
From Molecules to Cooper Pairs:
Experiments in the BEC-BCS

Crossover

Dissertation

zur Erlangung des Doktorgrades an der
Fakultät für Mathematik, Informatik und Physik

der Leopold-Franzens-Universität Innsbruck

vorgelegt von

Markus Bartenstein

durchgeführt am Institut für Experimentalphysik
unter der Leitung von

Univ.-Prof. Dr. Rudolf Grimm

Februar 2005





per Anna





Abstract
We explore the crossover from a molecular Bose-Einstein condensate (BEC) to a
Bardeen-Cooper-Schrieffer (BCS) superfluid of “Cooper paired” fermions with an ul-
tracold gas of fermionic 6Li atoms. The crucial parameter in the crossover is the cou-
pling strength between the paired atoms. At sufficiently low temperatures a BEC of
tightly bound molecules is formed in the strong coupling limit, while in the weak cou-
pling limit a BCS state of delocalized pairs is created.

A magnetically tunable scattering resonance at a magnetic field of about 834 G
serves as the experimental key to explore various coupling regimes. Through this Fesh-
bach resonance we control the interactions in the gas and vary the coupling strength
over a broad range. The starting point for our experiments is a molecular BEC of
tightly bound pairs that we produce by evaporative cooling of an optically trapped 6Li
spin mixture. Exploiting the Feshbach tuning, we explore the BEC-BCS crossover by
studying elementary macroscopic and microscopic properties of the gas.

The analysis of density profiles of the trapped cloud in the BEC-BCS crossover
shows that it is smooth and reversible. Moreover, from the measured cloud size on
resonance we are able to determine the value of an universal parameter, which charac-
terizes the interaction energy of the unitary limited quantum gas.

To investigate the collective dynamics of the gas in the BEC-BCS crossover we
excite energetically low-lying collective modes in the axial and radial directions of our
cigar shaped trap. The collective oscillations of the modes in the axial direction show
the expected behavior of a gas in the BEC-BCS crossover with a particularly small
damping rate in the vicinity of the Feshbach resonance. The modes in the strongly
confined radial direction, however, show an abrupt change in the collective oscillation
frequency at a magnetic field value that corresponds to a Fermi gas in the strongly
interacting regime. A plausible explanation for the observed breakdown of the hy-
drodynamic behavior is the coupling of the collective oscillation to the pairs in the
strongly interacting Fermi gas, which leads to pair breaking.

Employing radio-frequency spectroscopy, we study the pairing energy in the BEC-
BCS crossover. We demonstrate the dependence of the pairing energy on the coupling
strength, temperature, and Fermi energy. The observation of an early onset of the
pairing in the evaporative cooling process strongly suggests that for full evaporation
the strongly interacting Fermi gas is in the superfluid phase.

Our experiments open up intriguing prospects for further experiments on the fasci-
nating properties of strongly correlated many-body regimes that are of great relevance
for several fields of physics; like quantum fluids, neutron stars, and most prominently
high Tc superconductors.
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Zusammenfassung
Mit einem ultrakalten Gas fermionischer 6Li Atome erforschen wir den Übergang von
einem molekularen Bose-Einstein Kondensat (BEC) zu einem superfluiden Bardeen-
Cooper-Schrieffer (BCS) Zustand aus zu Cooper-Paaren gebundenen Fermionen. Die
ausschlaggebende Größe bei diesem Übergang ist die Stärke der Kopplung zwischen
den gepaarten Atomen. Bei ausreichend tiefen Temperaturen bildet sich im Bereich
extrem starker Kopplung ein BEC fest gebundener Moleküle, während sich im Grenz-
fall äußerst schwacher Kopplung ein BCS Zustand delokalisierter Paare ausbildet.

Eine magnetisch abstimmbare Streuresonanz bei einem Feld von etwa 834 G dient
uns als experimenteller Schlüssel zur Erforschung verschiedenster Kopplungsbereiche.
Durch diese Feshbach-Resonanz kontrollieren wir die Wechselwirkungen im Gas und
variieren die Kopplungsstärke über einen großen Bereich. Ausgangspunkt unserer Ex-
perimente ist ein molekulares BEC aus fest gebundenen Paaren, das wir durch Ver-
dampfungskühlung eines optisch gefangenen 6Li Spingemisches erzeugen. Mit Hilfe
der Feshbach-Resonanz stellen wir die Kopplungsstärke ein und erfroschen den BEC-
BCS Übergang indem wir elementare makroskopische und mikroskopische Eigen-
schaften des Gases untersuchen.

Die Auswertung von Dichteprofilen im BEC-BCS Übergang zeigt, daß er stetig
und reversibel ist. Darüberhinaus können wir durch die auf der Resonanz gemessene
Größe der Wolke den Wert eines universellen Parameters bestimmen, welcher die
Wechselwirkungsenergie des unitär limitierten Quantengases charakterisiert.

Zur Untersuchung der kollektiven Dynamik des Gases im BEC-BCS Übergang
regen wir energetisch tiefliegende kollektive Schwingungen in der axialen und radialen
Richtung unserer zigarrenförmigen Falle an. Die kollektiven Schwingungen in axialer
Richtung weisen das für ein Gas im BEC-BCS Übergangsbereich erwartete Verhalten
auf, wobei wir eine besonders geringe Dämpfung in unmittelbarer Nähe der Feshbach-
Resonanz beobachten. Das Verhalten der Moden in der stark eingeschlossenen, ra-
dialen Richtung zeigt hingegen eine abrupte Änderung der Oszillationsfrequenz bei
einem Magnetfeld, bei dem eine stark wechselwirkendes Fermi-Gas vorliegt. Eine
plausible Erklärung für den beobachteten Einbruch des hydrodynamischen Verhaltens
ist dass die Paare im stark wechselwirkenden Fermi-Gas durch eine Kopplung an die
kollektiven Schwingungen aufgebrochen werden.

Durch Verwendung von Radiofrequenz-Spektroskopie untersuchen wir die
Paarungsenergie im BEC-BCS Übergang. Wir zeigen die Abhängigkeit der Paarungs-
energie von der Kopplungsstärke, der Temperatur und der Fermi-Energie. Der be-
obachtete frühzeitige Beginn der Paarung während der Kühlung legt nahe, dass sich
das stark wechselwirkende Fermi-Gas am Ende des Kühlprozesses im superfluiden
Zustand befindet.

Unsere Experimente eröffnen einzigartige Möglichkeiten für weiterführende
Untersuchungen der faszinierenden Eigenschaften stark korrelierter Vielteilchensys-
teme. Diese Systeme sind von größter Bedeutung für eine Vielzahl physikalischer Ar-
beitsgebiete wie der Untersuchung von Quantenflüssigkeiten, Neutronensternen und,
vor allem, der Untersuchung von Hochtemperatursupraleitern.
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Chapter 1

Introduction

All particles can be classified into two types, bosons1 and fermions2. In atomic gases
the distinct quantum statistical description of these two classes of matter becomes
apparent when the gas is cooled to such low temperatures that the quantum mechanical
wave packets of the particles begin to overlap. For bosons this marks the onset of Bose-
Einstein condensation (BEC). This phase transition into the superfluid condensate is
characterized by a macroscopic occupation of the ground state. Identical fermions are
far less social and have to occupy different quantum states. This rule is expressed by
the Pauli exclusion principle, which forces fermions at low temperature to stack up
in the lowest quantum states. In contrast to a Bose-Einstein condensate such a “Fermi
sea” arrangement is obtained without passing through a phase transition. At even lower
temperatures a Fermi gas with attractive interactions is predicted to undergo a phase
transition into a superfluid Bardeen-Cooper-Schrieffer (BCS) state where two fermions
are paired up in a “Cooper pair”.

The experimental realization of a Bose-Einstein condensate in dilute atomic gases
was a milestone in physics [And95, Dav95]. Since then the field of atomic condensates
has been progressing rapidly and is driven by the combination of new experimental
techniques and theoretical advances [Ang02].

The quest for a superfluid Fermi gas poses the challenge of reaching the even lower
temperatures that yield the phase transition into pairing and superfluidity [Pit02]. The
cooling of fermions is hindered by the Pauli exclusion principle, which suppresses
collisions between identical fermions at low temperature. To partially overcome this
limitation most experiments use a spin mixture of different hyperfine states of the same
fermionic isotope. The two most prominent fermionic atoms that are used in the field
of cold atoms are 40K and, as in our experiment, 6Li.

Since the first experimental realization of a degenerate Fermi gas of 40K atoms in
1999 [DeM99b], and of 6Li in 2001 [Tru01, Sch01] tremendous progress has been
achieved in the field of ultracold Fermi gases. In particular the ability to control
the two-body coupling strength by a magnetically tunable scattering resonance turned

1Named after the Indian physicist Satyendrah Nath Bose.
2Named after the Italian physicist Enrico Fermi-
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1 Introduction

out to be a powerful tool [Ino98]. Based on such a Feshbach resonance a strongly
interacting Fermi gas was realized in 2002 [O’H02a]. In the following year sev-
eral groups succeeded in the formation of ultracold composite bosons by pairing of
fermions in the vicinity of the resonance [Reg03b, Cub03, Str03, Joc03b]. The pair-
ing of fermions to composite bosons profoundly changes the properties of the gas.
The finding that these molecules are rather long lived, triggered a “hot race” [Cho03]
that found its first highlight in the creation of a molecular Bose-Einstein condensate
[Joc03a, Gre03, Zwi03, Bou04, Hul04].

This molecular condensate of tightly bound fermions corresponds to a BEC type
superfluid in the strong coupling limit. Exploiting Feshbach tuning, recent experiments
explore the crossover to a Cooper paired superfluid in the weak coupling BCS limit
[Bar04b, Reg04b, Zwi04, Bou04, Kin04a, Bar04a, Chi04a, Gre04, Kin04b, Kin05].

These experiments studied the elementary properties of the system under variable
interaction conditions. The internal interaction energy was measured by detecting the
cloud size of a trapped gas [Bar04b] and by observing the expansion of the gas after
release [Bou04]. The condensed nature of fermionic atom pairs was demonstrated by
rapid conversion of the “Fermi condensate” into a molecular BEC [Reg04b, Zwi04].
The study of collective excitation modes [Kin04a, Bar04a, Kin04b] provided first in-
sight into changes of the equation of state and hydrodynamics of the system in the
crossover. Spectroscopic measurements of the pairing energy [Chi04a] showed the
crossover from a two-body molecular pairing regime to the many body dominated
BCS regime. The results of these experiments provide strong evidence of superfluidity
in strongly interacting Fermi gases [Ho04a].

The BEC-BCS crossover has been the subject of great theoretical interest for
more than three decades [Eag69, Leg80, Noz85, Che04]. The theoretically com-
pelling crossover is closely linked to a predicted “resonance superfluidity” [Hol01,
Tim01, Oha02, Sta04] and the universal behavior of a Fermi gas with resonant in-
teractions [Hei01, Ho04c]. The crossover is of great relevance for several fields of
physics like quantum fluids, neutron stars, and most prominently high Tc supercon-
ductors [Cho03, Wei04]. Ultracold Fermi gases now offer unique possibilities to ex-
perimentally explore the crossover under well defined conditions with variable cou-
pling strength between the particles. Therefore these systems allow to test the various
theoretical approaches.

This thesis reports on our experiments with a degenerate fermi gas of 6Li atoms in
the BEC-BCS crossover. It is structured as follows: Chapter two and three provide a
summary of the theoretical concepts that are relevant for our experiments. Chapter two
introduces the description of degenerate Bose and Fermi gases and gives a very brief
introduction into the description of the BEC-BCS crossover. Chapter three is devoted
to interactions and collective dynamics in ultracold gases. The first part of this chapter
introduces the general description of ultracold collisions and the concept of magneti-
cally tunable Feshbach resonances. Both sections focus on the specific properties of
fermionic 6Li atoms. The second part of this chapter presents the description of col-
lective oscillations of gases in different harmonic traps and under different conditions.

14



Chapter four and five briefly summarize our experimental setup and the creation of a
molecular Bose-Einstein condensate, respectively. A detailed description of these two
topics is found in the Ph.D. thesis of Selim Jochim [Joc04].

Our measurements with a degenerate Fermi gas in the BEC-BCS crossover are
presented in chapter six. They are the main result of this thesis. This chapter starts with
the presentation of the measured cloud size when the molecular BEC is converted into
a strongly interacting Fermi gas. The observation of a smooth and reversible crossover
is the most important finding of this first series of experiments. In the following section
we show our measurements of collective excitations in the BEC-BCS crossover. Our
measurements of the axial and radial breathing mode both show a very pronounced
dependence of the frequency and damping rate on the coupling strength. Of particular
interest is the observed sharp transition in the radial collective mode frequency which
indicates a transition from a hydrodynamic to a collisionless gas. In a further series
of experiments we employed radio-frequency spectroscopy measurements in the BEC-
BCS crossover. Applying this high resolution spectroscopic technique we were able
to observe the pairing gap in the strongly interacting Fermi gas. The experimental
results show the gradual change of the pairing gap from the two-body molecular regime
to the many-body BCS regime. The high precision radio-frequency spectroscopy on
weakly bound molecules also allowed us to precisely determine the ultracold collision
parameters of 6Li. These data enable a quantitative comparison of the experimental
results with the predictions of the crossover theory and are used throughout this thesis.

The experiments in the BEC-BCS crossover support the expected superfluidity of
the strongly interacting Fermi gas. The next great challenge is a direct proof of the
superfluidity. In chapter seven we present our ideas to achieve this next major goal.

15
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Chapter 2

Degenerate Quantum Gases

For a gas at sufficiently high temperature and low density, the thermodynamic descrip-
tion is independent of the quantum statistical properties of the particles. In this classi-
cal limit the gas can be treated as point-like particles with an occupation of the single
particle states that is given by the Maxwell-Boltzmann distribution function (see also
figure 2.1). Because the mean occupation per quantum state is usually much smaller
than one, it does not make a difference whether or not the constituents of the gas are
treated as indistinguishable particles.

The quantum mechanical properties of the gas become important as soon as the
gas is cooled to such a low temperature T that the mean occupation per state is no
longer negligibly small. The quantum statistical description in combination with the
indistinguishability of the particles gives rise to the Bose and Fermi statistics. The
different statistics are a direct consequence of the symmetric and antisymmetric wave
functions that describe bosons and fermions, respectively. The distinct Bose and Fermi
statistics result in a drastically different thermodynamic behavior of ultracold Bose and
Fermi gases [Hua87].

In a simplified picture, the particles can be regarded as quantum mechanical wave
packets with an extent given by the thermal de Broglie wavelength

λdB =

√
2π~2

mkBT
, (2.1)

where m is the mass of the particle and kB is the Boltzmann constant. At sufficiently
low temperature the wave packets begin to overlap and the gas is said to become degen-
erate. In a gas of density n the interparticle spacing is given by n−1/3 and the condition
for degeneracy can be expressed by

D = nλ3
dB ≈ 1, (2.2)

where D defines the phase-space density, which in a classical gas is a measure of the
typical occupancy number of a single particle state.

17



2 Degenerate Quantum Gases

c) d)

bosons

billiard balls wave packets

n λdB≈1 T = 0

fermions

a) b)

en
er
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BEC

Fermi Sea

EF

3 T

Figure 2.1: Illustration of the transition from a classical gas of identical particles into a quan-
tum mechanically governed degenerate gas. At high temperature the mean interparticle dis-
tance is much larger than the size of the particles and they can be treated as point-like (a). If
the temperature is lowered, the quantum statistical properties of the particles become important
(b). For temperatures where the de Broglie wavelength is on the order of the interparticle spac-
ing (nλ3

dB ≈ 1), bosons begin to form a BEC and occupy the ground state of the trap (c, upper
row); While fermions fill up the lowest lying states, occupying each state by only one particle
(c, lower row). In the limit of T = 0 a pure BEC and a Fermi sea are formed, respectively (d).

For a phase space density approaching unity bosons and fermions show a strikingly
different thermodynamic behavior (see also figure 2.1). For bosons a phase space
density of about one marks the onset of the so-called Bose-Einstein condensation. This
phase transition is a purely statistical phenomenon characterized by an macroscopic
occupation of the ground state. Such degenerate Bose gases are described in more
detail in section 2.1. Fermions however, obey the Pauli exclusion principle that forbids
two identical fermions to occupy the same quantum state. Thus a phase space density
of one implies that up to a certain energy EF each state is filled with exactly one
atom. The energy EF of the highest occupied state is referred to as the Fermi energy.
In analogy to the case of bosons such a Fermi gas is called a degenerate Fermi gas,
although physically speaking the opposite is true. The properties of degenerate Fermi
gases are summarized in section 2.2.

In contrast to the case of bosons the formation of a degenerate Fermi gas is not
accompanied by a phase transition. For a Fermi gas with weak attractive interactions,
however, a phase transition into a so-called BCS state exists at much lower temper-
atures than the Fermi temperature TF which marks the onset of quantum degeneracy
(kBTF = EF). As will be explained in section 2.2 the fermions in this BCS state form
Cooper pairs of bosonic nature.

18



2.1 Bose-Einstein condensates

For a composite particle like an atom, the number of elementary particles decides,
whether it belongs to the group of bosons or fermions. In degenerate quantum gases the
composite nature of these bosons or fermions has usually not to be taken into account
and the particles can be treated as point-like particles obeying Bose or Fermi statistics,
respectively. The reason for this lies in the fact that in a degenerate gas, the internal
degree of freedom is frozen out because the available energies are all much smaller
than the energy required for an internal excitation.

This condition, however, is no longer fulfilled if the Fermi energy is on the order of
the binding energy Eb of the composite particles. Depending on the exact value of the
Fermi energy with respect to the binding energy, the particles are bound (EF � Eb) or
not (EF � Eb). In particular, a pair of composite fermions is said to be in the strong
coupling BEC limit if the binding energy is large with respect to the Fermi energy,
while for binding energies that are small with respect to the Fermi energy, the system
is in the weak coupling BCS limit. In ultracold gases, magnetically tunable scattering
resonances allow the control of the two-body coupling strength. The ability to tune
continuously the coupling strength from the strong to the weak coupling limit, opens
the door to experimentally investigate the BEC-BCS crossover. Section 2.3 gives a
brief description of this theoretically compelling BEC-BCS crossover.

2.1 Bose-Einstein condensates

The theory of Bose-Einstein condensation in dilute gases is covered in several excel-
lent textbooks [Pet02, Pit03] and review articles [Ket99, Dal99a]. Therefore only an
overview of the main aspects relevant for this thesis will be given.

The section starts with a short description of the occurrence of the phase transition
in an ideal gas of free, and harmonically trapped bosons. In the second part interac-
tions between the particles are taken into account. This leads to the Gross-Pitaevskii
equation and the widely used Thomas-Fermi approximation.

2.1.1 Phase transition in an ideal gas

For noninteracting bosons in thermodynamic equilibrium, the mean occupation num-
ber of a single particle state ν with energy εν is given by the Bose-Einstein distribution
function

n(εν) =
1

exp [(εν − µ)/kBT ] − 1
. (2.3)

The chemical potential µ is fixed by the normalization condition N =
∑
ν n(εν) and can

be calculated as a function of T and N.
At high temperatures the mean occupancy number of any state is much less than

one. In other words exp [(εν − µ]/kBT ) � 1 for all states and thus the chemical po-
tential has to be much smaller than the energy ε0 of the lowest single particle state. In

19



2 Degenerate Quantum Gases

this limit the distribution function given in equation 2.3 is well approximated by the
classical Maxwell-Boltzmann distribution.

When the temperature is lowered with constant atom number N, the chemical po-
tential rises to conserve N =

∑
ν n(εν). An upper limit for the chemical potential is

given by ε0. If the chemical potential would reach or exceed this value the occupation
number of the lowest energy state would lead to an unphysical negative value. When
µ approaches ε0 the occupation number of the ground state

N0 = n(ε0) =
1

exp [(ε0 − µ)/kBT ] − 1
(2.4)

becomes increasingly large. This mechanism is the origin of Bose-Einstein condensa-
tion.

To obtain the criteria for Bose-Einstein condensation one considers the number of
atoms in the excited states NT = N − N0. For a given temperature T the number of
thermal atoms NT reaches a maximum for µ→ ε0. This maximum number is given by

Nmax
T =

∑
ν>0

1
exp [(εν − ε0)/kBT ] − 1

. (2.5)

If the temperature drops below a certain value Tc, the maximum number of atoms in
the excited states Nmax

T becomes smaller than N. To satisfy the normalization condition
N = N0 + NT the number of atoms in the ground state N0 has to be on the order of N.
The temperature Tc where Nmax

T = N is called the critical temperature and marks the
onset of the Bose-Einstein condensation, i.e. the macroscopic occupation of a single
particle state.

BEC in a harmonic trapping potential

In most experiments with atomic gases, the particles are confined by a harmonic po-
tential. In the following a brief discussion of the properties of a BEC in a three-
dimensional harmonic oscillator potential V(r) with trap frequencies ωi (i = x, y, z) is
given.

Assuming that the temperature of the gas is much larger than the level spacing
between the single particle states (kBT � ~ωi), the so-called semiclassical approxi-
mation can be applied. For a BEC, this condition is satisfied if N � 1. Because the
condition implies that kBTc is much larger than the zero point energy of the harmonic
oscillator potential, this energy is neglected in the following.

In the semiclassical approximation the sum over the single particle states (see for
example equation 2.5) can be replaced by integrals. The approximation of the dis-
cretized single particle levels by a continuum also justifies the concept of the density
of states. For a three-dimensional harmonic oscillator the density of states is given by
g(ε) = ε2/2(~ωho)3, where ωho = (ωxωyωz)1/3 is the geometric average of the oscillator
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2.1 Bose-Einstein condensates

frequencies. The number of thermal atoms then becomes

NT =

∫ ∞

0
g(ε)n(ε) dε, (2.6)

and the evaluation of the integral with µ = 0 and NT = N defines the critical tempera-
ture given by [Pet02]

kBTc = ~ωho

(
N
ζ(3)

)1/3

= 0.94~ωhoN1/3, (2.7)

where ζ(α) is the Riemann zeta function1.
The temperature dependence of the condensate fraction N0/N is found using the

normalization condition N = N0 + NT and equation 2.6 [Dal99a]

N0

N
= 1 −

(
T
Tc

)3

. (2.8)

In a pure BEC all atoms are condensed in the lowest single particle state and the
density distribution n(r) reflects the shape of the ground state wave function, which is
given for a harmonic oscillator by

ϕ0(r) =
(mωho

π~

)3/4
exp

[
−

m
2~

(ωxx2 + ωyy2 + ωzz2)
]
. (2.9)

The density distribution is given by n(r) = N |ϕ0(r)|2 and grows with N. The size of
the condensate however, is independent of N and is fixed by the harmonic oscillator
length

aho =

(
~

mωho

)1/2

, (2.10)

which corresponds to the geometric average of the width of the Gaussian function
given in equation 2.9. For 6Li in our weakest trap with ωho/2π ≈ 110 Hz the harmonic
oscillator length would be about 2.8 µm.

The density distribution of a gas obeying classical statistics, however, depends
on the temperature and is proportional to exp [−V(r)/kBT ]. The 1/e-width Bi of the
distribution is given by [Pet02]

B2
i =

2kBT
mω2

i

, (2.11)

and is, under typical experimental conditions, much broader than the corresponding
width of the condensate a2

i = ~/mωi. Consequently, when the gas is cooled below the
transition temperature Tc the formation of the condensate shows up as a narrow peak
in the spatial distribution with a weight that increases with decreasing temperature (see
also chapter 5).

1The Riemann zeta function is defined as ζ(α) =
∑∞

l=1 l−α.
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2 Degenerate Quantum Gases

2.1.2 Interacting condensates
So far interactions between particles have not been taken into account and in principle
the ground state of a system including two-body interactions can be directly calculated
from the corresponding Hamiltonian [Kra96]. To solve the many-body Schrödinger
equation exactly, heavy numerical efforts are necessary, which might even fail at large
N. Therefore mean field approaches are commonly used to describe interacting sys-
tems. In these approaches the interactions are not taken explicitly into account on
length scales smaller than the interparticle spacing2.

Assuming that the s-wave scattering amplitude a (see section 3.1) is the relevant in-
teraction parameter, E. Gross [Gro61] and L. Pitaevskii [Pit61] showed independently
that at T = 0 and in the limit of N � 1 the condensate wave function Φ(r, t) (also
referred to as the order parameter) obeys the following equation

i~
∂

∂t
Φ(r, t) =

(
−

~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t), (2.12)

where g = 4π~2a/m is the coupling constant. The density and the condensate wave
function are related by n(r, t) = |Φ(r, t)|2.

In the case of stationary solutions the wave function evolves in time according to
[Pit03]

Φ(r, t) = Φ(r) exp
(
−iµt

~

)
, (2.13)

where the time dependence is fixed by the chemical potential, which is given by the
normalization condition

∫
dr |Φ(r)|2 = N. The Gross-Pitaevskii equation 2.12 then

becomes (
−

~2∇2

2m
+ Vext(r) + g|Φ(r)|2

)
Φ(r) = µΦ(r). (2.14)

This equation has the form of a Schrödinger equation in which the potential acting on
the particles is the sum of the external potential Vext and a nonlinear term g|Φ(r)|2 that
takes into account the mean field produced by the other bosons. Note that in contrast
to the Schrödinger equation the eigenvalue is the chemical potential and not the energy
per particle.

In the following the external potential Vext(r) is again assumed to be a three dimen-
sional harmonic oscillator. By directly integrating equation 2.14 one finds the useful
expression [Pit03]

µ =
1
N

(Ekin + Eho + 2Eint) (2.15)

for the chemical potential in terms of the different contributions to the energy. The
quantum kinetic energy (also referred to as the quantum pressure term) Ekin, the har-
monic oscillator energy Eho and the two-body interaction energy Eint are related to
each other by the virial relation [Pit03]

2Ekin − 2Eho + 3Eint = 0. (2.16)
2Interactions at low energy are discussed in more detail in section 3.1.3.
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2.1 Bose-Einstein condensates

The validity of the Gross-Pitaevskii equation is based on the condition that the
scattering length a is much smaller than the average distance d = n−1/3 between the
particles fixed by the average density n of the gas. The condition |a| � n−1/3 is equiva-
lent to the requirement that the value of the gas parameter is very small, i.e. n|a|3 � 1.
In this case the gas is said to be dilute or weakly interacting. The terminology however,
can be misleading since the condition of n|a|3 � 1 does not necessarily imply that the
interactions can be neglected. The effects of interactions have to be compared with the
kinetic energy. Taking the kinetic energy of the ground state of a harmonic oscillator,
one finds [Dal99a]

Eint

Ekin
∝

N |a|
aho

. (2.17)

Even for a dilute gas this parameter can easily be larger than one, leading to a non-ideal
behavior of the gas.

Thomas-Fermi limit

For noninteracting bosons (g = 0) the solution of the Gross-Pitaevskii equation is
found to be Φ(r) =

√
Nϕ0(r), where ϕ0(r) is the ground state wave function given in

equation 2.9.
In the presence of interactions, however, the shape of the cloud will change sig-

nificantly. In case of attractive (repulsive) interactions the central density is raised
(lowered) and the radius of the cloud consequently will decrease (increase). If the
effect of interactions is very significant, i.e Na/aho � 1, the width of the gas will
become so large and the density profile so smooth that the kinetic energy term in the
Gross-Pitaevskii equation can be ignored. This limit is called the Thomas-Fermi ap-
proximation and is well satisfied in most experiments. In this limit the density profile
is given by

n(r) =
1
g

[µ − Vext(r)], (2.18)

for µ > Vext and n(r) = 0 elsewhere [Bay96]. The chemical potential is fixed by the
normalization condition

∫
dr n(r) = N and takes the value

µ =
~ωho

2

(
15Na

aho

)2/5

. (2.19)

The density profile in the Thomas-Fermi limit thus takes the form of an inverted
parabola. The density vanishes at the classical turning point and the characteristic
radius (also called the Thomas-Fermi radius) Ri (i = x, y, z) of the cloud is given by
the relation

µ =
1
2

mω2
i R2

i . (2.20)

Combining this with equation 2.19, the Thomas-Fermi radius can be written as

Ri = aho

(
15Na

aho

)1/5
ωho

ωi
, (2.21)
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2 Degenerate Quantum Gases

and the density profile of the condensate in a three dimensional harmonic trap is given
by

n(r) =
15N

8π
∏

i Ri
max

1 −∑
i

r2
i

R2
i

, 0

 . (2.22)

From the thermodynamic relation µ = ∂E/∂N the total energy per particle in the
Thomas-Fermi limit is found to be

E
N
=

5
7
µ. (2.23)

From equation 2.16, with the quantum pressure term Ekin set to zero, the interac-
tion energy per particle is found to be Eint/N = (2/7) µ while the potential energy
is Eho/N = (3/7) µ [Pit03].

It should be noted again that all the results presented so far are only valid if the gas
is sufficiently dilute, i.e. n|a|3 � 1. For typical parameters in trapped atomic gases
this condition is well fulfilled. However, in the vicinity of a Feshbach resonance the
scattering length can become very large, making it necessary to include corrections
to the above mean field description. These beyond mean field corrections and their
influence to the dynamic behavior of the gas are briefly described in section 3.3.5.

Critical temperature and condensate fraction

In order to discuss the effects of repulsive interactions on the thermodynamic behav-
ior of the gas, it is convenient to estimate the relevant energies of the system. The
interaction energy of zero-temperature BEC in the Thomas-Fermi limit is given by
Eint/N = (2/7) µ. By comparing the interaction energy or equivalently the chemical
potential µ(T = 0) with the thermal energy kBT , one expects the interactions to be im-
portant if kBT is smaller than µ(T = 0). If instead the thermal energy is larger than the
chemical potential, interactions will provide only perturbative corrections. Note that
for temperature above the critical temperature the interaction effects become much
smaller as the condensate is absent and consequently the density in the central region
of the trap is significantly lower [Pit03].

A useful parameter to estimate the interaction effects is the ratio η = µ(T = 0)/kBT 0
c

of the chemical potential µ calculated at T = 0 in the Thomas-Fermi approximation
and the critical temperature T 0

c for noninteracting particles in the same trap3. The ratio
can be expressed by

η =
µ(T = 0)

kBT 0
c
≈ 1.57

(
N1/6 a

aho

)2/5

≈ 2.24(na3)1/6, (2.24)

where n is the density at the center of the trap evaluated at T = 0. The power of
1/6 entering the last relation leads to large values for η on the order of 1 even if the

3The Thomas-Fermi parameter Na/aho on the other hand expresses the value of the chemical poten-
tial in units of the harmonic oscillator energy.
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2.2 Degenerate Fermi gases

gas parameter is very small. In our molecular BEC η ≈ 0.5 − 0.6 [Joc04] and thus
one expects that interaction effects are still visible for values of T on the order of T 0

c
[Pit03].

In a BEC with repulsive interactions the central density is lowered with respect
to the noninteracting case and therefore one expects that the transition temperature
is decreased with respect to the noninteracting case. However at the onset of Bose-
Einstein condensation, the system is very dilute and consequently the corrections due
to interactions are expected to be small.

By treating the interactions in a mean field approximation the shift of the critical
temperature can be estimated. Using a theory where the motion of thermal atoms is
described by a single particle Hamiltonian S. Giorgini et al. found for the temperature
shift δTc = Tc − T 0

c [Gio96]

δTc

T 0
c
= −1.32N1/6 a

aho
= −0.43η5/2. (2.25)

The shift is proportional to a and is, as expected, small for typical experimental pa-
rameters. Taking for example η = 0.55 the critical temperature is reduced by about
10%.

At temperatures below the transition temperature the effects of the interactions are
expected to be larger. The calculation of the effects on the condensate fraction yield to
lowest order in η [Nar98]

N0

N
= 1 − t3 − αηt2(1 − t3)2/5, (2.26)

where t = T/T 0
c and α = ζ(2)/ζ(3) ≈ 1.37 is a numerical factor. Assuming again

η = 0.55 and t = 0.5, the number of atoms in the condensate is reduced by about 20%
with respect to the ideal gas prediction (see equation 2.8).

2.2 Degenerate Fermi gases
For identical bosons a phase space density of about one marks the onset of the phase
transition into a Bose-Einstein condensate as explained in the previous section. This
macroscopic occupation of the lowest ground state is a direct consequence of Bose
statistics for particles with a symmetric wave function. Unlike bosons, the wave func-
tion of fermions has an odd symmetry, which prevents the occupation of one single
particle state by more than one Fermion – a fact that is expressed by the well known
Pauli-exclusion principle. Consequently at T = 0 fermions fill up all single particle
states up to the maximum available energy – the so called Fermi energy EF (see also
figure 2.1 on page 18). The corresponding Fermi temperature TF = EF/kB is on the
same order of magnitude as the critical temperature for a BEC and for temperatures
T < TF the Fermi gas is said to be quantum degenerate. However in contrast to bosons,
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2 Degenerate Quantum Gases

the quantum degenerate state evolves smoothly from the non-degenerate Fermi gas and
the system does not undergo any phase transition.

This section summarizes the properties of ultracold fermionic gases relevant for our
experiments. A detailed description of noninteracting fermions in a harmonic trapping
potential is found in D. Butts et al. [But97]. Their analysis is extended in the article of
G. Bruun et al. to include the effects of interactions in the mean field approximation
[Bru98]. The topic of fermionic quantum gases is also covered in the two textbooks
[Pet02, Pit03].

2.2.1 Trapped atomic Fermi gases
In a gas of identical fermions, all in the same internal state, the Pauli exclusion princi-
ple requires that any single particle state is occupied by no more than one atom. The
resulting kinetic energy is sometimes called the Fermi motion and gives a major con-
tribution to the total energy of the system. Moreover at low temperature the dominant
s-wave interactions are absent (see section 3.1.2) and the properties of the fermi gas
can be obtained by treating it as noninteracting [But97]. This highlights the difference
to the case of Bose-Einstein condensates, where in most cases the interaction term
dominates the kinetic energy (see section 2.1.2).

Assuming a gas of N identical fermions the occupation probability f (ε) for a single
particle state with energy ε is given by the Fermi-Dirac distribution

f (ε) =
1

exp [(ε − µ)/kBT ] + 1
, (2.27)

where the chemical potential µ is fixed by the normalization condition

N =
∫

g(ε) f (ε)dε. (2.28)

As already mentioned, the density of states for a three-dimensional harmonic potential
is given by g(ε) = ε2/2(~ωho)3.

An important quantity is the chemical potential at T = 0, which defines the energy
of the highest occupied state. This value of the chemical potential is the Fermi energy
EF = µ(T = 0) and the corresponding temperature is referred to as the Fermi tempera-
ture TF = EF/kB. The Fermi energy is obtained by integrating equation 2.28 at T = 0,
resulting in

EF = ~ωho(6N)1/3. (2.29)

Thomas-Fermi approximation

To obtain the density distribution the semiclassical local density approximation, that
consists of labelling each state by a position r and a wave vector k is used. According
to this approximation the properties of the gas at a point r are assumed to be those of
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2.2 Degenerate Fermi gases

a uniform gas having a density equal to the local density n(r). In general, the validity
of the local density approximation requires that the thermal energy is much larger than
the level spacing of the harmonic trapping potential. For fermions at low temperature
this condition is fulfilled due to the Pauli principle. On the other hand, degenerate
bosons with repulsive interactions satisfy this conditions due to strong correlation in
the condensate. In both cases the zero-temperature semiclassical approximation for
dilute gases is usually referred to as the Thomas-Fermi approximation.

Due to the Pauli exclusion principle, a volume drdk in phase space can accommo-
date only drdk/(2π)3 fermions. Hence at T = 0 and a given local density n(r), the
particles will have wave numbers within the interval 0 ≤ k ≤ kF(r), where

4
3
πk3

F(r) = (2π)3n(r). (2.30)

At a given position r the most energetic particles have an energy equal to the local
Fermi energy ~2k2

F(r)/2m plus the energy of the position dependent potential V(r).
Assuming equilibrium implies that the energy required to add a particle at any point
inside the cloud is the same, i.e.

~2k2
F(r)

2m
+ V(r) = EF. (2.31)

In combination with equation 2.30, the spatial density profile of a noninteracting Fermi
gas in the Thomas-Fermi limit can be written as [Møl98]

n(r) =
1

6π2

[
2m
~2

(EF − V(r))
]3/2

(2.32)

for V(r) < EF and zero otherwise.
The boundary of the cloud at T = 0 is defined by V(r) = EF. Therefore the

characteristic size of the trapped Fermi gas is given by the turning point of a classical
particle with total energy EF in the trapping potential. In case of a harmonic potential
with trap frequencies ωi along the three directions i = x, y, z one finds

EF =
1
2

mω2
xR

2
x =

1
2

mω2
yR2

y =
1
2

mω2
z R2

z . (2.33)

Inserting the relation for the Fermi energy given in equation 2.29 the characteristic size
of the Fermi gas is

Ri = aho(48N)1/6ωho

ωi
. (2.34)

Thus for an axially symmetric trap with trapping frequencies ω⊥ and ω‖ along the
radial R and axial Z directions the density distribution is found to be

n(r) =
8
π2

N
R2Z

(
1 −

r2

R2 −
z2

Z2

)3/2

. (2.35)
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The corresponding momentum distribution can be derived in the same way as equa-
tions 2.32 and 2.35 were derived. The width of the momentum distribution is fixed by
the maximum occupied Fermi wave number kF =

√
2mEF/~2 or

kF = (48N)1/6/aho, (2.36)

and the momentum distribution is given by

n(k) =
8
π2

N
k3

F

(
1 −

k2

k2
F

)3/2

. (2.37)

Equation 2.30 shows that the maximum wave number kF is on the order of the inverse
interparticle separation.

Comparison with a BEC in the Thomas-Fermi limit

It is worth comparing the above results for the density and momentum distribution of
an ideal Fermi gas at T = 0 with the corresponding distributions for an interacting,
zero-temperature BEC in the Thomas-Fermi limit.

The shape of the density profiles in coordinate space are very similar. However, the
characteristic radius of a Fermi gas scales more slowly on the atom number (∝ N1/6)
compared to the Thomas-Fermi radius of the BEC (∝ N1/5). In a similar way the Fermi
energy scales as N1/3 while the zero-temperature chemical potential of a BEC varies
more rapidly (µ ∝ N2/5). Nevertheless the physical origin of the chemical potential
is in both cases very different. For bosons it is fixed by the interactions of the atoms
while for fermions it is given by the Pauli exclusion principle. For typical experimental
parameters (Naho/a � 1) the radius of a cloud of fermions is generally a few times
larger than the Thomas-Fermi radius of a BEC with the same number of particles. This
effect of the Fermi pressure has been observed in two elegant experiments [Tru01,
Sch01].

In momentum space the distributions differ significantly. For a gas of noninteract-
ing fermions the velocity distribution is isotropic independent of the trapping potential
(see equation 2.37). For an interacting BEC the momentum distribution is the square
of the fourier transform of

√
n(r), which is anisotropic in an asymmetric trap [Bay96].

Furthermore the momentum width of a trapped BEC scales as ~/R and consequently
decreases with increasing N, while in a trapped Fermi gas the momentum width is
given by mωhoR and increases with increasing N.

Role of interactions

For an ultracold spin-polarized Fermi gas of identical particles, the ideal gas model
presented in the previous section provides a very good approximation. In such a cold
gas the particles interact only via s-wave collisions (see also section 3.1) and for iden-
tical fermions these collisions are forbidden due to the Pauli exclusion principle. In
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the presence of a spin mixture this is no longer the case. Here two-body interactions
may become important and lead to a modification of the above model [Bru98].

Consider a gas of N fermionic atoms in two different spin states, hereafter called 1
and 2. Assuming an equal number of atoms per spin state (N1 = N2 = N/2) and equal
densities (n1 = n2 = n/2), the relevance of interactions can be estimated by comparing
the mean field interaction energy Eint = (g/4)

∫
n2(r)dr with the oscillator energy

Eho =
∫

V(r)n(r)dr. Approximating the density distribution n(r) with the Thomas-
Fermi distribution of a noninteracting Fermi gas (see equation 2.35) one finds [Vic99]

Eint

Eho
≈ 0.5N1/6 a

aho
≈ 0.3kFa, (2.38)

where kF = (24N)1/6/aho is the peak Fermi wave number of the harmonically trapped
spin mixture.

As noted already the value of k−1
F is on the order of the mean interparticle spac-

ing. In a dilute gas the interatomic distance is much larger than the scattering length,
leading to a small value of the interaction parameter kFa. Therefore it is expected that
particle interactions have only little effect on the thermodynamics of a trapped Fermi
gas unless the scattering length is very large. However interactions are crucial for a
Fermi gas to undergo a phase transition into a superfluid phase as described in the next
section.

2.2.2 BCS phase transition
When a Fermi gas is cooled to temperatures below the Fermi temperature TF, the
system gradually evolves into a degenerate quantum gas. In contrast to a bosonic gas,
the quantum degenerate state is reached without passing through any phase transition.

At temperatures much below the degeneracy temperature TF, a Fermi gas with at-
tractive interactions, however, can undergo a phase transition into a superfluid state.
This phase transition is similar to the phase transition in a solid when it becomes su-
perconducting due to the pairing of the electrons. This effect was first explained by
the ground-breaking BCS theory of Bardeen, Cooper and Schrieffer [Bar57]. A good
introduction to the theoretical concept of the BCS theory is found in the textbook of
Tinkham [Tin66].

The BCS theory shows that in a degenerate Fermi gas, two fermions with op-
posite spin and momentum can be coupled by an effective attractive interaction to
form a bound state of delocalized, composite particles. Being composed of two
fermions, these Cooper pairs [Coo56] obey Bose-Einstein statistics and can undergo
Bose-Einstein condensation. It should be noted, that in the traditional BCS theory, the
formation of the Cooper pairs and the condensation process are not two independent
phenomena but rather occur simultaneously. In the following a brief summary of the
most relevant results of the BCS formalism for a uniform dilute Fermi gas is given.

As a consequence of the pairing mechanism a gap occurs in the excitation spectrum
of the superfluid state. For a uniform Fermi gas at zero-temperature, that interacts with
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attractive s-wave interactions, the pairing gap is found to be [Gor61]

∆ =

(
2
e

)7/3

EF exp
(
−

π

2kF|a|

)
≈ 0.49EF exp

(
−

π

2kF|a|

)
. (2.39)

The critical temperature Tc for the transition from the normal to the superfluid phase
is directly related to the value of the zero-temperature value of the gap and is given by
[Gor61]

kBTc =
eC

π

(
2
e

)7/3

EF exp
(
−

π

2kF|a|

)
= 0.28EF exp

(
−

π

2kF|a|

)
, (2.40)

where C is Euler’ s constant (C ≈ 0.577). The result shows that due to an exponential
factor the critical temperature in a dilute gas (kF|a| � 1) is much smaller than the Fermi
energy.

Note that due to the inclusion of induced interactions by L. Gorkov et al. [Gor61]
the result for the gap (see equation 2.39) is reduced by a factor of ∼2.2 with respect
to the standard BCS result ∆ = 8e−2EF exp (−π/2kF|a|). Nevertheless both calculations
predict the same proportionality constant between the gap and the critical temperature
for the phase transition kBTc = eC∆/π ≈ 0.567∆.

The size χpair of the Cooper pairs can be shown to be essentially temperature inde-
pendent and is approximately given by [Tin66, Hou97]

χpair ≈
~vF

∆
, (2.41)

where vF = ~kF/m is the Fermi velocity corresponding to the Fermi energy. In a dilute
Fermi gas the size of the Cooper pairs is much larger than the average particle spacing
(χpair � 1/kF), which leads to the strong correlations in the superfluid phase.

To evaluate the critical temperature in the case of a harmonic trapping potential
it is convenient to apply the local density approximation [Hou97]. This requires that
the correlation length is much smaller than the length scale over which the density
changes, i.e. χpair � R. From equation 2.41 and equation 2.33 one finds that this con-
dition is equivalent to the requirement that the gap has to be larger than the oscillator
energy (∆ � ~ωho).

An estimate of the transition temperature for typical parameters used in our exper-
iment can be obtained from the useful relation kFa = 1.70N1/6a/aho, which is valid
for a two component spin mixture of N atoms (N1 = N2 = N/2). Assuming a total
number of N = 4 × 105 atoms, a scattering length of a = −2140 a0 and a trap with
a harmonic oscillator length of aho = 2.5 µm results in kFa ≈ −0.66 and a transition
temperature of Tc/TF ≈ 0.026. It should be noted, that this result is only a rough es-
timate because the expression for the critical temperature is only correct in the limit
of kF|a| � 1 as BCS theory was used in the derivation. In the BCS limit however, the
predicted critical temperature is much smaller than the Fermi energy. Assuming for
example kFa = −0.1 results in a transition temperature of Tc/TF ≈ 4 × 10−8, which is
far below the temperatures obtained in current experiments with ultracold Fermi gases.
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Nevertheless it can be shown that the result for the transition temperature is accurate
to 30% for kF|a| = 1/2 and ∆ ≈ 2~ωho [Car04].

2.2.3 Universal Fermi gas and resonance superfluidity
In the vicinity of a Feshbach resonance the scattering length can become arbitrarily
large, exceeding the characteristic range of the scattering potential (|a| � rc). In this
case three density regimes have to be distinguished, namely the low density (or di-
lute) regime (k−1

F � |a|), the high density (k−1
F ≤ rc), and the intermediate regime

(rc ≤ k−1
F ≤ |a|). The later regime is realized in our experiments and is considered in

the following discussion.
On resonance the scattering length a diverges and the scattering cross section

reaches the unitarity limit with a maximum cross section given by 4π/k2, where k
is the relative wave number of the two scattering atoms (see also section 3.1.3). In this
limit the scattering length a is no longer a relevant length scale and the thermodynamic
properties of the gas are expected to depend only on the temperature and the density
[Hei01, Ho04c, Car03, Ho04b]. Because the properties of the gas become indepen-
dent of the specific details of the interaction, the gas is said to be universal. A recent
discussion of the condition for universality at Feshbach resonance is found in [Die04]
and references therein.

In a universal quantum gas the only relevant length scale is the interparticle spacing
given by n−1/3 and the relevant energy scale is the Fermi energy [Ho04b]. Therefore the
effective mean field potential, the collision rate, the superfluid transition temperature
(see next paragraph) and the associated pairing gap of the gas are expected to become
proportional to the Fermi energy with different proportionality constants [Hei01].

In the following a simple heuristic description of a universal gas is given [O’H02a,
Geh03b]. Two-body interactions give rise to a mean field potential UMF which in a
two-component Fermi gas of equal density n/2 is given by

UMF =
4π~2aeff

m
n
2
, (2.42)

where aeff = a/(1 + k2a2) is the effective scattering length (see section 3.1.3). In the
weakly interacting case (kFa � 1) the effective scattering length is energy indepen-
dent and equal to the scattering length a. At intermediate densities (rc � k−1

F � |a|)
obtained in the vicinity of a Feshbach resonance, the effective scattering length is uni-
tarity limited to |aeff | ≈ 1/kF [Geh03b]. Further employing the relation n ∝ k3

F the mean
field potential can then be written as

UMF = βEF, (2.43)

where β is a universal scaling parameter.
The equation of state for a uniform interacting Fermi gas is given by [Geh03b,

Men02]
µ = EF + UMF (2.44)

31



2 Degenerate Quantum Gases

This reveals that on resonance, where UMF = βEF, the equation of state no longer
depends on the value of the scattering length nor on its sign. Here the equation of state
becomes proportional to one of an ideal Fermi gas

µ = (1 + β)
~2

2m
(3π2n)2/3, (2.45)

with the characteristic density dependence of n2/3. For a trapped Fermi gas at zero tem-
perature it can be shown that the mean field in the unitarity limited region scales the
Fermi energy of the trapped cloud without changing the shape from a Thomas-Fermi
distribution [O’H02a, Geh03b]. This fact allows us to determine the universal param-
eter β from in situ images of our molecular BEC in the unitarity limit as described in
section 6.1.2.

Detailed calculations by H. Heiselberg [Hei01] using a self-consistent many-body
approach, show that the universal parameter β is independent of the sign and mag-
nitude of kFa. Employing a Wigner-Seitz cell approximation H. Heiselberg predicts
β = −0.33 while he obtains β = −0.67 from the Galitskii integral equations [Hei01].
G. Baker obtains β = −0.43 and β = −0.67 from two different Padé approximations
of the ladder series for the energy [Bak99]. Using effective field theory Steel yields
β = −0.56 [Ste00]. A similar result of β = −0.545 is obtained from the BEC-BCS
crossover theory [Per04b]. From a Monte Carlo calculation with ∼40 particles J. Carl-
son et al. find β = −0.56(1) [Car03], in agreement with results from similar Monte
Carlo calculations by G. Astrakharchik et al. covering the hole BEC-BCS crossover,
which yield β = −0.58(1) [Ast04].

These theoretically predicted values for β, as well as measured values [Bar04b,
Bou04, Kin05], yield consistently values larger than −1. This means that the attractive
mean field never exceeds the repulsive Fermi pressure and the two component interact-
ing Fermi gas is mechanically stable even at the Feshbach resonance [Geh03b]. This
is an important requirement toward the production of a fermionic superfluid in the
vicinity of a Feshbach resonance (see below).

It should be noted that the universality hypothesis4 does not depend on the statistics
of the particles. Thus also a Bose gas in the unitarity limit, if stable, is predicted to
have a fermionic energy density [Cow02, Ho04b].

Large and negative scattering lengths are of particular interest for the investigation
of the phase transition into a superfluid Fermi gas. Because the transition tempera-
ture depends exponentially on the scattering length (see equation 2.40) an arbitrarily
large a should in principle result in a critical temperature on the order of the Fermi
temperature.

However the situation poses a number of fundamental theoretical problems that
must be addressed in order to provide an adequate description of the critical temper-
ature. First of all the theory of a dilute gas is based on a perturbative approach that
relies on the expansion of the small gas parameter n|a|3. Formally, when the scattering

4The universal behavior has so far only been proven in the Boltzmann regime [Ho04c].
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2.3 BEC - BCS crossover

length is increased, the gas parameter n|a|3 might become on the order of one, indicat-
ing the break down of the conventional perturbation theory. The theoretical description
of such a strongly interacting Fermi gas would have to explicitly treat higher-order cor-
relations.

Nevertheless it is possible to derive an effective mean field theory even in the direct
vicinity of a Feshbach resonance, where the resonance occurs due to the coupling to a
molecular state [Tim01, Hol01]. These resonance superfluidity theories explicitly treat
the coupling between the atomic and molecular gases. The theories again replace the
diluteness criterion (kFa � 1) by the weaker condition that the characteristic range of
the interparticle potential rc is smaller than the interparticle spacing, i.e. kFrc � 1. A
detailed description of the resonance superfluid theories is found in the article by S.
Kokkelmans et al. [Kok02]. The current estimates for the transition temperature into
the superfluid state range from about 0.5 to 0.2 TF [Hol01, Mil02, Chi02, Oha02].

2.3 BEC - BCS crossover

As described in the previous sections, the behavior of a dilute gas of bosons and
fermions is quite different when the phase space density becomes on the order of unity.
While bosons undergo a phase transition into a superfluid state, fermions stack up in a
Fermi sea.

However at even lower temperatures fermions interacting with attractive interac-
tions can also undergo a phase transition into a superfluid state. The phase transition
is predicted to occur even for very weak attractive interactions. In this weak coupling
or BCS limit, fermions pair up into so-called Cooper pairs with a bosonic character
and a size much larger than the interparticle spacing. In the other limit of strong cou-
pling, paired fermions form localized bosons. Due to the strong coupling the size of
the pairs can be neglected and the particles are described as point-like bosons, that
can undergo Bose-Einstein condensation. The BEC and BCS limits are connected by
a smooth BEC-BCS crossover that has been a subject of great theoretical interest for
more than thirty years [Eag69, Leg80, Noz85]. For an introduction into the field the
reader is referred to the review article by M. Randeria [Ran95] and the recent review
article by Q. Chen et al. [Che04].

2.3.1 Early studies of the crossover

The first discussion of the possibility of a crossover from a BCS state to a BEC state
was given by D. Eagles in the context of a theory of superconductivity in low carrier
concentration systems [Eag69]. Later, A. Leggett [Leg80] studied a dilute gas at T = 0
and showed the existence of a smooth crossover from a BCS ground state, with Cooper
pairs overlapping in real space, to a condensate of tightly bound diatomic molecules.
In the following the model employed by A. Leggett is briefly described.
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2 Degenerate Quantum Gases

The model considers N fermions of mass m interacting via an attractive central
potential V(r) with finite range l0. The parameters of V(r) are chosen such that they
are near the critical value for binding of a single two-particle state. As explained
further in section 3.2 the scattering length a resonantly changes when the parameters
of the potential are varied from just below the critical value for binding a two-particle-
state to just above it. The model assumes that the parameters of the potential are varied
around the critical value such that |a| � l0. If one further assumes that the system is
at intermediate densities (kFl0 � 1), the properties of the system at T = 0 should be
functions of the single dimensionless variable kFa [Leg80]. This variable characterizes
the coupling strength in the system. For 1/kFa → −∞ the system is in the weak
coupling BCS limit while for 1/kFa→ +∞ the strong coupling BEC limit is obtained.

Employing a T = 0 variational approach with the BCS wave function the self
consistency conditions are given by the two equations which are referred to as the
“gap” and “number” equation, respectively [Leg80, Che04]

m
4π~2a

=
∑

k

[
1

2εk
−

1
2Ek

]
(2.46)

n = 2
∑

k

[
1 −

εk − µ

Ek

]
, (2.47)

where Ek =
√

(εk − µ)2 + ∆2 and εk = ~2k2/2m is the fermion energy dispersion. From
these two equations the gap ∆ and the chemical potential µ can be calculated as a
function of the interaction strength.

In the limit of strong coupling (1/kFa → +∞) these equations describe the Bose-
Einstein condensation of tightly bound diatomic molecules formed by two paired
fermions. In this BEC limit of tightly bound molecules the chemical potential is neg-
ative and approaches µ = −Eb/2, where Eb = ~/ma2 is the binding energy. In this
strong coupling limit the gap ∆ approaches zero [Leg80].

The weak coupling limit (1/kFa → −∞) corresponds to the standard BCS re-
sult. In this regime the chemical potential is positive and given by the noninteract-
ing Fermi energy, i.e. µ = EF. For the gap one obtains the standard BCS result
∆ = 8e−2EF exp (−π/2kF|a|) [Leg80].

In the weak and the strong coupling limits the values of the chemical potential µ
correspond to the energy required to extract one fermion from the Fermi sea and to
extract one atom from a bound molecule, respectively.

It can be shown that the energy of a single particle excitation is given by the mini-
mum of Ek [Leg80]. This minimum energy Emin or “energy gap” is a consequence of
the pairing mechanism in the superfluid ground state and is given by

Emin =

{
∆ for µ > 0√
µ2 + ∆2 for µ < 0.

(2.48)

Thus in the BEC limit with ∆ = 0 one obtains Emin = |µ| = Eb/2.
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2.3 BEC - BCS crossover

Smooth crossover

The Leggett model allows at least for a qualitative analysis of the system when the
coupling strength is varied from the weak coupling BCS limit to the strong coupling
BEC limit. One important question is, whether there is a phase transition while cross-
ing from the weak coupling to the strong coupling limit. As already pointed out by A.
Leggett [Leg80], the occurrence or non occurrence of the two-particle bound state has
no significance on the many-body problem. Moreover, even at the point where µ = 0
no singularity occurs [Ran95]. Nevertheless for µ > 0 the system has a Fermi surface
and is said to be “fermionic” while for µ < 0 the Fermi surface is gone and the system
is called “bosonic”.

As noted in section 2.2.2, the size of the pairs in the BCS limit is much larger
than the interparticle spacing, i.e χpair ≈ ~vF/∆ � k−1

F . With increasing coupling
strength the pair size decreases monotonically. In the BEC limit the size of tightly
bound molecules is given by χpair ≈ a, which is much smaller than the mean interpar-
ticle separation k−1

F [Ran95].
The smoothness of the crossover was further confirmed by P. Nozières and S.

Schmitt-Rink [Noz85] who extended the previous models to finite temperature. Their
studies showed that the transition temperature Tc for the phase transition into the su-
perfluid phases evolves smoothly as a function of the attractive coupling from the BCS
to the BEC limit (see also below).

2.3.2 Recent calculations

Quite generally, the theoretical approaches to study the BCS-BEC crossover rest on
solving the two coupled equations for the order parameter ∆ and the chemical potential
µ. While the first theoretical studies of the BEC-BCS crossover at zero temperature
are based on the mean field BCS equations more sophisticated approaches take into
account the effects of fluctuations [Pie00, Pie04b] or include explicitly the bosonic
molecular field [Hol01, Oha03].

The BEC-BCS crossover is theoretically compelling, because a small parameter
is absent and approximations that are valid on one side of the crossover are not nec-
essarily valid on the other side. In these strongly correlated systems quantum Monte
Carlo techniques provide valuable information [Car03, Cha04, Ast04]. In particular
the recent quantum Monte Carlo study of G. Astrakharchik et al. [Ast04] allowed the
calculation of the equation of state in the BEC-BCS crossover and in the following a
briefly report on the main findings is given.

In the strong coupling BEC region (1/kFa � 1), the authors find a gas of molecules
with mass mmol = 2m, whose repulsive interactions are well described by the dimer-
dimer scattering length amol = 0.6a. This relation between the molecular and atomic
scattering length was previously calculated by D. Petrov et al. [Pet04]. The energy per
particle in the molecular BEC region agrees with the equation of state of a homoge-
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neous gas of bosonic molecules of density n/2

E
N
−

Eb

2
= EF

1
6π

kFamol

(
1 +

128

15
√

6π3
(kFamol)3/2 + . . .

)
, (2.49)

which in the limit 1/kFa → ∞ approaches the binding energy per particle Eb/2. The
first term in the above equation corresponds to the mean field energy of the molecular
gas and the second term corresponds to the first beyond mean-field correction [Lee57].

In the unitarity limit obtained at 1/kFa = 0 the calculation yields

E
N
= ξ

3
5

EF, (2.50)

where ξ = 0.42(1) which corresponds to β = 1 − ξ = 0.58(1).
In the BCS region obtained for 1/kFa < −1 the energy per particle agrees well with

the perturbation expansion of a weakly attractive gas of fermions [Hua57]

E
N
= EF

(
3
5
+

2
3π

kFa +
4(11 − 2 log 2)

35π2 (kFa)2 + . . .

)
. (2.51)

Superfluid transition temperature

In the weak coupling BCS limit, the pair formation and their condensation occurs at
the same temperature Tc. With increasing attraction the pair formation temperature T ∗

and the condensation temperature Tc become more and more separated (see figure 2.2).
In the intermediate coupling regime at temperatures below T ∗, preformed pairs exist
before superfluidity is reached. Reference [Sta04, Che04] further explains the role of
these preformed pairs which lead to a so-called “pseudo gap” regime. In the strong
coupling BEC limit one finds tightly bound pairs with binding energy Eb. Here the
pair formation sets in at a temperature T ∗ on the order of Eb/kB which is much larger
than the critical temperature Tc for the phase transition into the superfluid condensate.

Comparing the dependence of the transition temperature Tc on the coupling
strength shows further differences in the two limiting cases. In the weak coupling BCS
limit kBTc = eC∆/π and thus Tc strongly depends on the coupling strength. However,
in the BEC limit the transition temperature is independent of the coupling strength and
approaches Tc = 0.518TF in a trapped gas [Oha03].

It should be stressed again that even though the weak and strong coupling limits
appear to be very different at first sight, there is no phase transition as a function of
coupling strength predicted [Ran95].

36



2.3 BEC - BCS crossover

2 1 0 - 1 - 20 . 0

0 . 5

1 . 0

1 . 5

B C S  l i m i tB E C  l i m i t  1 / k F a

 T *

 T c

 

T/T
F

Figure 2.2: Phase diagram for a trapped gas in the BEC-BCS crossover. Shown is the pair
breaking temperature T ∗ and the critical temperature Tc for the transition into the superfluid
phase as a function of the coupling strength. Each temperature is normalized to the Fermi
temperature TF. The weak coupling BCS limit is realized for 1/kFa → −∞. Here the pair
formation and the condensation occur at the same temperature. In the BEC limit (1/kFa→ +∞)
the pair formation and their condensation are two independent processes with widely separated
energy scales (data courtesy from [Per04a]).
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Chapter 3

Collisions and collective dynamics in
ultracold gases

Collisions govern the properties of ultracold gases and play a key role in our experi-
ment. By exploiting a magnetically tunable scattering resonance in 6Li , we are able
to continuously tune the molecular energy level structure relative to the scattering con-
tinuum, thereby varying the interatomic interactions in a large range from effectively
repulsive to attractive.

The tunability of the interatomic interactions offers great prospects. A large colli-
sion rate ensures fast thermalization of the sample and therefore a very efficient evap-
orative cooling process. In the past years the focus in the investigation of ultracold
fermionic gases has been directed to the observation of the superfluid phase. In the
BCS regime the temperature of the phase transition depends exponentially on the in-
teraction strength and the tunability of the scattering length offers great prospects in
the investigation of these highly correlated systems. This was first highlighted in the
observation of a strongly interacting Fermi gas in the group of J. Thomas [O’H02a].

Besides the tunability of the scattering properties in the quantum gas, Feshbach
resonances have far more to offer. The presence of the weakly bound molecular state
enables the creation of weakly bound molecules, which was first demonstrated in the
group of C. Wieman in a 85Rb BEC [Don02]. In the group of D. Jin the next big step
was made by coupling two fermionic 40K atoms to a bosonic molecule, thereby altering
the quantum statistics of the system [Reg03b]. Thereafter the successful formation
of ultracold molecules was reported from bosonic atoms [Her03, Dür04, Xu03] and
fermionic 6Li atoms [Cub03, Str03, Joc03b]. The collisional stability of both kinds
of molecules, however, is strikingly different. While molecules formed from bosonic
atoms show a very fast decay, the observed lifetime in dimers formed from fermionic
atoms can be extraordinarily long. This large collisional stability is due to the Fermi
statistics of the underlying atoms [Pet04] and in combination with the large elastic
collision rate, paved the way to the successful evaporative cooling into a molecular
Bose-Einstein condensate [Joc03a, Gre03, Zwi03, Bou04, Hul04].

By varying the coupling strength of these molecules it is possible to experimen-
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3 Collisions and collective dynamics in ultracold gases

tally investigate the crossover from a molecular BEC of tightly bound molecules to
a Bardeen-Cooper-Schrieffer (BCS) state of overlapping, correlated pairs [Bar04b,
Reg04b, Zwi04, Bou04, Kin04a, Bar04a, Chi04a, Gre04, Kin04b].

The experimental access to the BEC-BCS crossover in dilute gases offers great pos-
sibilities to test fundamental theoretical predictions. In particular there is a crossover
from the equation of state of a dilute BEC to the one of a superfluid Fermi gas. As a
general consequence of superfluidity the macroscopic dynamics of these highly corre-
lated many-body systems is hydrodynamic. The first observation of hydrodynamic be-
havior in a strongly interacting Fermi gas was obtained by K. O’Hara et al. [O’H02a].
However, the observation of a hydrodynamic behavior is not a direct proof of super-
fluidity as hydrodynamic behavior is also expected for a gas in which the collision
rates are sufficiently large. Nevertheless, the careful investigation of the hydrodynamic
behavior can provide unique information on the underlying equation of state. For
this purpose, a perfectly suited method is the investigation of the collective modes in
the BEC-BCS crossover [Str04a, Hei04a, Hu04, Com04b, Com04a, Kim04b, Kim04a,
Man04, Bul04]. The ability to experimentally measure the frequencies of the modes
with high precision allows for the comparison with predictions from many-body theo-
ries beyond the mean field picture. Collective modes in the BEC-BCS crossover were
investigated in [Kin04a, Kin04b] and in our group [Bar04a]. Our experimental results
are presented in section 6.2.

This chapter is organized as follows: in the first part the basic concepts of interac-
tions in ultracold gases are briefly summarized. The discussion starts with the descrip-
tion of the interatomic scattering potentials and their dependency on the individual spin
state of the colliding atoms. This is followed by a summary of the basic ideas of the
scattering theory. Of special interest for our experiments are the scattering properties
at ultra low temperatures. Section 3.2 discusses Feshbach resonances in atomic gases
and starts with the description of various scattering resonances to point out the key role
played by a bound molecular level close to the scattering continuum. Afterwards the
general concept of the magnetically tunable scattering resonances is presented, which
is followed by a more detailed discussion of the broad Feshbach resonances that oc-
cur in 6Li. Different schemes to create weakly bound molecules in the vicinity of the
Feshbach resonance are presented in section 3.2.4. In addition the expected properties
of these ultracold, diatomic molecules are briefly summarized.

The second part of this chapter is dedicated to the collective modes in ultracold
trapped gases. The description starts with an introduction to the hydrodynamic equa-
tions that are expected to describe a gas in the BEC-BCS crossover. These dynamic
equations allow the calculation of the collective mode frequencies for different trap
geometries and are presented in section 3.3.2. The calculation of the modes in an elon-
gated trap shows the sensitivity of their frequencies to the underlying equation of state,
which makes them perfectly suited to investigate the BEC-BCS crossover. Section
3.3.3 describes the expected frequency and damping of these modes for a gas in the
normal, non superfluid, state when the system changes from the hydrodynamic to a
collisionless regime. In section 3.3.4 the influence of mean field corrections in Fermi
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3.1 Basic scattering theory

gases is discussed. As expected, these effects are small due to the Pauli exclusion
principle, which reduces the density with respect to a BEC. On the other hand, strong
interactions in a BEC can lead to corrections beyond the mean field description. The
influence of these beyond mean field corrections to the collective modes is described in
section 3.3.5. Finally, predictions for the collective mode frequency in the BEC-BCS
crossover are briefly discussed in section 3.3.6.

3.1 Basic scattering theory
After introducing the characteristics of the interatomic scattering potentials, a brief
reminder on the quantum mechanical scattering theory is given. As this topic is cov-
ered in many standard textbooks on quantum mechanics (see for example [Sak94]) this
section only summarizes the main results that are relevant for our research.

The same restriction holds for the discussion of the scattering properties in ultra-
cold gases. A very good introduction to the field of ultracold collisions is, for example,
found in a review article by J. Weiner et al. [Wei99] and the lectures of J. Dalibard
[Dal99b]. A more recent introduction covering the topics of Feshbach resonances and
molecule formation can be found in a review article by K. Burnett et al. [Bur02].

3.1.1 Interatomic potentials
In the following, we consider the interatomic potential of two alkali atoms in their
ground state. The individual atoms have an electronic spin of S = 1/2 and the elec-
tronic spin state of the pair of atoms can either be in a singlet or a triplet state. The
relative orientation of the two spins significantly effects the interatomic potential as
will be described below (see also figure 3.1).

At large interatomic distance r, the interaction potential is independent of
the spin state and can be expressed in terms of inverse powers of r, i.e.
V(r) = −C6r−6 −C8r−8 + · · · . The leading term is the van der Waals interaction and
arises from the interaction between the induced electric dipole moments. The next
higher coefficient is due to the dipole-quadrupole interaction and can, as well as higher
orders, be neglected at large interatomic distances. The van der Waals potential leads
to a characteristic length scale [Wil99]1

rc =
1
2

(mC6

~2

)1/4

. (3.1)

For 6Li the C6 coefficient has been calculated to be C6 = 1393.39(16) au [Yan96]
(1 au= 9.57344 × 10−26 J nm6), which leads to a characteristic range of rc = 31.25 a0,
where a0 is the Bohr radius (a0 ≈ 0.0529 nm).

1A discussion of several length scales relevant for an attractive C6/r6 potential is found in the ap-
pendix of this reference.
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Figure 3.1: Potential energy of two colliding 6Li atoms in a pure singlet and triplet state,
respectively. The calculation of the potentials was performed in the group of Paul Julienne
[Sim04].

When the atoms get close to each other, such that the electronic wave functions be-
gin to overlap, the exchange term becomes dominant. The exchange term occurs due
to the required antisymmetry of the electronic wave function and vanishes exponen-
tially at large separation [Côt94]. In the case where the two colliding alkali atoms have
their valence electrons in an antisymmetric spin state (singlet state), the electrons can
occupy the same orbit and thus their probability to be between the two nuclei is non
zero. This lowers the total energy, as the electrons shield the repulsive force of the two
nuclei. The same effect is responsible for covalent bonding. However, if the two elec-
trons are in a symmetric spin state (triplet state), their spin wave function is symmetric
and thus the spatial wave function has to be antisymmetric. Here the probability for
the two electrons to be between the two nucleons is zero and therefore the reduction of
the energy due to the shielding is absent. Hence the singlet potential is generally much
deeper than the triplet potential, although both potentials are deep enough to support
many bound states. For example, in case of collisions in 6Li the triplet and singlet po-
tentials have 9 and 38 vibrational levels, respectively [Abr97]. Finally for very small
distances the interactions are in both cases are dominated by a strong repulsive force
due to the overlapping electron clouds (see also figure 3.1).

The interatomic potentials shown in figure 3.1 correspond to the purely singlet and
triplet scattering potentials of two 6Li atoms [Sim04]. The calculations have been fine
adjusted by our radio-frequency spectroscopy measurements of weakly bound 6Li2

dimers and are further described in section 6.3.2.
In most scattering processes, however, the valence electrons from each atom are

coupled through the hyperfine interaction into a superposition of singlet and triplet
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states and the scattering potential is neither described by the pure triplet nor by the
singlet potential. In such a complex system quantitative results can only be obtained
numerically. Nevertheless the outcome of such multi-channel calculations is often
expressed in terms of these model potentials and their associated scattering lengths.

In case of fermionic 6Li the scattering lengths of the singlet and triplet potentials
are found to be as = 45.167(8) a0 and at = −2140(18) a0, respectively [Bar04c]. The
large negative triplet scattering length results from a zero energy resonance (see section
3.2.1) and made 6Li an early prime candidate to access the superfluid state in atomic
Fermi gases [Sto96].

3.1.2 A brief reminder on scattering theory
The collisional dynamics of two colliding atoms are commonly described by consid-
ering the scattering of a particle with reduced mass mr = m/2 in the potential V(r).
For neutral atoms in the ground state the interaction potential is spherical symmetric
V(r) = V(r). This results in the stationary Schrödinger equation(

p2

2mr
+ V(r)

)
ψk(r) = Ekψk(r) (3.2)

for the effective particle with reduced mass and energy Ek = ~2k2/2mr. The asymptotic
solution is expected to be a superposition of the incident plane wave and a scattered
wave function

ψk(r) ∼ eikz + f (k, θ)
eikz

r
. (3.3)

The scattering amplitude f (k, θ) depends only on the energy of the colliding particles
and the scattering angle θ, defined as the angle between the relative momentum be-
fore and after the scattering process. From the value of the scattering amplitude the
differential scattering cross section can be determined by

dσ
dΩ
= | f (k, θ)|2. (3.4)

To take advantage of the symmetry of the problem the incident and scattered wave
function can be expanded in terms of Legendre polynominals. This partial wave ex-
pansion leads to a one dimensional Schrödinger equation for the unknown radial wave
functions with an effective potential

Veff(r) =
~2l(l + 1)

2mrr2 + V(r). (3.5)

For partial waves with l = 0 the potential Veff is simply the interatomic potential V(r)
(see previous section) while for all other partial waves a centrifugal barrier is added.
This situation is illustrated in figure 3.2.
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Figure 3.2: Schematic of the effective potential entering the radial Schrödinger equation for
s-wave scattering (left) and scattering with partial waves l > 0 (right) where an additional
centrifugal barrier (dashed line) proportional to l(l + 1) is added. For sufficient low collision
energy E the barrier leads to a suppression of collisions with l > 0. (figure adapted from
[Dal99b]).

The cross section for each partial wave l is found to be

σl(k) =
4π
k2 (2l + 1) sin (δl(k)), (3.6)

where δl(k) is the phase shift that, in the limit of k → 0 is found to be

δl(k) ∝ k2l+1 modulo π. (3.7)

Thus in the limit of low energy, the cross section of partial waves with l , 0 is given
by σl(k) ∝ k4l and goes to zero for k → 0. Consequently at low energy only the partial
wave with l = 0 contributes to the total cross section. This regime is called the s-wave
limit and is characterized by an isotropic scattering amplitude. The corresponding
scattering cross section is given by

lim
k→0

σl=0(k) = 4πa2, (3.8)

where the scattering length a is defined by

a = − lim
k→0

tan δ0(k)
k

. (3.9)

That higher partial waves (l > 0) freeze out at sufficient low temperatures can also
be qualitatively understood. For partial waves l , 0 the interacting atoms see in addi-
tion to the pure atomic potential V(r) a centrifugal barrier with an hight proportional
to l. In case of lithium the barrier for the l = 1 partial wave amounts to ∼kB × 7 mK
[Jul92]. For sufficient small interaction energies the atoms are “reflected” at the bar-
rier and do not get close enough to interact through the potential V(r) (see figure 3.2,
right).
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In general the total cross section is given by the sum over all partial waves l, i.e.
σ(k) =

∑∞
l=0 σl(k). Taking into account the symmetry constrains for bosons (fermions)

the contributions of the even (odd) partial waves doubles while the odd (even) contri-
butions cancels [Dal99b]. Consequently identical fermions do not interact at sufficient
low temperatures as they scatter only through partial waves with l = 1, 3, . . . whose
cross section tends to zero at low temperature. This suppression of elastic collisions
hinders the evaporative cooling of a polarized fermionic gas to ultra low temperatures
[DeM98]. To circumvent this limitation experimenters use Fermi gases consisting of
a spin mixtures of different hyperfine states or employ sympathetic cooling by using
a mixture of different atomic species. In contrast, the s-wave interaction for identical
bosons is not suppressed at low temperatures and the total scattering cross section is
given by σ = 8πa2.

In our experiment a spin mixture of the two lowest hyperfine states of fermionic
6Li is used and cooled by evaporation in an optical dipole trap (see chapter 5). The
reached temperatures are well below 1 mK and therefore only s-wave interactions have
to be taken into account. The scattering properties of such an ultracold dilute gas are
described in the next section.

3.1.3 Interactions in ultracold dilute gases
In a dilute gas with a typical density of about n = 1012 cm−3 the mean interparticle
separation is n−1/3 ≈ 1 µm. In contrast the range of the interatomic potential rc is
typically on the order of some nm. This justifies the usage of the asymptotic expression
for the wave function of the scattering state (see above) and shows that the dominant
scattering processes are two-body interactions.

For a dilute gas in the s-wave limit, it is possible to show, that the macroscopic
properties of the gas depend only on the s-wave scattering length and do not depend
on the detailed form of the two-body interaction potential [Pit03]. This allows one
to obtain a many-body formalism, where the microscopic potential is replaced by an
effective short range potential that reproduces the correct scattering length.

The simplest interaction between two particles is the contact interaction. In this
case, the relation between the s-wave scattering amplitude and the scattering length a
is found to be [Dal99b]

f (k) = −
a

1 + ika
, (3.10)

where k is the relative wave number of the colliding particles. The real part of − f (k)
is sometimes referred to as the effective scattering length, i.e. aeff = a/(1 + k2a2)
[Geh03b]. Using equation 3.4 the total cross section for elastic collisions of noniden-
tical particles is determined to be

σ(k) =
4πa2

1 + k2a2 . (3.11)

In the limit of weak interactions (ka � 1) the result reduces to the energy independent
cross section σ = 4πa2. In the strongly interacting case (k|a| � 1) the scattering cross
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3 Collisions and collective dynamics in ultracold gases

section is energy dependent and approaches the unitarity limited value ofσ(k) = 4π/k2.
This maximum cross section is proportional to λ2

dB.
A particle in medium of density n experiences an effective potential resulting from

the scattering with all other particles. Assuming again contact interactions between
the particles, the mean field potential is readily calculated to be [Joc04]

UMF =
4π~2an

m
= gn, (3.12)

where g = 4π~2a/m is the coupling constant2. For negative (positive) scattering length
the atoms feel an effectively attractive (repulsive) potential where the strength of the
interaction is determined by the magnitude of |a|.

3.2 Feshbach resonances and weakly bound molecules
A powerful tool to vary the interaction in an atomic gas are magnetically tun-
able scattering resonances. Originally formulated in the context of nuclear physics
[Fes58], the possibility for using Feshbach resonances to manipulate interactions in
atomic gases was pointed out by E. Tiesinga et al. [Tie93]. Feshbach resonances
were first observed in a BEC by a dispersive variation of the scattering length by
a factor of more than ten and enhanced inelastic processes [Ino98]. Thereafter
they became a powerful tool to dramatically alter the properties in bosonic gases
[Cor00, Don01, Don02, Kha02, Str02, Web03] and to tune the interaction strength
in fermionic gases [O’H00, Die02, Joc02, O’H02b, O’H02a, Reg03a, Bou03].

Besides the ability to resonantly control the scattering properties of the gas, Fesh-
bach resonances turned out to be perfectly suited to produce ultracold weakly bound
molecules. The first direct observation of molecules formed from fermionic 40K by
adiabatically sweeping the magnetic field across the resonance was reported by the
group of D. Jin [Reg03b]. Shortly after researchers around the world succeeded
in the formation of ultracold molecules formed from bosonic Cesium [Her03], Ru-
bidium [Dür04], Sodium [Xu03] and fermionic 6Li atoms [Cub03, Str03, Joc03b].
The observed short lifetime of the molecules formed from bosonic samples inhib-
ited so far their condensation. However the long lifetime observed for molecules
made from fermionic atoms allowed for a successful Bose-Einstein condensation
[Joc03a, Gre03, Zwi03, Bou04, Hul04]. Moreover the Feshbach resonance enables
a continuous variation of the coupling strength in these molecular condensates from
the strong coupling BEC limit towards the weak coupling BCS limit. In combination
with the low temperature obtained in the molecular BEC, these systems therefore pro-
vide a perfect starting point to explore the BEC-BCS crossover in an atomic Fermi gas
[Bar04b, Bou04, Reg04b, Zwi04, Kin04a, Bar04a, Chi04a, Gre04, Kin04b, Kin05].

2Note that for a Fermi gas with two spin components the density n refers to the density of each
species.
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3.2 Feshbach resonances and weakly bound molecules

3.2.1 Scattering resonances

The position of the last bound state in the scattering potential has generally a crucial
effect on the scattering properties [Dal99b].

The strong modification of the scattering length due to small changes in the scat-
tering potential are already visible if one considers the scattering at a simple square
potential barrier (see for example [Dal99b]). Looking for solutions as a function of
the potential depth, one finds a diverging scattering length exactly at a potential depth
where a new bound state appears. The calculation shows that a weakly bound state
just below the continuum gives rise to a large positive scattering length while a (vir-
tual) bound state just above the continuum results in a large negative scattering length.

In the following a brief report on different scattering resonances related to the exis-
tence of a weakly bound (virtual) state is given. Here the discussion is restricted to the
case that the bound state belongs to the scattering potential of the two colliding atoms.
The more general case that the bound state and the scattering state belong to differ-
ent interaction potentials is described in the next section and gives rise to Feshbach
resonances.

Zero energy resonance

This type of resonances is found when a bound state of the interatomic scattering
potential is close to the continuum. As mentioned above for the square well potential,
a bound state just below threshold gives rise to a large positive scattering length while
a virtual bound state just above threshold leads to a large negative scattering length.

Consider for example 6Li. The asymptotic behavior of the scattering potential is
given by the the van der Waals potential (see section 3.1.1) and allows to determine
the average or “mean” scattering length [Gri93]

ā =
Γ (3/4)
√

2Γ (1/4)
rc ≈ 0.956rc. (3.13)

In case of 6Li we find ā = 29.9a0. Because the van der Waals coefficient C6 is in-
dependent of the hyperfine state, the mean scattering length for the singlet and triplet
scattering potential is the same.

In contrast to this prediction from the asymptotic shape of the van der Waals po-
tential, the triplet scattering length is found to be at = −2140(18) a0 [Bar04c]. The
reason for this extraordinary magnitude of the scattering length is found in the exact
shape of the triplet scattering potential that gives rise to a virtual bound state just above
continuum. If the potential would be less then 0.03% deeper the virtual state would
become bound and the scattering length would change sign [Abr97].

The scattering length for the singlet potential instead amounts to as = 45.167(8) a0

[Bar04c]. Here the estimation of ā from the asymptotic behavior is in reasonable
agreement with the exact value.
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Shape resonances

To understand the basic concept of a shape resonance we consider a scattering pro-
cesses that is in the low energy s-wave limit. In this case the effective potential for
partial waves with l , 0 is a combination of the attractive van der Waals potential and
a centrifugal barrier as shown in figure 3.2 (right). This effective potential can confine
quasi-bound states that can decay via tunnelling through the barrier. A shape resonance
occurs when the incident energy E of the scattering state matches the energy of such
a quasi-bound state. For fermionic atoms a p-wave shape resonance was observed in
ultracold 40K [DeM99a].

3.2.2 Magnetically tunable Feshbach resonances

In the scattering resonance considered in subsection 3.2.1 the bound state and the scat-
tering state belonged to the same internal state of the colliding atoms. In a Feshbach
resonance however, the continuum state and the bound state belong to different internal
states, corresponding to different spin configurations of the two colliding atoms.

A scattering channel is characterized by the internal spin configuration of the two
atoms at infinite distances. In 6Li with a nucleus spin of I = 1 and an electronic spin of
S = 1/2, the hyperfine interaction gives rise to six internal spin states. In an external
magnetic field these states split and can be denoted in order of increasing energy by
|1〉− |6〉 (see also appendix A). In the following the scattering state of one atom in state
|a〉 and one in state |b〉 is denoted by (a, b). A scattering channel is said to be open
(closed), if its energy at large interatomic distances is smaller (larger) than the total
energy of the two colliding atoms.

In a multichannel scattering process the incoming (open) channel may be coupled
during the collision to other open or closed channels. Since the two coupled channels
correspond to two different internal atomic states, they can respond in a different way
to external electro-magnetic fields. Provide the open and closed channel have different
magnetic moments, the relative energy ∆E of the two states can be tuned by changing
an external magnetic field (∆E = ∆µ × B).

A Feshbach resonance occurs when the energy of a bound state in the closed chan-
nel coincides with the energy of the incoming channel [Fes58]. The coupling between
the open and the closed channels gives rise to the resonant interaction. In experiments
with cold atoms the coupling of the different channels is due to the hyperfine interac-
tion. The physical picture of a Feshbach resonance is the following (see also figure
3.3). Due to coupling between the closed and the open channel, the effective scattering
potential of the two colliding atoms is slightly modified. Just below resonance it pro-
vides a new bound state giving rise to a large positive scattering length. By changing
the magnetic field B this weakly bound state can be tuned across threshold. At thresh-
old (B = B0) the scattering length approaches infinity. For fields above the resonance
(B > B0) the presence of the virtual bound state leads to a large negative scattering
length. With increasing field this state is tuned further away from the continuum and
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Figure 3.3: Schematic of a Feshbach resonance: the scattering length is resonantly altered
if the energy of a bound state of a closed channel matches the energy of the initial scattering
channel. Provide the two channel have a different magnetic moment the relative energy and
hence the scattering properties can be tuned by simply changing an external magnetic field.

the scattering length approaches its original value abg, which characterizes the scat-
tering potential in the absence of the coupling to the closed channel. The resulting
scattering length can be written in terms of the background scattering length abg and
the magnetic field of the resonance position B0 as [Moe95]

a = abg

(
1 +

∆B
B − B0

)
. (3.14)

The width of the resonance ∆B depends on the magnetic moments of the states and
the coupling between the channels and characterizes the range of magnetic fields over
which the resonance significantly affects the scattering length.

The possibility to vary the energy of a weakly bound molecular state and thereby
resonantly tune the scattering properties makes Feshbach resonances a very powerful
tool in exploring the properties of ultracold atomic gases and the creation of weakly
bound molecules. In the next section the description of Feshbach resonances is focused
on different 6Li spin mixtures.

3.2.3 Feshbach resonance in 6Li

Feshbach resonances in fermionic spin mixtures are of great interest as a large scatter-
ing length allows the investigation of strongly interacting Fermi gases. Of particular
interest is the ability to obtain large negative scattering length, which is favorable for
the experimental realization of a fermionic superfluid [Sto96, Hou97, Bar98, Com99,
Tim01, Hol01, Hof02, Mil02, Kok02, Chi02, Oha02].
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Figure 3.4: Magnetic field dependent scattering length for 6Li atoms colliding in the (1,2)
scattering channel [Bar04c]. The vertical dotted lines mark the position of the narrow and the
broad Feshbach resonance at magnetic fields of about 543 G and 834 G, respectively.

Feshbach resonances in the (1,2) channel

In figure 3.4 we show the magnetic field dependence of the scattering length for a spin
mixture of 6Li atoms in the two lowest hyperfine states |1〉 and |2〉. The calculation of
the scattering length is based on the best knowledge of the cold collision parameters of
6Li [Bar04c] (see also section 6.3.2). The figure shows in addition to a broad Feshbach
resonance at a magnetic field of 834.1(1.5) G a small Feshbach resonance at about
543 G.

The broad Feshbach resonance was first predicted by M. Houbiers et al. from full
coupled channel calculations [Hou98]. At large magnetic fields the (1,2) scattering
channel is an almost pure triplet state with a small singlet admixture and the resonance
is due to the coupling with the most weakly bound vibrational level (ν = 38) of the
singlet potential [Hou98]. The narrow resonance arises due to the coupling of the
scattering state with a different hyperfine component of the same weakly bound singlet
state [O’H02b] and was first observed in [Die02].

The description of the molecular state at large magnetic field is most conveniently
done in the basis of the quantum numbers for the total electronic spin S = S1 + S2,
the total nuclear spin I = I1 + I2 and the orbital angular momentum L. As already
mentioned, at zero magnetic field the molecules belong to the singlet potential with
a spin quantum number S = 0. In our s-wave Feshbach resonance3 the quantum
number of the angular momentum is L = 0. The nuclear spin of the two 6Li atoms

3Feshbach resonances involving higher partial waves have been observed in ultracold fermionic
gases [Reg03c, Zha04, Sch04].
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Figure 3.5: Energy structure of atoms in the scattering channel (1,2) (dotted line) and molec-
ular states (solid lines). The molecular state of the singlet potential splits due to the hyperfine
interaction into two states F = 2,MF = 0 and F = 0,MF = 0 giving rise to the two Feshbach
resonances at magnetic fields of 543 and 834 G, respectively.

can in principle add up to the nuclear quantum numbers I = 0, 1, 2. Due to symmetry
considerations the total wave function has to be antisymmetric with respect to the
exchange of the two atoms and therefore the molecular states has to be I = 0 or I = 2.
Hence the two Feshbach resonances at 543 G and 834 G are due to the coupling of
the (1,2) scattering channel with the two molecular hyperfine states characterized by a
total angular momentum F = 2,MF = 0 and F = 0,MF = 0, respectively.

The magnetic field dependent energy structure of the two molecular states with
F = 2,MF = 0 and F = 0,MF = 0 is shown in figure 3.5 together with the Zeeman
energy of the free atoms in the scattering channel (1,2). The unperturbed molecular
state F = 2,MF = 0 corresponds to a nearly pure singlet potential that is character-
ized by a vanishing magnetic moment. Consequently the molecular state shows no
magnetic field dependent energy. However, when the magnetic field is close to the
resonance field the molecular state couples to the (approximately) triplet atomic scat-
tering state and the states become mixed. When the molecular state is tuned into the
continuum, the mixing results in an adiabatic connection of the molecular state with
the scattering continuum. This effect is analogous to an avoided crossing in a two level
system. The corresponding bending of the states shows up in a very pronounced way
for the F = 2,MF = 0 molecular state (see figure 3.5). This leads to a very slow
crossing of the bound state through threshold and hence to the very broad Feshbach
resonance. Note that the resonance field of about 834 G is outside the magnetic field
range shown in figure 3.5. The reason for this behavior is an interplay between the
open channel zero energy resonance (see the discussion above) and the Feshbach res-
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Figure 3.6: Calculated s-wave scattering length for 6Li atoms in the scattering channel (1,3)
(solid line) and in the channel (2,3) (dashed line). The vertical dotted lines indicate the reso-
nance position of 811.2(1.0) G and 690.4(5) G, respectively [Bar04c].

onance [Mar04, Kem04]. In the absence of the zero energy resonance the Feshbach
resonance would occur around 550 G [Sch04].

Feshbach Resonances in the (1,3) and (2,3) channel

In this paragraph we present the calculated magnetic field dependent s-wave scattering
length for atoms interacting in the scattering channel (1,3) and (2,3). In both channels
the existence of Feshbach resonances offer the possibility to resonantly alter the inter-
actions. Moreover in the presence of an external magnetic field the scattering channel
(1,3) was observed to be stable against inelastic decay [O’H00].

In all cases the resonances are due the coupling of the scattering channel with
the the most weakly bound vibrational state of the singlet molecular potential with a
total angular momentum F = 2. For two atoms colliding in the (1,3) channel, the
total projection number of the total angular momentum is given by MF = −1 and
the resonance with the bound molecular state F = 2,MF = −1 occurs at a field of
690.4(5) G and is characterized by a width of about 120 G [Bar04c]. Two colliding
atoms in the scattering channel (2,3) have a total angular momentum MF = −2. For
this scattering state the Feshbach resonance arises at a magnetic field of 811.2(1.0) G
[Bar04c] and is due to the coupling with the F = 2,MF = −2 molecular state. The
width of this resonance is about 220 G. Figure 3.6 shows the magnetic field dependent
scattering length for both states.
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3.2 Feshbach resonances and weakly bound molecules

Table 3.1: Parameters for formula given in equation 3.15. The function reproduces the calcu-
lated scattering length to better than 99% over a magnetic field range or 600 to 1200 G.

Channel ab (a0) B0 (G) ∆B (G) α (kG)−1

(1,2) -1405 834.149 300 0.4
(1,3) -1490 811.22 222.3 0.395
(2,3) -1727 690.43 123.3 0.2

Fitting the numerical results

It is very convenient to have an analytic function that reproduces the results from the
numerical calculation of the scattering length over the range of interest to BEC-BCS
crossover experiments.

We find that over the magnetic field range of 600 to 1200 G the calculated scattering
length can be fitted to better than 99% by the formula

a = abg

(
1 +

∆B
B − B0

)
(1 + α(B − B0)). (3.15)

The expression includes the standard resonance term given in equation 3.14 and a
leading order correction parameterized by α. The respective values for the scattering
channels (1,2), (1,3) and (2,3) are summarized in table 3.1.

3.2.4 Weakly bound molecules
As discussed in the previous section the tunability of the weakly bound molecular
state enables the resonant control of the atomic scattering properties. Moreover the
tunability of the weakly bound molecular level relative to the scattering continuum
enables an efficient creation of ultracold diatomic molecules.

The following paragraphs briefly describe different techniques to create these ex-
otic weakly bound molecules, their binding energies and their collisional stability. A
detailed theoretical investigation of their properties is for example found in the articles
by D. Petrov et al. [Pet03, Pet04, Pet05].

Our experimental study of dimers created at the broad Feshbach resonance at 834 G
is found in our publication [Joc03b] and in the Ph.D. thesis of Selim Jochim [Joc04].

Creation of ultracold weakly bound molecules

The first observation of ultracold molecules was demonstrated in the beautiful ex-
periments in the group of D. Jin [Reg03b]. In these experiments an adiabatic
sweep of the magnetic field across the Feshbach resonance was performed to trans-
fer an ultracold degenerate gas of fermionic atoms into weakly bound molecules.
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This technique is now used in many laboratories to create ultracold molecules
[Her03, Cub03, Xu03, Str03, Dür04].

Inspired by the previous work with Potassium at JILA [Reg03b], Cesium in
our group [Her03] and Lithium at the ENS in Paris [Cub03] that had produced the
molecules either from a BEC or a degenerate Fermi gas, we investigated the possibil-
ity to create molecules from a thermal gas of atoms [Joc04].

Our experiments showed a very efficient formation of molecules at magnetic fields
close to the Feshbach resonance [Joc03b]. Here the molecular binding energy is small
and a strong coupling between the atomic and the molecular gas exists. The exchange
between the atomic and molecular gas is due to three-body collisions [Sun03, Pet03].
Our measurements showed that the exchange between the atomic and the molecular
fraction is nearly lossless and the experimental data are found to be in good agreement
with a theoretical model that assumes a thermal atom-molecule equilibrium [Chi04b,
Joc04]. The main result of the model is the following relation between the molecular
phase space density φmol and the atomic phase space density φat [Chi04b]4

φmol = φ
2
at eEb/kBT , (3.16)

where Eb is the molecular binding energy.
The result shows that if the molecular state is far below the atomic continuum,

all particles should accumulate the lower molecular state and the number of unbound
atoms is exponentially suppressed. However applying the result to cold atoms has to be
done with some care as the atom-molecule formation heats up the sample and reduces
the atomic phase space density and limits the molecule fraction [Chi04b].

Molecular binding energy

The small binding energy Eb of the molecules is controlled by the value of the magnetic
field and is related to the scattering length by [Gri93]

Eb =
~

m(a − ā)2 , (3.17)

where ā is the mean scattering length, which is on the order of the characteristic
range of the van der Waals potential (see equation 3.13). In many cases the scattering
length a is much larger than rc and the above formula reduces to the well know result
Eb = ~/ma2 [Lan77].

Figure 3.7 shows the calculated binding energy of 6Li2 molecules formed in the
scattering channel (1,2). The molecular level connects at 834.1(1.5) G steadily to the
scattering continuum. Note that for magnetic fields below approximately 600 G equa-
tion 3.17 starts to deviate because the scattering length approaches the zero crossing at
about 527 G.

4 A similar model taking into account a quantum degenerate molecular gas is found in [Kok04,
Wil04].
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Figure 3.7: Calculated molecular binding energy for molecules formed in the (1,2) scattering
channel. The calculation is based on equation 3.17 and the most up to date values for the
scattering length [Bar04c].

Collisional stability and elastic dimer-dimer scattering

The small binding energy of the molecule corresponds to a large size, which is on the
order of the atomic scattering length a [Pet04]. This large size5 in combination with
the Pauli exclusion principle is responsible for the remarkable collisional stability of
the dimers created from fermionic atoms. The size of the deeply bound molecules is
on the order of the characteristic range of interactions rc (rc ≈ 30 a0 � a) and the
collisional relaxation requires the presence of at least three fermions at distances on
the order of rc from each other. Because two of them are necessarily identical, the
process is suppressed due to Fermi statistics for the atoms [Pet04]. Furthermore due
to the large size of the weakly bound dimers the spatial Franck-Condon overlap of the
weakly bound molecules with the tightly bound states is rather low.

While the later argument holds for all weakly bound molecules, the first one
applies only to molecules created from fermionic atoms. This explains the ob-
served extraordinarily large molecular lifetimes of molecules formed from fermionic
atoms [Cub03, Joc03b, Reg04a] that allowed the successful creation of a molecu-
lar Bose-Einstein condensate [Joc03a, Gre03, Zwi03, Bou04, Hul04]. Experiments
with molecules created from bosonic gases, however show a rapid collisional decay
[Her03, Dür04, Xu03] that inhibited so far the creation of a molecular BEC.

As the size of the molecules depends on the scattering length, one expects a weak-
ening of the above effects for smaller a. Assuming rc � a, the detailed calculation of

5Note that in the vicinity of the Feshbach resonance a is on the order of some 1000 ao.
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atom dimer collisions leads to a rate constant of

αad ∝
~rc

m

(rc

a

)3.33
(3.18)

for the relaxation of the weakly bound dimers into deeply bound states [Pet04]. Note
that the proportionality factor depends on the individual system. Similar the relaxation
rate constant αdd in dimer-dimer collisions is found to be [Pet04]

αdd ∝
~rc

m

(rc

a

)2.55
. (3.19)

Both processes decrease with increasing scattering length. In the limit of large scat-
tering length (rc/a → 0) the dominant relaxation process are dimer-dimer collisions.
The predicted strong decrease of the relaxation rate with increasing a is consistent with
experimental findings in ultracold molecular 40K2 and 6Li2 gases [Reg04a, Bou04].

Calculations of the dimer-dimer scattering length yield to [Pet04]

amol = 0.6a. (3.20)

This relation is in agreement with experimental findings [Joc03a, Cub03] and a recent
Monte Carlo calculation of the equation of state in the BEC-BCS crossover [Ast04]
(see section 2.3). The atom-dimer scattering length is calculated to be aad = 1.2a
[Pet05].

Thus the inelastic rate constant is much smaller than the rate constant of elastic
collisions [Pet04]. This excellent ratio of “good” to “bad” collisions allows for a very
efficient evaporative cooling of the dimers [Pet04, Chi04b, Joc04] (see also chapter 5).

3.3 Collective Oscillations
The previous discussion of the static properties of trapped degenerate Bose and Fermi
gases showed the strikingly different influence of the interaction effects in both systems
(see chapter 2). In this section the studies are extended to collective excitations in these
quantum systems, which again point out the important role played by the interactions
and quantum correlations. The study of collective modes is of particular interest as
the collective frequencies of a trapped cloud can be measured with high precision and
therefore allow for a detailed comparison with the theory.

Over the past years collective modes have been extensively studied in trapped
BECs and revealed their sensitivity to interaction and correlation effects [Dal99a].
An excellent introduction to the theoretical description is found in the textbooks of
C. Pethick and H. Smith [Pet02], and L. Pitaevskii and S. Stringari [Pit03]. A good
overview of the dynamic behavior of superfluid Bose liquids is also found in the text-
book of Nozieres and Pines [Noz90].

The equations characterizing the macroscopic behavior of a superfluid at zero tem-
perature are presented in section 3.3.1. These equations have the form of irrotational
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hydrodynamic equations and hold for Bose as well as Fermi superfluids. Moreover, the
linearized collective modes of a gas in the normal, non superfluid state, are described
by the same equations of motion, if the collisions are frequent enough to ensure the
gas to be in local thermodynamic equilibrium.

The corresponding collective modes of a gas that are described by the hydrody-
namic equations are presented in section 3.3.2 for different harmonic traps. Of partic-
ular interest for our measurements of the collective modes in the BEC-BCS crossover
(see section 6.2) are the low-lying collective modes in an elongated trap.

The dynamics of a non-degenerate quantum gas are described by the classical
Boltzmann equation. This equation has two asymptotic regimes: the collisional or
hydrodynamic regime, and the collisionless regime. The behavior of the mode fre-
quency and damping rate between these two limits is presented in section 3.3.3 for the
axial and radial collective oscillation in an elongated harmonic potential.

While mean field effects play a key role in dilute BECs, their effects are much less
pronounced in interacting Fermi gases, where the density is reduced due to the Pauli
exclusion principle. Nevertheless, the ability to measure the collective modes with
high precision should allow the observation of the (small) mean field corrections to the
collective mode frequencies in a Fermi gas. These corrections are presented in section
3.3.4 for a Fermi gas in the collisionless and hydrodynamic regimes.

Corrections of the collective modes for a BEC beyond the mean field level are
presented in section 3.3.5. In general these effects are expected to be small but might
become visible when the BEC enters the strongly interacting regime.

This section ends with a brief discussion of the theoretical calculations of the col-
lective modes in the BEC-BCS crossover.

3.3.1 Hydrodynamic equations of motion
The time dependent Gross-Pitaevskii equation was introduced in section 2.1.2 and
describes the general time dependence of the order parameter (condensate wave func-
tion). The Gross-Pitaevskii equation conserves the particle number N and therefore
obeys the continuity equation [Pet02]

∂n
∂t
+ ∇(vn) = 0, (3.21)

where the the density n and the (superfluid) velocity field v are related to the order
parameter Φ(r, t) = |Φ(r, t)|eiS (r,t) through the relationships

n(r, t) = |Φ(r, t)|2 (3.22)

and
v(r, t) =

~
m
∇S (r, t). (3.23)

From the definition of the velocity of the condensate flow it is obvious that the motion
of the condensate is irrotational, i.e ∇ × v(r, t) = 0. It should be noted however, that
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this result fails if the condensate phase S (r, t) is singular, as is, for example, the case
in a vortex core [Pet02].

Inserting the expression for the order parameter Φ(r, t) = |Φ(r, t)|eiS (r,t) into the
Gross-Pitaevskii equation results in the equation for the phase S

~
∂

∂t
S +

(
1
2

mv2 + Vext(r) + gn −
~2

2m
√

n
∇2√n

)
= 0. (3.24)

This equation together with the continuity equation 3.21 provides two coupled differ-
ential equations that are exactly equivalent to the original Gross-Pitaevskii equation.

Equation 3.24 can be further simplified if the quantum pressure term proportional
to ~2 can be neglected. For this assumption to be valid the density of the gas has
to change slowly in space. Denoting the typical distance characterizing the density
variation by R, the quantum pressure term scales as ∇2√n/

√
n = R−2. According to

equation 3.24 the quantum pressure term can be neglected if the length scale of the
density variation R is much larger than the characteristic length [Pit03]

ξ =
~√

2mgn
. (3.25)

This characteristic length is called the healing length. For a uniform BEC the healing
length marks the transition from a single particle spectrum to a phonon like spectrum.
For excitations with a wavelength larger than ξ the particles move collectively, while
for shorter wavelengths they behave as free particles [Pet02, Pit03].

Assuming collective oscillations with a length scale of the oscillation that is larger
than the healing length, equation 3.24 can be written as [Pit03]

∂v
∂t
= −∇

(
v2

2
+

Vext(r)
m
+
µ(n)
m

)
, (3.26)

where µ(n) is the chemical potential of a homogeneous system evaluated at the density
n. The functional form of the chemical potential in a homogeneous system represents
the equation of state. In the case of a weakly interacting BEC, the equation of state is
linear in the density (µ(n) = gn).

The equations 3.21 and 3.26 have the typical structure of the dynamic equations
for superfluids at zero temperature [Noz90], and are referred to as the equations of
irrotational hydrodynamics. They have been systematically used to predict the effects
of superfluidity on the dynamic behavior of Bose-Einstein condensates [Dal99a, Pet02,
Pit03].

The same equations of hydrodynamics also hold for a superfluid Fermi gas
[Coz03]. However, in this case the equation of state can be very different due to the
Pauli exclusion principle. For example, in a weakly interacting, very dilute Fermi gas
of two spin states with equal density n/2, the equation of state is given by [Men02]

µ(n) =
~2

2m
(3π2n)2/3. (3.27)
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3.3 Collective Oscillations

Conversely, the equation of state of a BEC is fixed by the interactions (µ(n) = gn).
It should be noted that the applicability of the hydrodynamic equations for super-

fluids is only valid if [Zam01]:

• the non superfluid component is negligible which implies that the temperature
is much smaller than the transition temperature to the normal phase (see also
below).

• the size of the sample is large enough to ensure the validity of the local density
approximation for the chemical potential. Or alternatively the healing length has
to be much smaller than the size of the sample.

• the length scale of the oscillation is larger than the healing length.

Description of the non superfluid phase

Provided that the rate of collisions in the normal, non superfluid, state is sufficiently
large to ensure a local thermodynamic equilibrium, a hydrodynamic description is pos-
sible. In this case the fluid can be described by the local density, local velocity, and lo-
cal temperature. At zero temperature the system is fully described by the local density
and the local velocity. Moreover, the expansion and the linearized collective oscilla-
tions of a classical gas in the collisional (hydrodynamic) regime and a superfluid gas
are described by the same irrotational hydrodynamic equations [Coz03]6.

For a classical gas in the hydrodynamic regime, as well as for a superfluid con-
densate, it is the ability to describe the system in terms of a local density and velocity
that enables the usage of the hydrodynamic equations. In the classical gas the ther-
modynamic equilibrium is ensured by the high collision rate. On the other hand the
condensate at zero temperature is in the collisionless regime (see below). However,
the presence of the macroscopic order parameter validates a hydrodynamic description
[Pet02].

Scaling solution

It was noted by C. Menotti et al. [Men02] that the equations of irrotational hydro-
dynamics admit simple scaling solutions in harmonic traps if the equation of state is
given by

µ(n) ∝ nγ. (3.28)

Such an equation of state is referred to as a polytropic equation of state and applies
to many systems. For example an interacting BEC has µ = gn and hence γ = 1. On
the other hand an ideal Bose gas in the normal state as well as an ideal Fermi gas both
have γ = 2/3 [Coz03, Hei04a]. In the next section the corresponding collective modes
of the linearized hydrodynamic equations are discussed.

6Strictly speaking this is only valid, if the initial state does not contain any velocity flow.
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3 Collisions and collective dynamics in ultracold gases

Superfluids at finite temperature

At zero temperature all bosonic particles are in the condensate and the relaxation time
τ of the collective modes is much larger than the collective frequency (ωτ � 1). In
this collisionless regime the restoring force is only due to the mean field interaction
and the collective oscillation in a uniform system is referred to as Bogoliubov sound
or zero sound. A detailed discussion of the collective excitations of a Bose gas in the
collisionless regime is found in the article by S. Giorgini [Gio00].

At finite temperature, collisions become more important and one eventually
reaches the collisional or hydrodynamic regime (ωτ � 1). For temperature T < Tc the
dynamic equations have to be generalized to the equation of two-fluid hydrodynamics
[Noz90, Pet02, Pit03]. This regime is characterized by the occurrence of two distinct
oscillations, which in a uniform system are called first and second sound. While first
sound mainly involves the oscillation of the thermal cloud and reduces to hydrody-
namic sound above Tc, second sound is the oscillation of the condensate and disap-
pears above Tc. A discussion of these hydrodynamic sound modes in uniform Bose
gases is found in [Gri97b], while a detailed discussion of trapped Bose gases in this
regime is found in the article of E. Zaremba et al. [Zar99]. A discussion of the low
energy collective modes of trapped Fermi superfluids at various temperatures is found
in [Bru01a].

At temperatures above Tc the system reaches the classical regime that is well de-
scribed by the Boltzmann equation and is further discussed in section 3.3.3.

The damping of the collective modes in a zero-temperature BEC [Fed98] as well
as in a superfluid trapped Fermi gas, is expected to be very small [Bar00]. For the
superfluid Fermi gas this can be understood by considering that at zero temperature
a low energy collective mode cannot decay because the presence of an energy gap in
the excitation spectrum prevents the formation of excitations. On the other hand for
temperatures just below the critical temperature the collective modes in a superfluid
Fermi gas are expected to be strongly damped [Bar00]. The general description of the
damping in inhomogeneous systems at finite temperature is very complex and we refer
to the literature [Fed98, Gio00, Bar00] and references therein.

3.3.2 Collective Modes in the hydrodynamic regime

From the linearized hydrodynamic equation of motion the collective modes can be
calculated [Pet02]. In the following, a polytropic equation of state with µ(n) = nγ is
assumed.

To reveal the role of interactions in the collective modes of a gas in the hydrody-
namic regime, the modes have to be compared with the predictions of the ideal gas
model for a harmonically confined gas. Here the discrete mode frequencies are sums
of integer multiples of the trap frequency ω0.

To reveal the role of interactions they have to be compared with the predictions of
the ideal gas model confined in a harmonic potential. Here the discrete mode frequen-
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3.3 Collective Oscillations

cies are sums of integer multiples of the trap frequency ω0.

Isotropic trapping potential

For isotropic harmonic traps with trapping frequency ω0, the collective modes are
characterized by their orbital angular momentum l and the number of radial nodes nr

(see for example [Str96, Amo99, Pet02]). The corresponding eigenfrequencies of the
modes are found to be [Hei04a]

ω2/ω2
0 = l + 2nr (γ(nr + l + 1/2) + 1) . (3.29)

For a dilute, interacting BEC with γ = 1 this reduces to the mode frequencies found
by S. Stringari et al. [Str96]. For a superfluid and a collisional (hydrodynamic) Fermi
gas γ = 2/3 and the eigenfrequencies reduce to the results found in [Bru99, Amo99,
Bar00].

For nr = 0 the dispersion spectrum corresponds to the so-called surface modes.
These modes have no radial nodes and with increasing l they become more localized
near the surface of the cloud. From equation 3.29 it is obvious that these modes do
not depend on the underlying equation of state. Of special interest is the l = 1 dipole
mode, which corresponds to the center of mass motion of the system. Due to the
harmonic confinement the oscillation frequency is the harmonic trap frequency. Be-
cause the center of mass motion and the internal degrees of freedom are separable for
interactions that depend only on the relative coordinate of the particles, the mode is
unaffected by two-body interactions. The dipole mode frequency (ω = ω0) is the same
for any system confined in a harmonic potential, independent of temperature and statis-
tics [Pit03]. The fact that this mode is unaffected by interactions is very important for
experiments. First, it enables the determination of the trapping frequencies to high ac-
curacy by measuring the dipole frequency. Second, the frequency can be used to check
the harmonicity of the trapping potential (for experimental details see section 6.2.1).
The next higher surface mode is the quadrupole mode with l = 2 and ω =

√
2ω0.

The comparison of the modes with the predictions for an ideal gas [Str96]

ω/ω0 = (2nr + l), (3.30)

shows that the surface modes with l > 1 are systematically below the ideal gas predic-
tions.

For the so-called compressional modes, which have nr = 1, the lowest one is the
monopole mode with nr = 1, l = 0. From equation 3.29 the corresponding dispersions
law reads

ω2/ω2
0 = 3γ + 2. (3.31)

For a BEC in the Thomas-Fermi regime γ = 1 and the eigenfrequency amounts to
ω =

√
5ω0, while for a Fermi gas with γ = 2/3 the eigenfrequency is given by

ω = 2ω0. Because this mode is spherically symmetric with a radial velocity field
having the same sign everywhere it is also referred to as the breathing mode.
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3 Collisions and collective dynamics in ultracold gases

Axially symmetric potential

The results of the isotropic harmonic potential can be generalized to anisotropic con-
figurations with

V(x, y, z) =
1
2

mω2
⊥r2 +

1
2

mω2
‖z

2 =
1
2

mω2
⊥(r2 + λ2z2), (3.32)

where r2 = x2 + y2 and λ = ω‖/ω⊥ is the anisotropy parameter. In our measurements
of the collective modes in the BEC-BCS crossover (see section 6.2) the anisotropy of
the trapping potential is typically λ ≈ 0.03.

In the isotropic case (λ = 1), the rotational symmetry ensures that the angular
momentum l gives two good quantum numbers, i.e. l and m. For an axial symmetry
only the axial component m of the angular moment l remains a good quantum num-
ber. However, the resulting dispersion relation will depend on m and explicit results
are only available in some particular cases. For the low-lying collective modes it is
still possible to start from a spherical base that is suitably modified to account for
the cylindrical symmetry. The reduced symmetry gives rise to a coupling between
some of the modes that, in the spherical trap, are characterized by different values of l
[Str96, Amo99] (see also below).

The calculation in an axially symmetric trap leads to the following dispersion law
for the surface excitations [Coz03]

ω2(l = 2,m = ±2) = 2ω2
⊥, (3.33)

and
ω2(l = 2,m = ±1) = ω2

⊥ + ω
2
‖ . (3.34)

As in the case of the isotropic harmonic potential, the frequencies of the surface modes
are independent of the underlying equation of state.

This is contrasted by the nr = 0, l = 2, m = 0 quadrupole surface mode which
is, due to the axial symmetry of the external potential, coupled to the nr = 1, l = 0,
m = 0 monopole mode. Here the dispersion law of the two decoupled modes explicitly
depends on the equation of state and is given by [Coz03]

ω2/ω2
⊥ = γ + 1 +

γ + 2
2

λ2 ±
√

(γ + 2)2λ4/4 + (γ2 − 3γ − 2)λ2 + (γ + 1)2. (3.35)

For ω⊥ = ω‖ = ω0 one recovers the solutions for the quadrupole (ω/ω0 =
√

2) and the
monopole (ω2/ω2

0 = 3γ + 2) excitations in a spherical trap.
The explicit dependency of these collective mode frequencies on γ makes them

perfectly suited to investigate the equation of state in the BEC-BCS crossover. In
the following, several regimes of the dispersion spectrum given in equation 3.35 are
discussed.

For an ideal gas γ = 2/3 and the dispersion law is identical to the predictions found
in the following articles [Kag97, Gri97a, Amo99]. The same results apply to a Fermi
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Figure 3.8: Mode frequency in units of ω‖ of the nr = 0, l = 2,m = 0 and nr = 1, l = 0,m = 0
modes calculated from equation 3.35 for a BEC in the Thomas-Fermi limit (γ = 1). The two
frequencies for an isotropic trapping potential (ω⊥/ω‖ = 1) are marked by the two circles. In
the limit of very elongated traps (ω⊥/ω‖ � 1) the frequencies approach ω/ω‖ =

√
5/2 and

ω/ω‖ = 2ω⊥/ω‖, respectively (dashed lines).

gas in the superfluid state [Bar00]. Moreover, the same dispersion relation also applies
to a strongly interacting, unitarity limited, BEC and Fermi gas because in both cases
γ = 2/3, as shown in [Cow02] and [Hei01], respectively. On the other hand for a dilute,
interacting BEC in the Thomas-Fermi limit γ = 1 and equation 3.35 reduces to the one
found by S. Stringari et al. [Str96]. Figure 3.8 shows the two decoupled frequencies
for a BEC as a function of the radial oscillation frequency ratio ω⊥/ω‖ = 1/λ.

In our experiment the ratio between the radial and axial trap frequencies is typically
ω⊥/ω‖ ≈ 30. In this limit of very elongated traps (ω⊥ � ω‖) the dispersion law of the
two decoupled modes correspond to a slow axial and a fast radial oscillation. The
axial mode is characterized by an out-of-phase oscillation along the axial and radial
direction. The radial mode, on the other hand, is primarily a radial breathing mode with
a suppressed oscillation along the axial direction. These two modes are often referred
to as the axial and radial breathing mode, respectively7. An illustration of these two
modes is found in figure 6.5 in section 6.2, where we also describe our measurements
of these two modes in the BEC-BCS crossover. The calculated dispersion law of the
two modes is given by [Coz03]

ω =
√

(3γ + 2)/(γ + 1)ω‖, (3.36)

7Note that a well defined nomenclature of modes does not exist and different names for these modes
might be used throughout the literature.
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3 Collisions and collective dynamics in ultracold gases

Table 3.2: Collective frequencies of the decoupled modes in a elongated trap, given by equa-
tion 3.37 and 3.36 for a gas obeying the hydrodynamic equations of motion with a polytropic
index of γ = 2/3 and γ = 1, respectively.

γ = 2/3 γ = 1
radial breathing mode

√
10/3ω⊥ 2ω⊥

axial breathing mode
√

12/5ω‖
√

5/2ω‖

for the axial breathing modes and

ω =
√

2(γ + 1)ω⊥, (3.37)

for the radial breathing mode. Note that the radial mode reveals a much stronger
dependence on the equation of state than the axial mode.

For a BEC with γ = 1 the solution of the axial breathing mode (equation 3.36)
is given by ω/ω‖ =

√
5/2 = 1.581, while the solution for the fast radial breathing

mode (equation 3.37) amounts to 2ω⊥, which is identical to the predicted frequency
for an ideal gas [Str96]. The experimental investigation of a BEC in this limit yielded
ω/ω‖ = 1.569(4) for the low-lying mode [SK98] and ω/ω⊥ ≈ 2 for the radial mode
[Che02]. The measurements by F. Chevy et al. further demonstrated that the radial
mode is only very weakly damped [Che02].

The above discussion shows that first of all, the predicted collective frequencies of
a non superfluid Fermi gas in the hydrodynamic limit are the same as for a superfluid
Fermi gas. The same collective frequencies are also predicted for any classical gas in
the hydrodynamic limit, independent of the underlying statistics. The reason is that
in all cases the equation of states has the same power law dependence with γ = 2/3.
Moreover, as the unitarity limited quantum gas is predicted to have the same density
dependence of the equation of state (µ ∝ n2/3) it also obeys the same dispersion laws.

Conversely, a weakly interacting BEC in the Thomas-Fermi limit has an equation
of state µ ∝ n1 and the collective frequencies are expected to differ from the above
cases. Table 3.2 summarizes the corresponding frequencies for an interacting BEC
with γ = 1 and a gas with γ = 2/3 that obeys the hydrodynamic equations.

3.3.3 Collisional versus Collisionless dynamics
The collective modes frequencies of a gas that is described by the hydrodynamic equa-
tion of motion have been discussed in section 3.3.2. This description applies for a
condensate and for a classical gas with a sufficiently large collision rate.

This section focuses on the description of the collective modes of a gas in the
normal, non superfluid state. Of particular interest is the behavior of the quadrupole
mode in an elongated trapping potential when the gas changes from a hydrodynamic to
a collisionless gas. This situation was considered by D. Guery-Odelin et al. [GO99],
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3.3 Collective Oscillations

and here we summarize their results for the collective mode frequencies and damping
rates.

In general, for temperatures T greater than the transition temperature Tc the thermal
energy is large compared to the energy level spacing in the harmonic oscillator. The
dynamics of such a gas are mainly effected by collisional effects, and due to the low
density, mean field effects can be neglected in the derivation of the collective mode
frequencies. For a gas in this regime the dynamics are well described by the Boltzmann
equation [Pit03].

The Boltzmann equation exhibits two asymptotic regimes: the collisionless and the
collisional or hydrodynamic regime. Both regimes are distinguished by the ratio of the
collective frequency ω with respect to the relaxation time τ and correspond to ωτ � 1
and ωτ � 1, respectively.

Relaxation time of the quadrupole mode

For a gas in the classical regime the relaxation time of the quadrupole mode is given
by [GO99]

τ =
5
4

1
γcoll

, (3.38)

where γcoll is the classical collision rate. For a gas with thermal velocity vth =√
8kBT/πm, central density n(0), and a total scattering cross section σ, the collision

rate is given by [Wu97]

γcoll =
n(0)vthσ

2
. (3.39)

For a classical gas in a harmonic trap vth ∝ T 1/2 and n(0) ∝ T−3/2, and consequently
the collision rate decreases with increasing temperature.

In the classical limit the relaxation time and the collision rate are inversely propor-
tional to each other (see above). However under conditions of quantum degeneracy
the two quantities show a very different temperature dependence and are no longer
proportional to each other [Vic00]. This behavior highlights the important role played
by the underlying quantum statistics.

For degenerate fermions the collisions are quenched due to the Pauli exclusion
principle and consequently at very low temperatures one expects the gas to be in the
collisionless regime. As the author of [Vic00] shows, the relaxation time τ is propor-
tional to (TF/T )2. Thus in a Fermi gas the relaxation time diverges at zero temperature
as a consequence of the Pauli principle and at temperatures T � TF because the gas
gets dilute. Consequently the Fermi gas is in both cases expected to be in the colli-
sionless regime.

In contrast to the Fermi gas, the relaxation time for a Bose gas is predicted to
decrease with respect to the classical trend when the critical temperature is approached
[Vic00].

65



3 Collisions and collective dynamics in ultracold gases

Intermediate regime

Starting from the Boltzmann equation, the general dispersion law for the quadrupole
oscillation in an anisotropic harmonic trapping potential is given by [GO99]

(ω2 − 4ω2
‖ )(ω

2 − 4ω2
⊥) −

i
ωτ

(
ω4 −

2
3
ω2(5ω2

⊥ + 4ω2
‖ ) + 8ω2

⊥ω
2
‖

)
= 0. (3.40)

The above dispersion relation was derived for a classical gas. However by including
quantum statistical effects in the relaxation time τ the relation also holds for degenerate
Fermi gases [Vic00].

The first term of equation 3.40 corresponds to the dispersion law of a purely colli-
sionless regime (ωτ → ∞). In this limit interactions are completely neglected and the
eigenfrequencies coincide with the ones predicted for an ideal gas. The second term,
multiplying i/(ωτ), corresponds to the purely hydrodynamic case (ωτ→ 0). Note that
this hydrodynamic dispersion law is identical to the one found from the hydrodynamic
equations of irrotational superfluids (see equation 3.35 with γ = 2/3).

In the intermediate regime (ωτ ≈ 1) equation 3.40 can be solved numerically for
ω = ωreal+ iΓ. Figure 3.9 shows the frequency ωreal and the damping rate Γ of the axial
(radial) breathing mode as a function of ω‖τ (ω⊥τ) for a cigar shaped trap. The cho-
sen anisotropy corresponds to our experimental configuration (ω⊥/ω‖ = 31). For the
axial (radial) breathing mode frequency one observes a continuous decrease of the fre-
quency with decreasing ω‖τ (ω⊥τ) towards the hydrodynamic value of ω/ω‖ =

√
12/5

(ω/ω⊥ =
√

10/3) (see figure 3.9 left and right, respectively). For large ω‖τ (ω⊥τ) the
collisionless regime is reached and the frequency approaches ω/ω‖ = 2 (ω/ω⊥ = 2).
A maximum damping rate is reached in the intermediate regime where ω‖τ ≈ 0.4
(ω⊥τ ≈ 0.5).

3.3.4 Mean field effects in Fermi gases

Because of the high density in Bose-Einstein condensates, interactions play a crucial
role, not only in the equilibrium, but also in the behavior of the collective frequencies.
Fermi gases however, are more dilute due to the Pauli exclusion principle and con-
sequently the effects of interactions are expected to be much smaller. Moreover, for
identical Fermions s-wave interactions are completely suppressed and one expects the
gas to be in the collisionless regime. The study of the dynamics of such an ideal gas in
time dependent traps is found in [Bru00].

In an ultracold two component Fermi gas, however, mean field effects may be
present. In the following the influence of these interactions on the collective modes of
a Fermi gas in the collisionless and hydrodynamic (superfluid) regime are described. A
description of the influence of mean field effects to the dynamics in the regime between
the hydrodynamic and the collisionless limit is found in reference [Ped03, Mas04].
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Figure 3.9: Real part and imaginary part of the axial (left) and radial breathing mode (right) of
a classical gas confined in an axially symmetric trap (ω⊥/ω‖ = 31). For ω‖τ � 1 (ω⊥τ � 1)
the axial (radial) mode is in the hydrodynamic regime while for ω‖τ � 1 (ω⊥τ � 1) the
collisionless regime is reached. For the axial (radial) breathing mode, the maximum damping
rate Γ occurs in the intermediate regime at ω‖τ ≈ 0.4 (ω⊥τ ≈ 0.5).

Collisionless Fermi gas

In the collisionless regime the relaxation time of excitation is much larger than the
characteristic period of motion (ωτ � 1) and consequently there is less than one
scattering event per oscillation. In a homogenous system these collective excitations
are referred to as zero sound.

Assuming a spin mixture of equal atom number and same trapping frequencies the
collective frequencies can be calculated using a sum rule approach8. For an isotropic
harmonic potential, the quadrupole mode frequency is given by [Vic99]

ω2
Q = 4ω2

ho

(
1 −

3
4

Eint

Eho

)
, (3.41)

while the frequency of the monopole mode amounts to

ω2
M = 4ω2

ho

(
1 +

3
8

Eint

Eho

)
. (3.42)

The results can be extended to axially symmetric traps if the interaction effects are
smaller than the unperturbed splitting between the axial and radial frequencies. To first

8An introduction to this method is found in the textbook of L. Pitaevskii and S. Stringari [Pit03].
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order in a the radial mode does not change with respect to the ideal gas case, while the
axial mode becomes [Vic99]

ω = 2ωho

(
1 −

3
16

Eint

Eho

)
. (3.43)

For an interacting two component Fermi gas the quantity Eint/Eho ≈ 0.3kFa is small
(see equation 2.38) and thus one expects corrections of a few percent with respect to
the ideal gas predictions.

Hydrodynamic and superfluid Fermi gases

As explained in section 3.3.1, the collective modes of gases that are described by the
hydrodynamic equations, depend on the underlying equation of state.

For an interacting Fermi gas of two spin species with equal density n/2, the inclu-
sion of mean field effects results in the equation of state [Men02]

µ(n) =
~2

2m
(3π2n)2/3 +

1
2

gn, (3.44)

where the coupling constant is g = 4π~2a/m. The same equation of state also holds
for a Fermi gas in the superfluid state. It should be noted, that the above equation of
state neglects the effects of correlations, which become important for large values of
the scattering length and affect in a different way the equation of state of the normal
and superfluid phase [Men02].

Using a perturbative scheme the following correction to the radial breathing mode
of a superfluid Fermi gas in an axially anisotropic trap is found [Str04a]

ω =

√
10
3
ω⊥

(
1 +

3
20

Eint

Eho

)
. (3.45)

Note that because a < 0, the mean field correction (Eint/Eho ≈ 0.3kFa) is negative.

3.3.5 Beyond mean field corrections in a BEC
So far the investigation of the collective modes in a zero-temperature interacting BEC
was done for a BEC in the Thomas-Fermi regime. As discussed in section 2.1.2 this
approximation is well satisfied for a weakly interacting BEC with a sufficient large
number of atoms. However, for large gas parameters n|a|3 one expects corrections to
the mean field predictions. These beyond mean field corrections lead to a modified
equation of state and consequently to a change in the collective mode frequencies as
described in the following.

The mean field Gross-Pitaevskii theory corresponds to the first approximation of
Bogoliubov theory for uniform gases. The next order correction accounts for the
change in the equation of state due to the occurrence of quantum correlations. The
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corresponding correction to the chemical potential of a uniform gas was derived by
Lee, Huang, and Yang and is given by [Lee57]

µ(n) = gn
(
1 +

32
3
√
π

√
na3

)
. (3.46)

According to their theory, the first corrections to the mean field predictions are ex-
pected to behave like

√
na3. For typical experimental parameters for the s-wave scat-

tering length and the density at the center of the trap, the gas parameter is smaller than
10−4 and consequently the effects are on the order of 1% or less. Such corrections are
too small to be observed in the density profile or the release energy. On the other hand
they might be observable in the frequencies of the collective oscillations as they can
be measured with much higher accuracy.

The corresponding frequency shifts can be derived by evaluating the hydrodynamic
equations of superfluids (see above) with the equation of state given in equation 3.46
[Pit98]. The surface modes are independent of the equation of state and are unaffected
by the beyond mean field corrections. Conversely, the compressional modes are sensi-
tive to the equation of state and the calculated fractional shift for the lowest mode in a
spherical harmonic potential (monopole mode) is given by

δωM

ωM
=

63
√
π

128

√
na3, (3.47)

while the zeroth order dispersion relation for a BEC is given by ωM =
√

5ω0 (see
above).

In case of axially deformed traps, the pure quadrupole modes are again uneffected
by the beyond mean field effects. For the nr = 0, l = 2,m = 0 quadrupole mode
however, the coupling to the nr = 1, l = 0,m = 0 monopole mode leads to a frequency
shift that is given by [Pit98]

δω

ω
=

63
√
π

128

√
na3 f±(λ), (3.48)

where

f±(λ) =
1
2
±

8 + λ2

6
√

9λ4 − 16λ2 + 16
(3.49)

and λ is the anisotropy parameter of the trapping potential. The index ± refers to the
lower (−) and higher (+) solution of dispersion law given in equation 3.35. In the
limit of very elongated traps (λ � 1) one finds f− = 1/6 and f+ = 5/6 . This shows
again, that the slow axial mode in an elongated trap is less sensitive to the underlying
equation of state than the fast radial mode.

3.3.6 Calculations in the BEC-BCS crossover
In the BEC-BCS crossover the system changes from the strong coupling molecular
BEC limit into the weak coupling BCS limit. Because of the presence of the superfluid
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order parameter the collective oscillations in the BEC-BCS crossover can be described
by the hydrodynamic equations of superfluids.

As the quadrupole mode in an axially symmetric trapping potential directly de-
pends on the underlying equation of state (see equation 3.35), this mode is ideally
suited to explore the equation of state in the BEC-BCS crossover [Str04a, Hei04a,
Hu04, Com04b, Com04a, Kim04b, Kim04a, Man04, Bul04].

In case of a polytropic equation of state the collective frequencies of a gas confined
in a harmonic trap can be directly obtained from the polytropic index γ (see section
3.3.2). Assuming a polytropic equation of state for the gas in the BEC-BCS crossover
an effective polytropic index γ̄ can be obtained by averaging the density distribution of
the harmonically trapped sample. This index is defined as the logarithmic derivative
of the chemical potential [Hei04a, Bul04, Man04]

γ̄ =
n
µ

∂µ

∂n
. (3.50)

The collective modes can be calculated by replacing γ with the polytropic index γ̄.
Hence the problem of calculating the collective mode frequencies is reduced to the
determination of the equation of state.

The effective polytropic index in the BEC-BCS crossover was, for example, calcu-
lated by H. Heiselberg [Hei04a] and H. Hu et al. [Hu04] from the microscopic mean
field description introduced by A. Leggett [Leg80]. The calculated dependence of γ̄
in the BEC-BCS crossover is shown as the solid line in the inset of figure 3.10 as a
function of 1/kFa (data taken from reference [Hu04]9). The effective polytropic index
decreases from γ̄ = 1 in the strong coupling BEC limit (1/kFa � 1) to a minimum
value of about γ̄ = 0.6 at 1/kFa ≈ −0.5 before it increases back to γ̄ = 2/3, expected
for a superfluid Fermi gas in the BCS limit (1/kFa � −1). On resonance (1/kFa = 0)
the gas is unitarity limited and γ̄ = 2/3.

From the analysis of the equation of state obtained from a recent quantum Monte
Carlo calculation by A Astrakharchik et al. [Ast04] (see also section 2.3), N. Manini et
al. [Man04] derived the predicted effective polytropic index in the BEC-BCS crossover
(dashed line in the inset of figure 3.10). Conversely to the predicted monotonic de-
crease from the BEC limit with γ̄ = 1 to the unitarity limit with γ̄ = 2/3 (see above)
the calculation predicts that γ̄ first increases to values larger than 1 before it decreases
to γ̄ = 2/3 obtained in the unitarity limit. This qualitative dependency was also pre-
dicted by H. Heiselberg’s BEC approximation [Hei04a]. The reason for this different
behavior with respect to the predictions by the mean field description of the crossover
is found in the different contribution of higher order corrections to the chemical po-
tential. In the mean field model of A. Leggett the corrections add negatively to the
chemical potential, while in the BEC approximation they add positively [Hei04a] (see
also section 3.3.5).

9Note that in reference [Hu04] the effective polytropic index and the collective mode frequencies
are determined as a function of aho/N1/6a = 1.70/kFa, where kF is the Fermi wave number at the trap
center.
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Figure 3.10: Predicted collective mode frequency of the radial quardrupole mode in an elon-
gated trap in the BEC-BCS crossover. The solid line is the prediction of H. Hu et al. [Hu04]
and is based on the mean field approach introduced by A. Leggett [Leg80]. The dashed line
shows the predicted frequency by N. Manini et al. [Man04], which is based on the results from
a recent Monte Carlo calculation by G. Astrakharchik et al. [Ast04]. The inset shows the ef-
fective polytropic index γ̄ in the BEC-BCS crossover. The solid and dashed lines correspond
to the prediction by H. Hu [Hu04] and N. Manini [Man04], respectively.

The behavior of the polytropic index in the BEC-BCS crossover directly shows
up in the frequency of the radial and axial breathing mode. As an example we show
in figure 3.10 the predicted dependency of the radial breathing mode in an elongated
trap. The collective mode frequencies in the crossover are calculated from equation
3.37 and the effective polytropic index, which is shown in the inset of figure 3.10. The
solid line corresponds to the prediction from the mean field model of reference [Hu04],
while the dashed line is derived from a quantum Monte Carlo calculations [Man04].
The mean field description predicts a monotonically decreasing frequency from the
dilute molecular BEC limit, with ω/ω⊥ = 2 towards ω/ω⊥ =

√
10/3 expected for

a unitarity limited quantum gas [Hei04a, Hu04]. This is contrasted by the prediction
from the quantum Monte Carlo calculation that predicts that the collective mode fre-
quency first increases above the BEC limit (ω/ω⊥ > 2) before it decrease towards the
value expected for a unitarity limited quantum gas. This qualitative dependency was
previously suggested by S. Stringari [Str04a] and is also found in the calculations by
H. Heiselberg [Hei04a].

The discussion of the axial mode frequency is found in section 6.2.4, where we
compare the theoretical predictions of reference [Hu04] and [Man04] for the radial
and axial breathing mode with our measurements in the BEC-BCS crossover.
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Chapter 4

Experimental setup

Our experimental setup is described in detail in the recently published Ph.D. thesis of
Selim Jochim [Joc04]. Therefore this chapter describes only briefly the main aspects
of our apparatus. Further details are also found in the previous diploma thesis [Joc00,
Els00, Mor01, Hen03, Rie04].

All our experiments are carried out in an ultra-high vacuum environment. In a first
stage the atoms are trapped and precooled from a Zeeman slowed atomic beam using
a standard magneto-optical trap (MOT). In a second stage we transfer the atoms into
a far red detuned optical dipole trap. In this optical dipole trap an optical resonator is
used to enhance the laser light intensity. This resonator enhanced optical dipole trap
creates a deep trapping potential of large volume. It offers ideal conditions to load
the atoms into a second far red detuned dipole trap that consists of a single focused
Gaussian beam. The power of this dipole trap is precisely controlled and can be varied
over more than four orders of magnitude. All the experiments presented in this thesis
are performed in this dipole trap. In combination with a large scattering cross section
that we obtain by tuning an external magnetic field to values close to the Feshbach
resonance this optical dipole trap allows for a very efficient evaporative cooling of the
atoms (see chapter 5).

4.1 Vacuum system and atomic beam

Our vacuum apparatus is sketched in figure 4.1. It consists of an oven chamber operat-
ing at a pressure of about 10−8 mbar and an ultra-high vacuum chamber with a pressure
of below 10−10 mbar. Both chambers are connected by a 45 cm long slower tube which
works as a differential pumping tube. The vacuum in the UHV cell and in the oven
chamber is maintained by a 55 l/s and an 20 l/s ion pump, respectively.

The oven consists of a small hollow copper cube (32 × 22 × 22 mm3) that is filled
with about 0.2 g of 6Li enriched to 95%. The gaseous 6Li can escape from a 1 mm hole
on the front side of the copper cube. In all our experiments the oven was operated at a
temperature of 340◦ C.
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glass cell
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Figure 4.1: Overview of the vacuum chamber. All our experiments are performed inside the
glass cell which is surrounded by the MOT and Feshbach coils.

The central part of our UHV chamber consists of a glass cell with the outer di-
mensions 4 × 4 × 12 cm3. It consists of 4 mm thick high purity fused silica that is not
antireflection coated.

Figure 4.1 also shows the 45 cm long Zeeman slower tube. It is set up as a decreas-
ing field Zeeman slower with a designed maximum capture velocity of 600 m/s. The
necessary magnetic field is produced by 14 individual magnetic field coils with a max-
imum field of 560 G. The design of the coils is such that the corresponding magnetic
field smoothly matches with the quadrupole field of the MOT [Joc00]. The laser light
(see also next section) for the slowing beam enters the chamber through a sapphire
viewport which in contrast to glass or quartz is resistent against lithium.

4.2 Magneto-optical trap and Zeeman slower
We load our MOT from the Zeeman slowed atoms. The whole laser system for trapping
and cooling the atoms in the MOT is based on diode lasers. The main features of the
laser system are described in the following. Further details are found in [Joc00, Rie04,
Joc04].

74



4.3 Optical dipole traps

For laser cooling of the 6Li atoms we use the D2 line that connects the 2S 1/2 ground
state and the 2P3/2 excited state and has a transition wavelength of about 671 nm. For
the operation of the MOT two laser frequencies are needed; one to drive the cooling
transition from the F = 3/2 ground state and one for the repumping transition from the
F = 1/2 ground state. For the Zeeman slower we use another laser frequency which is
red detuned with respect to the cooling light.

The frequency reference is provided by saturation spectroscopy of 7Li vapor pro-
duced in a heat pipe1 that is operated at about 300◦ C. One grating stabilized laser is
locked by frequency modulation to the 7Li D1 line [Joc00]. This line is 698 MHz and
469 MHz blue detuned with respect to the D2 lines that are used for the cooling and
repumping transitions, respectively.

A frequency offset locking technique [Sch99] is used to lock another laser with an
offset frequency of 870 MHz to the red. This locking technique enables us to shift the
laser frequency over a wide range of about ±100 MHz. To individually adjust the fre-
quency for the cooling and repumping transition we split the laser beam into two beams
and individually shift the frequencies by an acousto-optical modulator (AOM). Subse-
quently both laser frequencies are amplified by injection locked slave laser diodes that
each provide an output power of about 20 mW.

The light for the Zeeman slower is obtained from the laser light that is adjusted to
the cooling transition. Using an AOM we shift the frequency of this light by 65 MHz
to the red. Afterwards the light is used to seed an injection locked slave laser. Exper-
imentally it turned out that the loading rate of the MOT was optimized when the laser
diode of this slave laser was modulated at about 40 MHz [Joc04]. The optimum value
has to be carefully optimized and leads to loading rates of about 7× 106 atoms/s when
the trapping lasers are tuned about 4-5 natural linewidths2 to the red of the resonance.

4.3 Optical dipole traps

To trap ultracold atoms and molecules independent of their internal state optical dipole
traps are an ideal and versatile tool [Gri00]. These traps rely on the dispersive interac-
tion of the induced atomic dipole moment with the intensity gradient of the laser light
field. Because this optical dipole force is conservative it can be derived from a po-
tential. Depending on the phase between the oscillation of the induced dipole and the
incident light beam, the atoms experience a force towards the intensity minimum (out-
of-phase oscillation) or intensity maximum (in phase osciallation). The corresponding
potential is given by [Gri00]

Udip(r) = −
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (4.1)

1A detailed description of the heat pipe is found in [Joc04].
2For Lithium the natural linewidth amounts to 5.9 MHz.
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and is negative (positve) if the light frequency ω is red (blue) detuned with respect
to the atomic resonance frequency ω0. Here Γ denotes the natural line width of the
transition and I(r) is the laser intensity profile. The other relevant quantity is the
induced photon scattering rate which usually leads to heating of the particles in the
trap. Because the photon scattering rate reduces faster with increasing detuning than
the potential depth, it is advantageous to work at large detuning. Therefore, optical
dipole traps usually use large detunings and high intensities to keep the scattering rate
as low as possible at a certain potential depth [Gri00].

All the experiments presented in this thesis are performed in a optical dipole trap
that is created by a single focused Gaussian beam. To efficiently load this dipole trap
we use a second deep, large volume standing wave dipole trap. Both dipole traps
employ laser light that is far red detuned with respect to the resonance frequency and
thus provide a potential minimum at the intensity maximum.

4.3.1 Resonator enhanced optical dipole trap

This dipole trap is designed to allow a high transfer efficiency from the MOT into the
dipole trap. The trap is based on the enhancement of the optical power density of a
laser beam in an optical resonator. The resonator enhanced dipole trap fulfills the two
main criteria: A trap depth that exceeds the mean kinetic energy of the atoms in the
MOT and a reasonable overlap between the spread of the atoms in the MOT and the
size of the dipole trap. A detailed description of this trap is found in [Els00, Mos01,
Mor01, Joc04].

The resonator dipole trap features the 150 fold enhancement of an initially ∼1 W
laser light at a wavelength of 1064 nm. This laser light is obtained from an ultrastable
diode pumped Nd:YAG laser that emits 2 W (Mephisto 2000 by Innolight). The res-
onator geometry is a near confocal geometry with a distance between the two mirrors
of 15.3 cm and a mirror curvature of 15 cm. The resulting waist is about 160 µm and
the Rayleigh range stretches out to about 75 mm from the center of the resonator. Both
resonator mirrors are outside the vacuum chamber. To minimize the optical losses at
the glass cell, the symmetry axis of the resonator is aligned in Brewster’s angle. A
Hänsch Couillaud lock is employed to stabilize the resonator [Hän80]. To control and
stabilize the intensity of the light in the resonator we monitor the transmitted light
with a photodiode. The measured signal is used in a closed loop feedback system to
stabilize the intensity using an acousto-optical modulator [Joc04].

The standing wave creates potentials with a maximum potential depth of about
1 mK. The separation between the individual potential wells is fixed by the wavelength
of the laser and amounts to 532 nm. From the MOT we load3 approximately 1500
individual wells with typically about 8 × 106 atoms.

3The exact timings of the transfer are found in [Joc04].
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4.3.2 Focused beam dipole trap
This dipole trap is created by simply focusing a far red detuned laser beam with a
Gaussian intensity profile. From the intensity distribution and equation 4.1 the trapping
potential can be calculated. In the resulting cigar-shaped trapping potential the ratio
between the axial (ω‖) and radial trap frequency (ω⊥) is fixed by the ratio between the
waist of the focused beam w0 and the emitted laser wavelength λ [Gri00]

ω‖

ω⊥
=
√

2π
w0

λ
. (4.2)

In our case the laser light for the dipole trap is provided by a 15 W single mode
Yb:YAG laser that emits at λ = 1030 nm (VersaDisk by ELS). In order to have a
sufficient axial confinement we designed the beam waist to be about w0 = 24 µm. This
beam waist results in a trap depth of about Uat/kB = 0.070 µK × P/mW as a function
of the laser power P. Due to the two times larger polarizability of the 6Li2 dimers the
trap depth for the molecules is Umol = 2Uat [Joc03b]. The above scaling of the trap
depth with the laser power will be used throughout this thesis. The calculated radial
and axial trap frequencies are given by [Gri00]

ω⊥/2π =
1
πw0

√
Uat

m
= 130 Hz ×

√
P/mW (4.3)

ω‖/2π =
λ

√
2π2w2

0

√
Uat

m
= 1.3 Hz ×

√
P/mW. (4.4)

Thus atoms and molecules have the same trap frequency. The maximum laser power of
10.5 W provides a trap depth of Uat ≈ kB×750 µK with radial and axial trap frequencies
of about ω⊥/2π = 13 kHz and ω‖/2π = 130 Hz, respectively.

Setup

Our optical setup is shown in figure 4.2. The focused beam trap is installed under a
relative angle of about 10◦ with respect the axis of the resonator enhanced dipole trap.
This angle is the minimal attainable in our setup and is chosen to ensure a maximum
spatial overlap with the resonator enhanced dipole trap. Therefore the tightly focused
beam crosses our glass cell under an angle of about 46◦ which results in an astigmatism
of several hundred micrometers. We compensate for this astigmatism by inserting a
fused silica glass plate into the expanding beam (see figure 4.2). In a test setup we
measured the beam waist to be about 23 µm and 25 µm in the vertical and horizontal
plane, respectively [Rie04].

The main features of our dipole trap is the ability to precisely control the laser in-
tensity over more than four orders of magnitude. This precise control of the optical
trap depth is the key for a successful evaporative cooling of particles starting from al-
most 100 µK down to tens of nanokelvins. To control the trap laser power we measure
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Figure 4.2: Setup of the focused beam dipole trap. The axis of the standing wave trap lies in
the shown plane.

the laser intensity using a photodiode and employ a servo loop to stabilize the inten-
sity using an AOM. To measure the photodiode current precisely and reliable over this
large range we use a logarithmic amplifier that converts the the photodiode current into
a logarithmic voltage4.

Magnetic confinement

At low trapping laser power the trapping potential is no longer determined solely by the
light intensity of the trapping laser but also by residual magnetic field gradients and
gravity. These effects influence especially the weak axial confinement of the dipole
trap.

In particular the large offset magnetic field that we apply to tune the interactions
in our gas (see section 4.4) has a field curvature B′′ that gives rise to an additional
trapping potential

Umag = −
1
2
µB′′x2 (4.5)

in the axial direction x. In our case the magnetic moment µ of the atoms at high mag-

4Further details are found in [Joc04].
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netic field is given by µ = µB. From the magnetic trapping potential the corresponding
trap frequency is calculated to be

ωmag =

√
µBB′′

m
. (4.6)

The calculated curvature of the magnetic field in the horizontal plane is
B′′ = −0.0255 cm−2 × B and thus the magnetic trap frequency at a field of B = 1000 G
is about ωmag/2π = 24.5 Hz.

At very low laser power, gravity begins to tilt the trap significantly. We compensate
for this by applying a magnetic field gradient that is on the order of one G/cm. This
magnetic field gradient is experimentally optimized by minimizing the trap loss at very
low trap depth.

Measured trap frequencies

Because the optical and magnetic trap are centered in the horizontal plane, the optical
and magnetic trap frequencies can be added quadratically. Thus the resulting trap
frequency is given by

ω‖ =
√
ω2

mag + ω
2
opt. (4.7)

To measure the axial and radial trap frequency we excited the dipole mode and
measure the collective frequency as explained in detail in section 6.2. In a harmonic
potential this collective mode oscillates with a frequency that corresponds to the trap
frequency (see also section 3.3). From the axial dipole mode measurements performed
at different magnetic field values and constant trapping laser power of P = 34 mW we
derive the following general dependency of the axial trap frequency on the magnetic
field and laser power

ωz/2π =
√

601(4) B/kG + 0.3(1) P/mW Hz, (4.8)

where the values in brackets denote the error that we obtain from the fit. Measurements
of the radial dipole mode at different laser intensity yield to [Rie04]

ωr/2π = 128(1)Hz ×
√

P/mW, (4.9)

which is in good agreement with the calculated radial trap frequency (see equation
4.3)5. In the following we denote measured axial and radial trap frequencies by ωz and
ωr, respectively and calculated trap frequencies by ω‖ and ω⊥, respectively.

5A comparison of equation 4.8 with equation 4.4, however, shows that the optical contribution in the
axial direction is below the calculated value. The difference between the measured and calculated values
might be due to a slight misalignment between the optical and magnetic trap in the horizontal plane. At
high trapping laser powers equation 4.8 might therefore underestimate the axial trapping frequency. For
trap laser powers below 100 mW, the difference is below 12%.
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The expression for the axial trap frequency (equation 4.8) shows, that for trapping
laser powers below P ≈ 50 mW the optical potential is much weaker than the magnetic
field potential. In this case the dominant magnetic confinement provides a perfectly
harmonic axial trapping potential.

Note that the measurements of the axial and radial dipole mode were performed
during our investigation of the axial and radial collective mode frequencies in the BEC-
BCS crossover (see section 6.2). In the Ph.D. thesis of Selim Jochim [Joc04] and in
our publications [Joc03a, Bar04b] slightly different trap frequencies are given. The
quoted values always correspond to our best knowledge of the system at the time the
measurements were taken and we attribute the small changes in the numbers to tiny
drifts in the alignment of the trap.

Transfer of the atoms from the standing wave

The timing for the transfer between the resonator enhanced dipole trap and the focused
beam dipole trap was experimentally optimized. We ramp up the power in the focused
beam trap within 2 s after switching off the MOT. After 1 s, we turn off the standing
wave trap in a 1-s ramp. During the transfer of the atoms we apply a magnetic field
of 300 G to achieve efficient collisional loading. It turned out that the exact timing
is not critical and we typically load 3 × 106 atoms into the single beam dipole trap.
However, test experiments where we tried to load the focused beam directly from the
MOT resulted in a much lower number of atoms and showed that the intermediate step
of loading the standing wave is crucial.

4.4 High magnetic field coils and auxiliary coils
In order to tune the scattering properties of our 6Li gas over the full range of interest
(see section 3.2) we use a pair of magnetic field coils that creates magnetic fields of
up to 1470 G at a current of 200 A. The main features of our design are a small size,
an efficient cooling and small Eddy currents. These requirements are met by using
flat cooper wire from which we form two individual coils with a small gap between
them. In the gap the cooling water flows. It is in contact with every winding and
thus leads to an efficient cooling. Finally the water proof housing is made from PVC
and avoids Eddy currents and in principle enables fast switching of the magnetic field.
The technical detail of the coils are found in [Joc04, Hen03]. Reference [Joc04] also
provides the technical details of our current stabilization which results in a stability of
±3 mA or 22 mG. This high stability is of particular importance for our radio-frequency
spectroscopy measurements that are presented in section 6.3. Radio frequency spec-
troscopy of atoms is also used to calibrate our magnetic field as explained in section
6.3.1.

The space between the mount for the optical resonator and the large magnetic field
coils contains a second pair of small coils. In contrast to the big coils these coils are not
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water cooled and can be operates continuously with up to 500 mA. This results in a ho-
mogenous field of about 25 G or alternatively if operated in anti-Helmholtz configura-
tion in a field gradient of about 8.5 G/cm. Moreover these coils can for short times < 1 s
produce homogenous fields exceeding 300 G (or alternatively gradients > 100 G/cm).

In our experiments these coils are used in anti-Helmholtz configuration to compress
the MOT during the transfer into the standing wave, to compensate for gravity and for
residual magnetic field gradients in the vertical direction. Moreover these coils are
used to excite the radial and axial dipole mode as described in section 6.2.1.

4.5 Diagnostic tools
To record the atomic and molecular number and density we employ two diagnostic
tools; a calibrated photodiode, and a high field state selective absorption imaging sys-
tem.

4.5.1 Fluorescence measurements
An important parameter to know in our experiments is the total number of particles.
The simplest and most robust way to measure this quantity is to recapture the particles
into the MOT and to measure their fluorescence.

We use a calibrated photodiode to detect the light that is scattered into a solid angle
Ω. In combination with the rate of photons γPD hitting the photodiode and the photon
scattering rate of the atoms in our MOT γ, the total number of atoms is determined by

N =
γPD

γΩ
. (4.10)

In our case the atom number calibration yields [Joc04]

N = 2.85 × 107 atoms/V, (4.11)

with a relative uncertainty of about 50%.

Detection of molecules

To detect the number of molecules at a given magnetic field, we employ a technique
that relies on the dissociation of the molecules by ramping the magnetic field across
the Feshbach resonance [Reg03b]. We typically use a ramp speed of +6 G/ms to a
magnetic field of 1200 G. This ramp shifts the bound level above the continuum and
the molecules quickly dissociate. After this dissociation process we ramp the magnetic
field down to zero with a ramp speed of −12 G/ms. This fast ramp speed avoids the
molecule formation when crossing the Feshbach resonance and the region where a > 0.
In addition to avoid molecule formation we heat the sample by abruptly turning on the
full trapping laser power. This step turned out to be crucial as even while all molecules
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might be dissociated during the ramp across the resonance, molecules could be formed
again from a cold sample during the ramp back to zero magnetic field before detection.
Care was also taken, that the heating of the sample did not lead to evaporative loss. This
was done by minimizing the time for the magnetic field ramps so that the atoms would
spend only negligible time in fields where the scattering length is large. After reaching
zero magnetic field, we recapture the atoms in the MOT and measure the atom number
as described above.

This measurement provides the total number of atoms Ntot = 2Nmol + Nat, where
Nmol and Nat denote the number of molecules and atoms, respectively. To obtain Nat

we repeat the same measurement without the Feshbach dissociation ramp by immedi-
ately ramping down to zero magnetic field from the initial magnetic field. This ramp
down to zero magnetic field increases the binding energy to a large value of about
kB × 80 mK and the molecules are lost without leading to any fluorescence light in the
MOT. The number of molecules is then obtained by taking the difference in atom num-
bers measured in the two subsequent runs with and without the dissociating Feshbach
ramp.

4.5.2 Absorption imaging
To image our atoms and weakly bound molecules we use absorption images. The basic
idea of this well established technique is to image the intensity profile of a resonant
laser beam that has been partially absorbed in the atomic (or molecular) cloud onto a
CCD camera [Ket99].

Assuming a laser beam travelling in the z direction, the column density of the
particles is ñ(x, y) =

∫
n(x, y, z) dz, where n(x, y, z) is the density of the particles. From

the relative transmission and the absorption cross section σ the column density can be
obtained by [Ket99]

ñ(x, y) = −
1
σ

ln
I
I0
. (4.12)

High field imaging

To image the particles at high magnetic field in the vicinity of the Feshbach resonance
we use a grating stabilized diode laser that is locked by a frequency offset locking
technique to our reference laser. The setup enables us to tune the frequency of the
imaging laser over a wide range of ±1.8 GHz. A detailed description of the setup is
given in [Rie04].

To image the particles we use a closed σ−-transition from the 2S 1/2 ground state to
the 2P3/2 excited state (|2S 1/2,mJ = −1/2,mI〉 → |2P3/2,mJ = −3/2,mI〉). Because the
transition frequency depends on the orientation of the nuclear spin (mI = −1, 0, 1), the
imaging at high magnetic field also offers a state selective detection (see also appendix
A). The magnetic moment of the excited and ground state amounts to 2µB and µB,
respectively and therefore the transition frequency tunes with −µB ≈ −1.4 MHz/G.
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1mm
Figure 4.3: Optical setup of our imaging system. The total magnification of the system is 1.5.
The image in the right corner shows a typical absorption image of the particles.

The magnetic field direction defines the quantization axis of the system. In our
optical setup the imaging beam has an angle of α = 81◦ with respect to the quantization
axis (see also figure 4.3). The polarization axis of our linear polarized imaging beam
is perpendicular with respect to the direction of the magnetic field. For our typical
imaging parameters with I/I0 ≥ 0.5 and our large angle of α = 81◦ the transmitted
intensity is well approximated (error < 1%) by the case of α = 90◦ [Joc04]6. In this
case, the absorption cross section is given by σ = σ0/2, where σ0 = 3λ2/2π is the
absorption cross section for a two-level system.

Optical setup

The experimental setup of our imaging system is shown in figure 4.3. After the po-
larization maintaining fiber the beam is collimated by a lens ( f = 35 mm) to a di-
ameter of about 0.8 mm. The beam power of ∼0.3 mW corresponds to an intensity
of about 0.6 mW/cm2. This intensity is below the saturation intensity of 6Li which
amounts to 2.5 mW/cm2. The imaging optics consist of two achromatic doublet lenses
( f = 50 mm and f = 75 mm). In combination with an maximum aperture defined
by an iris diaphragm the calculated diffraction limit is 3.4 µm. In the experiment the
imaging resolution is limited to about 10 µm due to lens abberations. The magnifica-
tion of 1.5 was experimentally tested and leads in combination with the 7.5 µm pixel
spacing of the CCD chip to a corresponding “pixel size” of 5 µm.

Image processing

Most of the measurements presented in this this thesis are obtained by in-situ imaging
the cloud at high magnetic field. This technique is in favor over time-of-flight images
because in our trap the axial magnetic confinement cannot be switched off without
switching off the magnetic field. Therefore by switching off the optical dipole trap, the
cloud is only released radially and quantitative information is hard to extract.

6The calculation of the transmitted intensity for an arbitrary angle α is found in the Ph.D. thesis of
M. Gehm [Geh03a].
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A typical in-situ image of the particles in the focused beam dipole trap is shown in
the inset of figure 4.3. The 200 Pixel wide image represents a 1 mm range. While the
radial cloud size is only a few pixels wide and cannot be accurately resolved by our
imaging optics, the axial cloud size of typically 100 µm can be accurately measured.
For the analysis of the axial density profiles we integrate the images in the vertical
direction. To obtain the actual axial cloud size the viewing angle of 46◦ ± 1◦ between
the axial trap direction and the imaging direction in the horizontal plane have to be
taken into account. The resulting scaling factor is 1/ sin 46◦ = 1.39(2).

In principle the absorption images allow also the determination of the total parti-
cle number [Joc04]. In our case, however, the number calculated from the images is
4-8 times smaller than the number obtained from the fluorescence method. Because
the fluorescence method is very robust and such low atom numbers are inconsistent
with our measurements [Joc04], we calibrate the absorption images with the atom
number obtained from the fluorescence measurements. The discrepancy between the
two methods will be systematically investigated in the context of setting up a further
imaging system (see chapter 7).

Imaging of weakly bound molecules

In the vicinity of the Feshbach resonance the binding energy of the molecules is ex-
tremely small. In this regime the molecules can be directly imaged by the same light
that would be suited to image the atoms at the same magnetic field. This is possi-
ble as long as the shift of the transition frequency is smaller than the linewidth of the
transition [Zwi03].

For 6Li the natural linewidth amounts to Γ/2π = 5.9 MHz. To estimate the shift we
note that due to the small binding energies the shift of the ground state is negligible7.
The significant contribution stems from the shift of the excited state. The shift of the
excited state can be estimated from the long range dipole potential that is given by
[Wei99]

Vexc(r) = f ~Γ
(
λ

2πr

)3

, (4.13)

where f is a constant on the order of unity and λ the wavenlength of the atomic transi-
tion. Assuming that the molecules absorb the light predominantly at the outer turning
point R, the estimation shows that as long as the size of the molecules R is larger than
∼100 nm the shift is below 1 MHz and the molecules can be imaged as if they were
free atoms. Assuming a molecular size on the order of the atomic scattering length this
corresponds to a magnetic field of about 720 G and is consistent with our observations.

7For example at 720 G the binding energy is about kB × 8 µK≈ h × 170 kHz.
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Chapter 5

Bose-Einstein condensation of
molecules

By the middle of the year 2003 a number of groups succeeded in the creation of ultra-
cold weakly bound dimers that were formed by fermionic 40K [Reg03b] atoms or as in
our case from 6Li atoms [Cub03, Str03, Joc03b].

Most of the groups employed an adiabatic magnetic field ramp across the Fesh-
bach resonance to create the weakly bound molecules. Our approach however utilizes
the enhanced three body recombination to dimers in the vicinity of the Feshbach reso-
nance. The recombination leads to the formation of the very weakly bound molecular
state that is associated with the Feshbach resonance. Because the binding energy can
be tuned by the external magnetic field it can be chosen such that it is smaller than the
trap depth to avoid loss of the dimers and at the same time is larger than the thermal
energy of the sample so that the atom-molecule equilibrium favors the molecular state
[Joc04].

Our experimental findings that the molecules can be formed efficiently from a ther-
mal gas of fermionic atoms and the high stability of these molecules against inelas-
tic decay are described in [Joc03b] and in the Ph.D. thesis of Selim Jochim [Joc04].
They immediately suggested that such molecules would be ideal candidates to form a
molecular Bose-Einstein condensate [Joc03b, Joc03a]. This chapter briefly describes
the Bose-Einstein condensation of more than 105 Li2 molecules in our optical trap.
Further details are found in [Joc03a, Joc04].

Our Bose-Einstein condensate is produced by evaporative cooling of an optically
trapped 6Li spin mixture of the two lowest spin states. We perform evaporative cooling
at a constant magnetic field below the broad Feshbach resonance at 834 G. During
the cooling process atoms are efficiently converted into dimers as the thermal energy
of the atoms drops below the binding energy of the weakly bound molecular level.
Further cooling of the sample results in the typical bimodal density distributions of
the condensed and non-condensed particles that we observe by in-situ imaging of the
molecules at high magnetic field. The long lifetime of more than 40 s allows us to
produce pure molecular condensates with no noticeable thermal component.
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5 Bose-Einstein condensation of molecules

Within a short time a number of groups were able to produce molecular conden-
sates of fermionic 6Li [Joc03a, Zwi03, Bou04, Hul04] and 40K [Gre03]. The ability
to tune the binding energy in these molecular condensates makes them ideally suited
to experimentally investigate the crossover from a molecular BEC into a strongly in-
teracting Fermi gas [Bar04b, Bou04, Reg04b, Zwi04, Kin04a, Bar04a, Chi04a, Gre04,
Kin04b, Kin05]. Our experiments in this BEC-BCS crossover are described in detail
in chapter 6.

5.1 Evaporation towards a molecular BEC
We perform evaporative cooling in the single beam focused dipole trap that is described
in section 4.3.2. This trap is loaded from the resonator enhanced dipole trap which it-
self is loaded from the magneto-optical trap. This two-stage loading process of the
focused beam trap results in typically 2 × 106 atoms at a temperature of about 80 µK.
At the initial laser power of 10.5 W, the trap depth is Uat/kB ≈ 750 µK and the peak
number density and peak phase space density are calculated to be about 1014 cm−3 and
∼5×10−3, respectively. Together with the large elastic collision rate of about 5×104 s−1

these starting conditions are ideally suited to perform evaporative cooling. We there-
fore ramp down the optical trapping potential in an exponential ramp with a 1/e time
in the range of 0.23 and 0.46 s. During the evaporative cooling process the interactions
are tuned by applying a constant external magnetic field. Tuning the magnetic field
either above or below the Feshbach resonance at 834 G results in strikingly different
results as described in the following.

5.1.1 Evaporation above the Feshbach resonance
In a fist series of experiments we performed evaporative cooling at a magnetic field
of 1176 G. Here the interactions are described by a large, negative scattering length
of about −3000 a0 and no weakly bound molecular state exists. The evaporation pro-
ceeds in a very similar way as that described in [Gra02, O’H02a]. The measured
atom number N first follows a scaling law with the laser power P that is described by
N/N0 = (P/P0)α [O’H01] where α ≈ 0.24. In this regime the temperature of the gas
is typically a factor of 10 below the trap depth [O’H01] and the elastic collision rate
stays well above 104 s−1.

The crossover to Fermi degeneracy where the thermal energy kBT reaches the
Fermi energy EF takes place at P ≈ 500 mW. Here the trap depth is Uat/kB ≈ 35 µK.
By further decreasing the trapping laser power, the axial confinement becomes dom-
inated by the magnetic potential (see section 4.3.2). For small trapping laser powers
(P < 50 mW) the optical potential is much weaker than the magnetic field potential
(see also 4.3.2). Consequently the axial confinement is determined by the magnetic
field and the mean trap frequency ω̄ = (ω2

rωz)1/3 scales as ω̄ ∝ EF ∝ U1/3
at ∝ P1/3.

Therefore the trap depth (Uat ∝ P) decreases faster than the Fermi energy and a thresh-
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Figure 5.1: Evaporative cooling on both sides of the Feshbach resonance. We measure the
number of trapped particles (the number of all atoms that are free or bound in molecules) as a
function of the laser power P at the end of an exponential ramp P(t) = 10.5 W exp (−t/230 ms).
The trap depth for atoms is Uat/kB = P×70 µK/W, whereas for molecules it is two times larger
(Umol = 2Uat). The measurements taken at 1176 G with a < 0 (◦) show the spilling of a de-
generate Fermi gas when the trap depth reaches the Fermi energy. The solid line shows the
maximum of trapped atoms in a two-component Fermi gas according to a numerical calcula-
tion of the number of quantum states in our trap. The dashed lines indicate the corresponding
uncertainty range due to the limited knowledge of the experimental parameters. The measure-
ment at 764 G with a > 0 (•) exhibit a striking increase of the trapped particle number at low
laser power, which is due to the formation of molecules.

old occurs when EF reaches Uat and the trap is filled to the “rim”. Further decreasing
the trapping laser power then leads to a spilling of atoms out of the trap and thus a
rapid decrease of the number of trapped atoms.

Our experimental data are presented in figure 5.1 (open symbols) and clearly show
this spilling effect for a laser power P < 10 mW, which corresponds to a trap depth
of Uat/kB < 720 nK. Modelling the spilling curves provides an upper bound for the
temperature of kBT < 0.2 EF. In the regime of a completely filled shallow trap, the
number of atoms in the two component spin mixture is given by two times the number
of quantum states in the trap. A numerical calculation (dashed lines in figure 5.1)
confirms this interpretation of our data.

5.1.2 Evaporation below the Feshbach resonance

We perform the same evaporative cooling procedure at a magnetic field of 764 G. Here
a weakly bound molecular state exists and the scattering length is large and positive
(a ≈ 4500 a0). The binding energy of the dimers is calculated to be about 1.4 µK. Com-
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5 Bose-Einstein condensation of molecules

pared to the scattering length at 1176 G the value is on the same order of magnitude
but has opposite sign.

In this regime atoms are converted into molecules when the temperature of the gas
drops below the binding energy [Joc03b, Joc04]. To detect the molecules we dissociate
them into atoms and recapture them in the MOT as described in section 4.5.1. The
number of atoms that we measure after the dissociation process thus corresponds to
the number of free atoms together with the number of atoms having formed molecules.
It should be noted, that the heating of the sample by abruptly turning on the full trap
laser power was also used during the measurements performed above the resonance.

Evaporation at 764 G initially processes in a very similar way as for the magnetic
field above the resonance. However, below P = 10 mW the measured atom num-
ber (filled symbols in figure 5.1) show a strikingly different behavior in comparison
with the case of the degenerate Fermi gas. Down to a power level of P = 3 mW
(Umol/kB ≈ 420 nK) the trap holds almost all particles and contains up to 20 times
more atoms than it would be possible for fermions. Hence, the trapped sample can no
longer be an atomic Fermi gas. The trap is filled with bosonic molecules in the weakly
bound state. The lifetime of the molecular ensemble for which we measure about 20 s
at a fixed trap depth of Umol/kB ≈ 500 nK, exceeds the time scale of elastic collisions
(∼100 µs) by several orders of magnitude. This highlights the fact that the molecular
cloud exists in a thermal equilibrium state.

Formation of molecules during the evaporation

The formation of molecules during the evaporative cooling process can be understood
in terms of a chemical atom-molecule equilibrium [Chi04b, Kok04]. Exothermal
three-body recombination processes compete with dissociation by endothermal two-
body processes. When the gas is cooled down, the equilibrium shifts to an increasing
fraction of molecules. Because atom-atom, atom-molecule and molecule-molecule
collisions have comparable scattering cross section near the resonance [Pet04] (see
also section 3.2.4), evaporation continues at about the same speed. In the final stage of
cooling, all the relevant energies, such as the thermal energy kBT an the trap depth Uat

and Umol, are far below the binding energy E = ~/ma2, so that in chemical equilibrium
one is left with an essentially pure sample of molecules. This picture is confirmed by
our radio-frequency spectroscopy measurements of the weakly bound molecules that
we present in section 6.3.

Formation of a molecular BEC

The observation that a large number of Nmol ≈ 1.5 × 105 molecules are confined in
our very shallow, only 420 nK deep trap under thermal equilibrium conditions already
shows that a molecular BEC is formed. The trap offers about 10 times more quan-
tum states for dimers as compared to the case of atoms discussed before. A factor
of 8 comes from the fact that the trap depth for the molecules is twice as large as
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5.2 Properties of the molecular BEC

for the atoms and another factor of 1.24 is due to the lower magnetic confinement
at 764 G. As we observe a factor of ∼20 more particles than for a degenerate atomic
Fermi gas, the molecular gas is necessarily quantum degenerate. Because of the high
elastic collision rates, which stay well above 103 s−1 even for very shallow traps, the
sample is also thermalized. The temperature then must be a small fraction of the trap
depth. According to standard evaporation theory [O’H01], we can typically assume
T ≈ 0.1Umol/kB ≈ 40 − 50 nK. This is well below the critical temperature for Bose-
Einstein condensation, for which we calculate Tc = k−1

B ~ω̄(Nmol/1.202)1/3 ≈ 280 nK
(see equation 2.7). As the condensate fraction is given by approximately 1 − (T/Tc)3,
these arguments show that the molecular BEC must be almost pure.

5.2 Properties of the molecular BEC
In first experiments with the molecular BEC we studied its properties without imaging.
These experiments allowed us to demonstrate the magnetic field dependent mean field
potential and perform the first measurements of the collective oscillation in a molecular
BEC. They are described in detail in [Joc03a, Joc04].

In this section we summarize the properties of the molecular BEC that are of par-
ticular relevance for our experiments in the BEC-BCS crossover, which we present in
chapter 6.

5.2.1 Condensate fraction and temperature
To measure the condensate fraction, we adiabatically reduce the magnetic field from
our production field of 764 G to 676 G in a 200 ms linear ramp after completion of
the evaporation ramp. This reduces the scattering length amol and thus increases the
visibility of the characteristic bimodal distribution. Based on the prediction amol = 0.6a
[Pet04], the molecular scattering length at B = 676 G is about amol = 700 a0.

In figure 5.2 (a) we show a bimodal density profile observed in this way with
Nmol = N/2 = 4 × 105 molecules remaining at a final laser power of 28 mW. A Gaus-
sian fit to the thermal wings (dashed line) yields a temperature of T = 430 nK, which is
a factor 9 below the calculated trap depth of about Umol = 3.6 µK. The calculated crit-
ical temperature for an ideal gas is Tc = k−1

B ~ω̄(Nmol/1.202)1/3 ≈ 640 nK. Due to the
interactions in our molecular BEC one expects a down shift of the critical temperature
[Gio96] (see also section 2.1.2). The relevant quantity is the ratio

η =
µ(T = 0)

kBT 0
c
≈ 1.57

(
N1/6 a

aho

)2/5

, (5.1)

which in our case amounts to η = 0.74 and results in a predicted down shift of the
critical temperature of about 20 % (see equation 2.25). However for large values of η
on the order of one the critical temperature is difficult to get the shift right. A numerical
calculation of S. Kokkelmans for our trap parameters and atom numbers yields a down
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Figure 5.2: Axial density profiles of a partially condensed (a) and fully condensed (b) molecu-
lar cloud. The profiles are derived from averaging seven in situ images taken at a magnetic field
of B=676 G after evaporation at the production field of 764 G. (a) When the evaporation ramp
is stopped at a final laser power of 28 mW, the characteristic bimodal distribution is observed
with 4 × 105 molecules and a condensate fraction of about 20%. (b) Full evaporation down to
a final laser power of 3.8 mW results in an essentially pure molecular condensate with 2 × 105

molecules.

shift of 11 % for amol = 700 a0 [Joc04]. The interactions are also expected to reduce
the condensate fraction with respect to the ideal condensate. From equation 2.26 the
condensate fraction for our parameters is estimated to be about 29%. This estimated
value is in reasonable agreement with the observed condensate fraction of about 20%.

We obtain pure molecular condensates when we continue the evaporation process
down to a final laser power of a few mW. Figure 5.2 (b) shows an essentially pure
condensate of Nmol = 2 × 105 molecules obtained at a final trapping laser power of
3.8 mW where the trap depth is about Umol = 530 nK. The density profile is well fit
by a Thomas-Fermi density distribution with a Thomas-Fermi radius zTF = 105 µm.
The corresponding peak molecular density is 1.2 × 1013 cm−3. In the image a thermal
component is not discernable. A careful analysis of axial density profiles is found in
[Joc04]. The analysis provides a lower bound of 85(3)% for the condensate fraction
and a temperature of 114(14) nK, corresponding to T/Tc = 0.42(5).

The chemical potential of the BEC is given by µ = 1
2mmolω

2
z z2

TF = kB × 130 nK.
The calculated chemical potential of µ = 1

2 (15~2Nmolω̄
3amol

√
mmol)2/5 = kB × 160 nK

is consistent with the observed value considering the experimental uncertainty. In par-
ticular the particle number is calibrated to within 50% through fluorescence imaging
(see section 4.5.1).
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5.2 Properties of the molecular BEC

5.2.2 Lifetime of the molecular condensate
The lifetime of the BEC is an important quantity since it determines the available time
for a given experiment. We measure the lifetime of the BEC that we obtain after full
evaporation down to a final laser power of 3.8 mW. After this evaporation ramp we
adiabatically increase the laser power in a 200 ms exponential ramp to 34.4 mW. The
compression increases the peak density of the condensate by a factor of 2.5. From the
measured cloud size zTF = 218 µm the peak molecular density can be estimated to be
nmol = (15/8π)(ωr/ωz)2Nmol/z3

TF = 1.0(5) × 1013 cm−3.
In this recompressed trap we measure a large lifetime of the BEC of 40 s at a

magnetic field of 764 G. The loss rate due to two-body dimer-dimer collisions can be
described by

Ṅmol = −G
∫

n2(r) dr, (5.2)

where G is the loss rate coefficient for two-body collisions. Evaluation of the integral
for a harmonically trapped BEC in the Thomas-Fermi limit yields [Söd99]

Ṅmol = −GcN2/5
mol, (5.3)

with c = (152/5/(14π))(mmolω̄/(~
√

amol)6/5. Under our experimental conditions
cN2/5

mol ≈ 2.4 × 1012 cm−3 providing an upper bound for the binary loss rate coefficient
for inelastic dimer-dimer collision of G = 1 × 10−14 cm3/s.

This value is consistent with previous measurements of G in thermal molecular
gases [Cub03, Joc03b] taking into account a factor-of-2 suppression of binary collision
loss in a condensate [Pet02] and the expected scaling of G with the scattering length
[Pet04]. The value also agrees with the measurement performed in a molecular BEC
at 770 G in the group of C. Salomon [Bou04].

5.2.3 Prospects for achieving a highly degenerate Fermi gas
Our measurements in the BEC-BCS crossover show that the conversion of the molec-
ular BEC into a strongly interacting Fermi gas proceeds adiabatic and reversible (see
section 6.1). In such an isentropic conversion the temperature of the gas will be re-
duced significantly while the molecules are converted into atoms and the thermal en-
ergy is distributed on twice as many particles.

This effect was studied in detail by L. Carr et al. for harmonically trapped particles
[Car04]. In their analysis the entropy of a noninteracting Fermi gas is found to be

S F = kBNπ2
(

T
TF

)
, (5.4)

while the entropy of a molecular BEC in the Thomas-Fermi limit is given by[Car04]

S BEC = kBNmol

(
T
Tc

)3 (
2π4

45ζ(3)
+ 3

µmol

kBT

)
. (5.5)
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5 Bose-Einstein condensation of molecules

The above result is accurate to within 10% for kBT/µmol ≥ 1/10, a condition well
fulfilled in our experiments. By equating both entropies the temperature of the Fermi
gas can be estimated to be

T
TF
=

1
2π2

(
T
Tc

)3 (
2π4

45ζ(3)
+ 3

µmol

kBT

)
. (5.6)

It should be noted that although presently no general theory exists one expects a similar
temperature reduction when a molecular BEC is converted into a strongly interacting
Fermi gas.

Our high condensate fraction of > 85(3)% suggest a very low entropy correspond-
ing to an extremely low temperature in the Fermi gas. For the molecular condensate at
676 G we measure a temperature of T = 114(14) nK corresponding to T/Tc = 0.42(5),
and a chemical potential of µmol = 125(6) nK [Joc04]. Using these numbers the tem-
perature of the Fermi gas can be estimated to be T/TF = 0.026(10). At such low
temperatures a Fermi gas with resonant interactions is predicted to be deep in the su-
perfluid regime.
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Chapter 6

Experiments in the BEC-BCS
crossover

An intriguing property of some ultracold gases is the existence of a magnetically tun-
able scattering resonance. In such a Feshbach resonance, atoms couple to form di-
atomic molecules with a binding energy that can be controlled by the external mag-
netic field. This experimental knob is of particular interest when the molecules are
formed from fermionic atoms, as it allows to continuously vary the coupling strength
from the strong coupling BEC limit to the weak coupling BCS limit. This BEC-BCS
crossover has been a subject of great theoretical interest for more than three decades
[Eag69, Leg80, Noz85, Che04].

The first highlight in the experimental investigation of the BEC-BCS crossover
in atomic Fermi gases was the creation of a molecular BEC [Joc03a, Gre03, Zwi03,
Bou04, Hul04]. These molecular Bose-Einstein condensates now serve as an ideal
starting point to experimentally investigate the crossover from a molecular condensate
of tightly bound molecules to a BCS state of overlapping, strongly correlated pairs
[Bar04b, Bou04, Reg04b, Zwi04, Kin04a, Bar04a, Chi04a, Gre04, Kin04b, Kin05].
The BEC-BCS crossover is closely related to resonance superfluidity [Hol01, Tim01,
Oha02, Sta04] and the universal behavior of a Fermi gas with resonant interactions
[Hei01, Ho04c]. The observation of the condensation of fermionic atom pairs close
to the Feshbach resonance [Reg04b, Zwi04], measurements of collective oscillations
[Kin04a, Bar04a, Kin04b], and the observation of the pairing gap in the strongly inter-
acting Fermi gas [Chi04a], support the expected superfluidity at presently attainable
temperatures in Fermi gases with resonant interactions.

Our experimental key to investigate the BEC-BCS crossover in fermionic 6Li is the
broad Feshbach resonance at a magnetic field of about 834 G [Bar04c]. For magnetic
fields far below the Feshbach resonance we can realize the molecular BEC regime,
where the molecules are formed by short range pairs [Joc03a]. With increasing mag-
netic field the interaction strength increases and the binding energy of the molecules is
reduced. On resonance, at about 834 G, the scattering processes are unitarity limited
and we obtain a universal quantum gas [Ho04c]. For magnetic fields above the res-

93



6 Experiments in the BEC-BCS crossover

onance two-body physics no longer provides a bound molecular state and a strongly
interacting Fermi gas of atoms is realized.

The starting point for all our experiments is a molecular Bose-Einstein condensate
of well localized, tightly bound pairs [Joc03a]. In a first series of experiments we
adiabatically convert the molecular BEC into a degenerate Fermi gas by changing the
external magnetic field and analyze the density profile of the trapped cloud at differ-
ent magnetic fields [Bar04b]. The observed crossover is smooth and reversible. The
temperature in the Fermi gas regime can be estimated from the isentropic conversion
and suggests that the system is in the superfluid state. This adiabatic and reversible
crossover is the key ingredient of all further experiments that strongly support the ex-
istence of the superfluid phase.

To investigate the dynamics of the gas in the BEC-BCS crossover we excite low-
lying collective modes in the axial and radial direction of our cigar shaped trapping
potential [Bar04a]. The frequency and the damping of these modes is measured with
high precision and can be compared with recently developed theoretical predictions in
the BEC-BCS crossover [Str04a, Hei04a, Hu04, Com04b, Com04a, Kim04b, Kim04a,
Man04, Bul04]. The modes in the axial direction show the expected behavior of a gas
in the BEC-BCS crossover, with a particularly small damping rate in the vicinity of
the Feshbach resonance. In contrast to the axial direction, the modes in the strongly
confined radial direction show an abrupt change in the collective frequency at a mag-
netic field value that corresponds to a Fermi gas in the strongly interacting regime.
The change in the frequency is accompanied by an extraordinary large damping rate.
A possible explanation for this dramatic change in the excitation spectrum is that the
magnetic field dependent pairing energy becomes similar to the collective excitation
energy, which might lead to a breaking of the pairs due to the coupling to the collective
mode.

A further strong support for the existence of the superfluid phase stems from the
observation of a pairing gap in the strongly interacting Fermi gas regime [Chi04a]. In
these experiments we employ radio-frequency spectroscopy to determine the pairing
energy in the BEC-BCS crossover. In the BEC limit this energy is basically given
by the binding energy of the molecules. The magnetic field dependent measurements
show a smooth crossover from this two-body low density limit towards a density de-
pendent many-body regime. The observed temperature dependence of the pairing gap
in the strongly interacting Fermi gas regime is in agreement with theoretical expecta-
tions for a superfluid.

For a quantitative comparison of the experimental results with the theoretical pre-
dictions in BEC-BCS crossover, a precise knowledge of the magnetic field dependent
scattering length is very important. Radio frequency spectroscopy of weakly bound
molecules enables us to precisely measure the magnetic field dependent molecular
level structure. This level structure unambiguously determines the scattering proper-
ties of the ultracold atoms. Fitting the corresponding experimental data with a multi-
channel quantum scattering calculation worked out in the theory group of Paul Juli-
enne at the NIST, allows us to precisely determine the cold collision properties of 6Li
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[Bar04c]. In particular the magnetic field value of the broad Feshbach resonance is
determined to be at B0 = 834.1(1.5) G.

This magnetic field value of the Feshbach resonance is used in the following de-
scription of our experiments in the BEC-BCS crossover. It should be noted that at
the time of our publications [Bar04b, Bar04a, Chi04b] the resonance position was un-
known to within 10 G. Therefore, the values given here might differ from the ones
cited in our publications. Furthermore we analyzed all the experimental data again,
including a careful investigation of errors. Some numbers changed within the given
error and we will report these latest values, corresponding to our best knowledge of
the system.

6.1 Smooth conversion from a molecular BEC into a
degenerate Fermi gas

The tunability of interactions in our molecular BEC [Joc03b] provides a unique pos-
sibility to explore the BEC-BCS crossover. In this series of experiments we explore
the BEC-BCS crossover by analyzing the axial density profiles of the trapped cloud at
different magnetic fields.

It has been predicted by L. Carr et al. that an adiabatic passing of a pure molecular
BEC over the resonance can lead to a superfluid Fermi gas [Car04]. The maximum
available time for the magnetic field ramp across the resonance is set by the lifetime
of the molecular BEC. The long lifetime of several 10 s, measured for our molecular
BEC close to the Feshbach resonance (see section 5.2.2), allows us to use very slow
magnetic field ramps. In section 6.1.1 we show that the magnetic field ramps we use
to investigate the BEC-BCS crossover are adiabatic and reversible.

Employing these isentropic magnetic field ramps we record the spatial density pro-
files in the BEC-BCS crossover. Our measurement of the axial cloud size are presented
in section 6.1.2 and show a smooth crossover from a molecular BEC to a strongly in-
teracting Fermi gas of atoms. Furthermore, on the Feshbach resonance the scattering
processes are unitarity limited and the measurements of the axial cloud size allow us
to determine the universal parameter β [O’H02a].

Our experimental data have been quantitatively compared with the theoretical pre-
dictions for the BEC-BCS crossover by A. Perali et al. [Per04b]. In section 6.1.3 we
briefly report on the main findings of this comparison before summarizing our results.

Experimental starting conditions and detection

The starting point for the experiments is an almost pure molecular BEC of about
Nmol = 2 × 105 molecules at a magnetic field of 764 G and a trap laser power of
3.8 mW. At this magnetic field the molecular binding energy is ∼kB×1.4 µK. Based on
the predicted relation of amol = 0.6 a [Pet03] and a calculated atomic scattering length
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of about a = 4500 a0 [Bar04c], the scattering length for elastic molecule-molecule
collisions is amol = 2700 a0.

Before changing the magnetic field, we first adiabatically increase in a 200 ms ex-
ponential ramp the laser power from 3.8 mW to 34.4 mW. The higher power provides a
trap depth of ∼kB×2 µK for the atoms, which is roughly a factor of two above the Fermi
energy. This avoids spilling of the gas at higher magnetic fields, where the repulsive
mean field energy is larger [Joc03a]. The compression increases the peak density of
the condensate by a factor of 2.5. The recompressed trap has an axial trap frequency
of ωz/2π = (0.6B/G+ 32)1/2 Hz and a radial trap frequency of ωr/2π = 640 Hz. From
the measured cloud size zTF = 218 µm the peak molecular density can be estimated
(equation 2.22) to be nmol = (15/8π)(ωr/ωz)2Nmol/z3

T F = 1.0(5) × 1013 cm−3.
For detection we apply in situ absorption imaging to record the spatial density

profiles of the trapped ensemble. As explained in section 4.5.2, in our cigar-shaped trap
the radial cloud size is on the order of our imaging resolution of about 10 µm, while
the axial cloud size of typically ∼100 µm can be accurately measured. We therefore
obtain axial density distributions from images integrated radially.

6.1.1 Adiabatic and reversible crossover

To explore the crossover to a degenerate Fermi gas we apply slow magnetic field
ramps. To ensure their adiabaticity we performed test experiments where we ramped
the field linearly from the initial value of 764 G to 882 G and back to 764 G with vari-
able ramp speed. These ramps convert the molecular BEC into a strongly interacting
Fermi gas and vice versa. One therefore expects substantial changes in the cloud size.
After the up-and-down ramp we observed axial oscillations of the ensemble at the
quadrupole frequency (see also section 6.2). Being the lowest excitation mode of the
system, this collective oscillation is sensitive to nonadiabaticity effects. In our test
experiments we observed axial oscillations with relative amplitude of > 5% for ramp
speeds above 1.2 G/ms. For ramp speeds of 0.6 G/ms and lower, the axial oscillation
was no longer visible.

To check the reversibility of the crossover process, we ramped the field in a total
time of 2 s from 764 G to 1176 G and down again to 764 G. This corresponds to ramp
speeds of ±0.41 G/ms. After the ramps an in situ image of the cloud was taken from
which we determined the axial profile. In figure 6.1 this profile (•) is compared with
the corresponding profile obtained after 2 s holding time at a fixed magnetic field of
764 G (◦). The comparison does not show any significant deviation1 and thus the con-
version of the molecular BEC into a Fermi gas and back again is lossless and proceeds
without noticeable increase of the entropy.

1For the given curves, the integrated absorption signal is 3% higher for the samples that are ramped
to 1176 G and back. As this is within the fluctuations of our imaging system, we scale the corresponding
density down by 3% for comparison.

96



6.1 Smooth conversion from a molecular BEC into a degenerate Fermi gas

0 . 0
0 . 4
0 . 8
1 . 2
1 . 6

- 4 0 0 - 2 0 0 0 2 0 0 4 0 0
- 0 . 0 5
0 . 0 0
0 . 0 5

 

 

line
ar 

de
ns

ity 
(10

00
/µm

)

p o s i t i o n  ( µm ) 

 

 

 

Figure 6.1: Axial profile of a molecular BEC at 764 G after its conversion into a Fermi gas
at 1176 G and subsequent back-conversion (•). Two 1-s magnetic field ramps are applied in
this reversible process. For reference the corresponding profile observed without the magnetic
field ramp is shown (◦). The density profiles are obtained by averaging over 50 images. The
difference shown in the lower graph is consistent with the drifts of a residual interference
pattern in the images.

6.1.2 Smooth crossover
To investigate the crossover, in situ images of the trapped gas are taken after a 1-s
linear magnetic field ramp to final values between 740 and 1440 G.

To characterize the size of the trapped gas we determine the root-mean squared
(rms) axial size zrms. We therefore fit the density profile with a function

n(z) = n0

(
1 −

z2

z2
a

)α
, (6.1)

where n0, za, and 2 ≤ α ≤ 2.5 are free parameters. This function interpolates be-
tween the radially integrated density profile of a pure BEC in the Thomas-Fermi limit
with α = 2 and a zero-temperature, noninteracting or unitarity limited Fermi gas with
α = 2.5 [O’H02a]. These profiles are obtained by integrating equation 2.22 and equa-
tion 2.35, respectively. From the fitted values for za and α the rms axial cloud size is
obtained by

zrms = za/
√

3 + 2α. (6.2)

This rms size is related by zrms = zTF/
√

7 to the axial Thomas-Fermi radius zTF of a pure
BEC in the Thomas-Fermi limit and by zrms = zTF/

√
8 in the cases of zero-temperature

noninteracting or unitarity limited Fermi gases.
In figure 6.2 (b) the measured axial cloud size is shown as a function of magnetic

field. Figure 6.2 (a) shows for comparison the magnetic field dependence of the atomic
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Figure 6.2: Axial cloud size measurements across the Feshbach resonance. In (a) the atomic
scattering length a is shown, the resonance at 834 G is marked by the vertical dotted line.
The data in (b) display the measured rms cloud sizes. In (c), the same data are plotted after
normalization to a noninteracting Fermi gas. The solid line shows the expectation from BEC
mean-field theory with amol = 0.6 a. In (b) and (c), the error bars show the statistical error of
the size measurements from typically five individual images.

scattering length (see also section 3.2.3). The increase of the cloud size for fields up to
950 G is due to the crossover from the molecular BEC to the degenerate Fermi gas. For
higher fields the axial cloud size of the Fermi gas shrinks with increasing B. Note that
the axial magnetic confinement increases with increasing magnetic field (ωz ∝

√
B).

For the following discussion we remove the trap dependency by normalizing the
observed size to the one expected for a noninteracting Fermi gas. Figure 6.2 (c) shows
the normalized axial cloud size ζ = zrms/z0, where z0 = (EF/4mω2

z )1/2 is the rms axial
cloud size of a noninteracting zero-temperature Fermi gas. For N = 4 × 105 atoms the
Fermi energy EF = ~2k2

F/2m = ~ω̄(3N)1/3 amounts to kB × 1.1 µK at 834 G, and the
Fermi wave number kF corresponds to a length scale of 1/kF = 3600 a0.

For magnetic fields well below the resonance, the observed dependence of the
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Figure 6.3: Axial density profiles near the Feshbach resonance. The rms cloud sizes are 93, 99
and 103 µm at 809, 850 and 882 G, respectively. For comparison, the image taken at 850 G is
shown together with a fit by the expected density profile ∝ (1 − z2/zTF)5/2. The small fringes
at the top of the profiles are due to a residual interference pattern in the images.

cloud size agrees with the expected behavior of a BEC in the Thomas-Fermi limit
where the rms cloud size is given by zrms =

√
2µ/(7mmolω2

z ). With the chemical poten-
tial µ = 1

2 (15~2Nmolω̄
3amol

√
mmol)2/5 and the molecular binding energy Eb = ~2/ma2

the normalized axial cloud size is given by

ζ = 0.688(amol/a)1/5(EF/Eb)1/10 = 0.642(amol/a)1/5(kFa)1/5. (6.3)

The corresponding curve calculated with amol/a = 0.6 is shown in Figure 6.2 (c)
(solid line). The BEC limit provides a reasonable approximation up to ∼775 G. Here
the molecular gas parameter is nmola3

mol ≈ 0.046. Using the relation (nmola3
mol)

1/2 =

0.1298(kFa)6/5, the interaction strength can alternatively be expressed as 1/kFa ≈ 0.7.
The crossover from the molecular BEC to a degenerate Fermi gas is observed in the

vicinity of the Feshbach resonance for fields between 775 and 950 G. Here the cloud
size ζ smoothly increases with the magnetic field until it levels off at about 950 G
where the interaction strength is characterized by 1/kFa ≈ −0.7. Our results suggest
that the crossover occurs in the range of −0.7 . (kFa)−1 . 0.7, which corresponds to
the strongly interacting regime.

Figure 6.3 shows axial density profiles near the Feshbach resonance at magnetic
fields of 809, 850 and 882 G. To reduce imaging imperfections each profile is obtained
by averaging and symmetrizing 50 images. The spatial profiles show the gradually
increasing cloud size without any noticeable new features and further illustrate the
smoothness of the crossover.

For magnetic fields above 950 G, the Fermi gas regime is reached and we observe
an essentially constant normalized axial cloud size of ζ = 0.83 ± 0.07. In this regime
the interaction parameter 1/kFa is calculated to vary between −0.7 and −1.2 at 950 and
1440 G, respectively. Based on the calculation of the ground state energy for an homo-
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geneous, interacting Fermi gas, the normalized cloud size ζ can be estimated to vary
between 0.92 and 0.94 at 950 and 1440 G, respectively [Hei01]. Our observed values
are somewhat below this prediction. This discrepancy requires further investigation,
a possible scenario could be a systematically lower atom number than expected (see
also below).

Universal regime

On resonance the scattering processes are unitarity limited and a universal regime
is realized (see section 2.2.3). Here the mean field is proportional to the Fermi en-
ergy UMF = βEF and the shape of the Thomas-Fermi density distribution is preserved
[O’H02a]. The zero-temperature spatial distribution then corresponds to that of a har-
monic potential with scaled frequencies ω′i = ωi/

√
1 + β (i = x, y, z) and the ax-

ial Thomas-Fermi radius of the trapped cloud is given by zTF =
√

2E′F/mω
′2
z , where

E′F = ~ω̄′(3N)1/3 is the Fermi energy including the mean field contribution [Geh03b].
The normalized cloud size can thus be written as ζ = (1 + β)1/4.

The value for ζ at the resonance position of 834.1 G is found by an interpolation
of the four neighboring values and amounts to ζ = 0.72 ± 0.07, giving β = −0.73+0.12

−0.09.
Here the total error range includes all statistic and systematic uncertainties, with the
particle number giving the dominant contribution. Note that at the time of our pre-
vious publication [Bar04b] the exact resonance position was uncertain to within a
few 10 G and assumed to be at ∼850 G. This resulted in the slightly higher value of
β = −0.68+0.13

−0.10 reported in [Bar04b].
Our experimental results reveal a stronger interaction effect than recent measure-

ments in the group of John Thomas that yielded β = −0.49(4) at B = 840 G [Kin05] but
agrees with β ≈ −0.64(15) obtained in the group of Christophe Salomon by measuring
the release energy of a molecular BEC at B = 820 G [Bou04].

Our measured value of β = −0.73+0.12
−0.09 agrees with theoretical predictions that range

from β ≈ −0.7 to β ≈ −0.3. A detailed discussion of the theoretical predictions is found
in section 2.2.3. The theoretical values are derived from energy expansions of zero-
temperature Fermi gases [Bak99, Hei01, Ste00], from BEC-BCS crossover theories
[Per04b] and from quantum Monte Carlo calculations [Car03, Ast04].

6.1.3 Comparison with theoretical predictions in the BEC-BCS
crossover

The situation of our experiment was theoretically investigated by A. Perali et al.
[Per04b]. In their analysis they compared our measured axial density profiles (shown
in figure 6.3) and the behavior of the normalized axial cloud size as a function of mag-
netic field (figure 6.2 (c)) with the theoretical predictions in the BEC-BCS crossover
and found a very good agreement.

At the time their calculation was carried out, the resonance position was uncertain
to within some 10 G and their analysis showed that assuming the Feshbach resonance
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Figure 6.4: Comparison between the predicted (filled triangles) and the measured normalized
axial cloud size in the BEC-BCS crossover, assuming N = 4 × 105 (filled circles) and N =
1.94×105 (open circles), respectively. The later value results in an optimal agreement between
theory and experiment [Pie04a]. The dashed line shows the expectation from the BEC mean
field theory. The strong coupling BEC limit is reached for 1/kFa � 1, while the weak coupling
BCS limit is obtained for 1/kFa � −1.

at a field of 850 G (820 G) and an atom number of N = 2.3 × 105 (N = 1.65 × 105)
the agreement between theory and experiment could be further optimized and become
almost perfect. For the resonance at a field of 834.1 G, one expects an optimal agree-
ment with N ≈ 1.94 × 105 atoms [Pie04a], a value that lies within our experimental
uncertainty of ∼50% for the calibration of our absolute atom number (see section 4.5).
These values are assumed in figure 6.4, where we show the normalized axial cloud
size (open symbols) in the BEC-BCS crossover together with the theoretical predic-
tion (filled triangles). For comparison we also show the prediction from the BEC
mean field theory (dashed line) assuming amol/a = 0.6 (see equation 6.3) and our ex-
perimental data points with N = 4 × 105 atoms (filled circles). The data are shown
as a function of the interaction strength, expressed by 1/kFa and the BEC limit is ob-
tained for 1/kFa � 1, while the BCS limit is reached for 1/kFa � −1. The agreement
between our experimental data and the theoretical prediction over the wide coupling
range covered in our experiments is remarkable.

It should be noted that the prediction of A. Perali et al. (filled triangles in figure
6.4) assumes amol/a = 2, which corresponds to the Born approximation of the dimer-
dimer scattering length [Per04b]. Compared to the calculated dimer-dimer scattering
length of amol/a = 0.6 [Pet04], their theory overestimates the size of the cloud in the
BEC limit by about 27% (see also figure 6.4). In this limit we find a better agreement
between theory and experiment if we assume an atom number of N = 4 × 105. In
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6 Experiments in the BEC-BCS crossover

contrast the measured cloud size on resonance and in the regime of an interacting
Fermi gas agrees better with the theoretical prediction if we assume an atom number of
N = 1.94 × 105. Assuming the theoretical prediction to be correct, a possible scenario
for the observed deviation is a decreasing radial confinement with increasing magnetic
field. This effect could for example stem from anharmonicity effects of the radial
trapping potential (see also the discussion of the radial dipole mode in section 6.2.1),
but the estimated effects for a Gaussian beam are too small to explain the observed
discrepancy. However, it may be possible that the Gaussian beam shows distortions
for example due to a thermal lens effect.

6.1.4 Summary and Conclusion
Our measurements demonstrate the smooth crossover from a molecular BEC to a de-
generate Fermi gas of atoms. On resonance we realize a universal quantum gas and
the universal parameter is determined to be β = −0.73+0.12

−0.09.
Since the conversion of the molecular BEC into an atomic Fermi gas is adiabatic

and reversible, the temperature of the Fermi gas can be estimated from the conservation
of the entropy [Car04] (see section 5.2.3). Our high condensate fraction of > 85(3)%
suggests a very small entropy corresponding to an extremely low temperature in the
Fermi gas limit of T/TF < 0.03(1). In this scenario, superfluidity can be expected to
extend from the molecular BEC regime into the interacting Fermi gas regime where
1/kFa ≥ −1.4.

Our experiment thus opens up intriguing possibilities to study atomic Cooper pair-
ing and superfluidity in resonant quantum gases.

6.2 Collective excitations
To gain more insight into the physical behavior of the gas in the BEC-BCS crossover,
the investigation of collective excitations provides a powerful method. In this section
we present our measurements of fundamental collective excitation modes in the BEC-
BCS crossover for various coupling strengths in the low temperature limit.

Detailed theoretical and experimental studies of collective oscillations in atomic
Bose-Einstein condensates have proven important tools to characterize the behavior
of these many-body systems2. The sensitivity of the collective modes to interaction
effects and the ability to measure frequencies with high accuracy makes them perfectly
suited to check theoretical predictions [Dal99a].

For a superfluid Fermi gas in the BEC-BCS crossover, a non trivial dependence of
the collective frequencies was predicted by Stringari [Str04a]. The superfluidity im-
plies a hydrodynamic behavior that causes substantial changes in the excitation spec-
trum with respect to the collisionless regime and in general very low damping rates.

2A brief summary of theoretical and experimental work prior to 2002 can be found in the article of
F. Chevy et al. [Che02].
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(a) (b)

Figure 6.5: Illustration of the axial (a) and radial (b) breathing mode in our elongated trap.
The slow axial mode consists of an out-of-phase oscillation in the axial and radial direction
while the fast radial mode consists mainly of a radial oscillation of the cloud.

For strongly interacting Bose and Fermi gases however, collisions between the parti-
cles can result in a hydrodynamic behavior in the normal, non superfluid phase. Hence
the interpretation of the collective modes in the BEC-BCS crossover in terms of super-
fluidity is not straightforward and needs careful investigation to identify the different
regimes.

The lowest energy mode corresponds to the center of mass oscillation of the cloud.
For a harmonic potential this “sloshing” or dipole mode is predicted to occur at the
trap frequency and to be independent of statistics and interaction effects. Our measure-
ments of the sloshing modes in the axial and radial direction are presented in section
6.2.1 and allow a very accurate determination of the trap frequencies.

The frequencies of the next higher modes, however, are expected to depend on the
interactions and to deviate from the spectrum of an ideal gas, where the excitation fre-
quencies are multiplies of the trap frequencies. In general the modes are classified by
the number of radial nodes n, the total angular momentum l and its axial projection m.
In our cigar shaped trap the quantum number l is no longer good and only the axial
projection quantum number m is conserved. For a superfluid or hydrodynamic gas in
an axially symmetric trap, the lowest m = 0 modes are coupled excitations of different
symmetry, i.e a coupled monopole-quadrupole mode [Str96]. In our case of a very
elongated trap, these modes correspond to a slow axial quadrupole mode and a fast
radial monopole mode. The axial mode is characterized by an out-of-phase oscillation
along the axial and radial direction, while the radial mode is primarily a radial breath-
ing mode with a suppressed axial oscillation. These two modes are illustrated in figure
6.5 and are called the axial and radial breathing modes, respectively. A more detailed
discussion of the collective dynamics in different regimes and trap configurations is
found in section 3.3.

We use an excitation scheme that preserves the cylindrical symmetry of our elon-
gated trap, and thus we expect to observe only m = 0 modes. Applying weak excita-
tions, we measure the frequency and the damping rate of the axial and radial breathing
modes for a degenerate gas in the BEC-BCS crossover. Our experimental results for
the axial and radial mode are presented in section 6.2.2 and 6.2.3, respectively.

Our measurements show a very pronounced dependence of the collective breathing
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modes on the magnetic field, i.e the interaction strength. In section 6.2.4 we compare
our experimental findings with the most recent theoretical predictions in the BEC-
BCS crossover. In this section we also briefly summarize and compare our results with
similar measurements of the radial breathing mode that were carried out in the group
of John Thomas at the Duke University [Kin04a, Kin04b].

Experimental starting conditions

The starting point for all the experiments is a cigar shaped molecular BEC at a mag-
netic field of 764 G and a laser power of 34 mW. To explore the collective excitations in
the BEC-BCS crossover we first adiabatically ramp the magnetic field within 1 s from
the initial value to fields between 676 and 1250 G. As shown in the previous section
this ramp is isentropic and from the temperature in the BEC limit of T/Tc = 0.42(5)
we estimate the temperature in the noninteracting Fermi gas limit to be T/TF < 0.03.
With a total number of atoms N ≈ 4 × 105 (free atoms and atoms bound to molecules)
and a geometrically averaged trap frequency at 834 G of ω̄ = (ω2

rωz)1/3 ≈ 2π×230 Hz,
the Fermi energy for a noninteracting cloud amounts to EF = ~ω̄(3N)1/3 = kB×1.2 µK.

6.2.1 Axial and radial dipole oscillations

We measure the axial and radial dipole mode frequency at various magnetic fields. The
dipole mode corresponds to the center of mass motion of the system, which oscillates
in a harmonic potential with the trap frequency. Because this sloshing mode is ex-
pected to be independent of statistics and two-body interactions, the measurements of
the axial (radial) dipole mode frequency allows us to precisely characterize the axial
(radial) trapping potential [Dal99a].

Axial dipole mode

To excite the axial dipole mode we apply for a 10 ms time interval an additional mag-
netic field gradient of about 18 G/cm in the vertical direction. This is done by using
the small auxiliary coils that are also used to compensate for gravity and stray mag-
netic fields (see section 4.4). Because these coils and the axial direction of the optical
dipole trap are not aligned perfectly perpendicular to each other, the effective potential
is slightly tilted in the axial direction and the atoms are pushed to one side. At the
same time the vertical potential becomes tilted and the particles spill out of the trap,
limiting the maximal applicable field gradient [Joc03a]. After turning off the extra
field gradient, the remaining particles begin to oscillate along the axial direction with
the center of mass motion.

The axial oscillation is observed by in situ imaging the cloud after a variable hold
time t at constant trap parameters. To determine the axial trap frequency ωz, we fit a
damped harmonic oscillation cz(t) = c0+az exp(−γzt) sin(ωzt+φz) to the observed time
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Figure 6.6: Oscillation of the axial dipole mode at a magnetic field of 764 G. The solid line
shows a fit by a damped harmonic oscillation with a frequency of ωz/2π = 21.71(2) Hz and a
very low damping rate of γz/ωz = 0.0007(7).

evolution of the axial center position, where γz is the damping rate and c0, az and φz

are additional fit parameters. A typical axial dipole oscillation is shown in figure 6.6.
The axial confinement at the given laser power of 34 mW stems mainly from the

magnetic confinement, caused by the curvature of the of the Feshbach tuning field (see
also section 4.3.2). Therefore the axial trapping potential is perfectly harmonic, and
the dipole mode shows only very weak damping. This allows us to determine the axial
trap frequency with a 10−3 precision. From the fit to the measurement at 764 G, shown
in figure 6.6, we obtain a frequency of ωz/2π = 21.71(2) Hz and the very low value
γz/ωz = 0.0007(7), corresponding to a 1/e damping time of about 10 s.

The magnetic field dependent axial trapping frequency ωz(B) is derived from mea-
surements of the dipole frequency at different magnetic fields [Rie04]. We fit the data
with the function ωz(B) = (ω2

magB+ω2
opt)

1/2 that takes into account that the axial poten-
tial is a superposition of a magnetic and a (weak) optical potential with trap frequencies
ωmag

√
B and ωopt, respectively. From the fit we obtain

ωz(B) = 2π ×
√

601(4) B/kG + 11(4) Hz, (6.4)

where the values in brackets denote the uncertainty from the fit.

Radial dipole mode

We excite the radial sloshing mode by a pulsed application of a vertical magnetic field
gradient. Typically a gradient of 11.2 G/cm is applied for 0.1 ms. To detect the radial
oscillation we turn off the trapping laser after a variable hold time t and image the
cloud after usually 2 ms of expansion. From the image we determine the radial center
position of the cloud and extract the radial dipole frequency ωr by fitting the observed
time evolution to a damped harmonic oscillation cr(t) = c0 + ar exp(−γrt) sin(ωrt+φr),
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Figure 6.7: Oscillation of the radial dipole mode at a magnetic field of 764 G. The solid line
shows a fit by a damped harmonic oscillation with a frequency of ωr/2π = 760(5) Hz and a
damping rate of γr/ωr = 0.024(6).

where γr is the damping rate and c0, ar and φr are additional fit parameters. Figure
6.7 shows a typical radial dipole oscillation. From the corresponding fit (solid line)
we obtain a frequency of ωr/2π = 760(5) Hz and a damping rate of γr/ωr = 0.024(6),
which corresponds to a 1/e damping time of about 9 ms.

We attribute the observed damping of the radial dipole mode to anharmonic con-
tributions to the radial trapping potential that stems from the Gaussian-shaped laser
beam. The anharmonicity of this Gaussian-shaped radial potential also explains why
with increasing magnetic field, and thus increasing radial cloud size, the measured
sloshing mode frequency decreases (see figure 6.8). The expected lowest order an-
harmonicity correction was derived by S. Stringari [Str04b] and is given by (see also
appendix B)

ωr = ω⊥

1 − mω2
‖

z2
rms

U

 . (6.5)

Here U denotes the atomic trap depth, m the atomic mass, ω⊥ (ω‖) the radial (axial)
trap frequency for the zero energy harmonic oscillator and zrms the axial rms size of the
trapped cloud3.

To obtain the correction as a function of the magnetic field we use the in situ mea-
surements of the cloud size discussed in the previous section and the corresponding
axial trap frequency. Using an appropriate fit function with the right asymptotic be-
havior, we approximate the second term in equation 6.5. A further fit is then used
to approximate the measured dependency of the radial dipole mode frequency on the

3Equation 6.5 holds for atoms and molecules. The later have mmol = 2m and Umol = 2U.
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Figure 6.8: Measured radial dipole mode frequency at a constant laser power of 34 mW for
different magnetic fields. With increasing magnetic field, i.e increasing cloud size, the dipole
frequency decreases. The solid line shows the theoretical dependency of the dipole mode. Its
shape is due to the lowest order anharmonicity correction given in equation 6.5 [Str04b].

magnetic field (solid line in figure 6.8). From this fit we obtain ω⊥/2π = 781(3) Hz in
the harmonic limit. As can be seen from the figure 6.8 the dipole frequency decreases
from ∼770 Hz at 675 G to ∼715 Hz for fields above 1200 G. At the resonance position
of 834.1 G the dipole frequency is about 735 Hz.

Note that these trap frequencies are slightly different than the ones given in the
previous section. The quoted values always correspond to our best knowledge of the
system at the time the measurements were taken. We attribute the small changes in the
numbers to tiny drifts in the alignment of the trap.

6.2.2 Axial breathing mode

To excite the axial breathing mode at a given magnetic field, we increase the optical
confinement in a 10 ms time interval by a factor of 1.5. The laser power is varied slow
enough for the radial motion to follow adiabatically, but fast enough to induce axial
oscillations. The relative amplitude of the resulting axial oscillation is kept small,
typically ∼10%. We observe the oscillation by in situ imaging after a variable hold
time t at constant trap parameters. To determine the collective oscillation frequencyΩz

and the damping rate Γz we fit a damped harmonic oscillation z(t) = z0+Az exp(−Γzt)×
sin (Ωzt + φz) to the observed time evolution of the cloud size, where z0, Az, and φz are
additional fit parameters.

The measured oscillation frequencies and damping rates are shown in Figure 6.9.
For a comparison to theory the data are normalized to the measured axial trap fre-
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Figure 6.9: Measured frequency Ωz and damping rate Γz of the axial breathing mode, normal-
ized to the trap frequency ωz. In the upper graph the dashed lines indicate the BEC limit of
Ωz/ωz =

√
5/2 and the collisionless Fermi gas limit with Ωz/ωz = 2, respectively. The vertical

dotted line indicates the resonance position at 834.1 G.

quency ωz. In the BEC limit, obtained at low magnetic fields, the measured col-
lective frequencies are in agreement with the expected Ωz/ωz =

√
5/2 = 1.581

[Str96, Mew96]. With increasing magnetic field we observe a decrease in the collective
excitation frequency until a minimum is reached at about 900 G. Here the interaction
strength is 1/kFa ≈ −0.4, corresponding to the strongly interacting Fermi gas regime.
With further increasing magnetic field the interaction strength decreases and we ob-
serve a gradual increase of the collective excitation frequency towards Ωz/ωz = 2.
This value is expected for a collisionless degenerate Fermi gas where the elastic colli-
sion rate is strongly reduced by Pauli blocking [Vic00]. Because of the large damping
rate in the transition regime between the hydrodynamic and the collisionless behavior,
the excitation frequencies cannot be determined with high accuracy. The observed ax-
ial damping is consistent with a gradual transition between the two regimes [Vic00]
(see also section 3.3.3).

A zoom-in of the data for the resonance region between 750 and 900 G is shown in
figure 6.10. The collective frequency that we measure on resonance at 834.1 G is in full
agreement with the expected value for the unitarity limit (Ωz/ωz =

√
12/5 = 1.549)

[Str04a]. For the damping rate we observe a clear minimum at a magnetic field of

108



6.2 Collective excitations

1 . 5 4

1 . 5 6

1 . 5 8

7 5 0 8 0 0 8 5 0 9 0 0
0 . 0 0

0 . 0 2

� z /��
z

B E C  l i m i t  

 

 

 

�  z / �
z

 m a g n e t i c  f i e l d  ( G )

 

 

Figure 6.10: Zoom-in of the data shown in figure 6.9 for the resonance region. The star at
834.1 G marks the theoretical prediction Ωz/ωz =

√
12/5 for the unitarity limit. The dashed

line in the lower graph is a third-order polynomial fit to the data to guide the eye.

about 815 G, which is close to the resonance position. It is interesting to note that
this damping minimum coincides with the observation of a maximum fraction of con-
densed fermionic atom pairs observed by M. Zwierlein et al. [Zwi04]. For the mini-
mum damping rate we obtain the very low value Γz/ωz ≈ 0.0015, which corresponds
to a 1/e damping time of ∼5 s.

6.2.3 Radial breathing mode

To excite the radial breathing mode at a given magnetic field, we reduce the opti-
cal confinement for 50 µs, which is short compared to the radial oscillation period of
about 1.3 ms. In this short interval the cloud slightly expands radially and then begins
to oscillate when the optical confinement is switched back to the initial value. The
amplitude of the excitation is adjusted such that the relative oscillation amplitude is
∼10%. To detect the radial oscillation we turn off the trapping laser after various de-
lay times t and measure the radial size r(t) after 1.5 ms of expansion. The measured
radial size r(t) reflects the oscillation release energy. From the measured data, we
extract the excitation frequency Ωr and damping Γr by fitting the radial cloud size to
r(t) = r0 + Ar exp(−Γrt) sin(Ωrt + φr), where r0, Ar and φr are additional fit parameters.
Typical radial oscillation curves are shown in figure 6.11.
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Figure 6.11: Oscillation of the radial breathing mode at different magnetic fields in the strongly
interacting Fermi gas regime. The solid lines show fits by damped harmonic oscillations.

The magnetic-field dependence of the radial excitation frequencyΩr and the damp-
ing rate Γr are shown in figure 6.12. The data are normalized to the measured frequency
ωr of the radial sloshing mode (see above). It was shown by S. Stringari that this nor-
malization suppresses anharmonicity effects in the measured breathing mode to below
3% [Str04b].

For low magnetic fields the measured frequency approaches Ωr/ωr = 2, expected
for the transverse breathing mode of an elongated Bose-Einstein condensate [Str96,
Che02]. With increasing magnetic field we observe a large down-shift of the frequency.
On resonance at B = 834.1 G we observe Ωr/ωr = 1.63(2). For magnetic fields above
the resonance the gas enters the strongly interacting Fermi gas regime and we observe a
further decrease of the oscillation frequency until a maximum shift of more than 25%
(Ωr/ωr = 1.48(5)) is reached at a magnetic field of 890 G. With further increasing
field, i.e decreasing interaction strength, an abrupt change to Ωr/ωr ≈ 2 is observed.
For magnetic fields larger than 920 G our data are consistent with a Fermi gas in the
collisionless regime.

The damping of the radial breathing mode is small in the BEC limit and reaches
a minimum close to the Feshbach resonance (see inset in figure 6.12). The minimum
damping rate of Γr/ωr ≈ 0.03 corresponds to a 1/e damping time of ∼7 ms. At a mag-
netic field of 910 G, where the abrupt change occurs, we observe very strong damping
(see also the middle trace in figure 6.11).

To check our data on the radial breathing mode for systematic effects, we have
performed further experiments presented in the next paragraph.
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Figure 6.12: Measured frequency Ωr and damping rate Γr of the radial breathing mode, nor-
malized to the radial dipole mode frequency ωr. In the upper graph, the dashed lines indicate
the BEC limit of Ωr/ωr = 2 and the collisionless Fermi gas limit with Ωr/ωr = 2. The vertical
dotted line indicates the resonance position at 834.1 G. The star indicates the theoretical expec-
tation of Ωr/ωr =

√
10/3 in the unitarity limit. The abrupt change in the excitation frequency

occurs at about 910 G and is accompanied by anomalously strong damping. The inset shows
the damping rate in the resonance region with a second-order polynomial fit to guide the eye.

Investigation of systematic effects

We have repeated the above measurements after recompressing the trap by a factor
of nine to a trapping laser power of 310 mW. In this trap the measured radial sloshing
mode frequency isωr ≈ 2π ×2.3 kHz. The measurements shown in figure 6.13 confirm
all the previous observations in the shallower trap. In particular, the negative frequency
shift and the sudden change in the collective frequency show up in essentially the same
way. At resonance we find Ωr/ωr = 1.68(2). Taking into account the small residual
anharmonicity shift we can correct the measured value to Ωr/ωr = 1.69(3), which
is the value we would expect for a harmonic trap. As in the shallower trap we find
a minimum of the damping rate in the resonance region. Furthermore the observed
abrupt change in the collective frequency at about 910 G is again accompanied by a
very large damping rate.

We have also checked that the frequency of the radial breathing mode does not
depend on the way we prepare the ultracold gas. Direct evaporation at a fixed mag-
netic field of 867 G, without starting from a molecular BEC, leads to the same col-
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Figure 6.13: Measurements of the radial collective excitation frequency and damping rate
in a nine times deeper trap (ωr/2π ≈ 2.3 kHz). The data confirm all the observations in the
shallower trap shown in figure 6.12.

lective frequency. Preliminary investigations of the collective excitations of the gas
at higher temperature however, show a trend towards smaller frequency shifts in the
radial breathing mode and to smoother changes of the collective frequency.

6.2.4 Comparison with theoretical predictions and related mea-
surements

Our measurements were accompanied by a series of theoretical investigations of col-
lective modes in the BEC-BCS crossover [Str04a, Hei04a, Hu04, Com04b, Com04a,
Kim04b, Kim04a, Man04, Bul04].

These theoretical predictions are based on different approaches for the equation
of state. In figure 6.14 we show our measured axial (upper graph) and radial (lower
graph) breathing mode frequency as a function of the coupling strength, which is ex-
pressed by the dimensionless parameter 1/kFa. In this notation the strong coupling
BEC limit is obtained for 1/kFa � 1, while the weak coupling BCS limit is obtained
for 1/kFa � −1. In the figure we compare our measurement to the predictions obtained
from the mean field crossover theory introduced by A. Leggett [Leg80] and from a
quantum Monte Carlo calculation that has been carried out by G. Astrakharchik et al.
[Ast04] (see section 2.3). The shown calculations of the axial and radial collective
mode frequencies in the BEC-BCS crossover were performed by H. Hu et al. [Hu04]
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Figure 6.14: Comparison of our measured axial (upper graph) and radial (lower graph) collec-
tive mode frequency ratios with the predictions from H. Hu et al. [Hu04] (solid lines) and N.
Manini et al. [Man04] (dotted lines). In the strong coupling limit (1/kFa � 1) the frequencies
approach the predicted frequency ratio for a molecular BEC in the Thomas-Fermi limit (left
dashed lines). The stars mark the predicted frequency ratio for a unitarity limited gas realized
on resonance (1/kFa = 0). The same frequency ratio holds for a gas in the weak coupling BCS
limit realized for 1/kFa � −1 (right dashed lines). The horizontal dashed-dotted line in the
lower graph indicates the collisionless limit.

for the mean field model (solid lines) and by N. Manini et al. [Man04] for the case of
the quantum Monte Carlo calculations (dotted lines). Further details of the calculations
are found in section3.3.6.

In the following we discuss the main features of our measurements on the axial and
radial breathing mode frequencies and compare them with theoretical predictions. The
comparison is only qualitative and for a deeper understanding of the individual theo-
retical models the reader is referred to the cited publications and references therein. It
should be noted that the theoretical predictions assume a hydrodynamic behavior of
the gas. As explained in section 3.3.1 this hydrodynamic behavior is a general conse-
quence of superfluidity but it also applies to a gas in the normal, non superfluid state,
provided that the rate of collisions is large enough (ωτ � 1).
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BEC limit: We begin our comparison in the strong coupling molecular BEC limit.
As long as the gas is sufficiently dilute (nmola3

mol � 1), the collective mode frequencies
can be derived from the hydrodynamic equations of superfluids (see section 3.3.1),
with an equation of state given by µ(n) = gn. For our cigar shaped molecular BEC,
we obtain Ωz/ωz =

√
5/2 and Ωr/ωr = 2 for the axial and radial breathing mode

frequency, respectively (see section 3.3.2).
The measured axial mode frequency agrees with the above theoretical prediction

for 1/kFa > 1. The measured radial frequency approaches this limit for large 1/kFa.
However, even at the largest coupling strength of 1/kFa ≈ 3, were the molecular gas
parameter is relatively small (nmola3

mol = 0.001), we observe a substantial down shift
with respect to the dilute BEC prediction.

Strongly interacting BEC With increasing interaction strength the binding energy
of the molecules is reduced and the BEC-BCS crossover theory predicts a down shift
of the collective excitation frequency [Hu04, Hei04a]. Our measurements of the radial
and axial modes both show this predicted down shift.

On the other hand, for a strongly interacting BEC one expects corrections to
the equation of state due to beyond mean field effects [Lee57]. From the modi-
fied equation of state the collective frequency is expected to increase with increas-
ing interaction strength [Pit98] (see also section 3.3.5). Applying these predictions
to a molecular BEC in the crossover regime, the collective frequency should follow
δΩi/Ωi = ci(nmola3

mol)
1/2 (i = z, r), where nmol is the peak molecular number density.

For our cigar shaped trap the numerical factors are cr = 5cz = 0.727. In contrast to
this expectation we see a down-shift in both the radial and the axial direction. Using
the above formula to fit our first four data points on the axial (radial) mode, we obtain
cz = −0.05(3) (cr = −1.1(2)).

Beyond mean field effects are included in the theory from reference [Man04] and
consequently the calculation predicts an up-shift of the collective frequency from the
value obtained in the dilute BEC limit (see dotted lines in figure 6.14). The same
qualitative dependency is also predicted by the calculations of S. Stringari [Str04a],
R. Combescot et al. [Com04a], and by H. Heiselberg’s BEC approximation [Hei04a].
However, both our axial and radial collective mode frequencies do not show this be-
havior. In particular, the measured axial mode frequencies in the strongly interacting
molecular BEC regime are found in excellent agreement with the theoretical predic-
tion from the BEC-BCS crossover theory, which does not include beyond mean field
corrections (see solid line in the upper graph of figure 6.14).

Unitarity limit: On resonance a universal gas is realized and the chemical potential
is expected to have the same dependency on the density as in the ideal Fermi gas (µ ∝
n2/3). From the hydrodynamic equations the corresponding frequency for the axial and
radial mode is calculated to be Ωz/ωz =

√
12/5 = 1.549 and Ωr/ωr =

√
10/3 = 1.826,

respectively [Str04a].
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The measured axial collective frequency agrees very well with this prediction. On
resonance we observe Ωz/ωz = 1.548(3). For the radial mode, however, we obtain
on resonance Ωr/ωr = 1.69(3) for the harmonic trap limit, which is 8% below the
predicted value. This downshift of the radial mode frequency is at present not under-
stood and requires further investigations. Possible explanations for this observation
are discussed further below.

Strongly interacting Fermi gas: Above the Feshbach resonance the calculation
from the mean field theory [Hu04] predict a further decreasing collective excitation
frequency until a minimum is reached at 1/kFa ≈ −0.45. After this minimum the col-
lective mode frequencies are expected to increase again towards the values predicted
for a superfluid gas in the BCS limit. The prediction derived from quantum Monte
Carlo calculation shows a very similar behavior, although the local minimum is a bit
more pronounced. In the BCS limit one expects the same density dependence of the
equation of state as in the case of an unitarity limited quantum gas. Consequently, the
collective mode frequencies in the BCS limit are expected to be the same as the ones
obtained on resonance [Str04a].

Up to 1/kFa ≈ −0.5 our observation of the axial mode shows an excellent agree-
ment with the theory. In particular, we observe a decreasing frequency that agrees
very well with the prediction. For 1/kFa ≈ −0.5 the measured frequency starts to
deviate from the hydrodynamic prediction and approaches Ωz/ωz = 2 expected for a
collisionless Fermi gas.

The behavior of the radial mode is strikingly different. Above resonance we also
first observe a further decreasing collective frequency. However, at 1/kFa ≈ −0.5
we observe an abrupt change in the radial excitation frequency towards Ωr/ωr = 2
expected for Fermi gas in the collisionless regime.

This dramatic change of the radial collective mode frequency and the large damp-
ing rate observed in the transition regime (see figure 6.12) are not expected for a nor-
mal (non superfluid) Fermi gas, where the collective frequency is predicted to vary
smoothly from the hydrodynamic to the collisionless regime [Vic00] (see also section
3.3.3). In the transition regime the maximum damping rate of the radial mode is calcu-
lated to be Γr/ωr = 0.09 [GO99, Vic00]. Our measured damping rate of Γr/ωr ≈ 0.5 is
clearly inconsistent with this prediction for a gas in the normal (nonsuperfluid) hydro-
dynamic regime. For a transition from the superfluid to the normal, collisionless phase
however, both the sudden change of the collective frequency and a strong damping are
expected [Bar00].

A possible explanation for the observed sudden change in the radial mode at about
910 G can be obtained by comparing the radial oscillation energy with the pairing
energy. A pair could break by coupling to the collective oscillation, which seems
plausible for [Com04b, Hei04b]

~Ωr ≈ 2∆, (6.6)

where 2∆ is the expected minimum single particle excitation energy and ∆ is the zero
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temperature BCS gap.
The minimum pairing energy can be estimated from our radio-frequency spec-

troscopy measurements4 [Chi04a]. From our measurements at a magnetic field of
∼910 G we obtain an effective pairing gap of ∆eff/h ≈ 0.7 kHz (see section 6.3.4). The
measured radial collective oscillation frequency at 910 G is about Ωr/2π = 1.3 Hz.
These values are in reasonable agreement with the relation given in equation 6.6. The
same holds for the measurements in the stronger compressed trap (see figure 6.13),
where we observe the sudden change of the radial collective mode frequency at the
same magnetic field. In this trap the radial collective frequency at 910 G is about
Ωr/2π = 3.9 kHz, while the effective paring gap is approximately ∆eff/h ≈ 2.2 kHz.

It should be noted that in the regime of a strongly interacting Fermi gas, the ra-
tio between the energy gap and the excitation energy is no longer small, indicating
a possible breakdown of the hydrodynamic approximation [Men02]. It was pointed
out by R. Combescot and X. Leyronas [Com04b] that this argument might explain the
disagreement between our measurements and the theoretical predictions for the radial
collective mode frequency on resonance. Note further that our results might have been
influenced by a residual ellipticity of our trapping laser beam, which requires further
investigations.

Measurements of the radial breathing mode at Duke University

The group of J. Thomas studied, parallel to our measurements, the radial breathing
mode in the resonance region [Kin04a]. Their measurements showed much weaker
frequency shifts than observed in our measurements and the collective frequencies re-
ported in the magnetic field range from 770 to 910 G are close to the hydrodynamic
predictions. Their measurements also showed a decreasing damping rate with decreas-
ing temperature.

To investigate the discrepancy between the two experiments J. Kinast et al. later
extended the investigation to the magnetic field range from 750 to 1114 G [Kin04b].
Over the magnetic field range from 770 to 910 G these measurements confirmed their
former results. For fields near 1080 G they observed a sharp increase in frequency and
damping rate which is in qualitative agreement with our observed transition at a field
of 910 G.

The reason for the different behavior of the collective excitation frequency on the
magnetic field is at the moment not fully understood. One reason might be the higher
axial trapping frequency in the experiment of J. Kinast et al. resulting in a larger ratio
of the Fermi energy to the radial trap frequency than in our case. As the pairing energy
is proportional to the Fermi energy and exponentially depends on coupling strength
1/kFa, this tends to shift the effect of coupling the collective modes to in-gap exci-
tations to higher magnetic fields. Consequently, they observe the abrupt transition at
a higher magnetic field. The same mechanism might also affect the collective mode

4The corresponding measurements are presented in detail in the next section.
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frequency at unitarity.

6.2.5 Summary and Conclusion

Our measurements demonstrate that the collective modes of a degenerate Fermi gas in
the BEC-BCS crossover show a pronounced dependence on the coupling strength and
thus provide valuable information on the physical behavior of the system.

Our measurements of the axial breathing mode agree very well with the theoretical
expectations for a gas in the BEC-BCS crossover. In particular, our measurements in
the unitarity limited quantum gas confirm the theoretical expectation. For magnetic
fields somewhat below the resonance we measure a very low damping rate of the axial
oscillation, which may be seen as a strong piece of evidence for superfluidity.

The measurements of the radial breathing mode show a very strong dependence
on the coupling strength that cannot be explained on the basis of available theoretical
models. In particular, the observed down shift on resonance is larger than predicted.
The most striking feature however, is the observed abrupt change of the radial collec-
tive frequency at a magnetic field of ∼910 G (1/kFa ≈ −0.5), which is accompanied
by very strong damping. The observation supports an interpretation in terms of a tran-
sition from a hydrodynamic to a collisionless phase. A superfluid scenario for the
hydrodynamic phase seems plausible in view of current theories on resonance super-
fluidity [Hol01, Mil02, Chi02, Oha02] and the very low temperatures provided by the
molecular BEC [Car04].

These measurements are the first step to understand the dynamics of a degenerate
Fermi gas in the BEC-BCS crossover. In particular the behavior of the radial collective
mode requires further investigations, which we plan to perform after upgrading our
diagnostic tools and implementing additional excitation schemes as discussed in the
outlook in chapter 7.

6.3 Observation of the pairing gap by radio-frequency
spectroscopy

Radio-frequency (rf) spectroscopy was introduced as a powerful and sensitive tool to
study interaction effects in ultracold Fermi gases [Reg03a, Gup03, Reg03b]. In 40K this
technique was used to directly measure the mean field interaction energy [Reg03a], to
detect ultracold 40K2 molecules and to determine their binding energies [Reg03b]. In
atomic 6Li rf spectroscopy has been applied to study interaction effects for magnetic
fields up to 750 G [Gup03]. One important observation was the absence of mean-field
shifts in the strongly interacting regime. This effect can be attributed to the fact, that
in the relevant magnetic field range, all s-wave scattering processes between the 6Li
atoms in the involved states are simultaneously unitarity limited. This property of
6Li is very favorable for rf spectroscopy because it suppresses shifts and broadening
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by mean-field effects. The potential of the rf spectroscopy to observe a pairing gap
in a strongly interacting Fermi gas was already pointed out in the first experimental
application of this sensitive method in 40K [Reg03a].

Offering an excellent energy resolution spectroscopic approaches were proposed
to observe the pairing gap in a superfluid Fermi gas [Tör00, Bru01b, Kin04d]. The
basic idea of these schemes is to create a population transfer from a superfluid to a
normal phase. The transfer can for example be obtained by an rf-field, that couples one
hyperfine state for which the atoms are paired to a hyperfine state that does not lead to
a superfluid phase. The population transfer requires breaking the pairs, and the extra
energy for this pair breaking process has to be provided by the rf-field. Measurements
of the change in the atomic population of the superfluid phase as a function of the
applied radio-frequency thus provide information about the energy of the pairing gap.

In our case the pairs consist of one atom in the internal state |1〉 and one atom in
the state |2〉. To probe the system we drive rf-transitions at ∼80 MHz from state |2〉
into the empty state |3〉. Using state selective absorption imaging we monitor the loss
of particles in state |2〉 as a function of the applied rf. While unpaired atoms show a
resonant loss at a frequency corresponding to the energy difference between the two
atomic states |1〉 and |2〉, the transition frequency for paired atoms occurs at a higher
frequency as energy is required to break the pairs. Radio frequency spectroscopy of
unpaired atoms serves as a frequency standard for our measurements of paired atoms
and allows us to calibrate our magnetic field as explained in section 6.3.1.

In a first series of experiments we applied radio-frequency spectroscopy to pairs
in the low density molecular regime. In this strong coupling limit the localized pairs
are molecules. As shown in section 6.3.2 these molecules show a characteristic broad
dissociation lineshape, from which we can determine the molecular binding energy.
Furthermore we can drive rf transitions between different molecular states to determine
their energy splitting. These measurements performed at various magnetic field values
in combination with a multi-channel quantum scattering calculation worked out in
the group of Paul Julienne at NIST, allow us to extract the interaction parameters of
ultracold 6Li atoms with unpresented precision [Bar04c].

The high energy resolution of our radio-frequency spectroscopy technique allows
us to observe the pairing gap in the BEC-BCS crossover. Our rf spectra taken for
different degrees of cooling and for various coupling strengths are shown in section
6.3.3. We observe the pairing gap for magnetic fields up to ∼900 G, clearly beyond
the Feshbach resonance. To quantitatively analyze the crossover from the two-body
molecular regime to the many-body regime, we measure the dependence of the pairing
gap on the Fermi energy and temperature as shown in section 6.3.4. In this section
we also present radio-frequency spectra showing the universal behavior of a unitarity
limited quantum gas obtained at a magnetic field of 837 G.

The situation of our experiment was theoretically analyzed in the group of Päivi
Törmä [Kin04c] for the case of resonant two-body interactions. The theoretically pre-
dicted radio-frequency spectra presented in section 6.3.5 are in agreement with our
measured spectra. Following the argument given in J. Kinnunen et al. [Kin04c] our
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results strongly suggest that a resonance superfluid is formed in the central region of
the trap.

Preparation of the quantum gas and thermometry

Our experimental approach facilitates the preparation of the quantum gas in various
regimes with controlled temperature, Fermi energy and interaction strength.

The final laser power of the evaporation ramp allows us to control the temperature
T . Through compressing the trap after the cooling process by increasing the trap laser
power, we are able to vary the Fermi energy EF. After this preparation at 764 G, we
slowly change the magnetic field within typically 1 s to tune the interaction strength.

The radial and axial trap frequencies are given by (see section 4.3.2)

ωr/2π = 128(1) Hz ×
√

P/mW (6.7)

ωz/2π =
√

601(4) B/kG + 0.3(1) P/mW Hz. (6.8)

From the trap frequencies and the measured number N of paired and unpaired atoms
the Fermi energy for a noninteracting gas is determined by EF = ~ω̄(3N)1/3 where
ω̄ = (ω2

rωz)1/3.
Because we do not have a reliable method to determine the temperature T of the

deeply degenerate, strongly interacting Fermi gas, we characterize the system by the
temperature T ′ measured after an adiabatic and reversible conversion of the gas into the
BEC limit. The temperature T ′ is determined at a magnetic field of 676 G by fitting
a bimodal distribution to in situ images of the trapped, partially condensed cloud as
described in section 5.2.1.

For the full evaporation, we observe a condensate fraction of above 85(3)% and
we determine an upper limit for the temperature T ′/Tc = 0.42(5) where Tc is the
critical temperature for a noninteracting molecular BEC (section 5.2.1). We rewrite
this temperature in terms of the Fermi energy for a two component Fermi gas in a
harmonic trap using the relation Tc = 0.518 TF [Oha03] and obtain T ′/TF < 0.22(3).

As mentioned already a general theory for the relation between the true temperature
T in the crossover region and our observable T ′ is presently not available. Following
the arguments presented in section 5.2.3 we however expect a substantial temperature
reduction when the molecular BEC is converted into a strongly interacting gas with
resonant interactions.

6.3.1 Relevant atomic states and rf spectroscopy of atoms
The Zeeman shift of the 2S 1/2 ground state manifold of 6Li is shown in figure 6.15
(left). The states are denoted with increasing energy by |1〉, |2〉, . . . |6〉 (details to the
notation are found in appendix A). Within the magnetic field range investigated in our
experiments the electronic and nuclear spin decouple and the system is in the Paschen-
Back regime. In this regime the atomic states are characterized by the quantum num-
bers of the electronic spin S , the nuclear spin I and their orientation with respect to
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Figure 6.15: Hyperfine ground state manifold of 6Li in an external magnetic field. The states
are denoted with increasing energy by |1〉, |2〉, . . . |6〉 (left). We drive rf transitions from the
state |2〉 to the empty state |3〉 and monitor the loss in state |2〉 by state selective absorption
imaging. In the magnetic field range of interest the system is in the Paschen-Back regime and
the transition frequency ν23 is about 82 MHz (right).

the external magnetic field, denoted by the quantum number mS and mI , respectively.
For 6Li the electronic spin is S = 1/2 and the orientation can either be mS = +1/2 or
mS = −1/2 corresponding to low and high field seeking states with a magnetic mo-
ment of ∼µB, respectively. The orientation of the nuclear spin I = 1 leads to a splitting
of the two electronic states in triplets of states corresponding to mI = 1, 0,−1 as seen
in figure 6.15.

In principle one can drive transitions between the 6Li ground states using either
electromagnetic fields in the radio-frequency or microwave regime. The corresponding
transitions are accompanied by a change of the nuclear (∆mI = ±1) or the electronic
spin (∆mS = ±1), respectively. Because the nuclear magnetic moment couples much
weaker than the electronic magnetic moment to the electromagnetic field the strength
of both transitions is very different making it more easy to drive microwave transi-
tion. The sensitivity of both transitions to the stability of the external magnetic field is
also strikingly different. While in the microwave transition the electronic spin state is
changed, which corresponds to a change in the magnetic moment of about ∆µ = ±2µB,
the rf transition conserves the electronic spin state and the magnetic moment is only
slightly changed. Consequently the microwave transitions are much more sensitive
to the stability of the external magnetic field. Taking our magnetic field stability of
about 20 mG the maximum attainable resolution of the microwave transition is limited
to about 2µB∆B ≈ 50 kHz. Using rf transitions on the other hand we were able to
observe narrow spectroscopic signals of about 200 Hz. Only this high resolution of
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6.3 Observation of the pairing gap by radio-frequency spectroscopy

the radio-frequency transitions makes the observation of the pairing gap possible (see
section 6.3.3).

For our experiments the relevant states are the three lowest sublevels |1〉, |2〉 and |3〉.
In the Paschen-Back regime these states correspond to mS = −1/2 and mI = 1, 0,−1,
respectively (figure 6.15, right). We drive transitions between the state |2〉 and |3〉
using a weak rf pulse of typically 1 s duration and monitor the loss of atoms in state
|2〉 employing state selective absorption imaging. In all measurements we individually
adjust the rf power to obtain a maximum loss of about 40%. This value is chosen as a
compromise between a good signal to noise ratio and a minimum perturbation of the
system. To avoid broadening effects the rf power is generally weak and applied to the
sample for a long time. In the magnetic field range investigated in our experiments the
transition frequency ν23 for a noninteracting atomic 6Li gas is about 82 MHz.

Rf spectroscopy of unpaired atoms

Radio-frequency spectroscopy of unpaired, thermal atoms at T ≈ 6TF (TF = 19 µK)
serves as a reference and allows us to calibrate our magnetic field. Figure 6.16 shows
a typical rf spectrum obtained at a magnetic field of ∼837 G. The spectrum shows
the narrow atomic transition line with a linewidth of below 1 kHz that enables us to
determine the center position to within a few 100 Hz. This high resolution corresponds
to an intrinsic sensitivity to interaction effects on the scale of 5 nK. Based on the Breit-
Rabi formula [Bre31] and the 6Li parameters given in the appendix, this allows us
to calibrate our magnetic field to an accuracy of a few 10 mG. Within our statistical
uncertainty, we do not observe any density-dependent frequency shifts of the transition
frequency. The absence of mean-field effects in the strongly interacting regime was
also observed in the rf spectroscopic investigation of atomic 6Li by S. Gupta et al.
[Gup03] and can be attributed to the fact that in this regime the s-wave interactions
between the atoms in the states |1〉, |2〉 and |3〉 are simultaneously unitarity limited
(see figure 3.4 and 3.6 in section 3.2.3). The saturation of mean field effects in the
vicinity of a Feshbach resonance was also observed in the rf spectroscopy in atomic
40K [Reg03a].

6.3.2 Rf spectroscopy of weakly bound molecules
So far our initial sample contained unpaired atoms in the internal states |1〉 and |2〉.
Two atoms in this spin configuration are said to be in the scattering channel (1,2).
Consequently after an rf-transition that transfers one of the atoms from state |2〉 into
the state |3〉 the two atoms are in the scattering channel (1,3).

For atoms in the scattering channel (1,2) a broad Feshbach resonance exists at a
magnetic field of about 834 G (see section 3.2.3). For magnetic fields tuned below
the resonance atoms in the (1,2) channel can form weakly bound molecules as de-
scribed in section 3.2.4. A similar Feshbach resonance occurs for atoms in the (1,3)
scattering channel at a magnetic field of 690 G. Analogous to the (1,2) channel the
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Figure 6.16: Rf-spectroscopy signal of an unpaired “hot” thermal sample at T ≈ 6TF (TF =

19 µK). The fractional loss in state |2〉 is measured as a function of the radio-frequency. From a
Lorentzian fit (solid line) we determine the linewidth to be 640(20) Hz and the center frequency
to be at 81.6798(2) MHz. Based on the Breit-Rabi formula this allows us to determined the
magnetic field to be 836.92(4) G.

(1,3) channel provides a weakly bound molecular level for magnetic fields below this
resonance field. In figure 6.17 we show the magnetic field dependent energy level
structure for the two channels (1,2) and (1,3). For purely atomic samples (dotted lines)
the frequency difference between the two channels corresponds to the magnetic field
dependent atomic transition frequency ν23.

Starting with molecules created in the (1,2) channel we drive a rf transition to
the (1,3) channel. This rf transition can dissociate the molecule into two free atoms
(bound-free transition) or, for magnetic fields below 690 G, can drive the transition be-
tween the molecular states in the (1,2) and the (1,3) channel (bound-bound transition)
(see figure 6.17). In both cases the rf excitation results in a loss of molecules in the
(1,2) channel which we detect by state selective absorption imaging.

Bound-free transition

For weakly bound molecules with a binding energy Eb formed by an atom in state
|1〉 and an atom in state |2〉, the rf can dissociate the molecule into two atoms (one in
state |1〉 and one in state |3〉), if the threshold condition hνrf > hν23 + Eb is fulfilled.
Above threshold, the rf-induced dissociation produces two atoms with a total kinetic
energy of 2Ek. In the center of mass system, where the molecule is at rest, the energy
conservation reads

hνrf = hν23 + Eb + 2Ek. (6.9)
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Figure 6.17: Energy level structure near the 6Li2 dissociation threshold as a function of mag-
netic field. The threshold energy of the (1,3) scattering channel (upper dotted line) is plotted
relative to the (1,2) threshold (lower dotted line). The molecular state (lower solid line) in the
(1,2) channel exists below the Feshbach resonance at ∼834 G. Another molecular state (upper
solid line) exists in the (1,3) channel below the resonance at ∼690 G. The bound-bound and the
bound-free transition are illustrated by the arrows.

Typical molecular lineshapes are shown in figure 6.18. As a clear signature of
the pairing process, we observe the transition spectrum at higher frequencies with
respect to the pure atomic transition frequency (vertical dotted lines in figure 6.18).
The temperature in these samples is T ′/TF < 0.22 (TF = 1.2 µK), which we realize
with a deep evaporative cooling ramp down to an optical trap with a laser power of
P = 3.8 mW. In such a cold sample all atoms are paired and the atomic transition
frequencies are determined from independent measurements with unpaired atoms. By
employing a weaker evaporative cooling process, we are also able to create samples
that simultaneously contain unpaired and paired atoms. The rf spectra of such samples
show the characteristic double peak structure from the unpaired and paired atoms (see
figure 6.20 middle row) and are further described in the next section where we present
our rf spectroscopy measurements in the BEC-BCS crossover.

The sharp onset of the fractional loss shown in figure 6.18 corresponds to the
threshold condition given in equation 6.9. The full rf spectrum can be understood
in terms of the Franck-Condon overlap of the molecular wave function with the wave
function in the dissociation channel. The wave function of the molecules is essen-
tially determined by the the scattering length a (or the corresponding binding energy
Eb ≈ ~2/ma2). The wave function of the dissocitation channel (1,3) depends on the
kinetic energy Ek and the scattering length a13. This dissociation channel exhibits a
broad Feshbach resonance at 690 G which significantly affects the dissociation line-
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Figure 6.18: Bound-free rf spectra at a magnetic field of 720.13(4) G (a) and 694.83(4) G (b).
The fractional loss in state |2〉 is measured as a function of the applied radio-frequency. The
solid lines are the fit based on equation 6.10. The atomic transition frequencies, which are
measured independently, are indicated by the vertical dashed lines.

shape [Chi05].
In the range of magnetic field we investigate, a13 is much larger than the range of

the van der Waals potential of rc ≈ 30 a0. In this case the lineshape function P(E) is
well approximated by [Chi05]

P(E) ∝
(E − Eb)1/2

E2(E + E′ − Eb)
, (6.10)

where E = hνrf − hν23 and E′ = ~2/ma2
13.

Assuming an exponential decay of the particle number we fit (1− eαP(E)) to the loss
signal, where α depends on the rf power. The fit of this function to the experimental
data is shown in figure 6.18 as the solid lines. From the fit we determine the disso-
ciation threshold and thus the molecular binding energy5. From the two bound-free
rf spectra shown in figure 6.18 in combination with the independent measurement of
the atomic transition frequencies (not shown) we determine the binding energy to be
Eb = h × 134(2) kHz at a magnetic field of 720.13(4) G and Eb = h × 277(2) kHz at
694.83(4) G.

5From the fit we also obtain E′ which could in principle be used to determine interaction parameters
of 6Li as described below. Because in the magnetic field range investigated in this experiment, the value
of E′ � Eb, the fits yield large uncertainties for E′ and the values are therefore not taken into account.
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Figure 6.19: Rf spectrum of the bound-bound transition at 661.44(2) G. The fractional loss in
state |2〉 shows a narrow resonance at the bound-bound transition frequency. From a Lorentzian
fit (solid line) we determine the center frequency to be 83.6645(3) MHz. The inset shows the
whole rf spectrum that includes the fractional loss from the unpaired atoms. The later signal is
used to calibrate the magnetic field based on the Breit-Rabi formula.

Bound-bound transition

A weakly bound molecular state in the (1,3) channel exists for magnetic fields be-
low the corresponding Feshbach resonance at about ∼690 G. At these magnetic fields
(B < 690 G), we can drive the rf transition between the (1,2) and (1,3) molecular states
(see figure 6.17). The transition frequency of this bound-bound transition is given by
the energy difference of the two molecular states. To avoid possible systematic shifts
at these lower magnetic fields [Gup03], we prepare a thermal mixture of atoms and
molecules at a temperature of T ′ ≈ TF (TF = 2.5 µK) by a controlled heating method
(see section 6.3.4 for details).

A typical bound-bound transition signal at a magnetic field of 661 G is shown in
figure 6.19. The resonance frequency of the narrow bound-bound transitions is de-
termined from a fit by a Lorentzian profile. The coexistence of atoms and molecules
in the (1,2) channel allows us to simultaneously determine the molecular and atomic
transition frequencies (see inset in figure 6.19). From an individual fit to the atomic
transition frequency (not shown) we determine the magnetic field using the Breit-Rabi
formula.

It should be noted that for magnetic fields below the Feshbach resonance in the
(1,3) channel the bound-free transition is much weaker. For a detailed description of
the evolution of the rf spectrum when the magnetic field is tuned through the resonance
we refer to the article by Cheng Chin and Paul Julienne [Chi05].
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Precise determination of the ultracold 6Li collision parameters

The molecular level structure near the collision threshold unambiguously determines
the scattering properties of ultracold atoms. As we have seen in the previous sections
we can precisely measure this level structure by rf spectroscopy measurements on
weakly bound molecules. By fitting the corresponding experimental data with a multi-
channel quantum scattering calculation, we were able to obtain a full characterization
of the two-body scattering properties. This work is a collaboration with the theory
group of Paul Julienne at NIST and is published in [Bar04c]. In this section we report
on the main findings.

The precise knowledge of the magnetic field dependent scattering length is impor-
tant for a quantitative comparison of the experimental results with the predictions of
the crossover theory. Of particular importance is the value of the Feshbach resonance
in the (1,2) channel, as it determines the magnetic field value where the strongly inter-
acting quantum gas is expected to show a universal behavior [Hei01, Ho04b]. At the
time our measurement were carried out, the resonance position was expected to be in
the range of magnetic fields between 822 G and 834 G [Sch04]. This range is given
from the observation of the controlled dissociation of 6Li2 dimers at 822 G and studies
of systematical effects that suggest the upper bound of 834 G. Previous measurement
explored the Feshbach resonance in 6Li by measuring inelastic decay [Die02], elastic
collisions [O’H02b, Joc02] and the interaction energy [Bou03], but could not locate
the exact resonance position to within a range between 800 and 850 G.

The experimental data used to calculate the magnetic filed dependent scattering
length of the (1,2), (1,3) and (2,3) channels are summarized in table 6.1. The upper two
rows refer to measurements of the bound-bound transition at magnetic fields of 661 G
(see figure 6.19) and 676 G, respectively. The lower two rows refer to measurements
of the bound-free transition at magnetic fields of 695 G and 720 G, respectively (see
figure 6.18). The calculated values for the correspond transition frequency are reported
in the last column of the table. They are determined by fitting the experimental data to
a multi-channel quantum scattering model.

Because of the high precision of the measured transition frequencies, a careful
analysis of systematic effects is necessary. Possible systematic shifts include differen-
tial light shifts of the two molecular states and density dependent many-body shifts.
In order to characterize these possible systematic errors, we experimentally investi-
gated these shifts by varying the trap depth of the optical potential. In a deeper trap,
both the differential light shifts and mean field shifts are expected to increase. We
repeated the bound-bound and the bound-free rf spectroscopy in traps with different
laser power P between 3.8 mW and 310 mW. Furthermore we repeated the measure-
ments of the unpaired atom-atom transition in traps with different laser power ranging
from 10.5 W down to 0.2 W. In all cases we did not see systematic shifts within our sta-
tistical uncertainty. The measurements show that these systematic shifts do not exceed
the uncertainties given in table 6.1.

Using our experimental data listed in table 6.1 the group of Paul Julienne deter-
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6.3 Observation of the pairing gap by radio-frequency spectroscopy

Table 6.1: Comparison between our experimental and theoretical results. The magnetic field
B is determined from the measured atomic transition frequency ν23. The molecular transition
frequency fmol refers to the resonance peak for bound-bound transitions (upper two rows) or to
the dissociation threshold position for molecular bound-free transitions (lower two rows). The
theoretical values are from the multi-channel quantum scattering calculation that has be carried
out in the group of Paul Julienne. The values in parentheses indicate 1σ uncertainties.

ν23 (MHz) B (G) fmol (MHz)
experiment theory

82.96808(20) 661.436(20) 83.6645(3) 83.6640(10)
82.83184(30) 676.090(30) 83.2966(5) 83.2973(10)
82.66686(30) 694.826(40) 82.9438(20) 82.9419(13)
82.45906(30) 720.131(40) 82.5928(20) 82.5910(13)

mined the singlet and triple scattering length by fitting the data to a multi-channel
quantum scattering model [Sto88]. Using the same interaction potential model as de-
scribed in [O’H02b], they varied the singlet and triplet scattering lengths by making
small variations to the inner wall of the potential to fit our measured binding energy
and energy differences. Once the values for the singlet and triplet scattering length are
specified, all other scattering and bound state properties, including the position of the
Feshbach resonances, are determined.

Fitting the experimental data, the singlet and triplet scattering length are deter-
mined to be as = 45.167(8) a0 and at = −2140(18) a0, respectively. The uncertainty
includes both the uncertainty in the in the measured value of the magnetic field and the
uncertainty in the rf spectrum. These values agree within the uncertainties with previ-
ous determinations as = 45.1591(16) a0 [Sch04] and at = −2160(250) a0 [Abr97].

The calculated positions for the broad s-wave resonances for the (1,2), (1,3) and
(2,3) channels are 834.1(1.5) G, 690.4(5) G and 811.2(1.0) G, respectively. The calcu-
lated scattering lengths for the three different scattering channels are shown in section
3.2.3. These very precise values for the magnetic field dependent scattering lengths
in 6Li are used throughout this thesis and allow us to fully characterize the interaction
strength between the particles in the BEC-BCS crossover.

6.3.3 Rf spectra in the crossover

In this section we employ rf spectroscopy in the BEC-BCS crossover. Our measure-
ments cover the range from weakly bound molecules in the BEC limit to the BCS side
of the Feshbach resonance where no weakly bound molecular level exists. The rf tran-
sition is again driven between the (1,2) and the (1,3) channel by employing a weak rf
pulse of 1 s with an individually adjusted power to obtain a maximum loss of about
40%. We introduce the rf detuning as the difference between the applied rf νrf and the
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Figure 6.20: Rf spectra for various magnetic fields and different degrees of evaporative cool-
ing. The rf detuning is given relative to the atomic transition |2〉 → |3〉. The molecular limit
is realized for B = 720 G (first column). The resonance region is studied for B = 822 and
B = 837 G (second and third column). The BCS side of the crossover is explored at 875 G
(fourth column). The top row shows the signal of unpaired atoms at T ′/TF ≈ 6 (TF = 19 µK).
The middle row shows a mixture of paired and unpaired atoms at T ′/TF = 0.5 (TF = 3.4 µK).
The bottom row shows the signal of paired atoms at T ′/TF < 0.22 (TF = 1.2 µK). The solid
lines are introduced to guide the eye.

atomic resonance frequency δrf (∆ = νrf − ν23).
Figure 6.20 shows the rf spectra in the crossover regime at different temperatures

for various interaction strengths. The molecular regime is realized for a magnetic field
of 720 G. Here the scattering length is about +2200 a0 and the molecular binding en-
ergy amounts to Eb ≈ h×135 kHz= kB×6.5 µK. For the resonance region we examined
two different magnetic fields of 822 G (a ≈ +33000 a0) and 837 G (a ≈ −150000 a0),
respectively6. The data at 875 G explore the regime beyond the resonance where the
scattering length is large and negative (a = −12000 a0).

The spectra in the top row of figure 6.20 are taken in a “hot” thermal sample with a
temperature T ′/TF = 6, where TF = 19 µK. These spectra of unpaired atoms show the
narrow atomic transition line and serve as a frequency reference (see section 6.3.1).

The middle row shows rf spectra taken after moderate evaporative cooling down
to a final laser power of P = 200 mW. The temperature in these samples amounts to
T ′/TF = 0.5 (TF = 3.4 µK). Already at this early stage of our evaporation process

6At the time the measurements were carried out, the exact resonance position was unknown to within
10 G and the two values were considered as the lower and upper bounds.

128
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we observe a clear double-peak structure as a result of the coexistence of unpaired
and paired atoms. In the molecular regime the sharp atomic peak is well separated
from the broad molecular dissociation signal (see also the discussion in the previous
section). With increasing magnetic, i.e decreasing binding energy, the peaks approach
each other and begin to overlap. In the resonance region (B = 822 G and B = 837 G)
we still observe a relatively narrow atomic peak at the original position together with
a broader pair signal. For magnetic fields beyond the resonance we can resolve the
double peak structure up to ∼900 G.

The spectra in the bottom row of figure 6.20 are obtained after deep evaporative
cooling down to a final laser power of 3.8 mW. In these samples with T ′/TF < 0.22
(TF = 1.2 µK) we observe the disappearance of the narrow atomic peak, showing that
all atoms are paired. In the BEC limit the dissociation lineshape from the pairs is iden-
tical to the one observed in the trap at higher temperature and Fermi energy. Here the
localized pairs form molecules with a size much smaller than the mean interparticle
spacing and the dissociation signal is independent of the density. In the resonance re-
gion (B = 822 G and B = 837 G) however, the pairing signal shows a clear dependence
on the density, which becomes even more pronounced beyond the resonance at 875 G.
We attribute this to the fact that the size of the pairs becomes comparable to or larger
than the interparticle spacing. This argument is supported by the narrow width of the
pair signal in this regime. This indicates a pair localization in momentum space to
well below the Fermi momentum ~kF =

√
2mEF and thus a pair size exceeding the

interparticle spacing.

Spectral signatures of pairing have been theoretically considered [Tör00, Bru01b,
Kin04d, Büc04, Die04, Kin04c]. A clear signature of the pairing process is the emer-
gence of a double peak structure in the spectral response. The double-peak structure is
a direct consequence of the coexistence of unpaired and paired atoms. Because energy
is required for pair breaking, the pair related signal is located at higher frequency than
the signal from the unpaired atoms. To understand the spectra, both the homogeneous
line shape of the pair signal [Kin04d, Die04] and the inhomogeneous line broaden-
ing due to the density distribution in the harmonic trap need to be taken into account
[Kin04c]. As an effect of inhomogeneity, pairing due to many-body effects takes place
predominantly in the central high-density region of the trap and unpaired atoms mostly
populate the outer region of the trap where the density is low [Kin04c, Bul03a, Per04a].
In addition to the homogeneous width of the pair breaking signal the spectral compo-
nent of the pairs thus shows a large inhomogeneous broadening. In the two-body
molecular regime the effects of the inhomogeneous density distribution are negligible
and the line shape shows the typical molecular lineshape described in section 6.3.2.
For the unpaired atoms the homogenous width is narrow and the effects of inhomo-
geneity are negligible (see also section 6.3.1). These arguments explain why the rf
spectra show in general a relatively narrow peak from the unpaired atoms together
with a broader peak attributed to the pairs.

129



6 Experiments in the BEC-BCS crossover

6.3.4 Exploring the pairing gap

In this section we present our measurements that investigate the pairing gap in more
detail.

For the following discussion we define the effective pairing gap ∆ν as the frequency
difference between the maximum of the paired signal and the bare atomic resonance
position. According to this definition the effective pairing gap ∆ν in the low density
molecular limit is directly given by the maximum of the molecular dissociation signal.
From the lineshape function P(E) (see equation 6.10) the signal maximum is calculated
to be h∆ν = ζEb, where ζ depends on the ratio Eb/E′ and varies between the two limits
ζ = 1 and ζ = 4/3 for E′ � Eb and E′ � Eb, respectively.

Pairing gap in the crossover regime

To qualitatively investigate the crossover from the two-body molecular regime to the
many-body regime, we measure the pairing energy in a magnetic field range between
720 and 905 G. The measurements are performed after deep evaporative cooling to
T ′/TF < 0.22 for two different Fermi temperatures, TF = 1.2 µK and TF = 3.8 µK.
These two different Fermi energies are obtained by recompressing the trap to different
laser powers of P = 34.4 mW and P = 932 mW, respectively. Figure 6.21 shows the
measured pairing gap ∆ν for the two Fermi temperatures as a function of the magnetic
field. In the low density molecular limit ∆ν can be calculated on the basis of the
lineshape function given in equation 6.10 and the most recent data for the scattering
length a and a13 [Bar04c] (solid line in figure 6.21). For low magnetic field the pairing
gap simply reflects the molecular binding energy. With increasing magnetic field, in
the BEC-BCS crossover, the pairing gap shows an increasing deviation from this low
density molecular limit and evolves into a density dependent many-body regime where
h∆ν < EF.

A comparison of the pairing energies at the two different Fermi energies provides
further insight into the nature of the pairs. Figure 6.21 shows the ratio of the pairing
gap measured at the two Fermi energies. In the BEC limit the pairing energy is solely
determined by the binding energy and does not depend on the Fermi energy, i.e. the
density. In the BEC-BCS crossover the pairing energy becomes density dependent.
On resonance a universal regime is realized and the Fermi energy is the only relevant
energy scale. In the vicinity of the resonance at 837 G we indeed observe the effective
pairing gap to increase linearly with the Fermi energy. We find a corresponding relation
h∆ν ≈ 0.2EF (see also the discussion below). Beyond the resonance the system is ex-
pected to change from a resonant to a BCS-type behavior. Here we find the the pairing
energy to depend more strongly on the Fermi energy and the corresponding gap ratio
further increases. We interpret this observation in terms of the increasing BCS char-
acter of the pairing for which an exponential dependence h∆ν ∝ EF exp (−π/2kF|a|) is
expected (see section 2.2.2).
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Figure 6.21: Measurements of the effective pairing gap in the BEC-BCS crossover after deep
evaporative cooling at two different Fermi temperatures, TF = 1.2 µK (solid symbols) and
TF = 3.8 µK (open symbols). The low density limit for the effective pairing gap is shown by
the solid line and is essentially given by the molecular binding energy. The ratio of the two
measured pairing gaps at the two different Fermi energies is shown in the inset.

Temperature dependence of the pairing gap

To study the temperature dependence of the pairing gap in the strongly interacting
Fermi gas, we apply a controlled heating method that allows us to keep all other
parameters of the sample constant. After production of a pure molecular BEC with
T ′/TF < 0.22 in the usual way, we first adiabatically increase the trap laser power
to P = 34 mW and then apply an adiabatic magnetic field ramp to B = 837 G. This
results in a Fermi temperature of TF = 1.2 µK. We then increase the trap laser power
by a factor of nine (TF increases to TF = 2.5 µK) using exponential ramps of different
duration. For fast ramps, this recompression is nonadiabatic and increases the entropy.
By variation of the ramp time we investigate a range from our lowest temperatures of
T ′/TF < 0.22 K to T ′/TF = 0.8. The emergence of the pairing gap (marked by the
arrow) with decreasing temperature is clearly visible in the rf spectra shown in figure
6.22.

The marked increase of the pairing gap with decreasing temperature is in agree-
ment with theoretical expectations for the pairing gap energy [Che04]. In figure 6.23
we show the measured pairing gap as a function of the entropy per particle calcu-
lated from the measured temperature T ′/TF [Car04]. The figure indicates that the gap
emerges below an entropy per particle of S ≈ 15kB. For our deep evaporative cooling
the entropy is S ≈ 0.2kB, which is more than a factor of 10 below the value where the
gap first appears.
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Figure 6.22: Rf spectra at 837 G and TF = 2.5 µK for different temperature T ′ adjusted by
controlled heating. The solid lines are fits to guide the eye, using a Lorentzian curve for the
atom peak and a Gaussian curve for the pair signal. The vertical dotted line marks the atomic
transition line and the arrow indicates the effective pairing gap ∆ν.

Rf spectra of a universal quantum gas

On resonance the scattering cross section is unitarity limited and a universal quantum
gas is realized [Ho04c]. As discussed in section 2.2.3 and 6.1.2 the only relevant
energy scale in such a gas is the Fermi energy and the mean field potential as well as
the pairing gap become proportional to the Fermi energy with different proportionality
constants [Hei01].

Our measurements of the effective pairing gap at 837 G show the expected linear
dependency of the pairing gap on the Fermi energy. From our experimental data we ob-
tain γ ≈ 0.1 where γ = ∆/EF. The theoretical calculations for a uniform system predict
a somewhat stronger scaling. For example the BEC-BCS theory for a homogeneous
gas predicts γ = 0.53 [Per04b]. A very similar value of γ ≈ 0.54 has been predicted
from a quantum Monte Carlo study [Car03]. An estimate can also be obtained by ex-
trapolating the gap equation (see equation 2.39) for a uniform gas to akF → ±∞ which
results in γ = 0.49 [Gor61].
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Figure 6.23: Effective pairing gap at a magnetic field of 837 G as a function of the calculated
entropy per particle. The lowest entropy of S ≈ 0.2kB reached after deep evaporative cooling,
is more than a factor of 10 below the value were the pairing gap emerges.

To further investigate the unitarity limited quantum gas we compare rf spectra of
a universal gas realized at 837 G. The spectra are measured at different Fermi ener-
gies ranging from EF = kB × 1.2 µK up to EF = kB × 3.8 µK. Starting point for these
experiments is a molecular BEC obtained after full evaporation down to a final laser
power of 3.8 mW (T ′/TF < 0.22 ). In a first step we vary the Fermi energy by adiabat-
ically increasing the trap laser power to an intensity of up to ∼1 W which corresponds
to a Fermi temperature of TF = 3.8 µK. Following this, we adiabatically change the
magnetic field from the production field at 764 G to B = 837 G.

In figure 6.24 we present four rf spectra taken at four different Fermi energies in the
range from EF = kB × 1.2 µK to EF = kB × 3.8 µK. The rf detuning of each spectrum is
normalized to the corresponding Fermi energy and the maximum fractional loss in each
spectrum is normalized to one. The spectra scale with the Fermi energy as predicted for
a universal quantum gas. The rf spectrum taken in the strongest recompressed trap at
P = 910 mW (TF = 3.8 µK), indicates small derivations from the universal lineshape,
which we attribute to heating effects in the optical dipole trap. In fact, as we have seen
in the previous section, the pairing gap decreases with increasing temperature (see
figure 6.22). This argument is further supported by the observation of a small atomic
peak in the corresponding spectrum.

Our measurements at 837 G show the expected universal behavior and confirm that
the pairing process on resonance is a many-body effect. The measurements presented
here are the first experimental investigation of the universal behavior of a unitarity
limited quantum gas and more quantitative investigations will follow [Alt].
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Figure 6.24: Universal rf spectra of atom pairs at B = 837 G measured at four different Fermi
energies EF/kB = 1.2, 1.7, 2.5 and 3.8 µK, respectively. The rf detuning of the individual
spectrum is normalized to EF/h where EF is the corresponding Fermi energy. In each spectrum
the maximum fractional loss in state |2〉 is set to one.

6.3.5 Comparison with calculated rf spectra of fermionic superflu-
ids

The conditions of our experiment were theoretically analyzed in the group of P. Törmä
for the case of resonant two-body interactions [Kin04c]. They calculated the response
defined as I(δ) = <Ṅ3>, where N3 is the number of atoms in state |3〉 and δ is the
rf detuning. For details of the calculation we refer to the corresponding article of J.
Kinnunen et al. [Kin04c].

The calculated rf spectra are in qualitative agreement with our experimental re-
sults and demonstrate how a double peak structure emerges as the gas is cooled below
T ′/TF ≈ 0.5 and how the atomic peak disappears with further decreasing temperature
(figure 6.25). A quantitative comparison, however, shows some discrepancies. For our
lowest temperatures we observe a shift of the pair peak of about 0.2 EF which is similar
to 0.3 EF obtained from the calculations for T < 0.1 TF. The width of the pair signal
is determined by the gap and amounts to 0.3 EF and 0.4 EF from our measurement and
from the calculations, respectively. To estimate the experimental uncertainty, we note,
that the largest contribution arises from the calibration of the atom number (see section
4.5). The 50% uncertainty in N results in an uncertainty of the Fermi energy of about
17%, which is smaller than the difference between the theoretical predictions and our
experimental results.

The calculation predicts a critical temperature in the center of the trap of Tc ≈ 0.3TF
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Figure 6.25: Comparison between our measured (left) and the calculated rf spectra by J. Kin-
nunen et al. using the parameters of our experiment [Kin04c] (right). The calculated spectra
show the emergence of the gap (marked by the arrow) and the disappearance of the free-atom
peak with decreasing temperature. The calculated critical temperature in the trap center is
Tc ≈ 0.3. Our observation of the disappearance of the free atom signal at T ′/TF ≤ 0.22 corre-
sponds to a temperature that according to the calculation is well below the critical temperature
for a phase-transition to a superfluid.

and they estimate that in our case Tc is in the range of 0.2 < Tc/TF < 0.25. As already
mentioned our temperature T ′ is determined in the BEC limit and the actual tempera-
ture T is expected to be reduced as a result of entropy conservation during the adiabatic
passage to the unitarity limit. As shown by J. Kinnunen [Kin04c], this argument is
consistent with the observation that in the calculated spectra the pair signal appears at
T ≈ 0.35 TF and is clearly visible T ≈ 0.2 TF while in our experiment it appears at the
higher BEC limit temperatures T ′ ≈ 0.8 TF and is clearly visible at T ′ ≈ 0.75 TF. Ac-
cording to the calculation the atomic peak disappears at temperatures well below the
critical temperature for a phase-transition to a superfluid. A recent theoretical study of
the BCS-BEC crossover at finite temperature for trapped fermions predicts the phase
transition to occur at a temperature only ∼30% below the temperature where pair for-
mation sets in [Per04a].
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6.3.6 Summary and conclusion
Applying radio-frequency spectroscopy on ultracold, weakly bound molecules allows
us to precisely determine the molecular binding energies and the energy splitting be-
tween two molecular states. In combination with a multi-channel quantum Monte
Carlo calculation employed by the theory group of Paul Julienne this allowed us to
precisely determine the ultracold scattering properties of 6Li.

The high energy resolution of the radio-frequency spectroscopy measurements en-
abled us to observe the pairing gap in a strongly interacting Fermi gas. The rf spectra
taken in the BEC-BCS crossover show a smooth change from the two-body molecular
regime to the many-body regime. The observed temperature dependence of the pairing
gap in the strongly interacting Fermi gas regime is in agreement with theoretical ex-
pectations. Furthermore the pairing gap of a unitarity limited quantum gas is observed
to scale with the Fermi energy and shows the predicted universal behavior.

Our measured rf spectra for a strongly interacting Fermi gas are found to be in
agreement with theoretical predictions considering resonant two-body interactions.
We observe the pairing in the strongly interacting regime already after moderate evap-
orative cooling. With much deeper cooling the signal of the unpaired atoms disappears
from our spectra which shows that the pairing takes place also in the outer region of the
trap where the density and the Fermi energy are low. Thus our result strongly suggests
that in the central region of our trap a resonance superfluid is formed.
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Chapter 7

Outlook

Our experiments provide firm evidence for the superfluidity in a strongly interact-
ing Fermi gas. However, the direct observation of the superfluidity has not yet been
achieved and is the major goal of further experiments. The study of rotational phe-
nomena, in particular the investigation of quantized vortices, offers unique access to
probe superfluidity in experiments in the BEC-BCS crossover.

Vortices

A direct consequence of superfluidity is that the system cannot rotate as a normal
fluid. In contrast to a normal fluid, which in thermal equilibrium will rotate like a
solid body, a superfluid will not circulate unless the frequency is larger than some
critical frequency. Moreover, when the superfluid does circulate it can only do so by
forming vortices in which the condensate density goes to zero and for which the cir-
culation of the velocity field evaluated over a closed contour around the vortex core
is quantized [Pit03]. Therefore the observation of quantized vortices presents a direct
and unambiguous evidence for superfluidity. Quantized vortices were observed in su-
perconductors [Tin66], superfluid liquid helium [Don91] and in atomic Bose-Einstein
condensates [Mat99, Mad00a, AS01, Hod01].

Our approach to produce a vortex will be the creation of an elliptic potential that
rotates in the radial plane in order to create the necessary angular momentum for the
formation of a vortex. The rotating potential will be created by a fast spatial modu-
lation of our optical dipole potential. To spatially modulate the optical potential we
will use acousto-optical modulators. By fast modulation, with modulation frequencies
large compared to the radial trap frequency, we can “write” time averaged motional
potentials.

To detect the vortices a further imaging system is currently being installed along
the symmetry axis of the trap, which is defined by the propagation direction of the
trapping laser beam. Similar to the experiments performed with atomic BECs at the
ENS in Paris, we will detect the vortex using time-of-flight images at high magnetic
field after releasing it from the optical dipole trap [Mad00a] (see also figure 7.1).
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linear modulation of a cylindrically symmetric laser beam in x-direction will 
produce an effective ellipse elongated along the x-axis. By controlling the x- and 
y-axes in an appropriate way one can write a rotating ellipse. Such a system is 
very versatile and can also produce other interesting potential shapes like quartic 
potentials and double-well potentials and it can be used to excited collective 
excitation modes.  
For detection purposes we will install an optical imaging system along the trap 
axis, defined by the propagation direction of the trapping laser beam. A sensitive 
slow-scan CCD camera will be used for absorption imaging. For the 
combination of the intense trapping beam (1064nm) with the weak probe beam 
(760nm) we will use special dichroic mirrors.  
 

 
 

 
 
 
 

 
 
We will detect the vortices by standard time-of-flight images after release of the 
sample from the trap. The signature for vortices is the occurrence of empty 
vortex cores (see Fig. 2 for observations on atomic BEC). In the molecular BEC 

Fig. 1: Illustration of the planned setup. An acousto-optical scanning system will 
allow us to write time-averaged radial potentials (rotating ellipses for the 
creation of vortices, double-well potentials, etc.). A new optical imaging system 
will be installed to detect the radial response of the ultracold gas both 
horizontally and vertically.  

Fig. 2: Vortices observed for a rotating 
atomic BEC at ENS Paris [Mad00] in a 
trap geometry similar to our 
experiment. The creation of vortices in 
a molecular BEC will serve as the 
starting point for the exploration of 
vortices in the BEC-BCS crossover. 

Figure 7.1: Vortices observed in a rotating atomic BEC at the ENS in Paris [Mad00b] with a
trap geometry that is similar to our system. In our experiment we plan to use vortices created
in the molecular BEC regime to probe the superfluidity in the BEC-BCS crossover.

In the molecular BEC regime the creation and detection of the vortices should be
rather straightforward as the macroscopic behavior of the gas should be essentially
the same as in case of an atomic BEC. The density of the condensate in the center
of the vortex is zero and the region near the axis of the vortex where the density is
significantly influenced is on the order of the healing length ξ = 1/

√
8πna [Pit03].

In the molecular BEC regime the healing length will be very similar to the value in
the experiments at the ENS (ξ = 0.2 µm) [Mad00a]. Furthermore, their trap geometry
is similar to our system and we therefore expect a similar visibility of the vortex as
displayed in figure 7.1. However, in the strongly interacting regime we expect a loss
of visibility due to the shrinking of the healing length down to the value of the Fermi
wave number 1/kF [Bul03b].

In a first series of experiments we plan to create vortices in the molecular BEC
regime. After the creation we will convert the system into the strongly interacting
regime with variable coupling strength and then back convert into the BEC regime to
detect the survival of the vortices. An intriguing question is at which coupling strength
the superfluidity breaks down, and whether this point corresponds to the observed
break down of the hydrodynamic description in our collective mode measurements.

New and refined collective mode measurements

The new axial imaging system will provide better knowledge of the radial trap fre-
quency. We therefore plan to further investigate the radial breathing mode that showed
an apparent break down of the hydrodynamic description on the BCS side of the reso-
nance.

Moreover the new acousto-optical modulators will allow us to excite higher radial
modes and thus opens up new possibilities to study radial collective modes in the BEC-
BCS crossover. In particular we plan to excite the radial quadrupole mode. While
the radial breathing mode is a radial monopole (or compressional) mode, the radial
quardupole mode is a radial surface mode and is therefore insensitive to the underlying
equation of state. The investigation of this mode will thus provide information about
the hydrodynamicity of the system. Of particular interest is the investigation of this
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mode in the transition region from hydrodynamic to collisionless behavior.
Due to the predicted low visibility of the vortex in the strongly interacting regime

the direct detection of vortices in time of flight measurements will be difficult (see
above). However the existence of the vortex could be revealed by measurements of the
angular momentum through the splitting of the quadrupole frequencies in the presence
of the vortex [Zam98, Bru01c]. The use of such a surface-wave spectroscopy has
already been demonstrated experimentally in atomic BECs [Che00, Hal01a, Hal01b].

Extension of the pairing gap measurements in the BCS regime

We plan to further investigate the pairing gap on the BCS side of the resonance. Of
particular interest is the region where we observe the abrupt transition from a hydrody-
namic to a collisionless behavior in the collective mode spectrum. This region will be
investigated by simultaneously investigating the rf-spectrum and the collective mode
frequency and will allow us to check our hypothesis that the change in the spectrum is
related to pair breaking.

Moreover the acousto-optical scanning system will potentially allow us to create
box-like potentials. In such a potential the inhomogeneity is reduced with respect to
the harmonic potential and consequently the pairing gap will emerge in a much more
pronounced way. We hope to perform quantitative studies of the pairing gap in these
box-like potentials.

Interference and Diffraction experiments

To gain more insight into the properties of a deeply degenerate Fermi gas in the BEC-
BCS crossover we plan to investigate the matter-wave interference pattern. Such
matter-wave interference patterns were observed in atomic BECs and allow to test
macroscopic first order coherence properties [And97]. Similar to the recent atom in-
terferometry with a BEC [Shi04], we hope to use our acousto-optical modulation sys-
tem to smoothly convert our single well potential into a double well potential. As in
reference [Shi04] the two condensates will then be released from the trap and overlap
during the expansion.

On a longer time scale we plan to examine Bragg diffraction [Ste99] of the gas in
the BEC-BCS crossover. The observation of the fringe spacing in the crossover will
provide us with a new possibility to distinguish between paired and unpaired atoms.
Similar to experiments with atomic BECs, we plan to perform Bragg diffraction on a
stationary cloud with a pulsed standing wave [Ovc99].

Optical lattices

A strongly interacting Fermi gas in a three dimensional optical lattice will open the
door to a widely unexplored field. In bosonic systems experiments in optical lattices
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are well established [And98, Gre02]. Such optical lattices represent an ideal envi-
ronment to model solid-state systems and to study related many-body quantum phe-
nomena. For example fermionic atoms in an optical lattice are predicted to undergo a
phase transition to a superfluid state at a dramatically increased transition temperature
[Hof02]. The experimental investigation of Fermi gases in optical lattices has just be-
gun [Mod03, Stö04] and many more fascinating experiments can be expected within
the near future.
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Appendix A

Atomic level structure of 6Li

Most of the properties of 6Li are determined from the single 2S 1/2 valence electron.
The coupling of the electron spin with the nuclear spin of I = 1/2 results in a hyperfine
splitting of the ground state into states with total angular momentum F = 1/2 and
F = 3/2, respectively. The states are split by ∆E0 = 228.2052590 MHz [Van89].

The first excited state of 6Li is split by the L ·S coupling of the angular momentum
L and the electronic spin S. The two states 2P1/2 and 2P3/2 states are split by about
10 GHz. For laser cooling we use the D2 line that connects the 2S 1/2 ground state
and the 2P3/2 excited state and has a transition wavelength of 670.78 nm [Van89]. In
contrast to the ground state, the hyperfine splitting of the excited state is smaller than
half the natural linewidth of 5.9 MHz and different lines are thus unresolved. This is
important for the operation of the MOT as explained in detail in [Joc00, Joc04].

Applying an external magnetic field B results in the Zeeman shift of the ground
and excited states (see figure A.1). For the ground state, the magnetic field dependent
energies of the hyperfine states can be calculated by the Breit-Rabi formula [Bre31]

E(B,mF) = −
1
6
∆E0 + mFgIµBB ±

∆E0

2

(
1 +

2
3

mF x + x2
)1/2

, (A.1)

where x = (gJ − gI)µBB/∆E0 with gJ = 2.002301 and gI = 0.447654 × 10−3 [Van89].
For states with total angular momentum of F = 3/2 and F = 1/2 the + and − sign have
to be used, respectively. In the high magnetic field range (B� 100) the nuclear and the
electronic spin decouple and the atom is in the Paschen-Back regime. Depending on
the orientation of the electronic spin, the atoms are either high field seekers (ms = 1/2)
or low field seekers (ms = −1/2) with a magnetic moment of about µB. The nuclear
spin I = 1 (mI = −1, 0, 1) leads to a splitting of the electronic states by approximately
80 MHz. A convenient notation of the different states is to label them with |1〉, |2〉 . . . |6〉
in order of increasing energy (see figure A.1).

In the magnetic field range of relevance for this experiment the magnetic field
dependent energy splitting of the excited state is given by [Geh03a]

∆E =
µB

~
(gJmJ + gI MI)B. (A.2)
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Figure A.1: Magnetic field dependent energy level structure of the 2S 1/2 ground state and
the 2P3/2 excited state of 6Li. In the excited state the hyperfine contribution and the nuclear
contribution have been neglected as their effects are only relevant on scales below the linewidth
of the optical transition at λ = 671 nm of 5.9 MHz. As a result each line in the excited state is
three fold degenerate.

The corresponding states are arranged into spectroscopic triplets. Since the electronic
g-factor of the excited state gJ = 1.3335 [Ari77] is much larger then the nuclear g-
factor gI , the nuclear contribution can be neglected at large magnetic field and the
energies are well approximated by

∆E = µBgJmJ B/~. (A.3)

In our experiments we use the closed σ−-transition from the 2S 1/2,mJ = −1/2,mI

state to the 2P3/2,mJ = −3/2,mI excited state (mI = −1, 0, 1) to image the atoms at
high magnetic field. Here the splitting between the different hyperfine ground states
is about 80 MHz and allows for a state selective detection of the different hyperfine
states.
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Appendix B

Non linear corrections to the collective
frequencies

The scaling of the lowest-order anharmonicity corrections in our cigar shaped trap was
derived for us by Sandro Stringari [Str04b]. Here we briefly report on the results of his
analysis.

The starting point of his analysis is the following radial potential with

Vext(r) = −V0 exp (−mω2
⊥r2/2V0) (B.1)

in addition to a harmonic potential in the axial direction z with trapping frequency ω‖.
In the above equation V0 denotes the potential depth in the center of the trap and ω⊥ is
the radial trap frequency. Expanding the radial potential to 4-th power in r leads to

Vext(r) = −V0 +
1
2

mω2
⊥r2 −

1
8V0

m2ω4
⊥r4 (B.2)

Radial dipole mode

The frequency of the dipole mode is obtained by ω2
D =

1
m<∂

2
r r2Vext> and thus

ωD = ω⊥

(
1 −

1
2

mω2
⊥<r2>

V0

)
(B.3)

This expression is expected to be valid up to the first non harmonic correction [Str04b].
Using the relation ω2

⊥<r2> = 2ω2
‖
<z2> the term responsible for the anharmonicity

effect can be directly determined by in situ measurements of <z2>.

Radial breathing mode

From a scaling ansatz in the radial direction one finds analytic results, which are ex-
pected to be exact for an elongated trap and up to first non harmonic corrections in
the external potential. The results for the three relevant cases of a molecular BEC, a
unitarity limited quantum gas and an ideal Fermi gas are:
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• molecular BEC

ωbreath = 2ω⊥

(
1 −

7
12

mω2
⊥<r2>

V0

)
(B.4)

• unitarity limited quantum gas

ωbreath =

√
10
3
ω⊥

(
1 −

16
25

mω2
⊥<r2>

V0

)
(B.5)

• ideal Fermi gas

ωbreath = 2ω⊥

(
1 −

3
5

mω2
⊥<r2>

V0

)
(B.6)

In the derivation of the above equations the following relations have been used that are
obtained using Thomas-Fermi profiles: in the BEC <r4>/(<r2>)2 = 14/9 and in the
unitarity and ideal Fermi gas limit <r4>/(<r2>)2 = 8/5.

The value of the ratio mω2
⊥<r2>/V0 varies in the different regimes. In the unitarity

limit one finds mω2
⊥<r2>/V0 =

1
2 (1 + β)1/2EF where EF = ~ωho(3N)1/3 is the Fermi

energy of a noninteracting Fermi gas with N atoms and β is the universal parameter
(see section 2.2.3).
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Magnetic Field Control of Elastic
Scattering in a Cold Gas of Fermionic
Lithium Atoms
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We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the
presence of magnetic fields up to 1.5 kG by measuring evaporative loss. Our experiments confirm the
expected magnetic tunability of the scattering length by showing the main features of elastic scattering
according to recent calculations. We measure the zero crossing of the scattering length at 530(3) G
which is associated with a predicted Feshbach resonance at �850 G. Beyond the resonance we observe
the expected large cross section in the triplet scattering regime.

DOI: 10.1103/PhysRevLett.89.273202 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

In an ultracold atomic gas, the s-wave scattering length
characterizes the elastic interactions and has a profound
effect on the physical behavior. The scattering length can
be conveniently tuned by using a magnetic field when a
Feshbach resonance is present. For bosonic atoms, such
resonances have been observed [1–3], and they have found
particular applications for attainment and manipulation
of a Bose-Einstein condensate in 85Rb [4,5] and for the
production of bright solitons in bosonic 7Li [6,7].

For fermionic gases, Feshbach resonances in s-wave
scattering of atoms in different spin states are of great
interest to experimentally explore the rich physics of
paired fermionic gases [8–11]. For obtaining superfluidity
in a Cooper-paired gas, magnetic tuning allows one to
raise the critical temperature [8] from values far below
the Fermi temperature into a region that seems accessible
with current experimental methods. With resonantly
tuned interactions the fermionic superfluid is predicted
[9,10] to perform a crossover from a superfluid of weakly
coupled Cooper pairs to a Bose-Einstein condensate of
strongly coupled molecules. Feshbach tuning also offers a
possible way to detect this molecular coupling through
oscillations induced by magnetic-field transients [10]
analogous to a recent observation with coupled bosonic
atoms [5]. Experimental control of different pairing re-
gimes thus represents an intriguing prospect of a fer-
mionic gas with magnetically tuned interactions.

A narrow Feshbach resonance between two different
spin states of fermionic 40K was recently observed by
Loftus et al. [12]. The other fermionic species currently
used in several experiments, 6Li, is predicted to a show a
Feshbach resonance with strong modifications of s-wave
interactions in a very wide magnetic-field range [13–15].
At relatively small fields, this dependence was recently
used by Granade et al. to obtain a sufficient scattering

cross section for the all-optical production of a degenerate
Fermi gas of lithium [16].

In this Letter, we experimentally explore the magnetic
tunability of elastic scattering in an optically trapped spin
mixture of fermionic lithium atoms in high magnetic
fields up to 1.5 kG. Our results verify the expected de-
pendence of s-wave interactions in the whole magnetic-
field range of interest [13–15]. As a particular feature
associated with the predicted Feshbach resonance [13],
we observe the zero crossing of the scattering length at a
field of 530 G. The exact location of this feature is of great
interest as a sensitive input parameter to better constrain
the uncertainty in the molecular potentials for more
accurate theoretical calculations of the scattering proper-
ties of 6Li. Our measurements of elastic collisions are
based on evaporation out of an optical dipole trap.

The scattering properties in different spin mixtures of
fermionic lithium atoms were theoretically investigated
by Houbiers et al. [13], Kokkelmans et al. [14], and
Venturi and Williams [15]. Magnetic tunability, of par-
ticular interest for Cooper pairing in a Fermi gas [8,9],
was predicted for the stable combination of the two low-
est states j1i and j2i; at low magnetic field these states
correspond to F � 1=2, mF � �1=2, and mF � �1=2,
respectively. Most prominently, a broad Feshbach reso-
nance at �850 G is expected to mark the transition from
the low-field scattering regime to the high-field region.
As a precursor of the Feshbach resonance, the s-wave
scattering length a crosses zero in the range between
500 and 550 G. Beyond the resonance, scattering in
higher fields is dominated by the triplet potential with a
very large and negative scattering length of �2200a0,
where a0 is the Bohr radius. The available theoretical
data [13–15] show the same behavior for a�B� within
some variations due to the limited knowledge of the
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molecular interaction parameters. Figure 1(a) illustrates
these predictions for the scattering length a�B� by a
corresponding model curve that approximates the results
of Refs. [13–15].

In a cold gas at finite temperature the cross section for
elastic scattering of nonidentical particles is unitarity
limited to a maximum value of �max � 4�=k2, where
k � mv=�2 �h� is the wave number corresponding to a
relative velocity v and a reduced mass m=2. Taking into
account the B-field dependent scattering length a�B� and
the unitarity limit, the resulting B-field dependent cross
section can be written as � � 4�a2=�1� k2a2�. For the
considered j1i � j2i spin mixture of 6Li the expected
behavior of the cross section is shown in Fig. 1(b) for
the example of a wave number k � �300a0�

�1 close to our
experimental conditions. Most notably, as a consequence
of the unitarity limit in combination with the very large
scattering length for high magnetic fields, the Feshbach
resonance does not appear as a pronounced feature in the
cross section. The zero crossing of the scattering length,
however, leads to a vanishing scattering cross section and
thus shows up as a manifestation of the resonance.

Our dipole trap [17] makes use of the enhancement of
the laser intensity inside a linear optical resonator to
create a large and deep trapping volume for lithium
atoms. The power provided by a 2-W Nd:YAG laser
(Innolight Mephisto-2000) at a wavelength of 1064 nm
is enhanced by a factor of 120 to create a far red-detuned
1D optical lattice trap with an axial period of 532 nm and
a transverse 1=e radius of 115 m. The maximum trap
depth is of the order of 1 mK. To vary the trap depth the
resonator-internal power is servo-controlled by an
acousto-optical modulator in the incident laser beam.
From a standard magneto-optical trap (MOT) operated
with diode lasers we typically transfer 5	 105 6Li atoms
into roughly 1000 individual wells at a temperature of

�400 K. The resulting peak density is �1:5	
1011 cm�3. By extinguishing the repumping light of the
MOT 1 ms before the main trapping light is turned off, all
atoms are pumped into the two states j1i and j2i to create
a 50-50 spin mixture [16].

The magnetic field is produced by a pair of water-
cooled coils outside of the glass vacuum cell of the trap.
At a maximum continuous operation current of 200 A the
coils produce a magnetic field of 1.5 kG with a curvature
of only 75 G=cm2 along the symmetry axis; the corre-
sponding power dissipation is 6 kW. The setup allows for
a maximum ramp speed of 5 G=ms within the full range.
The magnetic field is calibrated by radio-frequency in-
duced transitions from j2i to the state that at B � 0
corresponds to F � 3=2, mF � �1=2. The latter is un-
stable against inelastic collisions with j2i which leads to
easily detectable loss. With a fit to the Breit-Rabi formula
we obtain a calibration of the magnetic field to better than
1 G over the full range.

The basic idea of our measurements is to observe
elastic collisions through evaporative loss at a variable
magnetic field [18]. The method is particularly well suited
for measuring the position of a resonance by locating the
corresponding zero crossing of the scattering length.With
this sensitive experimental input for theoretical calcula-
tions, as is readily available in our case [13–15], precise
knowledge of the magnetic-field dependent scattering
length can be obtained. Our dipole trap is loaded under
conditions where the effective temperature T of a trun-
cated Boltzmann distribution [19] is only slightly below
the trap depth U. A strongly nonthermal distribution is
thus created with a small truncation parameter � � U=
kBT 
 2. The thermal relaxation resulting from elastic
collisions then leads to rapid evaporative loss and cooling
of the sample, i.e., an increase of �. The trap depth can be
kept constant to study plain evaporation or, alternatively,
ramped down to force the evaporation process.

In a series of plain evaporation experiments performed
at a constant trap depth of 750 K we measure evapo-
rative loss over the maximum accessible range of mag-
netic fields up to 1.5 kG. After a fixed holding time the
remaining atoms are retrapped into the MOT and their
number is measured via the fluorescence signal by a
calibrated photodiode. The signal is recorded after hold-
ing times of 1 and 3 s corresponding to the time scale of
evaporation. These holding times are short compared
with the rest-gas limited lifetime of 30 s. Figure 2 shows
the result of 1000 different measurements obtained in an
acquisition time of 6 h. The data points are taken in a
random sequence for 31 magnetic field values equally
distributed over the full range. Data points for 1 and 3 s
are recorded alternatingly. This way of data taking en-
sures that the signal is not influenced by residual long-
term drifts of the experimental conditions.

The observed evaporation loss in Fig. 2 shows a pro-
nounced dependence on the magnetic field, which we

FIG. 1. (a) Model curve approximating the results of [13–15]
for the s-wave scattering length of 6Li atoms in the two lowest
spin states versus magnetic field. (b) Corresponding behavior of
the scattering cross section at a finite collision energy with a
relative wave number of k � �300a0�

�1.
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compare with the expected cross section for elastic colli-
sions ejecting atoms out of the trap. Figure 1(b) displays
the cross section for k � �300a0�

�1, which corresponds to
a collision energy of about half the trap depth and thus to
the relevant energies for evaporating collisions. After
being very small at low magnetic fields, the observed
loss increases for fields up to �350 G where the expected
local maximum of evaporation shows up. The loss then
decreases and disappears at about 530 G in agreement
with the predicted zero crossing of the scattering length.
Here the slight observed loss in the 1 s curve is explained
by the finite ramp time of the magnetic field. In the 100 ms
ramping time some evaporation does already take place.
At 530 G the decrease of the trapped atom number
between 1 and 3 s is fully explained by rest-gas losses
without any further evaporation. For higher magnetic
fields evaporative loss rapidly rises until it levels off at
about 700 G. Up to the maximum attainable value of
1.5 kG high evaporation loss is observed. A slight de-
crease of the atom number for fields exceeding 1 kG
occurs which we attribute to technical reasons; we ob-
serve an increasing noise for currents higher than
�130 A in the error signal of the resonator lock. The
relatively large and constant evaporative loss for fields
exceeding 700 G is consistent with the predicted behavior
of the cross section.

The evaporative cooling effect is confirmed by mea-
suring the change of the truncation parameter � after 3 s
of trapping at selected values of the magnetic field. For
thermometry we turn off the magnetic field to avoid fur-
ther elastic collisions and adiabatically lower the trap
depth in a 1-s exponential ramp. The fraction of remain-
ing atoms as a function of the relative depth then provides
a good measure of �. At the zero crossing at 530 G we
observe only a slight increase of � to a value of 2.3(3)
which is explained by the unavoidable evaporation during

the magnetic-field ramps. At 340 G close to the local
maximum of jaj we find an increase of � to 4.2(3) as a
clear evidence of evaporative cooling. At 720 G, i.e., in
the case of a large positive scattering length, a higher
value of 5.5(4) is measured showing deeper evaporative
cooling. Essentially the same � of 5.3(4) is obtained at
B � 1290 G where scattering takes place in the triplet-
dominated regime with a very large negative scattering
length.

We measure the minimum-loss feature in a closer range
of magnetic fields to precisely determine the value of the
magnetic field at which the zero crossing of scattering
length occurs. The main data points in Fig. 3 are obtained
with 500 individual measurements at a holding time of 3 s
with the magnetic field randomly varied between 30 val-
ues in an interval between 370 and 670 G; the data shown
in the inset are obtained with 1000 measurements in the
very narrow range between 520 and 544 G. The results
allow us to determine the B field for minimum evapo-
rative loss, and thus the zero crossing of the scattering
length to 530(3) G [20].

Forced evaporation measurements provide complemen-
tary data to plain evaporation and allow us to rule out a
significant role of inelastic collisions.When the trap depth
is ramped down, elastic collisions reduce trap loss in con-
trast to increased loss at constant trap depth. This can
be understood by the spilling loss of energetic particles
[19]: Without elastic collisions the most energetic par-
ticles are spilled out of the trap when its depth is reduced.
With elastic collisions the evaporative cooling effect de-
creases the temperature and thus reduces the spilling loss.

In our forced evaporation measurements we reduce the
trap depth in 10 s to 20% of its initial value in an
exponential ramp and measure the number of remaining
atoms; the results are displayed in Fig. 4. A minimum

FIG. 3. Measurements on plain evaporation in magnetic fields
close to the zero crossing of the scattering length under the
same conditions as in Fig. 2 for a holding time of 3 s. Here the
number of remaining atoms is normalized to the observed
maximum value. The inset shows a series of measurements in
a very narrow range around the maximum at 530(3) G together
with a parabolic fit.

FIG. 2. Evaporative loss measurements over the full magnetic
field range. The data points show the measured number of
atoms remaining in the trap after 1 s (�) and 3 s (�) of plain
evaporation at a constant trap depth of 750 K.

VOLUME 89, NUMBER 27 P H Y S I C A L R E V I E W L E T T E R S 30 DECEMBER 2002

273202-3 273202-3



number of atoms is now measured at 0 and 530 G instead
of the maximum observed with constant trap depth. The
largest number of atoms is observed in the high-field
region above 650 G as expected for the large scattering
cross section.

On a Feshbach resonance, enhanced inelastic loss can
occur as a result of three-body collisions [1] or, if the
system has internal energy, as a result of two-body decay
[3]. For fermions, three-body processes are symmetry
forbidden at ultralow energies when only s-wave colli-
sions are involved. In a spin mixture at nonzero magnetic
field, two-body decay is energetically possible (in our
case with an energy release of kB 	 3:5 mK) but involves
higher partial waves and relies on weak dipolar coupling.
Consequently, inelastic loss can be expected to be weak
in our experiments. Indeed, our data do not show any
indication of inelastic loss even at the very center of the
Feshbach resonance.

At much higher densities (� 1013 cm�3) as compared
to our conditions (� 1011 cm�3), a recent experiment
[21] has revealed inelastic loss with a maximum at
680 G. As our results support the predicted position of
the s-wave resonance at �850 G, the explanation for the
inelastic feature cannot be attributed to the Feshbach
resonance in a simple way. The experiment [21] also
provided evidence for a two-body nature of the under-
lying process with a rate constant of 2	 10�12 cm3=s
measured at �20 K. At a higher temperature of
�100 K we derive an upper bound for the two-body
rate constant of 1	 10�12 cm3=s, whereas for a process
involving higher partial waves one would expect the rate
to increase with temperature. For three-body collisions
our densities are too low to provide useful constraints.
Obviously, inelastic loss in the fermionic spin mixture is
an interesting problem that deserves more attention.

In conclusion, our measurements confirm the predicted
magnetic tunability of the s-wave scattering length in a
spin mixture of fermionic lithium atoms in the whole
magnetic-field range of experimental interest. The ob-

served zero crossing of the scattering length at 530(3) G
together with the large cross section observed for higher
fields provides clear evidence of the predicted Feshbach
resonance. Moreover, it enables more precise calculations
of the 6Li scattering properties. The resonance itself
is masked by unitarity-limited scattering and requires
much deeper evaporative cooling for a direct observation.
The fact that we do not see any significant effect of
inelastic loss highlights the fact that the extremely large
positive and negative scattering lengths attainable with
fermionic lithium offer intriguing new possibilities for
experiments on interacting Fermi gases.
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Shortly before submission of the present Letter we
learned about the measurements of the group of J. E.
Thomas on the zero crossing of the scattering length
which agree with our data.
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Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms
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We report on the production of a pure sample of up to 3� 105 optically trapped molecules from a
Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach
resonance. For purification, a Stern-Gerlach selection technique is used that efficiently removes all
trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a
striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach
resonance, the gas exhibits a remarkable stability with respect to collisional decay.

DOI: 10.1103/PhysRevLett.91.240402 PACS numbers: 03.75.Ss, 05.30.Fk, 32.80.Pj, 33.80.Ps

The formation of composite bosons by pairing of fer-
mions is the key to many intriguing phenomena in
physics, with superfluidity and superconductivity being
prominent examples. In ultracold atomic gases, pairs of
fermionic atoms can be combined to form bosonic mole-
cules [1,2] or possibly Cooper pairs [3]. The pairing
changes the properties of the gas, highlighted by the
prospect of a molecular Bose-Einstein condensate or a
Cooper-paired superfluid. The interatomic interactions
play a crucial role for the nature of the pairing process.
The ability to control the interaction via magnetically
tuned Feshbach resonances [4–6] opens up exciting
possibilities for experiments on ultracold fermionic
gases, e.g., exploring superfluidity in different pairing
regimes [7–10].

The formation of molecules near Feshbach resonances
in ultracold gases has been reported for bosons [11–14]
and fermions [1,2]. In the experiments [1,2,11,12], the
molecules coexist with the atoms in a strongly interacting
mixture. A generic feature of a Feshbach resonance is the
existence of a bound molecular state with a magnetic
moment that differs from that of the unbound atom pair.
The binding energy thus depends on the magnetic field,
and a properly chosen field can resonantly couple collid-
ing atoms into the molecular state. The inherent differ-
ence in magnetic moments facilitates a Stern-Gerlach
selection of molecules and atoms. Two recent experiments
[13,14] demonstrate the separation of the molecular from
the atomic cloud in free space.

In this Letter, we report the creation of a pure sample
of up to 3� 105 optically trapped molecules from a
fermionic gas of 6Li atoms. After the production of
an atom-molecule mixture via three-body collisions, a
Stern-Gerlach purification scheme efficiently removes all
trapped atoms, while leaving all molecules trapped. This
allows us to investigate the intriguing behavior of the pure
molecular sample, which strongly depends on the mag-
netic field.

The lithium isotope 6Li is one of the two prime can-
didates in current experiments exploring the physics of
fermionic quantum gases [15–19], the other one being

40K [1,20]. A spin mixture composed of the lowest two
sublevels in the hyperfine manifold of the electronic
ground state is stable against two-body decay and exhibits
wide magnetic tunability of s-wave interactions via a
broad Feshbach resonance at about 850 G [21]. A calcu-
lation of the corresponding scattering length a as a func-
tion of the magnetic field [22] is shown in Fig. 1(a) [23].
The large cross section for elastic scattering near the
resonance can be used for efficient evaporative cooling,
in particular, above the resonance at negative scattering
length where inelastic loss is negligible [16]. In the region
of positive scattering length below the resonance, loss
features have been observed [24]. At large positive a, a
weakly bound molecular level exists with a binding en-
ergy approximately given by 
h=�ma2�, where 
h is Planck’s
constant and m denotes the atomic mass. For the region of
interest, Fig. 1(b) shows this binding energy as calculated
from the scattering length data [25].

The starting point of our experiments is a sample of
2:5� 106 6Li atoms in a standing-wave optical dipole
trap realized with a Nd:YAG laser at a wavelength of
1064 nm [19,26]. The 50-50 spin mixture in the lowest
two spin states is spread over �1500 individual lattice
sites of the standing-wave trap. In the central region of
the trap, a single site contains typically 1800 atoms. The

FIG. 1. (a) Magnetic-field dependence of the s-wave scatter-
ing length a in the 6Li spin mixture. An additional, narrow
Feshbach resonance near 550 G [22] is omitted in the plot.
(b) Binding energy of the weakly bound molecular level in the
region of large positive a.
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axial and radial trap frequencies are 260 kHz and 390 Hz,
respectively. The trap depth is kB � 27 �K with kB denot-
ing Boltzmann’s constant. At a temperature of 2:5 �K,
peak values for the number density and phase-space
density are 3� 1012 cm�3 and 0.04 [27,28], respectively.
The ultracold gas is prepared by forced evaporative cool-
ing after loading the optical trap at an initial depth of
�1 mK with 8� 106 atoms from a magneto-optical trap
(MOT). The evaporation is performed by ramping down
the light intensity in 1 s at a magnetic field of 1200 G. The
evaporation initially proceeds with very high efficiency
similarly to [16,29], but finally loses its efficiency when
the tightly confining lattice potential does not support
more than one or two quantum states.

We form molecules in the weakly bound level at a field
of 690 G, where we find optimum production rates at a
large positive scattering length of a � �1300a0. Here a0
denotes Bohr’s radius. To reach the production field of
690 G, we quickly ramp from the evaporation field of
1200 G down to this value with a speed of �7:5 G=ms.
In contrast to other experiments with fermionic atoms
[1,2], the molecule formation during this ramp is negli-
gible and the molecules are predominantly formed after
the ramp at the fixed production field.

The molecules are detected by dissociating them into
atoms [1,2,13,14] and measuring their fluorescence. For
this purpose, we apply a ramp across the Feshbach reso-
nance to fields of typically 1200 G (speed �6 G=ms).
This brings the weakly bound level above the scattering
continuum and the molecules quickly dissociate. The
dissociation turns out to be insensitive to variations of
the ramp speed and the final field. After the dissociation
ramp, we immediately ramp down to zero magnetic field.
The ramp speed of �12 G=ms is fast enough to avoid
molecule formation when crossing the region of positive
scattering length. After reaching zero magnetic field, we
recapture all atoms into the MOT. Their number is then
determined by measuring the emitted fluorescence inten-
sity using a calibrated photodiode [27]. This measurement
provides the total atom number 2Nmol � Nat, where Nmol

and Nat denote the number of molecules and atoms after
the production phase, respectively. To determine Nat, we
repeat the same measurement without the Feshbach dis-
sociation ramp by immediately ramping down to zero
from the production field. The ramp down to zero mag-
netic field increases the binding energy to a large value of
about kB � 80 mK and the molecules are lost without
leading to any fluorescence light in the MOT. The number
of molecules Nmol is then obtained by taking the differ-
ence in atom numbers measured in two subsequent runs
with and without the dissociating Feshbach ramp.

The creation of molecules from the atomic gas is
demonstrated in Fig. 2 for the optimum production field
of 690 G. The time evolution of the measured numbers
2Nmol � Nat and Nat is shown together with the corre-
sponding number of molecules 2Nmol. We attribute the
molecule formation to three-body recombination into the

weakly bound state [30,31]. Two-body processes cannot
lead to bound dimers as a third particle is required for
energy and momentum conservation. The three-body
molecule formation process can be modeled with the
differential equation _NNmol=Nat � M3hn

2
ati, where hn2ati de-

notes the mean quadratic density of the atoms. From the
initial molecule formation rate of _NNmol � 3:5� 105 s�1,
we thus derive a three-body formation coefficient of
M3 � 1� 10�25 cm6=s�1 [27]. The maximum number
of 3� 105 molecules is reached after about 1 s. For longer
times, the fraction of atoms forming molecules ap-
proaches a value of �50%.

At the optimum production field of 690 G, the molecu-
lar binding energy amounts to �kB � 18 �K, which is in
between the thermal energy of kB � 2:5 �K and the trap
depth of kB � 27 �K for the atoms. For the molecules,
the trap depth is a factor of 2 higher because of the 2
times larger polarizability. We have verified this fact by
measuring the trap frequencies for atoms and molecules
to be equal within the experimental uncertainty of a few
percent. After a three-body recombination event both the
atom and the molecule remain trapped.We believe that the
recombination heat is cooled away by a evaporation of
atoms out of the trap. Evaporative loss of molecules is
strongly suppressed because of the higher trap depth.

To purify the created molecules we use a Stern-Gerlach
selection technique. We apply a magnetic field gradient
perpendicular to the standing-wave axis. This pulls par-
ticles out of the trap for which the magnetic force is larger
than the trapping force. In order to be able to apply large
enough field gradients, we lower the trap depth to kB �
19 �K while applying the gradient for about 10 ms. Fig-
ure 3 demonstrates such a purification at 568 G. While all
the atoms are lost above B0

at � 17 G=cm, the molecules
start getting spilled at 20 G=cm, and are lost completely
above B0

mol � 32:5 G=cm. This means that, under suitable
conditions, we can remove all the atoms while keeping
the molecule number constant.

FIG. 2. Formation of molecules at a fixed magnetic field of
690 G. The measured numbers Nat � 2Nmol and Nat are plotted
as a function of time together with the resulting number of
molecules 2Nmol.
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The magnetic moment of the molecules �mol can be
estimated to be �mol � 2�atB0

mol=B
0
at, where �at is the

magnetic moment of one free atom. At high magnetic
field, �at equals Bohr’s magneton �B. The inset of
Fig. 3 shows the magnetic moments of the molecules
determined at various magnetic fields. The data agree
well with the magnetic field dependence calculated
from theory (solid curve). We attribute the systematic
deviation to slightly different trap parameters for atoms
and molecules.

Starting with a pure molecular sample, we study its
stability against inelastic molecule-molecule collisions.
Corresponding decay curves are displayed in Fig. 4 for
two different magnetic fields. At 546 G a rapid nonexpo-
nential decay is observed as a clear signature of inelastic
molecule-molecule collisions. From the initial decay rate
we derive a two-body loss coefficient of 5� 10�11 cm3=s
[27]. At 690 G, the observed behavior is strikingly differ-
ent. The molecular sample shows a nearly exponential

decay with a time constant as long as �10 s. As similar
lifetimes are observed for trapped atom samples under
conditions where trapped molecules cannot be created,
the observed molecular lifetime can be fully attributed to
one-body effects such as heating in the optical trap. For a
loss rate coefficient at 690 G our data provide an upper
limit of 3� 10�13 cm3=s [27], which is surprisingly low
for inelastic collisions in a molecular system with many
open exit channels.

The data at 690 G show another interesting collisional
effect. Atoms reappear after purification of the molecular
cloud, see (�) in Fig. 4. For long storage times (�15 s),
an atom-molecule mixture is reestablished with a similar
fraction of molecules as observed in the initial formation
process at the same magnetic field (see Fig. 2). Collisions
producing atoms from molecules are endoergic in nature
as kinetic energy is required to provide the dissocia-
tion energy. The increasing atom fraction does not lead
to any increased loss. This shows that the gas is remark-
ably stable both against molecule-molecule and atom-
molecule collisions.

The dependence of the molecular decay on the mag-
netic field is shown in Fig. 5. Here we store the initially
pure gas of 1:8� 105 molecules at a variable magnetic
field for a fixed holding time of 1 s before we measure
the number of remaining molecules and atoms. A sharp
transition occurs around 650 G. For fields below �600 G,
where the binding energy is relatively large (>kB�
100 �K), the observed decay is very fast and no atoms
are found to reappear. Here inelastic collisions apparently
lead to a rapid vibrational quenching. Furthermore, the
kinetic energy of the molecules cannot provide the neces-
sary energy for collisional dissociation. Consequently, we
do not observe any atoms reappearing.

For fields above �680 G, a completely different behav-
ior is observed. In this regime, no significant loss occurs
in the total number 2Nmol � Nat. However, an increasing
atom fraction is observed as a result of collisional
dissociation of the molecules. Here the binding energy

FIG. 4. Time evolution of an initially pure sample of mole-
cules at 546 G (�) and at 690 G (�). At 690 G, atoms are
observed to reappear (�).

FIG. 5. Remaining number of atoms Nat, Nat � 2Nmol and
2Nmol after a 1-s hold time at variable magnetic field starting
with a pure molecular sample.

FIG. 3. Stern-Gerlach selection by applying a magnetic field
gradient to the trapped atom-molecule mixture at 568 G and a
trap depth of kB � 19 �K. Marked are the two gradients where
all the atoms and all the molecules are lost. The inset shows the
magnetic moment of the molecules estimated from the Stern-
Gerlach selection at different magnetic fields together with the
theoretical calculation.
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approaches the thermal energy and the sample tends
towards a thermal atom-molecule equilibrium. Close to
the Feshbach resonance, where the binding energy be-
comes comparable to thermal energy, the atomic fraction
dominates in the atom-molecule mixture.

In conclusion we have produced an ultracold, pure
molecular gas of 6Li dimers in an optical dipole trap.
Close to the Feshbach resonance, where the molecular
binding energy is small, there is a strong coupling of the
atomic gas and the molecules. Three-body collisions be-
tween atoms form molecules and collisions break up
molecules to produce atoms. Our observations show that
this exchange between atomic and molecular fraction can
be nearly lossless. The long molecular lifetime along with
a large elastic collision rate between the particles opens
up great perspectives for further evaporative cooling of
the molecular gas to Bose-Einstein condensation. Given
the maximum molecule number of 3� 105 and a tem-
perature of about 2:5 �K, we reach a phase-space density
of 0.01, only a factor of 4 lower than our initial atomic
phase-space density. The molecular sample may be fur-
ther cooled to condensation by efficient evaporation. Out
of a mixture of atoms and molecules, mainly atoms will
evaporate because they are more weakly trapped than the
molecules. The gas is cooled further when molecules
break up into atoms since this is an endoergic process.
Once quantum degeneracy is accomplished it will be very
interesting to cross the Feshbach resonance in order to
observe the transition to a strongly interacting superfluid
Fermi gas [7–10].

We thank G. Shlyapnikov for very stimulating discus-
sions and V. Venturi for providing us with theoretical
data on the scattering length and binding energy. We
gratefully acknowledge support by the Austrian Science
Fund (FWF) within SFB 15 (project part 15) and by the
European Union in the frame of the Cold Molecules TMR
Network under Contract No. HPRN-CT-2002-00290.

Note added.—After submission of the present Letter,
molecule formation in 6Li using the narrow Feshbach
resonance at 543 G was reported by Hulet’s group [32].
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Bose-Einstein Condensation
of Molecules

S. Jochim,1 M. Bartenstein,1 A. Altmeyer,1 G. Hendl,1 S. Riedl,1

C. Chin,1 J. Hecker Denschlag,1 R. Grimm1,2*

We report on the Bose-Einstein condensation of more than 105 Li2 molecules
in an optical trap starting from a spin mixture of fermionic lithium atoms.
During forced evaporative cooling, the molecules are formed by three-body
recombination near a Feshbach resonance and finally condense in a long-lived
thermal equilibrium state. We measured the characteristic frequency of a
collective excitation mode and demonstrated the magnetic field–dependent
mean field by controlled condensate spilling.

Since the first experiments on Bose-Einstein
condensation (BEC) in ultracold atomic gases
in 1995 (1–3), atoms of eight chemical ele-
ments have been condensed. BEC of more
complex objects such as molecules or Cooper-
paired atoms will open up many new avenues
of research because they offer new degrees of
freedom. An intriguing example is the funda-
mental change in quantum statistics when
paired fermions form composite bosons. Recent
experiments have demonstrated the formation
of molecules in ultracold atomic gases of
bosons (4–9) and fermions (10–13). Experi-
ments starting with atomic BEC show the cre-
ation of molecular clouds at the threshold to
quantum degeneracy (7) or clearly in that re-
gime (9), but not in a thermal equilibrium state.
In most of these experiments, weakly bound
dimers are produced via magnetically tuned
Feshbach resonances (14). Such a scattering
resonance occurs when a free colliding atom
pair energetically coincides with a bound mo-
lecular state. On the side of the resonance where
the energy of the molecular level is below the
dissociation limit, a weakly bound dimer state
exists. The experiments indicate an important
difference between weakly bound dimers com-
posed of bosonic and of fermionic atoms.
Dimers of bosons show a quick decay via in-
elastic atom-molecule or molecule-molecule
collisions (9), so that quantum-degenerate mo-
lecular clouds can only be created in a transient
regime. In contrast, the dimers of fermions ex-
hibit a remarkable stability (11–13, 15). Such
molecular gases have been observed with life-
times far longer than the time scales for elastic
collisions and thermalization. This fact has been
explained by a fermionic suppression of vibra-
tional quenching in molecule collisions (16).
Their stability allows us to use bosonic mole-

cules composed of fermionic atoms to achieve
molecular BEC in thermal equilibrium.

Our experiment is based on evaporative
cooling of an optically trapped mixture of fer-
mionic 6Li atoms in the two lowest spin states
(11–13, 17–21). During the cooling process, a
large number of bosonic dimers are formed by
three-body recombination and finally condense
into a molecular BEC. The spin mixture exhib-
its a broad Feshbach resonance at a magnetic
field of about 850 G (18, 19, 22, 23), which
leads to a pronounced magnetic field depen-
dence of the scattering length a (Fig. 1) that
characterizes the s-wave interactions. Dimers in
a single weakly bound state can be formed in
the range of large positive a with a binding
energy of �2/(ma2), where � is Planck’s con-
stant h divided by 2� and m is the mass of a 6Li
atom. This has been observed in magnetic
field–dependent loss features (24) and changes
in the interaction energy of the gas (21). Two
recent experiments have directly demonstrated
the presence of these molecules and investigat-
ed some of their properties (12, 13). For nega-
tive scattering length, no weakly bound dimer
state exists. For negative scattering length,
where a weakly bound dimer state does not
exist, the 6Li gas exhibits a remarkable stability
against collisional decay, and deeply degener-
ate Fermi gases have been created (20).

Our optical dipole trap is realized with a
single Gaussian laser beam at a wavelength
of 1030 nm, which is focused to a waist of 23
�m. At the full power of P0 � 10.5 W, the
radial and axial oscillation frequencies are
�r/2� � 14.5 kHz and �z/2� � 140 Hz,
respectively, and the atom trap is U0 � kB �
800 �K deep (kB denotes Boltzmann’s con-
stant). When the power P is reduced to a
relative value p � P/P0, the optical trap
frequencies follow p1/2�i(i � r, z) and the
trap depth for the atoms is Uat � pU0. Our
magnetic field B used for Feshbach tuning
exhibits a curvature that gives rise to an
additional contribution to the trapping poten-
tial. For the tight radial confinement of the
optical trap, this effect is negligibly small.
For the weak axis, however, a magnetic trap-

ping effect becomes important with decreas-
ing p. Taking this into account, the axial trap
frequency is given by �z � 	p�z

2 
 �m
2.

Here �m/2� � 24.5 Hz � 	B/kG is the
magnetic contribution, which is precisely
known for our coils. For weak traps with
p �� 0.03 (Uat/kB �� 25 �K), the magnetic
contribution dominates, and the axial con-
finement is harmonic with a corresponding
frequency known on the percent level. In this
regime, the mean trap frequency is given
by � � (p�r

2�m)1/3. For the weakly bound
6Li dimers, all external forces are twice the
ones on the individual atoms. Thus, the mo-
lecular trap is two times deeper than the atom
trap (Umol � 2Uat), and the trap frequencies
are identical. Gravity is compensated for by a
magnetic field gradient of 1.1 G/cm.

We start the evaporation process with
�1.5 � 106 atoms at a temperature of �80
�K, a peak number density of �1014 cm3,
and a peak phase-space density of �5 �
103. The mean elastic collision rate is as
high as �5 � 104 s1. These excellent start-
ing conditions are obtained by a two-stage
loading process. The atoms are loaded into
the dipole trap from another deep, large-
volume standing wave trap (25), which itself
is loaded from a magneto-optical trap. Forced
evaporative cooling is then performed by re-
ducing the trap power (17, 20). We use a
simple exponential ramp with a relative pow-
er p(t) � exp(t/�), where the time constant
� � 0.23 s is experimentally optimized. A
feedback system allows us to precisely control
the laser power to levels well below p � 104.

BEC of weakly bound molecules occurs
when we perform evaporative cooling at a large
positive scattering length of a � 
3500a0,
where a0 is Bohr’s radius. In this case, the
evaporation process shows a strikingly different
behavior in comparison with the corresponding
situation at large negative scattering length,
where no dimers can be produced.

First we discuss the creation of a degenerate
Fermi gas without the possibility of molecule
formation at a magnetic field of 1176 G, where
a � 3500a0 (23). Here the evaporation pro-
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Fig. 1. Feshbach resonance at �850 G in a
mixture of the two lowest spin states of 6Li
(18). The s-wave scattering length a is plotted
as a function of the magnetic field B.
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ceeds in a very similar way as that described in
(17, 20). The measured atom number N (26)
first follows a scaling law N/N0 � p� (27), with
� � 0.25. In this regime, the temperature of the
gas is typically a factor of 10 below the trap
depth (27), and the elastic collision rate stays
well above 104 s1. The crossover to Fermi
degeneracy, where the thermal energy kBT
reaches the Fermi energy EF � � � (3N)1/3,
takes place at p � 0.05 (Uat/kB � 40 �K). By
further decreasing p, the trap depth Uat � p
decreases faster than the Fermi energy EF �
p1/3. A threshold occurs when EF reaches Uat

and the trap is filled up to the “rim.” Further
decrease of p then leads to a spilling of atoms
out of the trap and thus to a rapid decrease of N
with p. Our data (Fig. 2) clearly show this
spilling effect for p � 1 � 103 (Uat/kB � 800
nK). Modeling the spilling curves provides us
with an upper bound of kBT � 0.2EF for the
temperature in terms of the Fermi energy. In the
regime of a completely filled shallow trap, the
number of atoms in the two-component spin
mixture is given by two times the number of
quantum states in the trap. A numerical calcu-
lation, shown in Fig. 2, confirms this interpre-
tation of our data.

The same evaporation procedure is per-
formed at a magnetic field of 764 G, where the
scattering length a � 
3500a0 (23) has essen-
tially the same magnitude but opposite sign.
Here the weakly bound dimers have a binding
energy of �2 �K, and their formation has been
observed in several experiments (12, 13, 21). In
order to detect the molecules, we dissociate
them and measure the number of resulting at-
oms (26). For this purpose, we abruptly turn on
the full trap power, which strongly heats the
sample and leads to collisional dissociation. In
order to ensure that we dissociate all molecules,
we also apply a magnetic field ramp across the
Feshbach resonance (13). The number of atoms
measured after the dissociation process thus
yields the number of free atoms together with
atoms having formed molecules.

Below p � 1 � 103 the measured atom
numbers (solid circles in Fig. 2) show a strik-
ing difference in comparison with the case of
the degenerate Fermi gas. Down to a power
level of p � 3 � 104 (Umol/kB � 480 nK),
the trap holds almost all particles and con-
tains up to 20 times more atoms than would
be possible for fermions. Hence, the trapped
sample can no longer be an atomic Fermi
gas. The trap is filled with bosonic mole-
cules in the weakly bound state (28). The
lifetime of the molecular ensemble, for
which we measure about 20 s at a fixed trap
depth of Umol/kB � 560 nK, exceeds the
time scale of elastic collisions (�100 �s)
by several orders of magnitude. This
highlights the fact that the molecular
cloud exists in a thermal equilibrium state.

The formation of molecules during the
evaporative cooling process can be understood

in terms of a chemical atom-molecule equilib-
rium (29, 30). Exothermal three-body recombi-
nation processes compete with dissociation by
endothermal two-body processes. When the gas
is cooled down, the equilibrium shifts to an
increasing fraction of molecules. Because at-
om-atom, atom-molecule, and molecule-mole-
cule collisions have comparable cross sections
near the resonance (16), evaporation continues
at about the same speed. In the final stage of
cooling, all relevant energies, such as the ther-
mal energy kBT and the trap depths Uat and
Umol, are far below the binding energy �2/
(ma2), so that in chemical equilibrium one is
left with an essentially pure sample of mole-
cules. The fact that the binding energy of �2
�K at our optimized magnetic field of 764 G is
a few times larger than the final trap depth
(inset, Fig. 1) fits well into this picture.

The observation that a large number of
Nmol � 1.5 � 105 molecules is confined in our
very shallow, only 480 nK deep trap under
thermal equilibrium conditions already shows
that a molecular BEC is formed. The trap offers
about 10 times more quantum states for dimers
as compared to the case of atoms discussed
before (31). Because we observe a factor of
�20 more particles than for the degenerate
atomic Fermi gas, the molecular gas is neces-
sarily quantum degenerate. Because of the high
elastic collision rates, which stay well above
103 s1 even for very shallow traps, the sample
is also thermalized. The temperature then is a
small fraction of the trap depth. According to
standard evaporation theory (27), we can typi-
cally assume T � 0.1 Umol/kB � 50 nK. This is
well below the critical temperature for BEC, for

which we calculate TC � � � kB
1

(Nmol/1.202)1/3 � 280 nK. Because the con-
densate fraction is given by 1  (T/TC)3, these
arguments show that the molecular BEC must
be almost pure.

To investigate the molecular condensate, we
have studied a characteristic collective excita-
tion mode (32, 33). For a cigar-shaped sample
in the Thomas-Fermi limit, well fulfilled in our
experiment, such a quadrupolar mode is expect-
ed at a frequency of 	5/2 �z � 2� � 33.8 Hz.
We perform our measurement at p � 3.5 �
104 (Umol/kB � 560 nK) with a trapped sam-
ple of �105 molecules. We apply a sinusoidal
modulation to the magnetic field with an am-
plitude of 3.5 G to modulate the molecular
scattering length am � a (16) with a relative
amplitude of about 5%. After 2 s of continuous
excitation, we measure the remaining number
of particles in the trap. The resonance manifests
itself in a sharp dip in the number of particles
(Fig. 3). The observed resonance frequency of
33.6 Hz is in remarkable agreement with the
expectation. We point out that a noncondensed
gas deep in the hydrodynamic regime would
show a similar frequency of 33.2 Hz (34), but
thermalization in our shallow trap excludes this
scenario (35). The measured collective excita-
tion frequency rules out a gas in the collision-
less regime, which would show its resonant loss
at 2�z � 2� � 42.8 Hz, and thus again con-
firms the thermalization of the sample. The
observed narrow resonance width of �1 Hz
shows a very low damping rate and is consis-
tent with an almost pure BEC (33, 36).

An essential property of a BEC is its mean
field potential UMF � 4�nam �2/(2m) resulting

Fig. 2. Evaporative
cooling results ob-
tained on both sides
of the Feshbach reso-
nance. We measure
the number of trapped
particles (the number
of all atoms that are
free or bound in long-
range dimers) as a
function of the rela-
tive laser power p at
the end of an expo-
nential evaporation
ramp p(t) � exp(t /
230 ms). The trap
depth for atoms is
Uat/kB � p � 800 �K,
whereas for molecules
it is two times larger
(Umol � 2Uat). The
measurements taken at 1176 G with negative scattering length a � 3500a0 (open circles) show
the spilling of a degenerate Fermi gas when the trap depth reaches the Fermi energy. The solid line
shows the maximum number of trapped atoms in a two-component Fermi gas according to a
numerical calculation of the number of quantum states in our trap. The dashed lines indicate the
corresponding uncertainty range due to the limited knowledge of the experimental parameters. The
measurements at 764 G with positive scattering length a � 
3500a0 (solid circles) exhibit a striking
increase of the trapped particle number at low values of p, which is due to the formation of molecules.
The inset shows the optimum production of molecules in the magnetic field range where a weakly
bound level exists. Here the total number of particles is measured for various magnetic fields at a fixed
final ramp power p � 2.8 � 104 (Umol/kB � 440 nK).
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from s-wave interactions; here n denotes the
molecular density. For our molecular BEC with
large positive am, the mean field is repulsive
and thus stabilizes the BEC against collapse and
decay. In a trap of finite depth, however, the
mean field repulsion limits the maximum num-
ber of trappable molecules. When the chemical
potential � reaches the trap depth, a similar
spilling effect is expected as we see for the
Fermi gas, but for weaker traps. The decrease of
our molecular signal (Fig. 2) below p � 3 �
104 (Umol/kB � 480 nK) may be explained by
such a spilling effect.

We used spilling in a controlled way to
demonstrate the mean field of the molecular
BEC and to investigate its dependence on the
magnetic field. After producing the BEC at a
magnetic field of B1 � 772 G and p � 3.5 �
104 (Umol/kB � 560 nK), we adiabatically tilt
the vertical trapping potential by application of
a magnetic field gradient B� that is smoothly
ramped up within 50 ms. The number of re-
maining particles as a function of the applied
field gradient (Fig. 4) shows the loss of mole-
cules resulting from the reduced trap depth.
When the magnetic field is kept at the evapo-
ration field of B1 � 772 G, where a � 4100a0

(23), even very weak gradients lead to loss
(open circles in Fig. 4). This indicates that the
chemical potential is close to the potential
depth, so that the trap is full. The chemical
potential can be lowered by reducing the scat-
tering length. For this purpose, we ramp the
magnetic field to a smaller value. A spilling
curve taken at B2 � 731 G, where a � 2200a0

(23), indeed shows a markedly different behavior
(solid circles in Fig. 4). Here small gradients do
not lead to any loss and the curve thus shows a flat
top. For gradients  B� exceeding 0.65 G/cm,
molecules get spilled until everything is lost at
 B� � 1.3 G/cm. The sharp onset of the spilling
confirms the essentially pure nature of the BEC.

A comparison of the two spilling curves in
Fig. 4 provides us with information on the ratio
of the scattering lengths am at the two magnetic
fields B1 and B2. In the spilling region above
 B� � 0.65 G/cm, the trap is full in both cases,

and the trapped particle number is inversely
proportional to am. Comparing the two spilling
curves in that region, we obtain a scattering
length ratio of am(B1)/am(B2) � 2.4(2). This
factor is indeed close to the factor of 1.9 (23)
expected from the proportionality of atomic and
molecular scattering lengths am � a (16) and
the dependence of a shown in Fig. 1. This
observation demonstrates the mean field of the
molecular BEC together with its magnetic tun-
ability.

The ability to control interactions in a Bose
condensed ensemble of paired fermionic atoms
has many exciting prospects (37, 38). It opens
up unique ways to cool a fermionic gas far
below the Fermi temperature (39) and to study
different regimes of superfluidity (40–43). The
experimental exploration of the strongly inter-
acting crossover regime between a BEC-like
and a Cooper-paired phase is a particular chal-
lenge and promises more insight into the phys-
ical mechanisms underlying superconductivity.
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Fig. 3. Resonance of a collective excitation
mode at 	5/2 �z. The oscillation is excited by
magnetic modulation of the molecular BEC
mean field. The solid curve shows a Lorentzian
fit to the data.

Fig. 4. Controlled spilling of the BEC by appli-
cation of a magnetic field gradient B�. This
variable gradient is applied in addition to the
constant gradient of 1.1 G/cm that we use for
gravity compensation. The data are taken at
the two different magnetic fields B1 � 772 G
(open circles) and B2 � 731 G (solid circles),
where the mean field of the BEC is different by
a factor of �2.
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We demonstrate a reversible conversion of a 6Li2 molecular Bose-Einstein condensate to a degenerate
Fermi gas of atoms by adiabatically crossing a Feshbach resonance. By optical in situ imaging, we
observe a smooth change of the cloud size in the crossover regime. On the Feshbach resonance, the
ensemble is strongly interacting and the measured cloud size is 75�7�% of the one of a noninteracting
zero-temperature Fermi gas. The high condensate fraction of more than 90% and the adiabatic crossover
suggest our Fermi gas to be cold enough to form a superfluid.

DOI: 10.1103/PhysRevLett.92.120401 PACS numbers: 03.75.Mn, 05.30.Fk, 32.80.Pj, 34.50.–s

Bose-Einstein condensation (BEC) of molecules
formed by fermionic atoms was recently demonstrated
[1–4]. The tunability of interactions in such systems
provides a unique possibility to explore the Bose-
Einstein condensate to Bardeen-Cooper-Schrieffer
(BEC-BCS) crossover [5], an intriguing interplay be-
tween the superfluidity of bosons and Cooper pairing of
fermions. While the BEC and BCS limits are both well
understood, the crossover takes place in a strongly inter-
acting regime, which represents a challenge for many-
body theory.

Feshbach resonances [6] play a central role to control
two-body interaction and have been used for conversion
between fermionic atoms and bosonic molecules [7–10].
They are also the experimental key to investigate phe-
nomena related to the BEC-BCS crossover. For example,
it has been predicted in Ref. [11] that a pure molecular
BEC can be converted into a superfluid Fermi gas by an
adiabatic passage over the Feshbach resonance. Moreover,
in the crossover regime where the interactions are unitar-
ity limited, a universal behavior is expected [12,13].
Ultracold gases in that regime may provide new insights
into other strongly interacting systems such as high-Tc
superconductors, 3He superfluids, and neutron stars.

A spin mixture of 6Li atoms in the lowest two hyperfine
sublevels is an excellent system to investigate the cross-
over [14,15] based on a broad Feshbach resonance at a
magnetic field of B � 850 G [16–18]. An efficient forma-
tion of ultracold molecules has been realized by three-
body recombination [10,19], or by sweeping the magnetic
field across the resonance [8]. The long lifetime of the
molecules permits efficient evaporation [1,8,10] and fa-
cilitates slow, adiabatic changes of the system.

In this work, we explore the regime where the BEC-
BCS crossover is expected by analyzing the density pro-
files of the trapped cloud at different magnetic fields. Our
experimental setup is described in Ref. [1]. We load 2�
106 precooled 6Li atoms into a single focused-beam di-
pole trap, which is generated by a 10 W Yb:YAG laser
operating at a wavelength of 1030 nm. We evaporatively

cool the cloud by exponentially lowering the trap depth
with a time constant of 460 ms. The radial and axial
trap frequencies are !r=2� � 110 Hz�P=mW�1=2 and
!z=2� � �600B=kG� 0:94P=mW�1=2 Hz, respectively,
where P is the laser power. The curvature of the magnetic
field that we use for Feshbach tuning results in a magnetic
contribution to the axial trapping. In the low power range
where the molecular BEC is formed (P< 50 mW), the
axial confinement is predominantly magnetic. During the
whole evaporation process, the magnetic field is kept at
B � 764 G. At this field the molecular binding energy is
�kB � 2 K, where kB is Boltzmann’s constant. For the
scattering length of elastic molecule-molecule collisions,
we expect amol � 2200a0, based on the predicted relation
of amol � 0:6a [20] and an atomic scattering length of
a � 3500a0 [17]. Here a0 is Bohr’s radius. Using radio-
frequency spectroscopy which allows us to distinguish
signals from atoms and molecules [7], we observe a
complete atom to molecule conversion when the thermal
energy of the particles is reduced to values well below the
molecular binding energy.

For detection we apply in situ absorption imaging to
record spatial density profiles of the trapped ensemble. To
image at high magnetic fields, we illuminate the cloud
for 20 s with a probe beam (intensity 0:5 mW=cm2)
tuned to the atomic j2S1=2; mJ � �1=2; mI � 0i !
j2P3=2; m0

J � �3=2; m0
I � 0i transition. The probe beam

dissociates the molecules and is used to image the result-
ing atom cloud [3]. Compared to the absorption imaging
of unbound atoms, we found that the detection efficiency
of the molecules approaches 100% at fields higher than
750 G and �50% at 650 G. The difference is due to the
Franck-Condon wave function overlap, which favors
fields closer to the resonance where the interatomic sepa-
ration in the molecular state is larger. In our cigar-shaped
trap, the radial cloud size is on the order of our imaging
resolution of 10 m, while the axial cloud size of typi-
cally �100 m can be accurately measured. We therefore
obtain axial density distributions from images integrated
radially.
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To measure the condensate fraction, we adiabatically
reduce the magnetic field from 764 to 676 G in a 200-ms
linear ramp after completion of the evaporation ramp.
This reduces the scattering length amol and thus increases
the visibility of the characteristic bimodal distribution.
Figure 1(a) shows a bimodal profile observed in this way
with Nmol � N=2 � 4� 105 molecules remaining at a
final evaporation ramp power of 28 mW. A Gaussian fit
to the thermal wings (dashed line) yields a temperature of
T � 430 nK, which is a factor of 7.5 below the calculated
trap depth of 3:2 K. The observed condensate fraction
of �20% is consistent with 1� �T=Tc�

3, where Tc �
0:8k�1

B �h �!!�Nmol=1:202�1=3 � 500 nK is the critical tem-
perature, �!! � �!2

r!z�
1=3 is the mean vibration frequency,

and the factor of 0.8 takes into account the �20% down-
shift in Tc due to interactions [21].

We obtain pure molecular condensates when we con-
tinue the evaporation process down to final power levels of
a few mW. Figure 1(b) shows an essentially pure con-
densate of Nmol � 2:0� 105 molecules obtained at a
final power of 3.8 mW, where the trap depth is 450 nK.
The density profile is well fit by a Thomas-Fermi density
distribution / �1� z2=z2TF�

2 with a radius zTF � 105 m.
The corresponding peak molecular density is 1:2�
1013 cm�3. In the image a thermal component is not
discernable. A careful analysis of the profile provides
us with a lower bound of 90% for the condensate frac-
tion. For the chemical potential of the BEC, we obtain
 � 1

2mmol!2
zz2TF � kB � 130 nK. Here mmol � 2m is the

mass of the 6Li dimer. Based on the prediction amol �
0:6a � 650a0, the calculated chemical potential of
1
2 �15 �h

2Nmol �!!
3amol

����������

mmol
p

�2=5 � kB � 155 nK is consistent

with the observed value of kB � 130 nK considering the
experimental uncertainty. In particular, the particle num-
ber is calibrated to within a factor of 1.5 through fluores-
cence imaging [10].

The pure molecular BEC at 764 G serves as our starting
point for exploring the crossover to the degenerate Fermi
gas. Before we change the magnetic field, we first adia-
batically increase the trap power from 3.8 to 35 mW in a
200-ms exponential ramp. The higher power provides a
trap depth of �kB � 2 K for the atoms, which is
roughly a factor of 2 above the Fermi energy, and avoids
spilling of the Fermi gas produced at magnetic fields
above the resonance [1]. The compression increases the
peak density of the condensate by a factor of 2.5. All
further experiments reported here are performed in the
recompressed trap with !r=2� � 640 Hz and !z=2� �
�600B=kG� 32�1=2 Hz.

We measure the lifetime of the BEC in the compressed
trap at 764 G to be 40 s. The peak molecular density is
estimated to be nmol � �15=8���!r=!z�

2Nmol=z
3
TF �

1:0�5� � 1013 cm�3. This provides an upper bound for
the binary loss coefficient of 1� 10�14 cm3=s, and is
consistent with previous measurements in thermal mo-
lecular gases [8,10] together with the predicted scattering
length scaling [20] and the factor-of-2 suppression of
binary collision loss in a condensate.

For exploring the crossover to a Fermi gas we apply
slow magnetic-field ramps. To ensure their adiabaticity,
we performed several test experiments. In one series of
measurements we ramped up the field from 764 to 882 G
and back to 764 G with variable ramp speed. This con-
verts the molecular BEC into a strongly interacting Fermi
gas and vice versa. Therefore substantial changes are
expected in the cloud size. After the up-and-down
ramp, we observe an axial oscillation of the ensemble at
the quadrupolar excitation frequency [1,22]. This collec-
tive oscillation is the lowest excitation mode of the sys-
tem and is thus sensitive to nonadiabaticity effects. We
observe axial oscillations with relative amplitudes of >
5% for ramp speeds above 1:2 G=ms. For ramp speeds of
0:6 G=ms and lower, the axial oscillation was no longer
visible.

We also checked the reversibility of the crossover pro-
cess by linearly ramping up the magnetic field from 764
to 1176 G and down again to 764 G within 2 s (ramp speed
of �0:41 G=ms). In Fig. 2, we compare the axial profile
taken after this ramp (�) with the corresponding profile
obtained after 2 s at fixed magnetic field (�). The com-
parison does not show any significant deviation. This
highlights that the conversion into a Fermi gas and its
back-conversion into a molecular BEC are lossless and
proceed without noticeable increase of the entropy.

To investigate the spatial profile of the trapped gas in
different regimes, we start with the molecular BEC at
764 G and change the magnetic field in 1-s linear ramps to
final values between 740 and 1440 G. Images are then
taken at the final ramp field. To characterize the size of

-300 0 300
0.0

2.0

4.0
(b)(a)

lin
ea

r
de

ns
ity

(1
00

0/
µm

)

position (µm)
-300 0 300

FIG. 1. Axial density profiles of a partially condensed (a) and
fully condensed (b) molecular cloud. The profiles are derived
from averaging seven in situ images taken at a magnetic field of
B � 676 G after evaporation at the production field of 764 G.
(a) When the evaporation ramp is stopped with 4� 105 mole-
cules at a final laser power of 28 mW, a characteristic bimodal
distribution is observed with a condensate fraction of �20%.
The dashed curve shows Gaussian fit to the thermal fraction.
(b) At a final laser power of 3.8 mW, an essentially pure
condensate of 2� 105 molecules is obtained.
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the trapped gas, we determine the root-mean-squared
axial size zrms. This rms size is related to the axial radius
zTF by zrms � zTF=

���

7
p

in the case of a pure BEC in the
Thomas-Fermi limit and by zrms � zTF=

���

8
p

in the cases of
zero-temperature noninteracting or strongly interacting
Fermi gases [23].

Figure 3(b) shows how the measured axial size zrms

changes with the magnetic field. For comparison, Fig. 3(a)
displays the magnetic-field dependence of the atomic
scattering length a. Up to 950 G, an increase in zrms is
due to the crossover from the molecular BEC to the
degenerate Fermi gas. For higher magnetic fields, the
axial cloud size of the Fermi gas shrinks with B as
the axial magnetic confinement increases (!z /

����

B
p

).
For the following discussions, we normalize the ob-

served size to the one expected for a noninteracting Fermi
gas. In particular, this removes the explicit trap depen-
dence. In Fig. 3(c), we show the normalized axial size
� � zrms=z0, where z0 � �EF=4m!2

z�
1=2 is the rms axial

size of a noninteracting zero-temperature Fermi gas with
N � 4� 105 atoms. The Fermi energy EF � �h2k2F=2m �
�h �!!�3N�1=3 amounts to kB � 1:1 K at 850 G, and the
Fermi wave number kF corresponds to a length scale of
k�1
F � 3600a0.

Below the Feshbach resonance, the observed depen-
dence of the cloud size agrees well with the mean-field
behavior of a BEC in the Thomas-Fermi limit. In
this regime, the normalized size is given by � �
0:688�amol=a�

1=5�EF=Eb�
1=10, where Eb � �h2=ma2 is the

molecular binding energy. Figure 3(c) shows the corre-
sponding curve (solid line) calculated with amol=a � 0:6
[20]. This BEC limit provides a reasonable approxima-
tion up to �800 G; here the molecular gas interaction
parameter is nmola

3
mol � 0:08. Alternatively, the interac-

tion strength can be expressed as kFa � 1:9.

The crossover to the Fermi gas is observed in the
vicinity of the Feshbach resonance between 800 and
950 G; here � smoothly increases with the magnetic field
until it levels off at 950 G, where the interaction strength
is characterized by kFa � �1:9. Our results suggest
that the crossover occurs within the range of �0:5 &

�kFa�
�1 & 0:5, which corresponds to the strongly inter-

acting regime. The smoothness of the crossover is further
illustrated in Fig. 4. Here the spatial profiles near the
resonance show the gradually increasing cloud size with-
out any noticeable new features.

On resonance a universal regime is realized [12–14],
where scattering is fully governed by unitarity and the
scattering length drops out of the description. Here the
normalized cloud size can be written as � � �1� ��1=4,
where � parametrizes the mean-field contribution to the
chemical potential in terms of the local Fermi energy
[14]. At 850 G our measured value of � � 0:75� 0:07
provides � � �0:68�0:13

�0:10. Here the total error range in-
cludes all statistic and systematic uncertainties with the
particle number giving the dominant contribution. Note
that the uncertainty in the Feshbach resonance position is
not included in the errors [18]. Our experimental results
reveal a stronger interaction effect than previous mea-
surements that yielded � � �0:26�7� at T � 0:15TF [14]
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FIG. 3. Axial cloud size measurements across the Feshbach
resonance. In (a) the atomic scattering length a is shown
according to [17]; the resonance at 850 G is marked by the
vertical dashed line. The data in (b) display the measured rms
cloud sizes. In (c), the same data are plotted after normaliza-
tion to a noninteracting Fermi gas. The solid line shows the
expectation from BEC mean-field theory with amol � 0:6a. In
(b) and (c), the error bars show the statistical error of the size
measurements from typically five individual images.
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FIG. 2. Axial profile of a molecular BEC at 764 G (�) after
its conversion into a Fermi gas at 1176 G and subsequent back
conversion. Two 1-s magnetic field ramps are applied in this
reversible process. For reference we show the corresponding
profile observed without the magnetic field ramp (�). The
density profiles are obtained by averaging over 50 images.
The difference shown in the lower graph is consistent with
the drifts of a residual interference pattern in the images.
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and � � �0:3 at T � 0:6TF [15]. Our value of � lies
within the range of the theoretical predictions for a zero-
temperature Fermi gas: �0:67 [12,24], �0:43 [24], and,
in particular, �0:56�1� from a recent quantum Monte
Carlo calculation [25].

Beyond the Feshbach resonance, in the Fermi gas re-
gime above 950 G, we observe an essentially constant
normalized cloud size of � � 0:83� 0:07. In this regime,
the interaction parameter kFa is calculated to vary be-
tween �2 (at 950 G) and �0:8 (at 1440 G), which allows
us to estimate � to vary between 0.90 and 0.95 based on
the interaction energy calculations in Ref. [12]. Our ob-
served values are somewhat below this expectation,
which requires further investigation.

In summary, we have demonstrated the smooth cross-
over from a molecular condensate of 6Li dimers to an
atomic Fermi gas. Since the conversion is adiabatic and
reversible, the temperature of the Fermi gas can be esti-
mated from the conservation of entropy [11]. Our high
condensate fraction of > 90% suggests a very small en-
tropy which in the Fermi gas limit corresponds to an
extremely low temperature of kBT < 0:04EF. In this sce-
nario, superfluidity can be expected to extend from the
molecular BEC regime into the strongly interacting
Fermi gas regime above the Feshbach resonance where
kFa & �0:8. Our experiment thus opens up intriguing
possibilities to study atomic Cooper pairing and super-
fluidity in resonant quantum gases.
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103 m at B � 809, 850, and 882 G, respectively. For com-
parison, the on-resonance data at 850 G are shown together
with a fit by the expected profile / �1� z2=z2TF�

5=2. The small
deviation near the top is due to a residual interference pattern
in the images.
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We study collective excitation modes of a fermionic gas of 6Li atoms in the BEC-BCS crossover
regime. While measurements of the axial compression mode in the cigar-shaped trap close to a
Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising
features. In the strongly interacting molecular BEC regime, we observe a negative frequency shift with
increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the
collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a
collisionless phase.

DOI: 10.1103/PhysRevLett.92.203201 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

The crossover from a Bose-Einstein condensate (BEC)
to a Bardeen-Cooper-Schrieffer (BCS) superfluid has for
decades attracted considerable attention in many-body
theory [1]. Bose-Einstein condensates of molecules
formed by fermionic atoms of 6Li and 40K [2–5] provide
a unique system to experimentally explore this BEC-BCS
crossover. In such ultracold gases magnetically tuned
scattering resonances, known as Feshbach resonances,
allow one to control and vary the interaction strength
over a very broad range. Recent experiments have entered
the crossover regime and yield results on the interaction
strength by measuring the cloud size [6] and expansion
energy [5]. Moreover, two experiments [7,8] have dem-
onstrated the condensed nature of fermionic atom pairs in
the crossover regime.

Important questions are related to superfluidity in the
crossover regime [9].When a molecular BEC is converted
into an ultracold Fermi gas [6], one can expect ultralow
temperatures and superfluidity to extend far into the
Fermi gas regime [10]. Detection tools to probe super-
fluidity in this regime are therefore requested. The inves-
tigation of collective excitation modes [11] is well
established as a powerful method to gain insight into
the physical behavior of ultracold quantum gases in dif-
ferent regimes of Bose [12] and Fermi gases [13]. A
recent paper [14] points out an interesting dependence
of the collective frequencies in the BEC-BCS crossover of
a superfluid Fermi gas. Superfluidity implies a hydrody-
namic behavior which can cause substantial changes in
the excitation spectrum and in general very low damping
rates. However, in the crossover regime the strong inter-
action between the particles also results in hydrodynamic
behavior in the normal, nonsuperfluid phase. Therefore
the interpretation of collective modes in the BEC-BCS
crossover in terms of superfluidity is not straightforward
and needs careful investigation to identify the different
regimes.

In this Letter, we report on measurements of funda-
mental collective excitation modes in the BEC-BCS
crossover for various coupling strengths in the low-

temperature limit. In Ref. [2], we have already presented
a first measurement of the collective excitation of a mo-
lecular BEC in the limit of strong coupling. As described
previously [2,6], we work with a spin mixture of 6Li
atoms in the two lowest internal states. For exploring
different interaction regimes, we use a broad Feshbach
resonance, the position of which we determined to
837(5) G [15]. The different interaction regimes can be
characterized by the coupling parameter 1=�kFa�, where
a represents the atom-atom scattering length and kF is the
Fermi wave number. Well below the Feshbach resonance
(B< 700 G), we can realize the molecular BEC regime
with 1=�kFa� � 1. On resonance, we obtain the unitarity-
limited regime of a universal fermionic quantum gas with
1=�kFa� � 0 [16]. An interacting Fermi gas of atoms is
realized beyond the resonance where 1=�kFa�< 0.

The starting point of our experiments is a cigar-shaped
molecular BEC produced by evaporative cooling in an
optical dipole trap in the same way as described in
Ref. [6]. Radially the sample is confined by a 35-mW
laser beam (wavelength 1030 nm) focused to a waist
of 25 �m. The radial vibration frequency is !r � 2
�
750 Hz. The axial vibration frequency is !z�2
�
�601B=kG�11�1=2 Hz, where the predominant contribu-
tion stems from magnetic confinement caused by the
curvature of the Feshbach tuning field B, and a very small
additional contribution arises from the weak axial optical
trapping force.

For exploring collective excitations in the BEC-BCS
crossover regime, we ramp the magnetic field from the
evaporation field of 764 G, where the molecular BEC is
formed, to fields between 676 and 1250 G within 1 s. In
previous work [6], we have shown that the conversion to
an atomic Fermi gas proceeds in an adiabatic and re-
versible way, i.e., without increase of entropy. From the
condensate fraction in the BEC limit, for which we
measure more than 90% [6], we can give upper bounds
for the temperature in both the BEC limit and the non-
interacting Fermi gas limit of T < 0:46TBEC and T <
0:03TF [10], respectively. Here TBEC (TF) denotes the
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critical temperature (Fermi temperature). With a total
number of atoms N � 4� 105 (free atoms and atoms
bound to molecules) and a geometrically averaged trap
frequency at 837 G of �!!��!2

r!z�
1=3�2
�230Hz, we

calculate a Fermi energy EF � �h2k2F=2m � �h �!!�3N�1=3 �
kB � 1:2 �K for a noninteracting cloud, where m is the
mass of an atom and kB is Boltzmann’s constant.

To excite the axial compression mode at a given mag-
netic field, we increase the optical confinement in a 10-ms
time interval by a factor of 1.5. The laser power is varied
slow enough for the radial motion to follow adiabatically,
but fast enough to induce axial oscillations. The relative
amplitude of the resulting axial oscillation is kept small,
typically �10%. We observe the oscillation by in situ
imaging of the cloud [6] after a variable hold time t at
constant trap parameters. To determine the collective
oscillation frequency �z and the damping rate �z, we fit
a damped harmonic oscillation z�t�� z0�Azexp�	�zt��
sin��zt��z� to the observed time evolution of the cloud
size, where z0, Az, and �z are additional fit parameters.

The measured oscillation frequencies and damping
rates are shown in Fig. 1. The data are normalized to
the axial trap frequency !z, as determined by excitation
of the axial sloshing mode. We point out that the axial
confinement is harmonic because of the dominant mag-
netic trapping, and we can measure !z with a 10	3

precision. In the BEC limit, the measured collective fre-

quencies are in agreement with the expected �z=!z �
��������

5=2
p

� 1:581 [11,17]. With increasing magnetic field,
we observe a decrease in the collective excitation fre-
quency until a minimum is reached at about 900 G, i.e.,
in the regime of a strongly interacting Fermi gas where
1=�kFa� � 	0:5. With further increasing magnetic field
and decreasing interaction strength, we then observe a
gradual increase of the collective frequency toward
�z=!z � 2. The latter value is expected for a collision-
less degenerate Fermi gas, where the elastic collision rate
is strongly reduced by Pauli blocking. Because of the
large damping rates in the transition regime between
hydrodynamic and collisionless behavior, the excitation
frequencies cannot be determined with high accuracy.
The observed axial damping is consistent with a gradual
transition between these two regimes [18].

The insets of Fig. 1 show a zoom-in of the data for the
resonance region between 750 and 900 G. The collective
frequency that we measure on resonance exhibits the
small 2% down-shift expected for the unitarity limit
(�z=!z �

�����������

12=5
p

� 1:549) [14]. For the damping rate,
we observe a clear minimum at a magnetic field of
815(10) G, which is close to the resonance position. It is
interesting to note that this damping minimum coincides
with the recent observation of a maximum fraction of
condensed fermionic atom pairs in Ref. [18]. For the
minimum damping rate, we obtain the very low value
of �z=!z � 0:0015, which corresponds to a 1=e damping
time of �5 s.

To excite the radial compression mode, we reduce the
optical confinement for 50 �s, which is short compared
with the radial oscillation period of 1.3 ms. In this short
interval the cloud slightly expands radially, and then
begins to oscillate when the trap is switched back to the
initial laser power. The relative oscillation amplitude is
�10%. To detect the radial oscillation, we turn off the
trapping laser after various delay times t and measure the
radial size r�t� after 1.5 ms of expansion. The measured
radial size r�t� reflects the oscillating release energy.
From the corresponding experimental data, we extract
the excitation frequency �r and damping �r by fitting
the radial cloud size to r�t�� r0�Arexp�	�rt�sin��rt�
�r�, where r0, Ar, and �r are additional fit parameters.
Typical radial oscillation curves are shown in Fig. 2.

The magnetic-field dependence of the radial excitation
frequency �r and the damping rate �r is shown in Fig. 3.
Here we normalize the data to the trap frequency !r,
which we obtain by measuring the radial sloshing mode
at the given magnetic field [19]. This normalization sup-
presses anharmonicity effects in the measured compres-
sion mode frequency to below 3% [21]. For low magnetic
fields, the measured frequency ratio approaches the BEC
limit [11,22] (�r=!r � 2). With increasing magnetic
field, i.e., increasing interaction strength, we observe a
large down-shift of the frequency. On resonance (B �
837 G), we observe �r=!r � 1:62�2�. Above resonance,
i.e., with the gas entering the strongly interacting Fermi

FIG. 1 (color online). Measured frequency �z and damping
rate �z of the axial compression mode, normalized to the trap
frequency !z. In the upper graph, the dashed lines indicate
the BEC limit of �z=!z �

��������

5=2
p

and the collisionless Fermi
gas limit with �z=!z � 2. The insets show the data in the
resonance region. Here the vertical dotted line indicates the
resonance position at 837(5) G. The star marks the theoreti-
cal prediction of �z=!z �

�����������

12=5
p

in the unitarity limit. In
the lower inset, the dotted line is a third-order polynomial fit
to the data.
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gas regime, the oscillation frequency further decreases
until a maximum shift of almost 30% [�r=!r � 1:42�5�]
is reached at B � 890 G . With further increasing mag-
netic field, i.e., decreasing interaction strength, an abrupt
change to �r=!r � 2 is observed. For B > 920 G our
data are consistent with a Fermi gas in the collisionless
regime. The damping of the radial compression mode is
small in the BEC limit and reaches a minimum close to
the unitarity regime. At B � 910 G, where the abrupt
change occurs, we observe very strong damping (see
also middle trace in Fig. 2).

We have performed further experiments to check our
data on the radial compression mode for systematic ef-
fects. We have repeated the measurements after recom-
pressing the trap to 9 times higher trap laser power

(!r � 2:4 kHz). The corresponding data confirm all our
observations in the shallower trap. In particular, the
negative frequency shift and the sudden change in the
collective frequency show up in essentially the same
way. The recompressed trap also allows us to eliminate
a small residual anharmonicity shift from our measure-
ment of the collective frequency at 837 G, and we obtain
�r=!r � 1:67�3� for the harmonic trap limit. We have
also checked that the frequency of the compression mode
in the resonance region does not depend on the way we
prepare the ultracold gas. Direct evaporation at a fixed
magnetic field, without starting from a molecular BEC,
leads to the same collective frequency. Preliminary mea-
surements at higher temperatures, however, show a trend
towards smaller frequency shifts in the radial compres-
sion mode and to smoother changes of the collective
frequency.

Our measurements on the radial compression mode
show three surprises. The corresponding features, which
we discuss in the following, cannot be explained on the
basis of available theoretical models and suggest new
physics in the BEC-BCS crossover regime.

Surprise one.—For a strongly interacting BEC,
Ref. [23] has predicted up-shifts of the collective fre-
quencies with increasing coupling strength based on be-
yond mean-field theory corrections [24]. Applying these
predictions to a molecular BEC in the crossover regime,
the collective excitation frequencies should follow
��i=�i � ci

������������

nma3m
p

(i � z; r), where nm is the peak mo-
lecular number density and am � 0:6a [25] is the
molecule-molecule scattering length. For our highly elon-
gated trap geometry, the numerical factors are cr �
5cz � 0:727. In contrast to these expectations, we observe
a strong frequency down-shift in the radial direction.
Using the above formula to fit the first four data points,
we obtain a negative coefficient of cr � 	1:2�3�. For the
axial oscillation we obtain cz � 	0:04�5�. Note that a
substantial down-shift in radial direction is observed
even at the low magnetic field of 676 G where the mo-
lecular gas parameter is relatively small (nma3m � 0:001).
Apparently, the beyond mean-field theory of a BEC is not
adequate to describe the transition from a molecular BEC
to a strongly interacting gas in the BEC-BCS crossover.

Surprise two.—The universal character of the strongly
interacting quantum gas on resonance suggests a simple
equation of state for which one expects �z=!z �
�����������

12=5
p

� 1:549 and �r=!r �
�����������

10=3
p

� 1:826 for the
collective excitation frequencies [14].While our measure-
ments confirm the predicted axial frequency, we obtain a
different frequency in the radial direction of �r=!r �
1:67�3�.

Surprise three.—The abrupt change of the excitation
frequency and the large damping rate are not expected in
a normal degenerate Fermi gas, where the collective ex-
citation frequency is expected to vary smoothly from the
hydrodynamic regime to the collisionless one. Further-
more, for the damping rate of the radial mode in the

FIG. 3 (color online). Measured frequency �r and damping
rate �r of the radial compression mode, normalized to the trap
frequency (sloshing mode frequency) !r. In the upper graph,
the dashed line indicates �r=!r � 2, which corresponds to
both the BEC limit and the collisionless Fermi gas limit. The
vertical dotted line marks the resonance position at 837�5� G.
The star indicates the theoretical expectation of �r=!r �
�����������

10=3
p

in the unitarity limit. A striking change in the excitation
frequency occurs at �910 G (arrow) and is accompanied by
anomalously strong damping.

FIG. 2 (color online). Oscillations of the radial compression
mode at different magnetic fields in the strongly interacting
Fermi gas regime. The solid lines show fits by damped har-
monic oscillations.
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transition regime, a maximum value of �r=!r � 0:09 is
calculated in Ref. [18]. Our measured damping rate of
�r=!r � 0:5 is clearly inconsistent with this prediction
for the normal (nonsuperfluid) hydrodynamic regime.
However, both the sudden change of the collective fre-
quency and a strong damping are expected for a transition
from the superfluid to the normal phase [26].

In conclusion, our experiments demonstrate that the
collective modes of a degenerate gas in the BEC-BCS
crossover region show a pronounced dependence on the
coupling strength and thus provide valuable information
on the physical behavior of the system. For the axial
compression mode, the frequency shift observed in the
unitarity limit confirms theoretical expectations. How-
ever, the radial compression mode reveals a surprising
behavior. In the strongly interacting BEC regime, the
observed frequency shifts have an opposite sign as com-
pared to expectations from beyond mean-field theory and
the frequency shift on resonance is even larger than
expected. The most striking feature is an abrupt change
of the radial collective frequency in the regime of a
strongly attractive Fermi gas where 1=�kFa� � 	0:5.
The transition is accompanied by very strong damping.
The observation supports an interpretation in terms of a
transition from a hydrodynamic to a collisionless phase.
A superfluid scenario for the hydrodynamic case seems
plausible in view of current theories on resonance super-
fluidity [9] and the very low temperatures provided by the
molecular BEC [10]. A definite answer, however, to the
sensitive question of superfluidity requires further careful
investigations, e.g., on the temperature dependence of the
phase transition.

We warmly thank S. Stringari for stimulating this work
and for many useful discussions. We also thank W. Zwer-
ger and M. Baranov for very useful discussions. We ac-
knowledge support by the Austrian Science Fund (FWF)
within SFB 15 (project part 15) and by the European
Union in the frame of the Cold Molecules TMR Network
under Contract No. HPRN-CT-2002-00290. C. C. thanks
the FWF for financial support.

Note added.—A recent paper by John Thomas’ group
[27] reports on measurements of the radial compression
mode in the resonance region, which show much weaker
frequency shifts than we observe. This apparent discrep-
ancy needs further investigation.
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Observation of the Pairing Gap in
a Strongly Interacting Fermi Gas
C. Chin,1 M. Bartenstein,1 A. Altmeyer,1 S. Riedl,1 S. Jochim,1

J. Hecker Denschlag,1 R. Grimm1,2*

We studied fermionic pairing in an ultracold two-component gas of 6Li atoms
by observing an energy gap in the radio-frequency excitation spectra. With
control of the two-body interactions through a Feshbach resonance, we dem-
onstrated the dependence of the pairing gap on coupling strength, temperature,
and Fermi energy. The appearance of an energy gap with moderate evaporative
cooling suggests that our full evaporation brought the strongly interacting
system deep into a superfluid state.

The spectroscopic observation of a pairing gap
in the 1950s marked an important experimental
breakthrough in research on superconductivity
(1). The gap measurements provided a key to
investigating the paired nature of the particles
responsible for the frictionless current in metals
at very low temperatures. The ground-breaking
Bardeen-Cooper-Schrieffer (BCS) theory, de-
veloped at about the same time, showed that
two electrons in the degenerate Fermi sea can
be coupled by an effectively attractive interac-
tion and will form a delocalized, composite
particle with bosonic character. BCS theory
predicted that the gap in the low-temperature
limit is proportional to the critical temperature
Tc for the phase transition, in agreement with
the experimental measurements. In general, the
physics of superconductivity and superfluidity
go far beyond the weak-coupling limit of BCS
theory. In the limit of strong coupling, paired
fermions form localized bosons, and the system
can undergo Bose-Einstein condensation
(BEC). The BCS limit and the BEC limit are
connected by a smooth BCS-BEC crossover,
which has been a subject of great theoretical
interest for more than three decades (2–5). The
formation of pairs generally represents a key
ingredient of superfluidity in fermionic sys-

tems, and the gap energy is a central quantity to
characterize the pairing regime.

The rapid progress in experiments with
ultracold degenerate Fermi gases (6) has
opened up a unique testing ground to study
phenomena related to pairing and superfluid-
ity at densities typically a billion times below
the ones in usual condensed-matter systems.
In cold-atom experiments, magnetically
tuned scattering resonances (Feshbach reso-
nances) serve as a powerful tool to control the
two-body coupling strength in the gas (7). On
the basis of such a resonance, a strongly
interacting degenerate Fermi gas was recently
realized (8). A major breakthrough then fol-
lowed, with the creation of Bose-Einstein
condensates of molecular dimers composed
of fermionic atoms (9–13), which corre-
sponds to the realization of a BEC-type su-
perfluid in the strong coupling limit. By vari-
ation of the coupling strength, subsequent
experiments (12, 14–18) began to explore the
crossover to a BCS-type system. This BEC-
BCS crossover is closely linked to the pre-
dicted “resonance superfluidity” (19–22) and
a “universal” behavior of a Fermi gas with
resonant interactions (23, 24). The observa-
tion of the condensation of atom pairs (15,
16) and measurements of collective oscilla-
tions (17, 18) support the expected superflu-
idity at presently attainable temperatures in
Fermi gases with resonant interactions.

We prepared our ultracold gas of fermionic
6Li atoms in a balanced spin-mixture of the two
lowest sub-states |1� and |2� of the electronic 1s2

2s ground state, employing methods of laser

cooling and trapping and subsequent evapora-
tive cooling (9). A magnetic field B in the range
between 650 to 950 G was applied for Feshbach
tuning through a broad resonance centered at
the field B0 � 830 G. In this high-field range,
the three lowest atomic levels form a triplet of
states |1�, |2�, and |3�, essentially differing by
the orientation of the nuclear spin (mI � 1, 0,
�1, where mI is the nuclear magnetic quantum
number). In the resonance region with B � B0,
the s-wave scattering length a for collisions
between atoms in states |1� and |2� is positive.
Here, two-body physics supports a weakly
bound molecular state with a binding energy
Eb � �2/(ma2), where � is Planck’s constant h
divided by 2� and m is the atomic mass. Mol-
ecules formed in this state can undergo BEC
(9–13). At B � B0, the two-body interaction is
resonant (a3�	), corresponding to a vanish-
ing binding energy of the molecular state. Be-
yond the resonance (B 
 B0), the scattering
length is negative (a � 0), which leads to an
effective attraction. Here, two-body physics
does not support a weakly bound molecular
level, and pairing can only occur because of
many-body effects.

Our experimental approach (9, 14) facili-
tated preparation of the quantum gas in var-
ious regimes with controlled temperature,
Fermi energy, and interaction strength. We
performed evaporative cooling under condi-
tions (25) in which an essentially pure mo-
lecular Bose-Einstein condensate containing
N � 4 � 105 paired atoms could be created as
a starting point for the experiments. The final
laser power of the evaporation ramp allowed
us to vary the temperature T. The Fermi
energy EF (Fermi temperature TF � EF/kB,
with Boltzmann’s constant kB) was controlled
by a recompression of the gas, which we
performed by increasing the trap laser power
after the cooling process (25). We then varied
the interaction strength by slowly changing
the magnetic field to the desired final value.
The adiabatic changes applied to the gas after
evaporative cooling proceeded with con-
served entropy (14). Lacking a reliable meth-
od to determine the temperature T of a deeply
degenerate, strongly interacting Fermi gas in
a direct way, we characterized the system by
the temperature T� measured after an isen-
tropic conversion into the BEC limit (25). For
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a deeply degenerate Fermi gas, the true tem-
perature T is substantially below our observ-
able T� (25, 26), but a general theory for this
relation is not yet available.

Radio-frequency (RF) spectroscopy has
been introduced as a powerful tool to study
interaction effects in ultracold Fermi gases (27–
29). Molecular binding energies have been
measured for 40K atoms (29), for which the
potential of the method to observe fermionic
pairing gap energies has also been pointed out.
RF spectroscopy has been applied to 6Li atoms
to study interaction effects up to magnetic fields
of 750 G (28). One important observation was
the absence of mean-field shifts in the strongly
interacting regime. This effect can be attributed
to the fact that, in the relevant magnetic-field
range, all s-wave scattering processes between
6Li atoms in the states |1�, |2�, and |3� are
simultaneously unitarity-limited. This property
of 6Li is very favorable for RF spectroscopy
because it suppresses shifts and broadening by
mean-field effects.

We drove RF transitions from state |2� to the
empty state |3� at �80 MHz and monitored the
loss of atoms in state |2� after weak excitation
by a 1-s RF pulse, using state-selective absorp-
tion imaging (14). Our experiment was opti-
mized to obtain a resolution of �100 Hz, cor-
responding to an intrinsic sensitivity to interac-
tion effects on the scale of �5 nK, which is
more than two orders of magnitude below the
typical Fermi temperatures.

We recorded RF spectra for different de-
grees of cooling and in various coupling re-
gimes (Fig. 1). We realized the molecular re-
gime at B � 720 G (a � �120 nm). For the
resonance region, we examined two different
magnetic fields, because the precise resonance
location B0 is not exactly known. Our two
values B � 822 G (16) and 837 G (13, 18) may
be considered as lower and upper bounds for
B0. We also studied the regime beyond the
resonance with a large negative scattering
length at B � 875 G (a � �600 nm). Spectra
taken in a “hot” thermal sample at T � 6TF

(where TF � 15 �K) show the narrow atomic
|2�3 |3� transition line (Fig. 1, top) and serve
as a frequency reference. We present our spec-
tra as a function of the RF offset with respect to
the bare atomic transition frequency.

Spectral signatures of pairing have been
theoretically considered (30–34 ). A clear
signature of the pairing process is the emer-
gence of a double-peak structure in the
spectral response as a result of the coexist-
ence of unpaired and paired atoms. The
pair-related peak is located at a higher fre-
quency than the unpaired-atoms signal, be-
cause energy is required for pair breaking.
For understanding of the spectra, both the
homogeneous line shape of the pair signal
(31, 33) and the inhomogeneous line broad-
ening due to the density distribution in the
harmonic trap need to be taken into account

(34 ). As an effect of inhomogeneity, fer-
mionic pairing due to many-body effects
takes place predominantly in the central
high-density region of the trap, and un-
paired atoms mostly populate the outer re-
gion of the trap where the density is low
(34–36 ). The spectral component corre-
sponding to the pairs thus shows a large
inhomogeneous broadening in addition to
the homogeneous width of the pair-break-
ing signal. For the unpaired atoms, the
homogeneous line is narrow and the effects
of inhomogeneity and mean-field shifts are
negligible. These arguments explain why
the RF spectra in general show a relatively
sharp peak for the unpaired atoms together
with a broader peak attributed to the pairs.

We observed clear double-peak structures
already at T�/TF � 0.5, which we obtained
with moderate evaporative cooling down to a
laser power of P � 200 mW (Fig. 1, middle,
TF � 3.4 �K). In the molecular regime B �
720 G, the sharp atomic peak was well sep-
arated from the broad dissociation signal
(29), which showed a molecular binding en-
ergy of Eb � h � 130 kHz � kB � 6.2 �K.
For B 3 B0, the peaks began to overlap. In
the resonance region [822 G and 837 G (Fig.
1)], we still observed a relatively narrow
atomic peak at the original position together
with a pair signal. For magnetic fields beyond
the resonance, we could resolve the double-
peak structure for fields up to �900 G.

For T�/TF � 0.2, realized with a deep
evaporative cooling ramp down to an optical

trap power of P � 3.8 mW, we observed the
disappearance of the narrow atomic peak in
the RF spectra (Fig. 1, bottom, TF � 1.2 �K).
This shows that essentially all atoms were
paired. In the BEC limit (720 G), the disso-
ciation line shape is identical to the one
observed in the trap at higher temperature and
Fermi energy. Here the localized pairs are
molecules with a size much smaller than the
mean interparticle spacing, and the dissocia-
tion signal is independent of the density. In
the resonance region [822 G and 837 G (Fig.
1)], the pairing signal shows a clear depen-
dence on density (Fermi energy), which be-
comes even more pronounced beyond the
resonance (875 G). We attribute this to the
fact that the size of the pairs becomes com-
parable to or larger than the interparticle
spacing. In addition, the narrow width of the
pair signal in this regime (Fig. 1, bottom, B �
875 G) indicates a pair localization in mo-
mentum space to well below the Fermi mo-
mentum �kF � �2mEF and thus a pair size
exceeding the interparticle spacing.

To quantitatively investigate the crossover
from the two-body molecular regime to the
fermionic many-body regime, we measured the
pairing energy in a range between 720 and 905
G. The measurements were performed after
deep evaporative cooling (T �/TF � 0.2) for two
different Fermi temperatures, TF � 1.2 �K and
TF � 3.6 �K (Fig. 2). As an effective pairing
gap, we defined �� as the frequency difference
between the pair-signal maximum and the bare
atomic resonance. In the BEC limit, the effec-

Fig. 1. RF spectra for various magnetic fields and different degrees of evaporative cooling. The RF
offset (kB � 1 �K � h � 20.8 kHz) is given relative to the atomic transition |2� 3 |3�.
The molecular limit is realized for B � 720 G (first column). The resonance regime is studied for
B � 822 G and B � 837 G (second and third columns). The data at 875 G (fourth column) explore
the crossover on the BCS side. Top row, signals of unpaired atoms at T� � 6TF (TF � 15 �K); middle
row, signals for a mixture of unpaired and paired atoms at T� � 0.5TF (TF � 3.4 �K); bottom row,
signals for paired atoms at T� � 0.2TF (TF � 1.2 �K). The true temperature T of the atomic Fermi
gas is below the temperature T�, which we measured in the BEC limit. The solid lines are introduced
to guide the eye.
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tive pairing gap �� simply reflects the molec-
ular binding energy Eb (Fig. 2, solid line) (25).
With an increasing magnetic field, in the BEC-
BCS crossover, �� shows an increasing devia-
tion from this low-density molecular limit and
smoothly evolves into a density-dependent
many-body regime where h�� � EF.

A comparison of the pairing energies at the
two different Fermi energies (Fig. 2, inset) pro-
vides further insight into the nature of the pairs.
In the BEC limit, �� is solely determined by Eb

and thus does not depend on EF. In the universal
regime on resonance, EF is the only energy scale,
and we indeed observed the effective pairing gap
�� to increase linearly with the Fermi energy.
We found a corresponding relation h�� � 0.2
EF. Beyond the resonance, where the system is
expected to change from a resonant to a BCS-
type behavior, �� was found to depend more
strongly on the Fermi energy and the observed
gap ratio further increased. We interpret this in
terms of the increasing BCS character of pairing,
for which an exponential dependence h�� /EF �
exp(��/2kF�a�) is expected.

In a further series of measurements (Fig.
3), we applied a controlled heating method to
study the temperature dependence of the gap
in a way that allowed us to keep all other
parameters constant. After production of a
pure molecular Bose-Einstein condensate (T�
� 0.2TF) in the usual way, we adiabatically
changed the conditions to B � 837 G and
TF � 1.2 �K. We then increased the trap
laser power by a factor of nine (TF increased
to 2.5 �K), using exponential ramps of dif-
ferent durations. For fast ramps, this recom-
pression was nonadiabatic and increased the
entropy. By variation of the ramp time, we
explored a range from our lowest tempera-
tures up to T�/TF � 0.8. The emergence of the
gap with decreasing temperature is clearly
visible in the RF spectra (Fig. 3). The marked
increase of �� for decreasing temperature is

in good agreement with theoretical expecta-
tions for the pairing gap energy (5).

The conditions of our experiment were
theoretically analyzed for the case of resonant
two-body interaction (34). The calculated RF
spectra are in agreement with our experimen-
tal results and demonstrate how a double-
peak structure emerges as the gas is cooled
below T/TF � 0.5 and how the atomic peak
disappears with further decreasing tempera-
ture. In particular, the work clarifies the role
of the “pseudo-gap” regime (5, 22), in which
pairs are formed before superfluidity is
reached. According to the calculated spectra,
the atomic peak disappears at temperatures
well below the critical temperature for the
phase-transition to a superfluid. A recent the-
oretical study of the BCS-BEC crossover at
finite temperature (36) predicted the phase-
transition to a superfluid to occur at a tem-
perature that on resonance is only �30%
below the point where pair formation sets in.

We have observed fermionic pairing already
after moderate evaporative cooling. With much
deeper cooling applied, the unpaired atom sig-
nal disappeared from our spectra. This obser-
vation shows that pairing takes place even in
the outer region of the trapped gas where the
density and the local Fermi energy are low. Our
results thus strongly suggest that a resonance
superfluid is formed in the central region of the
trap (34). Together with the observations of res-
onance condensation of fermionic pairs (15, 16)
and weak damping of collective excitations (17,

18), our observation of the pairing gap provides a
strong case for superfluidity in experiments on
resonantly interacting Fermi gases.
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Fig. 2. Measurements of the effective pairing
gap �� as a function of the magnetic field B
for deep evaporative cooling and two differ-
ent Fermi temperatures, TF � 1.2 �K (solid
symbols) and 3.6 �K (open symbols). The
solid line shows �� for the low-density limit,
where it is essentially given by the molecular
binding energy (25 ). Inset: The ratio of the
effective pairing gaps measured at the two
different Fermi energies.

Fig. 3. RF spectra measured at B � 837 G and
TF � 2.5 �K for different temperatures T� adjust-
ed by controlled heating. The solid lines are fits
to guide the eye, using a Lorentzian curve for the
atom peak and a Gaussian curve for the pair
signal. The vertical dotted line marks the atomic
transition, and the arrows indicate the effective
pairing gap ��.
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Precise determination of 6Li cold
collision parameters by
radio-frequency spectroscopy on
weakly bound molecules
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Precise determination of 6Li cold collision parameters by radio-frequency spectroscopy

on weakly bound molecules
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We employ radio-frequency spectroscopy on weakly bound 6Li2 molecules to precisely determine
the molecular binding energies and the energy splittings between molecular states for different
magnetic fields. These measurements allow us to extract the interaction parameters of ultracold 6Li
atoms based on a multi-channel quantum scattering model. We determine the singlet and triplet
scattering lengths to be as = 45.167(8)a0 and at = −2140(18)a0 (1 a0 = 0.0529177 nm), and
the positions of the broad Feshbach resonances in the energetically lowest three s−wave scattering
channels to be 83.41(15) mT, 69.04(5) mT, and 81.12(10) mT.

PACS numbers: 34.50.-s, 05.30.Jp, 32.80.Pj, 67.40.Hf

Molecular level structure near a collision threshold
uniquely determines the scattering properties of ultra-
cold atoms. When a molecular state is tuned near the
scattering threshold, the atomic scattering amplitude can
be resonantly altered. Magnetically tuned Feshbach res-
onances [1] in ultracold fermionic gases have recently led
to ground-breaking observations, including the conden-
sation of molecules [2, 3, 4, 5, 6] and the studies of the
crossover physics from a molecular Bose-Einstein con-
densate to atomic Cooper pairs in the Bardeen-Cooper-
Schrieffer state (BEC-BCS crossover) [5, 7, 8]. These
studies are of general importance in physics as the ultra-
cold Fermi gas provides a unique model system for other
strongly interacting fermionic systems [9].

In spin mixtures of 6Li atoms, a broad Feshbach res-
onance in the energetically lowest s-wave channel [10]
allows for precise interaction tuning. This, together with
the extraordinary stability of the system against inelas-
tic decay [2, 11], makes 6Li the prime candidate for
BEC-BCS crossover studies. Precise knowledge of the
magnetic-field dependent scattering properties is crucial
for a quantitative comparison of the experimental results
with crossover theories. Of particular importance is the
precise value of the magnetic field where the s−wave
scattering diverges. At this unique point, the strongly
interacting fermionic quantum gas is expected to exhibit
universal properties [12]. Previous experiments explored
the 6Li resonance by measuring inelastic decay [13], elas-
tic collisions [14, 15], and the interaction energy [16], but
could only locate the exact resonance point to within a
range between 80mT and 85mT.

An ultracold gas of weakly bound molecules is an excel-
lent starting point to explore the molecular energy struc-
ture near threshold [17]. Improved knowledge on the ex-
act 6Li resonance position was recently obtained in an
experiment that observed the controlled dissociation of

weakly bound 6Li2 molecules induced by magnetic field
ramps [18]. These measurements provided a lower bound
of 82.2mT for the resonance position. Studies of system-
atic effects suggested an upper bound of 83.4mT. Within
this range, however, we observe the physical behavior of
the ultracold gas still exhibits a substantial dependence
on the magnetic field [8]. In this Letter, we apply radio-
frequency (rf) spectroscopy [17, 19] on weakly bound
molecules to precisely determine the interaction param-
eters of cold 6Li atoms. Together with a multi-channel
quantum scattering model, we obtain a full characteriza-
tion of the two-body scattering properties, essential for
BEC-BCS crossover physics.

The relevant atomic states are the lowest three sub-
levels in the 6Li ground state manifold, denoted by |1〉,
|2〉 and |3〉. Within the magnetic field range investi-
gated in this experiment, these levels form a triplet of
states, essentially differing by the orientation of the nu-
clear spin (mI = 1, 0,−1). Figure 1 shows the energy
level structure of the two scattering channels |1〉+|2〉 and
|1〉 + |3〉, denoted by (1, 2) and (1, 3), respectively. The
broad Feshbach resonance occurs in the (1, 2) channel
near 83 mT. When the magnetic field is tuned below the
resonance, atoms in the (1, 2) channel can form weakly
bound molecules [20]. For the (1, 3) channel, a similar
Feshbach resonance [19] occurs near 69 mT.

Starting with molecules formed in the (1, 2) channel,
we drive the rf transition to the (1, 3) channel at various
magnetic field values B. The rf excitation can dissociate
a molecule into two free atoms (bound-free transition;
see Fig. 1) [17] or, for B < 69 mT, it can also drive
the transition between the molecular states in the (1, 2)
and (1, 3) channels (bound-bound transition). In both
processes, the rf excitation results in loss of molecules in
the (1, 2) channel. This loss constitutes our experimental
signal. We perform measurements at different magnetic
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FIG. 1: Energy level structure near the Li2 dissociation
threshold as a function of magnetic field B. The threshold
energy of the (1, 3) scattering channel (upper dotted line) is
plotted relative to the (1, 2) threshold (lower dotted line). In
the (1, 2) channel, a molecular state (lower solid line) exists
below the Feshbach resonance at ∼ 83 mT. In the (1, 3) chan-
nel, another molecular state (upper solid line) exists below
the resonance at ∼ 69 mT. The bound-free and bound-bound
transitions of molecules in the (1, 2) channel are illustrated
by the arrows.

fields for both the bound-free and the bound-bound tran-
sitions.

Our experimental procedure is similar to Ref. [8]. We
start with a pure condensate of typically 2×105 molecules
at a magnetic field of 76.4 mT [2]. The condensate is con-
fined in a weak optical trap, where the peak molecular
density is near 1013 cm−3. We then linearly ramp the
magnetic field to a specific value between 66 mT and
72 mT in typically 200 ms. After the ramp, we apply a
single rf pulse for 200 ms with its frequency tuned close
to the atomic transition |2〉 to |3〉. Following the rf pulse,
we apply state-selective absorption imaging, which is sen-
sitive to free atoms in state |2〉 and molecules in the (1, 2)
channel.

To precisely determine the magnetic field, we em-
ploy rf spectroscopy on thermal atoms with temperature
T = 6TF, where TF is the Fermi temperature. Here, the
rf transition energy corresponds to the internal energy
difference between the states |2〉 and |3〉, hf0, where h
is Planck’s constant. This energy is magnetic field de-
pendent and the transition frequency is about 83 MHz in
the magnetic field range we study. The measured tran-
sition has a narrow linewidth of less than 1 kHz, and
the center position can be determined to within a few
100 Hz. This high resolution allows us to calibrate our
magnetic field to an accuracy of a few µT based on the
Breit-Rabi formula and the 6Li parameters given in [21].
Within our statistical uncertainty, we do not observe any
density-dependent frequency shifts [19].

For bound-free transitions, the molecules in the (1, 2)
channel make a transition to the (1, 3) scattering con-
tinuum. The excitation rate from a stationary molecule
to an atomic scattering state with kinetic energy 2Ek
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FIG. 2: Bound-free rf spectra at 72.013(4) mT (a) and
69.483(4) mT (b). Fractional loss in state |2〉 is measured as
a function of the radio frequency. The solid lines are the fit
based on Eq. (1). The atomic transition frequencies, which are
measured independently, are indicated by the vertical dashed
lines.

is determined by the Franck-Condon factor between the
bound and free wavefunctions [22]. From energy conser-
vation, 2Ek is related to the rf transition energy hf by
hf = hf0 + Eb + 2Ek, where Eb is the binding energy of
the molecules in the (1, 2) channel. The variation of the
Franck-Condon factor with atomic kinetic energy leads
to a broad and asymmetric dissociation lineshape [22].

Rf dissociation spectra at 72.0 mT and 69.5 mT are
shown in Fig. 2. An important feature of the spectra is
the sharp rising edge on the low frequency side. This
threshold corresponds to the dissociation of a molecule
into two atoms with zero relative momentum. Therefore,
the position of the edge relative to the atomic transition
directly indicates the molecular binding energy.

We determine the dissociation threshold and thus the
molecular binding energy by fitting the full lineshape.
The lineshape function [22] depends on both the (1, 2)
molecular binding energy Eb and the scattering length
a13 in the (1, 3) channel. In the range of magnetic fields
we investigate, a13 is much larger than the interaction
range of the van der Waals potential of ∼ 30a0. The
lineshape function P (E) is then well approximated by
[22]

P (E) ∝ E−2(E − Eb)
1/2(E − Eb + E′)−1 , (1)

where E = hf − hf0 and E′ = ~
2/ma2

13. From the fits
to the experimental data [23], we determine the thresh-
old positions, given in Table I. Together with the atomic
transition frequencies, we conclude that the molecular
binding energies are Eb = h × 134(2) kHz at 72.013(4)
mT and Eb = h× 277(2) kHz at 69.483(4) mT.

For magnetic field B < 69 mT, we can drive the rf
transition between the (1, 2) and (1, 3) molecular states.
Here, the resonance frequency is given by the energy
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FIG. 3: Bound-bound rf spectrum at 66.144(2) mT. The frac-
tional population loss in state |2〉 shows a narrow resonance.
We determine the center position to be 83.6645(3) MHz from
a Lorentzian fit (solid line).

difference of the two molecular states. To avoid possi-
ble systematic mean-field shifts at these lower magnetic
fields [19], we prepare a thermal mixture of atoms and
molecules with temperature T ≈ TF by a controlled
heating method [8]. Rf spectroscopy is performed at
67.6 mT and 66.1 mT. The bound-bound transition sig-
nal at 66.1 mT is shown in Fig. 3. By fitting the narrow
transition line with a Lorentzian profile, we determine
the resonance frequency, see Table I. Notably, below the
resonance in the (1, 3) channel at∼69 mT, the bound-free
transition is much weaker due to a Fano-type interference
effect [22].

Because of the high precision of the measured transi-
tion frequencies, a careful analysis of systematic effects
is necessary. Possible systematic shifts include differen-
tial light shifts of the two molecular states and density-
dependent many-body shifts. In order to characterize
these possible systematic errors, we experimentally in-
vestigate these shifts by varying the trap depth of the
optical potential. In a deeper trap, both the differen-
tial light shifts and mean-field shifts are expected to in-
crease. We repeat the bound-free and bound-bound rf
spectroscopy in traps with different laser powers P be-
tween 3.8 mW and 310 mW. We do not see systematic
shifts within our statistical uncertainty. The measure-
ments show that these systematic shifts do not exceed
the uncertainties given in Table I.

Given the measured data summarized in Table I, it
is possible to predict the location of the scattering reso-
nances in the (1, 2), (1, 3) and (2, 3) channels if we have
an accurate theoretical model of the collision. We use a
standard multi-channel model for the interaction of two
2S atoms with nuclear spin [24] to calculate the scattering
lengths and bound state energies for these channels. It is
only necessary to include s-waves in the basis set, since
we find that there is a negligible change within the ex-
perimental uncertainties if we also include higher partial
waves in the basis set. The interaction potential model
is the same as described in Ref. [14]. It uses a combina-

TABLE I: Comparison of measured and calculated transition
frequencies. Magnetic field values in the second column are
derived from the atomic transition positions in the first col-
umn. We report the measured peak resonance frequencies for
the atomic and molecular bound-bound transitions and the
transition threshold positions for molecular bound-free transi-
tions. The theory values are from the multi-channel quantum
scattering calculation. Values in parentheses indicate one σ

uncertainties.

Atoms (MHz) B (mT) Molecules (MHz) Theory (MHz)

82.96808(20) 66.1436(20) 83.6645(3)a 83.6640(10)

82.83184(30) 67.6090(30) 83.2966(5)a 83.2973(10)

82.66686(30) 69.4826(40) 82.9438(20)b 82.9419(13)

82.45906(30) 72.0131(40) 82.5928(20)b 82.5910(13)
a bound-bound transition frequency.
b bound-free transition threshold.

tion of Rydberg-Klein-Rees and ab initio potentials for
the singlet (1Σ+

g ) and triplet (3Σ+
u ) states at short range,

and joins them smoothly onto long range potentials based
on the exchange [25] and van der Waals dispersion en-
ergy [26], the lead term of which is C6 = 1393.39(16) au
(1 au = 9.57344 × 10−26 J nm6). As in Ref. [14], the
singlet 1Σ+

g and triplet 3Σ+
u scattering lengths, as and

at respectively, are varied by making small variations to
the inner wall of the potential. Once as and at are spec-
ified, all other scattering and bound state properties for
all channels of two 6Li atoms are uniquely determined,
including the positions of the resonances. Consequently,
varying as and at to fit the binding energies and energy
differences from rf spectroscopy determines the values of
these two free parameters.

Fitting the data of the present experiment determines
as = 45.167(8)a0 and at = −2140(18)a0. The uncer-
tainty includes both the uncertainty in the measured
value of the magnetic field and the uncertainty in the
rf measurements. Our scattering lengths agree within
the uncertainties with previous determinations: as =
45.1591(16)a0 [18] and at = −2160(250)a0 [27]. Table
I shows a comparison of the measured and best fit cal-
culated energies. The calculated positions of the broad
s−wave resonances for the (1, 2), (1, 3), and (2, 3) chan-
nels are 83.41(15) mT, 69.04(5) mT, and 81.12(10) mT
respectively.

Figure 4 shows the scattering lengths calculated for
several different channels in the magnetic field range of
interest to BEC-BCS crossover experiments. We find
that the formula a = ab[1+∆(B−B0)

−1][1+α(B−B0)]
fits the calculated scattering lengths to better than 99%
over the range of 60 to 120 mT. This expression includes
the standard Feshbach resonance term [28] with the back-
ground scattering length ab, resonance position B0 and
resonance width ∆, and a leading-order correction pa-
rameterized by α. The respective values for ab, B0, ∆,
and α are −1405a0, 83.4149 mT, 30.0 mT, and 0.0040
mT−1 for channel (1, 2), −1727a0, 69.043 mT, 12.23 mT,
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FIG. 4: Scattering lengths versus magnetic field from multi-
channel quantum scattering calculations for the (1, 2), (1, 3),
and (2, 3) scattering channels. The arrows indicate the reso-
nance positions.

and 0.0020 mT−1 for channel (1, 3), and −1490a0, 81.122
mT, 22.23 mT, and 0.00395 mT−1 for channel (2, 3).

The (1, 3) channel molecular bound state can decay
to the (1, 2) channel by a very weak spin-dipolar cou-
pling. We have used the methods of Ref. [29] to calcu-
late the two-body lifetime of the (1, 3) bound state due
to pre-dissociation to the (1, 2) channel, and find that

it is very long, greater than 10 s at 60.0 mT, increasing
to 1000 s at 68.5 mT very close to resonance. However,
(1, 3) molecules might be quenched by collisions with |2〉
atoms or (1, 2) channel molecules, since with three dif-
ferent spin states involved in the collision, there would
be no fermionic suppression of collision rates according
to the mechanism of Ref. [11].

In conclusion, radio-frequency spectroscopy on ultra-
cold, weakly bound molecules allowed us to precisely de-
termine the molecular binding energies and the energy
splittings between two molecular states for different mag-
netic fields. Based on the measured data and a multi-
channel quantum scattering model, we determine the
scattering lengths as a function of magnetic field and the
Feshbach resonance positions in the lowest three chan-
nels with unprecedented precision. With this data, we
can fully characterize the interaction strength between
particles in the BEC-BCS crossover regime for future ex-
periments based on 6Li atoms.
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R. Grimm, Preparation of a Pure Molecular Quantum Gas, Science 301,
1510 (2003), published online 21 August 2003; 10.1126/science.1088876.

[Ho04a] T.-L. Ho, Arrival of the Fermion Superfluid, Science 305, 1114 (2004).

[Ho04b] T.-L. Ho, Universal Thermodynamics of Degenerate Quantum Gases in
the Unitarity Limit, Phys. Rev. Lett. 92, 090402 (2004).

[Ho04c] T.-L. Ho and E. J. Mueller, High Temperature Expansion Applied to
Fermions near Feshbach Resonance, Phys. Rev. Lett. 92, 160404 (2004).

[Hod01] E. Hodby, G. Heckenblaikner, S. A. Hopkins, O. M. Maragó, and C. J.
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