function of a pure BEC is the same as for a single
particle in the ground state, which is

Φ(r) =
√

N

(
1
√
πaho

)3/2

exp

(
−

r2

2a2
ho

)
, (3.10)

whereaho =
√

~/(mω) is the harmonic oscillator length. The density distribution is
simply given by the square of the wave function,n(r) = Φ2(r).

3.1.2 Interacting Bose gas

The density of a non-interacting BEC increases linearly with the atom number as can
be seen from equation3.10. With increasing density, even a very weak interaction
must become important. Let us calculate the ratio between kinetic energyEkin and
interaction energyEint, for simplicity omitting factors of order unity. While the kinetic
energy per particle stays constant at∼~ω, the interaction energy per particle increases
asg×n (see Eq.2.12), the mean densityn being of order 1/a3

ho. One can then estimate
to zeroth order the ratio of the interaction and kinetic energies to be [Dal99a]

Eint

Ekin
∼

N a
aho

. (3.11)

For our 6Li2 moleculesaho ≈ 3µm for a trap with a typical vibration frequency of
∼100 Hz, whereas the scattering length is on the order of∼100 nm. This means that
for a typical number of particles, the interaction energy will be much higher than the
kinetic energy. Therefore in most cases Eq.3.10will not be a good approximation to
the wave function.

In most BECs, a repulsive mean fieldVmf (Eq.2.12), as a result of a positive scat-
tering length, limits the density of the BEC, which is crucial for its stability. A negative
mean-field energy resulting from a negative scattering length leads to a strong increase
in density. Consequently, the BEC collapses above a certain atom number, when the
zero-point energy can no longer balance the attractive mean field interaction. Impor-
tant studies on the collapse of a gas with negative scattering length have been done with
7Li in Randy Hulet’s group [Bra97, Ger00]. For this thesis, only the case of positive
scattering length is of relevance, and in the following, the discussion will be limited to
that case.
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3.1 Bose-Einstein condensation

The Gross-Pitaevskii equation

Introducing a mean-field interaction into the Hamiltonian we can write down a
Schr̈odinger equation for an interacting BEC,

i~
∂

∂t
Φ(r, t) =

(
−

~2

2m
∇2 + U(r) + g|Φ(r, t)|2

)
Φ(r, t), (3.12)

which is called the Gross-Pitaevskii equation [Gro61, Pit61]. It is important to note that
the description of the interaction as a mean field, as it is done in the Gross-Pitaevskii
equation is only valid for a dilute gas, wherena3 � 1. For a time independent repre-
sentation, one can writeΦ(r, t) = φ(r) exp(−iµt/~), resulting in

µφ(r) =
(
−

~2

2m
∇2 + U(r) + gφ2(r)

)
φ(r). (3.13)

φ(r) is now a real function,φ2(r) = n(r) representing the density with the constraint
that

∫
drφ(r) = N.

The Thomas-Fermi approximation

The nonlinear Gross-Pitaevskii equation is in general very hard to solve analytically.
But we have seen previously that for most cases the kinetic energy is completely negli-
gible as compared to the interaction energy. In this regime, the Thomas-Fermi approx-
imation can be applied, in which the kinetic energy term in equations3.12and3.13is
omitted. The solution of equation3.13is then straightforward. It becomes

µ = U(r) + gn(r). (3.14)

This means that the BEC density will be such that the interaction energy and the poten-
tial energy add up to the chemical potential of the sample. To achieve this, the density
has to compensate the potential. This gives a density distribution of

n(r) =
{ µ−U(r)

g for µ − U(r) > 0,
0 otherwise.

(3.15)

The chemical potential can be calculated using the normalization conditionN =∫
drn(r). In a harmonic potential, the chemical potential is then [Pit03]

µ =
~ω
2

(
15Na
aho

)2/5

. (3.16)

By settingµ = U(RTF), one obtains the Thomas-Fermi radius, where the condensate
wave function becomes zero:

RTF =

√
2µ

mω2
= aho

(
15Na
aho

)1/5

. (3.17)

27



3 Degenerate quantum gases

The peak density is also readily obtained as

nmax =
µ

g
=

1
8π

(
152N2

a12
hoa

3

)1/5

. (3.18)

3.1.3 BEC at finite temperature - bimodal distributions

The derivations for a zero temperature BEC can in many cases be generalized to par-
tially condensed samples in a very simple way, treating the condensed cloud and the
thermal gas as separate components.

Noninteracting gas

For the case of a non-interacting gas one can describe the condensed and noncondensed
clouds independently. The density of the BEC is simply given by equation3.10and
the thermal density is given by [Pit03]

nT(r) =
1

λ3
dB

g3/2(e
−U(r)/kBT), (3.19)

where λdB is the thermal de Broglie wavelength defined by Eq.3.2 and gp(z) =∑∞
k=1 zk/kp is the Bose function withp = 3/2 describing the effects of Bose statistics

in the thermal gas. Note that the peak thermal densitynT,max = ζ(3/2)/λ3
T calculated

from equation3.19is fixed only by the temperature and does not depend on the trap
parameters. This is due to the fact that the presence of a noninteracting BEC con-
strains the chemical potential to be zero, and the thermal atom number is fixed by the
condensate fraction. In experiments the characteristic bimodal distributions of the typ-
ically very narrow condensed part and the much wider thermal wings can be observed
both in the spatial distribution byin situ imaging and in the momentum distribution by
time-of-flight imaging. This gives the opportunity to clearly differentiate between the
condensed and the thermal part of the cloud.

Interacting gas

When interactions in the gas become significant as is the case for most BECs, the
separation into two components is less straight forward. The action of the BEC on the
thermal cloud and of the thermal cloud on the BEC have to be considered. This leads
to two coupled equations describing the density of the two components [Pit03]:

n0(r) =
µ − U(r) − 2gnT(r)

g
θ(µ − U(r) − 2gnT(r)) (3.20)

nT(r) =
1

λ3
dB

g3/2(e
−(U(r)+2g[n0(r)+nT (r)])/kBT). (3.21)
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Figure 3.2: Typical bimodal distribution of a BEC just below the critical temper-
ature with a condensate fraction of∼25%. The shaded area shows the thermal
component, while the condensed part is the area above the thermal component. a)
shows the density while in b) the radially integrated density profile is shown. The
radial position is scaled with the Thomas-Fermi radius (3.17).

Note that these two equations describe a weakly interacting gas in which the approx-
imations for Eq.2.12 are fulfilled. In general, one would have to solve these two
equations in a self-consistent way, but no analytical solution is available. In most
cases however, one can describe a partly condensed gas in a semi-ideal way, where
the condensed part is described as an interacting BEC in the Thomas-Fermi limit at
zero temperature, whereas the thermal component is described as an ideal gas. This
makes use of the fact that in most cases, one can neglect the contributions due to the
thermal density in the two equations above, as it is generally much lower than that of
the condensed sample. The equations then become

n0(r) =
µ − U(r)

g
θ(µ − U(r)) (3.22)

nT(r) =
1

λ3
dB

g3/2(e
−(U(r)+2gn0(r))/kBT). (3.23)

Obviously, this approximation is only valid as long as the mean field due to the thermal
cloud Eint,therm = 2gnT is much smaller than the chemical potential and the thermal
energykBT. In these equations, onlyµ needs to be determined. In our semi-ideal
approach, the chemical potential is simply determined by the condensed part,

µ =
~ω
2

(
15N0

a
aho

)2/5

=
~ω
2

(
15N

a
aho

)2/5 (N0

N

)2/5

, (3.24)

which reduces the problem to determining the condensate fraction. In general, the
condensate fraction can only be determined numerically as has been done by Min-
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3 Degenerate quantum gases

guzziet al. for example [Min97]. Analytical solutions can be obtained by treating the
interactions as a perturbation, using the scaling parameter [Pit03]

η =
µ(T = 0)

kBT0
c
=

1
2
ζ(3)1/3

(
15N1/6 a

aho

)2/5

' 1.57

(
N1/6 a

aho

)2/5

, (3.25)

which is determined by the ratio of the chemical potential atT = 0 and the critical
temperatureT0

c for noninteracting particles in the same trap∗. As η depends only very
weakly on the particle number (η ∝ N1/15), its magnitude is mainly determined by
the ratioa/aho. While in typical BEC experiments,η is typically 0.3 to 0.4, in our
molecular BECη can become on the order of 1 by tuning the scattering length of our
molecules to values comparable to the harmonic oscillator length near the Feshbach
resonance. Using the approximation thatη is a small quantity, Giorginiet al. deter-
mined the reduction of the critical temperature as compared to a noninteracting gas to
be [Gio96]

δTc

T0
c
= −1.32

a
aho

N1/6 = −0.43η5/2. (3.26)

Naraschewskiet al. [Nar98] used this approximation to calculate the condensate frac-
tion:

N
N0
= 1−

(
T

T0
c

)3

− η
ζ(2)
ζ(3)

(
T

T0
c

)2 1− (
T

T0
c

)32/5

. (3.27)

Using equations3.24and3.23one obtains an analytical description of the semi-ideal
Bose gas.

Fig. 3.2a) shows an example of such a density distribution. Where the density of
the condensed fraction goes to zero at the Thomas-Fermi radius, the thermal density
exhibits a sharp peak. Here, the assumption of a dilute thermal gas is the least fulfilled.
The repulsive interaction leads to a smoothing of this peak. By imaging the density
distribution, one usually acquires column or line densities as shown in Fig.3.2 b),
where the thermal density peak is not visible.

3.2 Degenerate Fermi gas

In contrast to the case of bosons, where the quantum statistics by itself leads to the
condensation into a superfluid phase below a critical temperature, this is not the case
for fermions. Fermi-Dirac statistics governs the Fermi distribution function,

Nr,Fermi =
1

exp
(
εr−µ

kBT

)
+ 1

, (3.28)

∗η can be expressed in terms of various parameters, such as the following:η = 2.24(nT=0,maxa3) =

1.59
(

kBT0
c

~2/ma2

)11/5
.
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3.2 Degenerate Fermi gas

where the+1 instead of the−1 in the denominator makes all the difference to the Bose
case (3.3). It is convenient to write3.28in an integral form as has been done with3.3
in the previous section. I will simply state here the most important quantities that can
be readily obtained (see for example [Pit03]). Noninteracting trapped fermions will at
zero temperature simply fill the trap up to the Fermi energyEF = µ,

EF = ~ω(6N)1/3 = kBTF = kB × 405
ω/2π

100 Hz

( N
105

)1/3

nK (3.29)

in an isotropic harmonic trap with trap frequencyω. N is the number of identical
particles, so if there are several spin states present, there is a separate Fermi energy for
each state. From the Fermi energy, one gets immediately the size of the cloud in the
trap. It is

RF =

√
2EF

mω2
=

√
~

mω
(48N)1/6 = aho(48N)1/6. (3.30)

This is the analog of the Thomas-Fermi radius of a BEC (3.17). Note that both have a
weak dependence on the particle number, the size of the BEC scaling withN1/5. The
maximum density in the center of the trap is given by

n(0) =
2
√

3π2

√
N

a3
ho

. (3.31)

Expressing the Fermi wavenumberkF =
√

2mEF/~ in terms of the density, one gets

kF = (6π2n(0))1/3. (3.32)

Beside the constant factor of (6π2)1/3, the Fermi wave number simply corresponds to
the inverse interparticle separation!

The Fermi temperatureTF = EF/kB marks the crossover to a Fermi degenerate gas,
where the mean occupation number in the center of the trap approaches unity. Below
TF, the gas is governed by Fermi statistics, and the gas behaves different from a nor-
mal Bose gas. For the first time, such a gas could be studied at JILA with40K atoms
[DeM99b], where an excess energy of the trapped Fermi gas as compared to a classical
gas with the same temperature could be observed. Fermi statistics leads to a reduction
of the collision rate and at the time limited evaporative cooling to a temperature of
∼ 0.5TF. The collision rate is reduced as the density of a degenerate Fermi is smaller
than that of a classical or bose gas of the same temperature and because Pauli block-
ing inhibits collisions as the mean occupation number approaches unity, leading to a
collisionless gas near zero temperature.

Weakly interacting ultracold fermions, Cooper pairing

While noninteracting fermions exhibit no phase transition to a superfluid state, it can
be induced by an effectively attractive interaction. Bardeen, Cooper and Schrieffer
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3 Degenerate quantum gases

(BCS) were able to explain superconductivity in metals by a pairing mechanism that
leads to electrons being paired to Cooper pairs in momentum space [Bar57]. The BCS
theory successfully describes Fermi systems with weak interactions, the mean distance
between paired atoms being much larger than the interparticle spacing. Associated
with Cooper pairing is a gap in the excitation spectrum of the gas, which has been
calculated to be [Gor61, Pit03]

∆0 =
1
2

(
2
e

)7/3

EF exp

(
−

π

2kF|a|

)
(3.33)

at zero temperature for a homogeneous system. In the case of a trapped gas, one can
use this result for a local density approach [Kin04b], which leads to a broadening of
the excitation spectrum as observed in recent experiments in our group [Chi04a]. The
critical temperature for the transition to a BCS state is proportional to the gap energy
at zero temperature. For a harmonically trapped gas it is [Gor61, Car04]

TBCS =
eγ

π

(
2
e

)7/3

TF exp

(
−

π

2kF|a|

)
≈ 0.277TF exp

(
−

π

2kF|a|

)
, (3.34)

whereγ is Euler’s constant. It should be noted however that this formula is only cor-
rect for the weakly interacting case, wherekF|a| � 1. Such temperatures are now
routinely achieved in current experiments with ultracold fermions when Feshbach res-
onances are used to tunekF|a| ≥ 1. So far, no smoking gun of superfluidity has been
found in these experiments, but there is strong presumptive evidence, that they have in-
deed entered the superfluid Fermi gas regime [Bar04c, Reg04, Zwi04, Kin04a, Bar04b,
Chi04b].

Crossover to a BEC of molecules

The major interest of the experiments mentioned above is to tune the interactions into a
regime wherekF|a| � 1 and the gas is strongly interacting, which was first achieved at
Duke university [O’H02a]. Using a Feshbach resonance, a weakly interacting gas can
be tuned to infinite values ofkF|a|, where a two-body bound state appears, and Cooper
pairs paired in momentum space are converted into molecules that are correlated in
position space, which form a BEC. Other than the Cooper pairs which exist only in
a many-body picture, the molecules form a two-body bound state. The crossover be-
tween the BCS and the BEC regimes has been of considerable interest for theorists in
recent decades [Eag69, Leg80, Che04] because high-Tc superconductors are based on
strongly interacting electron gases. A quantitative description of the strongly interact-
ing regime is a great challenge for theory because the interactions cannot be treated in
a perturbative way. The crossover regime is difficult to study experimentally in solid
state systems, as the interactions cannot be tuned easily. Ultracold atomic Fermi gases
now enable the experimenter for the first time to study this regime extensively. First
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3.2 Degenerate Fermi gas

experiments indicate that there is an adiabatic and reversible connection between the
superfluidity of bosons in a BEC and the superfluid state of interacting fermions.

Universal behavior of a strongly interacting Fermi gas

A particularly interesting system is a gas with unitarity limited interactions that can
be realized whenkF|a| diverges to infinity, as it is the case on a Feshbach reso-
nance. One enters a universal regime, where the properties of the gas become com-
pletely independent of any particularities of the atomic interaction properties. The
only relevant length scale in the system is then the mean interparticle spacingn−1/3

[Bak99, Hei01, Car03, Ho04], which is proportional to 1/kF.
To fulfill the above conditions, the Fermi wave number has to be much larger than

the effective range of the potential. While such conditions can now be achieved on
a Feshbach resonance in ultracold Fermi gases, they also determine the physics of
neutron stars.

As the mean field energy due to the unitarity limit scales as

Emf ∝
n
kF
∝ k2

F = βEF, (3.35)

it simply rescales the Fermi energy to a smaller effective energy

Eeff = (1+ β)EF. (3.36)

Here, β is expected to be a universal constant. It has been estimated theoretically
to be between -0.67 [Bak99, Hei01] and -0.43 [Bak99], the most recent value was
determined in a Monte-Carlo Simulation to be -0.56(1)[Car03]. Experiments have de-
terminedβ to -0.26(7) [O’H02a, Geh03b], -0.64(15) [Bou04], and−0.68+0.13

−0.1 [Bar04c].
A very exciting aspect of the universal regime is that the critical temperature for

superfluidity is expected to be extremely high, on the order of the Fermi temperature
TF. A lot of theoretical work has been done on this so-called resonance superfluidity
using different approaches that all lead to similar results [Hol01, Tim01, Oha02].
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Chapter 4

Experimental setup

All the experiments described in this thesis are performed in an ultra-high vacuum
(UHV) environment of<10−10 mbar. Fig.4.1 provides an overview of the appara-
tus: A Zeeman slower decelerates atoms from a thermal atomic beam produced in an
oven at a temperature of 340◦C on a distance of∼45 cm from up to 600 m/s to a few
10 m/s before being trapped in a magneto-optical trap (MOT) at temperatures as low
as 160µK. The trapped atoms are then transferred into a deep, large volume optical
dipole trap that is created using an optical resonator. In a final stage, the atoms are
transferred into a focused beam dipole trap that allows precise control of the trap pa-
rameters over several orders of magnitude in trap depth. At the lowest trap depths,
temperatures as low as∼10 nK are achieved. To control the interactions between our
trapped atoms and to finally convert them into molecules we apply magnetic fields up
to 1500 G. Most of the vacuum apparatus, the MOT lasers and the resonator trap have
been described thoroughly in previous diploma theses [Joc00, Els00, Mor01, Hen03].
I will here only summarize the main points and focus on the new parts of the system,
the precise magnetic field and laser intensity control, and new diagnostic tools such as
imaging at high magnetic fields.

4.1 Vacuum and atomic beam

Oven and oven chamber

Lithium atoms are evaporated from an oven to produce an atomic beam that has enough
flux to load∼108 atoms into the MOT within a few seconds. Fig.4.2 illustrates the
setup of the oven chamber. The oven itself consists of a small, hollow copper cube with
dimensions 32× 22× 22 mm3. A small UHV compatible button heater (0.32” UHV
Button Heater, HeatWave Labs) is attached to the back and also serves as a holder
for the oven inside the chamber. The oven position can be adjusted through a tripod
via a flexible-bellows construction. A thermocouple is attached to the oven to control
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4.1 Vacuum and atomic beam
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Figure 4.2: A view into the oven chamber

its temperature. Copper was chosen as an oven material as its high heat conductivity
ensures a uniform temperature across the oven. A disadvantage is that the oven cannot
be heated to higher temperatures than∼400◦C, as around that temperature, Copper and
lithium start to form an alloy and the oven is destroyed. But for most experiments, our
oven is operated at 340◦C, as this already provides an adequate loading rate of our
MOT. A low oven temperature has the advantage that the amount of lithium deposited
on the entrance window for the Zeeman slowing beam is kept low, which maintains a
high transparency of this window.

An important advantage of our design is that only a very limited surface inside the
vacuum is at high temperature, minimizing negative effects on the vacuum. Only 5 W
of electrical power are required to maintain the temperature of the oven. The lithium
escapes trough a 1 mm-hole on the front side of the oven. It is filled with about 0.2 g
of 6Li enriched to 95%. Before passing through the gate valve that can be seen in the
upper left corner of Fig.4.2, the beam is collimated by an aperture to protect the valve
from any contamination with lithium that might affect its operation. A magnetically
operated shutter is used to block the atomic beam when it is not needed. The oven
chamber consists of a standard four-way reducing cross with two CF-40 and two CF-
64-flanges. On the top CF-40 flange, a viewport is installed to be able to monitor
adjustment of the oven position. Through the bottom CF-40, the titanium filaments of
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a sublimation pump protude into the chamber, and a 20 l/s ion pump (StarCell, Varian)
as well as a right angle valve for roughing are attached to the chamber.

We have no pressure gauge inside the oven chamber, but from the current in our
ion pump we estimate the pressure to be∼10−8 mbar. The main limitation for the
pressure in the oven chamber is hydrogen that is evaporated from the oven and which
is extremely hard to get rid of. Details on this subject can be found in F. Schreck’s
PhD thesis [Sch02].

Beside the fact that we had to replace the oven several times shortly after it was first
installed because of some user errors including operating it at too high temperatures,
it had been working reliably for about two years now. Nevertheless, an oven with the
same or even better performance could probably be built with a lot less effort. A simple
single-ended tube that is heated from outside the vacuum would certainly work at least
as well, especially if only moderate temperatures are required.

UHV glass cell and differential pumping

The∼10−8 mbar-vacuum of the oven chamber is obviously incompatible with the life-
time requirements in our optical traps, where we wish to have at least several tens
of seconds, for which one needs a pressure of∼10−10 mbar. The 45 cm-long Zeeman
slower tube, in which the atomic beam is decelerated can work as an ideal differential
pumping tube. The tube’s inner diameter is matched to the diameter of the slightly
focused slowing beam and the diverging atomic beam. On the first 10 cm, the diameter
is 2 mm, for the next 10 cm it is 3 mm, before getting much larger because of an edge-
welded bellow that is meant to protect the UHV glass cell from any mechanical stress
(see Fig.4.1). The calculated conductance of this tube is 0.02 l/s, making it possible to
maintain a more than 100-fold difference in vacuum across the tube.

The UHV glass cell has outer dimensions of 4×4×12 cm3 with a wall thickness of
4 mm. When designing the glass cell, the following parameters were especially taken
care of:

• The losses of light passing through the glass cell at Brewster’s angle have to be
as low as possible as an optical resonator is used to enhance the intensity of our
standing wave dipole trap. For this purpose, high purity fused silica was used
(Spectrosil 2000, Saint-Gobain Quartz). The losses within our resonator are only
determined by the surfaces of the glass cell, they are measured to be lower than
1‰ per surface.

• The wall thickness of 4 mm is much larger than what is needed to avoid signif-
icant leakage of He through the surface. Its thickness was chosen to avoid any
optical birefringence due to mechanical stress that might occur when the cell is
evacuated.
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4.1 Vacuum and atomic beam

• The inner diameter of the glass-to-metal transitions was chosen very large to
achieve high pumping speeds for a good vacuum.

• The glass cell is not anti-reflection coated. The reason for not doing it was
that it was only possible to coat the outside surfaces which would only reduce
the reflections by 50% and the cost for that was rather high. After four years
of experimental experience, this has proven not to be a wise decision, especially
because the reflections of the two surfaces lead to interference fringes that would
otherwise be significantly suppressed.

The ultra-high vacuum in the glass cell is maintained through a “pumping cham-
ber” that is set up on the other end of the glass cell. It consists of a five-way cross
that has attached a 55 l/s ion pump (StarCell, Varian), a titanium sublimation pump
and a Bayard-Alpert vacuum gauge to monitor the pressure. The atomic beam is also
dumped in this pumping chamber. It hits the sapphire viewport through which the
Zeeman slowing beam enters the chamber. This viewport is made from sapphire, be-
cause glass or quartz are not resistent against lithium, especially at temperatures above
∼100◦C. We heat this window continuously to about 80◦C to evaporate lithium that
is being deposited by the beam. The Bayard-Alpert gauge indicates a pressure of
2 × 10−11 mbar. It is not obvious that there is the same pressure in the glass cell, but
one can expect that the vacuum there is better than 10−10 mbar, which is consistent with
maximum lifetimes observed in a magnetic quadrupole trap of up to 140 s.
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4.2 Magneto-optical trap

The magneto-optical trap (MOT) is loaded from a Zeeman-slowed atomic beam. All
the laser power for the MOT comes from diode lasers that have a maximum power of
30 mW (CQL806/D3, Philips, discontinued). Two laser frequencies are needed for
the MOT to drive the cooling and repumping transitions from the twoF = 3/2 resp.
F = 1/2 ground states that are 228 MHz apart (seeA.2). An additional laser frequency
has to be provided for the Zeeman slower which is detuned 65 MHz to the red of the
cooling light. Frequency stabilized light from grating stabilized diode lasers is used
to injection lock three free running laser diodes of the same type that deliver the laser
power needed for the experiment. A detailed description of the setup can be found in
[Joc00, Hen03]. In the following, only the main features of the setup will be described.

Laser system

An overview of the current setup of the laser system for the MOT is shown in Fig.4.3.
Saturation spectroscopy of lithium vapor produced in a heat pipe provides the fre-
quency reference for the experiment. One grating stabilized laser is locked to the heat
pipe on a crossover line of the7Li D1 line. This line is 698 and 469 MHz blue detuned
from the6Li D2 lines that are used in the experiment [Joc00]. To lock this laser we use
frequency modulation spectroscopy. It is especially simple to implement with diode
lasers because the modulation can be directly applied to the laser diode current and
does not require any additional optical elements to modulate the beam. This has the
slight disadvantage however, that the frequency modulation is present on all the laser
light of this laser and not only on the part of the light that is used for spectroscopy.

To be able to shift our laser light over a wide frequency range, a second laser is
locked relative to the first one using a simple scheme described in Ref. [Sch99]. It is
based on recording the beat note between the two lasers using an avalanche photodiode.
A simple radio frequency circuit generates an error signal that can be tuned to the
desired frequency using a voltage controlled oscillator. It is configured such that it can
be tuned between±800 Mhz and±900 Mhz using a programming voltage between 0 V
and 10 V, but is can be easily adapted to span a much wider range.

Two AOMs operated in double pass configuration at frequencies of∼200 MHz and
∼80 MHz produce the two light frequencies for cooling and repumping, respectively.
In order to have enough intensity available for the MOT, two injection locked “slave”
laser diodes amplify the two frequencies to∼ 20 mW each.

Heat pipe for saturation spectroscopy

A lithium vapor cell for spectroscopy is quite a bit more difficult to build as compared
to cesium or rubidium, where an evacuated glass cell at room temperature containing
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4.2 Magneto-optical trap

Figure 4.3: Schematic overview of the MOT laser optics.
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Figure 4.4: Schematic of the heat pipe used for the lithium saturation spectroscopy

a small amount of the metal has a sufficient vapor pressure to be able to perform spec-
troscopy on it. Lithium has to be heated to at least 280◦C to achieve a high enough
vapor pressure (Eq.A.1). A heated glass cell with a tantalum shield inside to keep the
lithium away from the windows had been used in the early stages of the experiment.
However, the glass cell’s life time did never exceed about one year, because the lithium
deposited on the hot glass destroyed the cell.

A new heat pipe was designed that follows the design described in G. Xu’s PhD
thesis [Xu01]. A schematic of our heat pipe is shown in Fig.4.4. It consists of a long
stainless steel tube with two CF-16 viewports on both ends. Near one end, a needle
valve is attached to occasionally pump the pipe to maintain the vacuum. The pipe is
only heated in the center part using a coaxial heating wire. Care has to be taken that
the current in the heating does not lead to a magnetic field inside the pipe, because the
Zeeman effect would lead to a fluctuating signal when the heating is switched on and
off. The length of the tube of∼50 cm is chosen such that the lithium vapor is limited by
its mean free path in a buffer gas to the center part of the pipe, protecting the viewports
from getting coated with lithium. The inside walls of the tube are covered with a
stainless steel wire mesh, with a∼1 mm spacing. It is intended to keep the hottest
part of the tube, where most lithium is evaporated covered with lithium through the
capillary effect. Following the ideas described in Ref. [Xu01], we experimented with
an argon buffer gas. We increased the argon pressure until we could detect a significant
pressure broadening of our saturation spectrum to minimize the mean free path length
in our lithium vapor without sacrificing performance. It turned out however, that a very
similar pressure established in our pipe when it was no longer pumped. We attribute
this pressure to hydrogen evaporating from the lithium and concluded that an argon
buffer gas is not really needed to operate the heat pipe. An appreciable absorption
signal of a few per cent is obtained at a temperature just below 300◦C. Above 400◦C,
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4.2 Magneto-optical trap

the optical density is so large that no resonant light is transmitted. The pipe is water
cooled at the ends and around the heating wires. This is not really necessary, but it
avoids a considerable amount of heat being dissipated on the optical table.

Zeeman slower, MOT loading

A decreasing-field Zeeman slower is used to decelerate the atomic beam from our
340◦C-oven. While the mean velocity of the atoms at that temperature is∼900 m/s,
our Zeeman slower has a designed maximum capture velocity of 600 m/s for which
an initial magnetic field of∼560 G is needed. The magnetic field is produced by a set
of 14 individual coils spread on 46 cm along the atomic beam. They are designed to
produce an optimum shape of the magnetic field. On the last few centimeters, the Zee-
man slower field is smoothly matched with the quadrupole field for the MOT ensuring
that the atomic beam is decelerated efficiently on the last few centimeters before it is
captured in the MOT.

To have enough laser power available for the Zeeman slowing beam, another slave
laser diode is injected with∼0.2 mW of the cooling light that is frequency shifted by
65 MHz using an AOM. Experimentally it turned out that adding some repumping
light did not increase the loading rate very much. It turned out however that mod-
ulating the current of the slave laser diode for the Zeeman slower at a frequency of
∼45 MHz would double the loading rate. A possible explanation for this is that the
broadening of the laser leads to an effective broadening of the transition line width.
This in return makes the slowing more robust, as it becomes less likely that atoms do
not scatter enough photons for a short period and then get out of resonance with the
slowing beam. The current modulation of the slave laser diode has to be carefully
optimized. It depends strongly on the amount of seeding light used for the injection
lock, as the seeding light suppresses any modulation that is performed on the current
of the slave diode. Our current setup produces maximum loading rates on the order
of 7×106 atoms/sec when the trapping lasers are tuned 4-5 natural linewidths to the
red of the resonance at an oven temperature of 340◦C. The large detuning creates a
large-volume, box-like trap for the atoms. In the trap center, the cold atoms are out
of resonance because of the large detuning and only when the magnetic field is large
enough to compensate for the detuning the atoms scatter light that pushes them back
into the center of the trap. In this configuration a large number of atoms can be accu-
mulated and due to the low density and photon scattering rates, losses are rather small,
the lifetime of the MOT is limited to∼40 s mainly by collisions with the background
gas that is probably dominated by atomic beam
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Maximizing phase space density

The highest densities and lowest temperatures are achieved when the detuning of the
MOT lasers is only about half a linewidth (3 MHz) and the intensity much smaller
than the saturation intensity. For stable operation, both frequency and intensity have
to be well controlled. To reduce the intensity smoothly and without changing the
beam profiles, two EOMs are used (Model LM0202, Linos Photonics). A temperature
of ∼160µK [Hen03] and max. density of roughly 1011 atoms/cm3 can be achieved.
However, under such conditions inelastic losses are extremely high [Kaw93] and these
parameters can only be maintained for several milliseconds. This is enough to load our
optical dipole trap efficiently, if carefully optimized ramps on the laser frequency and
intensity are applied. See4.3.1for a timing diagram.
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4.3 Optical dipole traps

4.3 Optical dipole traps

Optical dipole traps have emerged in recent years as ideal and versatile tools to confine
ultracold atomic and molecular gases [Gri00]. They rely on the electric polarizability
of the particles in the light field. Depending on wether the induced dipole oscillates
in phase (below the atomic resonance frequency) or at opposite phase (above the reso-
nance), the resulting potential is negative or positive, respectively. The key quantities
to consider are the potential depth given by

Udip(r) = −
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I (r) (4.1)

and the associated spontaneous photon scattering rate

Γdip(r) = −
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In these two formulas,ω0 is the atomic resonance frequency,ω is the laser frequency
andΓ is the spontaneous decay width of the atomic transition which is 5.9 MHz for
lithium. Note that as the laser frequency is tuned away from the atomic resonance,
the photon scattering rate is reduced faster than the trapping potential. Therefore, it
is advantageous to work at very large detuning, if one wants to have a low photon
scattering rate for a given potential depth.

In our experiment, a combination of two dipole traps is used that both employ
light tuned far below the atomic resonance to provide a potential well at the intensity
maximum. The first trap is is a deep large-volume trap designed to load a large number
of atoms from the MOT. It is a standing wave trap that requires only moderate laser
power through enhancing the intensity of the standing wave in an optical resonator
[Els00, Mos01]. A second, focused beam dipole trap is loaded from the standing wave
trap. It’s main advantage is that the trap depth can be precisely controlled over more
than four orders of magnitude. This was the key for successful evaporative cooling of
the trapped particles starting from almost 100µK to tens of nanokelvins.

4.3.1 Optical resonator

The two main design criteria for the dipole trap were a low heating rate due to photon
scattering and a large atom number. In order to achieve a reasonable transfer efficiency
from the MOT into the dipole trap, its trap depth should exceed the mean kinetic
energy of the atoms in the MOT. At the same time, there should be a good spatial
overlap between the spread of the atoms in the MOT and the size of the dipole trap.
To fulfill all of these requirements simultaneously one has to use very far detuned light
and thus, very high intensity is required. To achieve a reasonable size of the dipole
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Figure 4.5: Setup for the optical resonator trap.

trap, one has to use quite a large amount of laser power. Using Nd:YAG laser light
at 1064 nm, at least 100 W of laser power would be required to create a reasonable
trap from a running wave beam. That is why for this experiment, we decided to make
use of the resonant enhancement of the intensity in an optical resonator. Using a 2-W
single frequency Nd:YAG laser we create a trap that is∼1 mK deep while the waist
of the resonator beam is 159µm, which provides a rather large trapping volume. The
confinement along the resonator axis is provided by the standing wave structure in
the resonator that forms pancake shaped microtraps with a half-wavelength spacing of
532 nm. A schematic of the resonator setup is shown in Fig.4.5.

Geometry

We use a linear resonator in almost confocal geometry. This configuration produces
a rather large beam waist needed for efficient loading of the atoms from the MOT.
Because all transverse modes in a confocal resonator have exactly the same resonance
frequency, it is difficult to align it such that there is only the TEM00 mode excited.
That is why in this experiment we chose to increase the length of the cavity by a
few millimeters such that the degeneracy of the transverse modes is lifted and one is
left with an essentially pure TEM00 mode. In the final design, two mirrors of radius
R=150 mm are used at a distance ofL = 153 mm. The beam waist for the TEM00
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mode is given by

w0 =

√
λL
2π

√
2R
L
− 1. (4.3)

This is readily derived from Gaussian beam optics [Els00]. In our case,w0 is 159µm.
The Rayleigh range in which the waist is smaller than

√
2w0 stretches out tor =

πw2
0/λ = 75 mm from the center of the resonator. This means that the waist of the

resonator mode does not vary noticeably near the center where we trap the atoms
spread out over approximately 1500 individual wells.

Finesse and mode matching

To couple as much laser power as possible into the resonator, the incoming beam needs
to be mode matched to the resonator mode. Also, the reflectivity of the incoupling
mirror has to be chosen such that the incoupled power just compensates the loss from
the resonator due to finite reflectivity of the mirrors and losses on all surfaces. The
loss for one round trip in the resonator in on the order of 10−3. To determine the loss,
a 99% input coupler was used and based on the finesse achieved in this test setup, a
specially madeR = 99.4% mirror was ordered (Laser Components HR1064HT671).
For convenience, this mirror was also antireflection coated at 671 nm because there
existed some ideas to shine resonant light along the resonator axis for sideband cooling
in the resonator lattice. The second, high-reflecting mirror is not coated for 671 nm.

Trapping potential

The laser light needed for our resonator trap comes from an ultrastable diode-pumped
Nd:YAG-Laser that emits 2 W at a wavelength of 1064 nm (Mephisto 2000, Innolight).
The depth of the potential per Watt of laser power for our lithium atoms in our standing
wave is

Usw = 8.4× 10−29 J/W × P = 6.12µK/W × kB × P, (4.4)

wherekB is Boltzmann’s constant andP is the running wave power. To transfer our
atoms efficiently from the MOT in which we can achieve a minimum temperature of
160µK, the trap depth has to be much larger than the thermal energy of the atoms.
This is achieved by the enhancement of the power in the optical resonator which is on
the order of 150, while∼1 W is actually coupled into the resonator. This results in a
trap depth of∼1 mK.

The trap potential can be approximated harmonically at the trap center. The trap
frequencies are given by

ωrad =
2
w0

√
Usw

m
= 74.4 HzµK−1/2 ×

√
Usw

kB
(4.5)
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ωz =
2π
λ

√
Usw

m
= 49.4 kHzµK−1/2 ×

√
Usw

kB
(4.6)

for the radial and the axial degrees of freedom, respectively [Els00]. At a trap depth
of 1 mK, they becomeωrad = 2.35 kHz andωz = 1.56 MHz. Note the very high trap
frequency of more than one Megahertz in the axial direction, which is 664 times larger
than the radial frequency.

A 2-D trap

This trap configuration is ideally suited to study 2D quantum degenerate gases [Pet00,
Pet01], especially also for degenerate Fermi gases [Pet03b]. One expects to observe 2-
D behavior when the temperature of the gas becomes lower than the vibrational energy
in the axial direction and the axial ground state population approaches unity. The axial
ground state population can then be calculated to be

n0,ax = 1− e
~ω
kBT . (4.7)

Many often-used quantities are different in the 2-D regime, we just summarize the
most important differences here that we will need later:

• The 3-D densityn3D calculated from particle number N, trap frequenciesωi and
temperature T is

n3D = N
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In the 2-D case, the density is modified in the axial direction, yielding
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The peak densities are obviously just the prefactors of the exponentials.

• The peak phase space density is also modified from the 3-D case: Instead of the
3-D formula,

D(3-D) = N
~3ωaxω

2
rad

(kBT)3
, (4.10)

it now becomes

D(2-D) = N
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. (4.11)
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Locking technique

For locking of optical resonators, there exist two well established techniques: The
method by Pound and Drever employs a phase modulation of the incoupled beam
[Dre83]. It uses the fact that the phase of the modulated frequency in the reflected light
changes sign on the resonance of the optical cavity. This is a very robust technique, but
the laser light that is coupled into the cavity has to be modulated and thus additional
optical components like an electro-optical modulator are required. Conceptually much
more simple is the technique by Hänsch and Couillaud [Hän80]. The basic idea behind
this technique is to compare the phase of light that is transmitted through the incoupling
mirror of the resonator with the phase of light that is reflected and not coupled into the
resonator. The main trick then is that the polarization inside the resonator is defined by
some polarizing element, which in our case is the UHV glass cell at Brewster’s angle.
Now, the polarization of the incoming beam can be slightly tilted with respect to this
polarization axis. The polarization component perpendicular to the one in the resonator
is always reflected and serves as a phase reference for the light being transmitted out of
the resonator. As the two beams have perpendicular polarization, any phase difference
between the two leads to an elliptically polarized beam that can be analyzed using a
standard circular analyzer setup. On the cavity resonance, the elliptical polarization
changes sign, and thus, this can be used as an error signal to stabilize the cavity.

Loading the trap from the MOT

An efficient transfer of the atoms from the MOT into the dipole trap relies on a high
density and a low temperature of the atoms in the MOT. This can be achieved at small
detuning of the trapping lasers from the resonance and very low intensity. At such pa-
rameters inelastic loss from the MOT is tremendous [Kaw93]. That is why the timing
during the transfer is very critical and the ramps that go from the MOT loading param-
eters to the transfer parameters have to be optimized carefully. A diagram showing the
timings of all relevant parameters during the transfer is shown in Fig.4.6. The dipole
trapping light is always kept on during the transfer. During∼30 ms ramps, we extin-
guish the MOT beams and at the same time reduce their detuning to about one half of
the natural line width. To increase the density of the cloud we also compress the MOT
by increasing the magnetic field gradient to about 50 G/cm. To pump the atoms into
the F = 1/2 ground state that is collisionally stable, the cooling light is switched off

more slowly than the repumping light. BothmF = ±1/2 are populated equally within
a few per cent during this procedure. About 20 % of the atoms in the MOT can be
transferred to the dipole trap with an initial temperature of∼160µK [Hen03], which is
quite good as compared to the Doppler temperature of 140µK.

An appreciable lifetime in the dipole trap can only be achieved when there is ab-
solutely no resonant light present at the position of the trap. For this purpose, we
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Figure 4.6: Timing diagram of the most important parameters during the transfer
from the MOT into the dipole trap

quickly extinct the MOT beams with high-speed mechanical shutters that are made
from loudspeakers [Sin02].

As the atoms are transferred into a standing wave trap, not only the total number of
atoms that can be loaded into the trap is of interest, but especially the number of atoms
per lattice site which will determine the density. We can typically load about 8×106

atoms totally with a maximum of 1500 atoms per lattice site.

4.3.2 Focused beam dipole trap

In first experiments on evaporative cooling it turned out that the resonator trap had
certain limitations that were difficult to overcome. First of all, the stability of the trap
decreased while going to low power levels on the order of 1% of the full trap depth.
But there is also the fundamental limitation that atoms start to tunnel along the lattice
direction of the trap because the tunneling rate along the lattice direction for the axial
ground state of the trap becomes important. The simplest trap to circumvent these
problems is a focused beam running wave trap. However, in order to have sufficient
axial confinement, the focus has to be rather tight. The aspect ratio of a focused beam
trap is [Gri00]

ωrad

ωax
=
√

2π
w0

λ
. (4.12)

We designed the waist of our “dimple trap” to be∼20µm with an aspect ratio of∼ 100.
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Figure 4.7: Setup for the focused beam dipole trap

Trap setup

For the focused beam trap a 15-W Yb:YAG laser emitting its light at 1030 nm is used
(VersaDisk by ELS). Focused to a waist ofw0 = 23µm, one can achieve a trap depth
on the order of 1 mK. The optical setup for the focused beam is shown in Fig.4.7. For
forced evaporative cooling, the power has to be reduced tremendously, which is done
using an AOM. A lot of care has to be taken to align the AOM such that it induces
only minor astigmatism in the diffracted beam and only unsignificant beam deviations
while changing the diffracted power drastically. In a test setup outside the UHV glass
cell we measured a beam waist of 23µm and 25µm in the vertical and horizontal axes,
respectively, with no noticeable astigmatism at very low laser power. At power levels
above 1% of the total power, the minimum waist travels by as much as 300µm caused
by thermal effects in the AOM. Another source of astigmatism is our glass cell that
our focused beam crosses at an angle of about 46◦. This induces an astigmatism of
several hundred micrometers on the tightly focused beam. We compensated for this by
inserting a fused silica glass plate into the beam where it is expanding (see Fig.4.7).
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The calculated trap parameters in our focused beam trap are

ωrad/2π =
1
πw0

√
Udimple

m
= 369 HzµK−1/2 ×

√
Udimple

kB
(4.13)

and

ωz/2π =
1
λ

√
Udimple

m
= 5.19 HzµK−1/2 ×

√
Usw

kB
. (4.14)

A 1 mK deep trap then has the trap frequenciesωax = 164 Hz andωrad = 16.2 kHz.

Transfer of atoms from the standing wave

The focused beam is installed at a relative angle of about 10◦ with respect to the stand-
ing wave trap, the smallest angle possible in our setup to get a maximum overlap be-
tween the two traps. A false color image of the calculated trapping potential is shown
in Fig.4.8. The overlap of the two traps of about 1 mm is just enough to transfer almost
all the atoms from the standing wave into the focused beam trap. The timing for the
transfer from the standing wave trap into the dimple trap did not seem to be critical,
we load about 2 million atoms into the trap. We ramp up the power in the focused
beam trap within 2 s after switching off the MOT. After 1 s, we turn off the standing
wave trap in a 1-s ramp. During the transfer of the atoms we apply a magnetic field of
300 G to achieve efficient collisional loading. Loading the focused beam directly from
the MOT resulted in a much lower number of atoms, the intermediate step loading the
standing wave is indeed crucial!

Figure 4.8: False color image showing the calculated potential in the combined
focused beam and standing wave traps. The size of the image is 2×0.4 mm2. Note
that due to the standing wave structure the particles are localized in the lattice
direction, the maximum trap depth along the lattice is shown.

Magnetic confinement

At very low trapping power, the trapping potential is no longer determined only by the
light intensity of the trapping beam, but also by residual magnetic field gradients and
gravity. The weak axial confinement of the dipole trap is especially susceptible to such
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distortions, and in fact, the magnetic offset field applied in most of our experiments
has a curvature that gives rise to an additional trapping potential which is

Umag= −
1
2
µB′′x2, (4.15)

where x is the axial direction of the trap andµ = µB is the magnetic moment of our
atoms at high magnetic field. From this, one can calculate the trap frequency to be

ωmag=

√
µBB′′

m
(4.16)

The curvature of the magnetic field is calculated to beB′′ = −0.0255 cm−2 × B in
the horizontal plane. As the optical trap and the magnetic field are centered precisely
in the horizonal plane, the optical and the magnetic trap frequencies can be added
quadratically.

Measured trap parameters

We measured the trap frequencies experimentally by observing the sloshing motion of
our atomic cloud in our trap and calibrated the trap frequencies to be [Rie04, Bar04a]

ωax =

√
ω2

dip + ω
2
mag= 2π

√
0.6B

G
+

0.94P
mW

Hz, (4.17)

ωrad = 2π110 Hz
√

P/mW, (4.18)

and the trap depth is
Uat

kB
=

Umol

2kB
= 0.072

P
mW

µK, (4.19)

whereP is the laser power in mW andB is the magnetic offset field in Gauss. This
calibration will be used throughout this thesis. Below∼50 mW of Laser power, the
axial confinement is purely magnetic and provides a perfectly harmonic potential with
a trap frequency ofωax = 2π(0.6B/G)1/2 Hz. At very low laser power, gravity begins
to tilt the trap significantly. This can be compensated for by applying a magnetic field
gradient ofB′ = mg/µ = 1.06 G/cm in the vertical direction. The applied gradient is
optimized experimentally by minimizing trap loss at very low trap depths. During this
procedure, any misalignment of the trap with the center of the magnets is also compen-
sated for in the vertical direction. In the horizonal plane, perpendicular to our offset
field, no such correction is possible and the trapping beam has to be aligned extremely
well with respect to the center of the magnetic field coils, so that the curvature of the
magnetic field does not result in a field gradient along the radial axis of the trap.
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4.3.3 Intensity stabilization

Controlling the intensity of the trapping lasers is a major challenge as for evaporative
cooling in optical dipole traps, the power needs to be controlled over a wide range. In
all cases we measure the trapping power using a photodiode and use a servo loop to
stabilize the intensity using an AOM.

Logarithmic amplifier for photodiodes

To measure the photodiode current precisely and reliably over a range of more than
four orders of magnitude, we use a logarithmic transimpedance amplifier that converts
the photodiode current into a logarithmic voltage. As logarithmic amplifier we use a
single chip device by Analog Devices (AD8305). It employs a standard design using
two matched transistors to eliminate offset drifts and also uses an active temperature
compensation for the logarithmic slope of the transistors which is proportional to ab-
solute temperature. Used in an appropriate way, these devices can be used over more
than five orders of magnitude in photodiode current. The logarithmic slope and the DC
offset of the voltage output can be set using very few external resistors. These should
be selected with care to encompass the range that is needed for the experiment. As
for low intensities the∼10 MHz bandwidth is reduced and the∼1 % intensity noise in-
creases, the photodiode should be operated at as high as possible maximum intensities.
These should typically be on the order of 1-5 mW depending on the sensitivity of the
photodiode that is being used. To save the work of designing a new circuit board for
the AD8305 we simply use an evaluation board available from Analog Devices, where
only a few resistors have to be adapted.

Controlling the intensity using an AOM

The signal from the logarithmic amplifier is used to stabilize the intensity of the trap-
ping light using an AOM by adjusting the RF power. It is essential that the RF driver
used has enough dynamic range to be able to tune the intensity over the desired range.
In our case, we can work with a dynamic range of about 50 dB of RF power, which
depends on the characteristics of the AOM. A further complication is the nonlinearity
of the feedback loop. This leads to a reduced bandwidth of the stabilization, which is
limited in our case to∼10 kHz. This is still fast enough for most situations, as a fast
switch-off can be realized within<1µs by disabling the RF signal (using the disable
input of a CLC410 operational amplifier).

Intensity control of the resonator trap

When the intensity in the resonator trap is reduced, the magnitude of the error sig-
nal is reduced by the same amount in the conventional Hänsch-Couillaud setup, and
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consequently the lock becomes less tight. To circumvent that problem we also use log-
arithmic amplifiers for the lock setup to obtain the log-ratio of the two diodes instead
of the difference. In principle, the error signal is now independent of the intensity.

To control the power in the optical resonator, we monitor the light that is trans-
mitted through the high reflecting mirror of our cavity which has a transmission of
T ∼ 10−4. A closed loop feedback system stabilizes the intensity recorded on a pho-
todiode using an AOM as described above. The AOM is adjusted such that its zeroth
order is coupled into the resonator. This has the advantage that no intensity is lost due
the finite diffraction efficiency at full power. The beam profile of the zeroth order de-
teriorates when light is diffracted into higher orders by increasing the radio frequency
power that is fed into the AOM. In our case however, the optical resonator cleans the
mode and inside the resonator only the purely gaussian mode is present. However,
the power that can be coupled into higher transverse modes is increased and thus the
stability of the resonator lock is less stable at intensities below∼1 %. This can of
course be circumvented by using the first order of the AOM, which would reduce the
maximum available power by∼10 %.
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4.4 High-field magnets

To be able to tune the scattering properties of our lithium gas over the full range of
interest, we need to apply magnetic fields much larger than 1000 G. To produce such
fields at the given constraints of spatial access is not a simple task. The closest that
one could get to the atoms is 35 mm, which is given by the glass cell and the titanium
support for the resonator mirrors. The main idea behind our coil design is to have
as much current carrying copper as possible in the available volume because this will
determine the maximum power that is needed. At the same time, the cooling of the
wires has to be efficient. To meet these requirements we use flat copper wire from
which we made two individual coils with a narrow gap between them as is shown in
Fig. 4.9. In this gap, the cooling water circulates, and every single winding has direct
contact to the cooling water, which results in efficient cooling. It was a challenge to
construct a waterproof case and mounting for such a setup without wasting too much
space. After a lot of experimenting with different materials, we made a PVC housing
that was sealed using a special, mechanical and thermal shock resistant epoxy glue
(Eccobond 45, Emerson & Cuming).

Magnetic field design

A very homogeneous field in the trapping region is essential for many experiments
as all the trapped atoms should feel the same magnetic field. The best configuration
to achieve this requirement is a Helmholtz setup, where the radius of the coils has to
match the distance between the coils. Such a setup was not possible in our case be-
cause of the limited space. Using a simple seminumeric magnetic field simulation, we
optimized the dimensions of our coils to have the lowest possible curvature achievable
using the available space. Our coils can be operated continuously at up to 200 A which
results in a magnetic field of 1470 G. The power dissipated in the two coils is then
6 kW. The inductance of the two coils is measured to be∼1.74(9) mH. As the hous-
ing of the coils is made from PVC, Eddy currents are avoided, which in principle can
enable very fast controlled switching of the magnetic fields, limited only by the coil’s
inductance.

As the distance between the coils is larger than for a Helmholtz configuration,
the magnetic field in the center of the coils now has a field minimum in the axial
(vertical) direction and a maximum in the radial (horizontal) plane. The curvature of
the magnetic field is proportional to the total magnetic field and was calculated to be
0.0510 cm−2 and measured to be 0.0515(15) cm−2 in the vertical direction before the
coils were installed. In the radial direction, the curvature is exactly half as large due
to the radial symmetry. While these values were estimated to be negligible for most
experiments in the standing wave trap that were planned when designing the coils,
it turned out that the magnetic potential that the atoms see due to the curvature is
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Figure 4.9: Drawing illustrating the coil design. Two individual coils made from
flat 8×1-mm wire are placed at a distance of 2.5 mm from each other. The gap
is used for efficient water cooling. The coils are installed in a water proof PVC
housing. As there was still some space available very close to the glass cell, we
added a small second coil which is not water cooled. Because of their small size
they can be used for fast switching magnetic fields up to 300 G

essential for the experiments in the very shallow focused beam trap. Here, the axial
optical confinement becomes extremely weak once the trap is reduced for evaporative
cooling and at very low trap depth, the weak axial optical confinement can be neglected
compared to the magnetic confinement. The details of the magnetic confinement are
discussed in4.3.2.

Auxiliary coils for fast switching

Between the large magnetic field coils and the mount for the optical resonator, there
is space for another small coil. It consists of 322 windings of a 0.55 mm-wire and
is not water cooled. But for a short time<1 s, this coil can produce fields in excess
of 300 G in Helmholtz configuration and magnetic field gradients of>100 G/cm in
anti-Helmholtz configuration at a current of 6 A. The dissipated power is at the above
values∼200 W. Continuous operation is possible up to currents of 0.5A, producing a
field of 25 G or alternatively 8.5 G/cm. The main advantage of these coils is that due
to their small dimensions, they allow a fast switching of the magnetic fields over a
considerable range. Due to the large amount of windings, the inductivity of the coils

57



4 Experimental setup

is 23 mH, but as the coils produce∼50 G/A, one can achieve magnetic field ramps
in excess of 100 G/ms with a 80 V-5 A power supply. So far, these coils have only
been used to compress the MOT during the transfer into the dipole trap and to apply
precisely controlled magnetic field gradients to compensate for gravity and for residual
magnetic field gradients that stem from a slight misalignment of the large coils with
respect to the dipole trap in the vertical direction.

Current and magnetic field stability

A very high magnetic field stability is desired for many applications, such as radio fre-
quency transitions, or controlling the scattering length near the∼100-mG wide Fesh-
bach resonance at 543.3 G [O’H02b, Str03]. To drive coherent RF-transitions between
different hyperfine states, the width of the transition has to be much smaller than its
Rabi frequency. To achieve a high current stability in our offset field coils, we make
use of the fact that the voltage programming bandwidth of our power supplies is much
larger (∼ 1 kHz) than the inductance-limited bandwidth of our coils, which is∼130 Hz.
We use a 10−6-precision current transducer (IT 600-S, LEM) to divide the 0-200 A pri-
mary current by a factor of 1500. This current is then converted into a±10 V signal
to match the output of our D/A converter to which it is compared. The resulting error
signal is used by a PID-controller to adjust the voltage of the power supply. Using this
method, we achieve an accuracy of±3 mA or 22 mG, which corresponds to one single
bit of the D/A-converter. By driving radio frequency transitions from the high-field
seeking to the low-field seeking ground states, we calibrated our magnetic field. When
the applied radio frequency is resonant with an allowed transition, we observe a loss
of atoms that is due to spin changing collisions (see Fig.4.10). From the correspond-
ing radio frequency we can then infer the magnetic field the atoms experience using
the Breit-Rabi formulaA.2. From the width of the transitions we found that the mag-
netic field is as stable as our current, corresponding to 22 mG. This means that stray
magnetic fields do not contribute significantly to the field stability in our setup.
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Figure 4.10: Remaining number of atoms after a 100-ms RF pulse with a fre-
quency of 1141.99 MHz for varied magnetic field. For the transition from state
|1〉 to state|6〉, this frequency corresponds to a magnetic field of 349.334 G. The
horizontal separation of the data points corresponds to a single bit of the 16-bit
D/A-converter that we use, it corresponds to 3 mA of current and 22 mG of mag-
netic field.
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4.5 Diagnostic tools

4.5.1 Fluorescence measurement

The most important parameter to know in our experiments is the total number of par-
ticles. The simplest and most robust way to measure the number of atoms present is to
capture them in the MOT and to measure their fluorescence. A calibrated photodiode
detects the light that is scattered at a rateγMOT per atom and collected from a solid
angleΩ using a lens with an aperture ofd = 22 mm placed at a distance ofr = 70 mm.
The number of atoms is then determined by

N =
γPD

γMOTΩ
, (4.20)

whereγPD is the rate of photons hitting the photodiode.

Photon scattering rateγMOT

It is rather difficult to estimate the photon scattering rate of atoms trapped in a MOT
because the polarization of the atoms, their velocity distribution and other parameters
are not well known. However, the maximum possible photon scattering rate is given
by half the natural linewidth which is given byγmax = Γ/2 = 2.95 MHz for lithium.
This limit can be approached by strong saturation and small detuning and provides an
upper bound for the photon scattering rate. We usually measure the fluorescence of
our atoms in a MOT about 3 MHz detuned from the atomic resonance. To estimate by
how muchγMOT is smaller as compared toγmax we compare the fluorescence measured
at constant detuning with the maximum value that is obtained while quickly ramping
the laser frequency across the resonance. This maximum is observed to be a factor of
1.43±10% higher than the fluorescence at our constant detuning. Thus, we can be sure
that

γMOT <
1

1.43
γmax± 10%, (4.21)

which provides an upper limit of the scattering rate for our measurement at small
detuning. To get a good estimate for the actual scattering rate, we tried to estimate
the effective saturationSeff of our atoms by measuring how the fluorescence changes
when the intensity in the MOT beams is reduced to a fractionp of the total power
and fitting it to the formulaγ ∝ pSeff/(1 + pSeff). From this we conclude that the
saturation on resonance at maximum power isSeff ∼ 2.44± 0.4. This means that the
photon scattering rate on resonance is reduced by a factor of 0.71± 5% as compared
to the saturated transition. Therefore the effective photon scattering rate per atom can
be estimated to be in our case

γMOT = 0.71/1.43× γmax± 12% (4.22)
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Solid angleΩ

The solid angle is readily determined from the apertured = 22 mm±3% of the lens
and its distancer = 70 mm±10% from the MOT. It is

Ω =
(d/2)2

4r2
= 6.2× 10−3 ± 21%. (4.23)

Calibration of the photodiode to measureγPD

We calibrated our photodiode by two different techniques. Using the known sensitiv-
ity of the photodiode from the datasheet (Hamamatsu S-1223), which is 0.46 A/W at
670 nm, and multiplying that with the transconductance gain of the amplifier, which is
47 V/µA, we obtain a sensitivity of 46.3 nW/V. The effective sensitivity is still derated
by a factor of 0.85 due to four uncoated glass surfaces, which lead to an effective sensi-
tivity of 54.3 nW/V. In a second approach we used a laser beam with a power measured
using a commercial power meter (Newport 835 with head 818/UV). Using this method
we obtained an effective sensitivity of 77.5 nW/V taking into account the losses on two
glass surfaces. We could also confirm the linearity over the whole range of interest for
the experiment. The main uncertainty in the first method is the transconductance gain,
which is determined by a 47 MΩ-resistor that probably has a lower effective resistance.
For the second method, the main error comes from the power measurement, which has
a specified accuracy of 2%, so this one is much more reliable. Given the photon energy
of hc/λ, we get

γPD = 2.61× 1011 photons s−1V−1 ± 2%. (4.24)

In summary, we can give a lower bound for the atom number calibration which is

Nmin = 2.1× 107atoms/V ± 23% (4.25)

and a “best guess” atom number of

N = 2.85× 107atoms/V ± 24%∗. (4.26)

4.5.2 Absorption imaging

To image our atoms we use the well established technique of absorption imaging
[Ket99]. The basic idea of this method is to image the intensity profile of a resonant
laser beam that has been partially absorbed in the atomic cloud, and to deduct the col-
umn density ˜n(x, y) =

∫
n dzfrom the transmitted light, where n is the atomic density.

This method has the important advantage that in principle, the atomic column density
can be determined only by taking the ratio of the intensity in two images, where most

∗Note that for most of our measurements, this signal was amplified 10× before being digitized, the
effective conversion is thenN = 2.85× 106atoms/V ± 24%.
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systematic effects like the unknown sensitivity of the detector, losses on windows etc.
drop out. In general, the relative transmission is simply given by

I
I0
= exp (−ñσ), (4.27)

whereσ is the absorption cross section, which is

σ = 3λ2/2π (4.28)

for a two-level system. The column density can then be obtained as

ñ = −
1
σ

ln
I
I0
. (4.29)

Imaging lithium atoms is more delicate than the other, heavier alkali atoms for the
following two reasons:

• Atoms are driven out of the atomic resonance by scattering only a few photons
because of the large recoil energy.

• A strong repumper is required at low magnetic field to keep the atoms in reso-
nance with the imaging beam, because there is no closed transition available at
low magnetic field.

In our first imaging setup we used light resonant with theF = 3/2 toP3/2 transition
that is normally used to operate the MOT (see chapterA.2). This restricted us to
imaging the atoms near zero magnetic field. To image our atoms in theF = 1/2
ground state, the MOT repumping light was switched on a few microseconds before
the imaging pulse. The timing in this setup was very complicated because it involved
the time critical switching of several mechanical shutters.

In our experiments it proved to be rather important to be able to instantaneously
image our atoms at large magnetic field over the whole width of the Feshbach reso-
nance. For this purpose we set up a new imaging laser that can be frequency tuned
over a wide range of±1.8 GHz with respect to our frequency reference laser. A de-
tailed description of the setup will be given in [Rie04]. Besides the fact that the atoms
can now be imaged at any magnetic field of interest for our experiment, the atoms are
also imaged depending on their nuclear spin, so the actual spin mixture of the gas can
be determined by imaging the two components separately. A closedσ−-transition ex-
ists from our 2S1/2,m = −1/2 state to the 2P3/2,m = −3/2 (see appendixA.2). The
magnetic moments of these two states are one and two Bohr magnetons, respectively.
This means that tho optical transition tunes by−µB = −1.4 MHz/G. To drive thisσ−

transition with the proper polarization, one would have to use properly polarized light
along the magnetic field which defines the quantization axis. As the axis parallel to the
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Figure 4.11: Optical setup of the imaging system. The two lenses result in a
1.5×-magnification. The image in the right corner shows a typicalin situ image of
a cloud of trapped particles in the focused beam trap.

magnetic field is already used by a MOT beam, the imaging beam is set up at an angle
of α = 81 degrees with respect to the symmetry axis (see fig.4.11). The transmitted
intensity in such a setup is calculated in ref. [Geh03a] and is given by

I
I0
=

[
1
2ζ

(
e−ñσζ − 1

)
+ 1

]
, (4.30)

whereζ = (1 + cos2α)/2. For typical imaging parameters whereI/I0 ≥ 0.5, the
formula4.30with ourα = 81◦ can be approximated by the case whereα = 90◦ with
an error of less than 1 %. The formula then becomes

I
I0
= exp (

−ñσ
2

), (4.31)

which is the same as4.27except for the factor 1/2 in the exponent. This means that
in this configuration, the optical cross section is a factor of two lower compared to a
setup where the light is properly polarized. So far, all of our images have been analyzed
using4.31. The observed atom number per pixel isNx,y = ñApix, whereApix = (5µm)2

is the area of one single pixel. To obtain the total particle number, one just has to sum
over all pixels.

The optical setup of the imaging system is shown in Fig.4.11. The beam coming
from a single mode polarization maintaining fiber is collimated by a 35 mm-lens to
form a beam with a diameter of approximately 0.8 cm and a power of a few 10µW, well
below saturation. This ensures a homogeneous intensity at the center of the beam. The
imaging optics consist of two achromatic doublet lenses (Casix) with a focal length
of 50 mm and 75 mm, respectively and a diameter of 25 mm. They are mounted in
an adjustable focus lens tube setup (SM-series, ThorLabs), the active aperture being
defined by an iris diaphragm (SM1D12, ThorLabs). Its maximum aperture of 12 mm
results in a calculated diffraction limit of 3.4µm. In the experiment, the resolution is
limited to ∼10µm by lens aberrations. The 1.5×-magnification leads to an imaging
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pixel size of 5µm calculated from the 7.5µm-pixel spacing of the CCD chip (FT18,
Philips; Camera: SIS1-p18, Theta System). This magnification was tested to be correct
within 1% using the ruler of a microscope slide.

For most of our experiments,in situ imaging is preferred over time-of-flight imag-
ing, because the axial magnetic confinement cannot be switched off without switching
off the magnetic field. Thus, by switching off the dipole trap the cloud is only released
radially and quantitative information is hard to extract. A typicalin situ image in our
focused beam dipole trap is shown as an inset of Fig.4.11. The image is 200 pixels
wide and thus represents a 1 mm-range. As is the case for most of our images, the
spread of the cloud in the radial direction is only a few pixels wide and cannot be
resolved accurately by the imaging optics. Thus,in situ imaging only provides infor-
mation on the axial direction in our setup. For analysis of the axial density profile,
we simply integrate the images in the vertical direction. To obtain the right scaling,
the viewing angles have to be compensated for: The focused beam trap in which most
images are taken is positioned at an angle of 46◦ ± 1◦ with respect to the camera in the
horizontal plane. Neglecting any effect of the finite radial size of the cloud, which is a
very good approximation in most cases, the real axial size is obtained by multiplying
the size of the vertically integrated profile by a factor of 1/ sin 46◦ = 1.39± 1.5%.
In Fig. 4.11, one can see slight interference fringes along the radial direction of the
cloud. These can become quite a bit stronger, if the cloud is strongly compressed in a
deep trap and its radial size becomes comparable to the wavelength. In this case it is
advisable to release the particles from the trap a few hundred microseconds before the
image is taken to let the cloud expand over a few micrometers.

It is interesting to note that very weakly bound molecules can be imaged using the
same technique with no noticeable frequency shift of the optical transition (see section
7.2.1.

A mystery remains in the atom number measurement from the absorption images
as the numbers calculated from the images are a factor of 4-8 smaller than the num-
bers obtained from the fluorescence measurement. A careful analysis of the source
of error has not yet been done. As the fluorescence measurement is pretty robust and
the results obtained in chapter7 are inconsistent with such low atom numbers we cal-
ibrate the absorption images with the atom numbers obtained with the fluorescence
measurement.

4.5.3 Microwave and radio frequency transitions

Radio frequency spectroscopy can provide useful information on the properties of the
weakly bound molecules near a Feshbach resonance. The technique of photodissoci-
ating weakly bound molecules was first used in D. Jin’s group at JILA [Reg03]. The
main idea is that the transition frequency for a free atom is increased by the binding
energy if a transition is driven from an atom that is initially in a bound state to an free
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atom in a different hyperfine state. The distribution of final momentum states of the two
dissociated atoms, provide information on the relative momentum distribution of the
two bound atoms and thus the molecular wave function. This momentum spread is re-
flected in a characteristic broadening of the bound-free transition, which can be used to
reconstruct the wave function. Well above 30 G, our lithium atoms are in the Paschen-
Back regime, and we can either drive transitions flipping the electron spin or transitions
flipping the nuclear spin, which are obviously much weaker. As the electronic tran-
sition tunes with two Bohr magnetons in the magnetic field, it is highly sensitive on
the magnetic field stability, and the transition frequency at 1000 G is already 2.8 GHz.
Our 20 mG magnetic field stability provides a resolution of 2µB × 20 mG≈ 50 kHz. A
much higher resolution can be obtained by flipping nuclear spins. At high magnetic
field the transition frequencies are on the order of 80 MHz. For these transitions, we
were able to observe peaks as narrow as 160 Hz. This high-precision technique proved
to be a valuable tool for observing the pairing gap in the BEC-BCS crossover regime.
It will be described in detail in [Bar04a].
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Chapter 5

Tuning elastic collisions

In this chapter our study of elastic collisions in a thermal gas of our optically trapped
spin mixture is described [Joc02]. Because of the small atom numbers that could be
achieved for these experiments, our6Li gas obeys classical statistics. The collisions
however are governed by quantum mechanical low-energy scattering as described in
chapter2.1at our temperatures below∼500µK. In this regime, only zero angular mo-
mentums-wave scattering is relevant. It can be described by one single parameter,
the scattering lengtha. In our experiments, we were able to tune the scattering length
using the Feshbach resonance described in chapter2.2 by applying an external mag-
netic field. We could observe the associated scattering cross section to vary between
the fundamental maximum ofσmax = 4π/k2, which is given by the unitarity principle,
and exactly zero, where the scattering length crosses zero. The magnetic field value
where this zero crossing occurs could be determined to be at 530(3) G and helped the-
orists to improve their calculations on the scattering length. Similar experiments were
performed at the same time by O’Haraet al. in John Thomas’s group [O’H02b]. Their
results are in full agreement with our findings.

For the experiments presented in this chapter the major experimental challenges
were the following:

• The magnetic field coils to produce magnetic fields of up to 1500 G to cover the
whole range of magnetic fields near the 834-G Feshbach resonance.

• No imaging of the atoms was available. Consequently, alternative methods to
measure the temperature other than the established time-of-flight method had
to be found. In fact, all the results presented in this chapter were obtained by
measuring the atom number using a photodiode!

• By always taking data points in a random sequence and by sophisticated aver-
aging of drifts, signals could be obtained that were often smaller than the noise
level and relatively large drifts in atom number, which occurred over a period of
typically 30 min.
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5 Tuning elastic collisions

5.1 Elastic collisions

The most established technique to determine the scattering cross section in a trapped
ultracold gas is to excite the gas in one axis, an then observe the thermalization of the
gas by measuring the temperature in another axis of the trap [Mon93, Lof02]. How-
ever, this technique was not suited for our standing wave trap, because the temperature
in the lattice direction can not easily be derived from time-of-flight measurements.

Our approach was to start with an initially nonthermal ensemble of atoms with a
thermal energy that is not much lower than the trap depth. When thermalization occurs,
atoms are evaporated from the trap, reducing the temperature of the remaining gas.
From the dynamics of this process, one can obtain information on the scattering cross
section [Chi00]. An important advantage of this technique is that one is able to observe
thermalization at very low scattering rates even much lower than the trap frequencies,
where the above method fails because of ergodic mixing of the different degrees of
freedom. Also, this technique is very easy to implement, because no imaging of the
atoms is necessary as the main parameter to look for is a drop in particle number. On
the other hand, it is very hard to actually extract numbers for a cross section as this
would require careful modelling of the evporation process.

Resonant scattering cross section: What do we expect?

In the following, a few key points of section2.1 are recalled: For most experiments
with ultracold alkali atoms the scattering cross section for nonidentical particles can
be approximated by the zero energy limit

σ = 4πa2, (5.1)

which holds as long ask2a2 � 1. Obviously, in the vicinity of a Feshbach resonance,
this condition is no longer fulfilled and the scattering becomes energy dependent. It
can be described by

σ = 4π
a2

1+ k2a2
, (5.2)

assuming that one can approximate the scattering potential to be point-like. This equa-
tion finally yields the unitarity limited cross section

σmax =
4π
k2
, (5.3)

whenk2a2 � 1.
From5.2 it is obvious that very close to the Feshbach resonance, where the scat-

tering length diverges, the scattering cross section will be unitarity limited even for
very small temperatures. The collisions that we observe using our method described
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Figure 5.1: a) Calculated scattering cross section assuming the theoretically pre-
dicted scattering length b) and a collision velocity ofk = (300a0)−1.

above are collisions that lead to evaporation. Thus, it can be expected that the col-
lision energies that we observe are on the order of the trap depth. A Monte Carlo
simulation of our system that was done by Allard Mosk showed that the mean energy
for collisions ejecting particles from the trap is aboutkB × 500µK, slightly more than
half thekB × 750µK trap depth. Using this collision energy, which corresponds to
k = (300a0)−1, we calculate the expected scattering cross section from the theoreti-
cally expected scattering length using5.2. The result is shown in Fig.5.1.

5.2 Experimental procedure

Starting conditions

We loaded typically 5×105 atoms into our standing wave trap from the MOT that con-
tained∼ 107 atoms after a 10-15 s loading time. This resulted in about 350 atoms
per lattice site in the central region of the trap, assuming a gaussian distribution of
the atoms along the lattice with a width ofσ ∼ 0.4 mm. The transfer of the un-
polarized sample in the MOT leads automatically to an equal 50-50 mixture of the
F = 1/2,mF = ±1/2 states, when the repumping light of the MOT is switched off just
a few miliseconds before the cooling light. The atom number in the dipole trap is mea-
sured by quickly switching on the MOT and thereby recapturing the atoms, recording
their fluorescence (see section4.5.1).
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Figure 5.2: a) Evaporative loss measurements at constant trap depth over the full
accessible magnetic field range. The data show the measured number of particles
in the trap after 1 s (�) and 3 s (�) of plain evaporation. For comparison, Figs. b)
and c) show again the expected scattering cross section and the scattering length.

Plain evaporation

To study the dependence of the scattering cross section on the magnetic field, we
loaded our dipole trap and then quickly applied a magnetic field in the range of 0-
1500 G in a 100-ms ramp while keeping the trap depth constant atkB × 750µK. After
holding times of either 1 or 3 s we measured the number of atoms remaining in the trap.
Figure5.2(a) shows the result of about 1000 individual data points taken at 31 differ-
ent magnetic field values. The error bars shown in the figure represent the statistical

70
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fluctuations. To minimize the effects of any systematic drifts of the apparatus during
the 6 h-acquisition time, the data points were taken in random order. The observed
evaporation loss in Fig.5.2(a) shows a pronounced dependence on the magnetic field
which we compare with the expected cross section for elastic collisions ejecting atoms
out of the trap (5.2(b)). After being very small at low magnetic fields, the loss in-
creases for fields up to∼350 G where an expected local maximum of evaporative loss
is observed. The loss then decreases and disappears at about 530 G as a consequence
of the predicted zero crossing of the scattering length. Here the slight observed loss in
the 1 s curve is explained by the finite ramp time of the magnetic field. In the 100 ms
ramping time some evaporation does already take place. At 530 G the decrease of the
trapped atom number between 1 s and 3 s is fully explained by rest gas losses without
any further evaporation. For higher magnetic fields evaporative loss rapidly rises until
it levels off at about 700 G. Up to the maximum attainable value of 1.5 kG high evap-
oration loss is observed. A slight decrease of the atom number for fields exceeding
1 kG occurs which we attribute to technical reasons; we observed an increasing noise
for currents higher than∼130 A in the error signal of the resonator lock of the stand-
ing wave trap. The relatively large and constant evaporative loss for fields exceeding
700 G is consistent with the predicted behavior of the cross section.

Temperature measurements

To confirm that the loss observed in the measurements presented above is actually due
to evaporation, it is necessary to measure the temperature change of the gas while the
losses occur.

Unfortunately, at the time we performed these measurements, we did not have
absorption imaging implemented, so we were not able to use the standard technique of
time-of-flight imaging to measure the temperature. For this reason we used a method
that relies on controlled spilling of our atoms from the trap. We first switch off the
magnetic field to avoid thermalization of the cloud and then reduce the trap depth
adiabatically in a 1-s exponential ramp to spill atoms above a certain, well defined
energy. We can fit the remaining fraction versus the relative trap depth with a model
that takes into account the adiabatic cooling of the cloud while the trap potential is
lowered to obtain directly the truncation parameter that is defined as the trap depth
divided by the thermal energy,η = Utrap/kBT. Two examples of such measurements
are shown in Fig.5.3 for the extreme cases of no cooling and plain evaporation for
several seconds of evaporation at large magnetic field.

After transfer into the dipole trap, we determined an initialη of 1.9(3). We then
looked at the change inη after 3 s of trapping at selected values of the magnetic field.
At the zero-crossing at 530 G we observed only a slight increase ofη to a value of
2.3(2) which is explained by the unavoidable evaporation during the magnetic field
ramps. At 340 G close to the local maximum of|a| we found an increase ofη to 4.2(3)
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Figure 5.3: Determination of the truncation parameterη = U0/kBT. The data
show the remaining number of particles as a function of trap depth for two differ-
ent temperatures, before and after evaporative cooling. The solid lines represent
calculated curves forη = 1.9 andη = 5.9, respectively

as a clear evidence of evaporative cooling. At 720 G, i.e. in the case of a large positive
scattering length, we measured a higher value of 5.5(2) showing deeper evaporative
cooling. Essentially the sameη of 5.3(2) was obtained atB = 1290 G where scattering
takes place in the triplet-dominated regime with a very large negative scattering length.

Forced evaporation

Forced evaporation measurements provided complementary data to plain evaporation
and allowed us to rule out a significant role of inelastic collisions. When the trap
depth is ramped down, elastic collisions reduce trap loss in contrast to increased loss
at constant trap depth. This can be understood by the spilling loss of energetic particles
[Lui96]: Without elastic collisions the most energetic particles are spilled out of the
trap when its depth is reduced. With elastic collisions the evaporative cooling effect
decreases the temperature and thus reduces the spilling loss.

In these forced evaporation measurements we reduced the trap depth in 10 s to
20% of its initial value in an exponential ramp and measured the number of remaining
atoms; the results are displayed in Fig.5.4. At reduced intensity of the standing wave
the magnetic field had to be restricted to 1 kG because of an increasing sensitivity of the
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Figure 5.4: Fraction of atoms remaining after forced evaporation versus applied
magnetic field. The trap depth is ramped down exponentially to 20% of the initial
value in 10 s.

resonator lock to current-dependent noise. A minimum number of atoms was measured
at 0 G and 530 G instead of the maximum observed with constant trap depth. The
largest number of atoms is observed in the high-field region above 650 G as expected
for the large scattering cross section.

Inelastic collisions?

While the above experiments showed a strong dependence of the elastic scattering
cross section on the magnetic field, the measurements of the temperature and on forced
evaporation rule out significant inelastic loss near the Feshbach resonance that was the
main signature of a Feshbach resonance in previous work [Ino98]. However, at much
higher densities as compared to ours, other groups had already seen such inelastic loss
[Die02, O’H02b] at magnetic field values significantly below the expected Feshbach
resonance, at∼ 680 G while working at densities of∼ 1013 cm−3. To observe such a
loss under our conditions of higher temperature and much lower density we studied
the long-time evolution of samples which were pre-cooled by forced evaporation and
then recompressed into a 750µK deep trap to a temperature of∼150µK and a density
of 5 × 1010 cm−3. The magnetic field during the 60-s holding time was alternated for
successive data points between 680 G and 300 G, the latter value corresponding to a
very low loss rate in Ref. [Die02]. We found no significant difference in the number of
remaining atoms, which lead to a clear upper bound to the two-body rate constant of
1×10−12 cm3/s. From the fact that we were not able to see any inelastic loss at our low
density, we can conclude that for the experiments discussed in this chapter, inelastic
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Figure 5.5: Accurate determination of the zero crossing of the scattering
length. These measurements are performed in the same way as those of the 3 s-
measurement in Fig.5.2(a), but over a narrow range of magnetic fields. The
quadratic fit in (b) yields 530(3) G for the zero crossing.

collisions are completely negligible.

Zero crossing of the scattering length

While the position of the Feshbach resonance could not be determined using the above
measurements, the magnetic field value where the scattering length crosses zero could
be accurately determined. This value is an important parameter to further constrain
the knowledge of the Li-Li potentials [O’H02b]. To determine the position of the
zero crossing, we measured the minimum-loss feature of Fig.5.2 in a closer range
of magnetic fields. The data points in Fig.5.5(a) were obtained from 500 individual
measurements at a holding time of 3 s with the magnetic field randomly varied between
30 values in an interval between 370 G and 670 G. The data shown in Fig.5.5(b) were
obtained from 1000 measurements in the very narrow range between 520 G and 544 G.
A quadratic fit to the very narrow region in Fig.5.5(b) allowed us to determine the B-
field for minimum evaporative loss to 530(3) G. The uncertainty contains the error from
the fit of our data and the uncertainty of the magnetic field, which was 1 G at the time
when these measurements were performed. A systematic shift of this value from the
position of the scattering length is expected to occur due to the finite collision energy of
our atoms. In an intuitive picture, one can imagine that the additional kinetic energy of
the scattering state has to be compensated for by the difference in magnetic energies of
the scattering and the molecular state. Because at 530 G, the molecular level associated
with the Feshbach resonance is still almost singlet in nature, its magnetic moment is
almost zero and the main contribution of the Zeeman shift comes from the free atom
pair, which has a magnetic moment of two Bohr magnetons. The shift of the zero
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crossing can thus be estimated to be

∆B0 = EC/2µB = +0.74 G× EC/(kB × 100µK). (5.4)

A more accurate calculation performed by V. Venturiet al.yields

∆B0 = EC/2µB = +0.7 G× EC/(kB × 100µK)[Ven01]. (5.5)

For our collision energies, such an expected shift is well within our uncertainty of 3 G.
Another source of systematic error would be a magnetic field dependent inelastic loss
of atoms as it had been reported by [Die02, O’H02b]. As such a loss would occur above
the zero crossing, this would shift the observed loss minimum to a lower magnetic
field. But as we did not observe any inelastic loss due to our much lower density, we
expect this shift to be negligible, and conclude that within our given uncertainty, our
minimum in evaporative loss coincides with the zero crossing of the scattering length
at 530(3) G.
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Chapter 6

Weakly bound molecules near a
Feshbach resonance

Research on ultracold molecules witnessed a rapid progress in 2003 after the forma-
tion of molecules using a Feshbach resonance was achieved in D. Jin’s group at JILA
[Reg03]. They established the technique of an adiabatic ramp across the Feshbach
resonance to bind pairs of atoms to molecules. The molecules were observed by a loss
of atoms that could be recovered by applying a reverse ramp across the resonance to
break the molecules again. Within a relatively short time, a number of teams were
able to produce degenerate molecules from bosonic atoms [Her03, Dür04], and later
also in Ketterle’s group [Xu03]. But the short lifetime of those molecules inhibited so
far their thermalization to a BEC. The finding that molecules formed from fermionic
6Li atoms would be rather long-lived [Cub03, Str03, Joc03b] “sparked a hot race”
[Cho03], that saw its first highlight in the Bose-Einstein condensation of molecules
[Joc03a, Gre03, Zwi03, Bou04, Hul04]. This chapter describes our experiments that
lead to the formation of molecules from our lithium spin mixture, which is summa-
rized in [Joc03b]. Our approach makes use of the fact that three-body recombination to
dimers is strongly enhanced near a Feshbach resonance. This enhanced recombination
leads to the exclusive formation of the very weakly bound molecular state associated
with the resonance. The binding energy and thus the released energy can be tuned
using the magnetic field such that it is smaller than the trap depth to avoid loss and
at the same time larger than the thermal energy of the gas so that the atom-molecule
equilibrium favors the molecular state.

A number of important improvements of our setup were the key to success:

• Optimizing the transfer from the MOT into our standing wave dipole trap re-
sulted in a more than five-fold increase in atom number and a factor of three
lower initial temperature that enabled us to observe inelastic loss from our
trapped spin mixture where the scattering length is large and positive, which
was first reported in [Die02]. These inelastic losses were later identified to be
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associated with molecule formation [Bou03].

• A much better control of the intensity of the standing wave, especially at very
low intensities enabled us to perform efficient evaporative cooling by lowering
the trapping potential. The evaporative cooling also resulted in a 2-D gas in our
standing wave trap with more than 99% of all the particles in the axial ground
state of the trap.

• A much more stable magnetic field by stabilizing the current of our power sup-
plies by an external circuit that programs the voltage of the power supply in
a feedback loop. The accuracy is now limited by the 16-bit resolution of our
digital-to-analog converter to 1.5 × 10−5, or 22 mG. It allows us to also resolve
the narrow Feshbach resonance at 546 G described in chapter2.2.

• Imaging of the atoms at zero magnetic field was implemented. This enabled
us to measure temperatures with the standard time-of-flight techniques. As we
could only image our atoms at zero field, no imaging of molecular clouds was
available in the following chapter.

• Finally, we achieved a higher and eventually much more constant loading rate
of our MOT: an additional laser diode was set up to amplify the Zeeman slower
beam. This made experiments much more hassle free and was crucial for the
quick success.

6.1 Three-body recombination

In our first experiments on the formation of molecules, we were looking for magnetic
field dependent loss as it had already been observed at MIT in 2002 [Die02]. But as the
loss dynamics suggested a two-body loss process instead of three-body recombination,
this loss had not been attributed to molecule formation.

Three-body recombination has been studied extensively in theory and in experi-
ments. The special case when there is a weakly bound state present that also deter-
mines the scattering length asEB = ~2/ma2 was studied by Fedichevet al. in [Fed96].
They found a rather strong scaling of the decay rate with the scattering length as
αrec ∝ a4 for bosonic atoms. This finding was confirmed in an intensive study on
inelastic loss in cesium in our group [Web03]. For the case of fermions, three-body
collisions are expected to be very strongly suppressed even in a two-state mixture. In
a simple picture, the spatial wave function at ultralow temperatures has to be totally
symmetric because no angular momentum is involved. This means that the spin part of
the wave function of three particles of which two are identical has to be antisymmetric,
which is not possible. A calculation by D. Petrov [Pet03a] finds however that three-
body recombination of a fermionic spin mixture is indeed possible near a Feshbach
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Figure 6.1: Loss of atoms from a precooled sample of∼2 million atoms at 30µK
after 5 s in variable magnetic field. The maximum loss occurs at∼636 G, where
the scattering length is 620a0 and the binding energy is 83µK.

resonance where a weakly bound molecular level exists. The rate is calculated to be

ṅ/n = Ln2 ≈ 111n2a6ε/~, (6.1)

whereL is the three-body loss coefficient andε is the average kinetic energy of the
particles. Formula6.1is valid when the kinetic energy is much lower than the binding
energy,ε � ~2/ma2. It also assumes that the binding energy is much larger than the
trap depth so that all three particles involved are lost from the trap. Furthermore, it
neglects the presence of molecules, which will lead to an atom-molecule equilibrium
as described in the next chapter. There are two major differences to the case of bosonic
atoms: First, the loss rate scales with the scattering length to the sixth power, much
stronger than in the bosonic case. Second, the recombination rate depends linearly on
the kinetic energy of the particles, whereas for bosons, it is independent of the kinetic
energy. Both effects are due to the fermionic suppression of such collisions and thus,
such rates are expected to be much lower than in the bosonic case.

In the following, our experiments to observe such three-body recombination losses
will be described. For these experiments we started with typically a few million atoms
trapped in our standing wave trap. These atoms were first cooled to different temper-
atures by forced evaporative cooling at a field of 300 G where the scattering length is
large and negative. We then ramped the magnetic field to arbitrary values in the vicin-
ity of the Feshbach resonance in∼50 ms. To observe the loss, we stored the atoms
for typically 5-7 s at a given magnetic field before ramping the field back to zero and
detecting the remaining fraction of the atoms. An example of such a measurement is
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shown in Fig.6.1. Here, the trap depth was 500µK and the temperature∼30µK. Start-
ing from about two million atoms, loss starts to set in at about 550 G, just above the
zero crossing of the scattering length. A maximum of the loss then occurs at 636 G,
disappearing again at∼750 G. At the maximum loss of 636 G, the scattering length
is 620a0, corresponding to a binding energy of 83µK, which is only about a factor
of three larger than the thermal energy. The same measurement was repeated again
under similar conditions, but with varied trap depth and thus, also temperature, yield-
ing comparable results (see table6.1). The interpretation of these data is not straight
forward. There are several factors complicating things here: First of all, for most of
the magnetic field range of interest, any formed dimers will be trapped because the
binding energy is smaller than the trap depth. This means that a mixture of atoms
and molecules has to be considered. Here, the thermal equilibrium between atoms and
molecules as well as the stability of the dimers against collisional decay play a role.
However, the fact that the maximum loss of atoms occurs where the binding energy
is just above the temperature can be explained qualitatively: The recombination rate
depends on the scattering length to the sixth power. Thus it increases strongly with the
magnetic field. At the same time, the thermal energy must be smaller than the binding
energy in order to form a significant amount of molecules, a necessary requirement for
losses to occur. Accordingly, the loss increases quickly until it reaches the maximum
where the kinetic energy is just below the binding energy and then levels off again.

Temperature Trap depth a EB

60µK 1000µK 629 G 557a0 104µK
30µK 500µK 636 G 620a0 83µK
22µK 350µK 644 G 700a0 64µK

Table 6.1: The magnetic field value where the maximum loss occurs varies with
the temperature of the gas. Tabulated is the temperature, the magnetic fieldB
where the maximum loss occurs and the corresponding scattering lengths a and
molecular binding energiesEB.

Narrow Feshbach resonance

Beside the inelastic losses associated with the broad resonance, we also observed
losses near the narrow resonance at∼542 G. Here, different phenomena can be studied
because of the small width of∼100 mG of the resonance. The result of measurements
performed in the same way as those shown previously at higher field are shown in
Fig. 6.2at trap depths of 1 mK and 20µK, with temperatures of approximately 80µK
and 2.4µK, respectively. Note the very different scale, in Fig.6.1, a 300-G range is
shown, whereas Fig.6.2 covers only a range of 3 G. Here, not only the loss maxi-
mum is shifted with temperature, the shape of the loss feature is dramatically different

80



6.1 Three-body recombination

5 4 1 5 4 2 5 4 3 5 4 4
3 0 0

3 5 0

4 0 0

4 5 0

1 0

2 0

3 0

at
om

 n
um

be
r (

10
4 ) (

fu
ll 

tra
p 

de
pt

h)

 

m a g n e t i c  f i e l d  ( G )

at
om

 n
um

be
r (

10
4 ) (

20
µK

 tr
ap

 d
ep

th
)

Figure 6.2: Inelastic loss at the narrow Feshbach resonance. The open circles are
taken at∼1 mK trap depth, the data represented by full circles are taken at a trap
depth of 20µK

as compared to the broad resonance. At high temperatures in the deep trap, the loss
extends up to two Gauss to higher fields above the well defined loss at low temper-
ature. A rather simple explanation for the effect of broadening to higher magnetic
fields would be a shift of the resonance position as a function of the collisional en-
ergy in the same way as it was discussed for a possible shift of the zero crossing of
the scattering length (see5.2). A typical shift for a 100-µK collision would then be
0.7 G, the loss at even higher magnetic fields coming from the tail of the Maxwell-
Boltzmann distribution. It is also interesting to look at the left hand side of the loss
features in Fig.6.2. While both the low-temperature and the high-temperature data
show the approximately the same slopes, these are shifted by∼250 mG. Such a shift
would come from a collision energy ofkB × 35µK. The ground state energy in the
1-mK deep trap is 1/2h × 1.5 MHz = kB × 36µK due to the 1.5 MHz axial vibration
frequency, while it is onlykB × 5µK in the shallow trap. The difference ofkB × 31µK
coincides quite well with the observed shift. Thus, it could be interpreted as a sig-
nature of the 2-D nature of the trap leading to a shift of the position of the Feshbach
resonance. The data presented in this section cannot be interpreted in a simple model
such as three-body recombination leading to loss out of the trap. Instead, there seem to
be many different effects involved: First, the recombination products remain trapped
and an atom-molecule equilibrium establishes. The loss of atoms is then dramatically
reduced and is basically governed by inelastic loss of molecules that decay into lower
vibrational levels in two-body collisions. The time scale of this process together with
the atom-molecule equilibrium strongly determine the dynamics of the system. To be
able to do such studies conclusively, one needs a method to detect those atoms that are
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not really lost but have formed molecules and remain trapped in the dipole trap. This
will be the subject of the next section.

6.2 Formation and detection of molecules

This section describes our quest for a molecular gas of6Li2 molecules. Inspired by
previous work with potassium at JILA [Reg03], with cesium in our group [Her03] and
with lithium in Paris [Cub03], that had produced molecules either from degenerate
fermi gases or BECs, we started experiments to explore the possibility of creating
molecules from a thermal gas of atoms.

Preparation of the starting conditions

The ultracold gas was prepared by forced evaporative cooling after loading the stand-
ing wave trap at its initial depth of∼1 mK with 8× 106 atoms from the MOT. The
evaporation is performed by ramping down the light intensity in 1 s at a magnetic field
of 1200 G. The evaporation initially proceeds with very high efficiency, as can be seen
in Fig. 6.3, where the temperature is plotted versus the trap depth during the evapora-
tion. The fact that the truncation parameterη = U/kBT is always larger than ten, which
corresponds to the dashed line, suggests that the evaporation is very efficient [O’H01].

At very low trap depth, the lifetime of the gas is reduced tremendously to well
below 1 s and no further gain in phase space density is achieved. The main reasons
for this loss are technical in nature: The stability of the resonator lock for our standing
wave is reduced at very low power, which leads to heating of the gas, also the trap
potential is tilted by gravity and some uncompensated magnetic field gradients. But
there is also one effect that is fundamental and cannot be overcome in our standing
wave trap: When the trap depth is lowered so much that there are only one or two
bound states present in the trap, tunneling along the standing wave becomes important
even for the axial ground state of the trap.

After evaporative cooling, the starting point for the following measurements was a
sample of 2.5× 106 6Li atoms in our standing-wave optical dipole trap at a trap depth
of kB × 27µK. The axial and radial trap frequencies corresponding to this trap depth
are 260 kHz and 390 Hz, respectively. The 50-50 spin mixture in the lowest two spin
states was spread over∼1600 individual lattice sites. In the central region of the trap,
a single site contained typically 1800 atoms. Under these conditions, we achieved a
temperature of 2.5µK. Peak values for the number density and phase-space density
were then 3× 1012 cm−3 and 0.04 respectively. The spread of the atoms over many
lattice sites will cause some complications later for quantitative analysis. This spread
can be approximated by a gaussian distribution with a width ofσ ≈ 0.4 mm.

An interesting aspect of these starting conditions is the 2-D character: Due to the
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6.2 Formation and detection of molecules

Figure 6.3: Evaporative cooling in the standing wave. The trap depth is lowered
in an exponential ramp from 1 mK to 25µK. The temperature is plotted versus
the trap depth. All the data points are below the dashed line that represents a
thermal energy of one tenth of the trap depth. This indicates an extremely efficient
evaporation.

high axial vibration frequency, the atoms are almost completely confined to the axial
ground state of the trap. The ground state population for our conditions is

n0,ax = 1− e
~ωax
kBT = 99.3%, (6.2)

plugging in the numbers given above. Of course, also the number density and the
phase space density have to be calculated taking that into account, the formulas to be
used are given in section4.3.1. It is also important to note that for the experimental
conditions described here, the axial harmonic oscillator length is

aho,ax =

√
~

mωax
= 24.7 nm= 466a0. (6.3)

This is in many cases smaller than the scattering length of our atoms near the Feshbach
resonance and one can expect to observe some variations from a 3-D trap [Pet01].

Observation of molecules

The loss measurements in atomic samples presented above indicate that dimers are
being formed and trapped in our dipole trap. However a detection scheme is needed
to actually observe the molecules that are expected to be in the highest vibrational
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6 Weakly bound molecules near a Feshbach resonance

state that is associated with the Feshbach resonance. The JILA Group established two
techniques for the observation of such molecules that both rely on dissociating the
molecules into atoms again [Reg03]:

• The first technique is a simple magnetic field ramp across the Feshbach reso-
nance, where no bound state exists, and thus, the molecules have to decay into
free atoms.

• The second technique uses a radio frequency transition from the bound molecule
to a pair of free atoms, where the hyperfine state of one of the atoms is changed.
This technique also provides additional information, for example on the binding
energy and the size of the molecule, which can be obtained from the frequency
shift as compared to the free atoms and from the line shape of the molecule-atom
transition.

In the measurements presented in this chapter, we used the first technique. For this
purpose, we applied a ramp across the Feshbach resonance to fields of typically 1200 G
at a speed of+6 G/ms. This brings the bound level above the scattering continuum
and the molecules quickly dissociate. The dissociation turned out to be insensitive
to variations of the ramp speed and the final field. After the dissociation ramp, we
immediately ramped down to zero magnetic field. The ramp speed of−12 G/ms is fast
enough to avoid molecule formation when crossing the region of positive scattering
length. As an additional measure to avoid any loss of atoms during the ramp, we
also cranked up the trapping potential to the full trap depth to heat the atoms so that
for most of the ramp, the binding energy is smaller than the thermal energy. After
reaching zero magnetic field we recaptured all atoms into the MOT to measure their
number as described in section4.5. This measurement provides the total atom number
2Nmol + Nat, whereNmol andNat denote the number of molecules and atoms after the
production phase, respectively. To determineNat we repeated the same measurement
without the Feshbach dissociation ramp by immediately ramping down to zero from
the production field. The ramp down to zero magnetic field increases the binding
energy to a large value of aboutkB ×80 mK and the molecules are lost without leading
to any fluorescence light in the MOT. The number of moleculesNmol is then obtained
by taking the difference in atom numbers measured in two subsequent runs with and
without the dissociating Feshbach ramp.

After a lot of optimization, we found the following scheme to be most effective to
produce molecules in our setup: We started at a magnetic field of 1200 G, where we
performed evaporative cooling. We then quickly ramped down from the evaporation
field to 690 G with a speed of−7.5 G/ms, where we find optimum production rates at
a large positive scattering length ofa = +1300a0. In contrast to other experiments
with fermionic atoms [Reg03, Cub03, Str03], the molecule formation during this ramp
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Figure 6.4: Formation of molecules at a fixed magnetic field of 690 G. The mea-
sured numbersNat + 2Nmol andNat are plotted as a function of time together with
the resulting number of molecules 2Nmol.

is negligible and the molecules are predominantly formed after the ramp at the fixed
production field.

At the optimum production field of 690 G the molecular binding energy amounts
to ∼kB × 18µK, which is in between the thermal energy ofkB × 2.5µK and the trap
depth ofkB × 27µK for the atoms. For the molecules the trap depth is a factor of two
higher because of the two times larger polarizability. We have verified this fact by
measuring the trap frequencies for atoms and molecules. We observed a∼5 % higher
frequency for the molecules, which is well within the error of our measurement. After
a three-body recombination event both the atom and the molecule remain trapped. We
believe that the recombination heat is cooled away by evaporation of atoms out of the
trap. Evaporative loss of molecules is strongly suppressed because of the higher trap
depth.

The creation of molecules from the atomic gas is demonstrated in Fig.6.4 for
the optimum production field of 690 G. The time evolution of the measured numbers
2Nmol + Nat and Nat is shown together with the corresponding number of molecules
2Nmol. The formation of these molecules must be three-body in nature [Sun03, Pet03a],
because two-body processes cannot lead to bound dimers as a third particle is required
for energy and momentum conservation. The initial three-body molecule formation
rate can be modeled with the equation ˙nmol/nat = M3n2

at, which is the same equation as
6.1, whereL = 3M3, because any single three-body event is counted only once here,

85



6 Weakly bound molecules near a Feshbach resonance

while three atoms are lost in the case of6.1. To express this equation in measured
numbers, we have to integrate ˙nmol(r) to getṄmol,

Ṅmol = M3

∫
drn3

at(r). (6.4)

This integral yields immediately for any Gaussian density distribution, such as4.8 or
4.9,

Ṅmol =
M3
√

3
3
n2

max,atNat. (6.5)

This gives the right solution for a single well, but in the standing wave trap we also have
to average over the different atom numbers in the individual lattice sites. Assuming a
gaussian distribution along the lattice, the factor

√
33 has to be multiplied with another

factor of
√

3 so that the final equation for the standing wave potential is

Ṅmol

Nat
=

M3

9
n2

max,at (6.6)

From the initial molecule formation rate oḟNmol = 3.5×105 s−1 we thus derive a three-
body formation coefficient ofM3 = 1× 10−25cm6/s−1. This value can only be an order
of magnitude estimate for such a rate, as the peak density is not known to better than
a factor of two due to to the uncertainty in the particle number. This value is in the
expected range if compared with the numberM3 ≈ 1 × 10−24cm6/s−1 predicted by D.
Petrov [Pet03a] for our conditions using equation6.1and usingL = 3M3.

For the large scattering length of 1300a0, which is more than twice as large as the
harmonic oscillator length of 466a0, we also expect a modification of this rate due to
the quasi 2-D nature of our gas. The maximum number of 3×105 molecules is reached
after about 1 s. For longer times, the fraction of atoms forming molecules approaches
a value of∼50%.

Atom-molecule equilibrium

A model describing the thermal equilibrium of such a mixture of atoms and molecules
is presented by C. Chin in [Chi04b]. A similar model that takes into account a quantum
degenerate molecular gas is developed in [Kok04]. In the following, I will describe the
basic idea of [Chi04b]. We expect that after a long enough thermalization time, we
reach a thermal equilibrium between atoms and molecules that is independent of the
precise formation process. This equilibrium should then be constrained only by the
molecular binding energy, the temperature of the gas and the particle number in our
trap.

In thermal equilibrium, the free energyF of the system,F = −kBT ln Z must be
minimized. Here,Z denotes the partition function of the system. It can be constructed
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6.2 Formation and detection of molecules

from the single particle partition functions of the atoms in the two spin states (Z↑, Z↓)
and of the molecules (Zmol) to be

Z =
ZN↑
↑

ZN↓
↓

ZNmol
mol

N↑!N↓!Nmol!
. (6.7)

We now constrain that we have an equal spin mixture of atoms so thatN↑ = N↓ = Nat.
The total number of particlesN0 in each spin state is assumed to be conserved,N0 =

N + Nmol. The free energy then becomes:

F(Nat,T) = −kBT
(
Nat ln Z↑ + Nat ln Z↓ + (N0 − Nat) ln Zmol − 2lnNat! − ln(N0 − Nat)!

)
(6.8)

Now, F(Nat) has to be minimized. Using Stirling’s rule lnn! = n ln n− n, we find

d
dNat

F(Nat) = 0 = ln Z↑ + ln Z↓ − ln Zmol − 2 lnNat+ ln(N0 − Nat). (6.9)

This can be written as
N2

at

Z↑Z↓
=

Nmol

Zmol
, (6.10)

which is a special case of the Saha-equation, that was originally derived by Saha for a
partially ionized plasma [Lan80]. For us, the most interesting quantity to derive is the
ratio of molecules to atoms,Nmol/Nat for a given temperature. In our optical trap, atoms
independent of their spin state and also the molecules have the same trap frequencies
and therefore have the same single particle partition function. We can therefore rewrite
6.10as

Nmol

Nat
=

Zmol

Zat

Nat

Zat
. (6.11)

Because of the molecular binding energy we haveZmol = Zat×exp (EB/kT), andNat/Zat

is the phase space densityφat of the atoms. We then get the result

Nmol

Nat
= φat× e

EB
kT . (6.12)

We can now compare this result with our experimental data in Fig.6.4. The best equi-
libration is after long times, so we take the data point at 3.5 s. We have at this time a
mixture of∼2.5×105 atoms per spin state, assuming an equal mixture, and∼2.5×105

molecules. Assuming that the temperature stayed constant during the formation of the
molecules because of evaporative cooling, the five-fold drop in atom number would
lead to the same drop in atomic phase space density to 8× 10−3. Plugging in this num-
ber, 2.5µK for the temperature and 19µK for the binding energy, we get a molecule -
atom ratio of 16, which is much higher than the observed ratio of one. But because the
temperature of the mixture could not be measured, there is a rather large uncertainty.

87



6 Weakly bound molecules near a Feshbach resonance

0 1 0 2 0 3 0

0

5 0

1 0 0

1 5 0
 

at
om

 n
um

be
r (

10
4 )

m a g n e t i c  f i e l d  g r a d i e n t  ( G / c m )

N
a t
+ 2 N

m o l

N a t

B ’
a t

B ’
m o l

Figure 6.5: Stern-Gerlach selection by applying a magnetic field gradient to the
trapped atom-molecule mixture at a magnetic field of 568 G and a trap depth of
kB×19µK. Marked are the two gradients where all the atoms and all the molecules
are lost.

This does not only affect the exponential factor in equation6.12, but also our calcu-
lated phase space density in our 2-D trap depends quadratically on the temperature
(see equation4.11). If one assumes a temperature of 3.5µK with no change in other
parameters, the calculated molecule - atom ratio becomes one. This means that within
our knowledge of the temperature, the model described above yields the correct result.

6.3 Stern Gerlach selection of molecules

To purify the created molecules we used a Stern-Gerlach selection technique. We
applied a magnetic field gradient perpendicular to the standing wave axis. This pulls
particles out of the trap for which the magnetic force is larger than the trapping force.
In order to be able to apply large enough field gradients, we lowered the trap depth to
kB×19µK while applying the gradient for about 10 ms. Fig.6.5 demonstrates such a
purification at 568 G. While all the atoms are lost aboveB′at = 17 G/cm, the molecules
start getting spilled at 20 G/cm, and are lost completely aboveB′mol = 32.5 G/cm. This
means that under suitable conditions, we could remove all the atoms while keeping the
molecule number constant.
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Figure 6.6: Determination of the magnetic moment of the molecules as a function
of the magnetic field by taking the ratioB′at/B

′
mol where atoms and molecules,

respectively, are expelled from the trap. The solid line shows the derivative of the
Zeeman energy of the molecule as calculated by V. Venturi [Ven01]

The magnetic moment of the molecules, that we define asµmol(B) = ∂E(B)/∂B can
be estimated from the spilling measurement described above by comparing it with the
known magnetic moment of the atoms which equals Bohr’s magnetonµB at fields much
larger than 30 G. As the dipole trapping potential of the molecules can be estimated to
be twice as large as that of the atoms, one expects that the potential gradient needed
to spill all the molecules is twice as large as the one needed to spill all the atoms.
The molecular magnetic moment can therefore be determined asµmol = 2µBB′mol/B

′
at.

Fig. 6.6 shows the magnetic moments of the molecules determined in such a way
at various magnetic fields. The data agree well with the magnetic field dependence
expected from theory. The solid line shows the derivative of the Zeeman energy of the
molecule as calculated by V. Venturi [Ven01]. We attribute the systematic deviation to
slightly different trap parameters for atoms and molecules.

6.4 Molecular Lifetime

The surprisingly simple formation of molecules raised the question of how stable such
a gas of molecules in the highest vibrational state would be. It is known from molecular
physics that the vibrational energy very quickly thermalizes with the kinetic energy of
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Figure 6.7: Evolution of an initially pure sample of molecules at two magnetic
fields. While the molecules decay rapidly at 546 G, the sample exhibits a long
lifetime of 10 s at 690 G. At the same time, molecules are partly dissociated into
atoms in endoenergetic collisions.

the particles. In our case, any change in the vibrational state of the molecules would
immediately lead to loss from the dipole trap, as the typical vibrational energies are
on the order of Kelvins, very much larger than our trap depth. In this section, the
surprising finding is reported that such highly excited molecules can be extremely
stable if their binding energy is made very small close to the Feshbach resonance.

We started with a pure molecular sample, prepared as described above, and look at
the time evolution in the trap. Corresponding decay curves are displayed in Fig.6.7
for two different magnetic fields. At 546 G a rapid non-exponential decay is observed
as a clear signature of inelastic molecule-molecule collisions. These are expected to
be two-body in nature, where in a collision one molecule changes its vibrational state
and the gain in kinetic energy kicks the particles out of the trap. A two-body loss can
be modeled by ˙n = L2n2. As we did before for the case of three-body losses (equation
6.5, one has to average over the density distribution to express this equation in absolute
particle numbers. One gets

Ṅ
N
=

L2
√

23
npeak (6.13)

for a 3-D Gaussian distribution. To take into account the averaging along the standing
wave, one has to divide by another factor of

√
2. From the first three points of the

decay in Fig.6.7, we derived a two-body loss coefficient of 5× 10−11 cm3/s.
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At 690 G, the observed behavior is strikingly different. The molecular sample
shows a nearly exponential decay with a time constant as long as∼10 s. As simi-
lar lifetimes were observed for trapped atom samples under conditions where trapped
molecules cannot be created, the observed molecular lifetime can be fully attributed to
one-body effects like heating in the optical trap. For a loss rate coefficient at 690 G our
data provide an upper limit of 3× 10−13 cm3/s, which is surprisingly low for inelastic
collisions in a molecular system with many open exit channels.

This high stability against inelastic collisions had already been predicted by theory
[Pet04]. In a simple picture, one can identify two mechanisms that lead to a suppres-
sion of the decay of these weakly bound molecules. The first one is the fact that the
size of the weakly bound molecule is on the order of the scattering length, typically a
few hundred to thousand Bohr radii, whereas all the other vibrational states are much
more tightly bound and have a size that is on the order of the characteristic radius of
interactionReff, which is 62.5a0 for lithium. Thus, the spatial Franck-Condon over-
lap of the weakly bound state with any of the other states is rather small. This is an
effect that applies in a similar way to all weakly bound molecules, also those formed
from bosonic atoms. Experiments have shown however, that molecules formed from
fermionic atoms are much more stable against collisional decay. There is a second
mechanism that leads to suppression of the decay that applies only to fermions. This
stems from the suppression of three-body s-wave collisions that was discussed previ-
ously in section6.1. To actually form a tightly bound molecule, three atoms, either
paired in molecules or free, have to come very close to each other, on the order ofReff.
This means that the mechanisms that allow the formation of weakly bound dimers
[Pet03a] do not apply and as there is no angular momentum involved, such a process is
symmetry forbidden if two identical fermions are involved. However, as the size of the
weakly bound molecule is reduced by lowering the scattering length the above argu-
ments are weakened and the decay rate increases, as observed in the experiment. The-
ory predicts the two-body decay rate of molecules to scale with the scattering length
asa−2.55.

The data at 690 G show another interesting collisional effect that does not occur
at lower field. Atoms reappear after purification of the molecular cloud, see (◦) in
Fig. 6.7. For long storage times (∼15 s) an atom-molecule mixture is reestablished
with a similar fraction of molecules as observed in the initial formation process at the
same magnetic field, see Fig.6.4. But there is an important difference, the total particle
number is a factor of ten lower, which of course would result in a ten-fold decrease
in phase space density at constant temperature that would not be consistent with the
model described above. Collisions producing atoms from molecules are endoergic in
nature as kinetic energy is required to provide the dissociation energy, thereby cooling
the gas. One can estimate a temperature of∼2.5µK from the molecule-atom ratio of
∼1 at an atom number of∼50000 per spin state. The kinetic energy to break so many
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Figure 6.8: Remaining number of atomsNat, Nat + 2Nmol, and 2Nmol after a 1-s
hold time at variable magnetic field starting with a pure molecular ensemble.

molecules cannot stem from the initial temperature of the gas. There must be heating
present that is probably associated with the stability of our standing wave dipole trap at
low trap depth. The observed lifetime of∼10 s that we also observe for a stable atomic
gas in the same trap supports this interpretation. The increasing atom fraction does not
lead to any increased loss. This shows that the gas is remarkably stable both against
molecule-molecule and also atom-molecule collisions.

The dependence of the molecular decay on the magnetic field is shown in Fig.6.8.
Here we stored the initially pure gas of 1.8×105 molecules at a variable magnetic field
for a fixed holding time of 1 s before we measured the number of remaining molecules
and atoms. A sharp transition occurs around 650 G. For fields below∼600 G, where
the binding energy is relatively large (> kB × 100µK), the observed decay is very
fast and no atoms are found to reappear. Here inelastic collisions apparently lead to a
rapid vibrational quenching. Furthermore, the kinetic energy of the molecules cannot
provide the necessary energy for collisional dissociation. Consequently, we do not
observe any atoms reappear.

For fields above∼680 G a completely different behavior is observed. In this regime,
no significant loss occurs in the total number 2Nmol+Nat. However, an increasing atom
fraction is observed as a result of collisional dissociation of the molecules. Here the
binding energy approaches the thermal energy and the sample tends towards a thermal
atom-molecule equilibrium. Close to the Feshbach resonance, where the binding en-
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ergy becomes comparable to the thermal energy, the atomic fraction dominates in the
atom-molecule mixture.

The incredible stability of the mixture provides the intriguing possibility of an
extremely efficient production of molecules and great prospects for their evapora-
tive cooling to a Bose-Einstein condensate. In fact, evaporative cooling of an atom-
molecule mixture is expected to be especially effective as described in [Chi04b]. The
basic idea here is that while for the molecules the trap is twice as deep as for the atoms,
they will be in thermal equilibrium and thus have the same temperature. This means
that by evaporative cooling, almost only atoms are lost. Atoms can then be dissociated
from molecules, if the binding energy of the molecules is tuned appropriately to allow
for an atom fraction to exist. Such a scheme would be a two step process in which
every molecule that will be lost by evaporation is first dissociated into atoms. Thereby
the binding energy is absorbed and then, two free atoms take with them typically up to
∼ 10× kBT of energy when they leave the trap, assuming a typical evaporative cooling
scenario, where the trap depth is about a factor of ten higher than the temperature. This
means that for every molecule lost from the trap, the loss of kinetic energy from the
sample is∼ EB + 2× 10× kBT instead of the typical∼ 10× kBT.
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Chapter 7

Bose-Einstein condensation of
molecules

The findings of the previous chapter that molecules can be formed efficiently from
a thermal gas of fermionic atoms and the extremely high stability of these molecules
against inelastic decay immediately suggested that such molecules would be ideal can-
didates to form a molecular Bose-Einstein condensate [Joc03b, Joc03a]. Our Bose-
Einstein condensate is produced by forced evaporative cooling of our6Li spin mixture
in a specially designed focused beam dipole trap. During evaporative cooling, the
atoms are efficiently converted into molecules as the thermal energy of the atoms falls
below the binding energy of the weakly bound level associated with the broad Fesh-
bach resonance at 834 G. While cooling the molecules further we observed typical
bimodal distributions as the signature of Bose-Einstein condensation using high-field
in situ absorption imaging. The long-lived nature of the molecular cloud of> 40 s
allowed us to produce a pure BEC with no noticeable thermal component.

Within a very short time, a number of groups were able to produce molecular
condensates [Joc03a, Gre03, Zwi03, Bou04, Hul04] of either6Li or 40K atoms. Such
condensates open up new research opportunities with ultracold particles. For the first
time, condensates of more complex systems than atoms had been made. Especially
the weak, tunable binding energy of the molecules composed of two fermions opens
new avenues of research [Bar04c, Reg04, Zwi04, Bou04, Bar04b, Kin04a, Chi04a]
for experimentalists that had previously only been accessible in theory [Eag69, Leg80,
Che04].

Among the major experimental challenges for the achievement of the molecular
condensate and its observation were:

• A new focused beam optical dipole trap was designed (4.3.2) that provides a
stable trapping potential which can be precisely controlled over more than four
orders of magnitude. Together with the large scattering lengths close to the
Feshbach resonance highly efficient evaporative cooling can be achieved.
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7 Bose-Einstein condensation of molecules

• Unconventional methods were used to prove the presence of the condensate as
initially, no imaging of the molecules was available. Most important, the precise
control of the trap frequencies helped to get an accurate estimate of the number
of quantum states in our extremely shallow trap that was a factor of 2 lower than
the number of trapped molecules.

• Controlled spilling of our condensate using a magnetic field gradient to tilt a
very shallow trap was used to demonstrate the tunability of the mean field of the
condensate that depends on the magnetic field.

7.1 Evaporative cooling towards a molecular BEC

As evaporative cooling in our standing wave trap turned out not to be efficient below
a certain trap depth, we designed a new focused beam optical dipole trap which we
load from our standing wave trap. An important feature of this trap is that we can
control the shape of the potential with excellent accuracy while changing the trap depth
by four orders of magnitude. It is described in more detail in chapter4.3.2 and in
[Rie04, Bar04a]. We started the evaporation process with typically two million atoms
at a temperature of∼80µK trapped in our focused beam trap with a laser power of
P = 10.5 W, corresponding to a trap depth ofUat/kB ≈ 760µK. The peak number
density is calculated as∼1014 cm−3 and the peak phase-space density is∼5 × 10−3.
The calculated elastic collision rate is as high as∼5×104 s−1. For evaporative cooling,
we then ramped down the trapping potential in an exponential ramp with a 1/e time
between 0.23 s and 0.46 s. During evaporation, the interactions were tuned by applying
a constant magnetic field. In the following discussion evaporative cooling towards a
molecular BEC is described.

To test the performance of evaporative cooling in our dipole trap, we applied a
magnetic field of 1176 G above the Feshbach resonance where the scattering length is
very large and negative, but no inelastic loss or molecule production is expected. The
evaporation proceeded in a very similar way as described in Refs. [Gra02, O’H01]. The
measured atom number first follows a scaling law with the laser powerP, N/N0 = Pα

[O’H01] with α ≈ 0.24 (solid black line in Fig.7.1). In this regime the temperature
of the gas is typically a factor of ten below the trap depth [O’H01] and the elastic
collision rate stays well above 104 s−1. The crossover to Fermi degeneracy, where the
thermal energykBT reaches the Fermi energyEF, takes place atP ≈ 0.5 W where the
trap depth isUat/kB ≈ 36µK. Below P ≈ 50 mW, the axial confinement is determined
only by the magnetic potential as the optical potential is much weaker (see Eq.4.17).
The mean trap frequencyω = (ω2

radωax)1/3 scales then asω ∝ EF ∝ U1/3
at ∝ P1/3. As

a consequence, the trap depth decreases faster than the Fermi energy and a threshold
occurs whenEF reachesUat and the trap is filled up to the “rim”. Further decrease
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Figure 7.1: Evaporative cooling on both sides of the Feshbach resonance. We
measure the number of trapped particles (the number of all atoms that are free
or bound in molecules) as a function of the laser powerP at the end of an ex-
ponential evaporation rampP(t) = 10.5 W exp(t/230 ms). The trap depth for
atoms isUat/kB = P × 72µK/W, whereas for molecules it is two times larger
(Umol = 2Uat). The measurements taken at 1176 G with a negative scattering
length ofa ≈ −3500a0 (◦) show the spilling of a degenerate Fermi gas when the
trap depth reaches the Fermi energy. The solid line shows the maximum number
of trapped atoms in a two-component Fermi gas according to a numerical cal-
culation of the number of quantum states in our trap. The dashed lines indicate
the corresponding uncertainty range due to the limited knowledge of the exper-
imental parameters. The measurements at 764 G with positive scattering length
a ≈ 3500a0 (•) exhibit a striking increase of the trapped particle number at low
laser power, which is due to the formation of molecules.

of the laser power then leads to a spilling of atoms out of the trap and thus to a rapid
decrease of the number of trapped atoms. Our data shown in Fig.7.1 clearly show
this spilling effect forP < 10 mW corresponding to a trap depth ofUat/kB < 720 nK.
Modeling the spilling curves provides us with an upper bound ofkBT < 0.2EF for the
temperature in terms of the Fermi energy. In the regime of a completely filled shallow
trap, the number of atoms in the two-component spin mixture is given by two times
the number of quantum states in the trap. A numerical calculation, shown in Fig.7.1,
confirms this interpretation of our data.

We performed the same evaporation procedure at a magnetic field of 764 G, where
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the scattering lengtha ≈ +3500a0 has a similar magnitude but opposite sign. Here
the weakly bound dimers have a binding energy of∼2µK. Atoms are converted into
molecules when the temperature of the gas drops below the binding energy as de-
scribed in the previous chapter. In order to detect the molecules we dissociate them
and measure the number of resulting atoms. For this purpose we abruptly turn on the
full trap power which strongly heats the sample and leads to collisional dissociation.
In order to ensure that we dissociate all molecules we also apply a magnetic field ramp
across the Feshbach resonance. It turned out that the first step of the dissociation pro-
cess was crucial, as even while all molecules might be dissociated during the ramp
across the resonance, molecules could be formed again from a cold sample during the
finite speed ramp back to zero magnetic field before detection. The same scheme was
also used for switching off the field after evaporation above the resonance. Care also
had to be taken that evaporative loss did not occur after heating the sample. This was
done by minimizing the time for the magnetic field ramps so that the atoms would
spend only negligible time in fields where the scattering length is large. The number
of atoms measured after the dissociation process thus yields the number of free atoms
together with atoms having formed molecules. Evaporation at 764 G initially proceeds
in a very similar way as above the resonance. However, belowP = 10 mW the mea-
sured atom numbers depicted by the filled circles in Fig.7.1show a striking difference
in comparison with the case of the degenerate Fermi gas. Down to a power level of
P = 3 mW (Umol/kB ≈ 420 nK) the trap holds almost all particles and contains up to 20
times more atoms than it would be possible for fermions. Hence, the trapped sample
can no longer be an atomic Fermi gas. The trap is filled with bosonic molecules in the
weakly bound state. The lifetime of the molecular ensemble, for which we measured
about 20s at a fixed trap depth ofUmol/kB ≈ 500 nK, exceeds the time scale of elastic
collisions (∼100µs) by several orders of magnitude. This highlights that the molecular
cloud exists in a thermal equilibrium state.

In the experiments described in the previous chapter, molecules were formed at
constant trap depth and thus almost constant temperature. Here, the chemical atom-
molecule equilibrium shifts from a pure atomic sample to a pure molecular sample. In
the final stage of cooling all relevant energies, i.e. the thermal energykBT and the trap
depthsUat andUmol, are far below the binding energy~2/(ma2) so that in chemical
equilibrium one is left with an essentially pure sample of molecules. Furthermore,
any residual atoms, also those that might be left in a single state due to an initially
imperfect spin mixture are expected to evaporate quickly out of the trap, as they see
only half the trap depth as compared to the molecules.

The observation that a large number ofNmol ≈ 1.5 × 105 molecules are confined
in our very shallow, only 420 nK deep trap under thermal equilibrium conditions al-
ready shows that a molecular BEC is formed. The trap offers about 10 times more
quantum states for dimers as compared to the case of atoms discussed before. A factor
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of eight comes from the fact that the trap depth for the molecules is twice as large as
for the atoms and another factor of 1.24 is due to the lower magnetic confinement at
764 G. As we observe a factor of∼20 more particles than for the degenerate atomic
Fermi gas, the molecular gas is necessarily quantum degenerate. Because of the high
elastic collision rates, which stay well above 103 s−1 even for very shallow traps, the
sample is also thermalized. The temperature then must be a small fraction of the trap
depth. According to standard evaporation theory [O’H01], we can typically assume
T ≈ 0.1Umol/kB ≈ 40− 50 nK. This is well below the critical temperature for BEC,
for which we calculateTc = 280 nK using Eq.3.6 from the above parameters. As the
condensate fraction is given by 1− (T/Tc)3, these arguments show that the molecular
BEC must be almost pure.

7.2 First experiments with the Bose-Einstein conden-
sate

In this section, the first experiments that were done with the molecular Bose-Einstein
condensate are presented. Obviously, is was important to image the molecular cloud to
be able to observe the phase transition to a BEC by imaging the bimodal distribution
and watching the thermal component to disappear during evaporation.

Before we were able to image our molecular clouds, we used some unconventional
techniques to study the properties of our BEC. By tilting the trap using a magnetic field
gradient we could spill the BEC out of the trap in a controlled way. By performing the
spilling at different magnetic fields, we could show that the mean field size of the BEC
changes with the magnetic field in an expected way, proving that the shape of our
molecular cloud is governed by its mean field energy, which can only be the case in a
BEC.

7.2.1 Imaging the molecules at high magnetic field

There are several ways to image molecules produced at a Feshbach resonance. Most
of them include dissociating the molecules into atoms and then, before the spatial
distribution changes, imaging the atoms. The dissociation can either be done by a
magnetic field ramp across the Feshbach resonance [Her03] or by applying a radio
frequency pulse. In this case, one of the resulting atoms changes its hyperfine state
and thus one can selectively image the molecules by imaging atoms in the respective
state.

If the molecules have a very small binding energy, they can be imaged with the
same light that would be used to image atoms at the same field, which is described in
section4.5.2. As the ground state energy shift of a fewµK/kB is much smaller than
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the width of the atomic transition, only the shift of the excited state plays a role. The
long-range excited state potential is [Wei99, Zwi03]

Ve(R) ' ~Γ ×
(
λ

2πR

)3

, (7.1)

whereR is the distance between the two atoms. This means that as long as the inter-
atomic distance is larger than∼100 nm, the detuning of the molecular transition will
be small compared to the atomic linewidth of 5.9 MHz. As the size of the molecule
is on the order of the atomic scattering length, the molecules can be imaged as if they
were free atoms down to a magnetic field of∼720 G, which is consistent with our
observation.

Our current imaging technique works only for very weakly bound molecules and
is destructive, so one can only take one single shot per measurement. However, tech-
niques like off-resonant phase contrast imaging [Ket99] should be readily applicable
also for imaging molecules. With such a technique it should also be possible to image
more strongly bound molecules on bound-bound transitions [Hul04].

7.2.2 Bimodal distributions of a BEC with large scattering length

The emergence of a narrow peak on top of the much broader thermal momentum or
spatial distributions while cooling a dilute ultracold gas has emerged in the past years
as a standard method to observe the phase transition to a Bose condensed gas (see
3.1.3, [Ket99]). In our experiment, the application of this technique is subject to a few
constraints:

• First, the scattering length of our molecules is rather large, causing the usual
assumptions of a dilute gas to be not as well fulfilled as for alkali atoms. For-
tunately, the scattering length of our molecules can be tuned over a wide range,
providing additional diagnostic possibilities. For the images presented in this
chapter, the magnetic field is always ramped adiabatically to 676 G to tune the
scattering length to a value as low as possible without affecting the lifetime of
the BEC significantly.

• A second difficulty results from the axial magnetic confinement of the molecules
in the focused beam trap. As this confinement is directly related to the magnetic
offset field that determines the properties and the stability of our molecules, it
cannot be switched off, and time-of-flight measurements along the axial direc-
tion are not possible.

• As a consequence, all the measurements presented in the following were done by
analyzingin situ images. While the radial size on the order of∼1µm is smaller
than the∼10µm resolution of our imaging system, the axial extent of the cloud
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of roughly 100µm is well resolved, and radially integrated axial profiles will be
analyzed in the following section.

Analysis of the in situ images

In the following, images taken during evaporative cooling are analyzed. A set of im-
ages and their radially integrated profiles are shown in Fig.7.2. One can see clearly
that starting from the second image, a narrow peak appears on top of the broader ther-
mal distribution with its Gaussian wings that are getting smaller and smaller as the
temperature is reduced. For a quantitative analysis of the images we adopt the semi-
ideal model [Nar98] as described in section3.1.3, neglecting the interaction energy of
the thermal component. The radially integrated line profiles obtained from the density
distribution given in3.22and3.23are

n0(z) =


π

(µ− 1
2mω2

zz2)2

g mω2
r

for µ − 1
2mω2

zz
2 > 0,

0 otherwise.

(7.2)

and

nT(z) =
2π

λ3
T

kT
mω2

r


2ζ(5/2)− g5/2

(
e−(µ−

1
2mω2

zz2)/kBT
)

for µ − 1
2mω2

zz
2 > 0,

g5/2

(
e(µ− 1

2mω2
zz2)/kBT

)
otherwise

, (7.3)

wheren0(z) andnT(z) now represent line densities∗. These calculated density profiles
are now fitted to the measured profiles shown in Fig.7.2. The profiles are obtained
by summing the images shown on the right hand side in Fig.7.2 along the vertical
direction†. To obtain the correct axial cloud size, the observed axial dimension has
been multiplied by 1.39±1.5% to compensate for the viewing angle (see4.5.2). The
resulting fits are shown in Fig.7.2 as dark and light gray shading for the condensed
and noncondensed fractions. The fit includes four independent parameters: The total
molecule number given by the integrated signal, the temperature which is obtained
from the width of the thermal cloud, the fraction of condensed atoms and the chemical
potential of the BEC determined by the size of the condensed cloudµ = 1/2mω2

axr
2
TF,ax.

The resulting values are plotted in Fig.7.3 a)-d) versus the final laser power of the
evaporation ramp. A significant fraction of condensed molecules appears at a laser
power of 30 mW (Umol = kB × 4.3µK) at a temperature of∼ 600 nK. The condensate
fraction reaches∼90 % at a laser power of∼5 mW (Umol = kB ×720 nK) and a temper-
ature of∼100 nK. While lowering the trap depth further, the fit on the thermal wings
acquires increasingly large errors, because the thermal wings get smaller and smaller
and extend only very slightly beyond the condensate mean field.

∗To integrate equation3.23one has to make use of the identitydgp+1(z)/dz= gp(z)/z.
†Each image is the average of typically seven individual images to reduce noise.
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0 . 5  m m

Figure 7.2: In-situ absorption images and axial profiles of the molecular cloud
during evaporative cooling, starting at a laser power level of∼40 mW, going down
to ∼1 mW, with corresponding temperatures ranging from∼600 nK to∼15 nK.
Bose-Einstein condensation occurs between the first two images. The bimodal fits
to the data show the thermal (light gray) and condensed fractions (dark gray) of
the sample.

Determination of the scattering length

We calculate the scattering length from the chemical potential, the condensed molecule
number and the trap frequencies, using equation3.16:

a =

(
2µ
~ω

)5/2 aho

15N0
=

(2µ)5/2

15N~2ω3√m
, (7.4)

aho =
√

~/mω being the harmonic oscillator length associated with the geometric mean
vibration frequencyω. The result is shown in Fig.7.3e). The data at high trap depth
have a very large error that comes from the fact that the small condensate fraction has
a large relative error and also the chemical potential can not be determined very well.
At laser powers between 20 mW and 5 mW, all the data yield a consistent value of the
scattering length of∼400a0, while at very low trap depths (P < 2 mW), the calculated
scattering length drops significantly, which can be attributed to anharmonicity of the
radial trapping potential∗.

∗The chemical potential for these points is close to the trap depth and thus the BEC already sees the
anharmonic gaussian shape of the trapping potential, which is also confirmed by the spilling loss that is
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Figure 7.3: Parameters obtained from the fits to the data shown in Fig.7.2 ver-
sus the final relative trap laser power: a) Total number of molecules remaining.
b) Temperature of the molecules. c) Condensate fraction. d) Chemical potential.
e) Scattering length calculated from molecule number and chemical potential. f)
Maximum interaction energy per molecule in the thermal gas in the semi-ideal
model [Nar98]. The areas shaded in gray in e) and f) indicate where quantita-
tive analysis is not possible because of anharmonicity effects (e) or because the
assumption of an ideal thermal gas breaks down (f).

In the semi-ideal model, we assumed that the interaction energy of the thermal
component of the BEC does not play a role. To check how well this assumption is
fulfilled, we calculate the maximum interaction energy per particle to zeroth order,
neglecting any change in density from the noninteracting case. This energy is

Eint,therm= 2gnT =
8π~2a

m
ζ(3/2)

λ3
T

(7.5)

demonstrated with the lowest point in Fig.7.3a). The effectively lower radial trap frequency then leads
to a lower chemical potential
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and is plotted in Fig.7.3 f) in units of kB. These values are significant fractions of
both the temperatures and the chemical potentials for high trap depths. Obviously, the
interaction energy calculated using7.5 is strongly overestimated as they neglect the
repulsive effect of the mean field. But for the data aboveP = 20 mW the effect on
the density of both the condensed fraction (Eint,therm > µ) and the thermal cloud must
be significant, and a quantitative description for these data using the above model is
expected to fail. Excluding the data points in Figs.7.3 e) and f) shaded in gray and
for which we know that the our model will not yield the correct scattering length, we
determine a scattering length of

a = 390± 40a0 at 676 G (7.6)

by averaging the results from the remaining data. The error given here is the statistical
error that does not include any systematic uncertainties, the largest one stemming from
the molecule number that scales linearly with the scattering length (see7.4), and which
has an uncertainty of∼ 50 %. According to our current knowledge [Bar04d], assuming
the Feshbach resonance to be at 834 G, the atomic scattering length at 676 G is 1170a0.
The molecular scattering length can then be estimated to beamol = 0.6× aat = 706a0,
which is a factor of 1.8 larger than the measured value, which can in part be explained
by a 50%-error of the particle number calibration∗.

Condensate fraction and critical temperature

Fig. 7.4shows the measured condensate fraction versus the temperature divided by the
critical temperatureT0

c as calculated for an ideal gas. This relation has been calculated
by Naraschewskiet al. [Nar98] for the condition that the interactions can be treated in
a perturbative way (equation3.27). The small quantityη used in this calculation is for
our data

η =
µ(T = 0)

kBT0
c
= 1.57

(
N1/6 a

aho

)2/5

' 0.5− 0.6. (7.7)

Assuming thatη is small enough, Eq.3.27describes the condensate fraction. The gray
shaded area in Fig.7.4 describes the condensate fraction expected from Eq.3.27for
values ofη between 0.45 and 0.65. It fits the data well within the large error bars
for the temperature despite of the relatively large value forη. The black solid line

∗Any other errors are supposed to be much smaller, among them are the calibration of the magnifi-
cation of the imaging system including the angles between the cigar shaped cloud and the camera (1%):
The chemical potential scales with the square of the magnification, and thus the scattering length scales
with the fifth power. Consequently, it can account for a 5% error of the scattering length. A remaining
source of error are the trap frequencies. The scattering length depends on the fourth power of the axial
frequency, while it depends only on the second power of the radial frequency, which can be seen from
7.4, taking into account theω2

z-dependence of the observed chemical potential. The error in scattering
length due to the trap frequencies consequently amounts to about 10%.
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shows the calculated condensate fraction expected for a noninteracting gas using3.9.
It can be seen clearly that there is a significant reduction of the condensate fraction
due to interactions. As the determination of the scattering length suggested that the
molecule number be a factor of 1.8 lower as compared to our calibration, the dashed
line shows the expected condensate fraction for that case assumingη = 0.55. This line
lies significantly below the data in Fig.7.4. This in return suggests that the molecular
scattering length at 676 G has to be smaller than the expected 720a0. But as 676 G is
already quite far away from the Feshbach resonance, one could think of a deviation
from theamol = 0.6aat law [Pet04] that is only correct for largea.

Close to the critical temperature, one expects that the semi-ideal model breaks
down, because the calculated chemical potential is smaller than the interaction energy
per particle in the thermal gas. For our molecules, this interaction energy is even on
the order of the thermal energy, as can be seen from Fig.7.3 f). Especially the critical
temperature is a value that is difficult to get right ifη is not very small . The critical
temperature for our trap and atom numbers has been calculated numerically by S.
Kokkelmans. It is 0.89×T0

c or 0.93×T0
c for a = 700a0 anda = 400a0, respectively. In

Fig. 7.4, these two values are represented by two triangles. Unfortunately, the critical
temperature is quite hard to determine experimentally, so that this prediction cannot be
verified quantitatively in the experiment.

Lowest achieved temperature (entropy) and prospect for a highly degenerate
Fermi gas

For subsequent measurements it is interesting to know the final temperature after evap-
orative cooling. The errors for the temperature obtained from the fits shown in Fig.7.4
are rather large and do not result in a good estimate. The large error results from the
fact that both the condensate fraction and the temperature are used as free parame-
ters in the fit. If one however constrains the condensate fraction to the temperature
using Eq.3.27, the uncertainty in the temperature can be greatly reduced. One then
obtains for the data at 3 mW in Fig.7.3 a temperature of 114(14) nK, corresponding
to T/Tc = 0.42(5) and a condensate fraction of 0.85(3), the error of which also in-
cludes the limited knowledge of the scattering length within a factor of two. Errors
not included above are due to the imaging and due to quantum depletion. Errors in the
imaging are rather hard to get quantitative, but they tend to make the thermal wings
look wider. Thus, image distortion will make the temperature appear higher. The same
is true for quantum depletion [Tim97]. It will cause some atoms to be expelled from
the condensate if the interaction is large. The fraction of depleted atoms is 5π/8

√
na3

[Tim97, Pit03], which is≤ 1% for the image analyzed here. As these two errors both
make the observed temperature larger, the temperature and condensate fraction deter-
mined above represent upper limits. The chemical potential under these conditions is
determined from the fit askB × 125(6) nK, which is comparable to the temperature.
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Figure 7.4: Condensate fraction versus temperature divided by the critical temper-
ature calculated for an ideal gas. The gray shaded area represents the expectation
using equation3.27for η between 0.45 and 0.65. The black solid line is the pre-
diction for a noninteracting gas. The dashed line is calculated assuming a factor of
1.8 lower atom number withη=0.55. The two triangles represent the critical tem-
peratures calculated by S. Kokkelmans assuming a scattering length ofa = 700a0

(0.89× T0
c ) anda = 400a0 (0.93× T0

c ).

It is interesting to note that if the molecular BEC can be isentropically converted into
a Fermi gas, it would be cooled significantly while the molecules are dissociated and
the thermal energy is distributed on twice as many particles. This phenomenon was
studied quantitatively in [Car04]. Carret al.calculate the entropy of a noninteracting
Fermi gas to be

SFermi = kBNπ2 T
TF
+ O(T3), (7.8)

and that of a (molecular) BEC in the Thomas-Fermi limit as

SBEC ≈ kBNmol

(
2π4

45ζ(3)
+ 3

µmol

kBT

) (
T
Tc

)3

. (7.9)

To obtain the analytic expression of Eq.7.9, the entropy was expanded in terms of
µmol/kBT. According to [Car04], Eq.7.9 is accurate to within 10% forµmol/kBT ≤ 10,
well fulfilled for all our experiments. Equating the two entropies, on can obtain the
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Figure 7.5: Controlled spilling of the BEC by application of a magnetic field
gradientB′. This variable gradient was applied in addition to the constant gradient
of 1.1 G/cm that we use for gravity compensation. The data are taken at two
different magnetic fields,B1 = 772 G (◦) and B2 = 731 G (•), where the mean
field of the BEC is different by a factor of∼ 2. The image on the right shows how
molecules are spilled out of the trap in a controlled way, the spilling results in a
molecule laser!

temperature of the Fermi gas,

T
TF
=

1
2π2

(
2π4

45ζ(3)
+ 3

µmol

kBT

) (
T

TBEC

)3

. (7.10)

Plugging in the numbers given above, one getsT/TF ≤ 0.025(10). Indeed, we could
show later that the crossover to a Fermi gas proceeds with negligible increase of en-
tropy [Bar04c] and one can expect to achieve such temperatures in the Fermi gas
regime. This expected temperature of 0.025TF is a factor of two lower than the lowest
temperatures reported previously [Had03]. At such temperatures, a Fermi gas with
strong interactions should be deep in the superfluid regime.

7.2.3 Studying a BEC without imaging

Controlled spilling of the condensate

Before we were able to image our molecules we performed controlled spilling of the
condensate to demonstrate the mean field of the molecular BEC and to investigate its
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dependence on the magnetic field. After producing the BEC at a magnetic field of
B1 =772 G and a final laser power of 3.7 mW which corresponds to a trap depth of
Umol/kB ≈ 500 nK we adiabatically tilted the vertical trapping potential by applica-
tion of a magnetic field gradientB′ that was smoothly ramped up within 50 ms. The
magnetic field gradient was applied using the small auxiliary coils that are also used to
compress the MOT during the loading of the dipole trap. A small additional gradient
is always applied to compensate for gravity (1.06 G/cm) and stray magnetic field gra-
dients. The number of remaining particles as a function of the applied field gradient
(Fig. 7.5) shows the loss of molecules resulting from the reduced trap depth. When the
magnetic field is kept at the evaporation field ofB1 =772 G, where the scattering length
is a ≈ 4100a0, even very weak gradients lead to loss (open circles). This indicates that
the chemical potential is close to the potential depth so that the trap is full. The chem-
ical potential can be lowered by reducing the scattering length. For this purpose we
ramped the magnetic field to a smaller value. A spilling curve taken atB2 =731 G,
where the scattering length isa ≈ 2200a0, indeed shows a markedly different behavior
(filled circles in Fig.7.5). Here small gradients do not lead to any loss and the curve
thus shows a flat top. For gradients|B′| exceeding 0.65 G/cm atoms get spilled until
everything is lost at|B′| = 1.3 G/cm.

A comparison of the two spilling curves in Fig.7.5 provides us with information
on the ratio of the scattering lengthsam at the two magnetic fieldsB1 andB2. In the
spilling region above|B′| = 0.65 G/cm the trap is full in both cases, and the trapped
particle number is inversely proportional toam. Comparing of the two spilling curves
in that region we obtain a scattering length ratio ofam(B1)/am(B2) = 2.4(2). This
factor is indeed close to the factor of 1.9 expected from the proportionality of atomic
and molecular scattering lengthsam ∝ a [Pet03a] and the dependence ofa with the
magnetic field. This observation demonstrates the mean field of the molecular BEC
together with its magnetic tunability.

After we had absorption imaging for the molecules available, we came back to the
spilling experiment for a moment, to see how the spilling process would look like. The
image shown on the right in Fig.7.5 was taken right after the magnetic field gradient
ramp, showing a continuous flow of molecules out of the trap. The properties of this
molecular beam were not studied, but one can expect that this is the first molecule
laser!

Collective oscillations

For our cigar-shaped BEC in the Thomas-Fermi limit, the lowest frequency collective
excitation mode is a quadrupolar mode which is expected at a frequency of

ωBEC =

√
5
2
ωz = 2π × 33.8 Hz. [Str96] (7.11)
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Figure 7.6: Resonance of a collective excitation mode at
√

5/2ωz. The oscillation
is excited by magnetic modulation of the molecular BEC mean field. The solid
curve shows a Lorentzian fit to the data.

We performed our measurement at∼3.7 mW (Umol/kB ≈ 500 nK) with a trapped sam-
ple of∼105 molecules at a magnetic field of 764 G. We applied a sinusoidal modulation
to the magnetic field with an amplitude of 3.5 G. This resulted in a modulation of the
molecular scattering length with a relative amplitude of about 5%, whereas the result-
ing amplitude in the axial trap frequency is only 0.2%. After two seconds of continuous
excitation we measured the remaining number of particles in the trap. The resonance
manifests itself in a sharp dip in the number of particles as shown in Fig.7.6. The
observed resonance frequency of 33.6 Hz is in remarkable agreement with the expec-
tation. It is interesting to note that a non-condensed gas deep in the hydrodynamic
regime would show a similar frequency of

ωhydro =

√
12
5
ωz = 2π × 33.2 Hz [GO99], (7.12)

which differs only by 2% from that of a BEC. This measured collective excitation
frequency rules out a gas in the collisionless regime, which would show its resonant
loss at 2ωz = 2π×42.8 Hz. Without the ability to image the molecules, the observation
of the collective exitation mode was a key argument to prove the presence of a BEC.
The observed narrow resonance width of∼1 Hz shows a very low damping rate and is
consistent with an almost pure BEC [Jin97].
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Chapter 8

Outlook

The almost pure molecular Bose-Einstein condensate that was realized during this the-
sis serves as an ideal starting point for further experiments. By tuning the binding
energy of the molecular state above zero a strongly interacting Fermi gas can be real-
ized, and a BCS-type superfluid is expected when the interactions become sufficiently
weak. This so-called BEC-BCS crossover (see chapter3.2 for details and references)
has been under theoretical investigation for several decades and can now finally be
studied experimentally.

Indeed after completion of the experimental work in the frame of this thesis we
could show that the molecular BEC can be converted adiabatically and reversibly into
a highly degenerate Fermi gas of atoms [Bar04c]. In a race to prove the superflu-
idity of the strongly interacting Fermi gas above the Feshbach resonance, a number
of important experiments were performed in several groups. Regalet al. at JILA
could show that pairs existed above the Feshbach resonance and that these pairs were
Bose-condensed [Reg04], which was quickly confirmed by experiments performed by
Zwierleinet al.at MIT. Collective excitation measurements performed with our exper-
iment [Bar04b] and by Kinastet al. at Duke University [Kin04a] showed extremely
low damping and provided further evidence that the strongly interacting gases studied
by these groups are in a superfluid state also above the Feshbach resonance. The most
recent progress in our group is the observation of the pairing gap in the Fermi gas
[Chi04a], which is another strong indication of superfluidity. However, none of the
above experiments were able so far to provide a real “smoking gun” for superfluidity,
which represents the next great challenge for experimentalists.

In the following I will shortly summarize the results obtained with our experiment.
They will be described in detail in Markus Bartenstein’s PhD thesis [Bar04a].

Crossover from a molecular BEC to a degenerate Fermi gas [Bar04c]

The extraordinarily long lifetime of the molecular BEC of 40 s close to the Feshbach
resonance immediately suggested that our strongly interacting gas should be very sta-
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ble against any kind of inelastic decay. But the question remained whether the process
of dissociating the molecules through a magnetic-field sweep across the Feshbach res-
onance would be reversible and a BEC of molecules would be recovered when the
magnetic field is ramped back to its original value. Experiments showed that such
magnetic-field ramps were indeed isentropic provided that the ramps were performed
slow enough so that the gas would always remain in equilibrium. The first measure-
ment of the axial cloud size as a function of the magnetic field in the crossover regime
showed that the conversion to the Fermi gas is completely smooth, and the shape of
the cloud is continuously transformed into that expected for an interacting Fermi gas.

Collective excitations in the BEC-BCS crossover [Bar04b]

A well established technique to study the dynamic properties of a trapped gas is to ex-
cite collective oscillations and measure their frequencies and damping. Experimentally
in our cigar-shaped trap the lowest axial and radial collective frequencies are the most
straight forward to excite. The calculations for the collective modes in the strongly
interacting regime are challenging. In December 2003, S. Stringari summarized the
status of theoretical results in [Str04]. For the low-frequency axial mode, our results
could very well reproduce the expectations. This was not the case for the radial mode
where we found surprising features. In the strongly interacting molecular BEC regime,
we observe a negative frequency shift with increasing coupling strength while a pos-
itive shift was expected. In the regime of a strongly interacting Fermi gas, an abrupt
change in the collective excitation frequency occurs, which may be a signature for a
transition from a superfluid to a collisionless phase.

Observation of the pairing gap in a strongly interacting Fermi gas [Chi04a]

Experiments pioneered by Regalet al. showed that the weakly bound molecules
formed on a Feshbach resonance could be dissociated by radio frequency spectroscopy
to determine the binding energy [Reg03]. The main idea is that a radio frequency tran-
sition is driven from the weakly bound molecular state formed from one atom in state
|1〉 and one in state|2〉 to a pair of free atoms in state|1〉 and |3〉. Due to the small
binding energy, this transition is only slightly upshifted as compared to the free-atom
transition from state|2〉 to state|3〉, which has a frequency of about 80 MHz at high
magnetic field.

We extended this technique to the strongly interacting Fermi gas above the Fesh-
bach resonance, where no two-body bound state exists. Here, an upshift in frequency
represents the amount of energy that is needed to remove a single particle from the gas.
Fig. 8.1shows radio frequency spectra of our spin mixture at different magnetic fields
and temperatures. Plotted is the fractional loss in state|2〉 versus the frequency offset
from the free-atom transition. The upper row shows the spectrum of a thermal gas
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where the temperature is much larger than the binding energy and no molecules exist.
In this case only the narrow atomic transition is observed. In the consequent rows the
temperature is reduced in two steps to the lowest possible temperature in our setup.
In the second row one can clearly observe a second peak appear above the atomic
frequency while the position of the atomic peak is unchanged. Surprisingly, a double-
peak structure also emerges on the Feshbach resonance and above, where no molecular
bound state exists. Further cooling then leads to a complete extinction of the atomic
signal indicating that all atoms are paired. Below the Feshbach resonance, the shape of
the molecular peak is unchanged during the cooling process because the dissociation
of the molecules into two free atoms is a simple two-body process. On resonance and
above, the pairing mechanism is many-body in nature and therefore, the pair-breaking
energy depends on the temperature and the Fermi energy of the system. The spectra
observed in the crossover region are in beautiful agreement with a theoretical model
developed by Kinnunenet al. [Kin04b]. The appearance of the double peak structure
early in the evaporative cooling process suggests that our full evaporation brings the
strongly interacting system deep into a superfluid state.

New experimental challenges: A “smoking gun” for superfluidity

While the experiments described above provide strong evidence for the presence of a
superfluid phase in our strongly interacting Fermi gas, none of them is a clear mani-
festation of superfluidity. The next great experimental challenge will be to find direct
evidence for superfluidity. The beautiful experiments that have been performed with
atomic BECs can provide ideas and incentives: One of the most stunning effects would
be the excitation of vortices [AS01]. Other interesting experiments would be the ob-
servation of matter-wave interference [And97] to show the phase coherence of the gas.
Bragg diffraction [Ste99] or optical lattice experiments [And98, Gre02] could also
give new insight into the properties of deeply degenerate Fermi gases. The first optical
lattice experiments are already on the way in Florence [Mod03] and in Zurich.

All of the above ideas are already being actively pursued in several groups around
the world and experimenters will definitely have a lot of fun producing more exciting
results already in the coming months.
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Figure 8.1: RF spectra for various magnetic fields and different degrees of evap-
orative cooling. The RF offset (kB × 1µK = ~ × 20.8kHz) is given relative to the
atomic transition|2〉 → |3〉. The molecular limit is realized for B= 720 G (first
column). The resonance regime is studied for B= 822 G and 837 G (second and
third column). The data at 875G (fourth column) explore the crossover on the BCS
side. Upper row, signals of unpaired atoms atT′ ≈ 5TF(TF = 18µK); middle row,
signals for a mixture of unpaired and paired atoms atT′ = 0.5TF (TF = 3.4µK);
lower row, signals for paired atoms atT′ < 0.2TF (TF = 1.2µK). Note that the
true temperatureT of the atomic Fermi gas is below the temperatureT′ which was
always measured in the BEC limit (see chapter7.2.2and Eq.7.10). The solid lines
are introduced to guide the eye.
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Appendix A

Lithium properties

In this appendix, only the most important properties of lithium are summarized. A
more elaborate treatment can be found in [Geh03a] for example.

A.1 Chemical properties

Lithium (Greek lithos, meaning “stone”) was discovered by the Swedish chemist Jo-
hann Arfvedson in 1817. Arfvedson found the new element within minerals, which
gave the element its name. Lithium in its pure form is a soft, silver white metal, that
oxidizes very rapidly in air and water. It is the lightest solid element with a density
only about half that of water.

Industrially, lithium is used for heat transfer applications due to its large heat ca-
pacity, and for batteries because of its high electrochemical potential.

Being the lightest of all alkali atoms, it features the highest melting point of 181◦C
and also the lowest vapor pressure. It can be approximated by [Lid92]

pLi = 108.061−8310/T mbar, (A.1)

where T is measured in Kelvins. At 300◦C, it is 3.6×10−7 mbar, at 400◦C it is
5.2×10−5 mbar. This low vapor pressure makes magneto-optic trapping of lithium
atoms from a background gas impossible, and a slowed atomic beam has to be used to
achieve a reasonable loading rate of the magneto-optical trap.

Lithium has two stable isotopes. Naturally abundant lithium consists of 92.5%
7Li and 7.5%6Li. The 6Li isotope is an important ingredient of the thermonuclear
hydrogen bomb, where6Li serves as a source for tritium, which has a finite lifetime
of 12 years and is thus not suitable for long-time storage. For this reason isotope
separation was performed on a large scale in the mid-1950s and early 1960s.
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A.2 Atomic structure

As an alkali atom, lithium has a hydrogen-like atomic level structure with the single
2S1/2 valence electron determining most of its properties. The two main optical tran-
sitions are the two dipole 671-nm transitions to the 2P1/2 and the 2P3/2 excited states
that have a splitting of∼10 GHz.

The nuclear spin of eitherF = 1 (6Li) or F = 3/2 (7Li), which is added to the spin
S = 1/2 of the electronic ground state lead to an either half-integer (6Li) or integer
(7Li) total angular momentum. This causes the6Li atom to be a fermion and the7Li
atom to be a boson. The coupling of the nuclear spin with the electron spin also gives
rise to a hyperfine splitting, which is 228.20526 MHz for6Li and 803.50487 MHz for
7Li [ Ari77].

Fig. A.1 shows the Zeeman energy of those states of the6Li atom that are relevant
for the experiments in this thesis, the 2S1/2 ground state and the 2P3/2 excited state.

6Li ground state

The I = 1 nuclear spin of the6Li atom couples to the electron spin and leads to a
hyperfine splitting of the 2S1/2 ground state resulting in total angular momentum states
of F = 1/2 andF = 3/2 that are split by 228 MHz.

When magnetic fields are applied, the Zeeman shift is linear only in a small mag-
netic field range� 30 G because of the weak hyperfine coupling and the Breit-Rabi
formula [Bre31] has to be used to calculate the magnetic field dependent energies of
the hyperfine states:

EHFS(B, F = 1±
1
2
,mF) = −

1
6
∆E0 +mFgNµBB±

∆E0

2

(
1+

2
3

mF x+ x2

)1/2

, (A.2)

where

x =
(gJ − gN)µB

∆0
B, (A.3)

with gJ = 2.0023010 andgN = −0.0004476540 [Ari77].

At high magnetic field� 30 G, the nuclear spin is completely decoupled from the
electron spin, the atom is in the Paschen-Back regime. Depending on the electron spin,
the atom is either a high-field seeker (mS = −1/2) or a low-field seeker (mS = +1/2)
with a magnetic moment of∼ µB. The nuclear spin leads to a splitting of the electronic
states by approximately 80 MHz withmI = ±1,0 (see Fig.A.1).

In our experiments, we use a spin mixture of the two lowest-lying levels to avoid
any two-body decay channels.
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Figure A.1: Schematic of the Zeeman energy of those states of the6Li atom
that are of interest for this thesis: The 2S1/2 ground state and the 2P3/2 excited
state. While the hyperfine splitting of the ground state of 228 MHz is important,
the hyperfine splitting of the excited state is smaller than the width of the optical
transition of 5.9 MHz.

Optical transitions for trapping and imaging

In alkali atoms, there exists a closed (cycling) transition from a stretched ground state
to a stretched excited state. In lithium, this is the transition from theF = 3/2;mF = 3/2
ground state to theF′ = 5/2;m′F = 5/2 excited state, from which it can only decay
back into its original state. Unfortunately, the hyperfine splitting between theF′ = 5/2
and theF′ = 3/2 excited states is only∼ 3 MHz, about half the natural linewidth of the
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transition of 5.9 MHz. This means that light resonant with theF = 3/2 → F′ = 5/2
transition is also resonant with theF = 3/2 → F′ = 3/2 transition, from which the
atoms can decay to theF = 1/2 ground state. Therefore, the continuous scattering of
photons at zero magnetic field always requires the simultaneous excitation from both
the F = 3/2 and theF = 1/2 states, and two sources with a frequency splitting of
228 MHz are required, both for imaging or for trapping the atoms.

At high magnetic field in the Paschen-Back regime, an almost closed transition
exists from any ground state, as now the nuclear spin is decoupled from the electron,
and thus it cannot be flipped in an electric dipole transition. For our atoms in the two
lowest states withmS = −1/2, the transition to themj = −3/2 is a closed transition
preservingmI . Moreover, due to the splitting of∼80 MHz between the different hy-
perfine ground states, these can be selectively excited by tuning the laser frequency.
This is very useful for imaging as the atoms in the different states can be selectively
imaged.
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Appendix B

Resonator-enhanced optical dipole
trap for fermionic lithium atoms
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We demonstrate a novel optical dipole trap that is based on enhancement of the optical power density of a
Nd:YAG laser beam in a resonator. The trap is particularly suited for experiments with ultracold gases, as
it combines a potential depth of the order of 1 mK with storage times of several tens of seconds. We study
the interactions in a gas of fermionic lithium atoms in our trap and observe the inf luence of spin-changing
collisions and off-resonant photon scattering. A key element in reaching long storage times is the use of an
ultralow-noise laser. The dependence of storage time on laser noise is investigated. © 2001 Optical Society
of America

OCIS codes: 020.7010, 020.2070.

Optical dipole traps that are detuned far from reso-
nance are rapidly becoming standard tools for atomic
physics at ultralow temperatures.1 They permit
trapping of practically any atomic species, as well as
molecules. In the f ield of quantum gases they permit
trapping of mixed-state and mixed-species ensembles.
The coupling of the atoms to the light f ield, which
is weak for traps tuned far from resonance, can be
strongly enhanced with an optical resonator. Indeed,
in cavity quantum-electrodynamics experiments,
single atoms have been trapped by classic light
fields2 and by light fields that correspond to a single
photon.3,4 Optical resonators have also been used
for sensitive detection of optical f ields in a quantum
nondemolition way with cold atoms5 and even open
up new possibilities for optical cooling of atoms and
molecules.6,7

In this Letter we demonstrate a resonator-enhanced
dipole trap (REDT) for use in experiments with
ultracold gases. We take advantage of the resonant
enhancement of the optical power density and the
corresponding trap depth. To suppress photon scat-
tering and reach storage times of several tens of
seconds, the trap light is detuned far from atomic
resonance. At the same time the trap’s volume and
potential depth are large to facilitate the transfer of
many atoms into the trap. We expect that the high
optical power density reached in the REDT will be
useful in many contexts, for instance, for trapping
earth–alkali atoms, buffer-gas-cooled atoms, and cold
molecules.

Our primary interest is in spin mixtures of fermionic
6Li as a promising candidate system for the forma-
tion of Cooper pairs in an atomic gas.8,9 In particu-
lar, we aim to study Feshbach scattering resonances,
which may provide a binding mechanism for the Cooper
pairs.10

To suppress photon scattering sufficiently requires
that the trap light be detuned from the 670-nm D

lines of Li by a few hundred nanometers. In addition,
capturing atoms from a magneto-optical trap (MOT)
requires an optical trap with a similar spatial exten-
sion and a depth of �1 mK. Without resonant en-
hancement, such a trap can be created only by use
of a high-power laser. Indeed, trapping of 6Li in a
high-power CO2 laser trap as well as evaporative cool-
ing were recently reported.11

Our REDT requires only a 1.2-W Nd:YAG laser
�l � 1064 nm� whose power density is resonantly
enhanced 130-fold in a 15-cm near-confocal reso-
nator (see Fig. 1). The resonator mirrors are placed
outside the vacuum, which facilitates adjustment
of the resonator and at the same time avoids the
problems associated with optics in ultrahigh vac-
uum (UHV). The MOT overlaps approximately
1000 antinodes of the standing wave, which act as
separate microtraps, with an axial separation of
l�2 � 532 nm and a radial extension given by the
beam waist, w0 � 160 mm. The resonator’s length
is increased by �3 mm from the confocal condition
to lift the degeneracy of the higher-order modes.
The optical losses at the vacuum windows are mini-
mized by use of a high-purity fused-silica UHV cell
and by transversing of all intracavity glass surfaces at

Fig. 1. Schematic of the resonator trap. The atoms are
trapped in �1000 antimodes of the standing wave.

0146-9592/01/231837-03$15.00/0 © 2001 Optical Society of America
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Brewster’s angle. The small residual round-trip loss
L permits a maximal resonant enhancement A� 1�L ,
where the resonant enhancement factor A is defined
as the ratio of the intracavity intensity to the intensity
of the standing wave in a retroref lected beam. For
maximum enhancement, ref lectivity R of the input
coupler must match L . For our UHV cell we
measured L � 0.004�2� in a test resonator, and
correspondingly we chose R � 0.9940�2�. Using these
values theoretically would permit an enhancement
factor of 240 at a calculated f inesse F � 600. We
typically measure A � 130 6 15 at F � 650 6 60,
where the loss is due to incomplete mode matching.

A rigid resonator body, which is acoustically de-
coupled from mechanical vacuum pumps, provides
passive stability. In addition, a piezomechanical
actuator compensates for changes in cavity length
caused, e.g., by thermal drifts and acoustical noise.
This servo loop, with a bandwidth of 8 kHz, uses
the Hänsch–Couillaud method to derive an error
signal12; the Brewster windows act as the intracavity
polarizer. No high-bandwidth stabilization proved
to be necessary. The drive laser for the resonator
trap is a commercially available ultralow-noise 1.2-W
diode-pumped solid-state Nd:YAG laser (Innolight
Mephisto). Two Faraday rotators provide a 70-dB
reduction of feedback of the resonator to the laser, and
an acousto-optical modulator provides control over the
laser power admitted to the cavity. Approximately
20% of the laser power is lost in these elements.

The energy density inside the cavity is the same as in
a retrof lected 130-W beam, which leads to a calculated
trap depth13 of 0.8 mK 3 kB . The corresponding pho-
ton-scattering rate in the intensity maximum is cal-
culated to be �1 s21. In the harmonic approximation
of the potential near the trap center we calculate ax-
ial and radial trap frequencies vax�2p � 1.4 MHz and
vrad�2p � 2.0 kHz, respectively. The trap, however,
is anharmonic, and atoms in higher vibrational states
oscillate at lower frequencies.

Our source of cold atoms is a MOT based on diode
lasers,14 which consists of a cooler beam, detuned
220 MHz from the 22S1/2F � 3�2 ! 22P3/2F � 5�2
transition, and a repumper at �220 MHz from
22S1/2F � 1�2 ! 22P3/2F � 3�2. In the MOT we
collect approximately 2 3 107 atoms in 10 s from a
Zeeman slowed beam. We then cool and compress
the atoms, by reducing the detuning, to a density
of �1011 cm23 at a temperature of &1 mK. The
MOT light beams and magnetic f ields are turned off
after 20 ms of compression. The REDT remains on
permanently during the MOT phase, as it does not
inf luence the loading of the MOT. Approximately
0.5% of the atoms remain in the REDT after the MOT
is turned off; the remainder are lost in the f irst 60 ms.
We detect atoms that remain in the REDT by turning
on the MOT fields again and subsequently measuring
the f luorescence. The f luorescence is proportional to
the number of atoms in an optically thin MOT, with
an uncertainty of 50% in the calibration.

The storage time of atoms in an optical trap is
usually limited by rest-gas collisions, interatomic
processes, off-resonant photon scattering, or heating

caused by laser noise. In our apparatus, at a pres-
sure of 3 3 10211 mbars the decay rate that is due
to rest-gas collisions, measured with magnetically
trapped Li atoms, is 8 3 1023 s21.

Interatomic collisions in 6Li strongly depend on the
hyperfine state of the atoms. We pump the atoms
into the F � 1�2 state by turning off the MOT re-
pumper several milliseconds before the cooler, or into
the F � 3�2 state by leaving the repumper on longer.
Atoms in the F � 3�2 state are lost from the trap
as a result of spin-changing collisions with a second-
order decay rate �N�N 2 � 2 3 1025 s21 (Fig. 2). Be-
cause the initial density of the trapped atoms is of the
order of 109 cm23, the measured decay rate implies a
rate constant of the order of 1029 cm3�s, in agreement
with theoretical predictions.10

The atoms in the F � 1�2 hyperfine ground state are
noninteracting to a good approximation, as the s-wave
scattering length between the two Zeeman sublevels is
small in a low magnetic f ield10,11 and p-wave scattering
is expected to be strongly suppressed. The data show
an initial fast decay of the order of 10 s, followed by
a long storage time; that time is well described by an
exponential decay with a time constant of �50 s. The
initial decay can be explained as follows: Because the
density of trapped states in our potential is strongly
peaked just below the trap edge, a large fraction of
atoms occupies states that are only weakly bound. A
single photon recoil momentum then suffices to trans-
fer such an atom into an untrapped state; therefore
the number of weakly bound atoms decays strongly in
the f irst few photon-scattering times. We numerically
modeled the effect of photon scattering and rest-gas
collisions on the distribution of the atoms, starting
from a distribution that matches the density of states
in the trap. The model curve (dashed curve in Fig. 2),
which has no adjustable parameters except for the ini-
tial number of atoms, agrees with our measurements.

Laser intensity noise, especially at twice the ax-
ial trap frequency, causes heating of the atomic
gas.15 The resonator has a mode-cleaning effect:

Fig. 2. Evolution of the number of trapped atoms in the
upper �F � 3�2� and lower �F � 1�2� hyperf ine ground
states. Solid curve, second-order decay f it to the F � 3�2
data; dashed curve, modeled loss owing to off-resonant pho-
ton scattering and rest gas.
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Fig. 3. Inf luence of laser intensity noise on storage time.
Dashed horizontal line, storage time with active stabiliza-
tion of the laser output power; solid line, linear fit through
the data. Inset, noise spectrum with the active intensity
stabilization of the laser turned off (solid curve) and with
the additional intensity noise modulation (dashed curve).
Shot noise at the photodiode exceeds the normal laser noise.

Pointing and shape f luctuations of the laser beam do
not affect the shape of the trap potential. However,
these f luctuations are converted into intensity noise.
Great care must therefore be taken in choosing the
drive laser: The absence of laser noise, especially
at frequencies near 2vax, is crucial. An estimate of
the relevant loss rate can be found from a harmonic
oscillator model16: G � p2n2Sk�2n�, where n is the
relevant oscillation frequency and Sk is the one-sided
power spectrum of relative intensity noise (RIN) as
defined in Ref. 16.

In preliminary experiments with a different
single-frequency diode-pumped Nd:YAG laser, with
a relative intensity noise of Sk�2nax� � 10210 Hz21,
we were able to trap atoms, but storage times
were less than 1 s. The Mephisto laser, which has
Sk�2nax� # 10214 Hz21, is much more suitable as
a drive laser and facilitates the long storage time
shown in Fig. 2. To study the strong dependence
of the storage time on laser noise we modulated the
laser output power with white noise (bandwidth,
5 MHz). The resultant intracavity relative intensity
noise was measured on an InGaAs photodiode behind
the resonator end mirror. Figure 3 shows that the
storage time is inversely proportional to the intensity
noise level, t21 � �4.5 3 1013 s21� 3 Sk�2nax� 3 Hz.
The measured storage times agree with the model of
Ref. 16 within a factor of 2.

In conclusion, we have demonstrated a reso-
nator-enhanced dipole trap that traps approximately

105 fermionic Li atoms. Although this type of trap is
sensitive to laser noise, a storage time of several tens
of seconds can be reached by use of an ultralow-noise
laser. On this time scale, atoms are lost as a result of
photon scattering and rest-gas collisions.

The storage time in our system greatly exceeds
the expected collision times in the Li gas at f ields
of �0.08 T, which are of the order of 1 s.10 Thermal-
ization and loss measurements in our trap will charac-
terize the interactions in the vicinity of the Feshbach
resonance.
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We present a simple design of a fast mechanical shutter for light beams using a low-cost personal
computer loudspeaker. The shutter is capable of closing an aperture of 5 mm at a maximum speed
of 1.7 mm/ms with a timing jitter of less than 10ms. When combined with polarization optics, our
device can also be used as an alterable switch and adjustable attenuator. ©2002 American Institute
of Physics. @DOI: 10.1063/1.1520728#

Switching light beams with high speed and timing pre-
cision can be accomplished with electro-optical or acousto-
optical modulators. These nonmechanical devices do not
fully extinguish the light and provide only finite transmis-
sion. For infinite attenuation of a laser beam, mechanical
shutters are the only option. Most widely known are iris
shutters as used in photo cameras. In most cases, their uni-
polar design only allows one to switch the light beam either
on or off with sufficient speed~;1 ms!. Commercial
shutters1 without this deficiency are available at rather high
cost ~;$1000!. When placed in a laser laboratory, delicate
optical devices such as interferometers might be perturbed
by the acoustic vibrations created by the iris diaphragm. Me-
chanical shutters based on piezoelectric actuators have been
demonstrated to achieve switching times of 10ms, but the
extinction ratio was limited to 300:1 for an aperture size of
only 10 mm.2 Chopper wheels permit exposure times of 10
ms for 1 mm slits but cannot be triggered asynchronously.3–5

Shutters based on thermal expansion of Ni–Cr wires allow
switching times of 100ms for 1 mm slits but the repetition
rate is limited to 5 s due to the thermal recovery time of the
wire.6

We developed a simple bipolar mechanical shutter which
combines fast switching, high timing precision, and ultimate
extinction. The design is shown in Fig. 1. The device is
based on a standard loudspeaker~;$5! as used in personal
computers. Loudspeakers with attached retroreflectors have
already been used as pathlength varying elements in low-cost
interferometric femtosecond autocorrelators.7 In our design,
all membranes are removed so that the voice coil freely
moves out of the permanent magnet of the loudspeaker. A
stiff nontransparent flag, which is attached to the top of the
voice coil, serves as the movable beam stop. The flag is
made of a light, nontransparent material~plastic or aluminum
foil !. The copper leads on the remaining membrane pieces of
the loudspeaker are reinforced by glue. An upper mechanical
stopper is mounted above the voice coil. To minimize acous-

tic noise, damping material~felt, in our design! is glued be-
low the upper stopper and on top of the permanent magnet. A
little hole is cut in the middle of the remaining membrane on
top of the voice coil to further reduce acoustic noise and to
increase speed. By minimizing the mass of the moving parts,
we achieve high acceleration and low acoustic noise.

The driving circuit for the shutter device as depicted in
Fig. 2 consists of four transistor switches. The supply voltage
should range between 2 and 5 V and needs to support 500
mA. In order to accelerate the shutter in the desired direction,
the supply voltage for the voice coil can be reversed by
changing the transistor–transistor logic~TTL! level ~low50
V, high55 V!. A low TTL level switches transistorsQ2 and
Q4 to a conducting state andQ1 andQ3 to a nonconducting
state. The situation is reversed for a high TTL level.

The motion of the flag was measured by shining an ex-
panded laser beam~diameter 30 mm! through a vertical slit
~horizontal width 2 mm and vertical width 10 mm! placed
directly in front of the shutter device. The transmitted light
intensity is measured with a photodiode. When the shutter
vertically moves into the light beam~positive x direction!,
part of the expanded light beam is stopped by the flag so that
the light intensity transmitted through the slit is proportional
to the displacement of the flag. Knowing the maximum dis-
placement~5.3 mm for our device!, the relative displacement
of the flag can be derived from the measured light intensity.
The result of such a measurement is shown in Fig. 3. Fort
,0, the TTL signal connected to the driving electronics is set
to high keeping the flag in the elevated position. The supply

a!Electronic mail: kilian.singer@mpi-hd.mpg.de
b!Present address: Institut fu¨r Experimentalphysik, Universita¨t Innsbruck,

6020 Innsbruck, Austria.
c!Present address: FOM Instituut voor Plasmafysica Rijnhuizen, P.O. Box
1207, 3430 BE Nieuwegein, The Netherlands.

FIG. 1. Shutter design based on a standard loudspeaker as used in personal
computers.
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voltage is 4 V resulting in a current of 300 mA. Att50, the
level of the TTL signal was changed to low. As a conse-
quence, the loudspeaker coil with the attached flag starts to
accelerate into the negativex direction. After 2.5 ms, the flag
has reached its final velocity of 1.7 mm/ms as derived by a
linear fit to the displacement curve. Att55 ms, the flag mo-
tion is stopped by the damping material on top of the perma-
nent magnet. The vibrations caused by the stopping of the
flag are damped within 5 ms. Att515 ms, the TTL level is
changed to high causing the flag to move into the positivex
direction with similar characteristics. As an important feature
of our design, the speed of the flag is equally high in the
upward direction as in the downward direction.

For fast interruption of a laser beam, the shutter is placed
in the focal plane of a lens. To provide a measure of typical
shutter times, we have focused a laser beam to a waist of 10
mm. Figure 4 shows the light intensity measured while the
shutter is opening and closing. Within 10ms, the laser beam
can be fully transmitted or extinguished. Due to the trans-
verse Gaussian intensity distribution of the laser beam, the
measured data are well described by an error function. For a
known waist of the laser beam, the fit yields an independent
measurement of shutter velocity. We find that 1.7 mm/ms is
in agreement with the measurement discussed in the previous
paragraph. The delay to the electronic TTL signal is 3.5 ms
with a jitter of less than 10ms. The minimum delay between
an opening and closing pulse applied to the shutter is deter-
mined by the time that the flag has come to a complete rest
~roughly 5 ms, see Fig. 3!. In order to create controlled light
pulses with duration down to 50ms, one may place two
shutters in series. Trigger pulses are applied to each shutter
in such a way that the first shutter opens the beam at a given
time while the second one interrupts it after the duration
time.

We also employ our fast switching device to place opti-
cal elements into the light beam, like, e.g., a waveplate or a
grayfilter. In this way, one creates optical switches or swit-
chable attenuators. Instead of the flag, the optical element is
simply glued on the movable loudspeaker coil. A switchable
rotation of polarization is realized by moving a halfwave
plate into a light beam with linear polarization. The rotation
angle of the polarization is twice the angle between the po-
larization and the optical axis of the halfwave plate. If the
light polarization is turned by 90° the light beam can be
switched between two ports of a polarizing beam splitter.

Since the waveplate has to be glued to the loudspeaker
coil, it can no longer be freely rotated. This limitation can be
overcome by placing the movable halfwave plate HP2 be-
tween two stationary, but rotatable, halfwave plates HP1 and
HP3 as schematically depicted in Fig. 5. The light transmit-
ted through the polarizing beam splitter can then be switched
between two freely adjustable intensity levels. The first in-
tensity level~without HP2 in the beam! is set by rotating the
halfwave plates HP1 and HP3. Note, that for two halfwave
plates placed in series, the total rotation angle of the polar-
ization is determined only by the difference of the rotation
angles of the two waveplates. The second intensity level is
then adjusted by moving HP2 into the beam and simulta-

FIG. 2. Electric driving circuit of the shutter device.

FIG. 3. Displacement of the shutter flag. Att50 andt515 ms, TTL input
to the driving circuit was changed.

FIG. 4. Measurement of the extinction time. The flag is moved into (t
50) and out of (t510 ms) the focus of a laser beam with 10mm waist.

FIG. 5. Switchable attenuator for laser beams.
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neously rotating HP1 and HP3 by equal angles, thus keeping
the difference angle between HP1 and HP3 constant. In this
way, the intensity switch replaces considerably more expen-
sive devices such as electro-optic modulators.
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We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the
presence of magnetic fields up to 1.5 kG by measuring evaporative loss. Our experiments confirm the
expected magnetic tunability of the scattering length by showing the main features of elastic scattering
according to recent calculations. We measure the zero crossing of the scattering length at 530(3) G
which is associated with a predicted Feshbach resonance at �850 G. Beyond the resonance we observe
the expected large cross section in the triplet scattering regime.

DOI: 10.1103/PhysRevLett.89.273202 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

In an ultracold atomic gas, the s-wave scattering length
characterizes the elastic interactions and has a profound
effect on the physical behavior. The scattering length can
be conveniently tuned by using a magnetic field when a
Feshbach resonance is present. For bosonic atoms, such
resonances have been observed [1–3], and they have found
particular applications for attainment and manipulation
of a Bose-Einstein condensate in 85Rb [4,5] and for the
production of bright solitons in bosonic 7Li [6,7].

For fermionic gases, Feshbach resonances in s-wave
scattering of atoms in different spin states are of great
interest to experimentally explore the rich physics of
paired fermionic gases [8–11]. For obtaining superfluidity
in a Cooper-paired gas, magnetic tuning allows one to
raise the critical temperature [8] from values far below
the Fermi temperature into a region that seems accessible
with current experimental methods. With resonantly
tuned interactions the fermionic superfluid is predicted
[9,10] to perform a crossover from a superfluid of weakly
coupled Cooper pairs to a Bose-Einstein condensate of
strongly coupled molecules. Feshbach tuning also offers a
possible way to detect this molecular coupling through
oscillations induced by magnetic-field transients [10]
analogous to a recent observation with coupled bosonic
atoms [5]. Experimental control of different pairing re-
gimes thus represents an intriguing prospect of a fer-
mionic gas with magnetically tuned interactions.

A narrow Feshbach resonance between two different
spin states of fermionic 40K was recently observed by
Loftus et al. [12]. The other fermionic species currently
used in several experiments, 6Li, is predicted to a show a
Feshbach resonance with strong modifications of s-wave
interactions in a very wide magnetic-field range [13–15].
At relatively small fields, this dependence was recently
used by Granade et al. to obtain a sufficient scattering

cross section for the all-optical production of a degenerate
Fermi gas of lithium [16].

In this Letter, we experimentally explore the magnetic
tunability of elastic scattering in an optically trapped spin
mixture of fermionic lithium atoms in high magnetic
fields up to 1.5 kG. Our results verify the expected de-
pendence of s-wave interactions in the whole magnetic-
field range of interest [13–15]. As a particular feature
associated with the predicted Feshbach resonance [13],
we observe the zero crossing of the scattering length at a
field of 530 G. The exact location of this feature is of great
interest as a sensitive input parameter to better constrain
the uncertainty in the molecular potentials for more
accurate theoretical calculations of the scattering proper-
ties of 6Li. Our measurements of elastic collisions are
based on evaporation out of an optical dipole trap.

The scattering properties in different spin mixtures of
fermionic lithium atoms were theoretically investigated
by Houbiers et al. [13], Kokkelmans et al. [14], and
Venturi and Williams [15]. Magnetic tunability, of par-
ticular interest for Cooper pairing in a Fermi gas [8,9],
was predicted for the stable combination of the two low-
est states j1i and j2i; at low magnetic field these states
correspond to F � 1=2, mF � �1=2, and mF � �1=2,
respectively. Most prominently, a broad Feshbach reso-
nance at �850 G is expected to mark the transition from
the low-field scattering regime to the high-field region.
As a precursor of the Feshbach resonance, the s-wave
scattering length a crosses zero in the range between
500 and 550 G. Beyond the resonance, scattering in
higher fields is dominated by the triplet potential with a
very large and negative scattering length of �2200a0,
where a0 is the Bohr radius. The available theoretical
data [13–15] show the same behavior for a�B� within
some variations due to the limited knowledge of the
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molecular interaction parameters. Figure 1(a) illustrates
these predictions for the scattering length a�B� by a
corresponding model curve that approximates the results
of Refs. [13–15].

In a cold gas at finite temperature the cross section for
elastic scattering of nonidentical particles is unitarity
limited to a maximum value of �max � 4�=k2, where
k � mv=�2 �h� is the wave number corresponding to a
relative velocity v and a reduced mass m=2. Taking into
account the B-field dependent scattering length a�B� and
the unitarity limit, the resulting B-field dependent cross
section can be written as � � 4�a2=�1� k2a2�. For the
considered j1i � j2i spin mixture of 6Li the expected
behavior of the cross section is shown in Fig. 1(b) for
the example of a wave number k � �300a0�

�1 close to our
experimental conditions. Most notably, as a consequence
of the unitarity limit in combination with the very large
scattering length for high magnetic fields, the Feshbach
resonance does not appear as a pronounced feature in the
cross section. The zero crossing of the scattering length,
however, leads to a vanishing scattering cross section and
thus shows up as a manifestation of the resonance.

Our dipole trap [17] makes use of the enhancement of
the laser intensity inside a linear optical resonator to
create a large and deep trapping volume for lithium
atoms. The power provided by a 2-W Nd:YAG laser
(Innolight Mephisto-2000) at a wavelength of 1064 nm
is enhanced by a factor of 120 to create a far red-detuned
1D optical lattice trap with an axial period of 532 nm and
a transverse 1=e radius of 115 
m. The maximum trap
depth is of the order of 1 mK. To vary the trap depth the
resonator-internal power is servo-controlled by an
acousto-optical modulator in the incident laser beam.
From a standard magneto-optical trap (MOT) operated
with diode lasers we typically transfer 5	 105 6Li atoms
into roughly 1000 individual wells at a temperature of

�400 
K. The resulting peak density is �1:5	
1011 cm�3. By extinguishing the repumping light of the
MOT 1 ms before the main trapping light is turned off, all
atoms are pumped into the two states j1i and j2i to create
a 50-50 spin mixture [16].

The magnetic field is produced by a pair of water-
cooled coils outside of the glass vacuum cell of the trap.
At a maximum continuous operation current of 200 A the
coils produce a magnetic field of 1.5 kG with a curvature
of only 75 G=cm2 along the symmetry axis; the corre-
sponding power dissipation is 6 kW. The setup allows for
a maximum ramp speed of 5 G=ms within the full range.
The magnetic field is calibrated by radio-frequency in-
duced transitions from j2i to the state that at B � 0
corresponds to F � 3=2, mF � �1=2. The latter is un-
stable against inelastic collisions with j2i which leads to
easily detectable loss. With a fit to the Breit-Rabi formula
we obtain a calibration of the magnetic field to better than
1 G over the full range.

The basic idea of our measurements is to observe
elastic collisions through evaporative loss at a variable
magnetic field [18]. The method is particularly well suited
for measuring the position of a resonance by locating the
corresponding zero crossing of the scattering length.With
this sensitive experimental input for theoretical calcula-
tions, as is readily available in our case [13–15], precise
knowledge of the magnetic-field dependent scattering
length can be obtained. Our dipole trap is loaded under
conditions where the effective temperature T of a trun-
cated Boltzmann distribution [19] is only slightly below
the trap depth U. A strongly nonthermal distribution is
thus created with a small truncation parameter � � U=
kBT 
 2. The thermal relaxation resulting from elastic
collisions then leads to rapid evaporative loss and cooling
of the sample, i.e., an increase of �. The trap depth can be
kept constant to study plain evaporation or, alternatively,
ramped down to force the evaporation process.

In a series of plain evaporation experiments performed
at a constant trap depth of 750 
K we measure evapo-
rative loss over the maximum accessible range of mag-
netic fields up to 1.5 kG. After a fixed holding time the
remaining atoms are retrapped into the MOT and their
number is measured via the fluorescence signal by a
calibrated photodiode. The signal is recorded after hold-
ing times of 1 and 3 s corresponding to the time scale of
evaporation. These holding times are short compared
with the rest-gas limited lifetime of 30 s. Figure 2 shows
the result of 1000 different measurements obtained in an
acquisition time of 6 h. The data points are taken in a
random sequence for 31 magnetic field values equally
distributed over the full range. Data points for 1 and 3 s
are recorded alternatingly. This way of data taking en-
sures that the signal is not influenced by residual long-
term drifts of the experimental conditions.

The observed evaporation loss in Fig. 2 shows a pro-
nounced dependence on the magnetic field, which we

FIG. 1. (a) Model curve approximating the results of [13–15]
for the s-wave scattering length of 6Li atoms in the two lowest
spin states versus magnetic field. (b) Corresponding behavior of
the scattering cross section at a finite collision energy with a
relative wave number of k � �300a0�

�1.
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compare with the expected cross section for elastic colli-
sions ejecting atoms out of the trap. Figure 1(b) displays
the cross section for k � �300a0�

�1, which corresponds to
a collision energy of about half the trap depth and thus to
the relevant energies for evaporating collisions. After
being very small at low magnetic fields, the observed
loss increases for fields up to �350 G where the expected
local maximum of evaporation shows up. The loss then
decreases and disappears at about 530 G in agreement
with the predicted zero crossing of the scattering length.
Here the slight observed loss in the 1 s curve is explained
by the finite ramp time of the magnetic field. In the 100 ms
ramping time some evaporation does already take place.
At 530 G the decrease of the trapped atom number
between 1 and 3 s is fully explained by rest-gas losses
without any further evaporation. For higher magnetic
fields evaporative loss rapidly rises until it levels off at
about 700 G. Up to the maximum attainable value of
1.5 kG high evaporation loss is observed. A slight de-
crease of the atom number for fields exceeding 1 kG
occurs which we attribute to technical reasons; we ob-
serve an increasing noise for currents higher than
�130 A in the error signal of the resonator lock. The
relatively large and constant evaporative loss for fields
exceeding 700 G is consistent with the predicted behavior
of the cross section.

The evaporative cooling effect is confirmed by mea-
suring the change of the truncation parameter � after 3 s
of trapping at selected values of the magnetic field. For
thermometry we turn off the magnetic field to avoid fur-
ther elastic collisions and adiabatically lower the trap
depth in a 1-s exponential ramp. The fraction of remain-
ing atoms as a function of the relative depth then provides
a good measure of �. At the zero crossing at 530 G we
observe only a slight increase of � to a value of 2.3(3)
which is explained by the unavoidable evaporation during

the magnetic-field ramps. At 340 G close to the local
maximum of jaj we find an increase of � to 4.2(3) as a
clear evidence of evaporative cooling. At 720 G, i.e., in
the case of a large positive scattering length, a higher
value of 5.5(4) is measured showing deeper evaporative
cooling. Essentially the same � of 5.3(4) is obtained at
B � 1290 G where scattering takes place in the triplet-
dominated regime with a very large negative scattering
length.

We measure the minimum-loss feature in a closer range
of magnetic fields to precisely determine the value of the
magnetic field at which the zero crossing of scattering
length occurs. The main data points in Fig. 3 are obtained
with 500 individual measurements at a holding time of 3 s
with the magnetic field randomly varied between 30 val-
ues in an interval between 370 and 670 G; the data shown
in the inset are obtained with 1000 measurements in the
very narrow range between 520 and 544 G. The results
allow us to determine the B field for minimum evapo-
rative loss, and thus the zero crossing of the scattering
length to 530(3) G [20].

Forced evaporation measurements provide complemen-
tary data to plain evaporation and allow us to rule out a
significant role of inelastic collisions.When the trap depth
is ramped down, elastic collisions reduce trap loss in con-
trast to increased loss at constant trap depth. This can
be understood by the spilling loss of energetic particles
[19]: Without elastic collisions the most energetic par-
ticles are spilled out of the trap when its depth is reduced.
With elastic collisions the evaporative cooling effect de-
creases the temperature and thus reduces the spilling loss.

In our forced evaporation measurements we reduce the
trap depth in 10 s to 20% of its initial value in an
exponential ramp and measure the number of remaining
atoms; the results are displayed in Fig. 4. A minimum

FIG. 3. Measurements on plain evaporation in magnetic fields
close to the zero crossing of the scattering length under the
same conditions as in Fig. 2 for a holding time of 3 s. Here the
number of remaining atoms is normalized to the observed
maximum value. The inset shows a series of measurements in
a very narrow range around the maximum at 530(3) G together
with a parabolic fit.

FIG. 2. Evaporative loss measurements over the full magnetic
field range. The data points show the measured number of
atoms remaining in the trap after 1 s (�) and 3 s (�) of plain
evaporation at a constant trap depth of 750 
K.
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number of atoms is now measured at 0 and 530 G instead
of the maximum observed with constant trap depth. The
largest number of atoms is observed in the high-field
region above 650 G as expected for the large scattering
cross section.

On a Feshbach resonance, enhanced inelastic loss can
occur as a result of three-body collisions [1] or, if the
system has internal energy, as a result of two-body decay
[3]. For fermions, three-body processes are symmetry
forbidden at ultralow energies when only s-wave colli-
sions are involved. In a spin mixture at nonzero magnetic
field, two-body decay is energetically possible (in our
case with an energy release of kB 	 3:5 mK) but involves
higher partial waves and relies on weak dipolar coupling.
Consequently, inelastic loss can be expected to be weak
in our experiments. Indeed, our data do not show any
indication of inelastic loss even at the very center of the
Feshbach resonance.

At much higher densities (� 1013 cm�3) as compared
to our conditions (� 1011 cm�3), a recent experiment
[21] has revealed inelastic loss with a maximum at
680 G. As our results support the predicted position of
the s-wave resonance at �850 G, the explanation for the
inelastic feature cannot be attributed to the Feshbach
resonance in a simple way. The experiment [21] also
provided evidence for a two-body nature of the under-
lying process with a rate constant of 2	 10�12 cm3=s
measured at �20 
K. At a higher temperature of
�100 
K we derive an upper bound for the two-body
rate constant of 1	 10�12 cm3=s, whereas for a process
involving higher partial waves one would expect the rate
to increase with temperature. For three-body collisions
our densities are too low to provide useful constraints.
Obviously, inelastic loss in the fermionic spin mixture is
an interesting problem that deserves more attention.

In conclusion, our measurements confirm the predicted
magnetic tunability of the s-wave scattering length in a
spin mixture of fermionic lithium atoms in the whole
magnetic-field range of experimental interest. The ob-

served zero crossing of the scattering length at 530(3) G
together with the large cross section observed for higher
fields provides clear evidence of the predicted Feshbach
resonance. Moreover, it enables more precise calculations
of the 6Li scattering properties. The resonance itself
is masked by unitarity-limited scattering and requires
much deeper evaporative cooling for a direct observation.
The fact that we do not see any significant effect of
inelastic loss highlights the fact that the extremely large
positive and negative scattering lengths attainable with
fermionic lithium offer intriguing new possibilities for
experiments on interacting Fermi gases.

We thank R. G. Hulet and H. Stoof for very useful
discussions and V. Venturi for valuable input. Support
by the Austrian Science Fund (FWF) within Project
No. P15115 and SFB15 and by the Institut für Quanten-
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Shortly before submission of the present Letter we
learned about the measurements of the group of J. E.
Thomas on the zero crossing of the scattering length
which agree with our data.
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We report on the production of a pure sample of up to 3� 105 optically trapped molecules from a
Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach
resonance. For purification, a Stern-Gerlach selection technique is used that efficiently removes all
trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a
striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach
resonance, the gas exhibits a remarkable stability with respect to collisional decay.
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The formation of composite bosons by pairing of fer-
mions is the key to many intriguing phenomena in
physics, with superfluidity and superconductivity being
prominent examples. In ultracold atomic gases, pairs of
fermionic atoms can be combined to form bosonic mole-
cules [1,2] or possibly Cooper pairs [3]. The pairing
changes the properties of the gas, highlighted by the
prospect of a molecular Bose-Einstein condensate or a
Cooper-paired superfluid. The interatomic interactions
play a crucial role for the nature of the pairing process.
The ability to control the interaction via magnetically
tuned Feshbach resonances [4–6] opens up exciting
possibilities for experiments on ultracold fermionic
gases, e.g., exploring superfluidity in different pairing
regimes [7–10].

The formation of molecules near Feshbach resonances
in ultracold gases has been reported for bosons [11–14]
and fermions [1,2]. In the experiments [1,2,11,12], the
molecules coexist with the atoms in a strongly interacting
mixture. A generic feature of a Feshbach resonance is the
existence of a bound molecular state with a magnetic
moment that differs from that of the unbound atom pair.
The binding energy thus depends on the magnetic field,
and a properly chosen field can resonantly couple collid-
ing atoms into the molecular state. The inherent differ-
ence in magnetic moments facilitates a Stern-Gerlach
selection of molecules and atoms. Two recent experiments
[13,14] demonstrate the separation of the molecular from
the atomic cloud in free space.

In this Letter, we report the creation of a pure sample
of up to 3� 105 optically trapped molecules from a
fermionic gas of 6Li atoms. After the production of
an atom-molecule mixture via three-body collisions, a
Stern-Gerlach purification scheme efficiently removes all
trapped atoms, while leaving all molecules trapped. This
allows us to investigate the intriguing behavior of the pure
molecular sample, which strongly depends on the mag-
netic field.

The lithium isotope 6Li is one of the two prime can-
didates in current experiments exploring the physics of
fermionic quantum gases [15–19], the other one being

40K [1,20]. A spin mixture composed of the lowest two
sublevels in the hyperfine manifold of the electronic
ground state is stable against two-body decay and exhibits
wide magnetic tunability of s-wave interactions via a
broad Feshbach resonance at about 850 G [21]. A calcu-
lation of the corresponding scattering length a as a func-
tion of the magnetic field [22] is shown in Fig. 1(a) [23].
The large cross section for elastic scattering near the
resonance can be used for efficient evaporative cooling,
in particular, above the resonance at negative scattering
length where inelastic loss is negligible [16]. In the region
of positive scattering length below the resonance, loss
features have been observed [24]. At large positive a, a
weakly bound molecular level exists with a binding en-
ergy approximately given by 
h=�ma2�, where 
h is Planck’s
constant and m denotes the atomic mass. For the region of
interest, Fig. 1(b) shows this binding energy as calculated
from the scattering length data [25].

The starting point of our experiments is a sample of
2:5� 106 6Li atoms in a standing-wave optical dipole
trap realized with a Nd:YAG laser at a wavelength of
1064 nm [19,26]. The 50-50 spin mixture in the lowest
two spin states is spread over �1500 individual lattice
sites of the standing-wave trap. In the central region of
the trap, a single site contains typically 1800 atoms. The

FIG. 1. (a) Magnetic-field dependence of the s-wave scatter-
ing length a in the 6Li spin mixture. An additional, narrow
Feshbach resonance near 550 G [22] is omitted in the plot.
(b) Binding energy of the weakly bound molecular level in the
region of large positive a.
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axial and radial trap frequencies are 260 kHz and 390 Hz,
respectively. The trap depth is kB � 27 �K with kB denot-
ing Boltzmann’s constant. At a temperature of 2:5 �K,
peak values for the number density and phase-space
density are 3� 1012 cm�3 and 0.04 [27,28], respectively.
The ultracold gas is prepared by forced evaporative cool-
ing after loading the optical trap at an initial depth of
�1 mK with 8� 106 atoms from a magneto-optical trap
(MOT). The evaporation is performed by ramping down
the light intensity in 1 s at a magnetic field of 1200 G. The
evaporation initially proceeds with very high efficiency
similarly to [16,29], but finally loses its efficiency when
the tightly confining lattice potential does not support
more than one or two quantum states.

We form molecules in the weakly bound level at a field
of 690 G, where we find optimum production rates at a
large positive scattering length of a � �1300a0. Here a0
denotes Bohr’s radius. To reach the production field of
690 G, we quickly ramp from the evaporation field of
1200 G down to this value with a speed of �7:5 G=ms.
In contrast to other experiments with fermionic atoms
[1,2], the molecule formation during this ramp is negli-
gible and the molecules are predominantly formed after
the ramp at the fixed production field.

The molecules are detected by dissociating them into
atoms [1,2,13,14] and measuring their fluorescence. For
this purpose, we apply a ramp across the Feshbach reso-
nance to fields of typically 1200 G (speed �6 G=ms).
This brings the weakly bound level above the scattering
continuum and the molecules quickly dissociate. The
dissociation turns out to be insensitive to variations of
the ramp speed and the final field. After the dissociation
ramp, we immediately ramp down to zero magnetic field.
The ramp speed of �12 G=ms is fast enough to avoid
molecule formation when crossing the region of positive
scattering length. After reaching zero magnetic field, we
recapture all atoms into the MOT. Their number is then
determined by measuring the emitted fluorescence inten-
sity using a calibrated photodiode [27]. This measurement
provides the total atom number 2Nmol � Nat, where Nmol

and Nat denote the number of molecules and atoms after
the production phase, respectively. To determine Nat, we
repeat the same measurement without the Feshbach dis-
sociation ramp by immediately ramping down to zero
from the production field. The ramp down to zero mag-
netic field increases the binding energy to a large value of
about kB � 80 mK and the molecules are lost without
leading to any fluorescence light in the MOT. The number
of molecules Nmol is then obtained by taking the differ-
ence in atom numbers measured in two subsequent runs
with and without the dissociating Feshbach ramp.

The creation of molecules from the atomic gas is
demonstrated in Fig. 2 for the optimum production field
of 690 G. The time evolution of the measured numbers
2Nmol � Nat and Nat is shown together with the corre-
sponding number of molecules 2Nmol. We attribute the
molecule formation to three-body recombination into the

weakly bound state [30,31]. Two-body processes cannot
lead to bound dimers as a third particle is required for
energy and momentum conservation. The three-body
molecule formation process can be modeled with the
differential equation _NNmol=Nat � M3hn

2
ati, where hn2ati de-

notes the mean quadratic density of the atoms. From the
initial molecule formation rate of _NNmol � 3:5� 105 s�1,
we thus derive a three-body formation coefficient of
M3 � 1� 10�25 cm6=s�1 [27]. The maximum number
of 3� 105 molecules is reached after about 1 s. For longer
times, the fraction of atoms forming molecules ap-
proaches a value of �50%.

At the optimum production field of 690 G, the molecu-
lar binding energy amounts to �kB � 18 �K, which is in
between the thermal energy of kB � 2:5 �K and the trap
depth of kB � 27 �K for the atoms. For the molecules,
the trap depth is a factor of 2 higher because of the 2
times larger polarizability. We have verified this fact by
measuring the trap frequencies for atoms and molecules
to be equal within the experimental uncertainty of a few
percent. After a three-body recombination event both the
atom and the molecule remain trapped.We believe that the
recombination heat is cooled away by a evaporation of
atoms out of the trap. Evaporative loss of molecules is
strongly suppressed because of the higher trap depth.

To purify the created molecules we use a Stern-Gerlach
selection technique. We apply a magnetic field gradient
perpendicular to the standing-wave axis. This pulls par-
ticles out of the trap for which the magnetic force is larger
than the trapping force. In order to be able to apply large
enough field gradients, we lower the trap depth to kB �
19 �K while applying the gradient for about 10 ms. Fig-
ure 3 demonstrates such a purification at 568 G. While all
the atoms are lost above B0

at � 17 G=cm, the molecules
start getting spilled at 20 G=cm, and are lost completely
above B0

mol � 32:5 G=cm. This means that, under suitable
conditions, we can remove all the atoms while keeping
the molecule number constant.

FIG. 2. Formation of molecules at a fixed magnetic field of
690 G. The measured numbers Nat � 2Nmol and Nat are plotted
as a function of time together with the resulting number of
molecules 2Nmol.
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The magnetic moment of the molecules �mol can be
estimated to be �mol � 2�atB0

mol=B
0
at, where �at is the

magnetic moment of one free atom. At high magnetic
field, �at equals Bohr’s magneton �B. The inset of
Fig. 3 shows the magnetic moments of the molecules
determined at various magnetic fields. The data agree
well with the magnetic field dependence calculated
from theory (solid curve). We attribute the systematic
deviation to slightly different trap parameters for atoms
and molecules.

Starting with a pure molecular sample, we study its
stability against inelastic molecule-molecule collisions.
Corresponding decay curves are displayed in Fig. 4 for
two different magnetic fields. At 546 G a rapid nonexpo-
nential decay is observed as a clear signature of inelastic
molecule-molecule collisions. From the initial decay rate
we derive a two-body loss coefficient of 5� 10�11 cm3=s
[27]. At 690 G, the observed behavior is strikingly differ-
ent. The molecular sample shows a nearly exponential

decay with a time constant as long as �10 s. As similar
lifetimes are observed for trapped atom samples under
conditions where trapped molecules cannot be created,
the observed molecular lifetime can be fully attributed to
one-body effects such as heating in the optical trap. For a
loss rate coefficient at 690 G our data provide an upper
limit of 3� 10�13 cm3=s [27], which is surprisingly low
for inelastic collisions in a molecular system with many
open exit channels.

The data at 690 G show another interesting collisional
effect. Atoms reappear after purification of the molecular
cloud, see (�) in Fig. 4. For long storage times (�15 s),
an atom-molecule mixture is reestablished with a similar
fraction of molecules as observed in the initial formation
process at the same magnetic field (see Fig. 2). Collisions
producing atoms from molecules are endoergic in nature
as kinetic energy is required to provide the dissocia-
tion energy. The increasing atom fraction does not lead
to any increased loss. This shows that the gas is remark-
ably stable both against molecule-molecule and atom-
molecule collisions.

The dependence of the molecular decay on the mag-
netic field is shown in Fig. 5. Here we store the initially
pure gas of 1:8� 105 molecules at a variable magnetic
field for a fixed holding time of 1 s before we measure
the number of remaining molecules and atoms. A sharp
transition occurs around 650 G. For fields below �600 G,
where the binding energy is relatively large (>kB�
100 �K), the observed decay is very fast and no atoms
are found to reappear. Here inelastic collisions apparently
lead to a rapid vibrational quenching. Furthermore, the
kinetic energy of the molecules cannot provide the neces-
sary energy for collisional dissociation. Consequently, we
do not observe any atoms reappearing.

For fields above �680 G, a completely different behav-
ior is observed. In this regime, no significant loss occurs
in the total number 2Nmol � Nat. However, an increasing
atom fraction is observed as a result of collisional
dissociation of the molecules. Here the binding energy

FIG. 4. Time evolution of an initially pure sample of mole-
cules at 546 G (�) and at 690 G (�). At 690 G, atoms are
observed to reappear (�).

FIG. 5. Remaining number of atoms Nat, Nat � 2Nmol and
2Nmol after a 1-s hold time at variable magnetic field starting
with a pure molecular sample.

FIG. 3. Stern-Gerlach selection by applying a magnetic field
gradient to the trapped atom-molecule mixture at 568 G and a
trap depth of kB � 19 �K. Marked are the two gradients where
all the atoms and all the molecules are lost. The inset shows the
magnetic moment of the molecules estimated from the Stern-
Gerlach selection at different magnetic fields together with the
theoretical calculation.
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approaches the thermal energy and the sample tends
towards a thermal atom-molecule equilibrium. Close to
the Feshbach resonance, where the binding energy be-
comes comparable to thermal energy, the atomic fraction
dominates in the atom-molecule mixture.

In conclusion we have produced an ultracold, pure
molecular gas of 6Li dimers in an optical dipole trap.
Close to the Feshbach resonance, where the molecular
binding energy is small, there is a strong coupling of the
atomic gas and the molecules. Three-body collisions be-
tween atoms form molecules and collisions break up
molecules to produce atoms. Our observations show that
this exchange between atomic and molecular fraction can
be nearly lossless. The long molecular lifetime along with
a large elastic collision rate between the particles opens
up great perspectives for further evaporative cooling of
the molecular gas to Bose-Einstein condensation. Given
the maximum molecule number of 3� 105 and a tem-
perature of about 2:5 �K, we reach a phase-space density
of 0.01, only a factor of 4 lower than our initial atomic
phase-space density. The molecular sample may be fur-
ther cooled to condensation by efficient evaporation. Out
of a mixture of atoms and molecules, mainly atoms will
evaporate because they are more weakly trapped than the
molecules. The gas is cooled further when molecules
break up into atoms since this is an endoergic process.
Once quantum degeneracy is accomplished it will be very
interesting to cross the Feshbach resonance in order to
observe the transition to a strongly interacting superfluid
Fermi gas [7–10].

We thank G. Shlyapnikov for very stimulating discus-
sions and V. Venturi for providing us with theoretical
data on the scattering length and binding energy. We
gratefully acknowledge support by the Austrian Science
Fund (FWF) within SFB 15 (project part 15) and by the
European Union in the frame of the Cold Molecules TMR
Network under Contract No. HPRN-CT-2002-00290.

Note added.—After submission of the present Letter,
molecule formation in 6Li using the narrow Feshbach
resonance at 543 G was reported by Hulet’s group [32].
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Lett. 90, 033201 (2003).

[13] J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H.-C.
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Bose-Einstein Condensation
of Molecules

S. Jochim,1 M. Bartenstein,1 A. Altmeyer,1 G. Hendl,1 S. Riedl,1

C. Chin,1 J. Hecker Denschlag,1 R. Grimm1,2*

We report on the Bose-Einstein condensation of more than 105 Li2 molecules
in an optical trap starting from a spin mixture of fermionic lithium atoms.
During forced evaporative cooling, the molecules are formed by three-body
recombination near a Feshbach resonance and finally condense in a long-lived
thermal equilibrium state. We measured the characteristic frequency of a
collective excitation mode and demonstrated the magnetic field–dependent
mean field by controlled condensate spilling.

Since the first experiments on Bose-Einstein
condensation (BEC) in ultracold atomic gases
in 1995 (1–3), atoms of eight chemical ele-
ments have been condensed. BEC of more
complex objects such as molecules or Cooper-
paired atoms will open up many new avenues
of research because they offer new degrees of
freedom. An intriguing example is the funda-
mental change in quantum statistics when
paired fermions form composite bosons. Recent
experiments have demonstrated the formation
of molecules in ultracold atomic gases of
bosons (4–9) and fermions (10–13). Experi-
ments starting with atomic BEC show the cre-
ation of molecular clouds at the threshold to
quantum degeneracy (7) or clearly in that re-
gime (9), but not in a thermal equilibrium state.
In most of these experiments, weakly bound
dimers are produced via magnetically tuned
Feshbach resonances (14). Such a scattering
resonance occurs when a free colliding atom
pair energetically coincides with a bound mo-
lecular state. On the side of the resonance where
the energy of the molecular level is below the
dissociation limit, a weakly bound dimer state
exists. The experiments indicate an important
difference between weakly bound dimers com-
posed of bosonic and of fermionic atoms.
Dimers of bosons show a quick decay via in-
elastic atom-molecule or molecule-molecule
collisions (9), so that quantum-degenerate mo-
lecular clouds can only be created in a transient
regime. In contrast, the dimers of fermions ex-
hibit a remarkable stability (11–13, 15). Such
molecular gases have been observed with life-
times far longer than the time scales for elastic
collisions and thermalization. This fact has been
explained by a fermionic suppression of vibra-
tional quenching in molecule collisions (16).
Their stability allows us to use bosonic mole-

cules composed of fermionic atoms to achieve
molecular BEC in thermal equilibrium.

Our experiment is based on evaporative
cooling of an optically trapped mixture of fer-
mionic 6Li atoms in the two lowest spin states
(11–13, 17–21). During the cooling process, a
large number of bosonic dimers are formed by
three-body recombination and finally condense
into a molecular BEC. The spin mixture exhib-
its a broad Feshbach resonance at a magnetic
field of about 850 G (18, 19, 22, 23), which
leads to a pronounced magnetic field depen-
dence of the scattering length a (Fig. 1) that
characterizes the s-wave interactions. Dimers in
a single weakly bound state can be formed in
the range of large positive a with a binding
energy of �2/(ma2), where � is Planck’s con-
stant h divided by 2� and m is the mass of a 6Li
atom. This has been observed in magnetic
field–dependent loss features (24) and changes
in the interaction energy of the gas (21). Two
recent experiments have directly demonstrated
the presence of these molecules and investigat-
ed some of their properties (12, 13). For nega-
tive scattering length, no weakly bound dimer
state exists. For negative scattering length,
where a weakly bound dimer state does not
exist, the 6Li gas exhibits a remarkable stability
against collisional decay, and deeply degener-
ate Fermi gases have been created (20).

Our optical dipole trap is realized with a
single Gaussian laser beam at a wavelength
of 1030 nm, which is focused to a waist of 23
�m. At the full power of P0 � 10.5 W, the
radial and axial oscillation frequencies are
�r/2� � 14.5 kHz and �z/2� � 140 Hz,
respectively, and the atom trap is U0 � kB �
800 �K deep (kB denotes Boltzmann’s con-
stant). When the power P is reduced to a
relative value p � P/P0, the optical trap
frequencies follow p1/2�i(i � r, z) and the
trap depth for the atoms is Uat � pU0. Our
magnetic field B used for Feshbach tuning
exhibits a curvature that gives rise to an
additional contribution to the trapping poten-
tial. For the tight radial confinement of the
optical trap, this effect is negligibly small.
For the weak axis, however, a magnetic trap-

ping effect becomes important with decreas-
ing p. Taking this into account, the axial trap
frequency is given by �z � 	p�z

2 
 �m
2.

Here �m/2� � 24.5 Hz � 	B/kG is the
magnetic contribution, which is precisely
known for our coils. For weak traps with
p �� 0.03 (Uat/kB �� 25 �K), the magnetic
contribution dominates, and the axial con-
finement is harmonic with a corresponding
frequency known on the percent level. In this
regime, the mean trap frequency is given
by � � (p�r

2�m)1/3. For the weakly bound
6Li dimers, all external forces are twice the
ones on the individual atoms. Thus, the mo-
lecular trap is two times deeper than the atom
trap (Umol � 2Uat), and the trap frequencies
are identical. Gravity is compensated for by a
magnetic field gradient of 1.1 G/cm.

We start the evaporation process with
�1.5 � 106 atoms at a temperature of �80
�K, a peak number density of �1014 cm
3,
and a peak phase-space density of �5 �
10
3. The mean elastic collision rate is as
high as �5 � 104 s
1. These excellent start-
ing conditions are obtained by a two-stage
loading process. The atoms are loaded into
the dipole trap from another deep, large-
volume standing wave trap (25), which itself
is loaded from a magneto-optical trap. Forced
evaporative cooling is then performed by re-
ducing the trap power (17, 20). We use a
simple exponential ramp with a relative pow-
er p(t) � exp(
t/�), where the time constant
� � 0.23 s is experimentally optimized. A
feedback system allows us to precisely control
the laser power to levels well below p � 10
4.

BEC of weakly bound molecules occurs
when we perform evaporative cooling at a large
positive scattering length of a � 
3500a0,
where a0 is Bohr’s radius. In this case, the
evaporation process shows a strikingly different
behavior in comparison with the corresponding
situation at large negative scattering length,
where no dimers can be produced.

First we discuss the creation of a degenerate
Fermi gas without the possibility of molecule
formation at a magnetic field of 1176 G, where
a � 
3500a0 (23). Here the evaporation pro-
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Fig. 1. Feshbach resonance at �850 G in a
mixture of the two lowest spin states of 6Li
(18). The s-wave scattering length a is plotted
as a function of the magnetic field B.
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ceeds in a very similar way as that described in
(17, 20). The measured atom number N (26)
first follows a scaling law N/N0 � p� (27), with
� � 0.25. In this regime, the temperature of the
gas is typically a factor of 10 below the trap
depth (27), and the elastic collision rate stays
well above 104 s
1. The crossover to Fermi
degeneracy, where the thermal energy kBT
reaches the Fermi energy EF � � � (3N)1/3,
takes place at p � 0.05 (Uat/kB � 40 �K). By
further decreasing p, the trap depth Uat � p
decreases faster than the Fermi energy EF �
p1/3. A threshold occurs when EF reaches Uat

and the trap is filled up to the “rim.” Further
decrease of p then leads to a spilling of atoms
out of the trap and thus to a rapid decrease of N
with p. Our data (Fig. 2) clearly show this
spilling effect for p � 1 � 10
3 (Uat/kB � 800
nK). Modeling the spilling curves provides us
with an upper bound of kBT � 0.2EF for the
temperature in terms of the Fermi energy. In the
regime of a completely filled shallow trap, the
number of atoms in the two-component spin
mixture is given by two times the number of
quantum states in the trap. A numerical calcu-
lation, shown in Fig. 2, confirms this interpre-
tation of our data.

The same evaporation procedure is per-
formed at a magnetic field of 764 G, where the
scattering length a � 
3500a0 (23) has essen-
tially the same magnitude but opposite sign.
Here the weakly bound dimers have a binding
energy of �2 �K, and their formation has been
observed in several experiments (12, 13, 21). In
order to detect the molecules, we dissociate
them and measure the number of resulting at-
oms (26). For this purpose, we abruptly turn on
the full trap power, which strongly heats the
sample and leads to collisional dissociation. In
order to ensure that we dissociate all molecules,
we also apply a magnetic field ramp across the
Feshbach resonance (13). The number of atoms
measured after the dissociation process thus
yields the number of free atoms together with
atoms having formed molecules.

Below p � 1 � 10
3 the measured atom
numbers (solid circles in Fig. 2) show a strik-
ing difference in comparison with the case of
the degenerate Fermi gas. Down to a power
level of p � 3 � 10
4 (Umol/kB � 480 nK),
the trap holds almost all particles and con-
tains up to 20 times more atoms than would
be possible for fermions. Hence, the trapped
sample can no longer be an atomic Fermi
gas. The trap is filled with bosonic mole-
cules in the weakly bound state (28). The
lifetime of the molecular ensemble, for
which we measure about 20 s at a fixed trap
depth of Umol/kB � 560 nK, exceeds the
time scale of elastic collisions (�100 �s)
by several orders of magnitude. This
highlights the fact that the molecular
cloud exists in a thermal equilibrium state.

The formation of molecules during the
evaporative cooling process can be understood

in terms of a chemical atom-molecule equilib-
rium (29, 30). Exothermal three-body recombi-
nation processes compete with dissociation by
endothermal two-body processes. When the gas
is cooled down, the equilibrium shifts to an
increasing fraction of molecules. Because at-
om-atom, atom-molecule, and molecule-mole-
cule collisions have comparable cross sections
near the resonance (16), evaporation continues
at about the same speed. In the final stage of
cooling, all relevant energies, such as the ther-
mal energy kBT and the trap depths Uat and
Umol, are far below the binding energy �2/
(ma2), so that in chemical equilibrium one is
left with an essentially pure sample of mole-
cules. The fact that the binding energy of �2
�K at our optimized magnetic field of 764 G is
a few times larger than the final trap depth
(inset, Fig. 1) fits well into this picture.

The observation that a large number of
Nmol � 1.5 � 105 molecules is confined in our
very shallow, only 480 nK deep trap under
thermal equilibrium conditions already shows
that a molecular BEC is formed. The trap offers
about 10 times more quantum states for dimers
as compared to the case of atoms discussed
before (31). Because we observe a factor of
�20 more particles than for the degenerate
atomic Fermi gas, the molecular gas is neces-
sarily quantum degenerate. Because of the high
elastic collision rates, which stay well above
103 s
1 even for very shallow traps, the sample
is also thermalized. The temperature then is a
small fraction of the trap depth. According to
standard evaporation theory (27), we can typi-
cally assume T � 0.1 Umol/kB � 50 nK. This is
well below the critical temperature for BEC, for

which we calculate TC � � � kB

1

(Nmol/1.202)1/3 � 280 nK. Because the con-
densate fraction is given by 1 
 (T/TC)3, these
arguments show that the molecular BEC must
be almost pure.

To investigate the molecular condensate, we
have studied a characteristic collective excita-
tion mode (32, 33). For a cigar-shaped sample
in the Thomas-Fermi limit, well fulfilled in our
experiment, such a quadrupolar mode is expect-
ed at a frequency of 	5/2 �z � 2� � 33.8 Hz.
We perform our measurement at p � 3.5 �
10
4 (Umol/kB � 560 nK) with a trapped sam-
ple of �105 molecules. We apply a sinusoidal
modulation to the magnetic field with an am-
plitude of 3.5 G to modulate the molecular
scattering length am � a (16) with a relative
amplitude of about 5%. After 2 s of continuous
excitation, we measure the remaining number
of particles in the trap. The resonance manifests
itself in a sharp dip in the number of particles
(Fig. 3). The observed resonance frequency of
33.6 Hz is in remarkable agreement with the
expectation. We point out that a noncondensed
gas deep in the hydrodynamic regime would
show a similar frequency of 33.2 Hz (34), but
thermalization in our shallow trap excludes this
scenario (35). The measured collective excita-
tion frequency rules out a gas in the collision-
less regime, which would show its resonant loss
at 2�z � 2� � 42.8 Hz, and thus again con-
firms the thermalization of the sample. The
observed narrow resonance width of �1 Hz
shows a very low damping rate and is consis-
tent with an almost pure BEC (33, 36).

An essential property of a BEC is its mean
field potential UMF � 4�nam �2/(2m) resulting

Fig. 2. Evaporative
cooling results ob-
tained on both sides
of the Feshbach reso-
nance. We measure
the number of trapped
particles (the number
of all atoms that are
free or bound in long-
range dimers) as a
function of the rela-
tive laser power p at
the end of an expo-
nential evaporation
ramp p(t) � exp(
t /
230 ms). The trap
depth for atoms is
Uat/kB � p � 800 �K,
whereas for molecules
it is two times larger
(Umol � 2Uat). The
measurements taken at 1176 G with negative scattering length a � 
3500a0 (open circles) show
the spilling of a degenerate Fermi gas when the trap depth reaches the Fermi energy. The solid line
shows the maximum number of trapped atoms in a two-component Fermi gas according to a
numerical calculation of the number of quantum states in our trap. The dashed lines indicate the
corresponding uncertainty range due to the limited knowledge of the experimental parameters. The
measurements at 764 G with positive scattering length a � 
3500a0 (solid circles) exhibit a striking
increase of the trapped particle number at low values of p, which is due to the formation of molecules.
The inset shows the optimum production of molecules in the magnetic field range where a weakly
bound level exists. Here the total number of particles is measured for various magnetic fields at a fixed
final ramp power p � 2.8 � 10
4 (Umol/kB � 440 nK).
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from s-wave interactions; here n denotes the
molecular density. For our molecular BEC with
large positive am, the mean field is repulsive
and thus stabilizes the BEC against collapse and
decay. In a trap of finite depth, however, the
mean field repulsion limits the maximum num-
ber of trappable molecules. When the chemical
potential � reaches the trap depth, a similar
spilling effect is expected as we see for the
Fermi gas, but for weaker traps. The decrease of
our molecular signal (Fig. 2) below p � 3 �
10
4 (Umol/kB � 480 nK) may be explained by
such a spilling effect.

We used spilling in a controlled way to
demonstrate the mean field of the molecular
BEC and to investigate its dependence on the
magnetic field. After producing the BEC at a
magnetic field of B1 � 772 G and p � 3.5 �
10
4 (Umol/kB � 560 nK), we adiabatically tilt
the vertical trapping potential by application of
a magnetic field gradient B� that is smoothly
ramped up within 50 ms. The number of re-
maining particles as a function of the applied
field gradient (Fig. 4) shows the loss of mole-
cules resulting from the reduced trap depth.
When the magnetic field is kept at the evapo-
ration field of B1 � 772 G, where a � 4100a0

(23), even very weak gradients lead to loss
(open circles in Fig. 4). This indicates that the
chemical potential is close to the potential
depth, so that the trap is full. The chemical
potential can be lowered by reducing the scat-
tering length. For this purpose, we ramp the
magnetic field to a smaller value. A spilling
curve taken at B2 � 731 G, where a � 2200a0

(23), indeed shows a markedly different behavior
(solid circles in Fig. 4). Here small gradients do
not lead to any loss and the curve thus shows a flat
top. For gradients  B� exceeding 0.65 G/cm,
molecules get spilled until everything is lost at
 B� � 1.3 G/cm. The sharp onset of the spilling
confirms the essentially pure nature of the BEC.

A comparison of the two spilling curves in
Fig. 4 provides us with information on the ratio
of the scattering lengths am at the two magnetic
fields B1 and B2. In the spilling region above
 B� � 0.65 G/cm, the trap is full in both cases,

and the trapped particle number is inversely
proportional to am. Comparing the two spilling
curves in that region, we obtain a scattering
length ratio of am(B1)/am(B2) � 2.4(2). This
factor is indeed close to the factor of 1.9 (23)
expected from the proportionality of atomic and
molecular scattering lengths am � a (16) and
the dependence of a shown in Fig. 1. This
observation demonstrates the mean field of the
molecular BEC together with its magnetic tun-
ability.

The ability to control interactions in a Bose
condensed ensemble of paired fermionic atoms
has many exciting prospects (37, 38). It opens
up unique ways to cool a fermionic gas far
below the Fermi temperature (39) and to study
different regimes of superfluidity (40–43). The
experimental exploration of the strongly inter-
acting crossover regime between a BEC-like
and a Cooper-paired phase is a particular chal-
lenge and promises more insight into the phys-
ical mechanisms underlying superconductivity.
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8. S. Dürr, T. Volz, A. Marte, G. Rempe, preprint available
at http://arxiv.org/abs/cond-mat/0307440.

9. K. Xu, et al. preprint available at http://arxiv.org/abs/
cond-mat/0310027.

10. C. A. Regal, C. Ticknor, J. L. Bohn, D. S. Jin, Nature
424, 47 (2003).

11. K. E. Strecker, G. B. Partridge, R. G. Hulet, Phys. Rev.
Lett. 91, 080406 (2003).

12. J. Cubizolles, T. Bourdel, S. J. J. M. F. Kokkelmans, G. V.
Shlyapnikov, C. Salomon, preprint available at http://
arxiv.org/abs/cond-mat/0308018.

13. S. Jochim et al., Phys. Rev. Lett., in press (preprint
available at http://arxiv.org/abs/cond-mat/0308095).

14. S. Inouye et al., Nature 392, 151 (1998).
15. C. A. Regal, M. Greiner, D. S. Jin, preprint available at

http://arxiv.org/abs/cond-mat/0308606.
16. D. S. Petrov, C. Salomon, G. V. Shlyapnikov, preprint

available at http://arxiv.org/abs/cond-mat/0309010.
17. S. Granade, M. E. Gehm, K. M. O’Hara, J. E. Thomas,
Phys. Rev. Lett. 88, 120405 (2002).

18. K. M. O’Hara et al., Phys. Rev. A 66, 041401 (2002).
19. S. Jochim et al., Phys. Rev. Lett. 89, 273202 (2002).
20. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R.

Granade, J. E. Thomas, Science 298, 2179 (2002);
published online 7 November 2002 (10.1126/
science.1079107).

21. T. Bourdel et al., Phys. Rev. Lett. 91, 020402 (2003).
22. M. Houbiers, H. T. C. Stoof, W. McAlexander, R. Hulet,
Phys. Rev. A 57, R1497 (1998).

23. The position of the Feshbach resonance is known to
within a few tens of Gauss. All numbers given for the
scattering lengths and binding energies are subject to
a corresponding systematic error.

24. K. Dieckmann et al., Phys. Rev. Lett. 89, 203201 (2002).
25. A. Mosk et al., Opt. Lett. 26, 1837 (2001).
26. We measure the atom number via fluorescence de-

tection after recapture into a magneto-optical trap.
In order to avoid molecule formation and loss when
the Feshbach tuning field is ramped down before
detection, we heat the sample by abruptly turning on
the full laser power of the optical dipole trap. At low
phase-space densities, the thermal gas is not affected
by the downward Feshbach ramp (13).

27. K. M. O’Hara, M. E. Gehm, S. R. Granade, J. E. Thomas,
Phys. Rev. A 64, 051403 (2001).

28. We know that only the weakly bound state is popu-
lated, because the release of binding energy in a
three-body process would otherwise lead to imme-
diate trap loss. Moreover, our dissociation-based de-
tection is sensitive only to molecules in this state.

29. C. Chin, R. Grimm, preprint available at http://arxiv.
org/abs/cond-mat/0309078.

30. S. J. J. M. F. Kokkelmans, G. V. Shlyapnikov, C.
Salomon, preprint available at http://arxiv.org/abs/
cond-mat/0308384.

31. For the harmonically approximated trap with same
frequencies and twice the depth, the molecules have
eight times more quantum states than the atoms.
The lower �z at 764 G as compared to 1176 G gives
another factor of 1.24.

32. S. Stringari, Phys. Rev. Lett. 77, 2360 (1996).
33. D. M. Stamper-Kurn, H.-J. Miesner, S. Inouye, M. R.

Andrews, W. Ketterle, Phys. Rev. Lett. 81, 500 (1998).
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Fig. 3. Resonance of a collective excitation
mode at 	5/2 �z. The oscillation is excited by
magnetic modulation of the molecular BEC
mean field. The solid curve shows a Lorentzian
fit to the data.

Fig. 4. Controlled spilling of the BEC by appli-
cation of a magnetic field gradient B�. This
variable gradient is applied in addition to the
constant gradient of 1.1 G/cm that we use for
gravity compensation. The data are taken at
the two different magnetic fields B1 � 772 G
(open circles) and B2 � 731 G (solid circles),
where the mean field of the BEC is different by
a factor of �2.
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Crossover from a Molecular Bose-Einstein Condensate to a Degenerate Fermi Gas
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We demonstrate a reversible conversion of a 6Li2 molecular Bose-Einstein condensate to a degenerate
Fermi gas of atoms by adiabatically crossing a Feshbach resonance. By optical in situ imaging, we
observe a smooth change of the cloud size in the crossover regime. On the Feshbach resonance, the
ensemble is strongly interacting and the measured cloud size is 75�7�% of the one of a noninteracting
zero-temperature Fermi gas. The high condensate fraction of more than 90% and the adiabatic crossover
suggest our Fermi gas to be cold enough to form a superfluid.

DOI: 10.1103/PhysRevLett.92.120401 PACS numbers: 03.75.Mn, 05.30.Fk, 32.80.Pj, 34.50.–s

Bose-Einstein condensation (BEC) of molecules
formed by fermionic atoms was recently demonstrated
[1–4]. The tunability of interactions in such systems
provides a unique possibility to explore the Bose-
Einstein condensate to Bardeen-Cooper-Schrieffer
(BEC-BCS) crossover [5], an intriguing interplay be-
tween the superfluidity of bosons and Cooper pairing of
fermions. While the BEC and BCS limits are both well
understood, the crossover takes place in a strongly inter-
acting regime, which represents a challenge for many-
body theory.

Feshbach resonances [6] play a central role to control
two-body interaction and have been used for conversion
between fermionic atoms and bosonic molecules [7–10].
They are also the experimental key to investigate phe-
nomena related to the BEC-BCS crossover. For example,
it has been predicted in Ref. [11] that a pure molecular
BEC can be converted into a superfluid Fermi gas by an
adiabatic passage over the Feshbach resonance. Moreover,
in the crossover regime where the interactions are unitar-
ity limited, a universal behavior is expected [12,13].
Ultracold gases in that regime may provide new insights
into other strongly interacting systems such as high-Tc
superconductors, 3He superfluids, and neutron stars.

A spin mixture of 6Li atoms in the lowest two hyperfine
sublevels is an excellent system to investigate the cross-
over [14,15] based on a broad Feshbach resonance at a
magnetic field of B � 850 G [16–18]. An efficient forma-
tion of ultracold molecules has been realized by three-
body recombination [10,19], or by sweeping the magnetic
field across the resonance [8]. The long lifetime of the
molecules permits efficient evaporation [1,8,10] and fa-
cilitates slow, adiabatic changes of the system.

In this work, we explore the regime where the BEC-
BCS crossover is expected by analyzing the density pro-
files of the trapped cloud at different magnetic fields. Our
experimental setup is described in Ref. [1]. We load 2�
106 precooled 6Li atoms into a single focused-beam di-
pole trap, which is generated by a 10 W Yb:YAG laser
operating at a wavelength of 1030 nm. We evaporatively

cool the cloud by exponentially lowering the trap depth
with a time constant of 460 ms. The radial and axial
trap frequencies are !r=2� � 110 Hz�P=mW�1=2 and
!z=2� � �600B=kG� 0:94P=mW�1=2 Hz, respectively,
where P is the laser power. The curvature of the magnetic
field that we use for Feshbach tuning results in a magnetic
contribution to the axial trapping. In the low power range
where the molecular BEC is formed (P< 50 mW), the
axial confinement is predominantly magnetic. During the
whole evaporation process, the magnetic field is kept at
B � 764 G. At this field the molecular binding energy is
�kB � 2 
K, where kB is Boltzmann’s constant. For the
scattering length of elastic molecule-molecule collisions,
we expect amol � 2200a0, based on the predicted relation
of amol � 0:6a [20] and an atomic scattering length of
a � 3500a0 [17]. Here a0 is Bohr’s radius. Using radio-
frequency spectroscopy which allows us to distinguish
signals from atoms and molecules [7], we observe a
complete atom to molecule conversion when the thermal
energy of the particles is reduced to values well below the
molecular binding energy.

For detection we apply in situ absorption imaging to
record spatial density profiles of the trapped ensemble. To
image at high magnetic fields, we illuminate the cloud
for 20 
s with a probe beam (intensity 0:5 mW=cm2)
tuned to the atomic j2S1=2; mJ � �1=2; mI � 0i !
j2P3=2; m0

J � �3=2; m0
I � 0i transition. The probe beam

dissociates the molecules and is used to image the result-
ing atom cloud [3]. Compared to the absorption imaging
of unbound atoms, we found that the detection efficiency
of the molecules approaches 100% at fields higher than
750 G and �50% at 650 G. The difference is due to the
Franck-Condon wave function overlap, which favors
fields closer to the resonance where the interatomic sepa-
ration in the molecular state is larger. In our cigar-shaped
trap, the radial cloud size is on the order of our imaging
resolution of 10 
m, while the axial cloud size of typi-
cally �100 
m can be accurately measured. We therefore
obtain axial density distributions from images integrated
radially.
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To measure the condensate fraction, we adiabatically
reduce the magnetic field from 764 to 676 G in a 200-ms
linear ramp after completion of the evaporation ramp.
This reduces the scattering length amol and thus increases
the visibility of the characteristic bimodal distribution.
Figure 1(a) shows a bimodal profile observed in this way
with Nmol � N=2 � 4� 105 molecules remaining at a
final evaporation ramp power of 28 mW. A Gaussian fit
to the thermal wings (dashed line) yields a temperature of
T � 430 nK, which is a factor of 7.5 below the calculated
trap depth of 3:2 
K. The observed condensate fraction
of �20% is consistent with 1� �T=Tc�

3, where Tc �
0:8k�1

B �h �!!�Nmol=1:202�1=3 � 500 nK is the critical tem-
perature, �!! � �!2

r!z�
1=3 is the mean vibration frequency,

and the factor of 0.8 takes into account the �20% down-
shift in Tc due to interactions [21].

We obtain pure molecular condensates when we con-
tinue the evaporation process down to final power levels of
a few mW. Figure 1(b) shows an essentially pure con-
densate of Nmol � 2:0� 105 molecules obtained at a
final power of 3.8 mW, where the trap depth is 450 nK.
The density profile is well fit by a Thomas-Fermi density
distribution / �1� z2=z2TF�

2 with a radius zTF � 105 
m.
The corresponding peak molecular density is 1:2�
1013 cm�3. In the image a thermal component is not
discernable. A careful analysis of the profile provides
us with a lower bound of 90% for the condensate frac-
tion. For the chemical potential of the BEC, we obtain

 � 1

2mmol!2
zz2TF � kB � 130 nK. Here mmol � 2m is the

mass of the 6Li dimer. Based on the prediction amol �
0:6a � 650a0, the calculated chemical potential of
1
2 �15 �h

2Nmol �!!
3amol

����������

mmol
p

�2=5 � kB � 155 nK is consistent

with the observed value of kB � 130 nK considering the
experimental uncertainty. In particular, the particle num-
ber is calibrated to within a factor of 1.5 through fluores-
cence imaging [10].

The pure molecular BEC at 764 G serves as our starting
point for exploring the crossover to the degenerate Fermi
gas. Before we change the magnetic field, we first adia-
batically increase the trap power from 3.8 to 35 mW in a
200-ms exponential ramp. The higher power provides a
trap depth of �kB � 2 
K for the atoms, which is
roughly a factor of 2 above the Fermi energy, and avoids
spilling of the Fermi gas produced at magnetic fields
above the resonance [1]. The compression increases the
peak density of the condensate by a factor of 2.5. All
further experiments reported here are performed in the
recompressed trap with !r=2� � 640 Hz and !z=2� �
�600B=kG� 32�1=2 Hz.

We measure the lifetime of the BEC in the compressed
trap at 764 G to be 40 s. The peak molecular density is
estimated to be nmol � �15=8���!r=!z�

2Nmol=z
3
TF �

1:0�5� � 1013 cm�3. This provides an upper bound for
the binary loss coefficient of 1� 10�14 cm3=s, and is
consistent with previous measurements in thermal mo-
lecular gases [8,10] together with the predicted scattering
length scaling [20] and the factor-of-2 suppression of
binary collision loss in a condensate.

For exploring the crossover to a Fermi gas we apply
slow magnetic-field ramps. To ensure their adiabaticity,
we performed several test experiments. In one series of
measurements we ramped up the field from 764 to 882 G
and back to 764 G with variable ramp speed. This con-
verts the molecular BEC into a strongly interacting Fermi
gas and vice versa. Therefore substantial changes are
expected in the cloud size. After the up-and-down
ramp, we observe an axial oscillation of the ensemble at
the quadrupolar excitation frequency [1,22]. This collec-
tive oscillation is the lowest excitation mode of the sys-
tem and is thus sensitive to nonadiabaticity effects. We
observe axial oscillations with relative amplitudes of >
5% for ramp speeds above 1:2 G=ms. For ramp speeds of
0:6 G=ms and lower, the axial oscillation was no longer
visible.

We also checked the reversibility of the crossover pro-
cess by linearly ramping up the magnetic field from 764
to 1176 G and down again to 764 G within 2 s (ramp speed
of �0:41 G=ms). In Fig. 2, we compare the axial profile
taken after this ramp (�) with the corresponding profile
obtained after 2 s at fixed magnetic field (�). The com-
parison does not show any significant deviation. This
highlights that the conversion into a Fermi gas and its
back-conversion into a molecular BEC are lossless and
proceed without noticeable increase of the entropy.

To investigate the spatial profile of the trapped gas in
different regimes, we start with the molecular BEC at
764 G and change the magnetic field in 1-s linear ramps to
final values between 740 and 1440 G. Images are then
taken at the final ramp field. To characterize the size of
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FIG. 1. Axial density profiles of a partially condensed (a) and
fully condensed (b) molecular cloud. The profiles are derived
from averaging seven in situ images taken at a magnetic field of
B � 676 G after evaporation at the production field of 764 G.
(a) When the evaporation ramp is stopped with 4� 105 mole-
cules at a final laser power of 28 mW, a characteristic bimodal
distribution is observed with a condensate fraction of �20%.
The dashed curve shows Gaussian fit to the thermal fraction.
(b) At a final laser power of 3.8 mW, an essentially pure
condensate of 2� 105 molecules is obtained.
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the trapped gas, we determine the root-mean-squared
axial size zrms. This rms size is related to the axial radius
zTF by zrms � zTF=

���

7
p

in the case of a pure BEC in the
Thomas-Fermi limit and by zrms � zTF=

���

8
p

in the cases of
zero-temperature noninteracting or strongly interacting
Fermi gases [23].

Figure 3(b) shows how the measured axial size zrms

changes with the magnetic field. For comparison, Fig. 3(a)
displays the magnetic-field dependence of the atomic
scattering length a. Up to 950 G, an increase in zrms is
due to the crossover from the molecular BEC to the
degenerate Fermi gas. For higher magnetic fields, the
axial cloud size of the Fermi gas shrinks with B as
the axial magnetic confinement increases (!z /

����

B
p

).
For the following discussions, we normalize the ob-

served size to the one expected for a noninteracting Fermi
gas. In particular, this removes the explicit trap depen-
dence. In Fig. 3(c), we show the normalized axial size
� � zrms=z0, where z0 � �EF=4m!2

z�
1=2 is the rms axial

size of a noninteracting zero-temperature Fermi gas with
N � 4� 105 atoms. The Fermi energy EF � �h2k2F=2m �
�h �!!�3N�1=3 amounts to kB � 1:1 
K at 850 G, and the
Fermi wave number kF corresponds to a length scale of
k�1
F � 3600a0.

Below the Feshbach resonance, the observed depen-
dence of the cloud size agrees well with the mean-field
behavior of a BEC in the Thomas-Fermi limit. In
this regime, the normalized size is given by � �
0:688�amol=a�

1=5�EF=Eb�
1=10, where Eb � �h2=ma2 is the

molecular binding energy. Figure 3(c) shows the corre-
sponding curve (solid line) calculated with amol=a � 0:6
[20]. This BEC limit provides a reasonable approxima-
tion up to �800 G; here the molecular gas interaction
parameter is nmola

3
mol � 0:08. Alternatively, the interac-

tion strength can be expressed as kFa � 1:9.

The crossover to the Fermi gas is observed in the
vicinity of the Feshbach resonance between 800 and
950 G; here � smoothly increases with the magnetic field
until it levels off at 950 G, where the interaction strength
is characterized by kFa � �1:9. Our results suggest
that the crossover occurs within the range of �0:5 &

�kFa�
�1 & 0:5, which corresponds to the strongly inter-

acting regime. The smoothness of the crossover is further
illustrated in Fig. 4. Here the spatial profiles near the
resonance show the gradually increasing cloud size with-
out any noticeable new features.

On resonance a universal regime is realized [12–14],
where scattering is fully governed by unitarity and the
scattering length drops out of the description. Here the
normalized cloud size can be written as � � �1� ��1=4,
where � parametrizes the mean-field contribution to the
chemical potential in terms of the local Fermi energy
[14]. At 850 G our measured value of � � 0:75� 0:07
provides � � �0:68�0:13

�0:10. Here the total error range in-
cludes all statistic and systematic uncertainties with the
particle number giving the dominant contribution. Note
that the uncertainty in the Feshbach resonance position is
not included in the errors [18]. Our experimental results
reveal a stronger interaction effect than previous mea-
surements that yielded � � �0:26�7� at T � 0:15TF [14]
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FIG. 3. Axial cloud size measurements across the Feshbach
resonance. In (a) the atomic scattering length a is shown
according to [17]; the resonance at 850 G is marked by the
vertical dashed line. The data in (b) display the measured rms
cloud sizes. In (c), the same data are plotted after normaliza-
tion to a noninteracting Fermi gas. The solid line shows the
expectation from BEC mean-field theory with amol � 0:6a. In
(b) and (c), the error bars show the statistical error of the size
measurements from typically five individual images.
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FIG. 2. Axial profile of a molecular BEC at 764 G (�) after
its conversion into a Fermi gas at 1176 G and subsequent back
conversion. Two 1-s magnetic field ramps are applied in this
reversible process. For reference we show the corresponding
profile observed without the magnetic field ramp (�). The
density profiles are obtained by averaging over 50 images.
The difference shown in the lower graph is consistent with
the drifts of a residual interference pattern in the images.
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and � � �0:3 at T � 0:6TF [15]. Our value of � lies
within the range of the theoretical predictions for a zero-
temperature Fermi gas: �0:67 [12,24], �0:43 [24], and,
in particular, �0:56�1� from a recent quantum Monte
Carlo calculation [25].

Beyond the Feshbach resonance, in the Fermi gas re-
gime above 950 G, we observe an essentially constant
normalized cloud size of � � 0:83� 0:07. In this regime,
the interaction parameter kFa is calculated to vary be-
tween �2 (at 950 G) and �0:8 (at 1440 G), which allows
us to estimate � to vary between 0.90 and 0.95 based on
the interaction energy calculations in Ref. [12]. Our ob-
served values are somewhat below this expectation,
which requires further investigation.

In summary, we have demonstrated the smooth cross-
over from a molecular condensate of 6Li dimers to an
atomic Fermi gas. Since the conversion is adiabatic and
reversible, the temperature of the Fermi gas can be esti-
mated from the conservation of entropy [11]. Our high
condensate fraction of > 90% suggests a very small en-
tropy which in the Fermi gas limit corresponds to an
extremely low temperature of kBT < 0:04EF. In this sce-
nario, superfluidity can be expected to extend from the
molecular BEC regime into the strongly interacting
Fermi gas regime above the Feshbach resonance where
kFa & �0:8. Our experiment thus opens up intriguing
possibilities to study atomic Cooper pairing and super-
fluidity in resonant quantum gases.
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We study collective excitation modes of a fermionic gas of 6Li atoms in the BEC-BCS crossover
regime. While measurements of the axial compression mode in the cigar-shaped trap close to a
Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising
features. In the strongly interacting molecular BEC regime, we observe a negative frequency shift with
increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the
collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a
collisionless phase.

DOI: 10.1103/PhysRevLett.92.203201 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

The crossover from a Bose-Einstein condensate (BEC)
to a Bardeen-Cooper-Schrieffer (BCS) superfluid has for
decades attracted considerable attention in many-body
theory [1]. Bose-Einstein condensates of molecules
formed by fermionic atoms of 6Li and 40K [2–5] provide
a unique system to experimentally explore this BEC-BCS
crossover. In such ultracold gases magnetically tuned
scattering resonances, known as Feshbach resonances,
allow one to control and vary the interaction strength
over a very broad range. Recent experiments have entered
the crossover regime and yield results on the interaction
strength by measuring the cloud size [6] and expansion
energy [5]. Moreover, two experiments [7,8] have dem-
onstrated the condensed nature of fermionic atom pairs in
the crossover regime.

Important questions are related to superfluidity in the
crossover regime [9].When a molecular BEC is converted
into an ultracold Fermi gas [6], one can expect ultralow
temperatures and superfluidity to extend far into the
Fermi gas regime [10]. Detection tools to probe super-
fluidity in this regime are therefore requested. The inves-
tigation of collective excitation modes [11] is well
established as a powerful method to gain insight into
the physical behavior of ultracold quantum gases in dif-
ferent regimes of Bose [12] and Fermi gases [13]. A
recent paper [14] points out an interesting dependence
of the collective frequencies in the BEC-BCS crossover of
a superfluid Fermi gas. Superfluidity implies a hydrody-
namic behavior which can cause substantial changes in
the excitation spectrum and in general very low damping
rates. However, in the crossover regime the strong inter-
action between the particles also results in hydrodynamic
behavior in the normal, nonsuperfluid phase. Therefore
the interpretation of collective modes in the BEC-BCS
crossover in terms of superfluidity is not straightforward
and needs careful investigation to identify the different
regimes.

In this Letter, we report on measurements of funda-
mental collective excitation modes in the BEC-BCS
crossover for various coupling strengths in the low-

temperature limit. In Ref. [2], we have already presented
a first measurement of the collective excitation of a mo-
lecular BEC in the limit of strong coupling. As described
previously [2,6], we work with a spin mixture of 6Li
atoms in the two lowest internal states. For exploring
different interaction regimes, we use a broad Feshbach
resonance, the position of which we determined to
837(5) G [15]. The different interaction regimes can be
characterized by the coupling parameter 1=�kFa�, where
a represents the atom-atom scattering length and kF is the
Fermi wave number. Well below the Feshbach resonance
(B< 700 G), we can realize the molecular BEC regime
with 1=�kFa� � 1. On resonance, we obtain the unitarity-
limited regime of a universal fermionic quantum gas with
1=�kFa� � 0 [16]. An interacting Fermi gas of atoms is
realized beyond the resonance where 1=�kFa�< 0.

The starting point of our experiments is a cigar-shaped
molecular BEC produced by evaporative cooling in an
optical dipole trap in the same way as described in
Ref. [6]. Radially the sample is confined by a 35-mW
laser beam (wavelength 1030 nm) focused to a waist
of 25 �m. The radial vibration frequency is !r � 2
�
750 Hz. The axial vibration frequency is !z�2
�
�601B=kG�11�1=2 Hz, where the predominant contribu-
tion stems from magnetic confinement caused by the
curvature of the Feshbach tuning field B, and a very small
additional contribution arises from the weak axial optical
trapping force.

For exploring collective excitations in the BEC-BCS
crossover regime, we ramp the magnetic field from the
evaporation field of 764 G, where the molecular BEC is
formed, to fields between 676 and 1250 G within 1 s. In
previous work [6], we have shown that the conversion to
an atomic Fermi gas proceeds in an adiabatic and re-
versible way, i.e., without increase of entropy. From the
condensate fraction in the BEC limit, for which we
measure more than 90% [6], we can give upper bounds
for the temperature in both the BEC limit and the non-
interacting Fermi gas limit of T < 0:46TBEC and T <
0:03TF [10], respectively. Here TBEC (TF) denotes the
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critical temperature (Fermi temperature). With a total
number of atoms N � 4� 105 (free atoms and atoms
bound to molecules) and a geometrically averaged trap
frequency at 837 G of �!!��!2

r!z�
1=3�2
�230Hz, we

calculate a Fermi energy EF � �h2k2F=2m � �h �!!�3N�1=3 �
kB � 1:2 �K for a noninteracting cloud, where m is the
mass of an atom and kB is Boltzmann’s constant.

To excite the axial compression mode at a given mag-
netic field, we increase the optical confinement in a 10-ms
time interval by a factor of 1.5. The laser power is varied
slow enough for the radial motion to follow adiabatically,
but fast enough to induce axial oscillations. The relative
amplitude of the resulting axial oscillation is kept small,
typically �10%. We observe the oscillation by in situ
imaging of the cloud [6] after a variable hold time t at
constant trap parameters. To determine the collective
oscillation frequency �z and the damping rate �z, we fit
a damped harmonic oscillation z�t�� z0�Azexp�	�zt��
sin��zt��z� to the observed time evolution of the cloud
size, where z0, Az, and �z are additional fit parameters.

The measured oscillation frequencies and damping
rates are shown in Fig. 1. The data are normalized to
the axial trap frequency !z, as determined by excitation
of the axial sloshing mode. We point out that the axial
confinement is harmonic because of the dominant mag-
netic trapping, and we can measure !z with a 10	3

precision. In the BEC limit, the measured collective fre-

quencies are in agreement with the expected �z=!z �
��������

5=2
p

� 1:581 [11,17]. With increasing magnetic field,
we observe a decrease in the collective excitation fre-
quency until a minimum is reached at about 900 G, i.e.,
in the regime of a strongly interacting Fermi gas where
1=�kFa� � 	0:5. With further increasing magnetic field
and decreasing interaction strength, we then observe a
gradual increase of the collective frequency toward
�z=!z � 2. The latter value is expected for a collision-
less degenerate Fermi gas, where the elastic collision rate
is strongly reduced by Pauli blocking. Because of the
large damping rates in the transition regime between
hydrodynamic and collisionless behavior, the excitation
frequencies cannot be determined with high accuracy.
The observed axial damping is consistent with a gradual
transition between these two regimes [18].

The insets of Fig. 1 show a zoom-in of the data for the
resonance region between 750 and 900 G. The collective
frequency that we measure on resonance exhibits the
small 2% down-shift expected for the unitarity limit
(�z=!z �

�����������

12=5
p

� 1:549) [14]. For the damping rate,
we observe a clear minimum at a magnetic field of
815(10) G, which is close to the resonance position. It is
interesting to note that this damping minimum coincides
with the recent observation of a maximum fraction of
condensed fermionic atom pairs in Ref. [18]. For the
minimum damping rate, we obtain the very low value
of �z=!z � 0:0015, which corresponds to a 1=e damping
time of �5 s.

To excite the radial compression mode, we reduce the
optical confinement for 50 �s, which is short compared
with the radial oscillation period of 1.3 ms. In this short
interval the cloud slightly expands radially, and then
begins to oscillate when the trap is switched back to the
initial laser power. The relative oscillation amplitude is
�10%. To detect the radial oscillation, we turn off the
trapping laser after various delay times t and measure the
radial size r�t� after 1.5 ms of expansion. The measured
radial size r�t� reflects the oscillating release energy.
From the corresponding experimental data, we extract
the excitation frequency �r and damping �r by fitting
the radial cloud size to r�t�� r0�Arexp�	�rt�sin��rt�
�r�, where r0, Ar, and �r are additional fit parameters.
Typical radial oscillation curves are shown in Fig. 2.

The magnetic-field dependence of the radial excitation
frequency �r and the damping rate �r is shown in Fig. 3.
Here we normalize the data to the trap frequency !r,
which we obtain by measuring the radial sloshing mode
at the given magnetic field [19]. This normalization sup-
presses anharmonicity effects in the measured compres-
sion mode frequency to below 3% [21]. For low magnetic
fields, the measured frequency ratio approaches the BEC
limit [11,22] (�r=!r � 2). With increasing magnetic
field, i.e., increasing interaction strength, we observe a
large down-shift of the frequency. On resonance (B �
837 G), we observe �r=!r � 1:62�2�. Above resonance,
i.e., with the gas entering the strongly interacting Fermi

FIG. 1 (color online). Measured frequency �z and damping
rate �z of the axial compression mode, normalized to the trap
frequency !z. In the upper graph, the dashed lines indicate
the BEC limit of �z=!z �

��������

5=2
p

and the collisionless Fermi
gas limit with �z=!z � 2. The insets show the data in the
resonance region. Here the vertical dotted line indicates the
resonance position at 837(5) G. The star marks the theoreti-
cal prediction of �z=!z �

�����������

12=5
p

in the unitarity limit. In
the lower inset, the dotted line is a third-order polynomial fit
to the data.
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gas regime, the oscillation frequency further decreases
until a maximum shift of almost 30% [�r=!r � 1:42�5�]
is reached at B � 890 G . With further increasing mag-
netic field, i.e., decreasing interaction strength, an abrupt
change to �r=!r � 2 is observed. For B > 920 G our
data are consistent with a Fermi gas in the collisionless
regime. The damping of the radial compression mode is
small in the BEC limit and reaches a minimum close to
the unitarity regime. At B � 910 G, where the abrupt
change occurs, we observe very strong damping (see
also middle trace in Fig. 2).

We have performed further experiments to check our
data on the radial compression mode for systematic ef-
fects. We have repeated the measurements after recom-
pressing the trap to 9 times higher trap laser power

(!r � 2:4 kHz). The corresponding data confirm all our
observations in the shallower trap. In particular, the
negative frequency shift and the sudden change in the
collective frequency show up in essentially the same
way. The recompressed trap also allows us to eliminate
a small residual anharmonicity shift from our measure-
ment of the collective frequency at 837 G, and we obtain
�r=!r � 1:67�3� for the harmonic trap limit. We have
also checked that the frequency of the compression mode
in the resonance region does not depend on the way we
prepare the ultracold gas. Direct evaporation at a fixed
magnetic field, without starting from a molecular BEC,
leads to the same collective frequency. Preliminary mea-
surements at higher temperatures, however, show a trend
towards smaller frequency shifts in the radial compres-
sion mode and to smoother changes of the collective
frequency.

Our measurements on the radial compression mode
show three surprises. The corresponding features, which
we discuss in the following, cannot be explained on the
basis of available theoretical models and suggest new
physics in the BEC-BCS crossover regime.

Surprise one.—For a strongly interacting BEC,
Ref. [23] has predicted up-shifts of the collective fre-
quencies with increasing coupling strength based on be-
yond mean-field theory corrections [24]. Applying these
predictions to a molecular BEC in the crossover regime,
the collective excitation frequencies should follow
��i=�i � ci

������������

nma3m
p

(i � z; r), where nm is the peak mo-
lecular number density and am � 0:6a [25] is the
molecule-molecule scattering length. For our highly elon-
gated trap geometry, the numerical factors are cr �
5cz � 0:727. In contrast to these expectations, we observe
a strong frequency down-shift in the radial direction.
Using the above formula to fit the first four data points,
we obtain a negative coefficient of cr � 	1:2�3�. For the
axial oscillation we obtain cz � 	0:04�5�. Note that a
substantial down-shift in radial direction is observed
even at the low magnetic field of 676 G where the mo-
lecular gas parameter is relatively small (nma3m � 0:001).
Apparently, the beyond mean-field theory of a BEC is not
adequate to describe the transition from a molecular BEC
to a strongly interacting gas in the BEC-BCS crossover.

Surprise two.—The universal character of the strongly
interacting quantum gas on resonance suggests a simple
equation of state for which one expects �z=!z �
�����������

12=5
p

� 1:549 and �r=!r �
�����������

10=3
p

� 1:826 for the
collective excitation frequencies [14].While our measure-
ments confirm the predicted axial frequency, we obtain a
different frequency in the radial direction of �r=!r �
1:67�3�.

Surprise three.—The abrupt change of the excitation
frequency and the large damping rate are not expected in
a normal degenerate Fermi gas, where the collective ex-
citation frequency is expected to vary smoothly from the
hydrodynamic regime to the collisionless one. Further-
more, for the damping rate of the radial mode in the

FIG. 3 (color online). Measured frequency �r and damping
rate �r of the radial compression mode, normalized to the trap
frequency (sloshing mode frequency) !r. In the upper graph,
the dashed line indicates �r=!r � 2, which corresponds to
both the BEC limit and the collisionless Fermi gas limit. The
vertical dotted line marks the resonance position at 837�5� G.
The star indicates the theoretical expectation of �r=!r �
�����������

10=3
p

in the unitarity limit. A striking change in the excitation
frequency occurs at �910 G (arrow) and is accompanied by
anomalously strong damping.

FIG. 2 (color online). Oscillations of the radial compression
mode at different magnetic fields in the strongly interacting
Fermi gas regime. The solid lines show fits by damped har-
monic oscillations.
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transition regime, a maximum value of �r=!r � 0:09 is
calculated in Ref. [18]. Our measured damping rate of
�r=!r � 0:5 is clearly inconsistent with this prediction
for the normal (nonsuperfluid) hydrodynamic regime.
However, both the sudden change of the collective fre-
quency and a strong damping are expected for a transition
from the superfluid to the normal phase [26].

In conclusion, our experiments demonstrate that the
collective modes of a degenerate gas in the BEC-BCS
crossover region show a pronounced dependence on the
coupling strength and thus provide valuable information
on the physical behavior of the system. For the axial
compression mode, the frequency shift observed in the
unitarity limit confirms theoretical expectations. How-
ever, the radial compression mode reveals a surprising
behavior. In the strongly interacting BEC regime, the
observed frequency shifts have an opposite sign as com-
pared to expectations from beyond mean-field theory and
the frequency shift on resonance is even larger than
expected. The most striking feature is an abrupt change
of the radial collective frequency in the regime of a
strongly attractive Fermi gas where 1=�kFa� � 	0:5.
The transition is accompanied by very strong damping.
The observation supports an interpretation in terms of a
transition from a hydrodynamic to a collisionless phase.
A superfluid scenario for the hydrodynamic case seems
plausible in view of current theories on resonance super-
fluidity [9] and the very low temperatures provided by the
molecular BEC [10]. A definite answer, however, to the
sensitive question of superfluidity requires further careful
investigations, e.g., on the temperature dependence of the
phase transition.

We warmly thank S. Stringari for stimulating this work
and for many useful discussions. We also thank W. Zwer-
ger and M. Baranov for very useful discussions. We ac-
knowledge support by the Austrian Science Fund (FWF)
within SFB 15 (project part 15) and by the European
Union in the frame of the Cold Molecules TMR Network
under Contract No. HPRN-CT-2002-00290. C. C. thanks
the FWF for financial support.

Note added.—A recent paper by John Thomas’ group
[27] reports on measurements of the radial compression
mode in the resonance region, which show much weaker
frequency shifts than we observe. This apparent discrep-
ancy needs further investigation.
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Observation of the Pairing Gap in
a Strongly Interacting Fermi Gas
C. Chin,1 M. Bartenstein,1 A. Altmeyer,1 S. Riedl,1 S. Jochim,1

J. Hecker Denschlag,1 R. Grimm1,2*

We studied fermionic pairing in an ultracold two-component gas of 6Li atoms
by observing an energy gap in the radio-frequency excitation spectra. With
control of the two-body interactions through a Feshbach resonance, we dem-
onstrated the dependence of the pairing gap on coupling strength, temperature,
and Fermi energy. The appearance of an energy gap with moderate evaporative
cooling suggests that our full evaporation brought the strongly interacting
system deep into a superfluid state.

The spectroscopic observation of a pairing gap
in the 1950s marked an important experimental
breakthrough in research on superconductivity
(1). The gap measurements provided a key to
investigating the paired nature of the particles
responsible for the frictionless current in metals
at very low temperatures. The ground-breaking
Bardeen-Cooper-Schrieffer (BCS) theory, de-
veloped at about the same time, showed that
two electrons in the degenerate Fermi sea can
be coupled by an effectively attractive interac-
tion and will form a delocalized, composite
particle with bosonic character. BCS theory
predicted that the gap in the low-temperature
limit is proportional to the critical temperature
Tc for the phase transition, in agreement with
the experimental measurements. In general, the
physics of superconductivity and superfluidity
go far beyond the weak-coupling limit of BCS
theory. In the limit of strong coupling, paired
fermions form localized bosons, and the system
can undergo Bose-Einstein condensation
(BEC). The BCS limit and the BEC limit are
connected by a smooth BCS-BEC crossover,
which has been a subject of great theoretical
interest for more than three decades (2–5). The
formation of pairs generally represents a key
ingredient of superfluidity in fermionic sys-

tems, and the gap energy is a central quantity to
characterize the pairing regime.

The rapid progress in experiments with
ultracold degenerate Fermi gases (6) has
opened up a unique testing ground to study
phenomena related to pairing and superfluid-
ity at densities typically a billion times below
the ones in usual condensed-matter systems.
In cold-atom experiments, magnetically
tuned scattering resonances (Feshbach reso-
nances) serve as a powerful tool to control the
two-body coupling strength in the gas (7). On
the basis of such a resonance, a strongly
interacting degenerate Fermi gas was recently
realized (8). A major breakthrough then fol-
lowed, with the creation of Bose-Einstein
condensates of molecular dimers composed
of fermionic atoms (9–13), which corre-
sponds to the realization of a BEC-type su-
perfluid in the strong coupling limit. By vari-
ation of the coupling strength, subsequent
experiments (12, 14–18) began to explore the
crossover to a BCS-type system. This BEC-
BCS crossover is closely linked to the pre-
dicted “resonance superfluidity” (19–22) and
a “universal” behavior of a Fermi gas with
resonant interactions (23, 24). The observa-
tion of the condensation of atom pairs (15,
16) and measurements of collective oscilla-
tions (17, 18) support the expected superflu-
idity at presently attainable temperatures in
Fermi gases with resonant interactions.

We prepared our ultracold gas of fermionic
6Li atoms in a balanced spin-mixture of the two
lowest sub-states |1� and |2� of the electronic 1s2

2s ground state, employing methods of laser

cooling and trapping and subsequent evapora-
tive cooling (9). A magnetic field B in the range
between 650 to 950 G was applied for Feshbach
tuning through a broad resonance centered at
the field B0 � 830 G. In this high-field range,
the three lowest atomic levels form a triplet of
states |1�, |2�, and |3�, essentially differing by
the orientation of the nuclear spin (mI � 1, 0,
�1, where mI is the nuclear magnetic quantum
number). In the resonance region with B � B0,
the s-wave scattering length a for collisions
between atoms in states |1� and |2� is positive.
Here, two-body physics supports a weakly
bound molecular state with a binding energy
Eb � �2/(ma2), where � is Planck’s constant h
divided by 2� and m is the atomic mass. Mol-
ecules formed in this state can undergo BEC
(9–13). At B � B0, the two-body interaction is
resonant (a3�	), corresponding to a vanish-
ing binding energy of the molecular state. Be-
yond the resonance (B 
 B0), the scattering
length is negative (a � 0), which leads to an
effective attraction. Here, two-body physics
does not support a weakly bound molecular
level, and pairing can only occur because of
many-body effects.

Our experimental approach (9, 14) facili-
tated preparation of the quantum gas in var-
ious regimes with controlled temperature,
Fermi energy, and interaction strength. We
performed evaporative cooling under condi-
tions (25) in which an essentially pure mo-
lecular Bose-Einstein condensate containing
N � 4 � 105 paired atoms could be created as
a starting point for the experiments. The final
laser power of the evaporation ramp allowed
us to vary the temperature T. The Fermi
energy EF (Fermi temperature TF � EF/kB,
with Boltzmann’s constant kB) was controlled
by a recompression of the gas, which we
performed by increasing the trap laser power
after the cooling process (25). We then varied
the interaction strength by slowly changing
the magnetic field to the desired final value.
The adiabatic changes applied to the gas after
evaporative cooling proceeded with con-
served entropy (14). Lacking a reliable meth-
od to determine the temperature T of a deeply
degenerate, strongly interacting Fermi gas in
a direct way, we characterized the system by
the temperature T� measured after an isen-
tropic conversion into the BEC limit (25). For
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a deeply degenerate Fermi gas, the true tem-
perature T is substantially below our observ-
able T� (25, 26), but a general theory for this
relation is not yet available.

Radio-frequency (RF) spectroscopy has
been introduced as a powerful tool to study
interaction effects in ultracold Fermi gases (27–
29). Molecular binding energies have been
measured for 40K atoms (29), for which the
potential of the method to observe fermionic
pairing gap energies has also been pointed out.
RF spectroscopy has been applied to 6Li atoms
to study interaction effects up to magnetic fields
of 750 G (28). One important observation was
the absence of mean-field shifts in the strongly
interacting regime. This effect can be attributed
to the fact that, in the relevant magnetic-field
range, all s-wave scattering processes between
6Li atoms in the states |1�, |2�, and |3� are
simultaneously unitarity-limited. This property
of 6Li is very favorable for RF spectroscopy
because it suppresses shifts and broadening by
mean-field effects.

We drove RF transitions from state |2� to the
empty state |3� at �80 MHz and monitored the
loss of atoms in state |2� after weak excitation
by a 1-s RF pulse, using state-selective absorp-
tion imaging (14). Our experiment was opti-
mized to obtain a resolution of �100 Hz, cor-
responding to an intrinsic sensitivity to interac-
tion effects on the scale of �5 nK, which is
more than two orders of magnitude below the
typical Fermi temperatures.

We recorded RF spectra for different de-
grees of cooling and in various coupling re-
gimes (Fig. 1). We realized the molecular re-
gime at B � 720 G (a � �120 nm). For the
resonance region, we examined two different
magnetic fields, because the precise resonance
location B0 is not exactly known. Our two
values B � 822 G (16) and 837 G (13, 18) may
be considered as lower and upper bounds for
B0. We also studied the regime beyond the
resonance with a large negative scattering
length at B � 875 G (a � �600 nm). Spectra
taken in a “hot” thermal sample at T � 6TF

(where TF � 15 �K) show the narrow atomic
|2�3 |3� transition line (Fig. 1, top) and serve
as a frequency reference. We present our spec-
tra as a function of the RF offset with respect to
the bare atomic transition frequency.

Spectral signatures of pairing have been
theoretically considered (30–34 ). A clear
signature of the pairing process is the emer-
gence of a double-peak structure in the
spectral response as a result of the coexist-
ence of unpaired and paired atoms. The
pair-related peak is located at a higher fre-
quency than the unpaired-atoms signal, be-
cause energy is required for pair breaking.
For understanding of the spectra, both the
homogeneous line shape of the pair signal
(31, 33) and the inhomogeneous line broad-
ening due to the density distribution in the
harmonic trap need to be taken into account

(34 ). As an effect of inhomogeneity, fer-
mionic pairing due to many-body effects
takes place predominantly in the central
high-density region of the trap, and un-
paired atoms mostly populate the outer re-
gion of the trap where the density is low
(34–36 ). The spectral component corre-
sponding to the pairs thus shows a large
inhomogeneous broadening in addition to
the homogeneous width of the pair-break-
ing signal. For the unpaired atoms, the
homogeneous line is narrow and the effects
of inhomogeneity and mean-field shifts are
negligible. These arguments explain why
the RF spectra in general show a relatively
sharp peak for the unpaired atoms together
with a broader peak attributed to the pairs.

We observed clear double-peak structures
already at T�/TF � 0.5, which we obtained
with moderate evaporative cooling down to a
laser power of P � 200 mW (Fig. 1, middle,
TF � 3.4 �K). In the molecular regime B �
720 G, the sharp atomic peak was well sep-
arated from the broad dissociation signal
(29), which showed a molecular binding en-
ergy of Eb � h � 130 kHz � kB � 6.2 �K.
For B 3 B0, the peaks began to overlap. In
the resonance region [822 G and 837 G (Fig.
1)], we still observed a relatively narrow
atomic peak at the original position together
with a pair signal. For magnetic fields beyond
the resonance, we could resolve the double-
peak structure for fields up to �900 G.

For T�/TF � 0.2, realized with a deep
evaporative cooling ramp down to an optical

trap power of P � 3.8 mW, we observed the
disappearance of the narrow atomic peak in
the RF spectra (Fig. 1, bottom, TF � 1.2 �K).
This shows that essentially all atoms were
paired. In the BEC limit (720 G), the disso-
ciation line shape is identical to the one
observed in the trap at higher temperature and
Fermi energy. Here the localized pairs are
molecules with a size much smaller than the
mean interparticle spacing, and the dissocia-
tion signal is independent of the density. In
the resonance region [822 G and 837 G (Fig.
1)], the pairing signal shows a clear depen-
dence on density (Fermi energy), which be-
comes even more pronounced beyond the
resonance (875 G). We attribute this to the
fact that the size of the pairs becomes com-
parable to or larger than the interparticle
spacing. In addition, the narrow width of the
pair signal in this regime (Fig. 1, bottom, B �
875 G) indicates a pair localization in mo-
mentum space to well below the Fermi mo-
mentum �kF � �2mEF and thus a pair size
exceeding the interparticle spacing.

To quantitatively investigate the crossover
from the two-body molecular regime to the
fermionic many-body regime, we measured the
pairing energy in a range between 720 and 905
G. The measurements were performed after
deep evaporative cooling (T �/TF � 0.2) for two
different Fermi temperatures, TF � 1.2 �K and
TF � 3.6 �K (Fig. 2). As an effective pairing
gap, we defined �� as the frequency difference
between the pair-signal maximum and the bare
atomic resonance. In the BEC limit, the effec-

Fig. 1. RF spectra for various magnetic fields and different degrees of evaporative cooling. The RF
offset (kB � 1 �K � h � 20.8 kHz) is given relative to the atomic transition |2� 3 |3�.
The molecular limit is realized for B � 720 G (first column). The resonance regime is studied for
B � 822 G and B � 837 G (second and third columns). The data at 875 G (fourth column) explore
the crossover on the BCS side. Top row, signals of unpaired atoms at T� � 6TF (TF � 15 �K); middle
row, signals for a mixture of unpaired and paired atoms at T� � 0.5TF (TF � 3.4 �K); bottom row,
signals for paired atoms at T� � 0.2TF (TF � 1.2 �K). The true temperature T of the atomic Fermi
gas is below the temperature T�, which we measured in the BEC limit. The solid lines are introduced
to guide the eye.
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tive pairing gap �� simply reflects the molec-
ular binding energy Eb (Fig. 2, solid line) (25).
With an increasing magnetic field, in the BEC-
BCS crossover, �� shows an increasing devia-
tion from this low-density molecular limit and
smoothly evolves into a density-dependent
many-body regime where h�� � EF.

A comparison of the pairing energies at the
two different Fermi energies (Fig. 2, inset) pro-
vides further insight into the nature of the pairs.
In the BEC limit, �� is solely determined by Eb

and thus does not depend on EF. In the universal
regime on resonance, EF is the only energy scale,
and we indeed observed the effective pairing gap
�� to increase linearly with the Fermi energy.
We found a corresponding relation h�� � 0.2
EF. Beyond the resonance, where the system is
expected to change from a resonant to a BCS-
type behavior, �� was found to depend more
strongly on the Fermi energy and the observed
gap ratio further increased. We interpret this in
terms of the increasing BCS character of pairing,
for which an exponential dependence h�� /EF �
exp(��/2kF�a�) is expected.

In a further series of measurements (Fig.
3), we applied a controlled heating method to
study the temperature dependence of the gap
in a way that allowed us to keep all other
parameters constant. After production of a
pure molecular Bose-Einstein condensate (T�
� 0.2TF) in the usual way, we adiabatically
changed the conditions to B � 837 G and
TF � 1.2 �K. We then increased the trap
laser power by a factor of nine (TF increased
to 2.5 �K), using exponential ramps of dif-
ferent durations. For fast ramps, this recom-
pression was nonadiabatic and increased the
entropy. By variation of the ramp time, we
explored a range from our lowest tempera-
tures up to T�/TF � 0.8. The emergence of the
gap with decreasing temperature is clearly
visible in the RF spectra (Fig. 3). The marked
increase of �� for decreasing temperature is

in good agreement with theoretical expecta-
tions for the pairing gap energy (5).

The conditions of our experiment were
theoretically analyzed for the case of resonant
two-body interaction (34). The calculated RF
spectra are in agreement with our experimen-
tal results and demonstrate how a double-
peak structure emerges as the gas is cooled
below T/TF � 0.5 and how the atomic peak
disappears with further decreasing tempera-
ture. In particular, the work clarifies the role
of the “pseudo-gap” regime (5, 22), in which
pairs are formed before superfluidity is
reached. According to the calculated spectra,
the atomic peak disappears at temperatures
well below the critical temperature for the
phase-transition to a superfluid. A recent the-
oretical study of the BCS-BEC crossover at
finite temperature (36) predicted the phase-
transition to a superfluid to occur at a tem-
perature that on resonance is only �30%
below the point where pair formation sets in.

We have observed fermionic pairing already
after moderate evaporative cooling. With much
deeper cooling applied, the unpaired atom sig-
nal disappeared from our spectra. This obser-
vation shows that pairing takes place even in
the outer region of the trapped gas where the
density and the local Fermi energy are low. Our
results thus strongly suggest that a resonance
superfluid is formed in the central region of the
trap (34). Together with the observations of res-
onance condensation of fermionic pairs (15, 16)
and weak damping of collective excitations (17,

18), our observation of the pairing gap provides a
strong case for superfluidity in experiments on
resonantly interacting Fermi gases.
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and H. P. Büchler for many stimulating discussions.
Supported by the Austrian Science Fund (FWF) within
spezial forschungsbereich 15 (project part 15) and by
the European Union in the frame of the Cold Mole-
cules Training and Mobility of Researchers Network
under contract no. HPRN-CT-2002-00290. C.C. is a
Lise-Meitner research fellow of the FWF.

Supporting Online Material
www.sciencemag.org/cgi/content/full/1100818/DC1
Materials and Methods
References and Notes

27 May 2004; accepted 13 July 2004
Published online 22 July 2004;
10.1126/science.1100818
Include this information when citing this paper.

Fig. 2. Measurements of the effective pairing
gap �� as a function of the magnetic field B
for deep evaporative cooling and two differ-
ent Fermi temperatures, TF � 1.2 �K (solid
symbols) and 3.6 �K (open symbols). The
solid line shows �� for the low-density limit,
where it is essentially given by the molecular
binding energy (25 ). Inset: The ratio of the
effective pairing gaps measured at the two
different Fermi energies.

Fig. 3. RF spectra measured at B � 837 G and
TF � 2.5 �K for different temperatures T� adjust-
ed by controlled heating. The solid lines are fits
to guide the eye, using a Lorentzian curve for the
atom peak and a Gaussian curve for the pair
signal. The vertical dotted line marks the atomic
transition, and the arrows indicate the effective
pairing gap ��.
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