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There is grandeur in this view of life, with
its several powers, having been originally
breathed [..]a into a few forms or into
one; and that, whilst this planet has gone
cycling on according to the fixed law of
gravity, from so simple a beginning end-
less forms most beautiful and most won-
derful have been, and are being, evolved.

Origin of Species (1859), Charles Darwin, [Dar59]

aIn the 2nd edition ”by the Creator” was inserted here.
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Abstract

Our new experiment, which is built at the Institute for Quantum Optics and
Quantum Information (IQOQI) of the Austrian Academy of Sciences, aims for
the generation of heteronuclear Fermi-Fermi mixtures at ultracold temperatures;
where heteronuclear Feshbach resonances should exist, with which the interac-
tion strength could be tuned. Due to the Pauli exclusion principle heteronuclear
molecules are much more stable than molecules made of bosons. Imbalanced
mixtures with respect to atom number, mass difference, Fermi surfaces or con-
finement allow to test fundamental theories of many-body quantum systems, such
as properties of heteronuclear mixtures at the BEC-BCS crossover. We will gain
new insights and probably new behavior and new phases will be observed.

The newly designed machine gives us the versatility to generate not only
mixtures of the fermionic species 6Li, 40K and 87Sr, but of the bosonic isotopes as
well. A novel three-species oven provides the atom beams, which are decelerated
with a Zeeman slower and trapped within a custom-shaped glasscell in a three-
color MOT. Using magnetic fields allows us to tune the interactions by Feshbach
resonances while the mixture is held in an optical dipole trap which maintains
stable trapping conditions. The first dipole trap used is a resonator enhanced
optical dipole trap. It will create a large and deep trapping potential due to
the power enhancement of the standing wave. Through evaporative cooling the
temperature of 6Li is lowered while the other elements can be sympathetically
cooled with 6Li. On the repulsive side of the Feshbach resonance heteronuclear
molecules will be formed which can Bose condense.

The design of the resonator is the content of this thesis. A laser linewidth
reduction to 10 kHz and the measurements of the losses of the resonator are
presented. With the knowledge of the losses, the design was optimized. The
measurements show that a power enhancement of three orders of magnitude can
be reached. The resonator is nearly finished, but it is not yet integrated into
the experiment. In a different optical dipole trap we have already created a 6Li2
molecular BEC and have observed sympathetic cooling of 39,40K by 6Li. The next
goal is the generation of a heteronuclear molecular BEC.
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Zusammenfassung

In unserem neuen Experiment am Institut für Quantenoptik und Quanten-
information (IQOQI) der österreichischen Akademie der Wissenschaften, wollen
wir ultrakalte, heteronukleare Mischungen fermionischer Atome herstellen. In
den von uns gewählten Mischungen sollten heteronukleare Feshbach-Resonanzen
existieren, mit denen die Wechselwirkungen individuell eingestellt werden können.
Damit könnten auch Moleküle erzeugt werden, die aufgrund des Pauli-Prinzips
wesentlich stabiler als bosonische Moleküle sind. Unser Ziel ist es, Mischungen zu
erzeugen, die in ihrer Atomzahl, dem Massenverhältnis, den Fermienergieen oder
im Fallenpotential unterschiedlich sind. Wir hoffen, fundamentale Fragen der
Quantenphysik, im besonderen der Theorie vieler Teilchen, klären zu können.
Vielleicht können wir neues Verhalten oder neue Zustände beobachten. Wir
wollen die heteronuklearen Wechselwirkungen und Stöße im BEC-BCS Übergangs-
bereich genauer untersuchen.

Zu diesem Zweck haben wir ein neues Experiment aufgebaut, in dem wir
Mischungen erzeugen werden, die aus den fermionischen Elementen 6Li, 40K und
87Sr bestehen. Der vielseitige Aufbau lässt aber auch Mischungen zu, welche
bosonische Isotope enthalten. Die Atomstrahlen kommen aus einem neu ent-
wickelten drei-Elemente-Ofen, passieren einen Zeeman-Abbremser und werden
innerhalb einer speziell geformten Glaszelle, mittels einer drei-Farben-MOT, gefan-
gen. Die Feshbach-Resonanzen werden über Magnetfelder eingestellt. Um ein
magnetfeldunabhängiges Potential und ebenso, um alle möglichen Spinzustände
fangen zu können, laden wir das Gemisch in eine optische Dipolfalle. Dies er-
folgt in mehreren Schritten, um eine möglichst große Teilchenzahl zu erreichen.
Der erste davon ist eine Resonator verstärkte optische Dipolfalle, welche, durch
die Verstärkungswirkung der Stehwelle im Resonator, ein besonders großes und
tiefes Potential erlaubt. Die Temperatur der 6Li-Atome wird durch Verdamp-
fungskühlen bis zum degenerierten Fermigas verringert. Es ist möglich die an-
deren Atome dabei sympathetisch mitzukühlen. Unter Ausnutzung der Feshbach-
Resonanzen wollen wir heteronukleare Moleküle herstellen, die dann auch Bose
kondensiert werden können.

Der Aufbau des Resonators ist der Inhalt dieser Diplomarbeit. Im Rahmen
dieser wird eine Linienbreitenreduktion des Resonatorlasers auf 10 kHz und die
Messung der Verluste des Resonators beschrieben. Die genaue Kenntniss der Ver-
luste erlaubt es die Parameter des Resonators zu optimieren um eine möglichst
große Verstärkung zu erhalten. Die Messungen zeigen, dass ein Verstärkungs-
faktor von 1000 erreicht werden sollte, doch der Aufbau konnte noch nicht abge-
schlossen werden. Im Experiment wurde bereits ein 6Li2 Molekül-BEC erzeugt
und sympathetisches Kühlen von 39,40K mit 6Li wurde ebenfalls erfolgreich getestet.
Das nächste Ziel ist die Erzeugung eines heteronuklearen Molekül-BEC.
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Chapter 1

Introduction

1.1 Motivation

Even many years after quantum physics was developed, some questions remain to
be answered, keeping physicists puzzling until today. Famous gedanken (thought)
experiments, like the EPR paradox [EPR35, Boh35] still fascinate and animate
controversial and exciting discussions. But, contrary to the early pioneers, who
thought that it would never be possible to experimentally verify them [Sch52],
such experiments can now be performed to proof the remarkable features of quan-
tum physics, such as the EPR paradox [Bel64, AGR81], to be real.

One of the basic concepts of quantum physics [Sak94] is the wavefunction,
which represents the probability1 of finding a particle at a specific point in space.
The time evolution of the wavefunction is described by the Schrödinger equation2.
For this equation, there exist time independent solutions (with a time varying
phase), called the states of the system, which have discrete energy levels3. For
example, atoms have certain transition frequencies on which they can absorb and
emit light. These frequencies correspond to the energy difference between discrete
energy levels.

All kinds of particles can be divided into two fundamentally different cate-
gories, with either a symmetric or an anti-symmetric wavefunction, with respect
to the exchange of two particles4. The first type is called bosons5, with photons
as their prominent representative. The second type of particles is called fermi-

1The wavefunction is the probability amplitude and its modulus square is the probability.
2Proposed in 1925 by Erwin Schrödinger, an Austrian physicist.
3The states are the eigenvectors with the energies as eigenvalues.
4Integer spin and half odd integer spin particles respectively.
5Named after the Indian physicist Satyendra Nath Bose. See also BEC below.

1



2 Chapter 1. Introduction

ons6, to which electrons belong. If two equal fermions were in the same state and
were placed at the same position7, the wavefunctions would annihilate due to the
anti-symmetry of the fermionic wave function. This means that equal fermions in
the same state are not allowed to be placed at the same position, which is called
the Pauli exclusion principle8. For neutron stars, it is thought that the Pauli
exclusion leads to a ”Pauli pressure” which balances the gravitational collapse.
Another consequence of the Pauli exclusion is that equal fermions in the same
internal state do not interact9.

For bosons the situation is reversed. The wavefunctions add, so that the
largest probability is to find two bosons at the same position. This led, in the
mid-1920’s, to the prediction of Einstein, on the inspiration by Satyendra Nath
Bose, that a new phase of matter should exist, nowadays known as Bose-Einstein
condensate (BEC) [Bos24, Ein24, Ein25]. In this phase, all bosons occupy the
state with the lowest energy. That is the reason why it is called a degenerate
gas. There the wavefunctions overlap, resulting in the particles behaving as
an ensemble without individuality. Such a state is only reached at very low
(ultracold) temperatures. It took 70 years until the first BEC could be achieved
by Eric Cornell & Carl Wieman, Randall G. Hulet, and Wolfgang Ketterle in the
year 1995 [AEM+95, BSTH95, DMA+95].

For fermions such a phase is impossible due to the Pauli exclusion principle.
They can only stack up in a ladder of states, starting from the state with the
lowest energy, followed by the state with the next higher energy, and so on, until
all the fermions have filled up states with different energies. This is called the
fermi sea or a degenerate fermi gas. Such a state was first observed 1999 in the
group of Deborah S. Jin for 40K [dMJ99] and 2001 in the groups of Randall G.
Hulet [TSM+01] and Christophe Salomon for 6Li [SKC+01].

In the field of ultracold physics, the so-called superfluidity is of large inter-
est. In the year 1937 Pyotr L. Kapitza10, John F. Allen and Don Misener discov-
ered that, if liquid helium (4He) is cooled below a certain temperature11, it shows
zero viscosity, zero entropy and infinite thermal conductivity [Kap38, AM38].
A medium having this properties is called a superfluid and has interesting be-
havior: it creeps out of any container if not sealed, and can support so-called
vortices. Superfluidity can be explained by Bose-Einstein condensation for the
bosonic isotope 4He. The fermionic isotope 3He shows also superfluidity, but at
lower temperatures. Its behavior can be explained by the formation of so-called

6Named after the Italian physicist Enrico Fermi.
7This means, the wavefunctions overlap completely.
8Formulated by Wolfgang Pauli, an Austrian physicist.
9Scattering length equal zero for s-wave scattering and all even partial waves.

10Sometimes spelled as Pjotr Kapitsa
11This is called the lambda point, which is for 4He at 2.18 K.
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Cooper pairs, in a process obeying the same mechanism as described by the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.

The interaction strength of bosons or fermions is magnetically tuneable
by so-called Feshbach resonances12. It is possible to tune the interaction from
attractive to repulsive, or even to zero. In the attractive regime, Cooper pairs
are formed and, on the repulsive side, molecules. The transition region is called
the BEC-BCS crossover.

Two-atom molecules consisting of fermions have bosonic character as well13.
This allowed to obtain a molecular BEC of 40K2 in 2003 in the group of Deborah S.
Jin [GRJ03] and of 6Li2 in the lithium experiment of our research group [JBA+03].
It turned out that at ultracold temperatures molecules composed of fermions are
much more stable than molecules of bosons. This is a consequence of the Pauli
exclusion principle which suppresses (s-wave) collisions.

In our newly designed fermionic-lithium-potassium-strontium-experiment
(FeLiKx) we use the fermionic isotopes 6Li, 40K and 87Sr. With these isotopes,
and also with the bosonic isotopes, we generate different combinations of het-
eronuclear mixtures. Using Feshbach resonances we intend to create heteronu-
clear molecules. With them we will be able to study in detail the properties of
the BEC-BCS crossover. The versatile design of the machine will allow a large
variety of experiments.

The use of different atoms gives the possibility to individually tune the
interaction strengths, the Fermi surfaces, the confinement, the mass ratios, the
number ratio, etc. Unequal mixtures in any of those properties can be created,
possibly leading to new superfluid phases (e.g. FFLO [FF64, LO64, CN04] or
breached pair superfluidity [LW03, MGLW05]). Mediated pairing could also lead
to novel behavior.

Beyond the study of fermionic systems we will investigate further areas.
For example bose-fermi mixtures, which could reveal new features of quantum
physics. The generation of ground-state heteronuclear molecules will open the
field to new types of experiments: dipolar molecules could be used for quantum
information processing, the change in collision properties and collective phenom-
ena could be studied and BECs of dipolar molecules could show new properties.
The chosen alkaline-earth strontium has some interesting features. Although it
could be difficult to find magnetic Feshbach resonances its narrow intercombi-
nation line makes an optical Feshbach resonance feasible. It would give a large
mass ratio in the mixture and has a rich energy structure with a metastable state.

12Named after Herman Feshbach, an American physicist. It is observed if the kinetic energy
of the atoms becomes degenerate with a bound molecular state.

13This bosonic feature reduces the effect of Pauli exclusion.
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Strontium also is not Bose condensed so far.

Applications of our results could include the understanding of high tem-
perature superconductors and the behavior of neutron stars. Our experiment is
an ideal model of fermionic systems, like quarks and gluons within the atoms
nuclei. With this knowledge, one can test different theories which could rule out
approaches, lead to extensions or the unification of different theories. For the
generation of ground-state molecules new experimental tools have to be devel-
oped and further investigated: for example new Raman-schemes and coherent
control of ro-vibrational molecular states (e.g. by dark states), etc.

In the FeLiKx experiment we could already produce 6Li2 molecular BECs.
The next major step we are working on is to obtain a heteronuclear BEC of
6Li-40K molecules. Sympathetic cooling of 39,40K by 6Li at the 6Li Feshbach
resonance was observed. We hope to obtain a heteronuclear molecular BEC
soon, with which we will be able to explore the features of such a mixture in the
region of the BEC-BCS crossover.

1.2 The experiment

The achievements in the field of ultracold physics, discussed in the previous sec-
tion, did require the development of specific new experimental tools. The atoms
have to be cooled and trapped simultaneously. The laser (light amplification by
the stimulated emission of radiation) was invented in the late 1950’s and is one of
the most important developments with which cooling is performed to temperature
regimes never thought to be reachable.

Cooling atoms means to reduce their velocity. But cold atoms alone are
not sufficient for reaching BEC. The density must also be high. Therefore, the
atoms have to be trapped as well. This is done in a first step by a combination
of a magnetic quadrupole field together with a Doppler cooling scheme, which is
called magneto-optical trap (MOT) [MvdS99].

The final temperature which can be reached by this method is limited to a
few 100µK since it involves resonant absorbtion-emission of photons which exert
finite recoils to the atom. The corresponding recoil temperature, is still too high
to obtain BEC in a MOT. Therefore, one had to develop different schemes of
cooling and trapping, in which no resonant light is involved.

One of those is to trap the atoms in an off-resonant dipole trap which uses
the dipolar force [GWO00]. The trapping laser induces a dipole moment of the
atom by deforming the electron distribution. By focussing the laser tightly an
intensity gradient is formed which exerts a force on the atom via the induced
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dipole moment. If the laser is red-detuned the atom cloud deformation goes in-
phase with the laser field and the force drives the atoms towards the intensity
maximum. If the laser is blue detuned the electron cloud is out-of-phase with the
field and the atoms are expelled to a region with lower intensity. Therefore, with
a focussed and red-detuned laser trapping of the atoms in the intensity maximum
can be achieved14.

Cooling in a dipole trap is conveniently done by evaporative cooling. To
force evaporation the potential depth of the trap is lowered, such that the hot
atoms escape. By rethermalization of the remaining atoms, these are cooled
efficiently [MvdS99]15. This process needs a sufficient number of atoms to be in
the trap, since many of them will be lost. Also a sufficiently large scattering rate
and low enough trap loss is required, in order to be efficient. If this is not the case,
one can use sympathetic cooling. A cooling agent is used, which can be cooled
by evaporative cooling. By collisions with the cooling agent the second species
in the trap is cooled. This requires a sufficiently large heteronuclear scattering
length. By evaporative cooling the nK regime can be reached, where degenerate
quantum gases can be formed if the density is sufficient large.

(a)

three species oven

Zeeman slower
without coils

coils & glasscell

(b)

100 W fiberlaser

MOT &
5W fiberlaser

MOT &
5W fiberlaser

25W disklaser

atom beams

resonator outcoupling
mirror & piezo

resonator incoupling
mirror

Zeeman slower
laser

glasscell

Figure 1.1: a) Experimental setup and b) glasscell with trapping laser beams.

In figure 1.1, the experimental setup for the FeLiKx experiment is shown.
In the newly designed three-species oven we can heat up our elements individu-
ally. The part of the oven which contains the enriched (7%) 40K is separated by
valves which allows to exchange the source without opening the vacuum chamber.
Microtubes (Ø 200µm, L=12 mm, stainless steel) separate the individual sources
from the rest of the vacuum chamber and provide collimation of the atom beam.
They also allow us to use a very small amount of enriched potassium, which is
very expensive (150 $/mg). The atom beams then pass through two differential

14A different picture of the dipolar force is presented in section 3.4.5.
15Evaporative cooling of equal fermions requires to use a spin mixture, otherwise no rether-

malization is possible due to the zero scattering length.
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pumping stages and get decelerated by a Zeeman slower. The atoms are trapped
at the center of a glasscell, shown in figure 1.1b).

In a first trapping step, our atoms are trapped in a three-color MOT. For
this, three independent laser systems were set up. Since we want to tune our
magnetic fields arbitrarily, we load the atoms from the MOT into optical dipole
traps, which are independent of magnetic fields. The first of these will be a
standing wave resonator dipole trap. This is a Fabry-Perot type (linear) cavity
which enhances the 25 W input power by three orders of magnitude. The design
of this trap, together with the necessary laser stabilization, are the contents of this
thesis. Due to its deep potential, we can enlarge the beam size of the resonator
to obtain a big overlap with the MOT and transfer a large fraction of atoms
into the resonator. Additionally, the intensity of the resonator will be ramped
down, resulting in a first evaporative cooling stage. The cold remaining atoms
are then kept in a focussed 100 W dipole trap which is built in a crossed and
retroreflected configuration16, as shown in figure 1.1b). The depth of this trap
will be ramped down as well and the remaining atoms will be transferred into two
5 W single focussed lasers beams. There, the final evaporation will be performed
and quantum degeneracy should be reached. So far, only the 100W laser serves
as a dipole trap, but it was sufficient to obtain a molecular 6Li2 BEC.

The design of the glasscell was developed in such a way that its walls are at
Brewster’s angle with respect to the resonator. This way the losses are minimized.
Simultaneously, nearly ideal access for all the other laser beams is ensured. This
is further discussed in section 3.4.1.

This thesis starts with the theoretical issues concerning Fabry-Perot type
cavities. After this, some questions about servo controllers are discussed and laser
noise is considered. In the experimental part, the laser used for the resonator is
characterized and its linewidth stabilization is described. The measurement of
the losses of the glasscell is presented. This was necessary for the design of the
parameters of the resonator, which is performed in the last part. The resonator
is nearly completed but it is not yet integrated into the experiment.

16Actually, the atoms are trapped only in the crossing of the 1st and 3rd beam, since otherwise
we observed fast losses from the trap. See introduction to section 3.4.



Chapter 2

Theoretical part

For the design of a Fabry-Perot resonator and to achieve narrow linewidths by
locking lasers to a cavity, it is necessary to understand the properties of a Fabry-
Perot interferometer and laser light very well. Therefore, we want to establish
some principles first. This chapter will be quite general and the content can
be found in many books and articles. See references at the beginning of each
chapter. Probably, the advanced reader may skip the theoretical part entirely
and start immediately with the experimental part. Whenever questions arise one
can always jump to the relevant theoretical section.

Here the focus was put on the section about the Fabry-Perot interferometer,
since this thesis will deal mainly with such a configuration. In the literature its
description often is only very briefly and partially or it is scattered over many
chapters with diverse nomenclature and definitions. It may be useful having
all basic ingredients in one chapter that should allow fast learning about Fabry-
Perot type cavities for the novice as well as a fast reference for the more advanced
reader. The majority of the equations are derived in detail, which should allow
verification without difficulties. After reading this chapter one should have deeper
insight how a Fabry-Perot resonator works and should be ready for designing one
with the tools given here.

First the Gaussian beam and the ABCD law will be introduced, which
describes such a beam passing through several optical elements. Then the basic
features of a Fabry-Perot type cavity will be discussed. We will discuss the two
main properties which are frequency discrimination and intensity enhancement.
Both of these features will be used in the setup.

7



8 Chapter 2. Theoretical part

2.1 Gaussian beam and ABCD law

One of the main parts of a laser is the optical resonator, which is a Fabry-Perot
type cavity, explained in section 2.2. It amplifies the light and forces the laser to
emit at a certain wavelength. The mirrors have in nearly all cases planar and/or
spherical shape, causing that the wavefronts of the laser light must have the
same shape as the mirrors. In this section we will find that Gaussian beams have
spherical wavefronts in the far field and planar wavefronts in the focus. Also they
carry finite energy which makes Gaussian beams a physical solution, describing
laser light very well. This is also true outside the cavity. The way a Gaussian
beam is changed by passing optical elements is described by the ABCD law and
using ray transfer matrices. We will see that higher modes of Gaussian beams
exist and that they have different phases leading to mode dependent resonances
of laser cavities. It makes sense to derive the properties of a Gaussian beam first.
In this way one obtains all the formulas describing laser light inside and outside
cavities [ST91, HW92, Sie86, KL66].

2.1.1 Gaussian beam

Starting with the Maxwell equations we will derive the wave equation which
describes the propagation of light. By separating time and space dependencies in
a complex ansatz we will arrive at the Helmholtz equation which, in the paraxial
approximation, is solved by the Gaussian beam. The properties of the beam will
be discussed briefly. This section follows mainly [ST91, Sie86].

The starting point are the Maxwell equations in their most general form:

∇ · ~D = ρ (2.1a)

∇ · ~B = 0 (2.1b)

∇× ~E = −∂ ~B

∂t
(2.1c)

∇× ~H =~ +
∂ ~D

∂t
(2.1d)

In table 2.1 the used quantities and relations which are useful in connection with
the Maxwell equations are summarized.



2.1. Gaussian beam and ABCD law 9

Table 2.1: Units and definitions for the Maxwell equations (2.1) [Wik].

symbol name definition SI units

~D electric displacement field ǫ0 ~E + ~P = (1 + χe)ǫ0 ~E = ǫ ~E C
m2

= As
m2

~E electric field see ~D V
m

= N
C

= kgm
As3

~P polarization density χeǫ0 ~E C
m2

= As
m2

χe electric susceptibility see ~P 1

ǫ electric permittivity (1 + χe)ǫ0 = ǫr ǫ0
F
m

= C2

Jm
= A2s4

kgm3

ǫr dielectric constant 1 + χe 1

~H magnetic field see ~B A
m

~B magnetic flux density
(magnetic field)

µ0( ~H + ~M) = (1 + χm)µ0
~H = µ ~H T = 104G = kg

As2

~M magnetisation density χm
~H A

m

χm magnetic susceptibility see ~M 1

µ magnetic permeability (1 + χm)µ0 = µr µ0
H
m

= kgm
A2s2

µr relative permeability 1 + χm 1

n refractive index
√

ǫr µr 1

ρ free electric charge density C
m3

= As
m3

~ free current density A
m2

c vacuum speed of light 2.99792458 × 108 (= 1√
ǫ0µ0

) m
s

µ0 permeability 4π × 10−7 H
m

= kgm
A2s2

ǫ0 permittivity of free space 1
c2 µ0

= 8.8541878176 × 10−12 F
m

= C2

Jm
= A2s4

kgm3

The Maxwell equations (2.1) in vacuum (~P = 0, ~M = 0) are:

∇ · ~E =
ρ

ǫ0

(2.2a)

∇ · ~B = 0 (2.2b)

∇× ~E = −∂ ~B

∂t
(2.2c)

∇× ~B = µ0~ +
1

c2

∂ ~E

∂t
. (2.2d)

By applying the curl operator ∇× to both sides of equation (2.2c), without free
charges and currents (ρ = 0 and ~ = 0) one obtains:

∇× (∇× ~E) = −∇× ∂ ~B

∂t

∇(∇ · ~E) −∇2 ~E = − ∂

∂t

(

∇× ~B
)

⇒ ∆ ~E ≡ ∇2 ~E =
1

c2

∂2 ~E

∂t2
, (2.3)
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where ∇× (∇× ~E) = ∇(∇· ~E)−∇2 ~E and equations (2.2d) and (2.2a) have been
used for the charge and current free case. Equation (2.3) is the well known wave
equation.

For simplicity, from now on, we will assume the electric field to propagate
only within one plane, i.e. it is linearly polarized. For the free space case the
electric field can always be decomposed into orthogonally polarized components,
which can be treated independently. It is very useful to introduce a complex
electric field Ẽ for which the given wave equation is also valid. The physical
meaningful quantity is the real part:

E = Re
[
Ẽ
]

=
1

2

(

Ẽ + Ẽ∗
)

. (2.4)

But it is convenient to use the same notation for the complex electric field as for
the real electric field. Therefore, the tilde will be dropped in the future. When
calculating quantities one has to remember that the real part has to be used.

We use the ansatz

E(~r, t) = E(~r) exp[iωt] , (2.5)

where we introduced the spatial coordinate ~r, time t and the angular frequency ω
in radians per second. Inserting this into the wave equation gives the Helmholtz
equation:

(
∇2 + k2

)
E(~r) = 0 , with k ≡ ω

c
. (2.6)

Here the wavenumber k appeared. The simplest solution to this equation is a
plane wave:

E(~r, t) = E0 exp[ i (ω t − ~k · ~r)] , (2.7)

where the wave vector ~k points into the direction of propagation of the wave and
has as magnitude the wavenumber

∣
∣~k
∣
∣ = k. E0 is the amplitude of the wave.

The spatial maxima at time t of this wave are separated by ∆r = 2 π
k

≡ λ, which
is the wavelength. Another solution to the Helmholtz equation is the spherical
wave:

E(~r, t) =
E0

r
exp[ i (ω t − k r)] , with r ≡

∣
∣~r
∣
∣ . (2.8)

The point at r = 0, where the electric field becomes infinite, is called the focus.
This makes the spherical wave unphysical around this point.

A special case is the paraxial wave, where the wave is centered around
an axis (z in our case) with only small amplitudes off this axis. Such a wave
is described as a plane wave running along the z axis with an amplitude that
depends on the x and y coordinates:

E(~r) = A(~r) exp[−i k z ] . (2.9)
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We assume that on a length scale of ∆z ≈ λ the amplitude A(~r) of the paraxial
wave varies slowly along the z axis, in comparison with both other axes, i.e.

∣
∣
∂2A

∂z2

∣
∣ ≪

∣
∣
∂2A

∂x2

∣
∣ ,

∣
∣
∂2A

∂z2

∣
∣ ≪

∣
∣
∂2A

∂y2

∣
∣ , (2.10)

and

(2.11a)

(2.11b)

∣
∣∆A

∣
∣ ≡

∣
∣
∂A

∂z
∆z
∣
∣ =

∣
∣
∂A

∂z
λ
∣
∣ =

2π

k

∣
∣
∂A

∂z

∣
∣

∣
∣∆A

∣
∣ ≪

∣
∣A
∣
∣






⇒

∣
∣
∂A

∂z

∣
∣ ≪ k

∣
∣A
∣
∣ . (2.12)

The derivative ∂A
∂z

varies as well slowly along z:

∣
∣∆
(∂A

∂z

)∣
∣ ≡

∣
∣
∂2A

∂z2
∆z
∣
∣ =

∣
∣
∂2A

∂z2
λ
∣
∣ =

2π

k

∣
∣
∂2A

∂z2

∣
∣

∣
∣∆
(∂A

∂z

)∣
∣

(2.12)
↓
≪ ∆

(

k
∣
∣A
∣
∣

)

= k
∣
∣∆A

∣
∣

(2.11a)
↓
= 2π

∣
∣
∂A

∂z

∣
∣







⇒
∣
∣
∂2A

∂z2

∣
∣ ≪ k

∣
∣
∂A

∂z

∣
∣ . (2.13)

We insert the paraxial wave (2.9) into the Helmholtz equation (2.6) and neglect
the term

∣
∣∂

2A
∂z2

∣
∣. This is justified with equations (2.10) to (2.13) and gives:

0 =
(
∇2 + k2

)
A(~r)ee−i k z

=

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

)

A(~r)ee−i k z

=

(
∂2

∂x2
+

∂2

∂y2

)

A(~r)ee−i k z +
∂

∂z

(
∂A(~r)

∂z
ee−i k z − i kA(~r)ee−i k z

)

+ k2A(~r)ee−i k z

=

(
∂2

∂x2
+

∂2

∂y2

)

A(~r)ee−i k z +
∂2A(~r)

∂z2
ee−i k z

︸ ︷︷ ︸

neglect this term

−2 i k
∂A(~r)

∂z
ee−i k z + (−k2 + k2)A(~r)ee−i k z

≈
(

∂2

∂x2
+

∂2

∂y2

)

A(~r)ee−i k z − 2 i k
∂A(~r)

∂z
ee−i k z . (2.14)

We get as result:

(

∇2
T − 2 i k

∂

∂z

)

A(~r) ≈ 0 , with ∇2
T ≡ ∂2

∂x2
+

∂2

∂y2
. (2.15)

This is known as the paraxial Helmholtz equation, which is valid for a wave
varying slowly along the z axis.

A solution to this equation is:

A(~r) =
A1

q(z)
exp

[

−i k
ρ2

2q(z)

]

,
with ρ2 ≡ x2 + y2

and q(z) ≡ z + i z0 ,
(2.16)
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where we introduced the radius ρ and a complex number q(z) which has a real
part z and a constant complex part i z0. This solution looks like the spherical
wave (2.8) in the paraxial approximation where r is expanded in the following
way:

r =
√

x2 + y2 + z2 ≈ z +
x2 + y2

2z
,

where
√

a + ǫ ≈
√

a
(

1 +
ǫ

2a

)

, with
ǫ

a
≪ 1 was used.

(2.17)

The radius r is replaced by q(z), which is complex. Therefore, it is called the
complex radius of curvature. Its complex nature gives rise to several features: at
long distances from the focus the beam behaves like a spherical wave. Close to the
focus it stays finite in diameter and the phase surfaces are nearly parallel. The
intensity falls off in a Gaussian way along the transverse direction. Therefore, it
is called a Gaussian beam. These features ensure that it can not carry infinite
energy along the transverse direction and in the focus. This was not the case for
the spherical wave, which makes therefore ansatz (2.16) more realistic.

We define two new real functions w(z) and r(z) in the following way:

1

q(z)
≡ 1

r(z)
− i

λ

π w(z)2
, (2.18)

and obtain the expressions for r(q) and w(q):

w(q)2 = − λ

π Im
[
1/q(z)

] =
λ
∣
∣q(z)

∣
∣
2

π Im
[
q(z)

] , with
1

q(z)
=

1

z + iz0

=
z − iz0

z2 + z2
0

w(q) =

√
√
√
√λ

π

∣
∣q(z)

∣
∣
2

Im
[
q(z)

] (2.19a)

r(q) =
1

Re
[
1/q(z)

] =

∣
∣q(z)

∣
∣
2

Re
[
q(z)

] . (2.19b)

To obtain the explicit expressions for r(z) and w(z) we insert q(z) ≡ z + i z0:

w(z) =

√
√
√
√λ

π

∣
∣q(z)

∣
∣
2

Im
[
q(z)

] =

√

λ (z2 + z2
0)

π z0

=

√

λ z0

π

√

1 +
( z

z0

)2

, with w2
0 ≡ λ z0

π

= w0

√

1 +
( z

z0

)2

(2.20a)

r(z) =

∣
∣q(z)

∣
∣
2

Re
[
q(z)

] =
z2 + z2

0

z
= z

(

1 +
(z0

z

)2)

. (2.20b)
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The new parameter w0 was defined in such a way that it corresponds to w0 ≡
w(z = 0), i.e. the value at the focus. Rewriting i

q
in polar form and using (2.20)

gives:

i

q(z)
=
∣
∣

i

q(z)

∣
∣ee iζ(z) =

1
∣
∣z + i z0

∣
∣
ee iζ(z) =

1
√

z2 + z2
0

ee iζ(z) , with tan[ζ(z)] ≡ z

z0

=
1

z0

√

1 + ( z
z0

)2
ee iζ(z) =

w0

z0 w(z)
ee iζ(z) . (2.21)

This expression was multiplied with i so that the introduced phase ζ(z) becomes
zero for z = 0. Inserting (2.18) and (2.21) into (2.16) gives with ansatz (2.9) and
the definition A0 ≡ A1/(iz0) the complex electric field of the beam:

E(~r) = A0
w0

w(z)
exp

[

− ρ2

w(z)2

]

exp

[

i

(

−k z − k
ρ2

2r(z)
+ ζ(z)

)]

,

with ρ2 ≡ x2 + y2 .

(2.22)

The intensity is defined as the optical power per unit area [ST91]:

I(z, t) ≡ ǫ0 c
〈
Re(E(z, t))2〉

T
, (2.23)

where ǫ0 is the permittivity of free space and the brackets 〈 〉T denote averag-
ing over a time period T since the sensor is usually slow in comparison with ω.
Rewriting this expression in terms of the complex E(z, t) and its complex conju-
gate E∗(z, t) yields for linear polarized light:

I(z, t) =
ǫ0 c

4

〈
(E(z, t) + E∗(z, t))2

〉

T

=
ǫ0 c

4

(〈
E2(z, t)

〉

T
+
〈
E∗2(z, t)

〉

T
+ 2 〈E(z, t) E∗(z, t)〉T

)

=
ǫ0 c

2

〈∣
∣E(z, t)

∣
∣
2
〉

T
,

(2.24)

where the average of the squared electric field 〈E2(z, t)〉 and 〈E∗2(z, t)〉 is zero

and the cross terms are simply E(z, t) E∗(z, t) =
∣
∣E(z, t)

∣
∣
2
. Using this equation

and equation (2.22) for the electric field of a Gaussian beam gives:

I(~r) = I0
w2

0

w(z)2
exp
[

− 2 ρ2

w(z)2

]

,
with ρ2 ≡ x2 + y2

and I0 ≡
ǫ0 c

2

∣
∣A0

∣
∣
2

,
(2.25)

where the maximum intensity I0 was defined.
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(a)

√
2

(b)

(c)

(d)

ee-2 ≈ 13.5%

Figure 2.1: Gauss beam: a) beam radius w(z), b) radius of curvature r(z),
c) Gouy phase ζ(z) and d) intensity profile I(ρ).

We summarize previously introduced parameters and discuss them briefly
afterwards, see figure 2.1:

z0 =
π

λ
w2

0 (2.26a)

w(z) = w0

√

1 +
( z

z0

)2

(2.26b)

r(z) = z
(

1 +
(z0

z

)2)

(2.26c)

ζ(z) = arctan
[ z

z0

]

(2.26d)

Θdiv =
λ

π w0

. (2.26e)

In equation (2.25) we see that for any z the intensity has a maximum at ρ = 0
of I0 ( w0

w(z)
)2 and falls off by a factor of 1/ee2 ≈ 0.135 at a radius ρ = w(z).

Therefore, w(z) is called the beam radius. The beam has a focus (called the
waist) at z = ρ = 0, where the intensity reaches its overall maximum and the
beam radius its minimum w0, called waist radius1. The distance z = z0 at which
the beam radius has grown to

√
2 w0 is called the Rayleigh range. For z ≫ z0

the beam radius is increasing linearly with w(z) = Θdiv z, where Θdiv is called
the angle of divergence. The important parameter ζ(z) is called the Gouy phase2

1Often the beam radius and the waist radius are confused.
2Named after the French physicist Louis Georges Gouy, who discovered 1890 that the phase

of a Gaussian beam undertakes a phase shift of π when it passes through a focus [Gou90]. His
name is sometimes misspelled as ”Guoy”, e.g. in [Sie86].
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and gives the phase retardation of the Gaussian beam relative to a plane wave.
Surfaces having the same phase have a radius of curvature which corresponds
to r(z). Far from the focus the radius of curvature corresponds to the distance
from the focus

∣
∣r(z ≫ z0)

∣
∣ ≈ z as it is the case for a spherical wave. The sign

of r(z) is positive for z > 0 and negative for z < 0, i.e. a negative sign tells us
that the beam is converging and a positive sign means that the beam is diverging
when going along the direction of the z axis.

The optical power within an area of radius ρ is obtained by integration:

P (ρ) =

∫ ρ

0

I(r′) 2πρ′ dρ′

= P0

(

1 − exp
[

− 2 ρ2

w(z)2

])

, with P0 ≡
I0 π w2

0

2
,

(2.27)

where we introduced the total power of the beam P0. More than 86 % of the power
is inside a radius of w(z) and more than 99.9 % of the power is within 2w(z).

In this section we have obtained the properties of the Gaussian beam, like
waist radius, radius of curvature and the Gouy phase. The intensity profile and
the power have been derived. In the next section we will learn that the Gaussian
beam is the lowest mode of the family of Gauss-Hermite beams.

2.1.2 Higher modes and the M2 factor

The Gaussian beam is not the only solution to the paraxial Helmholtz equa-
tion (2.15). There exist many other solutions, but we are mainly interested in
modes which have, as the Gaussian beam, a spherical behavior far from the fo-
cus. Such solutions represent the field inside a cavity having spherical mirrors.
They will show a phase factor, which is related to the Gouy phase, leading to
certain resonance frequencies (section 2.2.5). In this section such solutions will be
derived, mainly following [Sie86]. The number of higher order modes present in
a Gaussian beam can be characterized by the M2 parameter, which is discussed
briefly [HW92].

The wave has to fulfill the paraxial Helmholtz equation (2.15), where we
first separate the x and y dependency of A(~r) = Am(x, z) An(y, z) and then
reformulate the paraxial Helmholtz equation for each axis independently:

(
∂2

∂x2
− 2 i k

∂

∂z

)

Am(x, z) ≈ 0 , and similar for the y axis. (2.28)

During the derivation of the Gaussian beam from the paraxial Helmholtz
equation we used the solution (2.16). We modify this and use a more general
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ansatz:

Am(x, z) = A
[

q(z)
]

hm

[ x

p(z)

]

exp
[

−i k
x2

2q(z)

]

, similar for An(y, z) , (2.29)

where the quantities A
[
q(z)

]
, hm

[
x

p(z)

]
, hn

[
y

p(z)

]
and p(z) are unknown, and

q(z) = z + i z0 as before. Inserting this ansatz into equation (2.28) yields:

0 =
( ∂2

∂x2
− 2 i k

∂

∂z

)

Ahm ee−i k x2

2q = · · ·

=
A

p2

(

h′′
m − 2i k h′

m x
(p

q
− p′

)
− i k

p2

q
hm

(
1 + 2q

A′

A

))

(2.30a)

0 = h′′
m − 2i k h′

m x
(p

q
− p′

)
− i k

p2

q
hm

(
1 + 2q

A′

A

)
, (2.30b)

where dq
dz

= 1 and the abbreviations h′
m ≡ ∂hm

∂( x
p(z)

)
, h′′

m ≡ ∂2hm

∂( x
p(z)

)2
, p′ ≡ dp

dz
and A′ ≡

∂A
∂q(z)

were used. The dependencies were left out for brevity. Equation (2.30b) is
related to the Hermite differential equation:

H ′′
m − 2

x

p
H ′

m + 2mHm = 0 , with m integer, (2.31)

where Hm

[
x

p(z)

]
are the Hermite polynomials. For (2.30b) to become equal

to (2.31) the following relations must be fulfilled:

2

p
!
= 2i k

(p

q
− p′

)

2m
!
= −i k

p2

q

(
1 + 2q

A′

A

)
⇒

dp

dz
!
=

p

q
+

i

k p
2q

A

dA

dq
!
= 2i m

q

k p2
− 1 .

(2.32a)

(2.32b)

There are many ways to solve these equations, but usually one defines:

1

p(z)
≡

√
2

w(z)
, (2.33)

and verifies that this fulfills equation (2.32a), with the relations of w(q) and r(q),
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given in (2.19):

p(z) =
w(z)√

2
=

√
√
√
√ λ

2π

∣
∣q(z)

∣
∣
2

Im
[
q(z)

] =

√

w2
0

2z0

∣
∣q(z)

∣
∣
2

z0

=
1√
2

w0

z0

∣
∣q(z)

∣
∣

dp

dz
=

d

dz

1√
2

w0

z0

∣
∣q
∣
∣ =

w0

z0

√
2

d

dz

√

z2 + z2
0 =

w0

z0

√
2

z
∣
∣q
∣
∣

p

q
=

1

q

1√
2

w0

z0

∣
∣q
∣
∣ =

w0

z0

√
2

∣
∣q
∣
∣
2

q
∣
∣q
∣
∣

=
w0

z0

√
2

q∗
∣
∣q
∣
∣

i

k p
=

i

k

√
2

z0

w0

∣
∣q
∣
∣

=
i λ z0

√
2

2π w0

∣
∣q
∣
∣

=
i w0 z0

z0

√
2
∣
∣q
∣
∣

⇒ p

q
+

i

k p
=

w0

z0

√
2

q∗
∣
∣q
∣
∣

+
i w0 z0

z0

√
2
∣
∣q
∣
∣

= w0
z − i z0 + i z0

z0

√
2
∣
∣q
∣
∣

=
w0 z

z0

√
2
∣
∣q
∣
∣

!
=

dp

dz
. X ok.

(2.34)

We search for a solution of the second equation (2.32b), which we first rewrite in
terms of q(z):

2q

A

dA

dq
= 2i m

q

k p2
− 1 = 2i m

q

k

(√
2

z0

w0

∣
∣q
∣
∣

)2

− 1

= 2i m
λ

2π

2 z2
0

w2
0

q

q q∗
− 1 = 2i m

z0

q∗
− 1

∣
∣
∣
dq

2q
, z0 =

q − q∗

2i

dA

A
=

2i m

2q q∗
q − q∗

2i
dq − dq

2q

∣
∣
∣dq = dq∗

=
m

2

(dq∗

q∗
− dq

q

)

− dq

2q
.

(2.35)

Integration gives:

ln[A] =
m

2

(

ln[q∗] − ln[q]
)

− 1

2
ln[q] + c = ln

[(q∗

q

)m/2

q−1/2
]

+ c
∣
∣
∣ee∧

A
[

q(z)
]

= Am

(1

q

)1/2(q∗

q

)m/2

,

(2.36)



18 Chapter 2. Theoretical part

with Am the integration constant. We insert equation (2.21)3:

1

q
=

w0

i z0 w(z)
eeiζ(z) = − i w0

z0 w(z)
eeiζ(z)

q∗

q
= −

(q

i

)∗ i

q
= −

(z0 w(z)

w0

ee−iζ(z)
)∗ w0

z0 w(z)
eeiζ(z) = −ee2iζ(z)

⇒ A
[

q(z)
]

= Am

√

i w0

z0 w(z)
eei(2m+1)ζ(z) ,

(2.37)

where the Gouy phase ζ(z) appeared again. This gives with equation (2.29):

Am(x, z) = Am

√

i w0

z0 w(z)
eei(2m+1)ζ(z) Hm

[x
√

2

w(z)

]

exp
[

−i k
x2

2 q(z)

]

An(y, z) = An

√

i w0

z0 w(z)
eei(2n+1)ζ(z) Hn

[y
√

2

w(z)

]

exp
[

−i k
y2

2 q(z)

]

.

(2.38)

The electric field becomes with the definitions Emn ≡ iAmAn/z0 and ρ2 ≡ x2+y2:

E(~r) = Am(x, z) An(y, z) exp
[
−i k z

]

= Emn
w0

w(z)
Hm

[x
√

2

w(z)

]

Hn

[y
√

2

w(z)

]

×

exp
[

i(m + n + 1)ζ(z) − i k
ρ2

2 q(z)
− i k z

]

.

(2.39)

The term, which depends on the complex radius of curvature q(z), can be de-
composed into real and imaginary part, and equations (2.26) are inserted:

k
ρ2

2 q(z)
= k

ρ2

2(z + i z0)
= k

ρ2

2

z − i z0

z2 + z2
0

(2.26)

↓
= k

ρ2

2 r(z)
− i

ρ2

w(z)2
. (2.40)

With this we obtain our final result [ST91, Sie86]:

E(~r) = Emn
w0

w(z)
Hm

[x
√

2

w(z)

]

Hn

[y
√

2

w(z)

]

exp
[

iΦ(z) − ρ2

w(z)2

]

(2.41a)

with Φ(z) ≡ (m + n + 1)ζ(z) − k
( ρ2

2 r(z)
+ z
)

. (2.41b)

This describes the family of so-called Gaussian-Hermite beams, which form a
complete set of orthogonal solutions of the paraxial Helmholtz equation (2.15).

3In [Sie86] at this point a normalization is done, which is not entirely clear. Here we absorb
these factors into the integration constant.
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The different combinations of {m,n} are called modes which are often abbre-
viated TEMmn modes, standing for transversal electromagnetic. The Gaussian
beam is exactly the TEM00 mode. The intensity of each mode is obtained by cal-

culating
∣
∣E(~r)

∣
∣
2
, according to equation (2.24). The result is shown in figure 2.2b).

In figure 2.2a) photos of the transmitted intensity of the resonator (see section 3)
are shown.

(a)

(b)

Figure 2.2: TEM modes of the Hermite-Gaussian beam. (a) photos (b) cal-
culation. From left to right TEM00 to TEM04 and TEM22. The
rightmost mode probably is a TEM02-TEM20 hybrid mode.

The first 6 modes are the TEM00 to TEM04 and TEM22 modes. The pho-
tos were taken with a glassplate inserted between the mirrors which caused the
distorted boundaries. Nevertheless, one can clearly see that the modes agree
very well with the Hermite-Gaussian modes. The 7th mode, on the far right of
figure 2.2, might be a hybrid mode where at the same time the TEM02 and the
TEM20 mode were present. In this case the calculation was done by subtracting
the electric fields of the two modes and taking the absolute square afterwards.
The subtraction corresponds to a phase shift of π of the two fields4. If the fields
were added, a circular profile would have emerged. On the photo, there is a max-
imum in the center which does not appear in the calculation. This central spot
was always present, even when the cavity was scanned5. This indicates, that it
was caused by the incoherent fraction of the laser light. This behavior was only
observed with the 100 mW Nd:YAG laser, which was used for testing, but not
for the ELS laser. In the other photos this spot is not visible, because the cavity
was slightly misaligned, such that the spot was out of the view of the camera.

Our major motivation for doing this derivation was, to obtain the phase Φ(z)
of the higher order modes in equation (2.41b). It is a very important result, which
we will use in section 2.2.5 in order to obtain the resonance frequencies of the
different Gauss-Hermite modes of a Fabry-Perot cavity.

4It is not clear where this phase shift should come from. Probably, from the orthogonality
of the modes, which was not proven here.

5With the help of this spot it was easy to align the cavity.
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As one can see from figure 2.2 the beam radius of the Hermite-Gaussian
beam is minimal for the TEM00 mode, i.e. the Gaussian beam. The beam radius
of the other modes is always larger and scales approximately with [HW92]:

wm(z) = w00(z)
√

2 m + 1 , (2.42)

where w00(z) is the beam radius for the Gaussian beam. The beam radius for
the y axis is analogous with m replaced by n.

The beam quality of lasers is often specified by the M2 parameter. It is
qualitatively related to the deviation of the laser beam to a Gaussian TEM00

beam. Note the fact that for a Gaussian beam the product of the waist radius
and the angle of divergence remains always constant. This can easily be seen
from equations (2.26):

w0 Θdiv = w0
λ

πw0

=
λ

π
. (2.43)

If higher modes are present in the beam, the waist radius becomes larger: w̃0 >
w0, as we saw in equation (2.42). The tilde should mark the waist radius of the
beam having higher modes. The angle of divergence is defined in the far field
by Θdiv = λ

πw0
, equation (2.26e). It is largest for the TEM00 Gaussian beam

and becomes smaller for higher modes. If higher modes are present in the beam
the divergence is defined by the smallest mode of the beam, which is usually
the TEM00 beam, while the waist is defined by the highest mode of the beam.
Therefore, the product w̃0Θ̃div must be larger for a beam with higher modes than
for a pure Gaussian beam. The fraction of these values is defined as the beam
propagation (or beam quality) factor M2:

M2 ≡ w̃0 Θ̃div

w0 Θdiv

= w̃0 Θ̃div
π

λ
≥ 1 . (2.44)

It is 1 for a Gaussian TEM00 beam and larger 1 for the other modes. For further
discussions see [HW92].

As was mentioned already, the Hermite-Gaussian family is not the only
higher order solution of the paraxial Helmholtz equation. There are many others,
but since the Gaussian-Hermite polynomials form a complete orthogonal set, all
other solutions can be expanded in terms of these. One solution of interest are the
Laguerre-Gaussian beams, which are obtained by writing the paraxial Helmholtz
equation in cylindrical coordinates and performing a similar derivation as was
done for Gaussian-Hermite beams. The result is [Sie86]:

Apm(r, θ, z) =

√

2p!

(1 + δ0m)π(m + p)!

exp[i(2p + m + 1)ζ(z)]

w(z)

×
( r

√
2

w(z)

)

Lm
p

[ 2r2

w(z)2

]

exp
[

−ik
r2

2q(z)
+ imθ

]

.

(2.45)
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The Lm
p are the generalized Laguerre polynomials. This solution plays a

role in systems having significant cylindrical symmetry. Nevertheless, the ma-
jority of laser systems effectively have rectangular symmetry. This is true even
with circular mirrors, since it suffices having slightly tilted surfaces or Brew-
ster plates for introducing rectangular asymmetry. Therefore, lasers are more
often better described by Hermite-Gaussian beams than by Laguerre-Gaussian
beams. Laguerre-Gaussian beams can be expanded in terms of Hermite-Gaussian
beams and vice versa and the lowest order Laguerre-Gaussian beam is exactly
the Gaussian TEM00 beam.

An interesting solution to the (not paraxial) Helmholtz equation (2.6) is
the Bessel beam. It has the remarkable feature that the divergence is zero. See
for example [DME87, Sch06a].

Concluding this section, it was shown that Hermite-Gaussian beams are
valid solutions of the paraxial Helmholtz equation and that the Gaussian beam is
the lowest order Hermite-Gaussian beam with the smallest waist. We were inter-
ested in the phase which gives the resonance frequencies of a Fabry-Perot cavity,
as we will see later. The beam propagation factor M2 was briefly introduced.

2.1.3 The ABCD law

A Gaussian beam propagating through different optical elements changes its prop-
erties, which can be described entirely by the ABCD law using ray transfer ma-
trices. Some useful formulas will be given, allowing fast and simple application
of the ABCD law. At the end of this section a few examples, like the glass-
plate and lenses, will be discussed, which will be used in later chapters. Ray
transfer matrices and the ABCD law are treated in many books, for example
in [ST91, HW92].

We first describe light as a simple ray which is determined by its initial
position y1 and its slope y′

1 (i.e. the tangent of the angle). These are written as
the components of a 2× 1 vector. The ray passing an optical element changes its
position and slope to y2 and y′

2 respectively. In the paraxial limit, i.e. for small

angles, this can be represented by a 2×2 matrix M ≡
[M1,1 M1,2

M2,1 M2,2

]
. Such a matrix

is called ray transfer matrix. With this notation the ray after passing the optical
element can be calculated a follows:

(
y2

y′
2

)

=

[
M1,1 M1,2

M2,1 M2,2

]

·
(

y1

y′
1

)

. (2.46)

For every type of optical elements ray transfer matrices exist. In table 2.2 the
important ones are given [ST91]6.

6These ray transfer matrices are different to those in [Sie86], since there the slopes y′

i are
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Table 2.2: Ray transfer matrices.

optical element ray matrix beam path

free space Mspace(L) =

[
1 L
0 1

]

thin lens Mlens(f) =

[
1 0
− 1

f
1

]

planar mirror Mpm =

[
1 0
0 1

]

planar boundary Mpb(n1, n2) =

[
1 0
0 n1

n2

]

spherical mirror Msm(r) =

[
1 0
2
r

1

]

spherical boundary Msb(r, n1, n2) =

[
1 0

−n2−n1

n2 r
n1

n2

]

In the table the rays propagate always from left to right and the matrices
correspond to the convex configuration. Therefore, caution must be applied when
using these matrices, since the sign of the radius of the spherical boundary or
mirror, which is denoted with r, or the focal length of the lens f may change
sign for concave geometry and/or when the beam is propagating to the left.
The refractive index before and after the boundary are denoted as n1 and n2

respectively. The slope of the reflected ray from the mirror is measured always
in the direction of propagation7. For example for a beam inside a cavity having
concave mirrors, the radius of the mirrors must be set with a minus sign. Also
the beam changes direction on each reflection. It should be mentioned that the
ray transfer matrix of the spherical mirror is the same as that of the thin lens
with the focal length set to f = − r

2
. When several optical elements are passed

by the ray, the individual matrices have to be multiplied according to the usual
rules of matrix multiplication, where the rightmost matrix corresponds to the
first optical element. It is a general rule that the determinant of ray transfer
matrices is always [ST91]6:

det[M ] =
n1

n2

, (2.47)

where n1 and n2 are the refractive index at the input and output respectively.
Since the determinants of multiplied matrices is det[A · B] = det[A] det[B], the

weighted by the refractive index y′

i ≡ ni
dyi

dz
. Therefore, the ray transfer matrix for e.g. a planar

boundary in [Sie86] is simply the identity matrix. With this definition the determinant of each
matrix (see below) would become always det[M ] = 1.

7It helps to regard the ray to propagate always to the right, even if it is reflected, then one
can not be confused by this.
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determinant of the matrix of a system, composed of several matrices, is defined
by the initial and the final refractive indices inserted in equation (2.47).

The description of light as rays is often sufficient, but in reality laser light
behaves like a Gaussian beam which has a waist and radius of curvature as we
saw in section 2.1.1. There we related both quantities to the complex radius of
curvature q(z) by the definition (2.18) and calculated the waist and radius of
curvature as a function of q(z) in (2.19). When a Gaussian beam is passing an
arbitrary optical element, described by a ray transfer matrix, it can be shown that
the complex radius of curvature is changed in the following way [Sie86, HW92]):

q2 =
Aq1 + B

C q1 + D
,

with M =
[

A B
C D

]
the ray matrix

of the optical system.
(2.48)

This is called the ABCD law, since the matrix elements are often called this
way. Here q1 and q2 are the q’s of the beam in front of and behind the optical
element. The matrix M is the ray transfer matrix of the optical system derived.

It is cumbersome to apply this law by calculating first q1 from the waist and
radius of curvature and calculating q2, from which the new waist and radius of
curvature can be calculated. All of these steps imply complex arithmetics. In the
case of a collimated beam at the input the radius of curvature is infinity which
gives a purely complex qcoll:

qcoll = i
π w2

0

λ
= i z0 . (2.49)

In this case it is easier to perform the calculation with the ABCD law. The result
for a general ray transfer matrix M =

[
A B
C D

]
is obtained from equation (2.48)8:

z02 = Im
[
q2

]
= z01

det[M ]

z2
01 C 2 + D 2

≡
π w2

focus

λ2

(2.50a)

zfocus = Re
[
q2

]
=

z2
01 AC + B D

z2
01 C 2 + D 2

(2.50b)

w2 = w01

√

A2 + B2/z2
01 (2.50c)

r2 =
z2
01 A2 + B2

z2
01 AC + B D

. (2.50d)

8In [HW92] equations (1.70) and (1.71), on page 47, are treating a similar case. There
the ray transfer matrix is defined differently since it is assumed that on both sides the beam
additionally propagates in free space by the distances z and z′. Effectively, equations (1.70)
and (1.71) are the same as (2.50), except with the sign. In (1.70) the sign in front of the AC Z2

0

term and the overall sign for C 6= 0 could not be verified.
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Relation (2.47) for the determinant was inserted here. The variables defining
the original collimated beam are w01 and z01 = π w01

λ1
. The waist and radius

of curvature at the output are w2 and r2 respectively. The distance from the
output of the ray transfer matrix to the focus is zfocus

9. If zfocus > 0 the beam
is diverging. In this case the radius of curvature is positive as well (r2 > 0). If
both are negative the beam is converging. At the focus of the output beam the
waist radius is denoted by wfocus and z02 corresponds to its Rayleigh range. The
refractive index can change from input to output. This is taken into account by
the different wavelengths in the different media labelled with λi ≡ λ0/ni, with λ0

the vacuum wavelength and ni the refractive index of the medium i. One has to
be very careful not to mix up the different variables and keep in mind how they
are defined.

We will show in some simple examples how to apply this law. The results
will be useful later in this thesis. First we consider a collimated beam propagating
in free space. We immediately obtain from equations (2.50):

M =
[

1 z
0 1

]
(2.51a)

wfocus = w01 (2.51b)

zfocus = Im
[
q2

]
= z (2.51c)

w2 = w01

√

1 + z2/z2
01 ≡ w[z, w01, λ] (2.51d)

r2 = z
(

1 +
z2
01

z2

)

≡ r[z, w01, λ] . (2.51e)

This is just the behavior of the Gaussian beam, similar as in equations (2.26).
For later usage the functions w[z, w01, λ] and r[z, w01, λ] have been defined with
λ being the wavelength in the medium, which is included in the Rayleigh range
z01.

A more interesting example is a planar boundary where the refractive index
is changing from n1 to n2. We obtain with M = Mspace(z2)·Mpb(n1, n2)·Mspace(z1):

M =
[

1 z1+
n1
n2

z2

0
n1
n2

]

(2.52a)

wfocus = w01 (2.52b)

zfocus = z1
n2

n1

+ z2 (2.52c)

w2 = w
[

z1
n2

n1

+ z2, w01, λ2

]

(2.52d)

r2 = r
[

z1
n2

n1

+ z2, w01, λ2

]

. (2.52e)

9This must not necessarily coincide with a real focus, but the beam behaves as if the focus
and waist would have these values.



2.1. Gaussian beam and ABCD law 25

A diverging laser beam passing a planar boundary with n2 > n1 will propagate

inside the medium the same way as if the focus was shifted by z1

(
n2

n1
− 1
)

away

from the boundary. Since at the boundary (z2 = 0) the wavelength is changing,
the beam radius is not changed whereas the radius of curvature is increased by a
factor of n2

n1
[HW92].

If the beam passes a glassplate of thickness d the matrix is M = Mspace(z2) ·
Mpb(n2, n1) · Mspace(d) · Mpb(n1, n2) · Mspace(z1) and the result is [HW92]:

M =
[

1 z1+z2+d
n1
n2

0 1

]

(2.53a)

wfocus = w01 (2.53b)

zfocus = z1 + z2 + d
n1

n2

(2.53c)

w2 = w
[

z1 + z2 + d
n1

n2

, w01, λ1

]

(2.53d)

r2 = r
[

z1 + z2 + d
n1

n2

, w01, λ1

]

. (2.53e)

This means that, when one sends a diverging laser beam through a glassplate of
thickness d, the beam after the glassplate behaves as if the focus is shifted by
d
(
1 − n1

n2

)
closer to the glassplate than without the glassplate. This effect will

change the waist of the resonator when the glasscell is inserted (section 3.4.6).

It is easy to calculate how the beam is changed by a lens. The matrix is
M = Mlens(f) · Mspace(z1) and yields [HW92]:

M =
[

1 z1

− 1
f

1− z1
f

]

(2.54a)

wfocus =
w01 f

√

z2
01 + (z1 − f)2

(2.54b)

zfocus = −f
z2
01 + z1(z1 − f)

z2
01 + (z1 − f)2

(2.54c)

1

z1

+
1

−zfocus

=
1

f
+

z2
01

z1(z2
01 + z1(z1 − f))

. (2.54d)

The negative sign in front of zfocus signifies that normally the beam behind the
lens is converging. The last line corresponds to the well known lens equation
from geometrical optics but with an additional term. This term becomes zero for
z1 ≫ z01, i.e. when the lens is far from the focus and the beam behaves like a
spherical wave. From this result we can immediately derive the case for which
the incoming beam is collimated (z1 = 0) and write down the position and waist
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of the focus [ST91]:

∣
∣zfocus

∣
∣ =

f

1 + (f/z01)2
(2.55a)

wfocus =
w01

√

1 + (z01/f)2
. (2.55b)

The resulting waist in the focus is plotted in figure 2.3, labelled ”precise”. In
order to obtain a certain waist radius of the focus we are solving equation (2.55b)
for w01:

w01 =
f λ

π
√

2 wfocus

√

1 ±
√

1 −
(2 z0f

f

)2

, (2.56)

where z0f ≡ π w2
focus

λ
was inserted. The focal length f must fulfill f ≥ 2 z0f ,

otherwise there is no real solution as can be seen from (2.56). This restriction

comes from the fact that for a given f there exists a maximum wmax
focus =

√
f λ
2 π

for w01 =
√

f λ
π

which can be calculated from equation (2.55b) and is seen in

figure 2.3 on the curve labelled ”precise”. In the case f ≪ z01 equations (2.55)
can be approximated by:

zfocus ≈ f

wfocus ≈
λ f

π w01

= Θdiv f ,
(2.57)

where the angle of divergence was inserted. The approximate result is plotted in
figure 2.3 and labelled ”approx”, for comparison with the precise curve. It seems
that f > 2 z0f and the condition for approximation f ≪ z0 are contradictiously,
but they are not. This can be seen by rewriting the approximation condition in
following way:

f ≪ z01 =
π w2

01

λ
≤ π

λ

( λ f

π wfocus

)2

=
f 2

z0f

⇒ f ≫ z0f , (2.58)

where we used the maximum result for w01 in equation (2.56). Another way of
writing the approximation condition is:

f ≪ z01 =
π w2

01

λ

∣
∣
∣

λ

π w01

wfocus ≈
λ f

π w01

≪ w01 .

(2.59)

This means that, as long as the waist radius of the focus is much smaller than the
beam radius at the lens, equation (2.57) is applicable. This is shown in graph 2.3.
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Figure 2.3: Waist at focus as a function of the waist at lens for focal length
f=0.5 m. Precise and approximate results are plotted. A line with
w01 = 5 wfocus is drawn, representing w01 ≫ wfocus.

Equation (2.57) is very useful if one wants to measure the waist of a laser
since it only depends on the wavelength and the focal length of the lens. As
long as the position of the focus is in good agreement with the focal length this
formula can be applied (this is just another formulation of previous condition
for the approximation). For different lenses the angle of divergence is measured,
which directly gives the waist of the laser.

In a similar way as before we can calculate a real (i.e. thick) plano-convex
lens by the ray matrix MPCX = Mpb(n, 1) · Mspace(d) · Msb(r, 1, n) · Mspace(z1),
where the planar side is pointing away from the focus. Equations (2.50) yield:

wfocus =
w01 fPCX

√

z2
01 + (z1 − fPCX )2

(2.60a)

zfocus = −fPCX

z2
01 + z1(z1 − fPCX )

z2
01 + (z1 − fPCX )2

+
d

n
(2.60b)

with fPCX ≡ r

n − 1
. (2.60c)

If the lens is turned around, i.e. the planar side points towards the focus, we
get the same result, except that z1 7→ z1 + d

n
in the above equations. If we

set the thickness d = 0, i.e. for a thin lens, both results agree exactly with
equations (2.54) with the focal length determined by fPCX . With these formulas
one can easily calculate the focal length for a given wavelength and radius of
curvature of a lens10.

10In the datasheet of the lenses from Laser Component the radius of curvature and the
focal lengths are listed for different wavelengths. If the focal length is calculated with equa-
tion (2.60c), the result agrees precisely with the values in the datasheet.
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We have seen how the propagation of a Gaussian beam can be described
by the ABCD law and how it is applied in the case of a collimated beam at
the input. This law is very powerful and allows calculation of very complicated
systems. Some examples have been presented, which will be useful later.

We have considered the Gaussian beam in previous sections, which normally
describes laser beams very well. Also beams within cavities are described by
Gaussian-Hermite modes as we will see later. The phase of these modes, which
we derived here, will define the transversal resonance frequencies of cavities. We
introduced ray transfer matrices and the ABCD law, which allow to describe how
a Gaussian beam is changing when it is passing optical elements.

2.2 The Fabry-Perot interferometer

The Fabry-Perot interferometer (FPI) represents the core of the whole setup
in this thesis. It consists of two high reflectivity mirrors, standing opposite to
each other which is often called a ”Fabry-Perot resonator” or simply a ”cavity”.
This simple but powerful tool can be used as a stable frequency reference since its
resonance frequencies and width depend only on the geometry and the reflectivity
of the mirrors. This will be used in order to reduce the linewidth of a laser.
Another feature of such a setup is its capability to store energy, which allows
enhancement of the optical power inside the cavity. With this a deep and large
trapping potential for our atoms will be produced. In this section the formulas,
necessary for designing such a cavity will be derived.

The reflected and transmitted intensity of a FPI is calculated by interfer-
ences of plane waves. This reveals features, like resonances and power enhance-
ment which are the essential properties of such a cavity. Further we will regard
what happens inside the cavity. The power enhancement will be derived and
how it can be maximized in the presence of losses. The waist inside the cavity is
given by the geometry. But not all geometries lead to a stable operation of the
resonator, which will be discussed in the last part [ST91, HW92, Sie86, GWO00,
KL66].

2.2.1 Reflected and transmitted intensity

Here the reflected and transmitted intensity of a FPI with losses will be de-
rived [Dem96, HW92]. The FPI is modelled as two mirrors, standing opposite to
each other at a distance L. The inner sides of the mirrors are supplied with a
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high reflectivity coating and reflection from the outer surfaces will be neglected11.
See figure 2.4.

x

y

z M1 M2

T1 R1 R2 T2

E0

︷ ︸︸ ︷
T3

l gc r

Er

Et

Figure 2.4: Scheme of a Fabry-Perot interferometer with a glassplate or glass-
cell (gc) inserted. Regions left (l) and right (r) of (gc) are labelled.

The reflectivity of the two mirrors is R1 and R2 and the transmittance is T1

and T2 respectively, where both variables are taken with respect to the intensity.
In order to include losses we model the cavity with a glassplate placed between
the mirrors. But it is tilted, so it does not reflect the incoupled light back to
the first mirror. In this way it does not form another cavity11. But it does
cause loss of intensity which is taken into account by the transmittance T3

12.
The different regions left (l) and right (r) of the glassplate are labelled for later
usage in 2.2.3, table 2.3. In our experiment the resonator is placed outside of the
glasscell (see 1.2) which mainly causes the losses. The region inside this glasscell
is labelled (gc) accordingly.

The half round-trip phase factor is defined by

δ ≡ ω L

c
, (2.61)

with c the speed of light. If the cavity is filled with a medium, one can substitute
this constant by c 7→ c

n
to include the refractive index n. In order to take into

account an additional phase shift, caused by the glassplate, one can add a phase
factor Φ3 = d(n − 1) to the definition: δ 7→ δ + Φ3. Here d is the thickness and
n the refractive index of the glassplate or glasscell.

The incoming electric field, travelling along the z axis is a plane wave, given
in equation (2.7):

~E0(~z, t) = E0 ~ex,y eei (ωt−~k·~z) , (2.62)

11By using a method described in [Mac86], one could also include the effect of additional
surfaces within a matrix formalism.

12The symbol was chosen arbitrarily. Sometimes in the literature one finds a loss coefficient
defined equivalent 1-T3, but using a transmittance seemed to be straight forward here.
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where E0 is the amplitude of the incoming electric field, ~ex,y gives the polarization

direction in either x or y direction, t is the time, ~k is the associated wave vector
with k = 2π

λ
= ω

c
. The angular frequency is denoted with ω = 2πf , where f is

the frequency given in Hertz. Assuming that the wave vector points along the
z axis, allows to rewrite the inner product ~k · ~z = kz and from now on, we will
assume linear polarization in one direction and neglect other directions.

With equation (2.24) the input intensity becomes from (2.62):

I0 =
ǫ0 c

2

〈∣
∣E(z, t)

∣
∣
2
〉

T
= ǫ0 c

E2
0

2
, (2.63)

which, due to the averaging, neither depend on time nor on space. Therefore, in
the rest of this section the dependency of space and time will be omitted since it
will average out everywhere outside the FPI.

Summing up the electric fields within the mirrors gives for the transmitted
electric field of the FPI:

Et = E0

∞∑

m=0

√

T1T2 T
(2m+1)/2
3 ee−i δ(2m+1) R

m/2
1 R

m/2
2 ee−i π 2m

= E0

√

T1T2T3 ee−i δ

∞∑

m=0

(

T3 ee−i 2 δ
√

R1R2 ee−i 2π
)m

.

(2.64)

Using the geometric series

∞∑

m=0

qm =
1

1 − q
, for

∣
∣q
∣
∣ ≤ 1 , (2.65)

and the fact that ee−i 2π = 1 the transmitted field is:

Et = E0

√

T1 T2 T3 ee−i δ

1 − T3

√

R1R2 ee−i 2δ
. (2.66)

From this the transmitted intensity with equation (2.24) becomes

It =
ǫ0 c

2
E2

0

∣
∣

√

T1 T2 T3 ee−i δ

1 − T3

√

R1R2 ee−i 2δ

∣
∣
2

= I0
T1 T2 T3

1 − 2 T3

√

R1R2 cos[2δ] + R1 R2 T 2
3

= I0
T1 T2 T3

(1 − T3

√

R1R2)
2 + 2 T3

√

R1R2 (1 − cos[2δ])

= I0
T1 T2 T3

(1 − Z)2 + 4 Z sin2[δ]
,

(2.67)
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where the initial intensity has been taken into account from equation (2.63). The
identity 1 − cos[α] = 2 sin2[α/2] has been used and the ”effective reflectivity” Z
has been defined as13:

Z ≡ T3

√

R1R2 . (2.68)

If the mirrors are equal and no losses are present (i.e. T = 1), Z becomes simply
the reflectivity of the mirrors Z = R1 = R2 = R. In the appendix, section 6.6,
equation (6.37), we show an alternative way of calculating the transmitted electric
field.

Following the same procedure as before the reflected electric field is:

Er = E0

(√

R1 +
∞∑

m=0

T1 T
(2m+2)/2
3 ee−i δ(2m+2) R

m/2
1 R

(m+1)/2
2 ee−i π (2m+1)

)

= E0

(√

R1 − T1 T3

√

R2 ee−i 2 δ

∞∑

m=0

(
T3 ee−i 2 δ

√

R1R2

)m
)

= E0

(√

R1 −
T1 T3

√

R2 ee−i 2 δ

1 − T3

√

R1R2 ee−i 2 δ

)

.

(2.69)

Note the missing phase jump of π at the first reflection whose origin stems
from time reversal symmetry, which will be shown immediately.

black box black box
time reversal

E

ρE

τE

ρE

ρ2E + τ ′τE

τEτρE + ρ′τE

Figure 2.5: Time reversal symmetry causes a relative phase jump of π in reverse
direction with respect to forward direction

In figure 2.5 the situation of an incoming electric field, entering a lossless
medium (”black box”), is shown. The fields must be the same when time is
reversed. This yields the requirements:

ρ2E + τ ′τE
!
= E

τρE + ρ′τE
!
= 0 ,

(2.70)

13The symbol Z is not commonly used, but was chosen following the impedance in electronics.



32 Chapter 2. Theoretical part

where the ρ and τ are the complex reflection and transmission coefficients in the
forward direction (with respect to the electric fields) and ρ′ and τ ′ denote the
coefficients in backward direction. This requirement leads immediately to the
result:

ρ2 + τ ′τ
!
= 1

ρ′ !
= −ρ .

(2.71)

These equations are called the Stokes relations and give the remarkable result
that the reflected electric field is exactly the same in the reverse direction as in
the forward direction but has an additional phase shift of π. This phase shift is
the origin of our missing phase factor from before. The ”black box” is the mirror
in our case. We assumed in the calculation that if the light inside the cavity is
reflected on the mirror it becomes phase shifted by π. According to the Stokes
relations, if the light comes from outside the cavity it must get an additional
phase shift of π, which results in a total phase shift of 2π. Therefore, the phase
shift was set to zero for the first reflection. The Stokes relations are very general
and are moreover true for complicated structures (like dielectric mirrors which
consist of many layers) as long as there are no losses inside the media. Small
losses will not alter the above relations too much (this would actually be the
definition of small losses in this case).

With equations (2.69) and (2.24) the reflected intensity becomes:

Ir =
ǫ0 c

2
E2

0

∣
∣

√

R1(1 − Z ee−i 2 δ) − T1 T3

√

R2 ee−i 2 δ

1 − Z ee−i 2 δ

∣
∣
2

= I0
R1((1 − Z)2 + 4 Z sin2[δ]) + T 2

1 T 2
3 R2 − 2 Z T1 (cos[2 δ] − Z)

(1 − Z)2 + 4 Z sin2[δ]

= I0
(
√

R1 (1 − Z) − T1 T3

√

R2 )2 + 4 Z sin2[δ] (T1 + R1)

(1 − Z)2 + 4 Z sin2[δ]
.

(2.72)

For the case of no losses (T3=1) and equal mirrors (R1 = R2) it is convenient
to rewrite the transmitted and reflected intensities, equations (2.67) and (2.72):

It = I0
1

1 + (2
√

R
1−R

)2 sin2[δ]
= I0

1

1 + (2 F
π

)2 sin2[δ]

Ir = I0

(2
√

R
1−R

)2 sin2[δ]

1 + (2
√

R
1−R

)2 sin2[δ]
= I0

(2 F
π

)2 sin2[δ]

1 + (2 F
π

)2 sin2[δ]

with F≡ π
√

R

1 − R
.

(2.73a)

(2.73b)

We have defined the new variable F, called finesse, which will proof to be very
useful for characterizing the FPI. It will be discussed in the following section,
where we will define it in a more general way, consistent with the definition given
here. These equations (2.73) are called the Airy formulas. They are plotted in
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figure 2.6 showing the reflection and transmission of the FPI as a function of δ
for different mirror reflectivity.

(a) (b)

Figure 2.6: a) Reflection and b) transmission of the FPI given by equa-
tions (2.73) for R1 = R2 = R and T3 = 1.

We see that for certain frequencies the reflection becomes zero while the
transmission becomes I0, i.e. all the light passes the Fabry-Perot Interferometer.
These so-called resonances are very useful as a frequency reference since they only
depend on the geometry of the cavity, as will be shown in the next section.

Of course the energy conservation condition must be fulfilled which is given
by I0 = Ir + It + I total

loss where the total losses have been included. From this and
the previous results the total losses can be derived:

I total
loss = I0

(1 − Z)2 − (
√

R1 (1 − Z) − T1 T3

√

R2 )2

(1 − Z)2 + 4 Z sin2[δ]
×

× −T1 T2 T3 + 4 Z sin2[δ](1 − T1 − R1)

(1 − Z)2 + 4 Z sin2[δ]

(2.74)

If one assumes no losses in the mirrors and inserts T1 = 1 − R1 and T2 = 1 − R2

in the previous formula then the losses due to T3 are:

I total
loss ≈ I0

T1(1 − T3)(1 + T3 R2)

(1 − Z)2 + 4 Z sin2[δ]
=

(1 − T3)(1 + T3 R2)

T2 T3

It (2.75)

It is convenient to define a loss coefficient S≡1-T3, which is large when the losses
are large14. In figure 2.7a) and b) we plot the losses of the FPI for different
configurations. For δ approaching integer multiples of π, the losses are increased
significantly. Further we see that the losses increase as well for higher reflectivity
until a maximum is reached, after which they decrease rapidly. At first sight
this seems contradictiously but this can be understood by the fact that the losses
follow the transmitted intensity of the cavity, as given by equation (2.75). This

14There exists no common symbol for the loss coefficient. Sometimes it is S,L or α.



34 Chapter 2. Theoretical part

(a)

0.5
0.6

0.7

0.8

0.9R1 = R2 =
T3=0.95

(b)
δ=0, T3=0.95

0.79

0.84
0.89

0.94

R2=0.99

Figure 2.7: Losses of FPI as a function of a) δ and b) R1. For each line either
R1 = R2 or R2 is altered in a) and b) respectively. The correspond-
ing values are given. For both graphs T3=0.95.

is large on resonance (see figure 2.6b) and for high reflectivity of the mirrors.
For high reflectivity the power which can be coupled into the cavity decreases.
Therefore, the losses are decreasing for the reflectivity approaching 100 %. If one
would plot the losses divided over the transmitted intensity, one would obtain
constant functions in both graphs, since this fraction does neither depend on R1

nor on δ, as seen from equation (2.75). Another fact concerning the losses of
the cavity must be mentioned. The sensitivity of the cavity to losses increases
dramatically with increasing reflectivity of the mirrors. See figure 2.8. This

Figure 2.8: Sensitivity of losses of the FPI, equation (2.76), and I0=1 W.

can be seen by deriving equation (2.67) by T3 and setting R1 = R2 = R and
T1 = T2 = 1 − R:

dIt

dT3

= I0
1 + R

1 − R
. (2.76)

For the reflectivity approaching 1, the sensitivity becomes infinity. This comes
from the fact, that each photon stays much longer inside the cavity and passes
the region causing losses very often (see next sections). This implies, that with
a FPI having high reflectivity one can measure very sensitively losses caused
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by a medium inserted into the cavity. But on the other side, this means, that
additional losses, caused for example by acoustic noise or other disturbances,
have a much larger effect on high-reflectivity cavities, than on cavities having low
reflectivity.

We have calculated the reflected and transmitted electric field of a Fabry-
Perot interferometer. From the resulting intensity we derived the losses by using
energy conservation. We saw that for certain frequencies the transmitted intensity
becomes a maximum, which are the resonances of the cavity, discussed in detail
in the next section.

2.2.2 FSR, FWHM and finesse

In this section the resonance condition and some of the important parameters
characterizing a FPI will be derived. These are the spacing between adjacent
longitudinal modes, the linewidth of the resonance peaks and the finesse. The
cavity decay time and some line broadening effects will be discussed at the end.

From equations (2.67) and (2.72) in the previous section one sees immedi-
ately that for

δm
!
= m π , with m integer. (2.77)

the transmission is maximal whereas the reflection is minimal. With the definition
of δ in (2.61) this gives a resonance condition for the frequency of the laser:

ωm
!
= m

π c

L

fm
!
= m

c

2 L
,

with m integer. (2.78)

We have an infinite number of equally spaced resonances. The spacing is called
the free spectral range (FSR) and is:

FSR ≡ c

2 L
. (2.79)

It is usually in the MHz or GHz range and is inversely proportional to the length
of the cavity. For example, a cavity having L=150 mm has a FSR of 1 GHz.
Solving the resonance condition for the length of the cavity we obtain:

L
!
= m

c

2 fm

= m
λ

2
. (2.80)

This means, that we can change the length of the cavity by half of the laser
wavelength and jump by this from one resonance to the next. This intuitively
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corresponds to the behavior of a standing wave. Therefore, these frequencies
are called longitudinal frequencies or longitudinal modes of the resonator. In
section 2.2.5 we will see that additional resonances appear due to the geometry
of the resonator, which therefore are called transversal modes.

With equation (2.67) the maximum transmitted intensity becomes:

Imax
t = I0

T1 T2 T3

(1 − Z)2
, (2.81)

and the frequency of half maximum intensity is found by solving

Imax
t

2
!
= I0

T1 T2 T3

(1 − Z)2 + 4 Z sin2[ π
FSR

f1/2]
, (2.82)

which has the solution

f1/2 = ± FSR

2 π
arccos

[

1 − (1 − Z)2

2 Z

]

+ FSR m , with m integer. (2.83)

The width of the peak at half maximum intensity, which is commonly known as
full-width-half-maximum (FWHM) is therefore:

FWHM ≡ FSR

π
arccos

[

1 − (1 − Z)2

2 Z

]

. (2.84)

The finesse (F) is defined as the ratio of the FSR over the FWHM and is therefore:

F ≡ FSR

FWHM
=

π

arccos
[

1 − (1−Z)2

2 Z

] . (2.85)

These expressions are precise but not so handy for daily work. Using the

fact that in most cases Z is close to 1, which makes the term (1−Z)2

2 Z
small, allows

a Taylor expansion in first order of

arccos[1 − ǫ ] =
√

2 ǫ + O[ ǫ 3/2 ] , with ǫ ≪ 1 , (2.86)

which gives for the arccos term:

arccos

[

1 − (1 − Z)2

2 Z

]

≈
√

2
(1 − Z)2

2 Z
=

1 − Z√
Z

. (2.87)

Using this approximation the precise result for the finesse given in equation (2.85)
becomes the common expression given in literature. Losses are included within
the coefficient T3:

F ≈ π
√

Z

1 − Z
, with Z ≡ T3

√

R1R2 . 1 . (2.88)
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For the approximate calculation of the FWHM one can use this result:

FWHM =
FSR

F
≈ c

2 L

1 − Z

π
√

Z
. (2.89)

We see that for Z approaching 1 the finesse becomes very large and the linewidth
becomes small. We can make a Taylor expansion of the finesse for small losses of
the cavity S = 1 − T3 ≪ 1:

F =
π 4
√

R1R2

1 −
√

R1R2

(

1 − 1 +
√

R1R2

1 −
√

R1R2

S

2

)

+ O[S2] . (2.90)

If there are losses inside the cavity they reduce the finesse and increase the
linewidth. This effect can become very large for high reflectivity cavities, as
already mentioned above.

Since it will be useful later we give here the inverse formula of equa-
tion (2.88), in order to calculate Z in dependence of the finesse:

Z = 1 +
π

F

(

π

2 F
−
√

1 +
( π

2 F

)2
)

. (2.91)

The unphysical solution, which has a ”+” sign in front of the root, was left out
since 0 < Z < 1 must be fulfilled. For high reflectivity mirrors (1 − Z ≪ 1)
the finesse F becomes very large and can be approximated by a Taylor series
expansion. The same we do for Z with the small quantity being π

2F
≪ 1:

F =
π

1 − Z
− π

2
− π

8
(1 − Z) + O[(1 − Z)2]

Z = 1 − π

F
+ 2
( π

2 F

)2

+ O
[( π

2 F

)3]

.
(2.92)

One could also approximate the arccos term by

arccos

[

1 − (1 − Z)2

2 Z

]

≈
∣
∣ln[Z]

∣
∣ , (2.93)

which is valid for Z . 1. This would give for the finesse

F ≈ π
∣
∣ln[Z]

∣
∣

, (2.94)

which is sometimes given in literature. This approximation is not used any further
in this thesis. Instead of the finesse one can also specify a cavity quality factor Q,
which is defined as:

Q ≡ f0

FWHM
=

c

λ

F

FSR
=

2 L

λ
F . (2.95)
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The finesse can simply be measured by changing the length of the cavity
by at least one FSR (=λ/2 of distance), by a piezo (piezo ceramic transducer),
while recording the transmitted intensity. The fraction of the spacing between
the TEM00 modes and the linewidth of them gives the finesse. This method is
simple but has some disadvantages. Moving the piezo needs some time, during
which the laser and the cavity must be stable. The piezo is not moving linearly
and using a piezo in general causes mechanical instabilities. Another method
would be to create sidebands on the laser light with an EOM and measure the
linewidth relative to the spacing of the sidebands. This still needs a piezo, but
the measurement time can be reduced since only the sideband spacing must be
bridged by the piezo. If it is possible one could change the frequency of the laser
instead of the length of the cavity. Maybe the most elegant method to measure
the finesse of a cavity is to switch off the laser light fast and measure the decay
time of the transmitted intensity. This time is directly related to the finesse,
which we will derive immediately.

At time t after the laser was switched off, the transmitted intensity I(t)
can be expressed as a function of the transmitted intensity before one round trip
I(t − ∆t), with ∆t = 2L/c the round trip time:

I(t) = I(t − ∆t) T 2
3 R1 R2 = I(t − ∆t) Z2 . (2.96)

The difference in intensity is:

∆I = I(t) − I(t − ∆t) = −I(t − ∆t)(1 − Z2)

= −I(t − ∆t)(1 − (1 − ǫ)2)

= −I(t − ∆t)(1 − (1 − 2ǫ + ǫ2)

≈ −I(t − ∆t) 2ǫ = −2 I(t − ∆t) (1 − Z) ,

with ǫ ≡ 1 − Z ≪ 1 ,

(2.97)
where only the linear term was kept. For small round trip time ∆t this leads to
the differential equation:

İ(t) =
dI

dt
≈ ∆I

∆t

İ(t) ≈ −2 I(t) (1 − Z)
c

2L
= −(1 − Z)

c

L
I(t) .

(2.98)

With the initial intensity I(t = 0) = I0 this has the solution:

I(t) = I0 ee−(1−Z) c
L

t

= I0 ee−t/τ ,
with τ ≡ L

c (1 − Z)
. (2.99)

After the decay time τ the transmitted intensity has exponentially decreased by
a factor 1/e ≈ 0.368. We can substitute Z by the finesse F using equation (2.91)
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in the definition of τ :

τ ≡ L

c (1 − Z)

(2.91)

↓
= − L F

c π
(

π
2F

−
√

1 + ( π
2F

)2
)

=
L

c

(
F

π
+

1

2
+

1

4

( π

2 F

)

+ O
[( π

2 F

)3]
)

.

(2.100)

In the last step we have again performed a Taylor expansion in π
2 F

. As already
mentioned, from the measurement of the decay time the finesse can be obtained
in an elegant way. This is especially true for high finesse cavities who have a
relatively long decay time (1µs for F=104 and L=100mm). Such a measurement is
often called a cavity ring-down measurement. An application is cavity ring-down
spectroscopy (CRDS) where the losses inside a high finesse cavity are measured
by the decay time. With this method small amounts of gases inside the cavity
can be measured precisely. In the appendix, section 6.6 we have derived the
same result, equation (6.40), in an alternative way. There the non-resonant case
is included additionally, where in equation (6.42) the general time constant is
calculated explicitly. These results correspond to the case where the input field
is switched fast with respect to the cavity decay time. But the measurement in
section 3.4.2, figure 3.15, showed that the input field could not be switched off
fast enough. Therefore, in the appendix we calculated the ring-down time if the
laser is switched off exponentially, which resulted in equation (6.47). In figure 6.2
an example is plotted.

With the decay time one can calculate how many round trips (N) in average
each photon makes before escaping from the cavity. We obtain this by using the
fact that for an exponential decay the mean time which each photon stays inside
the cavity is τ :

T̄ =

∫∞
0

t ee−t/τdt
∫∞

0
ee−t/τdt

= τ (2.101a)

N =
c

2 L
T̄ =

c

2 L

L

c (1 − Z)
=

1

2(1 − Z)
(2.101b)

Taylor: N =
F

2 π
+

1

4
+

1

8

( π

2 F

)

+ O
[( π

2 F

)3]

. (2.101c)

Equation (2.100) was inserted and the same approximation as there was made.
Another important parameter is the mean path length which the light propagates
inside the cavity. This is the mean time each photon stays inside the cavity (2.100)
multiplied by the speed of light:

∆l = c T̄ =
L

π
F . (2.102)

For our experiment it is important that the laser stays coherent within this length.
Otherwise, the power enhancement described in the next section will not work
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anymore, since it relies on the interference capability of the laser light. This will
lead to a requirement of the laser linewidth, which will be derived in section 2.4.1.

So far we only considered the case for which the light incoming into the
FPI is monochromatic. But lasers have some intrinsic linewidth which causes
the measured linewidth of the FPI to be broadened. This can be expressed as
the convolution of the Airy function It from equation (2.73) and the distribution
function L of the Laser. This situation is described in the appendix (section 6.3).
The convolution is defined as:

It(ω) ∗ L(ω) ≡
∫ ∞

−∞
It(ω

′) L(ω − ω′) dω′ . (2.103)

If the laser has only one single frequency then L(ω) is the Dirac delta distrib-
ution and we get exactly the Airy function. For a Lorentzian distribution the
Airy function can be approximated by a Lorentz function as well, resulting in a
linewidth of the convolution which is the sum of both Lorentzian HWHM, as was
shown in (6.25). If the laser is better described by a Gaussian curve the result is
the Voigt profile for which no analytical solution exists (see equation (6.26) in the
appendix). Therefore, a numerical calculation was done and the result is plotted
in figure 2.9. The line profiles in 2.9a) are plotted for the case that the laser
has twice the FWHM of the FPI δ = 2δA, where we used deltas for simplicity.
The FWHM is given for different ratios of δ/δA in 2.9b). One can see that if one

(a) (b)

Figure 2.9: Numerical calculation of the convolution of the FPI-transmission
with a laser having Gaussian or Lorentzian distribution. a) Line-
shape for δ = 2δA. b) FWHM for different δ/δA.

approximates both, the cavity and the laser, as Gaussian (Lorentzian) curves one
will obtain a lower (upper) boundary for the linewidth. The linewidth for two
Gauss functions is derived in equation (6.23) and that of two Lorentz functions
is derived in equation (6.25). In order to obtain the exact laser linewidth from
the transmission curve of a FPI one has to know the linewidth of the FPI and
assume a line profile for the Laser. Then one can determine from figure 2.9 the
laser linewidth.
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There exist other line broadening mechanisms, but we do not want to go
into the details further. We only want to mention that, if the cavity or the
laser is scanned faster than the cavity decay time this can cause interferences of
the incoming light with the light stored in the cavity, causing an asymmetric line
profile and oscillations of the transmitted intensity. Such a behavior was observed
and is discussed in section 3.4.3.

We have seen that a Fabry-Perot type cavity has certain resonance frequen-
cies which are predefined by the distance of the mirrors. The linewidth of the
cavity is related to the finesse which is determined by the losses and the reflec-
tivity of the mirrors. The finesse can be obtained by scanning the length of the
cavity, or via the cavity decay time. We have discussed that the finite linewidth
of the laser broadens the measured linewidth.

2.2.3 Power enhancement

In the previous section the light reflected and transmitted from the FPI was
discussed. Now we want to consider what happens inside the cavity. Light
bounces forwards and backwards between the mirrors and builds a standing wave
by interference. The intensity shows maxima which are separated by λ/2 and in
the maxima it is much higher than that of the incoming beam. This feature will
be used in order to trap atoms by the dipolar force, mentioned in section 1.2
and further discussed in section 3.4.5. This intensity enhancement, or power
enhancement, will be derived here for calculating and optimizing such a cavity
in the following paragraph.

Starting from equation (2.81) for the maximum transmitted intensity, i.e.
the case when the incoming light is in resonance with the FPI, the maximum
intensity inside the cavity can be estimated from the maximum transmitted in-
tensity by:

Imax ≈ 4
Imax
t

T2

= 4 I0
T1 T3

(1 − Z)2
. (2.104)

The factor of 4 takes into account that the electric fields interfere constructively,
giving a factor of 2, which becomes 4 for the intensity. The power enhancement
(A) is defined as the intensity in the maximum divided over the input intensity:

A ≡ Imax

I0

≈ 4

T2

Imax
t

I0

= 4
T1 T3

(1 − Z)2
. (2.105)

Of course this is an estimation and, using the same procedure as in sec-
tion 2.2.1, one can calculate the maximum intensity inside the FPI precisely.
This is what we will do now. For this purpose the field inside the cavity is
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calculated at a distance z to the first mirror. First we do this without losses:

EFPI(z) = E0

∞∑

m=0

√

T1 ee−i (δ 2m+ ω
c

z) R
m/2
1 R

m/2
2 ee−i π 2m+

+ E0

∞∑

m=0

√

T1 ee−i (δ (2m+1)+ ω
c

(L−z)) R
m/2
1 R

(m+1)/2
2 ee−i π (2m+1)

= E0

√

T1
ee−i δ z/L −

√

R2 ee−i δ (2−z/L)

1 −
√

R1R2 ee−i 2 δ
,

(2.106)

where the definition of δ ≡ ω L
c

was used. From this the intensity becomes:

IFPI(z) = I0 T1
(1 −

√

R2 )2 + 4
√

R2 sin2[δ (1 − z/L)]

(1 −
√

R1 R2 )2 + 4
√

R1 R2 sin2[δ]
. (2.107)

Including losses is easy from this result. One has just to substitute, according
to table 2.3, where the substitution rules are given for the different regions of
the FPI, shown in figure 2.4. Considering different regions inside the FPI is
necessary since it makes a difference at which position relative to the glassplate
one wants to know the intensity. In the table was included also a row ”glasscell”,
which is simply a region sitting between two glassplates. These glassplates have
transmittance

√

T3 each, so that the total transmittance of the glasscell is T3.

Table 2.3: Replacement rules for including losses in equation (2.107).
The regions refer to figure 2.4.

region T1 7→ R1 7→ R2 7→
(l) left T1 R1 T 2

3 R2

(r) right T1 T3 R1 T 2
3 R2

(gc) glasscell T1

√
T3 R1 T3 R2 T3

From equation (2.107) we calculate the intensity at the first mirror (I1) and
at the second mirror (I2):

I1 = I0 T1
(1 − T3

√

R2 )2 + 4 T3

√

R2 sin2[δ]

(1 − Z)2 + 4 Z sin2[δ]

I2 = I0 T1 T3
(1 −

√

R2 )2

(1 − Z)2 + 4 Z sin2[δ]
.

(2.108)

Figure 2.10a) shows the intensity inside the cavity for different wavelengths and
in 2.10b) it is plotted for different losses. In figure 2.10a) one can see, that the
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(a) (b)

Figure 2.10: Standing wave inside FPI according to (2.107) for R1 = R2=0.5 .
a) Without losses i.e. T3 = 1 for L = {3.0λ, 3.05λ, 3.2λ} and
b) for L = 3.0λ but for different losses T3 = {1.0, 0.8, 0.5}.

intensity on the second mirror is always a minimum, but for the first mirror it is
only a minimum on resonance.

On resonance, equation (2.78), the intensity (2.107) is maximized, but ad-
ditionally we obtain maxima (minima) from the sin2 term in the nominator:

sin2[δ (1 − z/L)]
!
=

{

1

0

max.

min.
⇋

δ (1 − z/L)
!
=

{
π
2

(2 m + 1)

π m

max.

min.
with m integer.

(2.109)

With δ = ω L
c

= 2πL
λ

we obtain the maxima (minima) of the standing wave, which
have a periodicity of λ/2:

zmax
!
= L − λ

4
(2 m + 1)

zmin
!
= L − λ

2
m ,

with m integer. (2.110)

On resonance the maximum and minimum intensities are as follows. Losses
must be included as before, using table 2.3:

Imax
FPI = I0 T1

(1 +
√

R2 )2

(1 −
√

R1 R2 )2
(2.111a)

Imin
FPI = I0 T1

(1 −
√

R2 )2

(1 −
√

R1 R2 )2
. (2.111b)
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Therefore, the power enhancement factors for the different regions are:

A
(l)
FPI = T1

(1 + T3

√

R2 )2

(1 − Z)2
(2.112a)

A
(r)
FPI = T1 T3

(1 +
√

R2 )2

(1 − Z)2
, with Z ≡ T3

√

R1 R2 , (2.112b)

A
(gc)
FPI = T1

√

T3
(1 +

√

T3 R2 )2

(1 − Z)2
. (2.112c)

These results are nearly the same as equation (2.105) when one assumes a large
reflectivity of the second mirror R2 ≈ 1 which normally is the case. Therefore,
the simpler relation, equation (2.105), can be used without loss of accuracy.

For equal mirrors (R1 = R2 = R) and without losses (T3 = 1 and T1,2 =
1−R) the power enhancement factor simplifies as follows, and we expand this in
a Taylor series since R . 1:

A =
(1 +

√

R2 )2

1 − R

=
4

1 − R
− 2 − 1 − R

4
+ O[(1 − R)2]

≈ 4

1 − R
.

(2.113)

The factor 4 appears again as before. It is also possible to express the power
enhancement approximately by the finesse. For this equation (2.91) is substituted
into the previous result with Z 7→ R. Then it is expanded in a series for ǫ ≡ π

2F2

which usually is a very small number:

A =
4

1 − R
=

4

1 − 1 − π
2F2 (π −

√

π2 + 4 F2 )

=
4

−ǫ (1 −
√

1 − 2/ǫ )

=
4 F

π
+ 2 +

π

2 F
+ O[F−1/3]

⇒ A ≈ 4
F

π
.

with ǫ ≡ π

2 F2 ≪ 1 (2.114)

This result is useful for making a fast estimation of the power enhancement from
a given finesse or vice versa. Since the finesse is strongly dependent of the losses
of the cavity, this is true for the power enhancement as well.

The aim is to get as much power inside the cavity as possible. Therefore,
the first mirror should have low reflectivity. But on the other hand the reflectivity
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of both mirrors should be high for storing as much light as possible inside the
cavity. Both demands are in contradiction, which requires to find the optimal
compromise for the reflectivity of the first mirror. This value is simply obtained
from equations (2.112) by setting the derivation with respect to R1 to zero

0
!
=

d

dR1

A . (2.115)

This gives for all regions the so-called ”impedance matching condition”:

R opt
1

!
= R2 T 2

3 . (2.116)

With this the maximum power enhancement within the glasscell becomes:

A(gc)
max =

√

T3
(1 +

√

T3 R2 )2

1 − R2 T 2
3

. (2.117)

For the numerator expanded in both R2 and T3 close to one with keeping the
first order of T3 we obtain the same result as if we insert the optimum Ropt

1 into
equation (2.105):

Amax = 4
T3

1 − R2 T 2
3

. (2.118)

In figure 2.11 the power enhancement as a function of the entrance mirror
reflection R1 for different transmissions T3 is plotted. One clearly sees that for

Figure 2.11: Power enhancement as a function of R1 for R2 = 99.5% and
T3 = 99.2% . . . 100%.

R1 approaching 1 the power enhancement falls off rapidly after the maximum.
Therefore, the mirror reflectivity R1 should be chosen close to the maximum Ropt

1 ,
but the manufacturing tolerances should be such that they include mainly smaller
reflectivity rather than higher.

In summary we have seen that the power enhancement strongly depends
on the losses inside the cavity. It can be maximized by choosing the optimum
reflectivity of the incoupling mirror according to the losses inside the FPI.
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2.2.4 Resonator waist and mode matching

In the preceding sections we only considered plane waves, but as we know from
section (2.1.1) a real laser beam has spatial components as waist and radius of
curvature. There we saw that laser light in free space behaves like a Gaussian
beam. When such a beam is sent into a cavity only the fraction of the incoming
light can be amplified which has the same waist and radius of curvature as the
light inside the cavity. The other fraction is changed on each round trip and
decays rapidly. The cavity acts like a spatial filter (and also as a frequency
filter as we saw in section 2.2.2) rejecting not matching light15. Therefore, it is
desirable that the light inside the cavity is Gaussian. The way this is achieved
will be presented here and in the next section. Another advantage in having
Gaussian waves inside the cavity is that one can use spherical mirrors which are
much easier to manufacture than other shapes. This is true with exception of
the planar mirror, but a cavity of two planar mirrors is extremely sensitive of
misalignment and it is also not ”stable” as will be discussed in the next section.
A cavity having one planar and a curved mirror does not have this disadvantages
and is therefore the most common choice.

For our application as a resonator enhanced optical dipole trap the FPI
is built of two curved mirrors, since we want to trap atoms in the focus of the
resonator which has to be in the center of the glasscell (see introduction). For
this application the waist of the light inside the resonator is a crucial parameter.
On one hand it should be small in order to obtain a high intensity resulting in
a deep trapping potential and on the other hand it should be large for trapping
as many atoms as possible from the MOT. There exists an optimum value of the
waist but it is difficult to predict since it depends on many parameter which we
don’t know exactly. For example the MOT temperature, densities, etc. This fact
demanded an adjustable waist. In this section we describe how to calculate and
adjust the waist by choosing the right mirror curvatures and distances between
them.

For the light inside a FPI to be Gaussian it is necessary that the mirrors
have the same radius of curvature r(z) as the Gaussian beam. This ensures that
the wavefronts are reflected back onto themselves so that after one round trip
through the cavity the light has the same waist and radius of curvature as before
(see section 2.2.5 for details). In the far field (i.e. z ≫ z0) the Gaussian beam
is nearly spherical which allows using spherical mirrors. If one planar mirror is
used, it has to be placed into the focus of the Gaussian beam (since the radius
of curvature is infinite there). Under this condition the light can travel the same

15One can make a decomposition of the incoming light into a series of Gaussian-Hermite
TEM modes and calculate the exact fraction which is accepted by the FPI, but this was not
done, since it requires knowing the exact beam profile of the incoming beam.
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path many times and only leaks out due to imperfect mirrors. In this context
one often refers to the term ”unstable” (”stable”) which means that the shape of
the beam is (is not) altered after one round trip.

Calculating the FPI with Gaussian beams is very simple. First a graph is
given which shows the relation of the focus distance to the radius of curvature,
calculated using equation (2.26c). We recognize the feature of the Gaussian

Figure 2.12: Radius of curvature (r.o.c.) as a function of the distance from the
focus (z) and for different waists of the focus (in µm).

beam that the radius of curvature is infinite at the focus (z = 0), decreasing
until a minimum value at z = z0 of r(z0) = 2 z0 and increasing afterwards again,
becoming linear with z as r(z ≫ z0) = z. The radius of curvature reveals that
around the focus the Gaussian beam behaves like a plane wave and far from the
focus it behaves like a spherical wave. The graph also shows that a limit for the
radius of curvature exists. It can not become smaller than z, as can be seen in
equation (2.26c). If one positions the mirrors too far apart (i.e. when L ≥ 2r for
equal mirrors) then light is still travelling between the mirrors but it is decaying
because the light is not reflected onto itself as discussed before.

Figure 2.13 is one of the most useful for designing the resonator. It shows
the result when solving equation (2.26c) for the waist:

w0 =

√

λ

π

√

z(r − z) (2.119)

In the figure the waist inside the resonator w0 is plotted as a function of the dis-
tance from the focus z for different radii of curvature of the mirrors. The actual
used mirrors are drawn with thick lines. Again we see the restriction of z ≤ qr.

The maximum value for the waist at z = r/2 is wmax
0 =

√
λ r
2 π

. This configuration

is called the ”confocal configuration” since the focus of the resonator coincides
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Figure 2.13: Waist inside resonator as a function of distance to focus for dif-
ferent radius of curvature. The thick lines correspond to the used
mirrors in the setup and the markers and numbers on the left give
the range of the waist of the corresponding mirror.

with the focus of the mirrors (f spherical
mirror = r/2, see section 2.1.3). But this config-

uration should be avoided since there all modes of the FPI are overlapping, which
is not useful for our application, as will be discussed in the next section (2.1.2).
With this figure it is easy to select the correct mirrors for the required waist. The
distances of the mirrors from the focus are obtained as well from this figure. If
the mirrors are equal the distance between the mirrors is simply L = 2z but in
order to select two different mirrors the figure is plotted in dependence of z. In
this case one selects the mirrors according to the desired waist and obtains the
distance of the mirrors by adding the individual distances L =

∣
∣z1

∣
∣ + z2. The

absolute value was given here since we defined the origin of the z axis to coincide
with the waist of the resonator. Consequently, the radius of curvature of the
incoupling mirror is negative which is consistent with the definition of a negative
radius of curvature of a converging Gaussian beam. For example for obtaining a
waist of 300µm, with radius of curvature of both mirrors of r=0.6 m a distance
of the mirrors L=360 mm is needed for λ=1030 nm.

In figure 2.13 we saw how we can choose the mirrors and distances in order
to get the desired waist inside the resonator. It is also possible to obtain the
waist of the resonator from the figure if the mirror radii and the distances are
given. Sometimes it is useful having a formula at hand which gives the waist of
the resonator explicitly. We derive this formula by solving the following relations.
The sign convention from before is used and the radius of the concave mirrors is
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positive:

L
!
= z2 − z1 & r1

!
= −z1

(
1 + z2

0/z
2
1

)
& r2

!
= z2

(
1 + z2

0/z
2
2

)

⇒ w2
FPI =

λ

π

√

−L(L − r1)(L − r2)(L − r1 − r2)
∣
∣2 L − r1 − r2

∣
∣

z1 = − L(L − r2)

2L − r1 − r2

and z2 =
L(L − r1)

2L − r1 − r2

(2.120)

Obviously, the result could be complex, meaning that there is no Gaussian beam
with such a geometry. This will be discussed in the next section. There we will
get to know a simpler way of writing, equation (2.128).

In the last part of this section we want to discuss ”mode matching”. As
we have said in the beginning of this section, that the light coupled into the
cavity should have the same beam parameters as the light inside the cavity. A
laser beam is well described by a Gaussian beam with a distinct beam waist,
radius of curvature and focal position as parameters. We will show how to adjust
those beam parameters appropriately, which is easily done with a lens (or several
lenses). Basically, the focus of the lens should be at the position of the waist of the
resonator and should have the same spot size. In section 2.1.3, equations (2.55),
we saw already how a lens does focus a collimated beam and we obtained the
waist at the lens in equation (2.56). One can use the approximation (2.57) as
long as the requirement (2.58) is fulfilled. With these formulas it is possible to
calculate the required lens and beam radius. Experimentally one can optimize
the position of the lens by maximizing the transmitted intensity through the FPI.

We have so far only considered the incoupling lens but the incoming beam
is altered by the incoupling mirror of the cavity. For a planar incoupling mirror
the focus position is shifted, as was discussed for the beam deviation caused by a
glassplate in section 2.1.3, equations (2.53). For a concave mirror the situation is
slightly more complicated. Namely, not only the focal position is shifted, but the
waist at the focus is changed as well. Using the ABCD law from section 2.1.3 we
can calculate the deviation. It is easier when doing the calculation for the case of
a beam coming outwards from the focus through the mirror. This is completely
equivalent to the inverse propagation direction, see figure 2.14. The ray transfer
matrix is M = Mpb(n, 1) ·Mspace(d) ·Msb(−r(z1), 1, n) ·Mspace(z1) (see table 2.2),
where n and d are the refractive index and the thickness of the mirror substrate
and z1 is the distance from the resonator waist to the mirror. The radius of the
mirror is equal to the radius of curvature of the beam r(z1), but must be inserted
with negative sign into the ray transfer matrix. Using this ray transfer matrix
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wFPI

wfocus

n

zfocus ∆zfocus

d z1

Figure 2.14: Beam deviation caused by incoupling mirror.

with equations (2.50) gives:

wfocus = wFPI

√

z2
01 + z2

1

z2
01 + n2 z2

1

(2.121a)

zfocus = n z1

w2
focus

w2
FPI

+
d

n
(2.121b)

∆zfocus ≡ z1 + d − zfocus = z1

(

1 − n
w2

focus

w2
FPI

)

+
d

n
(n − 1) . (2.121c)

Here the Rayleigh range of the FPI z01 ≡ π w
FPI2

λ
was inserted. The beam after

the mirror behaves the same way, as if it had a virtual focus at position zfocus

with a virtual waist wfocus, while the real focus is at zFPI and has waist wFPI .
This virtual focus is shifted by ∆zfocus. If ∆zfocus ≥ 0 the focus is shifted closer
to the mirror, otherwise it is farther from the mirror. This result is just the same
if we used equation (2.60) of the plano-convex lens, and inserted r = −r(z1) from
equation (2.26c) as the radius which is now concave. If one wants to couple a
laser beam into the cavity it is easy to apply above formulas and calculate the
virtual focus position and waist. The lens must then just be placed such that
without the mirror the focus of the lens is at the position and has the waist
of the virtual focus. In some situations, as for the resonator, it is necessary
having the focus of the cavity to be at a certain position. In this case one needs
another lens in order to have another degree of freedom, if one can not move
the laser arbitrarily. This will be described in section 3.4.6. We continue the
example from above (w0=300µm, r=0.6 m, L=360 mm, λ=1030 nm) and use a
thickness of the incoupling mirror of d=2.5 mm and a refractive index of n=1.507
(BK7). We obtain a virtual waist of 255µm which is shifted by 15 mm away from
the real position of the focus further towards the outcoupling mirror (i.e. the
distance from the lens to the virtual focus is larger than to the real focus)16. The

16In all calculations ∆z was negative, what is surprising, since if one supposes that only the
planar boundary changes the beam, then ∆z should be positive. See equations (2.52) for a
planar boundary in section 2.1.3, and figure 2.14.
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relative deviation for the waist and the focus position are
wFPI−wfocus

wFPI
=15 % and

|∆zfocus|
d+z1

=8 %. The deviations are quite large, which shows that the corrections
are necessary to optimize the coupling efficiency into the cavity.

We have seen how the waist of the resonator can be adjusted by choosing the
radius of curvature of the mirrors and by placing the mirrors at the appropriate
positions. Coupling into the cavity is optimized with the help of an incoupling
lens where we also regarded the deviation caused by the incoupling mirror.

2.2.5 Stability and TEM modes of the FPI

As we already saw in equation (2.120), not every geometry leads to a solution
of a Gaussian beam travelling inside the cavity. In this section we will explore
this issue more in detail and will find a criterion for the resonator to work. We
learned in section 2.1.2 that a whole family of Gaussian-Hermite beams exists,
which can be present inside a cavity as well. We will see here how these modes
depend on the geometry of the FPI and we will see that they lead to additional
resonance frequencies.

In the preceding section we have motivated, that the light inside the FPI
can be described by a Gaussian beam, since far from the focus it behaves like a
spherical wave which matches the spherical mirrors. But we did not proof this
statement. For doing this we describe the propagation of the light inside the
cavity by the ABCD law, which was introduced in the section 2.1.3. The matrix
for one round trip inside the FPI is Mrt = Msm(−r1) · Mspace(L) · Msm(−r2) ·
Mspace(L) ≡

[
A B
C D

]
with the ray matrices from table 2.2 where the concave radii

r1 and r2 (both > 0) of the two mirrors and the distance between the mirrors L
are inserted. The condition that the light is trapped can be expressed from the
ABCD law (2.48) as:

qrt
!
=

Aqrt + B

C qrt + D
, (2.122)

i.e. the beam is not changed after one round trip. The solution is given by

qrt =
A − D ±

√

(A − D)2 + 4 B C

2 C

=
L(L − r2) ±

√

L(L − r1)(L − r2)(L − r1 − r2)

r1 + r2 − 2 L
,

(2.123)

where the entries of the matrix Mrt were inserted. This complex radius of cur-
vature qrt must have an imaginary part, otherwise, the waist is not defined by
equation (2.19a). Therefore, the number below the square root must be negative:

L(L − r1)(L − r2)(L − r1 − r2) < 0 , (2.124)



52 Chapter 2. Theoretical part

This condition resulted already from equation (2.120). In order to discuss it more
in detail, we distinguish between following cases:

case 1: (L− r1)(L− r2) < 0 requires that (L− r1 − r2) > 0, which is never
fulfilled, since either r1 or r2 is smaller than L from the first inequality. Therefore,
this case must be ruled out.

case 2: if (L − r1)(L − r2) > 0 then (L − r1 − r2) < 0 must be fulfilled.
We have two possibilities: r1 and r2 are both larger than L which gives always
(L − r1 − r2) < 0. Or r1 and r2 are both smaller than L, which needs to be
considered more closely. This is done by rewriting the second inequality:

L − r1 − r2 < 0 /∗L
L2 − L(r1 + r2) < 0

(L − r1)(L − r2) − r1 r2 < 0 /−r1 r2

(L − r1)(L − r2) < r1 r2 .

(2.125)

Thus, we can reformulate case 2, where simultaneously case 1 is excluded:

0 < (L − r1)(L − r2) < r1 r2 / 1
r1 r2

0 < (L/r1 − 1)(L/r2 − 1) < 1
0 < (1 − L/r1)(1 − L/r2) < 1 .

(2.126)

With the introduction of the g parameter we obtain the so-called resonator sta-
bility criterion:

0 < g1 g2 < 1 with g1,2 ≡ (1 − L/r1,2) . (2.127)

Only for geometries of the FPI, which fulfill this criterion, the light inside is like a
Gaussian beam. These geometries are called ”stable”, in contrary to ”unstable”
geometries, which do not fulfill inequality (2.127). Here the term ”stabile” (”un-
stable”) means that the beam does not (does) change after one round trip. It does
not mean mechanical stability in this case. In figure 2.15 the different regions
for which this criterion is fulfilled, are shown as a function of g1 and g2 (shaded
area). In addition, in this figure several configurations of interest are marked and
their names and schematic representations are given. The planar-planar configu-
ration (a) is exactly at the boundary of the stability diagram and does not fulfill
the stability criterion (2.127) from above. But this does not necessarily mean
that there is no stable wave possible inside this configuration, it only means that
the beam is not Gaussian. Also inside laser cavities one often uses an unstable
configuration since this gives a larger waist inside the active medium but at the
cost of a larger divergence [Dem96]. The second configuration of interest is the
symmetrical confocal geometry (b) where the radii and distances are equal. This
is a very common setup since the modes inside the cavity all overlap in frequency
resulting in a good coupling efficiency. This configuration is also at the edge of
the stability diagram and will be discussed further below.
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a) planar-planar × r1 = r2 = ∞

b) confocal
bc× r1 = r2 = L

c) symmetric-concentric
bc bc× r1 = r2 = L/2

d) confocal-planar
bc × r1 = L, r2 = ∞

e) concave-convex
bc bc× r1 > 0, r2 < 0

Figure 2.15: Stability diagram of different resonator configurations. Stable
regions are shaded. The symbol × refers to the waist of the res-
onator and bc corresponds to the focus of the concave mirrors with
f = r/2. The arrows correspond to the radius of curvature r1

and r2 of the mirrors.

In the previous section we derived equation (2.120), giving the waist of
the resonator. We can rewrite this in a more common form in terms of the gi’s
[HW92, ST91, Sie86]17:

w2
FPI = L

λ

π

√

g1 g2(1 − g1 g2)
∣
∣g1 + g2 − 2 g1 g2

∣
∣

z1 = −L
(1 − g1)g2

g1 + g2 − 2 g1 g2

z2 = L
(1 − g2)g1

g1 + g2 − 2 g1 g2

.

(2.128)

We have seen that several geometries of a cavity are possible which all
support Gaussian beams (inside the stability regime). Now we consider the res-
onance condition 2.78 which was derived in section 2.2.2. This was derived for
planar mirrors and plane waves. We have to modify this, since the phase of the
Gaussian beam is different to that of the plane wave, which will lead to additional
resonances. The difference of the phase between a plane wave and of a Gaussian
beam is derived in section 2.1.2, equation (2.41b). We repeat it again:

Φ(z) = −k z − k
ρ2

2r(z)
+ (m + n + 1)ζ(z) , (2.129)

17The formulas given by [Sie86] use the same sign convention, but the result for z1 seems
having the wrong sign (they even state that z1 is negative but with their formula it is not).
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with ρ2 ≡ x2 + y2, and ζ(z) ≡ arctan
[

z
z0

]

is the Gouy phase, defined in equa-

tion 2.26d, section 2.1.1. The phase accumulated on one round trip along the
axis (ρ = 0) is k 2L = ω

c
2L ≡ 2πf

FSR
, with FSR the free spectral range. To that

we have to add the phase shift originating from the Gouy phase difference, which
is two times the Gouy phase at the mirror positions ∆ζ ≡ ζ(z2) − ζ(z1)

18. We
require for the resonance that the phase is a multiple of 2π and can write down
the resonance frequencies:

∆Φ(2L) = −2πfℓmn

FSR
+ (m + n + 1) 2 ∆ζ(z)

!
= 2π ℓ

⇒ fℓmn = FSR
(

ℓ + (m + n + 1)
∆ζ

π

)

with ℓ,m,n integer,

FSR ≡ c

2L
, ∆ζ ≡ ζ(z2) − ζ(z1)

(2.130)
We obtain again the resonance frequencies which coincide with the ones derived
in equation (2.78) for ∆ζ = 0. But now we get additional frequencies. We see
that Gauss-Hermite modes, given in equation (2.41a) and identified by m and n,
have different resonance frequency with a frequency spacing related to the Gouy
phase difference by ∆ftrans = FSR∆ζ

π
, which depends of the geometry of the

resonator. Modes with equal m+n are degenerate.

The term ∆ζ can be rewritten as is shown in the appendix 6.1, equa-
tion (6.5):

∆ζ ≡ ζ(z2) − ζ(z1) = arccos
[
±√

g1 g2

]
, (2.131)

where the plus sign refers to the upper right quadrant (g1, g2 > 0) and the minus
to the lower left quadrant.

(a) TEM10

TEM12

TEM32(?)

TEM00 TEM20

TEM22

TEM10
(b)

Figure 2.16: a) Transmitted intensity when the cavity length is changed and
b) calculation of the measured spectrum.

In figure 2.16 we give an example of how the spectrum of a resonator looks
like when the length is changed by a piezo. The left graph (a) shows a mea-
surement of the photodiode signal detecting the transmission of the cavity. The

18The Gouy phase difference ∆ζ is calculated with the sign convention for the zi’s.
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cavity was slightly misaligned so that the TEM10 mode was maximized. The
finesse is around 230, the distance of the mirrors is L≈190 mm and the linewidth
(FWHM) was approximately 3 MHz. The nearest mode to the TEM10 mode
was about 8 MHz separated. The different TEM modes are clearly visible up to
m + n = 11. Modes up to the TEM32 could be identified on a TV camera with
the last one only with the help of the calculation which is given in the right graph
(b). The calculation was done with equation (2.130) and (2.131) for L=193.2 mm
(FSR=776 MHz) with R1 = R2 =150 mm. The numbers correspond to the sum
m + n. The calculation agrees very well with the measurement.

Figure 2.17 shows how the spectrum of a cavity is changed around the con-
focal configuration (L=r1=r2=150 mm) for different TEMmn modes (numbers in
plot are m+n). Exactly at the confocal configuration (dL=0) the modes become

Figure 2.17: Frequencies of the first 10 transversal TEMmn modes of a cavity
around confocal configuration. The numbers correspond to m+n.
One FSR=1 GHz is drawn with the mirror distance is varied by
dL=± 30 mm around L=150 mm. r1 = r2=150 mm.

degenerate resulting in two peaks, one consisting of the even and the other of
the odd modes. The two peaks are separated by FSR/2. Since the length of the
cavity is never exactly the radius of the mirrors, the modes are always slightly
shifted leading to a broader and asymmetric linewidth. Therefore, if one wants
to use a FPI with a small linewidth as possible one should not use the confocal
configuration. We see from figure 2.17 that for the drawn geometry one should
increase or decrease the distance of the mirrors by about 14 mm in order to have
the higher modes separated by more than 50 MHz (dashed line).

Summarizing the section about the Fabry-Perot interferometer we derived
how the reflected and transmitted intensity shows longitudinal resonance frequen-
cies which only depend on the geometry of the cavity. We saw how losses inside
the cavity broaden the linewidth of the resonances and we introduced some of
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the characteristic parameters describing the cavity such as the finesse. Another
important feature of such a setup is the power enhancement which gives very
high intensities at the waist of the cavity. This is the purpose of the whole
setup. We learned how light can be coupled efficiently into the cavity by a lens.
The geometry of the resonator leads to stable or unstable operating conditions
and to higher Gaussian-Hermite modes which give rise to additional transversal
resonance frequencies.

2.3 The servo control loop

Laser stabilization means, controlling the emitted frequency and the intensity.
The frequency often has to be within a certain range. For example in order to
drive a resonant transition of an atom. Not only the frequency itself is important,
the linewidth and the frequency stability (frequency noise) have to be controlled
as well. In this thesis a linewidth reduction is presented, where the emitting
linewidth of the laser is reduced by more than two orders of magnitude. The
intensity noise will be reduced as well, but this is not done so far.

In order to stabilize the laser frequency, several methods have been devel-
oped. Basically, the actual value of the frequency has to be measured and from
this an error signal is obtained, which corresponds to the difference between the
actual value and desired value of the frequency. This error signal is zero if the
measured value coincides with the desired one and changes the sign from one
side to the other. The slope of change is very important since if it is large, small
deviations can be detected. The error signal could in principle directly act on
the laser, but usually one uses in between a so-called servo control loop, which
can give a much better performance if designed appropriately. In this section we
will describe such a servo control loop in general. The application for the laser
linewidth reduction is treated in section 3.3.

For mathematical modelling of a servo control loop a theory was developed,
called control theory. Here we only want to look at one basic idea how to control
a quantity. This idea is feedback, which means that the output of the system
is monitored and the system is then influenced appropriately to give the desired
output. Feedback is part of everyday life, for example the iris of the human
eye is adapting itself to the intensity of light shining onto the retina [Bec05].
Electronic devices have been designed which allow easy application of feedback.
They usually consist of different parts which can be separated into a proportional
part (P), an integral part (I) and a differential part (D). Together they are called
a PID controller (a typical design is found in table 3.3a).

In the first section we will consider feedback in general and the transfer
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function will be introduced [Bec05, HTY99]. In the second section methods of
measuring the transfer function will be presented, allowing to design an adequate
PID. Finally, we will discuss the transfer function of piezo resonances and time-
lag. Some solutions will be presented for overcoming such behavior.

2.3.1 Feedback and the transfer function

Here we are first describing the basic ideas of feedback briefly. After this we
will show how the transfer function of the system can be measured which gives
enough information to design the PID which matches the requirements.

The transfer function G(s) of a system, with s ≡ i ω, describes the response
y(s) of the system to an input signal u(s):

G(s) ≡ y(s)

u(s)
. (2.132)

This is symbolized in figure 2.18. The signals can be complex numbers in order

G(s)
u(s) y(s)

Figure 2.18: Definition of the transfer function.

to describe amplitude and phase simultaneously. Therefore, the transfer function
is generally a complex function. A good way of plotting the transfer function
is the so-called Bode plot. It consists of two plots, one of the amplitude of the
transfer function which is also called the gain and the other of the phase of the
transfer function, both plotted versus frequency.

We want to control the output of the system y(s) in such a way that it
approaches as well as possible the value r(s). This is in most cases a constant
number, as the frequency of a laser. The control of this output is done by com-
paring the output with the set value and adjusting the input signal u(s) in de-
pendence of e(s) = r(s)− y(s), which is the so-called error signal. Therefore, we
produce a feedback of the actual system output onto the system. This is called
a feedback loop. We show this situation in figure 2.19. The error signal e(s) is
zero when the output equals the set value. The subtraction is easily done with
an differential amplifier. Also an amplification could be done at this step, which
will be considered later. The input of the system is set in dependence of the error
signal. This is described by the transfer function of the controller H(s) ≡ u(s)

e(s)
.

The controller is usually some kind of PID controller. We can write down the
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r(s) +

−
H(s)

e(s)

G(s)

u(s)

y(s)

Figure 2.19: Feedback loop

equation of the ”closed-loop” response of the system:

y(s) = u(s) G(s) = e(s) H(s) G(s) =
(
r(s) − y(s)

)
H(s) G(s)

⇒ y(s) =
H(s) G(s)

1 + H(s) G(s)
r(s) ≡ Acl r(s) ,

(2.133)

where the factor Acl is called the closed loop gain and the quantity Aol ≡ H(s) G(s)
is called the open loop gain. If the open loop gain is very large Aol ≫ 1, the
output signal will follow the set value nearly exactly y(s) ≈ r(s). This means
that for high closed loop gain the transfer function of the system G(s) does not
affect the output of the system anymore, which is the first advantage of using
feedback. For example temperature drifts, hysteresis effects and nonlinearities
do not affect the output of the system. The price for this is that the total gain
of the system is reduced Acl < Aol. This means that we have to provide a larger
input signal for obtaining the same output than without feedback. Considering
the time response of the output signal, in [Bec05] it is shown, that the cutoff
frequency of the system is increased by ω′ = ω0(1 + Hp) with Hp the gain of the
proportional part of the controller. This means that the system dynamics can
be increased by feedback, which is the second advantage of feedback. On the
other side feedback causes that sensor noise ξ(t), which disturbs the error signal
e = r − ξ(t)− y, is amplified by the high closed loop gain. Therefore, a trade-off
exists between high tracking accuracy of the output signal to the set value and
low sensor noise amplification.

Another issue is the stability of the feedback. If the open loop gain be-
comes H(s) G(s) = −1, the denominator in equation (2.133) becomes zero and
the output of the system becomes ”infinite”. This means that the feedback does
not compensate disturbances. It even amplifies them and the output starts to
oscillate. Such a behavior must be avoided. This is done by designing the con-
troller and/or the system in such a way that the open loop gain is smaller than
one for the frequency where the open loop phase becomes larger than 180° . To
achieve this, it is helpful to draw a Bode plot of the open loop gain H(s) G(s).

The frequency, where the open loop gain becomes zero is often called the
bandwidth of the system (plus controller). At this frequency the noise of the



2.3. The servo control loop 59

stabilized signal y(s), and consequently of the error signal e(s), is increased. This
so-called ”servo bump” can be recorded with a spectrum analyzer19. It comes
from the fact that disturbances at frequencies close to the bandwidth of the
system need longer time until they are damped (due to the small phase margin),
causing the noise spectrum to be increased in the range where the phase is close
to 180° and the gain is larger one. For an ideally adjusted controller it should
be small, but it can be still visible. During optimization of the controller one
can simply increase the gain and obtain by the position of the servo bump the
bandwidth. It can be seen on an oscilloscope as well, as the frequency where the
system starts to oscillate if the gain is increased.

We have discussed in this section the basic properties of a simple feedback
loop. We have seen that a feedback loop with high gain is not affected by the
system transfer function and it was mentioned that feedback can enhance the
system performance. But on the other hand feedback amplifies noise in the system
as well. Feedback is limited by the requirement that the open loop gain should
never reach -1, where the feedback becomes a feed-forward and the system starts
to oscillate. Therefore, appropriate design is necessary which needs knowledge of
the system transfer function. If it is unknown, it must be measured.

2.3.2 Measuring the transfer function

Measuring the transfer function of the system G(s) can be done in several ways.
One can simply put a sinusoidal signal on the input and measure the output am-
plitude and phase with an oscilloscope. This is very tedious and time consuming.
The work is simplified by using a lock-in amplifier which directly gives the gain
and phase of the output signal versus the input signal. One only has to step
through the frequencies of the input signal (manually or if possible by computer
control) and record the result. Using a network analyzer would be even more
comfortable since this automatically scans over a wide range of signal frequen-
cies and gives directly the Bode plot of the signal. A very different approach to
measure the transfer function is to use a step signal as the input and record the
time response of the output. By Fourier transformation (see section 6.3) one can
obtain the transfer function of the system in the frequency space from the time
space response. This method is very elegant since it is easily applied and very
fast.

All of these methods are not applicable when the system which one wants to
control is not stable without the feedback. In other words, problems arise when
the system changes its output faster than the timescale of the measurement. For
example, if one wants to balance a plate on a stick it will immediately fall down

19Sometimes there are even higher harmonics on the noise spectrum.
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before any measurement could be done. In this case the measurement could be
done in-loop, i.e. within the feedback loop. This of course requires that some
feedback loop is already controlling the system, which may seem nonsense since
we want to design the feedback loop by the result of the measurement. But often
one can assume a transfer function for the system, or one tries a control loop
which holds the system in a more or less stable region. In this case one can
perform the measurements within the preliminary feedback loop and will obtain
the transfer function. With this information the optimized feedback loop can be
designed.

Such an approach was used for optimizing the control loop of the laser
linewidth reduction. For doing this the block diagram of the real PID is shown in
figure 2.20. We find additional features besides the already known elements from

r(s)

set value

H1(s)

+

−
H(s)

H2(s)

e(s)

e ′(s) ERROR MONITOR

c(s)

EXT.SWEEP

w(s)

H3(s)

+ +

G(s)
u(s) u′(s)

PID MONITOR

y(s)

Figure 2.20: Feedback loop for in-loop measurement of the transfer function.
The triangles depict amplification of the corresponding signal.
The circles symbolize connectors, where the signals can be moni-
tored or fed in. In the actual setup the input ”set value” did not
exist and was set per default to zero.

figure 2.19. There is another input signal w(s) which is the ”EXT.SWEEP” input
of the PID controller. This signal is added to the output of the PID c(s) and gives
u(s) after amplification. A ”PID MONITOR” output monitors the signal u(s) on
the input of the system. The output ”ERROR MONITOR” is used for monitoring
the error signal. Equation (2.133) must be modified for the new situation. For this
the new transfer functions Hm(s), with m = {1, 2, 3}, according to figure 2.20 will
be used.

y(s) =
(
r(s) H1(s) + y(s) H2(s) + w(s) H3(s)

)
G(s)

⇒
y(s) =

r(s) H1(s) + w(s) H3(s)

1 − H2(s) G(s)
G(s)

G(s) =
y(s)

r(s) H1(s) + y(s) H2(s) + w(s) H3(s)
.

(2.134a)

(2.134b)

(2.134c)
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The Hm(s)’s can be measured with the previously described methods. If the in-
loop response of the system y(s) to a signal r(s) or w(s) is measured, the system
transfer function G(s) can be calculated with equation (2.134c).

One problem still remains. If the used test PID contains an integral part (I),
any DC offset of the error signal will bring the PID into saturation after some
time, depending on the response time of the I part. Therefore, if it is possible,
no I part should be used, or the response time should be set as large as possible
while still achieving locking. This way the integrator will not saturate during the
measurement time.

2.3.3 Piezo resonances and time-lag

In this section we want to briefly mention piezo (PZT = piezo ceramic transducer)
resonances and how they can be controlled by a PID controller or a notch filter.
For a thorough treatment of this problem see [HTY99]. The transfer function of
a piezo can be modelled by20:

GPZT =
Gmax η f 2

0

f 2
0 − f 2 + i η f f0

with η ≡ 1

Q
=

FWHM

f0

, (2.135)

where f0 is the resonance frequency in Herz, Gmax is the maximum gain at the
resonance frequency, Q is the quality factor with Q ≡ f0

FWHM
and FWHM is the

full-width-half-maximum of the resonance. In figure 2.21 we show a typical Bode
plot of such a piezo resonance. The problem with such a resonance is, that at
low frequencies the gain is small, while it is large around the resonance. But
one wants to have a large gain at low frequencies and at the resonance the gain
should be as small as possible.

For doing this one can use a pure integral controller and adjust the gain
in such a way, that, when the phase approaches 180° it is smaller than one. But
the integral controller adds a phase of −π/2, which requires that the controller
bandwidth has to be reduced well below the resonance frequency. Therefore, the
gain of the controller at small frequencies may not be sufficient. One can add
another integrator in series with the first, which allows to increase the gain at
low frequencies, since the slope of the gain of both controllers is twice the slope
of one controller. The PI2 stage, described in section 3.3.4, is such a solution.
But the phase is still a problem.

20The transfer function given in [HTY99] is incorrect. The imaginary number is missing
and the sign in front of ω must be negative. Here the given transfer function includes the peak
maximum Gmax which can be set to Gmax = 1

η
= Q which gives the same scaling as in [HTY99],

where the DC gain is one.



62 Chapter 2. Theoretical part

Figure 2.21: Bode plot of a piezo resonance at 25 kHz with Q = 5 and
Gmax = 1/η = Q.

One way out is to add a derivative part into the controller which adds a
phase of +π/2. By careful adjustment of the gains and frequencies, the bandwidth
can be increased until the resonance frequency or even above. In our special case
this solution was not applicable, since the gain of the system depends on the laser
power, which may change. Therefore, an adequate setting for the derivative part
could not be found.

In order to overcome this problems one can insert a so-called notch filter.
This is a band-gap filter which is composed of one or several L-C circuits, de-
scribed in the appendix, section 6.5. This is the solution which was finally used
for our setup. Nevertheless, also the notch filter adds a phase which has to be
included in the considerations as well.

Another problem is time-lag. If there is a component inside the system
which causes a time-lag τ (as it is the case for the HV amplifier in our system),
the corresponding phase-lag is ∆ϕ = −ω τ . This means that for increasing
frequencies the phase-lag is increasing linearly with slope τ . Therefore, a time-lag
can be expressed in the transfer function by:

G(ω, τ) = G(ω) ee−i ω τ . (2.136)

The minus sign comes from the common definition of the phase which is negative
for lagging phase and positive for advancing phase21.

Time-lag is present in all systems, but often the bandwidth of the compo-
nents in the system is much smaller than that related to the time-lag. If time-lag
causes problems one should first try replacing the component causing the time-
lag by a faster one. If this is not possible, one could try using a derivative part
in the controller which adds +π/2 to the phase and increases the bandwidth.

21A capacitance has a phase-lag of -π/2 and an inductance has an advancing phase of +π/2.
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We have in this section given a brief introduction into feedback. The transfer
function was introduced and some methods of measuring this were presented.
Difficulties may arise if the transfer function needs to be measured in-loop and
a possible way out was discussed. Piezo resonances and time-lag were briefly
discussed and some solutions were presented, how systems with such behavior
may be controlled.

2.4 Intensity and phase noise

Intensity and phase noise of the laser used as a dipole trap (see section 1.2) are
of great interest, because they cause heating of the atoms, which in consequence
will increase the loss rate of the atoms from the trap. Phase noise is related to
the linewidth of the laser. Both types of noise must be below certain values and
we will give an estimation of those values here. If a Fabry-Perot type resonator
(see chapter 2.2) is used, as in our case, the linewidth must be below a certain
value in order to ensure that the coherence time of the laser is larger than the
time each photon travels inside the cavity (equation (2.100) in section 2.2.2).

If one wants to calculate certain values of the noise and wants to compare
them with specifications, or with values obtained from measurements one will
observe difficulties: there exist different definitions and units and moreover they
are often not specified explicitly. This can cause a lot of confusion and we have
to admit that we are not sure if we present the considerations here properly. We
have used mainly [GOST98, MJM+01, Tha99, MW95] here and in section 2.4.2
additionally [Rau00, Roh06, Wol95, Sch94].

The values of intensity and phase noise are estimated in the first sec-
tion 2.4.1. The requirement of coherence and of low phase noise both lead to
a linewidth specification for the laser. The requirement is more stringent than
the linewidth provided by the laser as delivered from the manufacturer so that
a laser linewidth stabilization was necessary, which is described in section 3.3.
The estimation of the resulting linewidth, presented in section 3.3.9, showed that
this specification could be fulfilled. The measurement of the intensity noise is
discussed in detail in section 2.4.2. It turned out to be more problematic as one
might suppose. With the presented procedure the measurement of the intensity
noise in section 3.2.3 was performed. The result is that the intensity noise is larger
than the requirements, which might cause problems. But measurements of loss
rates of atoms from the resonator optical dipole trap were not performed, since
the setup is not yet completed. In the final setup an intensity noise reduction
will be implemented, which might help to reduce this noise.

The laser intensity at time t is modelled as the mean intensity Ī plus the
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intensity fluctuation ∆I(t):

I(t) = Ī + ∆I(t) = Ī
(

1 + ǫ(t)
)

with ǫ(t) ≡ ∆I(t)

Ī
, (2.137)

where we have introduced the fractional intensity fluctuation ǫ(t)22. Since the
fluctuations are a statistical process we do not know the fluctuations at time t,
but we can assume that the mean fractional fluctuations ǭ are zero, while the rms
fractional fluctuations ∆ǫ are nonzero23:

ǭ ≡ lim
T 7→∞

1

T

∫ T

0

ǫ(t) dt = 0

∆ǫ ≡ lim
T 7→∞

√

1

T

∫ T

0

(
ǫ(t) − ǭ

)2
dt = lim

T 7→∞

√

1

T

∫ T

0

ǫ(t)2 dt .

(2.138)

The intensity noise of a laser is measured by a spectrum analyzer, giving
the (one-sided24) power spectrum S(f) of the photodiode voltage25:

S(f) ≡ ∆ǫ(f)2

BW
, (2.139)

with ∆ǫ(f)2 the squared rms fractional intensity fluctuation at the bandwidth of
BW around frequency f . In order to understand this, we consider following26: the
spectrum analyzer measures the power applied to the input resistor, which is usu-
ally 50 Ω. The current of the photodiode is proportional to the intensity, resulting
in a power of P = I2 R on the resistor of the spectrum analyzer. Therefore, the
measured power spectrum is defined as the square of the rms fractional fluctua-
tions ∆ǫ(f). If a transimpedance amplifier with U ∝ I, is used for amplification,
the definition is still valid, since P = U2/R. The division by the bandwidth BW
ensures, that the power spectrum is independent of the bandwidth used in the
measurement. In order to obtain the rms fractional fluctuations from the power
spectrum one has to calculate:

∆ǫ(f) =
√

S(f) BW , (2.140)

where sometimes the bandwidth is omitted, resulting in a peculiar unit of 1/
√

Hz.

22Since the intensity noise increases often linearly with intensity, it makes sense using frac-
tional fluctuations in order to be independent of the mean intensity.

23∆ǫ seems to be called relative intensity noise (RIN), but the precise definition is unclear.
24The measurement can not distinguish between positive and negative frequencies.
25The power spectrum is the fourier transform of the autocorrelation function [GOST98]

S(f) = 2

π

∫
∞

0
cos[ωτ ]〈ǫ(τ)ǫ(τ + t)〉, which is a consequence of the Wiener-Kinchin theorem,

mentioned in section 6.3 in the appendix.
26We are not sure about this explanation, but it seems reasonable.
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The power spectrum is usually given in units of dB/Hz, which is in loga-
rithmic scale. This is defined as follows:

Plog ≡ 10 log10

[
P
P0

] P0 not specified unit dB
P0 = 1 mW unit dBm ,

(2.141)

where the P’s refer to power and P0 is a reference power value. If a relative
value for P/P0 is inserted the unit of the scale is given in decibel (dB). If one of
the predefined reference powers are used, a suffix to the dB is chosen: dBm for
P0=1 mW for example. One can also express voltages in the logarithmic scale by
simply using P = U2/R in the previous definition with R being the resistance:

Ulog ≡ 20 log10

[
U
U0

] U0 = 1 mV unit dBmV
U0 = 1 µV unit dBµV .

(2.142)

The intensity noise of lasers is sometimes specified by a rms value given for
a specific frequency range f1 to f2. This value can be calculated from the power
spectrum as:

∆ǫ
∣
∣
∣
{f1,f2}

≡
√
∫ f2

f1

S(f) df . (2.143)

The rms value obtained corresponds to the rms fluctuations which one would
measure, with a detector which has a bandwidth of the specified range. This
equation was used in order to compare the measured power spectrum with the
specification of the laser (section 3.2.3).

We hope we could give the necessary definitions in a clear and correct way.
In the following two sections and the measurement of the intensity noise of the
laser, described in section 3.2.3, theses definitions are used.

2.4.1 Requirements for our experiment

During the course of this diploma thesis the decision had to be taken which
laser to buy. This is discussed briefly in section 3.2. One of the uncertainties
was the requirement concerning the noise stability of the laser. Therefore, we
have estimated which specifications of intensity and phase noise we need for our
experiment. This will be discussed here.

First we want to consider the requirement on the intensity noise of the
laser. We are mainly concerned about the heating of the atoms being trapped in
a potential whose trap depth is fluctuating by intensity noise. This situation is
described in [GOST98], where intensity fluctuations are modelled as fluctuations
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of the spring constant (k) of a harmonic oscillator. The authors derive a heating
rate of the atoms along one dimension x of the trap:

〈Ėx〉 = Γx 〈Ex〉 with Γx =
1

Tx

= π2 f 2
x Sk(2fx) , (2.144)

where 〈Ex〉 is the average energy of the atoms, Γx is the heating rate, Tx is the
time during which the average energy of the atoms inside the trap increased by
a factor of ee ≈ 2.7. The trap frequency is fx and Sk(2fx) is the one-sided power
spectrum of the fractional fluctuation in the spring constant (k) at the double trap
frequency. It is well known, that only frequencies in the range of twice the trap
frequency can cause significant heating. Here we encounter one big disadvantage
of the resonator enhanced dipole trap. In such trap, the trap frequencies are much
higher than in dipole traps formed by focussing a laser beam27. For a resonator
we have a tight confinement on the range of half a wavelength along the beam
axis (see section 2.2.3). This causes the trap frequencies to be much higher along
the beam axis. For our resonator the trap frequencies are in the MHz regime.
Reducing intensity noise at such high frequencies becomes more and more difficult
or even impossible. Therefore, we have to rely on the intrinsic stability of the
laser in this region. Luckily the noise power is usually lowest for high frequencies.
We need a specification for the noise in the region of the trap frequencies. For
this we use the result form [GOST98] again. They calculate the time evolution
of the energy distribution inside the trap by solving the Fokker-Planck equation
numerically. They obtain that, if the trap was loaded with an initial mean energy
of 80 % of the trap depth, the atoms escape the trap with approximately two times
Γ, where Γ is now the average of the heating rates over the spatial coordinates
Γ = Γx+Γy+Γz

3
≈ Γax

3
, where we have neglected contributions in radial direction,

since the heating rate in axial direction Γax is much larger due to the large axial
trap frequency. For an estimation we require that our atoms shall stay longer
than 1 second inside the trap and drop the factor 1/3 of the spatial averaging.
Using equation (2.144) with a trap frequency of fax=1 MHz (see section 3.4.5)
we obtain that the power spectrum must be lower than:

2Γ
!
=

1

1 s
⇒ Sk(2fax) ≤ Γ

π2 f 2
ax

= 5 × 10−14Hz−1 = −133 dB/Hz . (2.145)

This is a very low value which corresponds for a constant Sk(2fax) over a 50 kHz
bandwidth to

√

Sk(2fax) 50 kHz = 5 × 10−5 rms fractional fluctuations. In
[MJM+01] it is specified that the used laser source (”Mephisto”, see section 3.2)
has a Sk(2fax) ≤ 10−14Hz−1 at twice the trap frequencies (fax = 2π 1.4 MHz),
where a long trapping time in the order of 10 s was achieved. The measurement
of the intensity noise, presented in section 3.2.3, gave about 2 times larger value

27In a focussed beam dipole trap the trap frequencies are given by the Rayleigh range along
the beam axis and the waist of the focus.
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than we estimated here. We hope that this will not cause too much heating of
our atoms, but we could not perform any measurements with the atoms so far.

The linewidth of the laser is related to the phase noise of the laser. From the
linewidth one can derive the (longitudinal) coherence length28 of the laser. For
this we suppose the laser light having a central frequency ω0 and a linewidth ∆ω.
We want to calculate for which length of propagation the two spectral frequencies
ω0 + ∆ω/2 and ω0 − ∆ω/2 show a phase difference of ∆ϕ = 2π:

2π
!
= ∆ϕ = (ω0 + ∆ω/2) ∆t − (ω0 − ∆ω/2) ∆t = ∆ω ∆t = ∆ω

∆l

c

⇒ ∆l =
2π c

∆ω
=

c

∆f
and ∆t =

1

∆f
,

(2.146)

where we introduced the coherence time ∆t. The speed of light is c and f is the
frequency in Hertz. We rewrite ∆f and the linewidth in terms of the wavelength
λ0 and ∆λ respectively:

∆f = (
c

λ0 − ∆λ/2
− c

λ0 + ∆λ/2
) = c

(λ0 + ∆λ/2) − (λ0 − ∆λ/2)

λ2
0 − ∆λ2/4

=
c ∆λ

λ2
0 − ∆λ2/4

≈ c ∆λ

λ2
0

.

(2.147)

We assumed that ∆λ ≪ λ0. This result inserted into the previous relation for
the coherence length and obtain [MW95]:

∆l =
c

∆f
=

λ2
0

∆λ
. (2.148)

This means that if in an interference experiment the path length difference be-
tween the two arms is larger than ∆l, no interference fringes will be visible. In
our experiment the resonator is using interferences to build up the standing wave
with its power enhancement capability (see section 2.2.3). Therefore, during the
time the light stays inside the cavity it should always be able to maintain the
interference pattern. From equation (2.100) and (2.102) derived in section 2.2.2
we know the mean decay time of the cavity and the path length that the photon
travels inside the cavity:

T̄ = τ =
LF

π c
and ∆l = c τ =

L

π
F , (2.149)

with F the finesse of the cavity and L the distance of between the mirrors. The
coherence length of the laser must be at least equal to this length. We can give

28Here we are dealing with temporal coherence which gives the longitudinal coherence length.
To the spatial coherence a length can be attributed which is then called the transversal coherence
length [MW95].
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an upper boundary for the laser linewidth, which we give in terms of ∆f :

∆l =
L

π
F

!

≤ c

∆f
⇒ ∆f ≤ π c

LF
. (2.150)

For our cavity, which has a maximum distance of L=0.7 m between the mirrors
(see section 3.4.6), and a maximum finesse of about F=1700 (see section 3.4.4)
we obtain:

τ = 1.3 µs , ∆l = 380 m and ∆f ≤ 792 kHz . (2.151)

The linewidth of the purchased laser is about 2 MHz, see section 3.2.2, which
is definitely too large for our purpose. Therefore, we need to reduce the laser
linewidth below the 800 kHz. We should even reduce this, since the calculation
was done with the mean time each photon stays inside the cavity. In order to
estimate by how much we should reduce this requirement we can calculate the
fraction of photons that are still inside the cavity after a time equal the coherence
time of the laser:

Ncav

N0

= ee−∆t/τ

(2.146)

↓
= ee−

1
∆f τ , (2.152)

which gives for ∆f=800 kHz 38% remaining photons, for ∆f=100 kHz only 0.05%
of the photons and for ∆f=10 kHz a negligible fraction of photons which are left
inside the cavity. Therefore, our linewidth should be less than 100 kHz, in order
for having a large coherent fraction of the light inside the cavity.

Phase noise itself causes heating of the atoms since it is related to position
noise of the maxima and minima of the standing wave inside the resonator. In
section 2.2.3 we have calculated the position of the maxima of the standing wave
in equation (2.110). If we add the phase φ to the round trip phase δ = ω L

c
+ φ

we obtain the position of the maximum intensity zmax:

δ
(

1 − zmax

L

)

=
(2πL

λ
+ φ
)(

1 − z

L

)
!
=

π

2

(

2 m + 1
)

⇒ zmax = L − λ

4

2 m + 1

1 + λ
2πL

φ

dzmax

dφ

∣
∣
∣
φ=0

=
λ2

8πL

2 m + 1

(1 + λ
2πL

φ)2

∣
∣
∣
φ=0

=
λ2

8πL
(2 m + 1) .

(2.153)

From the position of the atoms in the center of the resonator zmax = L/2 we see:

2πL

λ

(

1 − 1

2

)
!
=

π

2

(

2 m + 1
)

⇒
(

2 m + 1
)

=
2L

λ
, (2.154)

which we substitute into equation (2.153) and obtain the position change ∆zmax

as a function of the phase change ∆φ:

∆zmax =
dzmax

dφ

∣
∣
∣
φ=0

∆φ =
λ2

8πL

2L

λ
∆φ =

λ

4π
∆φ . (2.155)



2.4. Intensity and phase noise 69

In a similar way or by substitution of ∆φ = L
c
2π∆f we obtain the position change

as a function of frequency change ∆f :

∆zmax =
λ

4π
∆φ =

λ

4π

2πL

c
∆f =

Lλ

2 c
∆f =

L

2f
∆f . (2.156)

The heating rate of the atoms by position noise is treated as well in [GOST98],
again along the x axis:

Q̇x

〈Ex(0)〉 =
1

T ′
x

= π2 f 2
x

S ′
x(fx)

〈x2〉 , (2.157)

with Q̇x the heating rate, 〈Ex(0)〉 = m ω2〈x2〉 the mean energy and 〈x2〉 the
mean-square position of the atoms in the trap. T ′

x is the energy doubling time
and S ′

x(fx) is the one-sided power spectrum of position fluctuations. Here the
relevant frequency is the trap frequency fax. From the numerical solution of the
Fokker-Planck equation for initially 80 % mean energy of the atoms and a 40 %
remaining fraction of atoms in the trap (corresponds to the same loss as for the

intensity noise) a loss rate of 0.1 Q̇x t
〈Ex(0)〉 is obtained. This means that the heating

rate due to position noise is much larger than due to intensity noise. Again we
require the atoms to stay inside the trap for 1 second and we use the confinement
of the atoms within the standing wave to be 〈x2〉 ≈ (λ/2)2 = (0.5µm)2. We
obtain the position noise for 1 MHz trap frequency:

0.1
Q̇x

〈Ex(0)〉
!
= 0.4

1

1 s
⇒

S ′
x(fax) ≤ Q̇x

〈Ex(0)〉
〈x2〉
π2 f 2

= 1 × 10−25 m2Hz−1

⇒ ∆zmax =
√

S ′
x(fax) = 3 × 10−7µm/

√
Hz .

(2.158)

With equation (2.155) and λ=1030 nm, we obtain the phase noise of:

∆φ =
4π

λ

√

S ′
x(fax) = 4 × 10−6 rad/

√
Hz , (2.159)

and with equation (2.156) and L=0.5 m we obtain the frequency noise:

∆f =
2 c

Lλ

√

S ′
x(fax) = 371 Hz/

√
Hz . (2.160)

If we assume the phase noise to be White noise (i.e. constant power spectrum
with Gaussian statistics) until the cutoff frequency fax=1 MHz, and the laser
linewidth much smaller than the cutoff frequency, then we can use equation (10)
from [ERS82] for the laser linewidth ∆FWHM

29:

∆FWHM = πD2〈V 2〉/B , (2.161)

29See also [Cha73] and [Tha99] for similar considerations.
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where the noise was considered to stem from a voltage controlled oscillator (VCO)
which modulates an AOM. The tuning sensitivity of the VCO is denoted as D in
units of Hz/V, the rms Voltage of the noise on the VCO is 〈V 2〉 and the cutoff
frequency is B. In our case the power spectrum is:

D2〈V 2〉/B = (∆f)2 , (2.162)

and we obtain the maximum laser linewidth in order to have low phase noise:

∆FWHM = π(∆f)2 = 432 kHz . (2.163)

We see that if we have a linewidth of below 100 kHz, as was required above for
the coherence length, simultaneously the phase noise and the resulting position
noise will be sufficiently low such that small heating rates can be expected.

We obtained in this section requirements of the intensity noise and laser
linewidth in order to avoid heating and for keeping the coherence time longer
than the time each photon stays inside the cavity. Due to the very high trapping
frequencies along the resonator axis we obtained a very low intensity noise re-
quirements of -133 dB/Hz, which is difficult to be fulfilled. The linewidth should
be below 100 kHz which is lower than the linewidth of the laser. Therefore, a
linewidth stabilization of the laser is necessary, but which should not be prob-
lematic.

2.4.2 Measurement of intensity noise

We have seen in the previous section that the intensity noise of the laser is a
crucial parameter since it causes heating of the atoms which will be lost from the
trap in consequence. We have derived a specification of the maximum intensity
noise which can be tolerated. We needed a measurement of the intensity noise in
order to check if this specification can be fulfilled. But it turned out that such a
measurement is not trivial, therefore we will discuss it here in detail.

The experimental setup for this measurement is very simple. One detects
the laser light with a photodiode and a spectrum analyzer. One has to take care
of several things. First the photodiode has to be fast enough to detect the noise
in the range of interest. The sampling theorem states that the bandwidth of
the detector must be at least double the bandwidth of the signal. Second the
intrinsic noise of the whole detector circuit including the spectrum analyzer has
to be taken into account. We do this by measuring the background noise without
the laser shining onto the photodiode. This background noise is subtracted from
the signal with the laser light on. Third, the settings of the spectrum analyzer
are very important when doing such a measurement and one has to do some
corrections according to the setting. Finally, one has to plot the measurement
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in the appropriate units and with a normalization which makes it possible to
compare different measurements with each other. For doing this, the DC signal
level of the photodiode must be measured simultaneously with the AC noise
measurement. The steps necessary for a reliable intensity noise measurement are
described here.

The spectrum analyzer used was a Rhode&Schwarz (R&S) FSP 7 GHz and
all settings are for this specific type of analyzer. But other analyzers should have
equivalent settings. Most of the information here can be downloaded from the
homepage of R&S [Roh]. As for example the application notes [Wol95, Sch94],
and the manuals [Roh06] of the spectrum analyzer. Additional information was
obtained from the customer service of R&S, as for example the book [Rau00]30.

Table 2.5 gives the steps (or a checklist) for performing an intensity noise
measurement with the spectrum analyzer. The details will be discussed below.

Table 2.4: Settings of the spectrum analyzer for the measurement of intensity
noise of a laser. For details see text.
button remarks

1. PRESET reset the analyzer to default settings
2. DETECTOR select SAMPLE, AV or RMS DETECTORa

3. VBW=0.1 RBW video bandwidth for SAMPLE DETECTOR
VBW=3RBW video bandwidth for AV and RMS DETECTOR

4. TRACE AVERAGE if wanted, only SAMPLE DETECTOR
5. FREQ select the center frequency
6. SPAN select the frequency span
7. RBW,SWT select resolution bandwidth or the sweeptime
8. ATT select the smallest possible attenuation
9. REF LEVEL select the smallest possible REFERENCE LEVEL

10. check intrinsic noise of spectrum analyzerb

11. make a background measurement
12. perform the measurement
13. ASCII FILE EXPORT save to ASCII file
14. measure the signal level on the oscilloscope
15. apply corrections according to table 2.6

aThe RMS DETECTOR is the ideal detector for noise measurements.
bSee discussion on the background measurement.

First we will give a brief description of how a spectrum analyzer works.
This will clarify the used settings. A very simplified block diagram of a spec-
trum analyzer is shown in figure 2.22. The input signal is mixed with the local

30We would like to thank Andreas Kühne from R&S for his support.
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Figure 2.22: Simplified block diagram of spectrum analyzer (from [Rau00]).

oscillator (LO) frequency in the mixer. After amplification the signal is filtered
by the intermediate frequency (IF) filter31 at a fixed frequency of 20.4 MHz and
an adjustable resolution bandwidth (RBW). The resolution bandwidth is defined
as the frequency difference of two adjacent signals having the same amplitude
and showing exactly a 3 dB dip between of them on the spectrum analyzer. The
filtered signal is then compressed in a logarithmic amplifier which allows simul-
taneous treatment of signals having different levels over several orders of mag-
nitude. Then, in the envelope detector, the signal level is detected (like an AM
demodulation). The signal goes through a low pass ”video” filter with adjustable
video bandwidth (VBW) before it is displayed. A sawtooth generator creates the
control voltage for the local oscillator and the x axis of the display. In modern
spectrum analyzers the signal is converted to digital signals whenever possible.
For RBW≤ 100 kHz therefore the IF filter and following sections are realized in
digital form and for higher RBW the analog signal is digitalized after the enve-
lope detector. The LO is usually realized as a phase locked loop (PLL) locked
to a stable reference frequency of 10 MHz and therefore no analog sawtooth gen-
erator is necessary. Also the signal is usually not directly downconverted to the
IF but this is done in several steps in order to reduce crosstalk (by higher har-
monics intermodulation products) from the high signal frequency to the low IF
frequency.

The maximum signal level on the input must not exceed +30 dBm (1 W),
otherwise the input gets destroyed. The signal can be attenuated before the
mixer by the internal RF ATTENUATOR which can be set from 0 dB32 up to
70 dB. The attenuation should be as small as possible since the signal to noise is
increasing for lower attenuation. The signal level at the mixer is simply Pmixer =

31In German ZF filter, standing for ”Zwischenfrequenz Filter”.
32The 0 dB RF attenuation can only be entered manually on the keyboard and is not accessible

with the spinning wheel.
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Pinput−ATTENUATION in units of decibel. It is usually in the range of -40 dBm
(low distortion) to -20 dBm (low noise) and can be set automatically by the RF
ATTEN AUTO selection. One can manually select the RF attenuation in the
RF ATTEN MANUAL mode. When the mixer level exceeds a certain value then
distortions from intermodulation products of higher harmonics become significant
in the measurement (see manual [Roh06] page 2.21ff). Therefore, if one wants to
minimize such distortions one reduces the mixer level. But here we are measuring
noise and want to minimize the influence of internal noise. Therefore, we increase
the mixer level to about -20 dBm. Probably, it is necessary to increase the mixer
level even more if the signal is too close to the noise level or if one wants to measure
the carrier to noise ratio on a large dynamic range as presented in [Wol95]. To
do this one can reduce the RF attenuation until the spectrum analyzer indicates
overload OVL and increase it by one step again.

The gain of the amplification after the mixer and therefore the signal level
at the IF filter can be influenced by setting the REFERENCE LEVEL. It should
always be a little larger than the measured signal. This ensures that the full
dynamic range of the A/D conversion or logarithmic amplifier is used. Also a
small REFERENCE LEVEL gives larger signal to noise due to the larger sig-
nal amplitude. If the signal exceeds the REFERENCE LEVEL the IF filter is
overload and IFOVL is displayed. This should be avoided. Nevertheless, if the
analog filter is used, smaller signals than the REFERENCE LEVEL are still mea-
sured correctly. On the contrary, if the digital filter is used (for RBW≤ 100 kHz)
the measurement becomes distorted due to higher mixing products in the A/D
conversion. Therefore, with the digital filter the REFERENCE LEVEL should
always be higher than the signal level.

On the display of the spectrum analyzer only a certain number of pixels
can be displayed, but the detected signal contains much more information33.
Therefore, the signal after the video filter must be processed in some way and this
can be chosen by selecting a detector. There are several possibilities like SAMPLE
DETECTOR, MINIMUM- and MAXIMUM-PEAK DETECTOR, AVERAGE
DETECTOR and RMS DETECTOR. For the measurement of noise only the
SAMPLE DETECTOR, AVERAGE DETECTOR and RMS DETECTOR give
the right result. Do not use the other detectors for a noise measurement.

The SAMPLE DETECTOR is the default setting and takes the signal value
at the time when the pixel is displayed. All the information about the signal in
the time until the pixel is refreshed is lost. This does not matter for a noise mea-
surement since the statistics about the signal is still preserved if one picks parts of
the sample randomly. Therefore, this detector can be used. For a measurement

33Usually also the number of datapoints which are exported to the file is exactly the number
of pixels displayed on the screen, which is 501 in the case of the R&S spectrum analyzer. With
the setting SWEEP POINTS it is possible to change the number of exported datapoints.
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with this detector the video bandwidth should be much smaller than the reso-
lution bandwidth, i.e. VBW≤ 0.1 RBW, which effectively gives an averaging of
the signal. The (linear) averaged value is 1.05 dB lower than the RMS value for a
signal having Gaussian (white) noise. In addition, if the signal is displayed on a
logarithmic scale, the averaging gives 1.45 dB attenuation. In total the signal of
the SAMPLE DETECTOR is 2.51 dB34 lower than the RMS value. It is possible
to activate TRACE AVERAGING to stabilize the output35. The sweep time does
not affect the result, allowing to select a small sweep time. The problem with
the SAMPLE DETECTOR is, that if the noise is not Gaussian, then the given
corrections are not true anymore. In such a case only the RMS DETECTOR
gives the correct results.

The RMS DETECTOR displays the root-mean-square of the signal:

URMS =
√

1
N

∑N
i=1 U2

i . (2.164)

In contrast to the SAMPLE DETECTOR no information is lost. Moreover the
measurement is directly related to the power spectral density by S(ω) ∝ U2

RMS/R
with R the resistance over which was measured (50 Ω usually). This is true
regardless of the statistics of the noise. No additional corrections (except the
noise bandwidth, see later) are necessary and therefore this detector should be
the natural choice for a noise measurement. Averaging is not allowed with the
RMS DETECTOR. To avoid averaging by the video filter it should be set to
VBW≥ 3 RBW. A large sweep time (SWT) is favorable since this increases the
calculation time for each pixel = sweeptime/501.

The AVERAGING DETECTOR (AV DETECTOR) can also be used for a
noise measurement. The average is taken over the envelope voltage resulting in
a 1.05dB correction. The video bandwidth should be set to VBW≥ 3 RBW as in
the case of the RMS DETECTOR. The sweep time gives the averaging time and
should be as long as possible.

Generally, the RMS DETECTOR is the best choice since the result is di-
rectly related to the spectral noise density. If there are time constrains on the
measurement then one can use the SAMPLE DETECTOR, since the sweep time

34The sum of the corrections is 1.45 dB+1.05 dB=2.50 dB, which is given in [Rau00] with
only one digit precision. The manual [Roh06] gives 2.51 dB in several places. It seems that
rounding errors make the difference.

35This is written in the manual [Roh06] on page 4.13-2, but in [Rau00] on page 75 one reads,
that with linear scale and the video bandwidth set to VBW≥ 10RBW, the true average is
obtained. But this setting is completely the opposite to the one usually used for the SAMPLE
DETECTOR. The manual [Roh06] does not mention that the video bandwidth should be
changed when TRACE AVERAGING is used. In the same reference just some lines above
there is another inconsistence. There it says that averaging with the SAMPLE DETECTOR
does not converge, but right below the opposite is stated.
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does not affect the quality of the measurement and can be kept small. The AV
DETECTOR does not have advantages over the other detectors.

In order to reduce the influence of other sources of noise on the measurement
one makes a background measurement. This is done by setting the laser emission
to zero (or blocking the beam) and measuring the background signal. The noise
within the detector circuit and the spectrum analyzer is measured and can be
corrected for by subtracting the background signal from the measured signal. This
must be done while using the linear scale. The measured signal is usually given in
logarithmic scale, i.e. in dBm and has to be converted. From the definition of the
logarithmic scale, equation (2.141), we can calculate a background correction CBG

that corrects for the difference between the measured signal power (S) and the
real signal which has the background noise (BG) subtracted36:

CBG ≡ S − 10 log10

[

10S/10 − 10BG/10
]

= S − 10 log10

[

10S/10(1 − 10(BG−S)/10)
]

= −10 log10

[

1 − 10(BG−S)/10
]

= +10 log10

[

(1 − 10(BG−S)/10)−1
]

= +10 log10

[
10(S−BG)/10

10(S−BG)/10 − 1

]

.

(2.165)

All numbers are inserted in decibels. It is important to note, that the back-
ground signal and the measured signal must have the same corrections applied.
Otherwise, the result is wrong. For simplicity we always perform the background
correction before any other corrections. In this case we do not need to correct
the background signal at all.

For example, if we have a signal level which is 10 dB above the noise level
equation (2.165) gives a correction of CBG=0.5 dB. This is a quite large contri-
bution of the noise. Therefore, we suggest having at least 10 dB signal to noise
spacing in all measurements. Even though we can correct for the background
noise, if the signal is too close to the noise, information gets lost. One can test
before any measurement if the noise level is small enough by unplugging the sig-
nal from the spectrum analyzer and check for the intrinsic noise of it. If it is
smaller than 10 dB below the signal the measurement should not be influenced
by the noise.

Otherwise, the signal to noise must be increased. This can be done by

36Equation (2.165) is exactly the same result as in [Rau00], equation (5-55) on page 166.
Do not be confused by the nomenclature there, S+N

N
is simply equivalent to S − BG in the

notation here. The notation in [Rau00] comes from the fact that a subtraction in logarithmic
scale corresponds to a division in linear scale.
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reducing the RF ATTENUATION and reducing the REFERENCE LEVEL, while
one has to be careful not to overload the input mixer or the IF filter. If this is not
sufficient one can reduce the resolution bandwidth, where one has to find a good
compromise versus the measuring time. It is also possible to reduce the video
bandwidth with the SAMPLE DETECTOR, or with the RMS DETECTOR, the
sweep time in order to increase the signal to noise. The last possibility is to
amplify the signal before the spectrum analyzer or reducing the ambient noise
level by shielding, etc.

It is important to know, that the power spectrum measured by the spectrum
analyzer is always given relative to the selected resolution bandwidth (RBW).
Therefore, the obtained result has to be divided by the resolution bandwidth in
order to be independent of the bandwidth used during the measurement. But
this is only part of the truth, since the shape of the IF filter is also affecting
the bandwidth of the noise. This is called the noise bandwidth (NBW) and is
defined as the width of a square-filter having the same area as the integrated
power transfer function of the IF filter [Rau00]:

NBW ≡ 1

H(IF)2

∫ ∞

0

H2(f) df . (2.166)

Here H(f) is the transfer function of the IF filter in units of volt and H(IF)
is the transfer function at the central frequency of the filter. For the different
types of filters the noise bandwidth has to be calculated with the result obtained
from [Rau00] for the R&S FSP spectrum analyzer, which is given in table 2.5.

Table 2.5: Noise bandwidth for the R&S spectrum analyzer FSP as a function
of the selected resolution bandwidth RBW. Numbers from [Rau00].

filter typea RBW rangea NBW/RBW
digital ≤ 100 kHz 1.065
analog (4 filter) ≥ 300 kHz 1.129

aThe type of IF filter is automatically selected by the spectrum analyzer according to the
selected RBW. The RBW is switched in steps with no step lying between 100 kHz and 300 kHz.

As was mentioned before, the measured signal must be divided by the noise
bandwidth. The division can simply be expressed as a subtraction of the loga-
rithmic noise bandwidth from the measured power (S):

SdBm/Hz = S − 10 log10

[
NBW/Hz

]
. (2.167)

Finally, the result must be normalized by the signal level of the photodiode,
since the laser power, different photo detectors and also the gain of the amplifier,
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if existent, give different signal levels, causing different noise levels. For doing
this, the mean signal level ŪDC must be measured at the entrance of the spectrum
analyzer. This is easily done by using an oscilloscope. The input resistance of
the spectrum analyzer has usually R=50 Ω with which the total signal power can
easily be calculated by P = Ū2

DC/R. This number converted into the logarithmic
scale must simply be subtracted from the measured signal:

SdB/Hz = S − 10 log10

[
Ū2

DC

RP0

]

, (2.168)

where P0 is the reference power for the used unit, i.e. 1 mW for the unit dBm.

Now we have all information at hand for doing the corrections of the noise
measurement and summarize them in table 2.6.

Table 2.6: Corrections for noise measurements. The given corrections must be
added to the measured signal.
condition correction remarks

always to do: −CBG see (2.165) subtract backgrounda

−10 log10[
Ū2

DC
P0 R

] normalization

filter type:
digital (RBW≤ 100kHz) −10 log10[1.065RBW

Hz
] noise bandwidth

analog (RBW≥ 300kHz) −10 log10[1.129RBW
Hz

] noise bandwidth
detector:

RMS DETECTOR: − no corrections
SAMPLE DETECTOR:

lin. scale +1.05dB rms correction
log. scale +2.51dB rms- & log. correction

AV DETECTOR: +1.05dB rms correction

aThe background signal must have the same corrections as the measured signal when the
subtraction is done. We suggest doing the background subtraction first, then the background
signal needs not be corrected.

At the end of this section it should not be left unmentioned, that modern
spectrum analyzers often have a marker function that allows to measure noise
power. The resulting noise value is automatically calculated with the consider-
ations from before taken into account. We will briefly discuss this feature for
the R&S FSP spectrum analyzer (see manual [Roh06] page 2.28ff. and 4.13-2ff.).
When the NOISE MEAS function is switched on, the SAMPLE DETECTOR
and VBW=0.1 RBW are selected automatically. At the actual marker position
the fully corrected value of the spectral noise density is displayed in units of
dBm/Hz (if the logarithmic scale is selected) It is important to know that the
given value is an average over 17 adjacent pixels symmetrically chosen around the
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marker position. Alternatively the RMS DETECTOR and VBW=3 RBW can be
selected manually and the spectrum analyzer gives the correct result, averaged
over 3 pixels. The AV DETECTOR can also be used for the noise measurement,
but it is not clear over how many pixels the average is calculated.

Unfortunately, there is a discrepancy of the automatically calculated re-
sult to the manually obtained one with previous corrections. For the SAMPLE
DETECTOR the spectrum analyzer always gives a value 1.21 dB lower than the
manually calculated one. The given value for the RMS DETECTOR is also differ-
ent, but without a constant offset. The reason for this could not be evaluated37.

One has to be careful when trying to measure with the NOISE MEAS
function on peaks. The real peak value could be much higher than displayed,
since 17 pixels are averaged. Also per default the SAMPLE DETECTOR is
selected which is not always the best choice as was discussed above.

We have seen in this section that the measurement of intensity noise is not
a trivial task and one has to consider several things before a measurement can
be done in a reliable way. We have also performed an estimation of the allowed
intensity and phase noise of ≤−133 dB/Hz and ≤ 4×10−6 rad/

√
Hz respectively.

The requirement of the coherence of the laser light, together with the phase noise,
led to a maximum linewidth of 100 kHz of the laser. The measurements of the
actual laser noise and linewidth show, that a linewidth reduction is necessary
and, that the intensity noise could be a problem. These measurements and the
linewidth reduction, among with the setup of the resonator, are presented in the
experimental part.

37R&S did not explained, why there is a difference.



Chapter 3

Experimental part

In the theoretical part, we have discussed many aspects of a Fabry-Perot inter-
ferometer (FPI). The applications of the obtained knowledge in order to design
a resonator enhanced dipole trap (see introduction) will be presented in detail
here.

The resonator is nothing else than a FPI, which is designed in such a way
that the power enhancement (section 2.2.3) is maximized. The resonator is built
around a glasscell which is part of the ultra-high-vacuum (UHV) chamber, where
the atoms are trapped in the maxima of the standing wave (see section 3.4.5).
This glasscell induces losses of the resonator. In order to minimize these losses,
the glasscell is designed with a special shape (see section 3.4.1) and the losses are
measured (see section 3.4.3). With this the optimum reflectivity of the resonator
mirror is calculated (see section 3.4.4).

In section 2.4.1 we have estimated requirements about the laser linewidth
and the intensity and phase noise. We will see from the characterization of the
laser (see section 3.2), that a laser linewidth reduction is necessary. The linewidth
reduction needs another cavity which will give a stable frequency reference, since
its linewidth only depends on the geometry and mirror reflectivity. Therefore,
we will name this cavity as the ”reference cavity”. The linewidth reduction will
be discussed in section 3.3.

3.1 The setup

A commercially available high power laser is stabilized by the Pound-Drever-
Hall (PDH) locking scheme to the reference cavity [DHK83]. We will see that
the laser linewidth can be reduced by more than two orders of magnitude. This
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stabilized laser is then used as the seeding laser for the resonator, where the power
enhancement is used to build up an extremely deep dipole trap for the atoms.
The resonator is kept in resonance with the laser light by means of the Hänsch-
Couillaud locking scheme [HC80]. In our research group a setup of an optical
resonator has already been designed for the lithium experiment. For details see
the PhD thesis [Joc04, Bar05] and in particular the diploma thesis [Mor01, Els00].
The articles [GWO00, MJM+01] give a good overview of such traps.

PDH lock

Hänsch-Couillaud lock

resonator & glasscell

Figure 3.1: Complete setup of the resonator enhanced optical dipole trap.

The setup is shown in figure 3.1 and we will discuss it here briefly before
going into details in further sections. The laser source (ELS Versadisk) provides
up to 25 W single mode light at a wavelength of 1030 nm. It is stabilized to
the reference cavity by changing the internal cavity length with a piezo. After
passing the first Faraday isolator (likewise named optical isolator, or sometimes
optical diode) the laser light is passing two acousto-optical-modulators (AOM),
with the first order used on each. For both AOMs the frequency and the driving
power are controlled. This allows stabilization of the laser frequency and intensity
simultaneously. The AOMs are turned by 180° relative to each other, such that
it compensates for the deviation in angle when the RF frequency is adjusted. On
the incoupling cube of the second Faraday isolator the small fraction of deflected
light is used for generation of the Pound-Drever-Hall locking signal controlling
the piezo of the laser and the frequency of the AOMs. The stabilized laser light
passes then one or several lenses for mode matching (see 2.2.4) and is coupled via



3.2. The ELS laser 81

three mirrors1 into the resonator cavity. A halve-waveplate (λ/2) is inserted in the
pathway after the first steering mirror such that the polarization on the mirrors
is always s-polarized2, where the reflectivity of the mirrors is larger. This way
also the polarization on the input to the glasscell is automatically p-polarized3,
which is necessary for the Brewster’s angle to be effective. On the last mirror
the intensity of the incoming light is measured with a photodiode (PD3). At this
point an error signal for the intensity stabilization is generated, which goes to a
variable attenuator controlling the RF power of the AOMs. The resonator cavity
length is stabilized with a piezo, controlled by the Hänsch-Couillaud locking
scheme. For this, the ellipticity of the reflected light from the resonator is detected
by two photodiodes (PD4 and PD5). Behind the resonator there are a camera
and a photodiode for observing the alignment of the beam. A beam dump is
needed for deposition of the transmitted power.

3.2 The ELS laser

The used laser is the Yb:YAG disklaser Versadisk (”versatile disklaser”) from the
German company ELS (Elektronik Laser System [ELS]). It has a wavelength of
1030 nm and a maximum output power of 25 W single mode. The design principle
of this laser is shown in figure 3.2. A water cooled pump diode provides the pump

Etalon Lyot Filter

outcoupling
mirror

water cooled
Yb:YAG disk

fiber from
pumping

diode

parabolic
mirror

Figure 3.2: Design principle of the Versadisk disklaser, excerpt with permission
of ELS.

light via a fiber onto the Yb:YAG disk (∅10 mm, 240µm) which is water cooled
as well. The pump light traverses the Yb:YAG disk several times due to the
parabolic mirror and the high reflectivity coating on the back of the Yb:YAG

1Mirrors 2 and 3 are not shown in figure 3.1 for simplicity. In reality, mirror 2 changes the
beam direction horizontally by 90° . Mirror 3 directs the beam vertically onto mirror 4, which
couples it into the resonator.

2The symbol ”s” comes from German ”senkrecht”, meaning ”vertical” with respect to the
plane of incidence-reflection of the mirror.

3The symbol ”p” refers to ”parallel” which is the same in German and English.
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disk. The high reflection side of the disk is also representing one mirror of the
laser cavity.

The free spectral range (FSR, see section 2.2.2) of the laser cavity is about
200 MHz, as can be seen from L ≈ 0.75 m with equation (2.79). ELS specifies
the linewidth to be ≤ 2 GHz [ELS], which is larger than the FSR. This might
be surprising at first sight (c.f. definition of the finesse, equation (2.85)), but
the simple explanation is, that about 10 longitudinal modes of the laser cavity
are simultaneously emitted. In order to have single mode operation an etalon is
inserted into the cavity, which gives a single-mode linewidth of less than 5 MHz.
The etalon has a relatively large FSR, which we estimate to be around 10-100 GHz
for L=15-1.5 mm. Therefore, it is likely that the transmission maximum of the
etalon does not coincide with that of the laser cavity which would cause that the
laser does not lase. In order to avoid this, a Lyot filter [KS92] is added into the
cavity, which allows to tune the emitting wavelength into and within the range
of the etalon. The etalon is provided with a Peltier element and a stepper motor
turns the Lyot filter, both are required for fine-tuning the emitting wavelength of
the laser. But in our experiment we do not need a certain wavelength, therefore
both options are not activated so far. Probably, in the future we need to stabilize
the temperature of the etalon in order to cancel temperature drifts and subsequent
mode jumps of the laser.

A very thin outcoupling mirror is mounted on a piezo (PICA-Thru piezo
stack, P-016/00H from the German company Physikalische Instrumente [PIh,
ELS]), which allows to change the length of the laser cavity. This feature is
used together with two AOMs for stabilizing the laser and reducing its linewidth,
which will be discussed in section 3.3.

During the diploma thesis a decision had to be taken concerning which
laser to buy to act as the source for the resonator. Therefore, we defined re-
quirements on the laser stability and output power (sections 2.4.1 and 3.4.5).
The linewidth should be less than 100 kHz and the intensity noise should not ex-
ceed −133 dB/Hz at twice the trap frequencies of about 1 MHz. The laser power
should be larger than 7 W on the input of the resonator. At that time (spring
2006), there were only two alternatives to the ELS Versadisk. One of them was
the ”Mephisto 2000” from the German company Innolight [Inn], which is an ul-
trastable diode pumped Nd:YAG ringlaser with wavelength of 1064nm. It has
single frequency 2 W power output and a linewidth of less than 1 kHz (100 ms).
This laser served already in the lithium experiment as a reliable laser source, but
the 2 W of power are not sufficient for our purpose. We would have had to con-
struct a fiber amplifier on our own in order to use this laser. The second option
was a single mode fiber laser from the German company IPG [IPG]. This laser
has a linewidth of less than 100 kHz, a wavelength of 1064 nm and output power
of 20 W which would have met our expectations. But this product was quite new
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on the market and, moreover, it did not allow improving its stability by locking
it to an external cavity. Therefore, we decided to buy the Versadisk from ELS,
which had already been on the market for some time. For example in the group
of Klaus Sengstock in Hamburg it is used for the generation of an optical lattice
(see diploma thesis [Wil05]). In the lithium experiment the same laser is used for
a focussed dipole trap, but there only the intensity is stabilized externally.

In table 3.1 the specifications of the Versadisk laser are given, which will be
discussed below. The specification is found in [ELS], and additional information
is obtained from ELS per email4.

Table 3.1: Data for the ELS Versadisk. Check marks show parameter which
were measured and agree with the specification. The intensity noise
does not fulfill the specification.

wavelength 1030 nm
power output 27 Wa (25 W) X

beam diameter in waist 0.68 mm± 2 %a (0.7 mm) X

mode structure TEM00, M2=1.00± 5 %a (<1.1)
beam divergence (full angle) 1.72 mrad± 5 %a X

beam asymmetry in waist 1.01a

waist position 5 mm± 8 %ab

polarization linear, horizontal, >100:1
linewidth 50 ms <5 MHz X

intensity noise 20 Hz - 100 MHz <0.04 % rms
beam pointing drift (after warmup) < 2 µrad/° C
amplitude instability (after warmup) < ± 1 %

aThese parameters are measured by ELS at 27 W power output. The percentages are given
by ELS for the beam parameter. Numbers in brackets give the specification.

bThe distance is given relative to the laser housing and corresponds to 61 mm to the out-
coupling mirror. This means that the waist lies outside the laser cavity, even though the
outcoupling mirror is planar. According to ELS this comes from the fact that the laser is not
an ideal resonator, the calculated stability is about 90 %.

3.2.1 Laser power and waist

In figure 3.3a) we see the optical power output for different diode pumping cur-
rents. The measurement was made right after installation of the laser. The power
increases approximately linearly with (1.40 ± 0.01) W

A
and has at the maximum

pump current of 31 A a power of 28.8 W. This is clearly better than the specifica-

4Thanks to Sascha Häuser and Matthias Rösch for their support.
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tion5. There are also some additional beams (3 at minimum) coming out of the
laser, but the strongest of them has less than 10 mW of power. The insert gives
the lasing threshold at (10.9 ± 0.3) A6. Figure 3.3b) shows the beam diameter

(a) (b)

Figure 3.3: a) Pumping diode current vs. output power of ELS Versadisk.
b) Beam diameter of ELS laser.

as a function of the distance from the position where the laser beam exits the
housing of the ELS laser. The given directions, horizontal and vertical, refer to
the measurement axis parallel or orthogonal to the optical table respectively. The
pump current was 12 A which gives 680 mW of output power. The measurement
was done with a commercial waistmeter (Thorlabs omega meter MW-1007) where
the beam was mirrored into a dump and only the residual transmitted light was
measured. Probably, the beam could have become astigmatic by this mirror, as
one can see from the graph. In the vertical direction the beam diameter jumped
between two extremes. Therefore, only the horizontal measurement is used for
the calculation of the divergence angle of Θdiv = dw(z)

dz
= (0.880 ± 0.005) mrad,

where one has to take into account that the beam diameter is measured instead
of the radius. This result agrees very well with the given specification from ELS.
With equation (2.26e) we calculate the beam waist: w0 = λ

π Θ
= (373 ± 2) µm.

This agrees not so badly with the 0.68 mm given for the waist diameter by ELS.
We have to check if we correctly used the approximation for the far field of the
focus by looking if we measured far enough outside the Rayleigh range. This

range is, according to equations (2.26), z0 =
π w2

0

λ
= λ

π Θ2 = (0.423 ± 0.005) m,
which shows that we were still close to the focus, but the measurement should
be sufficiently accurate as the linearity was good. Nevertheless, we can improve
this by fitting the data directly to equation (2.26b) with a nonlinear fit. For this

5A later measurement gave a maximum power of 25.6 W, which is still above specification.
6At 11.5 A one starts seeing the laser light on the infrared cards.
7The adequate infrared sensor MW-100B was not available, but the used sensor MW-100,

works up to 1000 nm and the deviation should not be too bad.
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we replace z 7→ z − zfocus to get the position of the focus as well. We obtain a
waist w0 = (343 ± 3) µm and the position of the focus is zfocus = (133 ± 7) mm
measured from the laser housing. The waist matches exactly the measurement
of ELS, but the position of the focus does not agree with the 5 mm provided by
ELS. The deviation can be explained by regarding that the measurement did not
involve the focus position itself. Therefore, small deviations of the measurement
can easily lead to large errors when calculating the position of the focus. The
given errors for the fit are only errors calculated from the small sample size which
is not really representative.

With equation (2.27), which describes the total power of a Gaussian beam,
we can calculate the peak intensity of the laser beam. For 25 W optical power and
a waist of 0.7 mm/2 a peak intensity of I0=130 MW/m2=13 kW/cm2 is obtained.

There is a problem with the beam diameter and divergence angle measured
by ELS (see table 3.1). They do not match for a TEM00 beam. Equation (2.26e)
gives for a waist of w0=0.68 mm/2 a full angle of 2Θ=(1.93± 0.04) mrad, which is
(0.21± 0.10) mrad larger than the measured value. The calculated M2 factor, see
section 2.1.2, for the measured waist and angle of divergence gives, according to
equation (2.44), M2 = w̃0Θ̃

π
λ

= 0.89 ± 0.05, which is 2σ8 smaller than one. This
is definitely not physically possible9. The difference is too large to be explained
by measurement errors only. We did not measure the beam waist directly, so that
it was not possible to check the M2 factor.

3.2.2 Laser linewidth

The next parameter to check was the linewidth of the laser. For this purpose
a scanning Fabry-Perot Interferometer (FPI-100-980-2.0, 825 nm-1200 nm, from
Toptica) was used so that the linewidth of the transmitted light could be mea-
sured. The length of the FPI is 75 mm and gives a FSR of 2 GHz. The reflectivity
of the mirrors is R≥ 99.7 % and the finesse is larger 600 which gives a linewidth
of δA ≡ 3.3 MHz. See section 3.3.7 for details. A measurement with the FPI is
shown in figure 3.4.

In order to measure the linewidth, the FPI was adjusted in a near-confocal
configuration. This is necessary because in confocal configuration the higher
modes overlap, leading to a broader linewidth than the Gaussian TEM00 mode
(see discussion in section 2.2.5). We pick out the highest peak, assume it is
the TEM00 peak, and fit a Lorentzian profile. The Finesse is 668± 190 (out of
6 spectra), which gives a linewidth of δconv ≡(3± 1) MHz. For this calculation

8The standard deviation is commonly named σ.
9ELS explained this by measuring errors and gave the percentages cited in table 3.1. They

calculated a M2 value of 0.98 and rounded up to 1.00.
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(a)
FSR =2 GHz
F =628
FWHM1 = 2.5 MHz
FWHM2 = 3.9 MHz

(b)
FWHM= 3.9 MHz @292 µs

Figure 3.4: a) FPI spectrum near-confocal and b) linewidth.

we used half of the FSR, since in the near-confocal configuration the even and
odd TEM-modes form two lines, separated by FSR/2 (see figure 2.17). From
figure 3.4b) we see that the fit does not overlap well with the measured line: the
lines are all asymmetric. It was not possible to align the FPI in such a way that
the lineshape became better. Probably, either there is still some misalignment
of the beam or of the mirrors of the FPI, or the photodiode is too slow. The
third possibility, the scanning speed being faster than the cavity decay time (see
section 2.2.2), can be ruled out by calculating the decay time from equation (2.99),
giving τ ≡ L

c (1−Z)
= 83 ns. The 290µs taken for scanning over the linewidth

is much larger than the decay time of the cavity, so that this can not be the
reason for the asymmetry in this case. It should be mentioned that, due to the
asymmetric lineshape, the fitting did not work very well and gave quite often
a too small linewidth. But for a large linewidth, as in figure 3.4b), the fitting
seems to give a better result. We have to include the contribution of the linewidth
of the FPI to this measurement since both linewidths are on the same order of
magnitude. The numerical calculation of the convolution of a Gauss distribution
with the Airy function of the FPI was already done in section 2.2.2. The result is
plotted in figure 2.9. We find for δconv/δA = 0.9 ± 0.3 ≤ 1.2 that the linewidth
of the laser is FWHM≤ 0.35 δA= 1.2 MHz. This was only measured at lower
power (approximately 5 W). In an earlier measurement it was observed that the
linewidth gets broader by about 60 % at high power. Therefore, we estimate
the laser linewidth to be ≤ 2 MHz. This is well below the specification of ELS.
Nevertheless, we have anyway to make a linewidth reduction in order to fulfill
the linewidth requirement derived in section 2.4.1.

3.2.3 Laser intensity noise

Another crucial parameter of the laser is the intensity noise which was another
issue when the laser was bought. An estimation of the maximum allowed in-
tensity noise is made in section 2.4.1. The way of measuring intensity noise is
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described in section 2.4.2 in full detail. The laser was reflected into a dump by
a mirror. The small fraction of transmitted light was sent to a photodiode. It
was a Hamamatsu S5971 PIN photodiode, having its signal amplified with the
transimpedance amplifier SA5211 from Philips. The bandwidth of the photodi-
ode is about 100 MHz, that of the amplifier circuit is 180 MHz, which should be
more than sufficient. The used spectrum analyzer was a Rhode&Schwarz (R&S)
FSP 7 GHz, with the SAMPLE DETECTOR (see section 2.4.2) selected10. A
background measurement was done after every measurement and the DC voltage
at the entrance of the spectrum analyzer was recorded by an oscilloscope. In

(a)

signal / dBm

BG / dBm

S(f) / dB/Hz

(b)

20A

30A

MAXHOLD

AVERAGE 10x

Figure 3.5: Power spectrum S(f) of the ELS laser. a) Combination of 6 mea-
surements with measured and background signal (BG) in dBm and
S(f) in dB/Hz b) S(f) in 100k range with relaxation oscillation
peak for 20A and 30A.

figure 3.5a) we put 6 measurements together in one plot. At frequencies below
100 Hz the power spectrum is with -140 dB/Hz surprisingly low. In the 100 Hz
to 1 kHz range it increases up to -110 dB/Hz. Unfortunately, from 100 Hz to
300 Hz no data was obtained11. At 1 kHz the signal rises right at the edge of the
measured range, but in the next measurement no peak appeares at this point.
From 1 kHz on, the power spectrum mainly decreases to around -130 dB/Hz at
1 MHz. There it jumps up to -128.5 dB/Hz (see mean value below). The big
peak between 10 kHz and 100 kHz is enlarged in figure 3.5b), where it is plotted
for two different pump currents. For 20 A it appears at 29.8 kHz and has a value
of -107 dB/Hz. At 30 A it is shifted to 43.4 kHz and has a value of -111 dB/Hz.
When instead of the TRACE AVERAGING the MAXHOLD function is acti-
vated, the measured power spectrum increases to -101 dB/Hz at 30 A. Such a
peak is known as relaxation oscillation of the laser. It is the (damped) frequency

10At the time of the measurement only the calculation of the power spectrum with the
SAMPLE DETECTOR was clear, but showed the already mentioned offset of 1.21 dB.

11The RBW was set too large for the 1 kHz range which resulted in a broad artificial peak
for the lower frequencies which had to be clipped away from the data.
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at which the intensity oscillates after a disturbance of the laser. Further peaks
arise at 11 kHz (-116 dB/Hz) and at 51 kHz (-128 dB/Hz). Another peak is found
at exactly 100 kHz (-113 dB/Hz) and a smaller one at 274 kHz (-124 dB/Hz). The
last one might not be noise of the laser because at that point the background
level is increased as well. We are generally interested in the power spectrum in
the frequency regime larger than 10 kHz since for larger frequencies it becomes
more and more difficult to reduce the noise level by intensity stabilization. In
section 2.4.1, equation (2.145) we came to a requirement that the intensity noise
should not exceed the value of -133 dB/Hz for frequencies twice the trap frequen-
cies which are around 1 MHz (see section 3.4.5). This requirement is by more
than 3 dB (factor of 2) not fulfilled.

Finally, we want to compare the measured power spectrum with the speci-
fication of ELS. It should be smaller than 0.04 % rms = 4×10−4 for the intensity
noise in a range from 20 Hz to 100 MHz (see table 3.1). With equation (2.143),
derived in section 2.4, we calculate from our measurement the rms fractional
noise ∆ǫ|{20,100×106}Hz in this range. Since the spectrum is measured in discrete
intervals, we have to replace the integral with a sum:

∆ǫ
∣
∣
∣
{f1,f2}

≡
√
∫ f2

f1

S(f) df =

√
√
√
√

N∑

m=1

10Sm/10 BWm . (3.1)

The summation goes over all measurement points Sm within the relevant range,
where we have taken into account the definition of the logarithmic scale, equa-
tion (2.141). The bandwidth BWm for each measurement point is calculated by
BWm = (fm+1−fm−1)/2, where the frequencies of the preceding and the following
measurement points, fm−1 and fm+1 respectively, were inserted. Since we did not
measure up to 100 MHz, we used for the calculation of frequencies larger 10 MHz
the mean value, calculated from 1 MHz to 10 MHz:

S̄ = 10 log10

[ 1

N

N∑

m=1

10Sm/10
]

. (3.2)

We obtain S̄ = −128.5 dB/Hz, which is used for frequencies larger 10 MHz in
equation (3.1). The result of the relative rms fluctuations is ∆ǫ|{20,100×106}Hz =
3.8×10−3. This means, that the measured value is one order of magnitude larger
than the specification of ELS.

We have seen that nearly all of the tested values of the ELS laser fulfill the
specifications given from the company. Nevertheless, we are concerned about the
intensity noise, since it neither fulfills the specification of ELS, nor our require-
ment. Since the complete experimental setup is not finished yet, we could not
perform experiments on atoms and therefore we still lack the information on how
well the laser and resonator work.
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3.3 Reducing the linewidth of the laser

In this chapter the setup for reducing the linewidth of the laser by means of
the Pound-Drever-Hall (PDH) locking scheme will be described. We have two
possibilities of controlling the frequency of the laser. The outcoupling mirror of
the laser is mounted on a piezo (see section 3.2), which allows adjustment of
the laser cavity length. The very thin outcoupling mirror, together with the low
capacitance of the piezo of 42 nF, allow modulation into the few 10 kHz regime.
The second possibility for controlling the frequency is realized externally by two
AOMs. From the first AOM the -1st order is fed into the second AOM. That one
is rotated by 180° and its -1st order is passed on to the experiment. The second
AOM is turned by 180° because this way the frequency of the AOMs does not
affect the angle at which the beam goes to the experiment. Only the beam is
shifted parallel, but this is not a problem (see section 3.3.6). Besides this, we
want to ramp down the intensity passing to the resonator with the AOMs over
several orders of magnitude, which is only achievable with two AOMs in series.

3.3.1 EOM and error signal

In figure 3.1 we see all the necessary parts for the locking scheme. We use the
PDH lock [DHK83]. Sidebands on the laser light are created with an EOM.
This light is coupled into a reference cavity, see figure 3.7b). The reflected light
from the cavity is detected by a photodiode and the resulting photodiode signal
is mixed with the RF signal of the EOM. After passing a low pass filter the
mixed signal gives the error signal which is sent to a proportional-integral (PI)
controller. It mainly consists of a fast and a slow component. The control signal
of the slow PI is amplified by a high voltage (HV) amplifier and drives a piezo
which moves the output coupling mirror of the ELS laser and adjusts in this way
the frequency at which the laser emits. The fast PI stage adjusts the driving
frequency of the two AOMs simultaneously and shifts therefore the frequency of
the light in -1st order, which is passed then to the experiment.

First the EOM capacitance was measured with the circuit shown in fig-
ure 3.6a). A signal (1 dBm) of the function generator (FG) passed through a
power splitter (ZSC-2-1W from Minicircuits) and goes via a 10µH inductance
into the EOM. The power splitter was connected in such a way that the reflected
signal from the EOM could be measured on an oscilloscope, which was terminated
with 50 Ω in order to avoid backreflection of the signal. When the inductance
and the capacitance of the EOM are on resonance, then nearly all the power is
coupled into the EOM. We expect a sharp dip on resonance as can be seen in
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(a)
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Figure 3.6: a) The circuit for measuring the EOM resonance. b) The reflected
signal from the EOM measured on the oscilloscope.

figure 3.6b). The resonance frequency of a serial L-C circuit is:

fres =
1

2π
√

LC
, (3.3)

with L the inductance and C the capacitance of the EOM. The resonance is fitted
by a Lorentz curve and it is found at (5.446± 0.001) MHz. This corresponds to
a capacitance of (17.08± 0.06) pF. The full-width-half-maximum (FWHM)12 is
(180± 4) kHz. We wanted to have a larger locking range of our PID, and therefore
we inserted 5µH which gives a theoretical resonance frequency of 17.22 MHz.
Finally, by optimizing the error signal we came to 15.71 MHz for the optimum
driving frequency of the EOM.

The driving circuit of the EOM for obtaining the PDH error signal is shown
in figure 3.7a). A function generator (FG1) gives maximum 10 Vpp=24 dBm
output. The signal has to be attenuated by -24 dB in order not to give more than
0 dBm to the following amplifier (ZHL-42W from Minicircuits), which otherwise
would be destroyed. The signal is amplified by +30 dB, passes the inductance
of 5µH and is fed then to the EOM. The same photodiode and amplifier as
in the intensity noise measurement is used (Hamamatsu S5971 and SA5211 from
Philips). A second function generator (FG2) is needed in order to adjust the phase
of the mixer signal relative to the signal of the EOM. This is necessary to optimize
the error signal, since it depends on the phase between mixer signal and the
signal on the EOM [DHK83]. The function generators are linked by the 10 MHz
synchronization input, which ensures that both give signals with a constant phase
relation. The signal level of the second function generator is optimized by the
error signal and is found to be about -10 dBm. This signal is mixed with the
signal from the photodiode in the mixer (ZAD-1-1 from Minicircuits) and is
passed through two low-pass filters. The first one is a commercial 2.5 MHz filter
(BLP-2.5 from Minicircuits) and the second one is a home-made 300 kHz filter.
Both were necessary in order to give the good error signal seen in figure 3.7c).

12In this case FWHM is the full width at half the depth of the dip.
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Figure 3.7: (a) The circuit for driving the EOM and mixing the error signal. (b)
The transmission signal through the FPI and (c) the corresponding
error signal on the error monitor and (d) the scan voltage on the
”HV fast” output.

In figure 3.7b) we see the signal of the transmitted light on the photodiode,
when the piezo is scanned over the resonance. The signal is quite broad, which
comes from the convolution of the laser linewidth and the linewidth of the Fabry-
Perot. This was already discussed in section 3.2.2. Here the Fabry-Perot is used
in confocal configuration which makes a broader line, as discussed in section 2.2.5.
As was mentioned before, the asymmetry in the lineshape could not be removed
by a better alignment. The ratio of the carrier (320 mV) to the sidebands (25 mV)
is 13, which is not so good, but it was sufficient to get an error signal of 1.8 Vpp
with 20 mVpp noise. It has a slope of 18.7 kV/s, which corresponds to 555 kHz/V
as seen in figure 3.7c). Figure 3.7d) shows the scan voltage on the ”HV fast”
output (see section 3.3.2 below) which is directly connected to the piezo. From
the slope of 5.06 kV/s we see that with the piezo a 2.05 MHz/V frequency change
of the laser is obtained. The axis calibration for these calculations is obtained by
figure 3.7b). We know the frequency offset of the sidebands which is 15.71 MHz.
Comparing this with the time difference in the scan we get 10.37GHz/s.

In the future, the complete mixer and EOM setup will be replaced by an
electronic box containing all the necessary parts, like amplifier, mixer and phase
shifter in discrete elements.

3.3.2 HV amplifier

As already mentioned a fast and a slow PI circuit are used to stabilize the laser
frequency. The slow PI drives the piezo and the fast drives the AOMs. More
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precisely, we used two slow PI circuits for the piezo. One is connected via the
HV amplifier to one side of the piezo (IN1, HV slow) and the other one is di-
rectly connected to the piezo from the other side (IN2, HV fast) as is shown in
figure 3.8a). The whole circuit ”HV fast” is built-in within the PI controller and

(a)

HV amplifier

PI
+

−

OP484

4.7 kΩ

BUF634

10 kΩ

6.8 pF

HV fast

piezo

HV amplifier

IN2
(HV fast)

IN1
(HV slow)

PA140

2.7 kΩ

(b)

Figure 3.8: a) Circuit of piezo driver. b) HV amplifier transfer function for the
different inputs and two different configurations.

is connected to ”IN2, HV fast” on the front plane of the HV amplifier, which
is internally connected to the piezo. The output ”HV slow” of the PI controller
must be connected to the ”IN1 HV slow” connector on the front plane of the
HV amplifier, driving the piezo via the HV amplifier. The gain of the HV am-
plifier can be adjusted by a potentiometer. This setup was necessary since the
HV amplifier was the limiting factor in driving the piezo, which will be discussed
below. The used HV amplifier (PA140 from Apex) has a voltage range of +300 V
to -20 V. It can only drive 60 mA (120 mA peak) and has a bandwidth of 26 kHz
for 280 V swing, according to the datasheet. Both the low bandwidth and the
small current driving capabilities imposed constraints. In the chosen setup the
HV amplifier is controlled by an integral part only13, which has a frequency of
fI=9 kHz14. For this bandwidth the HV amplifier works properly. For the higher
frequencies the piezo is driven from the other connector by a buffer (BUF634)
which can deliver up to 250 mA at a bandwidth of 30 MHz. The buffer has gain
1 and is inserted in the last stage (OP484) of the PI controller, as is shown in
figure 3.8a). The feedback node is connected at the input of the last PI stage.
For the low voltage swing of ± 15 V the HV amplifier has a bandwidth of approx-
imately 300 kHz which should be sufficient. But the problem here is still that the
HV amplifier has to deliver or dump the current to drive the piezo. In order to
limit the maximum current the 2.7 kΩ is inserted. This way it will not exceed

13The P part has gain smaller 1.
14Position of servo bump, measured with spectrum analyzer and photodiode. When the gain

is increased, the controller starts oscillating at 19 kHz.
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I=U/R=300 V/2.7 kΩ=110 mA. Together with the 42 nF capacitance of the piezo
this gives, with equation (3.3), a -3 dB frequency of 1.4 kHz15.

A similar setup as described in [HTY99] was also considered. There it is
suggested to use a capacitor from the piezo on the HV side to ground, which
should buffer the current. Calculations showed that for frequencies below 40 kHz
(Cshunt=100 nF, RHV =2.5 kΩ) this strategy makes the system even slower, since
a large fraction of the current is necessary to charge the additional capacitor.
For higher frequencies the AOMs will play anyway the major role. Hence, this
approach was abandoned.

The transfer function of the HV amplifier shown in figure 3.8b) was mea-
sured with a lock-in amplifier as described in section 2.3.2. The two inputs of the
HV amplifier labelled ”slow” and ”fast” are shown, each with and without load,
i.e. the piezo. In this measurement the 2.7 kΩ resistor was not inserted. It is
clearly visible, that there are two resonances which are related to the piezo. One
is around 65 kHz and the other one is around 80 kHz. The measurement is given
for two different configurations of the HV amplifier, with the given C’s referring
to internal capacitors. The one with Cf=33 pF was an earlier configuration, and
the final configuration has all the C’s set to 4.7 pF. The older configuration was
included since with this the transfer function of the system (see below) was mea-
sured. Nevertheless, there is not a big difference, except for the phase at small
frequencies, which was -45° in the old configuration. We see that the HV ampli-
fier on the ”slow” input limits the performance since already around 40 kHz the
phase is approaching -180° . This is not the case for the ”fast” input which it is
directly connected to the piezo.

In the first measurements (not plotted) the HV amplifier had a tendency
to oscillate with 35 kHz, even without load. Therefore, the internal capacitors
were exchanged several times, but without success. The original configuration
was: Cc=33 pF, Cf=22 pF and Cfc=18 pF. Later it turned out that the negative
supply voltage was not soldered properly, which could have caused this problem.
But after fixing this problem the phase behavior was still not better. According
to the datasheet of the HV amplifier, the phase should stay nearly constant
from 10 Hz up to 100 kHz at around -90° . In no configuration this was the case.
The observed linear increase of the phase could be related to a time-lag in the
system, as was mentioned in section 2.3.3. This seems to coincide with the fitted
transfer function of the piezo shown below. There we get a time-lag of 7.0µs
corresponding to a bandwidth of about 150 kHz. This is half the bandwidth of
the HV amplifier for the ± 15 V swing, mentioned earlier. But it is not clear how
these quantities should be related. Obviously, the phase given in the datasheet

15Nevertheless, it seems that the piezo still can be modulated up to 20 kHz, which is surpris-
ing. Unfortunately, the transfer function was measured before the resistor was inserted.



94 Chapter 3. Experimental part

is definitely different from the measured one. Probably, the HV amplifier did
not caused the problem, but one of the other components of the HV circuit.
Nevertheless, we achieved together with the AOM a good linewidth. Maybe we
should despite of that consider improving the HV amplifier or using a different
one, since it is still a limitation for the performance of the linewidth reduction
scheme.

3.3.3 System transfer function

After setting up the PDH locking scheme we measured the system transfer func-
tion in order to optimize the PID controller. We already saw from the transfer
function of the HV amplifier, that there are piezo resonances and that the HV
amplifier produces a phase-lag. One can suppose that both of these components
give the final limitation of the performance of the linewidth reduction, since the
other components, like the photodiode, the reference cavity, etc. all have a much
higher bandwidth. At the beginning of the optimization process of the PI con-
troller it was hard to adjust it in such a way that it was locking nicely. Therefore,
we decided to measure the entire system transfer function to be able to design the
PI controller in an optimum way. Since the laser must be on resonance with the
reference cavity during this measurement, there was no other way than measur-
ing in-loop, as it was described in section 2.3.2. In equation (2.134c) we showed
how to calculate the system transfer function. We set the PI controller so that
it locked the laser sufficiently16. In the used PID controller the set value can
not be adjusted and is always zero. Therefore, we had to bring in the additional
signal for the measurement of the transfer function via the external sweep input.
This required that the transfer function H3(s) was measured instead of H1(s).
In any case the in-loop response y(s) has to be measured, as well as the transfer
function of the PID controller H2(s). In figure 3.9a) we see the result. These
measurements were performed with a lock-in amplifier. The data points labelled
”inloop” correspond to the in-loop data y(s). ”P only” represents H2(s), but
there the integral part was switched off, since otherwise it would saturate too
fast. The data points ”ext. sweep” correspond to H3(s), and G(s) is the calcu-
lated system transfer function. In the measurements of H2(s) and H3(s) a 20 mV
sinus was inserted on the ”error in” or ”external sweep” input respectively and
on the PID out (slow) the resulting signal was measured by the lock-in ampli-
fier. The system transfer function was measured by inserting also 20mV into
the ”external sweep” input and measuring the response of the whole loop on the

16The error signal during lock was around 600 mVpp on the ”error monitor” output of the
PID. The open loop error signal was between 0.8 Vpp to 1 Vpp, giving a linewidth of about
200 kHz (322 kHz/V; c.f. section 3.3.9). The Buffer BUF634 and the 2.7 kΩ resistor were not
yet inserted. Only one PI drove the HV amplifier and the piezo, which was grounded on the
other side. No AOMs were used.
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(a) (b)
65.3 kHz

78.7 kHz

60.7 kHz

Figure 3.9: a) Measurement of the transfer function of the PDH lock of the
laser. b) Fit of the transfer function gives position and width of
two piezo resonances.

”error in” input, while the PI controller was locking. For locking properly, the
integrator had to be switched on. Since only the P part could be measured in
H2(s) for small frequencies the result is not reliable at low frequencies, where the
gain of the integrator plays a major role. Probably, this is the reason why in the
resulting transfer function the first data points show positive phase.

Again, we clearly see the two resonances, here around 63 kHz and at 80 kHz.
In order to see if one of the resulting peaks is related to the laser relaxation
oscillation (see section 3.2.3) we have measured for two different values of the
laser power (2.6 W and 10 W). Despite the larger gain, the peaks and the phase
stay the same, indicating that the peaks stem from the piezo and not from the
laser. We know this already from the measurement of the HV amplifier.

From the measured data the system transfer function G(s) was calculated
with equation (2.134c) and it is plotted for the measured points in figure 3.9a) for
comparison with the measured data. We plotted it also in figure 3.9b), but there
in linear scale. We fitted the measured system transfer function with a model
transfer function containing two piezo resonances and a time-lag, according to
equations (2.135) and (2.136), section 2.3.3:

Gsystem =
G1 η1 f 2

1

f 2
1 − f 2 + i η1 f f1

G2 η2 f 2
2

f 2
2 − f 2 + i η2 f f2

ee−i ω τ , (3.4)

with ηi ≡ 1
Qi

= FWHM i

fi
and i = {1, 2} the labels of the resonances. It was

very surprising that the measured data corresponds so well to the model transfer
function as can be seen in figure 3.9b). The obtained fit parameters are given
in table 3.2. The method used for fitting the complex transfer function is briefly
explained in the appendix, section 6.4.
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Table 3.2: Result of the model system transfer function (3.4) fitted to the mea-
sured data shown in figure 3.9b). The R’s and C’s for the notch
filter with L=660µF are also included (see section 3.3.5).

resonance fi Gi Qi FWHMi τ R C
1 65.3 kHz 0.17 23.3 2.8 kHz 3.6 kΩ 9 nF
2 78.7 kHz 12.5 10.9 7.2 kHz 7.0µs 2.1 kΩ 6.2 nF

We have obtained the transfer function of the complete system and could
model it with two piezo resonances and a time lag. With this information it
was possible to understand the system much better and to design an appropriate
control system for reducing the linewidth of the laser.

3.3.4 PI for driving the piezo

With the exact information on the system transfer function, and the knowledge
of the resonance frequencies and their widths it was possible to understand the
behavior of the system much better. The limitations due to the HV amplifier with
its associated time-lag were already discussed above. The ”HV fast” and ”HV
slow” PI stages with the buffer IC were built. It turned out that they should not
overlap in frequencies too much, since otherwise the integral parts could bring
each other to saturation. Therefore, the faster I stage was limited in gain by
inserting a resistor (R29, see table 3.3a)) in parallel to the capacitance. After
optimization the locking of the laser worked well. The slow PI shows a servo
bump (see section 2.3.1) at 9 kHz, the fast one at 29 kHz for the P part and the
two stages together show a servo bump at 20.5 kHz. When the laser is locked, the
error signal shows 90 mVpp excursions and with the PI2 stage (see below) even
only 70 mVpp, but then the lock is more instable. The sidebands, generated by
the EOM in the PDH setup (see figure 3.7 in section 3.3.1), could be increased
by a factor of 2 by using the ZHL-42W amplifier. This resulted in 1.8 Vpp on the
error monitor when one scanned over the resonance. See the estimation of the
linewidth in section 3.3.9. The noise level of the signal is about 20 mVpp. The
used resistors and capacitances are given in table 3.3b). Nevertheless, the locking
was still very sensitive concerning disturbances. If one knocks on the experiment
table, it falls out of lock easily. For low frequencies it seems that the gain is still
not sufficient. This can be explained by the very low gain of the system for small
frequencies as can be seen in figure 3.9. Therefore, a second PI stage, called PI2,
for the slow lock (HV slow) was built. This is another PI which is in series with
the first PI. It is designed to increase the gain for low frequencies, as described in
section 2.3.3. It was difficult to adjust so that it does not interfere with the other
two PI controllers. After the AOMs were installed it turned out that the AOMs
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were locking the laser better. Therefore, at the moment it is not used anymore.

Table 3.3: a) Typical PID cirquit. b) Resistors and capacitors to reduce the
linewidth of the laser. No derivative part was used.

(a) (b)
RP1

+

−

RP2

P
RsumP

RI

+

−

CI

R29

I

RsumI

CDRD1

+

−

RD2

D
RsumD

+

−

Rsum

item slowa PI2 fast AOM
RP1 10k 10k 1k 10k
RP2 4.33k 10.85k 4.51k 10k poti
RI - - 17.9k 5k poti
CI 15nF 15nF 2.2nF 1nF

RsumP - 10k 10k 10k
RsumI - 10k 10k 10k
Rsum - 10k 10k 10k
R29 - - 100k -

aBuilt with only one operational amplifier.

To overcome the piezo resonances a derivative (D) part was tried. It should
help bringing the phase back to a value around 90° but this did not work so well.
The problem with this approach is, that the settings of the D part depend on
the output power of the laser. This is not very comfortable and therefore a notch
filter was built instead, as was suggested in section 2.3.3.

3.3.5 Notch filter

We built two notch filters with discrete elements as is shown in figure 3.10a)17.
The transfer function can be found in the appendix section 6.5, equation (6.30).
From the equations of the resonance frequency (6.31c) and the width of the
resonance (6.33), we calculated the necessary resistor and capacities by using the
largest inductance available in the workshop, which was 2x330µH. We already
have given the result in table 3.2. For both notch filters only one resistor is
necessary, since when one filter is on resonance, the other one is not and has
nearly gain 1. This of course is only true as long as the resonances do not
overlap. If the two resistors from table 3.2 had been used, the maximum current
through the resistors would have been higher since they would effectively be in
parallel to ground. Therefore, we only use one resistor which consists of a 1.5 kΩ

17In the PID controller circuit the filter UAF42 could be inserted, but for high frequencies
and large Q values it does not work. It can also only suppress one resonance.
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Figure 3.10: a) Notch filter circuit and b) transfer function of notch filter
and system together with notch filter. Calculation from fitted
model (3.4) with parameters according to table 3.2 and R=2 kΩ.

resistor in series with a 5 kΩ potentiometer. This allows for the adjustment of
the widths of both resonances, but only simultaneously. The transfer function
of the notch filters and that of the combined system is plotted in figure 3.10b).
The system transfer function which was fitted in section 3.3.3 was used for the
calculation. We see that the high gain is significantly reduced by the filters,
whereas the phase becomes even worse. This has always been the problem when
we tried inserting elements that should suppress the resonances: they always
made the phase worse. Nevertheless, the notch filter was inserted, but we could
not quantify if the performance was improved. Oscillations on the resonances
seem to be suppressed, but the phase still is a problem that does not allow for a
higher bandwidth than about 50 kHz.

3.3.6 AOM

As was mentioned in the introduction to this chapter, two AOMs (type 3080-197
from Crytal Technology) are used. They provide the fast frequency modulation
for the linewidth reduction. Additionally, with the amplitude of the RF power the
intensity is stabilized and can be ramped down over several orders of magnitude.
Both AOMs are controlled by the same signal. A RF frequency of 80MHz is
generated by a voltage controlled oscillator (VCO, POS-100 from Minicircuits)
and is fed into two of our RF amplifier boxes18. In each of them the signal can
be attenuated by a variable RF attenuator (RVA-2500 from Minicircuits) before
it is amplified (MHW9267 from Motorola). In figure 3.11 a schematics is shown.
The tuning voltage VT which is provided by the PI controller ”AOM” defines the
frequency of the VCO. The center frequency of the AOM is 80 MHz and it is
adjusted by the offset of the PI controller to be 9.4 V. The tuning range of the
VCO goes from 65 MHz to 95 MHz (30 MHz bandwidth) which perfectly matches

18Can be found on http://www.nintaka.com/schreck.

http://www.nintaka.com/schreck
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Figure 3.11: a) AOM driving circuit and b) POS-100 noise spectrum.

the bandwidth of the AOM. In order to avoid negative voltages on the VCO input
a diode was inserted into the summation operational amplifier (OPA). The noise
spectrum of the VCO is given in figure 3.11, which shows three carrier frequencies
of the VCO. They are spaced by 1.1 kHz and the outer two have approximately
equal levels of (+8.6± 0.4) dBm (+8.3 dBm given on datasheet) while the central
peak is 1 dBm smaller at (+7.6± 0.7) dBm. The carrier to noise is about -40 dBc
at 3 kHz frequency offset. It was also tried to use a capacitance of 10µF on
the supply voltage of the VCO in order to avoid this behavior but it did not
change anything. It seems that this is noise on the VT input. According to the
datasheet the tuning sensitivity is 4.5 MHz/V. Therefore, the 1.1 kHz sidebands
would correspond to a tuning noise in the range of 0.24 mV. One could try to
insert a lowpass filter into the tuning circuit for filtering out high frequencies (a
few 100 kHz), but this was not tried so far since the AOMs locked the laser in
a very stable manner. The in-lock error signal (with piezo lock) was limited by
noise to 20 mVpp. See linewidth estimation in section 3.3.9 below.

The coupling efficiency through the AOMs has not been measured so far,
since the setup needs to be realigned and optimized later, when it is installed on
the experiment. The efficiency depends on the beam waist, which should be as
large as possible, but simultaneously the larger the beam, the more power might
get clipped away when the beam passes the AOMs aperture of 1mm. This leads
to an optimum beam diameter of about 700µm, estimated from the efficiency
curve in the datasheet of the AOM19. This is approximately the diameter of the
laser beam coming from the laser. Therefore, the AOMs were inserted without
focusing lenses. But if they were needed, there would be enough space to insert
one lens in front of and another behind the AOMs.

It was necessary to place the AOMs in a sufficiently large distance behind
each other so that the 0th and -1st order are sufficiently separated. In this way it
is guaranteed that the 0th order can be mirrored into a beam dump. To calculate

19This is actually the largest beam diameter which is given in the datasheet.
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this the Bragg formula is used:

sin[α/2] =
m λ

2 Λ
, (3.5)

where α is the deflection angle of the beam, m is the order of the beam (0th order
meaning no deflection), λ is the optical wavelength and Λ = vs

f0
is the acoustic

wavelength, with vs the speed of the sound inside the crystal and f0 the acoustic
frequency which is 80 MHz in our case. The speed of sound is, according to the
datasheet, vs=4200 m/s, which gives for the optical wavelength of λ=1030 nm a
deflection angle of the first order of 19.6 mrad. The Bragg angle is defined as
Θ ≡ α/2 and is therefore 9.8 mrad (in the datasheet it is given with 10.1 mrad for
1064 nm wavelength). We want to have a beam separation of 4 times the beam
radius, since within an area of twice the beam radius of a Gaussian beam there
is >99.9 % of the power (see equation (2.27)). Therefore, at the entrance of the
second AOM we want to have a beam separation of ∆x = 4×700 µm/2=1.4 mm.
This gives a minimum distance between the two AOMs of ∆z = ∆x/ tan[α] ≈
∆x/α=71 mm.

Another consideration is by how much the angle changes when the RF
frequency is changed. Using the Bragg formula again we get:

δα =
∂

∂f0

α ≈ ∂

∂f0

m λ f0

vs

=
m λ

vs

= 0.25 mrad/MHz

δx = δα ∆z = 18 µm/MHz ,

(3.6)

where the approximation for small angles sin[α/2] ≈ α/2 was used. This means
that for a modulation of 1 MHz the position of the 1st order is changed only by
18µm on the second AOM. This is much smaller than the beam radius, so that
this deviation in angle should not affect the coupling of the beam through the
second AOM. Within the 30 MHz bandwidth of the AOM the angle of the beam
would change by 540µm, which is a factor 1.5 larger than the beam radius. Since
the aperture of the AOM is 2.5 mm in the plane in which the beam is deflected,
despite such a big modulation the beam can still pass the second AOM when
aligned properly. Otherwise, the high power of the laser beam could damage the
second AOM, if it is hit by the beam.

3.3.7 Reference cavity

The reference cavity for the generation of the error signal for reducing the linewidth
of the laser is not built so far. Instead a scanning Fabry-Perot (FPI-100-980-2.0,
825 nm-1200 nm, from Toptica) is used. In this section the final cavity and the
scanning Fabry-Perot will be briefly described. For the discussion of the general
properties of such a cavity refer to section 2.2.
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The reference cavity should give a stable and narrow frequency reference in
order to lock the laser. Therefore, it should have a high finesse and good me-
chanical stability. The cavity will consist of two equal mirrors (HR1020-1100/AR
SM05-0.15C, BK7, from Laser Components) with a radius of curvature of 150 mm
and a thickness of 2.5 mm. They will be glued20 onto a low expansion spacer (Ze-
rodur, 30 mm×30 mm×100 mm) with 95 mm distance between the mirrors. This
gives a free spectral range of FSR=1.58 GHz. In figure 3.12a) the spectrum of
the reference cavity is plotted for the length of the cavity changed by a distance
of dL. In figure 3.12b) the calculated spectrum is shown, with L=95 mm. The
”intensities” are chosen arbitrarily. The radius of curvature was chosen so that

(a) (b)

Figure 3.12: Frequencies of the first 10 transversal TEMmn modes of the
reference cavity. The numbers correspond to m+n. One
FSR=1.58 GHz is drawn with L=95 mm, r=150 mm. a) The
mirror distance is varied by dL. b) Transmission spectrum at
dL=0 mm, with arbitrary intensities.

no transversal mode smaller than m+n=10 is within a range of 50 MHz (dashed
lines in plot). We see that the distance of the mirrors could be enlarged by about
5 mm but should not be smaller. This allows insertion of a piezo in case it is
needed21.

The reflectivity of the mirrors is ≥ 99.8 % which will give a finesse from
equation (2.88) of F≥ 1500 and a linewidth of FWHM≤ 1.0 MHz from equa-
tion (2.89). The cavity waist is, according to equation (2.119), wFPI = 151µm,
which gives a Rayleigh range of z0=70 mm from equation (2.26a). The waist
at the mirrors is therefore, using equation (2.26b), w1 = 183µm. The mode
matching lens (see section 2.2.4; fused silica lenses from Laser Components) is
chosen to be one of the lenses given in table 3.4. In the final setup the used
lens will be chosen depending on the available space. The virtual focus of the
lens has, from equations (2.121), a waist of wfocus = 127.7 µm and is shifted by

20In ultra-high-finesse cavities the mirrors are optically contacted onto the spacer material,
but for the stability required here gluing should be sufficient.

21We ordered the same mirrors for other experiments too and if they use the same spacer
they have a free choice using a piezo or not.
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∆focus = −2.7 mm. The negative sign means that the virtual focus is further
away from the incoupling mirror than the real focus of the FPI. The refractive
index n=1.507 was used here for the BK7 glass of the cavity mirrors. This value
is interpolated from the datasheet of lenses from Laser Components.

With the knowledge of the virtual focus the position and waist at the lens
are calculated using the lens equations (2.54). The result is given in table 3.4.
The nominal focal lengths of the plano-convex lens fnom are given there also. The
exact focal lengths at 1030 nm f1030 are calculated with equation (2.60c). They are
only marginally different from those given for 1064 nm. The radius of curvature
of the lenses r are taken from the datasheet of the lenses from Laser Components.
The refractive index for the lenses made of fused silica glass is n=1.450, which is
interpolated for 1030 nm from the same datasheet. Furthermore, in the table the
propagation distances from the focus of the laser to the lens zlens and that from
the lens to the cavity waist zFPI are given, as well as the waists at the lens wlens.
For the calculation of zlens, the measurement of the waist w0=343µm, discussed
in section 3.2.1, is used.

Table 3.4: Lenses for Reference cavity. Details see text.

fnom r f1030 zlens wlens zFPI

mm mm mm mm µm mm
150 77.3 171.8 462 559 209
200 103.0 228.9 728 776 295
300 154.5 343.3 1193 1190 458

For the presently used scanning Fabry-Perot the radius of curvature is
r=75 mm and the distance between the mirrors is L=75 mm, meaning that it
is in confocal configuration. The free spectral range is FSR=2GHz22. The re-
flectivity of the mirrors is R>99.7 %, which gives a finesse of F>1000 (datasheet
F>600) and a FWHM≤ 2 MHz22. A mode matching lens with f=50 mm is already
mounted within the Fabry-Perot. In the manual it is said that the incoupling
beam should be collimated, but the beam waist is not specified.

In order to get a good long-term stability it will be necessary to temperature
stabilize the final cavity and shield it from acoustic noise. This will be done by
placing it into an air-tight container with an appropriate design to reduce coupling
to external noise. Evacuating the cavity is probably not required. None of this
has been done so far, but is on the agenda for the near future.

22In the manual the free spectral range is given as 1 GHz, but there the definition FSR= c
4 L

is
used. This corresponds to the frequency spacing between the longitudinal and the transversal
modes for the confocal configuration, being half the spacing between the longitudinal modes
(see section 2.2.5). The same problem arises with the FWHM when calculated from the FSR.
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3.3.8 The Faraday isolator

Since there was a problem with one of the two Faraday isolators it is necessary
to mention this here in the case further problems arise in the future. The iso-
lators protect the laser from back reflections likely to destabilize the laser in an
unpredictable way. Problems due to back reflections were observed during the
first measurements of the losses of the glasscell, made with a different laser source
and isolator and are discussed in section 3.4.3. Even with 30 dB isolation back
reflections significantly influenced the result of the measurement. In the lithium
experiment an isolation of approximately 90 dB is used. Therefore, we decided to
buy two 40 dB isolators (HP-04-I-1030, 40 dB version23, from EOT, represented
in Germany by Soliton) giving 80 dB isolation against back reflection. If this
is still not sufficient we will buy another isolator, but so far for the ELS laser
we had no sign that back reflections could cause problems. In section 3.2.1 we
calculated the maximum intensity of the laser beam to be 13 kW/cm2. This is
quite a large value, excluding many isolators from other companies. Therefore,
besides the large isolation, the decision was made in favour of the EOT isolator
because it has a maximum cw intensity damage threshold of 1 MW/cm2 (given
by EOT per email). It has also a high transmission of > 92%. The shipping time
of 2 weeks and the very good price were further advantages.

One of the two isolators (serial no. 04-00294) which we bought had an
isolation and transmission clearly below the specifications. It turned out that
one of the polarizer cubes caused the problem. Visually one could not perceive
anything and also when the isolator was tested by EOT, the isolation and trans-
mission seemed to be good. But EOT could only measure with a wavelength of
1055 nm instead of the 1030 nm which we use and finally EOT agreed to replace
the bad cube. In table 3.5 the measured transmission and isolation are given for
both isolators, where for the bad isolator the data is given before and after the
replacement of the cube.

After the replacement of the bad cube the isolation and transmission was
good. Obviously, the coating did not work properly with our wavelength. A mea-
surement showed that always a significant amount of light (≈ 27 %) was steered
to the side port regardless of the polarization. When the light propagated in a
tilted angle through the cube, the transmission could be increased up to ≈ 85%.
Therefore, it looks as if that the coating had a local wavelength dependent defect.

23This isolator has a standard isolation of 30 dB, but on request EOT can manufacture it
with up to 40 dB isolation.
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Table 3.5: Isolator transmission and isolation. The specification gives trans-
mission ≥ 90 % and isolation ≥ 40 dB.

isolator transmission isolation remark

serial no. % dB

04-00293 93± 2 41± 2 good

04-00294 90.3± 0.4 41.1± 0.3 gooda

04-00294 56± 8 32± 9 bad

aAfter the outcoupling cube was replaced. Only
two measurements were made.

3.3.9 Estimation of the linewidth

In the final section about the laser linewidth reduction we want to verify the
obtained performance of the used locking scheme and estimate the resulting
linewidth of the laser. Several methods to measure the linewidth of a laser are
known. The easiest of them is to couple the laser beam into a Fabry-Perot inter-
ferometer (FPI) and measure the linewidth of the transmitted light. But the light
is broadened by the linewidth of the cavity as was discussed in 2.2.2. Therefore,
this method is only applicable for a broad laser linewidth, as was done for the
not-stabilized laser in section 3.2.2. For a narrow laser linewidth one would need
a narrow linewidth of the cavity too, which is difficult. Another method to obtain
the laser linewidth is by making a self-heterodyne measurement [Yar89], but also
this method is limited to larger linewidths, since it uses an interferometer with
one path delayed by more than the coherence time, giving long pathways (often
done with fibers). For very narrow linewidths the beat-note of two independent
lasers is measured. Or the Allan variance (see for example [Tha99]) has to be
measured, which is not so easy. An interesting and easy-to-use way of obtaining
the linewidth is by scanning fast over the resonance of a FPI. From the trans-
mitted intensity, measured for different scanning speeds, one can obtain the laser
linewidth [KHY+99].

Here we make an estimation of the linewidth by measuring the fluctuations
of the error signal while the laser is locked. The error signal can be calibrated to
the linewidth by scanning over the resonance of the reference cavity. This gives
an estimation of the order of magnitude of the laser linewidth. This is only an
approximation because it is an indirect method of measurement. The error signal
is derived from the PDH lock [DHK83]. This error signal is used to lock the laser
and is small when the laser linewidth is small. But it can show measurement
errors and offsets.
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The calibration of the error signal is made with the data already presented
in section 3.3.1 treating the EOM and the error signal. From figure 3.7c) we have
obtained the slope of the error signal to be 555 kHz/V. With this information
one has just to measure the largest fluctuations of the error signal during lock
and directly relate this to the linewidth of the laser. In table 3.6 the measured
in-lock error signals are given for the different locking stages.

Table 3.6: Estimation of laser linewidth by measuring the in-lock error signal
of the different locking stages. The error signal Upp

err is always the
maximum peak-to-peak fluctuation which is recorded over several
seconds. The voltage to frequency calibration is 555 kHz/V and
gives the FWHM of the laser by multiplication with Upp

err.

stage Upp
err FWHM remark

mV kHz

piezoa 90 50

piezo & PI2 b 70 40

AOMc & piezo 20 10 noise limited

a ”HV fast” and ”HV slow” together. See section 3.3.4
b Additional PI in series to ”HV slow”. See section 3.3.4.
c The AOM controller. See section 3.3.6

Another method to obtain the linewidth from the error signal is by using
equation (2.161) in section 2.4.1. Here we replace the VCO tuning sensitivity D
by the slope of the PDH error signal of 555 kHz/V. The rms noise voltage 〈V 〉
corresponds to the rms noise of the error signal. We did not measured this, but
for an estimation half the peak noise of 20 mV/2 will be sufficient. The only
remaining unknown is the bandwidth of the measurement. For this we should
in principle use the bandwidth of the cavity, which we could estimate to be the
inverse of the cavity decay time (see section 2.2.2). But the true bandwidth is
reduced, since the error signal passed the lowpass filter after the mixer, which
has a bandwidth of about 300 kHz, which we assume to be the bandwidth of the
measurement. With this numbers we obtain from equation (2.161) a linewidth
of ∆FWHM ≈ 300 Hz. This is a very low value, but here we have used very
uncertain numbers. Especially the bandwidth of the measurement is not very
reliable. A better way of doing this would be to measure the power spectrum of
the error signal, which should reveal the true bandwidth of the measurement by
a sudden decrease in noise power at a certain frequency. Also from the spectrum
one could obtain the rms noise voltage directly by simply integrating over the
spectrum (equivalent to section 3.2.3).
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We assume the previously estimated linewidth of 10 kHz to be more reliable,
which is nevertheless a very good result. In section 2.4.1 the requirement for the
laser linewidth of below 100 kHz was derived which seems to be fulfilled easily.
At the moment the limit is given by the noise.

For further improvement the signal to noise (S/N) must be increased. At the
moment it is S/N=1.8 Vpp/20 mVpp=90 on the error monitor output. An earlier
measurement showed that significant noise is added in the mixing and amplifica-
tion stages for obtaining the error signal. The first will be replaced by the mixing
box (mentioned at the end of section 3.3.1) and the noise in the amplification
seems to stem from the quite high noise level of the whole PI stage. In particular
the scan generator makes some additional spikes whenever the ramp direction
is reversed. The signal level could be increased by increasing the modulation
index of the sidebands for example. The final reference cavity shall bring a much
higher slope of the error signal. The linewidth of the final cavity will be reduced
by a factor of at least 2 (see section 3.3.7), which gives a slope twice as steep.
Also the PI controllers can be optimized further. On the other side the stability
of the system must be improved, maybe at the cost of a larger linewidth. The
long-term stability of the system, like mode jumps and drifts of the laser must
be recorded in detail. When the new temperature stabilized reference cavity is
put into usage, the drifts should be reasonably low, so that locking over several
hours should be possible. Already at present, if the laser is not disturbed and
the ambient temperature is stable, the laser holds the lock for approximately one
hour after warming up, which itself takes one hour. The reason why it falls out
of lock, seems to be mode jumps when the laser drifts too far.

In section 3.4.3 we will describe oscillations of the transmitted intensity
of the resonator with a high finesse. It is not clear what causes them, but one
explanation could be sidebands on the laser light with a frequency spacing of
about 80 kHz. These could be caused by the piezo resonance at 80 kHz or by
servo bumps of the AOM PI controller. If this is the case something should be
visible in the noise spectrum of the error signal, which was not measured for the
final setup so far.

We have seen that the laser linewidth is already below the aimed value of
100 kHz (see section 2.4.1). With the piezo controller alone, the linewidth could
be reduced from approximately 2 MHz to 50 kHz (a factor of 40). The AOMs
reduce the linewidth to 10 kHz (a factor of 5). Now we are limited by noise,
allowing us to reduce the linewidth only by a factor of 200. This limitation shall
be overcome when the new reference cavity is built24.

24From experience of other groups we know that a factor of 1000 should be feasible.



3.4. Building the resonator 107

3.4 Building the resonator

We discussed in the introduction that we have to cool our atoms to very low
temperatures which are well below the temperatures in the MOT. Therefore,
we use evaporative cooling for a further decrease of temperature. This process is
enhanced by a large collision rate among the atoms which drives rethermalization.
This can be reached by Feshbach resonances, which require that the magnetic field
can be adjusted to a specific value. In order to do so easily, the atoms are loaded
into a dipole trap, where they are trapped in an all-optical way.

This dipole trap consists of an optical resonator, which is the heart of the
whole setup shown in figure 3.1, and in more detail in figure 3.13. It is a Fabry-

100 W fiberlaser

MOT &
5 W fiberlaser

MOT &
5 W fiberlaser

25 W disklaser

atom beam

Zeeman laser

resonator outcoupling
mirror & piezo

resonator incoupling
mirror

glasscell

Figure 3.13: Resonator with glasscell and beam paths.

Perot type cavity built around a glasscell. The glasscell is part of the ultra
high vacuum (UHV) chamber where our atoms are trapped in a magneto-optical
trap (MOT).

The resonator produces a standing wave dipole trap with a large power
enhancement, discussed in section 2.2.3. This allows to select a much larger
resonator waist than for single focussed beams while the trapping potential is still
deep enough to trap the atoms from the MOT. Therefore, the spatial overlap of
the resonator with the MOT is large, which results in many atoms to be trapped
in the resonator. In a first evaporative cooling stage the intensity of the resonator
is ramped down adiabatically.

Using the resonator has some disadvantages. The atoms are divided by the
standing wave potential into many thin ”slices”, also called ”pancakes”, which
are separated by λ/2. Bulk properties of an atom or molecule cloud can not be
studied with this configuration. The transmission through the glasscell is done in
Brewster’s angle (see section 3.4.1), which causes aberrations of the beam inside
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the glasscell making it difficult to characterize the trapping potential. In order to
become degenerate the intensity must be ramped down by more than a factor of
1000 in a controlled manner, which needs a large dynamic range for the intensity
stabilization to work properly. Also we saw in section 2.4.1, that heating of the
atoms by intensity and phase noise is most efficient in a frequency range of the
trapping frequencies. But these are very high in the resonator (in the order of
MHz, see section 3.4.5), which makes it difficult to reduce the noise actively.
Therefore, the noise stability of the laser becomes crucial for the resonator.

In order to avoid these problems we use another dipole trap, which is formed
by the focus of a 100 W fiberlaser (from the company IPG). It is used in a crossed
configuration, as shown in figure 3.13. The crossed configuration ensures good
axial and radial confinement to a size of the beam waist of about 30µm. But
the beams are only crossed twice, since if we overlapped all 4 beams we observed
large losses from the dipole trap, which is not understood so far. In the actual
setup the atoms are trapped in the crossing of the 1st and 3rd beam, which have
orthogonal polarization and nearly parallel propagation directions. Even shifting
the beam frequencies of crossing beams by 80 MHz did not help. Also if the beam
propagation was opposite the losses were increased.

The 100 W fiberlaser has to be aligned nearly in parallel to the resonator
in order to overlap well with the many pancakes of the standing wave. But the
aberrations of the beam are still present. Therefore, after performing further
evaporative cooling with the 100 W fiberlaser the atoms will be trapped in two
5 W fiberlasers, which are orthogonal to each other and pass the glasscell walls
nearly perpendicularly, as can be seen in figure 3.13. Also the intensity at low
trap depth is much better controllable in this trap than with the other two traps.
Using the 5 W fiberlasers allows to characterize the trap parameters very well,
since nearly no aberrations change the position and waist of the focus.

In this section we will discuss the design of the relevant parts used to build
the resonator. In order to get the maximum power enhancement the losses which
are caused by the glasscell needed to be measured, which is described here in
detail. From the losses of the glasscell the optimum mirror reflectivity could be
chosen and the mirrors could be ordered. From the measurements we obtained
theoretical trap parameters, which we could not verify so far, since the setup is
not completed yet.

3.4.1 Custom designed glasscell

The losses of a Fabry-Perot interferometer have a significant influence on the
linewidth and the power enhancement, a fact that was discussed in sections 2.2.1,
2.2.2 and 2.2.3. We will present the measurement of the losses of the glasscell in
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section 3.4.3. This allowed to choose the optimum incoupling mirror reflectivity,
as was described in section 3.4.4.

The easiest way to avoid losses due to the glasscell is by designing the
resonator beam to pass the glasscell walls at Brewster’s angle αB:

tan αB =
n2

n1

, (3.7)

with n1 and n2 the refractive index of air (or vacuum) and the glasscell walls re-
spectively. This equation was derived in appendix 6.2, equation (6.12). It should
be mentioned that this approach of avoiding losses has the disadvantage that the
resonator beam experiences aberrations by passing the glasscell walls at an angle.
In the lithium experiment the resonator was tilted by the Brewster’s angle rela-
tive to a rectangular glasscell [Joc04, Bar05, Mor01, Els00]. But this design gives
limitations for the optical access of the other laser beams and cameras. There-
fore, a new design of the glasscell was developed, which led to the kite shape. A
photo of the glasscell is shown in figure 3.14, where also the test resonator can
be seen. The shape of the glasscell is schematically shown in figure 3.13. The

Figure 3.14: Photo of glasscell with testing resonator.

advantages of this shape are:
- resonator perpendicular to glasscell axis
- six orthogonal beam axes with following properties:

* four beams pass perpendicularly (0° ) through the glass
* two beams pass at only 11° through the glass
* numerical aperture f/#= 2.6 or better for lenses

The so-called f-number is defined as f/# ≡ f
D

, with f the focal length and D
the (useable) diameter of the lens [ST91]. The glasscell was manufactured by the
German company Hellma. The refractive index is n=1.4496± 0.00005 (error esti-
mated), giving a Brewster’s angle of αB=(55.4003± 0.0009)° from equation (3.7).
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The measurements in section 3.4.3 show that the losses are indeed minimum
for the resonator beam passing perpendicular to the glasscell axis. The only
requirement is that the incoming light is p-polarized, which is adjusted by a λ/2
waveplate.

The resonator will be stabilized using the Hänsch-Couillaud locking scheme,
which requires a polarizer within the resonator [HC80]. The glasscell itself acts
as a polarizer, since for p-polarized light the losses of the cavity are minimum.
Therefore, no additional polarizer is needed, which was one of the reasons why
this stabilizing method could be used.

3.4.2 Measuring mirror reflectivity & photodiode voltage

In section 3.4.3, the measurement of the losses of the glasscell will show that the
used mirrors have a much higher reflectivity than the minimum specification of
the company. Since the measurement of the finesse did not give clear results, we
tried to determine the mirror reflectivity in a different way.

The mirrors are borrowed from the lithium experiment. According to the
company, they are specified as listed in table 3.7.

Table 3.7: Specified and measured data of the mirrors used for the measurement
of the losses of the glasscell.

name Rspec
a Rmeas

b r.o.c. Imax thickness Lc Ti(y)

% % m kW/cm2 mm mm %

1st incoupler 98 ± 0.5 99.04 ± 0.01 0.15 ≥ 1000 3.9 ± 0.1 196 ± 1 99.953 ± 0.008

2nd incoupler 99.4 ± 0.1 99.67 ± 0.01 0.15 ≥ 1000 11 ± 0.5 190 ± 1 99.87 ± 0.02

outcoupler ≥ 99.9d 99.9934 ± 0.0004 0.15 100 4.5 ± 0.5 − 99.95 ± 0.01

aSpecified for 1064 nm.
bMeasured at 1064 nm from transmission.
cCavity length in combination with outcoupler.
dR = (99.95 ± 0.05) % used in calculations. Small scratch.

For the ≥ 99.9 % mirror, a small scratch was found on the high reflectivity
side, close to the center. Therefore, the alignment during this, and the consecutive
measurements, has always been in such a way that the beam does not hit the
scratch. Nevertheless, this scratch could have caused some problems as will be
discussed in the next section.

First a cavity ring-down (CRD, see section 2.2.2) measurement was per-
formed. The cavity decay time is, according to equation (2.99), with L =
(0.196 ± 0.001) m and for a combination of the outcoupler with either the first
incoupler τ = (63 ± 16) ns or the second incoupler τ = (201 ± 35) ns, which is
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quite low in both cases. The theoretical finesse for previous combinations is, from
equation (2.88), F=303± 75 and F=964± 166 respectively. Only with the first
combination of mirrors a result was obtained, since for the higher reflectivity of
the incoupling mirror, the transmitted intensity was so low that we had a signal
to noise of about 2. Under these conditions no reliable results could be acquired.

The input light was switched off with the setup shown in section 3.4.3,
figure 3.17, but the cavity was not in off-axis configuration. The AOM was fre-
quency modulated (FM) by a 10 Hz square function at 70 MHz+10 MHz. Despite
the AOM being used in double-pass configuration, the FM modulation led to a
sufficient beam deviation so that the beam did not pass the isolator anymore.
Amplitude modulation did not allow to switch off the intensity fast enough. In
figure 3.15a) we plot the measured signal of the laser after the laser was switched
off, as well as the corresponding ring-down signal of the cavity.

(a)

cavity
τ = (112 ± 1) ns

laser
τ0 = (364 ± 1) ns

(b)

1-T=(99.04± 0.01) %

1-T=(99.67± 0.01) %

1-T=(99.9934± 0.0004) %

Figure 3.15: Measurement of the test mirror reflectivity. a) Cavity ring-down
measurement. b) Mirror transmittance.

We see that input light is switched off nearly exponentially. Fitting the mea-
surement with an exponential decay results in τ0 = (364 ± 1) ns for the switch
off time. The CRD measurement treated in section 2.2.2 assumes that the laser
light is switched off fast, i.e. τ0 ≪ τ , which is not the case here. Therefore, a
theory for the cavity decay had to be developed for the input beam is switched off
slowly. This is done in the appendix, section 6.6. The result is equation (6.47):

It(t) =
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for t≥ t0
. (3.8)

which we have modified slightly to take into account non zero starting times by
introducing a time-offset defined by t 7→ t− t0. For negative values of t− t0, the
fitting function value was set to I

(0)
t , i.e. constant. We used this function to fit the
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measured ring-down signal shown in figure 3.15a). The previously obtained value
for the switch off time τ0 was first fixed in the fitting procedure. We obtained a
cavity decay time of τ = (112 ± 1) ns. The error had to be calculated separately,
which was done by fitting with the program Origin. The result of τ was slightly
different, since the negative values of t − t0 needed to be excluded manually,
which is not so precise. From the cavity decay time we calculated the finesse of
the cavity using equation (2.100) and obtained a finesse of F=539± 5. It was
also tried to include τ0 into the fitting procedure. We obtained τ0 = (408 ± 2) ns
and τ = (73 ± 1) ns. This tells us that the fitting seems to be sensitive enough
to distinguish the result for a pure exponential decay from a decay given by
equation (3.8). On the other hand, the finesse calculated from this decay time
is F=351± 5, which shows that the result is strongly dependent on the way the
fitting is done. Therefore, we take the mean value of both fits F=445± 99 as
our result, with the error having a width such that both fits are included. This
is about one σ above the finesse calculated from the specification of the mirrors
(see above). The ”effective reflectivity” for this finesse is with equation (2.91)
Z=(99.3±0.2) %, which is one σ larger than the (99.0±0.3) % obtained from the
specification of the mirrors.

Since the error is so large, we can not conclude about the mirror reflectivity
definitely. We only observe that the reflectivity of the mirrors has a tendency
towards larger values than specified, which will be confirmed by the measurement
of the mirror transmission below. Nevertheless, the obtained finesse for the cavity
ring-down measurement is included in table 3.8 (labelled ”CRD”) in the next
section. A decomposition of the finesse into the different mirror reflectivities was
not possible. To do this, at least three different combinations of mirrors need to
be measured, which was not possible due to the small signal level for the high
reflectivity mirrors.

In general, this method of measuring the finesse should have some advan-
tages, compared to the method used in section 3.4.3. Since the laser light is
anyway switched off, back reflections, laser drifts, intensity noise and coupling
efficiency are no problems. The cavity is not changed during the measurement
and therefore only the stability of the cavity affects the measurement. Ideally,
the transmitted intensity is monitored and as soon as the intensity is maximum,
the input light is switched off. In order to improve this measurement, one would
need to switch off the light faster. Even with the theory taking into account
that the input light is switched off exponentially, there remain some sources of
uncertainties. The major difference from a pure exponential decay is the smooth
starting of the decay seen in figure 6.2a) in the appendix. But from the mea-
surement it is obvious that the laser beam when switched off shows as well a
smooth decay instead of a sharp edge as a it would be if switched off exponen-
tially. Therefore, we must assume that the result obtained may be biased by this
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feature. An additional error may be introduced by the FM modulation used to
switch off the input beam. In equation (6.47), the frequency is assumed to be
constant and on resonance with the cavity. With FM modulation this assumption
is not true anymore. Therefore, either the case of FM modulation would have
to be introduced into the theory or the input light must be switched off without
changing the frequency. A suggestion to do so would be: using an EOM in one
path of a Mach-Zehnder interferometer and sending one output into the cavity.
By switching the phase of the light with the EOM, the light to the cavity could
be switched off very fast by interferences without changing the frequency.

In a second measurement, the mirror transmission of the three mirrors in
table 3.7 was measured directly. We brought some light onto the mirror and
measured the incoming and the transmitted intensity for a range of different
light intensities to reduce the influence of incorrect powermeter calibration (see
figure 3.15b). For the incoupling mirrors, two linear fits were made. For one fit,
the line was fitted through zero (i.e. the slope is fitted, while the offset is set
to zero), and for the other one, it was done without this constraint (i.e. slope
and offset are fitted). For the outcoupling mirror, the same procedure was done
twice, since we had two independent measurements (the different fitting lines are
too close to each other to be distinguished in figure 3.15b). The slope in these
fits corresponds to the transmission. From the results the mean is taken and the
error is set to include all fits. From the transmittance, we can give an upper
boundary for the reflectivity of the mirror R≤ 1-T. If losses are present, they
reduce the reflectivity. The result is included in table 3.7.

We want to estimate the order of magnitude of the absorbtion losses of the
mirror substrates. From [Sch06b] we obtain the internal transmission (transmis-
sion inside the glass, Ti) of BK7 glass for a thickness of (25± 0.5) mm and a wave-
length λ=1060 nm: Ti(25 mm)=(99.7± 0.05) % (error estimated). We rewrite the
Beer-Lambert law for absorbtion of a medium [EFK+93]:

I = I0 ee−α x ≡ I0 Ti(x) ⇒ α = − ln[ Ti(x) ]

x

and Ti(y) = ee−α y = ee− ln[ Ti(x) ] y/x =
(
Ti(x)

)y/x
,

(3.9)

with α the absorbtion coefficient, x=25 mm and y corresponding to the thickness
of the mirror, according to table 3.7, where we have included the resulting in-
ternal transmission Ti(y). The transmission T measured before is related to the
Ti by T = (1 − R)Ti. With this, the reflection of the mirrors R = 1 − T/Ti,
compensated for substrate losses, can be calculated. The resulting reflectivities
are exactly the same as without these losses. Therefore, transmission losses of
the substrate are negligible within the errors. The obtained reflectivity of the
two incoupling mirrors, given in table 3.7, are well above the specification. For
the second incoupler we obtained from the company a measurement of R=99.5 %,
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which does not match with our result. The reflectivity of the outcoupling mirror is
within the specification, but it seems as well to be quite high. The company which
manufactured the mirrors (Laser Components) claimed that previous customers
measured it to be R=99.97 %. Nevertheless, we used the reflectivity we measured
in the considerations of the losses of the glasscell in the next section, keeping in
mind that especially the errors might be larger than calculated here. The ”effec-
tive reflectivity” for the first incoupler and the outcoupler is with equation (2.68)
Z=(99.516±0.005) % which is about one σ larger than the result obtained from
the cavity ring-down measurement.

One uncertainty remains. Transmission losses when passing the coating of
the mirror could be significant, even though the thickness of such coatings is very
small. We do not know how the coating of the mirrors is designed25, and therefore
we can not include these losses into our calculation.

Finally, we want to report another measurement, which is not related to the
mirrors, but, since it was measured simultaneously with the previous measure-
ment, it fits here. For two of the mirrors the transmitted intensity was sent onto
a photodiode, and the output voltage was recorded. With this measurement we
were able to calibrate the photodiode signal which will be needed in section 3.4.3
for the ”Aπ” measurement. The result is shown in figure 3.16. The the data-

(a)

(b)

first nonlinear point
R=99.4 %

UPD/PPD = (16.5± 0.05) V/mW

R≥ 99.9 %

UPD/PPD = (20.6± 0.06) V/mW

Figure 3.16: Calibration of photodiode, performed with a) the 2nd incoupling
mirror and b) the outcoupling mirror.

points in the figure 3.16a), where the photodiode started to become nonlinear
were excluded in the fitting.

We obtained slightly different results for the two mirrors. Therefore, we
took the mean and enlarged the error so that both results are within. Doing so
yields UPD/PPD = (19± 2) V/mW.

25The company did not provide the information. Interestingly, to specify their mirrors they
make a transmission measurement and suppose zero losses. They claim that transmission losses
are on the order of a tenth of a percent and therefore negligible.
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3.4.3 Measuring the losses of the glasscell

As we have learned in section 2.2.3, the power enhancement depends on the losses
1-T3 of the cavity. An optimum reflectivity of the incoupling mirror exists, given
by the ”impedance matching condition” 2.116. Therefore, the losses caused by
the glasscell had to be measured.

To obtain the losses of the glasscell a test resonator was built (see fig-
ure 3.17, a photograph is shown in 3.14 and for spectrum see figure 2.16) and
the finesse with and without the glasscell was measured. From the difference
the loss coefficient 1-T3, caused by the glasscell, is obtained (see equation (2.68),
section 2.2.1):

Zgc = T3

√

R1 R2 = T3 Z0 ⇒ T3 =
Zgc

Z0

, (3.10)

with Zgc and Z0 ≡
√

R1 R2 the Z of the cavity with and without the glasscell
respectively. Whenever it was possible, Z0 was not calculated from the reflectivity
of the mirrors, but rather from the measured finesse of the cavity.

Figure 3.17: Setup for measuring the losses inside the resonator.

In order to obtain the finesse, the cavity length is scanned by a piezo26 over
at least two free spectral ranges (FSR) and the width of the peak (FWHM) is
obtained by fitting a Lorentz curve to each peak. The finesse is simply F= FSR

FWHM
.

26The HV amplifier used was different to the one used in the final setup. The elements for
locking the resonator to the laser, which are shown in figure 3.17 detecting the polarization of
the reflected light, were never used during the measurement. They were only used for testing.
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In order to obtain a reliable result, the calculated finesse of at least 10 measure-
ments were averaged27 and the standard deviation of this average is given as the
error.

For the first 14 measurements the setup in figure 3.17 was used, for which
the mirrors and the cavity length are given in table 3.7, section 3.4.2. The laser
source was a single mode (SLM) Nd:YAG/YVO4 laser with 100 mW output power
from the company CrystaLaser. It has a wavelength of 1064 nm and its linewidth
is <10 kHz, according to the datasheet. The beam diameter (1/e2) is 0.45 mm
and the divergence is 3.6 mrad (full angle).

There were several reasons why for the first 14 measurements the setup was
chosen to be the one of figure 3.17. In a first attempt, only the Faraday isolator
was inserted and the beam was directly coupled into the cavity. The isolator was
different from the final chosen one, with about 28 dB isolation at 1064 nm. If a
glassplate was inserted into the cavity, the result looked like figure 3.18a).

(a)

dip

R1 = 98%
R2 ≥ 99.9%
n = 1.4496

(b) α1=55°

F0 = 217 ± 5

Figure 3.18: First measurements with glassplate showed signatures of back re-
flections. a) The finesses is decreased at Brewster’s angle and
b) it is a function of the intensity of the incoming light.

There appeared a dip, clearly visible where one expects the maximum fi-
nesse. A similar behavior was observed in [Els00]. It is not completely clear
what causes such a dip, but it seems reasonable that it could be caused by back
reflection of light into the laser. As long as the laser light is not resonant with the
cavity, the light is rejected from the cavity and propagates back into the laser,
where it forces the laser to emit at a certain frequency and phase. This effect
is often used to stabilize diode lasers [WH91, DHD87]. But here the phase and
amount of light which is reflected back into the laser changes significantly if the
laser light is on resonance with the cavity. From equation (2.73b) and figure 2.6
we see that, on resonance, no light is reflected and from equation (2.69) it is
obvious that the phase is zero on resonance, whereas off resonance it is not. The
difference of intensity and the slope with which the intensity and phase changes,
when one scans over a resonance, depends on the finesse F. The higher the finesse

27The averaging was performed in most cases by weighting with the individual error of the
measurements, which is the standard deviation of several (mostly 2) FSR.
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the more light is reflected and the steeper is the slope. Therefore, it seems logical
that, with back reflections, the laser reacts differently if the finesse is high or low.
Since the speed of scanning the cavity is much slower than the dynamics of the
laser, it is clear that such an instability of the laser caused by back reflections
could affect the measurement. Therefore, back reflections must be avoided.

Several approaches were tried. Together with the optical isolator, an AOM
was inserted in double-pass configuration as is shown in figure 3.17. This setup
shifts the light which is reflected back into the laser by 4×80 MHz=320 MHz. In
combination with the AOM, the Faraday isolator was passed two times, which
gives twice the isolation, as described in [Mor01]. It turned out that the AOM
and the isolator in double-pass configuration helped reducing the dip, but back
reflection still seemed to cut-off the maximum finesse. The next approach was to
use the cavity in an off-axis configuration, as was shown in figure 3.17. Such a
setup was used by [HC80] as well. This configuration definitely improved the sta-
bility of the laser (c.f.#5 and #6 in table 3.8). Therefore, the first measurement
of the losses of the cavity were done this way, with the AOM and the isolator
used in a double-pass configuration as well.

In figure 3.18b) we see another hint for back reflections. Here the AOM and
isolator was used in double-pass configuration and the intensity was adjusted by
a combination of a λ/2-waveplate and a polarizing beamsplitter in front of the
cavity (not shown in figure 3.17). Obviously, the measured finesse depends on
the intensity of the light going into the cavity. In this example a clear linear
dependency is visible, but sometimes the slope looks more exponential. For
the off-axis resonator it was not so significant anymore, but still visible. In
order to account for this, the finesse was measured for different intensities. The
obtained data was fitted linearly or exponentially, according to the column ”info”
in table 3.8, with the extrapolated finesse at zero intensity to be assumed the true
one.

In figure 3.18a), we plotted a theoretical curve for a glassplate inserted into
the cavity for comparison. It is turned by an angle α1, which is defined such
that it is zero if the beam passes perpendicular to the glassplate. To calculate
the finesse we use equation (2.88) and calculate the transmission T3 through the
glassplate. This transmission we obtain from the Fresnel equation for p-polarized
light (6.6a), see appendix 6.2, where we have to take into account both boundaries
when the beam enters and leaves the glass. On leaving the glassplate (gp) the
angles are just exchanged:

T gp
3 [α1] =

(

1 − tan2[α1 − α2]

tan2[α1 + α2]

)(

1 − tan2[α2 − α1]

tan2[α1 + α2]

)

with α2 = arcsin
[n1

n2

sin α1

]

.

(3.11)
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The mirror reflectivities were R1 = 98 % and R2 = 99.9 % and the refractive
index of the glassplate is n=1.4496 (the same as that of the glasscell).

It is convenient to calculate the transmission for the glasscell (gc) at this
point, which we model by two glassplates. The two glassplates are positioned in
Brewster’s angle αB to the incoming beam. If the glasscell is turned by an angle
α in clockwise direction, the beam on the entering side has an insertion angle of
α1 = α − αB and the exiting beam has an angle of α1 = α + αB. This gives for
the transmission coefficient of the glasscell:

T gc
3 = T gp

3 [αB − α] T gp
3 [αB + α] , (3.12)

which is expressed as the transmission coefficient of two glassplates (3.11), for the
appropriate angles. The resulting curve of the finesse of the glasscell for different
turning angles looks very similar to a Lorentzian curve and therefore such a curve
was fitted to the measured data28. The maximum of this curve represents the
angle of minimum losses.

Table 3.8: Results for the measurement of the losses of the glasscell.
# R1 R2 L gc. name finesse 1-T3 info file

% % mm 1 % ∗.obj

1 98 ≥ 99.9 196 X G1&G2 276 ± 5 0.5 ± 0.3 Lorentz&lin. glasscell98
2 G3 329 ± 31 0.2 ± 0.1 exponential glasscell98
3 G3 287 ± 14 0.04 ± 0.06 linear glasscell98
4 G3 317 ± 43 0.1 ± 0.1 mean glasscell98
5 G4-lowR 188 ± 21 Fgc > F0 on axis, lin. g4
6 G4-lowR 235 ± 17 Fgc > F0 off axis, lin. g4
7 99.4 ≥ 99.9 190 G4-highR 401 ± 19 Fgc > F0 linear mean g4
8 G4-highR 365 ± 20 Fgc > F0 linear all g4
9 G4-highR 383 ± 38 Fgc > F0 mean g4

10 X G5&G6 526 ± 2 0.4 ± 0.1 Lorentz&lin. g5 &
glasscell994

11 98 ≥ 99.9 196 CRD 539 ± 5 0.55 ± 0.02 fixed τ0 CRDS
12 CRD 351 ± 5 0.24 ± 0.02 not fixed τ0 CRDS
13 CRD 445 ± 99 0.4 ± 0.2 mean CRDS
14 99.4 ≥ 99.9 190 X G6 Aπ 409 ± 8 0.6 ± 0.1 Lorentz&lin. glasscell994

15 98.58 ≥ 99.8 500 res1 514 ± 13 0.06 ± 0.02 lock
16 res1 465 ± 11 - unlock
17 X res1 471 ± 4 0.0 ±

�
0.4
0.0 lock

18 99.4 ≥ 99.9 ≈ 200 res1 558 ± 5 0.3 ± 0.1 lock
19 ≥ 99.8 ≥ 99.8 500 res2 1675 ± 20 Fgc > F0 ≈ 55 Hz, lock
20 res2 2232 ± 40 0.02 ± 0.02 21Hz, lock
21 res2 3404 ± 87 0.03 ± 0.02 5Hz, lock
22 res2 3213 ± 19 - 5Hz, unlock
23 ≥ 99.8 ≥ 99.8 500 res2 2670 ± 78 0.06 ± 0.02 5Hz, lock
24 X res2 1941 ± 178 0.01 ±

�
0.04
0.01 5Hz, lock

25 98.58 98.58 500 res3 295 ± 2 0.00 ±
�
0.04
0.00 10Hz, lock

26 X res3 295 ± 2 0.00 ±
�
0.04
0.00 10Hz, lock

In table 3.8 the results for different measurements of the losses of the glass-
cell are given. If the entry ”gc.” has a check mark, the measurement is made with

28This was not verified mathematically. One could directly fit equation 3.12 to the data, but
the deviation to the Lorentzian curve is very small. Therefore, we decided not to do this.
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the glasscell, otherwise it is made without the glasscell. For the measurements
without the glasscell the loss coefficient 1-T3 is calculated from the difference
of the finesse with and without the glasscell. For some measurements labelled
Fgc > F0 this was not possible since the finesse with the glasscell was larger
than without it. Besides the large spread of the measurements which might have
caused this result, one could imagine that the glasscell acts as a filter which can-
cels disturbing effects, like a fraction of s-polarized light. It is not clear if this
filtering could have such a big effect to outweigh the losses of the glasscell.

The calculation of the finesse and error bar was done under the condi-
tion given in the column ”info”. As discussed above, the finesse depends on
the input intensity. Therefore, either a linear or an exponential fit was done in
each measurement and the finesse was extrapolated for zero intensity. For the
later measurements, starting at measurement number (abbreviated by the sym-
bol ”#”) #15 no intensity dependence was observed. Therefore, the intensity
was not changed anymore, which made fitting obsolete.

In the ”G3” measurement, the finesse labelled with ”mean” (#4) is obtained
from the mean of the two finesses of the exponential (#2) and linear fit (#3).
The error bar was enlarged to include both fits. In the measurement ”G4-lowR”
the difference of the finesse ”on axis” (#5) to ”off axis” (#6) was measured, both
using linear fit of the intensity. The measurements #6 to #10 and #14 were done
in the ”off axis” configuration. For ”G4-highR”, either the mean of the finesse
for each intensity was taken and afterwards a linear fit was done (#7), or a linear
fit from all the measurements was calculated (#8). The finesse labelled with
”mean” (#9) is again the finesse and error obtained from the two fits.

In the measurements with the glasscell (#1 and #10) a linear fit for the
intensity was done. The result for different angles of the glasscell is shown in fig-
ure 3.19a). Two theoretical curves are included in the graph (dashed lines). They
are calculated with equation (3.12), using the corresponding mirror reflectivity
with zero losses (R2=99.95 %, T3=1). The measurement ”Aπ” will be explained
below. For each measurement Lorentzian curves were fitted and the maximum fi-
nesse is given in table 3.8. For the ”G5&G6” measurement the maximum finesse is
at an angle of (0.00± 0.02)° and for the ”G1&G2” measurement the maximum is
slightly shifted to (0.13± 0.04)° . This means that the input and output windows
of the glasscell are within the specification of the glasscell (αB=(55.4± 0.25)° ,
see section 3.4.1). In measurement ”G1&G2” the dip caused by back reflection
is visible. This measurement was performed with the AOM and optical isolator
in double path, but not in the ”off-axis” configuration, as the other measurement
”G5&G6”. This shows a much larger variation of the result than ”G1&G2”,
which can be explained by the fact that for higher finesse, losses and instabilities
have a larger impact than for low finesse (see sections 2.2.1, and 2.2.2). It seems
that in nearly all the measurements, there are some reductions of the finesse at
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(a)

99.4%

fit G5&G6

98%

fit G1&G2

fit Aπ

(b)

1-T3=(0.27± 0.04)%

1-T3=(0.45± 0.04)%

Figure 3.19: Measurement of the losses of the glasscell. a) Finesse and b) cal-
culated loss coefficient.

an angle of about ± 2° . For this, no obvious explanation was found. Possible ex-
planations would be: shifted resonance frequencies due to different cavity length,
different focus position and waist, influence of astigmatism, the scratch on the
99.9 % mirror could be hit by the beam at this angle, etc.

In figure 3.19b) the obtained loss coefficient 1-T3 of the ”G5&G6” measure-
ment is plotted. For the calculation of this, either the specified reflectivity of the
mirrors or the measured reflectivity was used, see table 3.7 in previous section.
This was done in order to get an upper and a lower boundary for the losses. The
specification gives a lower boundary and the measured reflectivity gives an upper
boundary. Two Lorentzian curves were fitted to the obtained datapoints, where
one uses weighting of the errors of the datapoints and the other not. The result
is not very different. From the fit we obtained the angle of minimum losses at
(-0.05± 0.03)° , which is not very different than before.

We obtained 1 − T3=(0.45± 0.04) % and 1 − T3=(0.27± 0.04) % for the
upper and lower boundary. This is nearly the same result as when we took the
fit for the ”G5&G6” measurement in figure 3.19a) directly. Again we take the
average of the obtained boundaries and we enlarge the error in such a way that
it encloses both boundaries. From this we conclude the losses of the glasscell to
be 1 − T3=(0.4± 0.1) %. This result was included in table 3.8 for the ”G5&G6”
measurement (#10) and was used in order to calculate the optimum incoupling
mirror for maximizing the power enhancement (see section 3.4.4). In a similar
way the ”G1&G2” result in table 3.8 was obtained (#1), but instead of fitting
the loss coefficient, the fit of the finesse was directly used and the corresponding
boundary was calculated, giving the mean and error.

The measurements #1 to #10 in table 3.8 show big variations. There-
fore, we decided to make different kinds of measurements in order to verify these
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results. The measurement labelled with ”CRD” is obtained from the cavity ring-
down experiment, described in section 3.4.2. The loss coefficient 1 − T3 is cal-
culated by comparing the finesse from the CRD measurement with the finesse
obtained in ”G1&G2” (#1), using equation (3.10). Taking the mean result from
this measurement, 1 − T3=(0.4± 0.2) % (#13), we can say that it matches the
other measurements very well, but due to the large error, we do not gain new
information.

An alternative way to obtain the finesse is to measure the power enhance-
ment which gives the finesse with equation (2.114), derived in section 2.2.3. The
result is labelled ”Aπ” (#14) in table 3.8. We solve equation (2.114) for the
finesse and insert the definition of the power enhancement, equation (2.105):

F ≈ Aπ

4
=

π

T2

Imax
t

I0

. (3.13)

We see that we need to record the input intensity and the transmitted intensity
of the cavity. The transmission of the outcoupling mirror has to be known as
well. We have measured the voltage of the photodiode during scanning over the
resonance. In order to obtain the maximum transmitted intensity we needed
to know the relation of the intensity to the output voltage of the photodiode.
In section 3.4.2 this was done and the result was UPD/PPD = (19± 2) V/mW.
We fitted a Lorentzian curve to the measured data and calculated maximum
transmitted intensity. The measurement of the transmission coefficient T2 of
the outcoupling mirror was already described in section 3.4.2, and resulted in
T2=(6.6± 0.4)×10−3 % from the reflectivity given in table 3.7 (”outcoupler”)29.
When this calculation was made, the fit through zero was not included in the
mirror transmission. Therefore, for this calculation only the result of the fit
not going through zero, T2=(6.19± 0.02)×10−3 %, was used. Since the whole
measurement was meant as verification of the previous results, and since it takes
quite some time to redo the calculation, we will be satisfied to use the old value.
For each measurement point, the input and transmitted intensity of the cavity
were measured for different intensity levels and the finesse was calculated. A
linear fit was done to obtain the finesse at zero intensity, since again the finesse
showed an intensity dependence. In figure 3.19a) the finesse obtained by this
procedure is included. The Lorentz curve fitted to this data has a maximum
of F=409± 8, which we included in table 3.8 (#14). We see that the finesse
obtained has the same order of magnitude as ”G5&G6” (#10), but it is generally
a little lower. This is not really surprising, since in above considerations we have
neglected the coupling efficiency of the input light into the cavity. Actually, we
can obtain this by using the difference of the two finesse:

Fη ≈ π

T2

Imax
t

I0 η
=

1

η
F0 ⇒ η =

F0

Fη

, (3.14)

29The transmission was measured directly, while R=1-T is given in the table.
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with Fη the real finesse and F0 the finesse measured without taking into account
the coupling efficiency η. Setting Fη = 526 ± 2, i.e. the result from measurement
”G5&G6” (#10), which was at the same time recorded as ”Aπ” (#14), we obtain
the coupling efficiency η = (78 ± 2) %. This is not so bad.

Summarizing measurements #1 to #14, we obtained a loss coefficient of 1−
T3=(0.4± 0.1) %, which is mainly the result from measurement ”G5&G6” (#10).
From this the ideal incoupling mirror was calculated to maximize the power
enhancement (see section 3.4.4). The company where we ordered the mirrors
made a wrong coating for the incoupling mirror with the reflection maximum at
1080 nm instead of 1060 nm. This gave us the opportunity to measure the losses
of the glasscell again, but now with the new mirrors and with the ELS laser,
which had been delivered at that time. These measurements are labelled #15 to
#26 in table 3.8 and will be discussed in the following.

In none of these measurements a fit was necessary for the intensity, since
no effects of back reflections was observed. The ELS laser and only one isolator
(40 dB from EOT, see section 3.3.8) was used. The measurements were performed
with the new mirror with radius of curvature r=0.75 m and cavity length of
L=0.5 m, except #13 (see below). The finesse was again obtained with the same
procedure as described above.

In two measurements the influence of the laser was measured, when it was
in-lock (#15 and #21) or out-of-lock (#16 and #22). The finesse out-of-lock is
in both measurements slightly decreased versus that in-lock, but the linewidth
of the laser seemed not to have a big influence on the result. Probably, this has
something to do with the fact that the scanning speed over the resonance was
quite fast, as is discussed below further.

The loss coefficients obtained by comparing the results with the glasscell
with those without the glasscell (using equation (3.10)) gave consistent results.
Only for the measurement ”res3” with low finesse the error is so large that no
difference with and without glasscell could be measured.

During the measurements of the finesse with the two high reflectivity mir-
rors ”res2”, we observed some interesting lineshapes of the transmitted inten-
sity. Figure 3.20a) shows a typical lineshape for a 4µs scanning time over
the full-width-half-maximum (FWHM) of the peak (#19). The lineshape looks
Lorentzian, except for the decreasing intensity which shows some oscillations.
The direction of scanning does not affect the appearance of these oscillations.

For a finesse around F=2000 and a length of the cavity of L=0.5 m, we
calculate with equation (2.100), derived in section 2.2.2, a cavity decay time
of τ = 1 µs. This shows that we are scanning the cavity resonance over the laser
frequency during a time interval corresponding to the cavity decay time. The
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(a) (b)

Figure 3.20: Scanning the cavity fast with respect to cavity-decay time.
a) ≈ 55 Hz, b) 5 Hz scanning frequency, both with laser locking.

increasing slope corresponds to ”filling” the cavity. According to equation (2.99),
it should increase exponentially (same as decreasing), but here we change the
resonance frequency as well, which is modifying the shape to give it a Lorentzian
curve. The decreasing slope is a combination of the decaying cavity with the
frequency scanning as well. It seems reasonable that this could cause interferences
(see appendix 6.6 and [RESKB02]) during the decay of the cavity. The asymmetry
may be explained by the different starting conditions: no light or full light in the
cavity, but this should be checked by a theory or simulation. In the same theory
one must calculate by how much the measured linewidth is affected by such
interferences. Probably, the measured linewidth becomes smaller than the true
linewidth. Maybe this is why we measured such a high finesse.

In order to check if the oscillations are interferences, the scanning time was
increased to 20µs per FWHM (#21). No oscillations were expected, but on the
contrary, strong oscillations appeared, even on the increasing side of the intensity,
as can be seen in figure 3.20b). The finesse increased in this measurement to more
than F=3000. The oscillations were spread out over the whole transmission line,
often dividing the central peak into two. It is not certain if the positions of the
peaks change. Both measurements shown in figure 3.20 were made with the laser
locked, having a linewidth FWHM≈ 10 kHz (see section 3.3.9). If the laser was
not in lock, the lineshape looked again as in figure 3.20b), with the linewidth just
slightly increased (#22), as discussed before. This is surprising as well, but could
be explained by the fact that the laser has a good stability on a 20µs timescale.

From these measurements it is not clear what causes the oscillations. Be-
sides interferences of the decaying cavity with the frequency scanning, several
other possibilities exist: the photodiode and electronics are too slow or oscillate,
but one has to note that the measurement was done with a 125 MHz photodiode,
giving a time resolution of about 10 ns. The oscillations have a frequency of about
80 kHz, which corresponds to the second resonance frequency of the piezo (see
section 3.3.2 and 3.3.3). This could give a hint that the piezo resonances are not
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cancelled completely by the notch filter (section 3.3.5), such that the piezo still
changes the cavity length with this frequency. Another possibility is that me-
chanical instabilities of the setup were measured. The cavity with 50 cm length
is definitely very sensitive to any disturbance, but one would assume that the
disturbing frequencies are lower. The intensity noise, measured in section 3.2.3,
shows the relaxation oscillation peak in the range of 30 kHz to 40 kHz. The largest
oscillations in figure 3.20 are about 20 % of the amplitude of the central peak,
which is quite large in comparison to the rms fluctuations of about 0.4 % (20 Hz to
100 MHz) of the intensity noise. Another possibility is that the oscillations could
be sidebands (servo bumps) on the laser which become visible when the laser is
in lock. But in section 3.3.4 we mentioned that the servo bumps of the slow PI
are between 20 kHz to 30 kHz, which is by a factor of more than 2 lower than the
observed oscillations. The servo bumps of the AOMs were not measured and we
assume them to be around 100 kHz (because of the modulation bandwidth of the
AOMs is in that range). Therefore, the oscillations could come from the fast PI of
the AOMs. The fact, that the oscillations were still visible when the laser was not
locking, indicates that the oscillations are not servo bumps. Also the asymmetry
and that there are multiple sidebands seems not to coincide with servo bumps30.
These oscillations could cause heating of the atoms and in consequence larger
loss rates. Therefore, we have to investigate them further.

Summarizing the measurements obtained with the new mirrors (#15 to
#26, except #18), we have obtained a loss coefficient of 1 − T3=(0.06± 0.02) %.
This result was used in the calculation of the optimum incoupling mirror reflec-
tivity, for the second order from the company (see next section). Obviously, this
result is very different from the old one. The errors of the old measurement were
quite high, but the new result is about 3σ below (c.f. #10 and #23), which is a
quite deviation to be explained by measurement uncertainties. One explanation
could be that the back reflections were causing problems in the old measure-
ments and were biasing the result, even with the efforts made to avoid them. In
order to have a direct comparison to the previous results, measurement #18 was
done with the old mirrors and 0.2 m cavity length. We obtained, as in the old
measurements, a high loss coefficient, which could mean several things.

The first implication could be that back reflections seem not to cause the
observed difference in the results, since in the new measurements we had no sign
of back reflections at all. Further, we know that on the outcoupling mirror which
was used in the old measurement there is a small scratch. Probably, this could
cause such a behavior. It was tried to align the mirror in a way that the laser
beam did not hit the scratch, but maybe this was not sufficient, since the beam
falls off exponentially, having a non-zero intensity beyond the beam radius. But

30Multiple servo bumps are possible, but in this case the gain must be very large, such that
the phase would be 3π with gain larger one, which seems not to be reasonable.
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we have calculated the losses from the difference of the finesse with and without
glasscell which should compensate (in first order) for such an effect. Another
possibility could be, that the observed interferences due to the fast scanning of
the cavity led to a smaller linewidth than the one obtained for slow scanning of
the cavity. With the old mirrors, and the smaller distance between them, the
scanning was always fast with respect to the cavity decay time. Therefore, no
interference effects played a role in the old measurement, while we can not be
sure of that for the new measurement. This question should be evaluated further.
Our last explanation could be that in the off-axis configuration the TEM01 mode
was optimized to have the largest intensity. But the largest mode was used for
the calculation of the finesse. Maybe this mode has a larger linewidth than the
Gaussian mode and we were biased in the off-axis configurations by this effect.
The linewidth was calculated by assuming a Gaussian mode, but for higher modes
we did not calculate the linewidth. Therefore, we are not sure what to expect31.
Measurement #18, which was performed on the TEM00 mode, suggests that the
result is not affected by using a higher mode.

3.4.4 Resonator mirrors and power enhancement

In the previous section we have obtained the losses of the cavity introduced by the
glasscell to be 1−T3=(0.4± 0.1) % in the first measurement. From this knowledge
the optimum reflectivity of the incoupling mirror was chosen, according to the
treatment given in section 2.2.3 to maximize the power enhancement.

We decided to buy the mirrors from the German company Laser compo-
nents. Since the power inside the cavity will be much higher than the damage
threshold of the low power coating, which is 100 kW/cm2, we needed a high-power
coating with specification ≥ 1 MW/cm2 (see discussion below). The maximum ob-
tainable reflectivity for this (standard) coating is 99.8 %. We will use this mirror
as the outcoupling mirror, and calculate the incoupling mirror, giving the max-
imum power enhancement from the loss coefficient. In figure 3.21a) we plot the
power enhancement factor inside the glasscell (equation (2.112c), section 2.2.3)
using the loss coefficient from the first measurement and the outcoupling mirror
reflectivity of R2 = (99.85 ± 0.05) %. The three black curves correspond to the
mean and error of the loss coefficient and are labelled accordingly. The gray lines
take into account the corresponding uncertainty of the outcoupling mirror. The
line ”Amax” shows the maximum possible power enhancement, obtainable from
the corresponding R1 (i.e. equation (2.112c) with T3 =

√

R1/R2 inserted).

31In equation 2.42, section 2.1.2, we saw that the waist of the beam increases, but this does
not mean that the linewidth increases as well. In contrary, the linewidths in figure 2.16a) seem
to scale with the intensity, which is by itself an unexpected result.
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Figure 3.21: Power enhancement for a) first measurement and b) second mea-
surement of the losses of the glasscell.

With the help of figure 3.21a) we decided to order mirrors with reflectivity
of R1 = (99.3+0.2

−0.1) % in a wavelength range of 1030 nm to 1080 nm. This was cho-
sen, because the results of the losses of the glasscell, obtained from the measured
curves, seemed to be more reliable than those obtained from the specification of
the mirror reflectivity. Therefore, the ordered reflectivity R1 was shifted slightly
towards a higher reflectivity. The boundaries were chosen according to the ca-
pabilities of the company. The wavelength range was chosen so that the mirrors
could be used for the fiberlaser wavelength of up to 1080 nm as well. This 100 W
fiberlaser is at the moment used for the dipole trap.

The shaded area corresponds to the resulting power enhancement, taking
the uncertainties of the mirrors into account. We obtain A=424± 148. As the
error indicates, this result is very imprecise. Nevertheless, it should be possible
to obtain a power enhancement of more than 300.

We purchased the mirrors according to this specification, but the company
made a mistake and produced the coating for the wrong wavelength range of
1050 nm to 1120 nm, resulting a mirror reflectivity of R1=(98.58± 0.06) % at
1030 nm (obtained from a transmission curve of the company). Therefore, the
incoupling mirror had to be manufactured again. This gave us the opportunity
to measure the losses of the glasscell again, now with the ELS laser and the new
mirrors. As described in the previous section we obtained 1−T3=(0.06± 0.02) %,
which is much smaller than the first result. The power enhancement calculated for
the first measurement, is shown in figure 3.21b). The optimum coating was chosen
to be now R1 = (99.6 ± 0.2) % in a wavelength range of 1030 nm to 1080 nm.
The decision was made so that the upper boundary is at the maximum possible
power enhancement and the lower boundary is on the ”left” side of the maximum,
where the slope is not as steep as on the other side. This time the reflectivity
was within the specification and is, according to a measurement of the company,
R1 = (99.72 ± 0.01) % (error estimated), which is precisely what we needed. The
shaded area corresponds again to the range of the power enhancement obtained
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from the specification of the mirrors. We get A=1628± 588, i.e. A≥ 1040.

With equation (2.114) (section 2.2.3) we obtain a finesse of F=1278 ± 462,
or F≥ 800 for the resonator. This corresponds to a linewidth of 1 MHz to 250 kHz
for a resonator length of 0.2 m to 0.7 m (FSR=750 MHz to 200 MHz) respectively.

This result is much better than the power enhancement of A=600 from the
lithium experiment (see section 3.4.5). But it is concerning, since the optical
power inside the cavity is much higher than expected and could damage the
mirrors and more problematically, the glasscell as well. In the next section,
figure 3.22a), we plot the ratio of the intensity to the total power I

A P0
. The upper

and lower thick lines correspond to the intensity at the focus of the resonator and
at the glasscell walls (distance between walls L ≈ 0.17 m), respectively. The
thin lines correspond to the intensity at the mirrors, which we have plotted for
different distances between the mirrors (L=0.2 m . . . 0.7 m). The mirror damage
threshold is ≥ 1 MW/cm2 and that of the glasscell is unknown. We see that in
the region of our waists of w0 = 100µm . . . 400µm, the damage threshold could
be exceeded if the input power and the power enhancement is W0=10 W and
A = 1000 respectively (i.e. intensity/power ratio 102, dotted line). Therefore, we
have to test how much the mirrors and the glasscell can stand and ensure that
in no case this maximum is reached. Another issue to think about is the small
fraction of light which is scattered from the glasscell. It can be in total quite
large in intensity and we have to dump all such beams so that no damage of the
other elements of the experiment can happen and that the staff can work safely.

3.4.5 Trap parameters

In the section above we have obtained the power enhancement to be A≥ 1000.
Here we want to calculate the parameters of the dipole trap formed by the res-
onator. These are the trap depth and the trap frequencies in radial and axial
directions. The axial direction is defined to be along the connection line between
the mirrors and the radial direction is perpendicular to the axial direction. The
equations in this section are not derived here, but can be found for example
in [MvdS99]. In table 3.9 the data concerning our atoms are listed.

If laser light interacts with an atom, the energy levels of the atom are
displaced by the Stark shift

∆U =
~ Ω2

4 δ
, (3.15)

with ~ the Planck constant and δ ≡ ωL − ωA the detuning of the laser frequency
ωL to the atom transition frequency ωA. The Rabi frequency Ω is related to the
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intensity of the laser I by:

Ω = γA

√

I

2 Is

with Is ≡
2 π2

~ c γA

3 λ3
A

. (3.16)

The saturation intensity Is, the wavelength λA and the linewidth γA of the tran-
sition of the atom are used.

We see that the Stark shift depends on the intensity. Therefore, if the
intensity is space-dependent, the Stark shift is space-dependent, too. We know
that a conservative force F is related to a potential F = −∇Upot, with Upot the
potential. Since the Stark shift is nothing else than a potential difference, we
immediately understand that the atoms will be accelerated by this force. The
force and the potential created by the laser are called dipole force and dipole
potential Udip ≡ ∆U :

Udip =
~ Ω2

4 δ
=

~

4 δ
γ2

A

I

2 Is

=
~

4 δ
γ2

A

I

2

3 λ3
A

2 π2 ~ c γA

=
3 γA λ3

A

16 π2 δ c
I . (3.17)

The name dipole potential comes from an alternative picture: the laser light
induces a dipole moment on the atom and the induced dipole moment then
interacts with the light in such a way that the atom experiences a force. The
sign of the potential can be chosen by the detuning δ. For red-detuned light
(δ < 0) the induced dipole moment can follow the direction of the laser electric
field and forces the atoms towards the intensity maximum. For blue-detuned
light (δ > 0) the induced dipole moments direction lags behind the electric field
direction by a phase of π, resulting in a a force towards the intensity minimum.
From equation (3.17) one might assume that for small detuning the dipole force
becomes very large which is favorable. But for small detuning the probability
of absorbtion becomes larger, leading to unwanted heating. Therefore, there
exists an optimum value of the detuning, which is usually far-detuned from the
transition of the atom. In our case we use laser light of λL=1030 nm.

The intensity in the standing wave of a Fabry-Perot interferometer (FPI) is
derived in equation (2.107), section 2.2.332, and we see that, on resonance and in
the waist of the resonator, it scales with AI0 cos2[k z] along the axis. The power
enhancement A was defined in section 2.2.3 and the peak intensity of a Gaussian
beam is related by equation (2.27), section 2.1.1, to the laser power P0:

I0 =
2 P0

π w2
0

. (3.18)

In radial direction the intensity falls off like the Gaussian beam AI0 exp[−2ρ2/w2
0],

which is found in equation (2.25), section 2.1.1.

32The δ here is different to the one defined in section 2.2.3.
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In order to obtain the axial and radial trap frequencies we perform a Taylor
expansion of the intensity profiles in axial and radial direction:

Uaxial = U0 cos2
[

k z
]

= U0

(

1 − k2 z2 + O[k z]4
)

Uradial = U0 exp
[

− ρ2

2 w2
0

]

= U0

(

1 − 2
ρ2

w2
0

+ O[
ρ

w0

]4
)

with U0 ≡
3 γA λ3

A AP0

8 π3 δ c w2
0

,

(3.19)

where we have defined the potential maximum U0 using equation (3.17) and (3.18).
The constant part of the potential can be neglected since it cancels when the gra-
dient is taken to calculate the force. This corresponds to a redefinition of the
energy scale. Assuming small deviations of the atoms from the trap center we

can approximate the potential by a harmonic potential U = 1
2
m ω2

∣
∣~r
∣
∣
2
and obtain

the axial and radial trapping frequencies:

ωaxial = k

√

−2 U0

m
=

2 π

λL

√

−2 U0

m

ωradial =
2

w0

√

−U0

m
.

(3.20)

We see that only with red-detuned light atoms can be trapped.

The data of our atoms are summarized in table 3.9, where we give as well
an example of the trap parameter for an input power of 10 W into the resonator
and a power enhancement of A=1000. We see that a remarkable trapping depth
of more than 2.8 mK is reached for all of our species.

Table 3.9: Data of our atoms and of the resulting dipole potential for
λL=1030 nm, P0=10 W, A=1000 and w0 = 300µm.
atom m λA γA Udip ωaxial ωradial

AMUa nm 2π MHz mK MHz kHz
6Li 6 671 6 -3.8 3.1 2.4
40K 40 767 6 -8.8 1.9 1.4
87Sr 87 461 32 -2.8 0.7 0.6

a AMU=1.660 538 86×10−27 kg

In figure 3.22 we plot the resulting trap parameter as a function of the beam
waist. We have normalized them by the laser power. The plotted intensity (ob-
serve the logarithmic scale) in figure 3.22a) is larger than the damage threshold
specified for the mirrors, which is ≥ 1 MW/cm2 (dotted line for AP0 = 104). The
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Figure 3.22: a) Intensity (logarithmic scale) in focus, on glasscell (L=0.17 m)
and on mirrors for different distances of mirrors from L=0.2 m to
L=0.7 m in steps of 0.1 m. b) Trap depth, c) axial trap frequencies
and d) radial trap frequencies. All normalized by total power.

maximum power which can stand the glasscell is unknown. Probably, we have to
reduce the input power in order not to harm one of these components (see dis-
cussion at the end of section 3.4.4). The potential depth shown in figure 3.22b)
for 40K is by more than two times deeper than that of 6Li and 87Sr, which ex-
perience approximately the same potential depth. The axial trap frequencies in
figure 3.22c) can become very large, in the range of MHz (the frequencies scale
with the square root of the power, c.f. equations (3.19) and (3.20)), which could
be a problem concerning the intensity fluctuations of the resonator laser (see sec-
tion 3.2.3). In figure 3.22d) the radial trap frequencies are plotted, which are by
a factor of 1000 smaller than the axial trap frequencies.

In order to put these results into perspective, we compare them with the
ones obtained with the resonator used in the lithium experiment which is de-
scribed in [Joc04, MJM+01]. There a 2 W laser is used, which has a power
enhancement of A=4×150=60033. This means that the power in the maxima of
the standing wave is 600×0.8×2 W=960 W, with 80 % power coupled into the
cavity. The waist of the resonator is 160µm, which gives a maximum intensity of
about 2.4 MW/cm2, obtained from equation (2.27). The trap depth for lithium
becomes, with equation (3.19), 1.3 mK34. We know that about 8×106 atoms of

33The factor 4 comes from the interference of the retroreflected beam, see section 2.2.3.
34In [MJM+01] an older configuration is cited with a 1.2 W laser and a power enhancement
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6Li can be loaded into the resonator. In the new setup we want to achieve at
least the same trap depth but with a waist which is two times larger. This will
increase the trapping volume and therefore the number of trapped atoms consid-
erably. The larger waist, together with the same power enhancement, requires at
least 4 times more laser power which is about 7 W on the input of the resonator.

Our trap depth is by a factor of two better than in the lithium experiment.
Together with the large volume obtained from the large waist of the resonator
we can expect to trap a large number of atoms. Ramping down the intensity will
allow evaporative cooling already in the resonator stage. When the atoms are
loaded afterwards into a focussed-beam dipole trap, they will be cold enough in
order to obtain a high transfer fraction.

3.4.6 Resonator waist and mode matching lenses

In a procedure similar to the one for choosing the incoupling lens for the reference
cavity (see section 3.3.7), we calculated the necessary lenses for mode matching
into the resonator (see section 2.2.4). The difference for the resonator is that the
position of the focus has to be exactly at the position of the atoms. This requires
using a second lens, i.e. a telescope for mode matching. We have to calculate
the parameters of the lenses for all the possible resonator configurations, since
we want to be able to adjust the waist of the resonator arbitrarily. We plot the
result in figure 3.23 and for specific resonator waists we give the parameter in
table 3.11, with the lenses listed in table 3.10.

The resonator was assumed to be symmetric (z=L/2) and the laser waist
was assumed to be w0=343µm, as measured in section 3.2.1. The propagation
distance from the laser to the focus of the resonator is zFPI=1810 mm, which was
determined from the available space on the experimental table, which could be
occasionally changed in the future. The distances of the mirrors can be varied
from 0.2 m to 0.7 m, which is given by the size of the glasscell and breadboards.

We have to consider the effect of the glasscell on the resonator. It introduces
a different path length for each half round trip δ defined in equation (2.61). It is
δ = k z = ω

c
(L+2d(n-1)), with d=6.074 mm (=5 mm/sin[αB]) the thickness and

n=1.4496 the refractive index of the glass. Since δ is larger than without the
glasscell, the free spectral range, defined in equation (2.79), becomes smaller:

FSR =
c

2L(1 + 2d
L

(n − 1)
) =

c

2L’
with L’≡L+2d(n-1) . (3.21)

We defined the effective cavity length L’, which we have to use for the transversal
modes as well. The cavity length seems to be increased by 2d(n-1)=5.462 mm.

of A=4×130, giving 0.8 mK trap depth.
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In order to obtain the waist of the resonator, we can write down the ABCD
matrices (table 2.2) for one round trip of the beam inside the resonator. With
equation (2.122) we can calculate the complex radius of curvature qrt, which does
not change after one round trip. From this we obtain the waist of the resonator
with the glasscell inserted. But this is not necessary, since we know the effect of
a glassplate to a Gaussian beam, as discussed in section 2.1.3. Equation (2.53)
showed that, if the beam passes through a glassplate, it behaves as if the propaga-
tion distance was reduced by ∆z=d(1- 1

n
), which is ∆z=1.88 mm for the glasscell.

The waist of the resonator is obtained from the fact that the radius of curvature
(equation (2.26c)) of the mirror is equal to that of the Gaussian beam:

r[z − ∆z] = (z − ∆z)
(

1 +
z2
0

(z − ∆z)2

)

with ∆z ≡ d
(

1 − 1

n

)

z0 ≡
π w2

FPI

λ
=
∣
∣z − ∆z

∣
∣

√
r

z − ∆z
− 1

⇒ wFPI =

√

λ

π

√

(z − ∆z)(r − z + ∆z) .

(3.22)

Without the glasscell, i.e. for ∆z = 0, this equation is the same as (2.119).
With the glasscell the waist can be either increased or decreased, depending
on the fact whether z is larger or smaller than the confocal length (2z=r+∆z).
Comparison between this result and equation (2.119) shows that we could have
replaced the cavity length by L 7→L”≡ L-2∆z and would have obtained the same
result. This effectively shows a reduction of the cavity length, which seems to be
in contradiction with the increased L’ defined above. So far we have not found a
good explanation for this. With these considerations, the waist of the resonator
wFPI is calculated. The result is plotted in figure 3.23 and the waists, marked as
dots in figure 3.23a) and drawn as lines in figure 3.23b), are listed in table 3.11.

(a) 1.0
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0.4

0.3

(b)

3

1

2

1

3

2 1-1,2-2,3-3

Figure 3.23: a) Resonator waist for different radius of curvature given in m.
b) Incoupling lens positions. Numbers refer to lenses in table 3.10.

The resonator waist is plotted as a function of the real distance between
the mirrors L. The curved lines correspond to different radii of curvature of the



3.4. Building the resonator 133

mirrors, which are indicated by the numbers in meter. We plotted the lines
with gaps, because we have only drawn them for the case that no TEMmn until
m+n=10 falls within a range of ± 10 MHz from the Gaussian (TEM00) mode.
The condition of this 10 MHz minimum spacing comes from the fact that the
resonator linewidth is in the range of a few MHz (see section 3.4.4). The minimum
spacings ∆f and the mode numbers (m+n, in column ”#”), which are closest to
the Gaussian mode, are included in table 3.11.

In order to design the telescope, the virtual focus parameters for the incou-
pling mirror were calculated with equation (2.121), section 2.2.4, and are listed
in table 3.10. The lenses in table 3.10 are used for the telescope. The focal length
for λ=1030 nm was calculated in the same way as were the lenses for the reference
cavity, section 3.3.7. No analytical solution for the positions of the lenses of the

Table 3.10: Lenses for Resonator.

# fnom r f1030

mm mm mm
1 25 12.9 28.7
2 40 20.6 45.8
3 50 25.8 57.3

telescope could be obtained. Therefore, the solution was calculated numerically.
Figure 3.23b) shows the result. For certain waists it is given as well in table 3.11.
There the position of the first lens was set fixed and the second lens was placed in
such a way that the resulting focus overlaps with the virtual focus. The virtual
waist of the focus is plotted as the x-axis for each datapoint. From figure 3.23b)
one can immediately get the position of the lenses in order to obtain a certain
virtual waist wv. The lines correspond to the waists listed in table 3.11, where
the corresponding positions zLi and beam radius wLi of the lenses are given. The
column ”L#” contains the number labelling of the lens from table 3.10.

We have presented in this section the calculations of the positions and fo-
cal lengths of the mode matching lenses for the resonator. In the measurements
described earlier, different lenses and positions were used, where mostly no opti-
mization of the coupling efficiency was done. Nevertheless, a coupling efficiency of
about 80 %, was measured in section 3.4.3. In the final setup the calculated lenses
will be used and the efficiency will be optimized by maximizing the transmitted
intensity, which should result in an even better coupling efficiency.

In previous sections we explained the geometry and the resulting properties
of the resonator. As every Fabry-Perot cavity it has to be on resonance with
the laser light in order to work optimally. The laser linewidth is stabilized to a
linewidth of about 10 kHz, as described in section 3.3. The resonator itself has
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Table 3.11: Parameters used for mode matching lenses of resonator.
wFPI r L ∆f # zv wv zL1 wL1 zL2 wL2 L#
µm mm mm MHz mm µm mm µm mm µm
221 300 340 34 2 1792 175 904 930 982 1528 1-2

791 830 881 1714 1-3
254 400 340 38 2 1806 210 832 866 910 1412 1-2

717 767 808 1570 1-3
285 500 430 28 2 1804 235 783 824 861 1338 1-2

668 725 759 1479 1-3
879 908 988 1163 2-3

312 600 510 26 2 1805 258 744 790 822 1278 1-2
629 692 719 1406 1-3
843 875 952 1116 2-3

344 750 550 22 5 1817 291 940 962 999 967 1-1
699 751 776 1210 1-2
583 654 673 1323 1-3
802 840 911 1063 2-3

385 1000 580 23 8 1836 336 896 923 955 924 1-1
649 709 726 1135 1-2
532 613 621 1233 1-3
877 906 973 907 2-2
757 801 866 1006 2-3
864 895 986 896 3-3

to be stabilized to the laser frequency by means of the Hänsch-Couillaud locking
scheme [HC80], which is not finished at the moment. The advantage of using
this scheme, in comparison to the Pound-Drever-Hall scheme [DHK83], is that
no sidebands have to be generated. They would disturb the interferences in the
resonator. The glasscell acts as the polarizer needed for the Hänsch-Couillaud
scheme. The ellipticity of the reflected light is obtained with the difference signal
of two photodiodes detecting the difference of polarization after a quarter wave-
plate and a polarizing beamsplitter. A detuning of the resonator from resonance
introduces a phase shift of the light reflected from the cavity versus the light
reflected on the input mirror. This causes the reflected light to become elliptical.
On resonance both components are in phase, causing the reflected light to become
linear. This can be seen in section 2.2.1, equation (2.69). An error signal was
obtained, but the signal to noise was not good enough for locking the resonator
so far. This has to be done in the future.

We have shown in the experimental part how a resonator enhanced optical
dipole trap is built. We have implemented a linewidth reduction of the resonator
laser and obtained a linewidth of 10 kHz. The losses due to the glasscell were
measured with which the optimum reflectivity of the incoupling mirror could be
chosen. We expect a power enhancement of A≥ 1000, and a very deep trapping
potential of more than 2.8 mK. This is a very good result, but we have to be
careful, since the intensity exceeds the mirror specifications. We measured the
intensity noise of the laser to be larger than the specification and the requirements
for our experiment, which could cause heating of the atoms inside the trap. The
resonator is not finished yet, therefore we could not measure heating rates so far.
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Summary and outlook

In this thesis the design of a resonator enhanced optical dipole trap was described.
We discussed theoretical and practical issues concerning Fabry-Perot type cavi-
ties. The two main features of such a setup, namely the frequency selectivity and
the power enhancement, were considered in detail, allowing for the optimum de-
sign. In the experimental part, the ELS laser was characterized and its linewidth
reduction was described. This is necessary to ensure that the light is coherent
during the cavity decay time. A linewidth of 10 kHz relative to the cavity was
measured. With the measurement of the glasscell losses, the coating of the res-
onator mirrors could be adjusted for maximum power enhancement, leading to
a theoretically possible power enhancement factor of A≥ 1000 and resulting in a
theoretical trap depth of Udip ≥ 2.8 mK.

The requirements for the laser linewidth are fulfilled and the obtained power
enhancement factor is larger than expected. Therefore, the intensity within the
resonator could reach the damage threshold of the mirrors and we have to be
very careful not to harm the glasscell. The noise stability of the laser might not
be sufficient and could cause unwanted heating of the atoms. Measurement of
loss rates or other parameters of the resonator could not be performed, since the
resonator has not been entirely built so far.

For the future the new reference cavity must be built. With this the signal-
to-noise of the laser linewidth error signal will be increased, which will result in a
better performance of the AOMs and an even narrower linewidth. The resonator
setup and the locking of the resonator to the laser must be finished. An intensity
stabilization scheme will be applied by controlling the rf power of the AOMs.
This shall reduce the intensity noise of the laser and give the opportunity to
ramp down the intensity of the light coupled into the cavity by several orders of
magnitude, allowing evaporative cooling already during the resonator stage.
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The achieved results look very promising. The obtainable trap depth will
allow a large transfer fraction of atoms from the MOT into the resonator. Ramp-
ing down the laser intensity will decrease the temperature already at this early
stage. By doing this a large fraction of cold atoms can be transferred to the final
scientific traps. This will be the starting point at which, with an ultracold sample
of high atom number, very exciting new experiments can be performed. Different
kinds of fermionic, bosonic, fermi-bosonic, homo- and heteronuclear mixtures will
be trapped simultaneously in an all-optical way. This allows to use Feshbach res-
onances and sympathetic cooling of the species. The BEC-BCS crossover region
for these mixtures can be explored, molecules formed and BEC of heteronuclear
molecules achieved. In the next step loading into lattices will reduce many body
losses and ground state molecules could be generated.

In the current state of our experiment, we use for the dipole trap a 100 W
fiberlaser in a crossed configuration, as is shown in figure 3.13. With the present
setup we could already reach degeneracy for 6Li molecules, see figure 4.1. Sym-
pathetic cooling of 40K and 39K with 6Li in the dipole trap works well. Features
of enhanced loss rates of the 6Li-40K mixture were observed at certain magnetic
fields. Measurements are currently under way to improve these results. The
future is very promising.

Figure 4.1: First molecular 6Li2 BEC at the FeLiKx experiment.
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Chapter 6

Appendix

6.1 Gouy phase difference

Here we will rewrite the Gouy phase difference ∆ζ ≡ ζ(z2) − ζ(z1), stated in
equation (2.130) section 2.2.5, which leads to the result (2.131). The Gouy phase
at the mirror positions zi from equation (2.26d) are ζ(zi) ≡ arctan

[
zi

z0

]
. Here the

sign convention is, that the position of the incoupling mirror has a negative sign
when it is to the left of the focus of a beam propagating towards the right.

Inserting equations (2.128) into the definition of ζ(zi) given in equation (2.26d)
yields:

tan[ζ(z1)] =
z1

z0

= − (1 − g1)g2
√

g1 g2(1 − g1 g2)

tan[ζ(z2)] =
z2

z0

=
(1 − g2)g1

√

g1 g2(1 − g1 g2)
.

(6.1)

The functions arctan and arccos are related by:

tan2[x] =
sin2[x]

cos2[x]
=

1 − cos2[x]

cos2[x]
=

1

cos2[x]
− 1 ⇒ cos[x] = ± 1

√

1 + tan2[x]

z ≡ tan[x]

cos[x]

↓
= tan

[

arccos
[

± 1
√

1 + tan2[x]

]] def. of z
↓
= tan

[

arccos
[

± 1√
1 + z2

]]

⇒ arctan[z] = ± arccos
[ 1√

1 + z2

]

. (6.2)

The plus and minus sign correspond to the sign of z. The tangent of a sum can
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be written in the following way:

eei(x± y) = eeixee± iy

⇒ cos[x ± y] + i sin[x ± y] = (cos[x] + i sin[x])(cos[y] ± i sin[y])

= (cos[x] cos[y] ∓ sin[x] sin[y]) + i(sin[x] cos[y] ± cos[x] sin[y]) (6.3a)

⇒ tan[x ± y] =
sin[x] cos[y] ± cos[x] sin[y]

cos[x] cos[y] ∓ sin[x] sin[y]
=

tan[x] ± tan[y]

1 ∓ tan[x] tan[y]
. (6.3b)

We define a ≡ tan[x] and b ≡ tan[y] and insert them into the previous relation:

tan[x ± y] =
a ± b

1 ∓ a b

⇒ x ± y = arctan[a] ± arctan[b] = arctan
[ a ± b

1 ∓ a b

]

arccos
↓
= ± arccos

[ 1
√

1 + ( a± b
1∓a b

)2

]

.

(6.4)

With a ≡ z1

z0
, b ≡ z2

z0
and (6.1) we obtain ∆ζ [Dem96, HW92, Sie86]:

a − b

1 + a b
=

−(g2 − g1 g2) − (g1 − g1 g2)
√

g1 g2(1 − g1 g2)

g1 g2(1 − g1 g2)

g1 g2(1 − g1 g2) − (g2 − g1 g2)(g1 − g1 g2)

=
(2g1 g2 − g2 − g1)

√

g1 g2(1 − g1 g2)

g1 g2(1 − g1 g2) − g1 g2(1 − g1 − g2 + g1 g2)

=
(2g1 g2 − g2 − g1)

√

g1 g2(1 − g1 g2)

−g1 g2(−g1 − g2 + 2g1 g2)
=

√
1 − g1 g2

g1 g2

⇒

1

1 + ( a−b
1+a b

)2
=

g1 g2

g1 g2 + (1 − g1 g2)
= g1 g2

⇒ ∆ζ ≡ ζ(z2) − ζ(z1) = arccos
[

±√
g1 g2

]

. (6.5)

The positive sign is applied for the upper right quadrant of the qi’s (q1 and
q2 ≥ 0), whereas the negative sign for the lower left quadrant1.

6.2 Derivation of Brewster’s angle

In section 3.4.1, equation (3.7) for the Brewster’s angle was given and here we
will verify this result. The Fresnel formulas for calculating the reflectivity of a

1In [Sie86] the ± sign is included, while in [HW92, Sie86] it is not.
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boundary between two different media (see for example [EFK+93]) are:

Rp =
tan2[α1 − α2]

tan2[α1 + α2]
(6.6a)

Rs =
sin2[α1 − α2]

sin2[α1 + α2]
, (6.6b)

for p- and s-polarization respectively. The angles αi of the beam in medium
i = {1, 2} are measured relative to a line perpendicular to the surface of the
boundary. The angle after the boundary α2 is related to the incidence angle α1

by the Snellius law:
n1 sin α1 = n2 sin α2 , (6.7)

with ni the refractive index of the medium i. The Fresnel equation for the p-
polarization does not become zero for α1−α2 = 0, since together with the Snellius
law this is only fulfilled for α1 = α2 = 0, which gives by taking the limit:

Rp(0) = lim
α1→ 0

Rp(α1) =
(n1 − n2)

2

(n1 + n2)2
. (6.8)

But if the denominator in equation (6.6b) becomes infinite the reflection for p-
polarized light becomes zero, since the numerator is finite. This case fulfills the
condition:

αB + α′
B

!
=

π

2
, (6.9)

where we have introduced the Brewster’s angle αB, and α′
B as the angle of the

beam inside the medium. The angle α′
B is related to the Brewster’s angle by

Snellius law, which we insert into the condition:

αB + arcsin
[n1

n2

sin αB

]
!
=

π

2
. (6.10)

Taking the cosine and using equation (6.3a), derived in section 6.1, we obtain:

cos
[π

2

]

= 0 = cos
[

αB + arcsin
[n1

n2

sin αB

]]

= cos αB cos
[

arcsin
[n1

n2

sin αB

]]

− sin αB sin
[

arcsin
[n1

n2

sin αB

]]

=
√

1 − sin2 αB

√

1 − n2
1

n2
2

sin2 αB − sin αB
n1

n2

sin αB

n2
1

n2
2

sin4 αB = (1 − sin2 αB)(1 − n2
1

n2
2

sin2 αB) = 1 − sin2 αB(1 +
n2

1

n2
2

) +
n2

1

n2
2

sin4 αB

sin2 αB =
1

1 +
n2

1

n2
2

.

(6.11)
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With the help of the relation between tangent and sine this yields:

tan2 αB =
sin2 αB

cos2 αB

=
sin2 αB

1 − sin2 αB

=
1

1
sin2 αB

− 1

(6.11)

↓
=

1

1 +
n2

1

n2
2
− 1

=
n2

2

n2
1

⇒ tan αB =
n2

n1

.

(6.12)
This is our expression for the Brewster’s angle, stated in equation (3.7).

6.3 Fourier transform and convolution

This section summarizes the Fourier transform and convolution which are used
in the main text for calculating the linewidth of the laser (section 2.2.2) and
for the noise considerations (section 2.4.2). The treatment here can be found in
many books of mathematics with different notations and definitions. Therefore,
we collect the formulas used in this thesis, following mainly [LP98].

The Fourier transform F (ω) ≡ FT [f(t)] of a function f(t) is defined as:

F (ω) ≡ FT [f(t)] ≡ 1√
2π

∫ ∞

−∞
f(t) ee−i ω tdt , (6.13)

and the inverse Fourier transform is:

f(t) ≡ FT−1[F (ω)] ≡ 1√
2π

∫ ∞

−∞
F (ω) ee+i ω t dω . (6.14)

The Fourier transform maps the function from one space to another. In
the previous case, it maps from the time space into the frequency space. This
is very useful when one knows the time evolution of, for example, an electronic
signal and one wants to know which frequencies are related to this signal, or vice
versa2. Another application of the Fourier transform is the solution of differential
equations or to recover filtered signals, for example when the bandwidth of a
detector affects a measurement. Mathematically, this is called the convolution
f(t) ∗ g(t) of the two functions f(t) and g(t) and is defined as:

f(t) ∗ g(t) ≡
∫ ∞

−∞
f(t′)g(t − t′) dt′ . (6.15)

2The Fourier transform of a measured signal can be evaluated numerically with the method
of fast Fourier transform (FFT) which is implemented in many mathematics programs.
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If both of these functions have a Fourier transform F (ω) ≡ FT [f(t)] and G(ω) ≡
FT [g(t)], we can write:

F (ω) G(ω) =
1

2π

∫ ∞

−∞
dt′
∫ ∞

−∞
dt f(t′) g(t) ee−i ω(t+t′) .

Substituting τ ≡ t + t′ for t:

F (ω) G(ω) =
1

2π

∫ ∞

−∞
dt′
∫ ∞

−∞
dτ f(t′) g(τ − t′) ee−i ωτ

=
1

2π

∫ ∞

−∞
dτ f(τ) ∗ g(τ) ee−i ωτ

⇒ FT
[
f(t) ∗ g(t)

]
=

√
2π FT [f(t)] FT [g(t)] .

(6.16)

In the line before the last line, the integrals were exchanged and the definition
of the convolution was inserted. In the last line the variable was changed to t
again. We see that the Fourier transform of the convolution of two functions
is the product of the Fourier transforms of the individual functions. This is
known as the convolution theorem. Therefore, when we know one function, e.g.
the transfer function of the detector g(t), one can recover the other function by
inverse Fourier transform of the convolution of both signals3:

f(t) =
1√
2π

FT−1
[

FT
[
f(t) ∗ g(t)

]
/FT [g(t)]

]

. (6.17)

The cross-correlation f(t) ⋆ g(t) of the two functions f(t) and g(t) is defined as:

f(t) ⋆ g(t) ≡ f ∗(−t) ∗ g(t) =

∫ ∞

−∞
f ∗(−t′) g(t − t′) dt′

= −
∫ −∞

∞
f ∗(t′′) g(t + t′′) dt′′ with t′′ ≡ −t′

=

∫ ∞

−∞
f ∗(t′) g(t + t′) dt′ .

(6.18)

Observe the changed sign and the complex conjugate in the definition of the

3Some problems may arise when one tries this, since small uncertainties in the measurements
may have big effects on the result. Therefore, one usually prefers to fit the obtained convolution
signal by a least squares method.
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cross-correlation. By a similar derivation as before we get:

F ∗(ω) G(ω) =
1

2π

∫ ∞

−∞
dt′
∫ ∞

−∞
dt f∗(t′) g(t) ee−i ω(t−t′)

subst. τ ≡ t − t′ for t:

F ∗(ω) G(ω) =
1

2π

∫ ∞

−∞
dt′
∫ ∞

−∞
dτ f ∗(t′) g(τ + t′) ee−i ωτ

=
1

2π

∫ ∞

−∞
dτ f(τ) ⋆ g(τ) ee−i ωτ

⇒ FT
[
f(t) ⋆ g(t)

]
=

√
2π FT ∗[f(t)] FT [g(t)] .

(6.19)

If the two functions are equal one obtains:

FT
[∫ ∞

−∞
f ∗(t′) f(t + t′) dt′

]

=
√

2π
∣
∣FT [f(t)]

∣
∣
2

, (6.20)

which is known as the Wiener-Kinchin theorem4. It states that the Fourier trans-
form of the so-called autocorrelation function f ⋆f is proportional to the modulus
square of the Fourier transform of the function f. This theorem is very useful,
since the right-hand side of the equation represents the power spectrum of a laser
(see section 2.4).

In equation (6.15) we have defined the convolution of two functions. We
want to consider here some examples of the convolution. The Gaussian and
Lorentzian5 curves. They are good approximations for the frequency distribution
of a laser, and the Lorentz curve also approximates well the transmission of
a Fabry-Perot cavity (Airy function, see equation (2.73)). Thus, when laser
light is transmitted by such a cavity, we effectively measure the convolution of
the laser frequency distribution with the transmission curve of the cavity. The
(normalized) Gaussian and Lorentzian curves are defined as follows:

G(x) ≡ 1
σ
√

2π
exp
[

− (x−µ)2

2 σ2

]

with FWHM ≡ 2σ
√

2 log[2]

L(x) ≡ 1
π γ

1

1+(
x−x0

γ
)2

, with FWHM ≡ 2 γ ,
(6.21)

where µ and σ2 are the mean and the variance of the Gaussian. For the Lorentzian,
neither a mean nor a variance is defined, but x0 is the x-value of the peak and γ
is the half width of the maximum (HWHM). The FWHM denote the full-width-
half-maximum. Without going into the mathematical details, the convolution of

4Named after Norbert Wiener and Aleksandr Yakovlevich Khinchin. Sometimes it is also
spelled Wiener-Kinchine theorem.

5Also known as Cauchy distribution or Breit-Wigner distribution.
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two Gaussian curves is:

G1 ∗ G2 =
1

2π σ1 σ2

∫ ∞

−∞
exp
[

−(ω − ω2 − ∆)2

2 σ2
1

]

exp
[

−(ω − ω2)
2

2 σ2
2

]

dω = · · ·

=
1√

2π
√

σ2
1 + σ2

2

exp
[

− ∆2

2(σ2
1 + σ2

2)

]

, with ∆ ≡ ω2 − ω1,

(6.22)
where we have defined the frequency difference ∆. This result shows that the
convolution of two Gaussian curves leads to another Gaussian curve with a mean
of ∆ = 0 and a variance given by the geometric mean of the two original Gaussian
curves:

σG1∗G2 ≡
√

σ2
1 + σ2

2 . (6.23)

The convolution of two Lorentzian curves gives:

L1 ∗ L2 =
1

π2 γ1 γ2

∫ ∞

−∞

1

1 + (ω−ω2−∆
γ1

)2

1

1 + (ω−ω2

γ2
)2

dω = · · ·

=
1

π (γ1 + γ2)

1

1 + ( ∆
γ1+γ2

)2
.

(6.24)

We get for the convolution of two Lorentzian curves another Lorentzian, with
peak at the frequency ∆ = 0 and a HWHM of the sum of the original HWHM:

γL1∗L2 ≡ γ1 + γ2 . (6.25)

Finally, we want to discuss the convolution of a Lorentzian and a Gaussian curve.
The result is known as the Voigt profile. There is no analytical solution for the
resulting linewidth, but one can numerically perform the integration:

L ∗ G =

∫ ∞

−∞

2

πδL

1

1 + (2 ω−ωG−∆
δL

)2

2

δG

√

log[2]

π
ee
−4 log[2](

ω−ωG
δG

)2
dω = · · ·

=
4

πδG

√

log[2]

π

∫ 1

−1

1

1 + t2
exp
[

−4 log[2]

δ 2
G

(
δL

t

1 − t2
− ∆

)2
]

dt ,

(6.26)

where we defined for simplicity δG ≡ FWHMG and δL ≡ FWHML, and introduced
again the frequency difference ∆ ≡ ωL − ωG. To get this integral, we made the
substitution ω − ωG ≡ t

1−t2
, which makes the boundaries finite6. In figure 2.9,

section 2.2.2, different line profiles and widths are plotted.

6By doing this, the integration time should be shorter according to [Tat06], but with Math-
ematica this integral took 50 % longer than the integral with infinite boundaries. Probably,
the computation of the large number inside the exponential close to the boundaries ± 1 caused
additional computations. One could try to use boundaries which are sufficiently close to ± 1.
In this way one would not loose accuracy, while no large numbers would be generated.



146 Chapter 6. Appendix

6.4 Fitting complex functions

In section 3.3 we measured the transfer function of the laser PDH lock with the
piezo and wanted to fit a model function (3.4) to this data. But this requires
fitting a complex function to the two independent variables, gain and phase.
Since it was not clear from the beginning how to do this, we will present it here.

Basically, we can see the complex function as a vector having two entries,
gain and phase, or a real part and an imaginary part. But none of the computer
programs which we used, Mathematica and Origin, has an available function to
fit a complex function or vectors. Nevertheless, Mathematica has a function that
can minimize an arbitrary function by variation of different parameters. This
is exactly what we need, when we define the cost function χ2, which should be
minimized:

χ2 ≡
N∑

m=1

∥
∥~f(xm, p1, . . . , pN) − ~y(xm)

∥
∥

2 → Minimum . (6.27)

Here the summation is done over the measured data points ~y(xm), with xm the

independent variable (ω in our case), and ~f(xm, p1, . . . , pN) is the function to fit
with the parameters p1, . . . , pN , which should be varied. These are the parameters
we are searching for, like frequency, width, etc. of the piezo resonances. The
previous definition of the cost function corresponds to the definition used for
the commonly known least-squares method, but here it is defined for vectors.
χ2 is the sum of the (squared) distances between the two vectors in the vector

space spanned by all possible vectors ~f(xm, p1, . . . , pN). For this vector space two
definitions have to be made. The first concerns which norm to use. We use the
Euclidean norm:

∥
∥~f(xm)

∥
∥

2 ≡
d∑

i=1

fi(xm)2 , (6.28)

where the summation is performed over the dimensions i of the vector, i.e. 2 in
our case. The fi(xm) are the components of the vector in dimension i. The second
definition we have to make is related to the components of the vector: either gain
and phase, or the real and the imaginary parts of the complex function. It seems
more reasonable to use the real and imaginary parts, since both of these have the
same order of magnitude. Therefore, when calculating the cost function χ2, they
will be equally weighted. Otherwise, if we used the gain and the phase, the gain
might for example range from 0 to 100, while the phase has values from 0 to 2π,
leading to a result mainly focussing on the gain.

The Mathematica function for minimization is ”FindMinimum” and we give
here the code to call this function:

res = FindMinimum[ χ2, {{p1, p
0
1}, . . .}] ,
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with χ2 the cost function defined before. The list {{p1, p
0
1}, . . .} are the parame-

ters for variation, with p0
1 the starting value of the variation. The result is stored

as a list of replacement rules {p17→ . . .} in res. The starting values play a crucial
role, since the variation can only find local minima. Therefore, it is necessary to
use starting values which are already close to the final result. Sometimes it is
necessary to vary them until the result is satisfactory. This is best seen, when
plotting the data with the fitting function.

In general one can say that this scheme of fitting a complex number can be
expanded for arbitrary vectors. In this case, only the norm must be adapted and
the entries in the vector have to be considered. Maybe some weighting has to be
applied in order to account for non-equal ranges. Measurement errors could as
well be included in these weighting factors. For our purpose the fitting worked
well with the given scheme, as can be seen in figure 3.9b). For further information,
see for example [PTVF02].

6.5 Notch filter

In section 3.3.5 we described how two notch filters were built in order to overcome
the resonances of the piezo. Here in this section the transfer function of one notch
filter will be presented. From this we will calculate the resonance frequency and
the full-width-half-maximum. The notch filter is built of a L-C combination in
parallel, with a resistor, according to figure 6.1a). The transfer function is simply

(a)

Uin Uout

C

L
R

(b)

65.3 kHz

2.8 kHz

Figure 6.1: a) Notch filter circuit and b) transfer function. The parame-
ters are L=660µH, C=9 nF, R=3.6 kΩ giving f0=65.3 kHz and
FWHM=2.8 kHz (Q=f0/FWHM=23.3).

obtained by recognizing the notch filter as a voltage divider with the output
voltage:

Uout = Uin
Z2

Z1 + Z2

, (6.29)
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with Z1 the impedances from the input to the output and Z2 the impedance
from the output to ground. For the notch filter the first corresponds to L in
parallel with C and the second to the resistor R. Therefore, the transfer function
G(ω) ≡ Uout/Uin is simply [TS02]:

G(ω) =
R

R + 1
i ω C+ 1

i ω L

=
R

R + i ω L
1−ω2 L C

=
R(1 − ω2 LC)

R(1 − ω2 LC) + i ω L

=
R(1 − ω2 LC)(R(1 − ω2 LC) − i ω L)

R2(1 − ω2 LC)2 + ω2 L2

= (1 − ω2 LC)
1 − ω2 LC − i ω L/R

(1 − ω2 LC)2 + ω2 L2/R2
.

(6.30)

The gain
∣
∣G(ω)

∣
∣ and the phase ϕ(ω) of the transfer function are:

∣
∣G(ω)

∣
∣ =

∣
∣1 − ω2 LC

∣
∣

√

(1 − ω2 LC)2 + ω2 L2/R2
=

1
√

1 + ( ω L/R

1−ω2/ω2
0
)2

(6.31a)

ϕ(ω) = arctan

[
Im
[
G(ω)

]

Re
[
G(ω)

]

]

= − arctan

[
ω L/R

1 − ω2/ω2
0

]

(6.31b)

with ω0 ≡
1√
LC

or f0 ≡
1

2π
√

LC
. (6.31c)

At the resonance frequency ω0, the gain is zero (
∣
∣G(ω0)

∣
∣ = 0). Far off-resonance,

the gain is one and the phase is zero. We define the full-with-half-maximum
(FWHM) as the width of the dip having gain

∣
∣G(ω)

∣
∣ = 1

2
:

1

2
=

1
√

1 + ( ω L/R

1−ω2/ω2
0
)2

⇒
√

3 = ± ω L/R

1 − ω2/ω2
0

0 = 1 − ω2/ω2
0 ± ω

L

R
√

3
= −

( ω

ω0

∓ Lω0

2 R
√

3

)2

+
( Lω0

2 R
√

3

)2

+1

ω

ω0

= ± Lω0

2 R
√

3
±
√

1 +
( Lω0

2 R
√

3

)2

.

(6.32)

We have to consider which of the solutions are positive. These are the following,
and the difference of them is our result:

ω1 = − Lω2
0

2 R
√

3
+ ω0

√

1 +
( Lω0

2 R
√

3

)2

, ω2 = +
Lω2

0

2 R
√

3
+ ω0

√

1 +
( Lω0

2 R
√

3

)2

∆ω = ω2 − ω1 =
Lω2

0

R
√

3
=

1

R C
√

3
⇒ FWHM =

1

2π
√

3 R C
. (6.33)
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Finally, we consider the current flowing through the filter to ground:

IR =
Uout

R
= Uin

G(ω)

R
. (6.34)

The current through the resistor is zero at resonance and maximum (Imax
R =

Uin/R) far off-resonance.

We have seen how the transfer function of a notch filter looks like, how
the inductance and capacitance determine the resonance frequency. The resistor,
together with the capacitance, determine the width of the resonance. The current
flowing through the resistor must be supplied by the source and is maximum far
off-resonance, giving design limitations to the filter.

6.6 CRD for the input beam switched off slowly

In a similar way as the derivation of equation (2.99), in section 2.2.2, we will
derive here how the cavity ring-down (CRD) time is affected if the input field
to a cavity is switched off slowly. Furthermore, the calculations here include
the non-resonant case, leading to interference effects of the input light with the
decaying light from the cavity.

We are interested to study the behavior of the electric field, instead of
the intensity. The transmitted field of a Fabry-Perot type cavity at time t is a
function of the transmitted field before one round-trip Et(t − T ) and the input
field before half the round trip time Ein(t − T/2), with T ≡ 2L

c
the round trip

time. The relation we write:

Et(t) = Et(t − T ) Z ee−i2δ + Ein(t − T/2)
√

T1T2T3 ee−iδ , (6.35)

with Z ≡ T3

√
R1R2 the remaining fraction of the field after one round trip and

δ ≡ ωL
c

the phase accumulated at half the round trip. We assume the change of
the field to be small during one round trip and write down the inhomogeneous
differential equation:

Ėt(t) =
dE

dt
≈ ∆E

∆t
=

1

T

(
Et(t) − Et(t − T )

)

=
c

2L

(

Et(t − T )
(
Z ee−i2δ − 1

)
+ Ein(t − T/2)

√

T1T2T3 ee−iδ
)

≈ − 1

2τ
Et(t) +

1

2τ ′Ein(t − T/2)

with τ ≡ L

c

1

1 − Z ee−i2δ
and τ ′ ≡ L

c

1
√

T1T2T3 ee−iδ
, (6.36)
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where the two time constants τ and τ ′ have been defined. The first of them is
the same as in equation (2.99), which is the cavity decay time for the input light
switched off instantaneously. But here the additional phase factor accounts for
non-resonant light and becomes 1 on resonance.

For the steady state case with Ėt = 0 and Ein(t) = E
(0)
in , the solution is:

0 = − 1

2τ
Et +

1

2τ ′E
(0)
in ⇒ Et =

τ

τ ′E
(0)
in ≡ E

(0)
t . (6.37)

Comparing this result with equation (2.66), in section 2.2.1, shows that both are
exactly the same. We found an alternative way to derive the transmitted field.

The general solution to the previous differential equation (6.36) is:

Et(t) = c(t) ee−t/(2τ)

and c(t) =

∫
1

2τ ′Ein(t − T/2)ee+t/(2τ)dt .
(6.38)

If the input field is switched off at t = −T/2 instantaneously this gives for c(t)
and t ≥ 07:

c(t) =

∫
1

2τ ′Ein(t − T/2)ee+t/(2τ)dt = 0 + c , (6.39)

and from the initial condition we get the integration constant c and the result:

E
(0)
t

!
= Et(t = 0) = c ⇒ Et(t) = E

(0)
t ee−t/(2τ) . (6.40)

This corresponds, not surprisingly, to the result we obtained in equation (2.99),
but here given for the electric field instead of the intensity. Moreover, there is a
phase factor within τ accounting for non-resonant light. This yields an effective
decay time τ̃ , which would be measured from the decay of the intensity with
I(t) = I(0)ee−t/τ̃ . It is obtained by calculating the intensity from equation (6.40),
where we temporarily substitute τ ≡ a + ib for simplicity:

∣
∣
∣exp

[

− t

2τ

]∣
∣
∣

2

=
∣
∣
∣exp

[

− t

2(a + ib)

]∣
∣
∣

2

= exp
[

− t

2(a + ib)

]

exp
[

− t

2(a − ib)

]

= exp
[

− t

2

( 1

a + ib
+

1

a − ib

)]

= exp
[

− t

2

2a

a2 + b2

]

= exp
[

−t
Re
[
τ
]

|τ |2
]

⇒ τ 7→ τ̃ ≡ |τ |2
Re
[
τ
] .

(6.41)

7For times between t = −T/2 and t = 0, the transmitted field is not changed, since the light
needs the time T/2 to travel from the input to the output of the cavity. For times t ≤ 0 the
steady state solution is obtained.
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By inserting the definition of τ , equation (6.36), and defining again some tempo-
rary variables (a1 and b1), we find:

τ =
L

c

1

1 − Z ee−i2δ
≡ L

c

1

a1 + ib1

=
L

c

a1 − ib1

a2
1 + b2

1

|τ |2 =
L2

c2

a2
1 + b2

1

(a2
1 + b2

1)
2

=
L2

c2

1

a2
1 + b2

1

and Re
[
τ
]

=
L

c

a1

a2
1 + b2

1

⇒ τ̃ ≡ |τ |2
Re
[
τ
] =

L

c

1

a2
1 + b2

1

a2
1 + b2

1

a1

=
L

c

1

a1

=
L

c

1

1 − Z cos[2δ]
=

L

c

1

(1 − Z) + 2Z sin2[δ]
with δ ≡ ω L

c
.

(6.42)

For the resonant case with δ an integer multiple of π, this is the same result as
in equation (2.99). Off-resonance, the decay time is reduced.

In the measurement shown in section 3.4.2, figure 3.15, we saw that the
light is switched off exponentially. Therefore, we consider this case:

Ein(t) =

{

E
(0)
in t < −T/2

E
(0)
in ee−(t+T/2)/(2τ0) t ≥ −T/2

, (6.43)

with τ0 the time constant with which the input light is switched off. We perform
the integration in order to obtain c(t) for t ≥ 07:

c(t) =

∫
1

2τ ′Ein(t − T/2)ee+t/(2τ)dt =
1

2τ ′

∫

E
(0)
in ee−t/(2τ0)ee+t/(2τ)dt

=
τ

τ ′E
(0)
in

τ0

τ0 − τ
ee

t
τ0−τ
2 ττ0 + c = E

(0)
t

τ0

τ0 − τ
ee

t
τ0−τ
2 ττ0 + c .

(6.44)

For time t = 0 the starting condition gives the integration constant c:

E
(0)
t

!
= Et(t = 0) = E

(0)
t

τ0

τ0 − τ
+ c

⇒ c = E
(0)
t

(

1 − τ0

τ0 − τ

)

= E
(0)
t

−τ

τ0 − τ
.

(6.45)

The result for the transmitted electric field becomes:

Et(t) = c(t) ee−t/(2τ) = E
(0)
t

1

τ0 − τ

(

τ0 ee
t

τ0−τ
2 ττ0 − τ

)

ee−t/(2τ)

= E
(0)
t

1

τ0 − τ

(

τ0 ee−t/(2τ0) − τ ee−t/(2τ)
)

.
(6.46)

Taking the absolute square yields the final result for the transmitted intensity,
when the input light is switched off exponentially:

It(t) = I
(0)
t

∣
∣
∣

1

τ0 − τ

(

τ0 ee−t/(2τ0) − τ ee−t/(2τ)
) ∣
∣
∣

2

. (6.47)
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On resonance, the time constant τ is real and the modulus square can be simply
replaced by the square. This is the result which is used to fit the measured data
given in figure 3.15 in section 3.4.3.

In the case that τ0 = τ , the above equation is not valid anymore, and we
have to perform the integration of c(t) again, which becomes in this case:

c(t) =
1

2τ ′

∫

E
(0)
in ee−t/(2τ)ee+t/(2τ)dt =

1

2τ ′E
(0)
in t + c =

t

2τ
E

(0)
t + c . (6.48)

From the starting condition we get the result for equal time constants:

E
(0)
t

!
= Et(t = 0) = c ⇒







Et(t) = E
(0)
t

(
1 +

t

2τ

)
ee−t/(2τ)

It(t) = I
(0)
t

∣
∣
∣

(

1 +
t

2τ

)

ee−t/(2τ)
∣
∣
∣

2

.
(6.49)

In figure 6.2a) we give some examples of the decay of the cavity when the
input beam is switched off exponentially. The intensity does not decrease im-
mediately, but it decays smoothly. In figure 6.2b) we have plotted the cavity

(a)
rel.int.

time/µs

τ0 = 0

τ0 =100 ns

τ0 =300 ns

τ0 =500 ns

τ0 =700 ns

(b)

log10[I/Imax]

time/µs

0

1

2
3

4

5

Figure 6.2: CRD with the input field switched off slowly. a) For different τ0

with τ = 100 ns and δ=0. b) Non-resonant decay with the numbers
corresponding δ in units of π/1000. τ = 633 ns and τ0 = 200 ns.

decay for different δ. Interestingly, the decay time can be even further reduced
by setting τ0 to certain values 6= 0. In this case, obviously interferences lead to
an oscillatory behavior of the decaying intensity. In [RESKB02] similar interfer-
ences were numerically modelled and experimentally the cavity decay time was
shortened by applying an appropriate intensity and phase to the input light.
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Notes

If there are important things to mention, like errors, notes or clarifications, they
will be provided in this section.

end of official thesis
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