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Abstract

In this thesis I report on experiments with ultracold molecules and atom pairs in optical
lattice potentials. We combine the capabilities of the optical lattices with two powerful
"tools" used in atom physics: magnetic Feshbach resonances and two-color Raman tran-
sitions. We demonstrate a high degree of control of ultracold lattice gases on the quan-
tum level by both realizing a coherent optical transfer between two molecular states, and
by exploring a so far undiscovered "exotic" bound state, which is caused by the repulsive
interaction between the atoms.
The starting point of the presented experiments is a pure quantum lattice gas of ultra-
cold molecules. This molecular lattice gas is produced by first loading a Bose-Einstein
condensate of 87Rubidium atoms into a three-dimensional optical lattice. We can then
efficiently convert the atoms in doubly occupied lattice sites into molecules by magneto-
association across a Feshbach resonance. With this method the conversion is performed
in a very controlled way and we create the molecules with almost unity efficiency in a
well-defined quantum state.
In the first part of this thesis I report on the demonstration of a coherent optical transfer of
a pure ensemble of ultracold molecules to a deeper bound molecular state via stimulated
Raman adiabatic passage (STIRAP). The key idea of this method is to keep the molecules
in a dark superposition state during the transfer. This state is decoupled from the light
and thus losses due to spontaneous light scattering are suppressed. We are able to test
interferometrically the coherence of this molecular quantum superposition state. These
results represent an important step towards Bose-Einstein condensation of molecules in
the vibrational ground state.
In the second part of this work I report on the discovery of a novel kind of bound object,
consisting of two atoms which repel each other. We create the repulsively bound atom
pairs by dissociating the molecules in the individual lattice sites with the help of a mag-
netic Feshbach resonance. This new type of bound object remains stable because the
large repulsive interaction between the atoms cannot be converted into kinetic energy in
the structured environment of an optical lattice where the phase space for the unbound
constituents is strongly restricted. The lack of dissipation in optical lattices allows the
pairs to be long-lived, and to undergo coherent dynamics on long timescales. Signatures
of the pairs are also recognized in the characteristic momentum distribution and through
spectroscopic measurements. We are able to consistently describe our results with the
Bose-Hubbard model. This is of importance since this model is also the theoretical basis
for many other strongly correlated condensed matter systems and quantum information.
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Introduction

The ongoing success of ultracold gases is largely based on the very high degree of experi-
mental control over the atoms. The internal and external degrees of freedom of the atoms
can be manipulated on the quantum level using light fields, radio frequency and magnetic
fields. The atoms can be prepared in a single quantum state and can be trapped, so that
they are well isolated from the outside world. This leads to long coherence times and al-
lows for studying the coherent dynamics of the atomic ensemble in a pure environment.
A seminal step in the field of the ultracold gases was the realization of Bose-Einstein
condensation (BEC) of dilute atomic gases [ANDERSON et al. (1995); DAVIS et al. (1995);
BRADLEY et al. (1995)]. This step has enabled numerous fascinating experiments in which
fundamental quantum mechanics was studied in a macroscopic and accessible system
(for an overview see [ANGLIN AND KETTERLE (2002)]). The main focus of the early atomic
BEC experiments was thereby to investigate condensate properties of matter waves in
the mean field regime, as described theoretically by the Bogoliubov mean field theory for
weakly interacting quantum gases (for a review see [DALFOVO et al. (1999)]).
In recent years, the use of so-called "optical lattices" opened new exciting possibilities
beyond mean field. The behavior of coherent quantum matter in these periodic light po-
tentials has become a very active research field. The optical lattices are formed by stand-
ing waves of laser light fields. Neutral atoms can be trapped in the intensity maxima (or
minima) of these standing waves due to the optical dipole force (see e.g. [GRIMM et al.
(2000)]). The periodic potential of the light field leads to similar band structure of the
energy spectrum as known from solid state physics. In contrast to "classical" solid state
physics we are able to control the parameters of the lattice and so exactly to control the
dynamics of the atoms in the lattice. Additionally, the lack of dissipation in optical lat-
tices allows the atoms undergo coherent dynamics on long timescales (see e.g. [JAKSCH

AND ZOLLER (2005)]). A strongly interacting lattice gas of ultracold bosonic atoms can
be described by the Bose-Hubbard model [FISHER et al. (1989); JAKSCH et al. (1998)]. An
important prediction of the Bose-Hubbard model is the Mott insulator-superfluid quan-
tum phase transition. This quantum phase transition was first observed experimentally
by GREINER et al. (2002). The Mott-insulator state is characterized by an exact number of
atoms localized at individual lattice sites, with no phase coherence across the lattice.
In our work we investigated quantum states in a three dimensional optical lattice with
exactly two atoms per lattice site. In the pure environment of the optical lattice we have
been able to exactly control and manipulate the external and internal degrees of freedom
of the sample of paired atoms. For that purpose we have used two powerful tools of atom
physics as "control knobs", magnetic Feshbach resonances and stimulated Raman tran-
sitions.
The use of magnetic Feshbach resonances allows both tuning the interaction between the
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Introduction

atoms [INOUYE et al. (1998)] and molecule formation by magneto-association [DONLEY

et al. (2002)]. These possibilities gave rise to a variety of new experiments and break-
throughs in the last years as, e.g., the preparation of pure molecular quantum gases out
of bosonic atoms [HERBIG et al. (2003); XU et al. (2003); DÜRR et al. (2004A)], the experi-
mental creation of molecular Bose-Einstein condensates out of fermionic atoms [JOCHIM

et al. (2003); GREINER et al. (2003); ZWIERLEIN et al. (2003)] and investigations of the
crossover to a strongly interacting fermionic superfluid [CHIN et al. (2004); REGAL et al.
(2004); ZWIERLEIN et al. (2004)].
Stimulated Raman transitions represent another important tool for the manipulation of
ultracold gases. Important applications are, e.g., Raman cooling [DAVIDSON et al. (1994)],
atom interferometry [WEITZ et al. (1994)] and photo-association of molecules in a BEC
[WYNAR (2000)]. Interesting phenomena connected to Raman light fields are coherent
dark states. Since their discovery [ARIMONDO AND ORRIOLS (1976)], dark states have
found numerous applications. Prominent examples are electromagnetically induced trans-
parency [BOLLER et al. (1991)] and lasing without inversion [SCULLY et al. (1989)], slow
light [HAU et al. (1999)] and ultra-sensitive magneto-meters [STÄHLER et al. (2002)]. A
particular application is the coherent transfer of population between two long-lived states
by a stimulated Raman adiabatic passage (STIRAP) (for a review see [BERGMANN et al.
(1998)]).
In our experiments we combined the exciting possibilities of strongly interacting particles
in an optical lattice with the possibilities given by magnetic Feshbach ramping and stim-
ulated Raman transitions. This allowed us to demonstrate a coherent switching between
two molecular quantum states via a stimulated Raman adiabatic passage [WINKLER et al.
(2007)]. The exquisite control over the molecules in a specific ro-vibrational state in the
lattice opens the way to a number of new interesting studies in, for instance, few body
collision physics [CHIN et al. (2005); STAANUM et al. (2006); ZAHZAM et al. (2006)], chem-
istry in the ultracold regime, high resolution spectroscopy, as well as quantum computa-
tion [DEMILLE (2002)] and the creation of a molecular BEC in the molecular ground state
[JAKSCH et al. (2002)].
Moreover, we have been able to explore a so far undiscovered "exotic" bound state, which
is caused by the repulsive interaction between the paired atoms [WINKLER et al. (2006)].
We prepared this bound state by dissociating the molecules in the single sites of the optical
lattice with the help of the magnetic Feshbach resonance. This new type of bound object
remains stable because, in the structured, dissipation free environment of an optical lat-
tice, the large repulsive interaction between the atoms cannot be converted into kinetic
energy. There is no analogue in traditional condensed matter systems of such repulsively
bound pairs, owing to the presence of strong decay channels. Our results exemplified the
strong correspondence between the optical lattice physics of ultracold bosonic atoms and
the Bose-Hubbard model, a link that is vital for future applications of these systems to the
study of strongly correlated condensed matter and to quantum information.
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This thesis is organized as follows:

• The first chapter deals with the production of a pure, ultracold molecular sample in
an optical 3D lattice. This molecular sample was the starting point of two experiments
which represent the main part of this work.
• In the second chapter I discuss the realization of an efficient and highly selective trans-
fer scheme, where an ensemble of 87Rb2 Feshbach molecules in an optical lattice is co-
herently converted to a deeper bound molecular state via stimulated Raman adiabatic
passage (STIRAP).
• In the third chapter I review an experiment where we used the Feshbach molecules in
an optical lattice to create and analyze a quantum state consisting solely of pairs of atoms
in the optical lattice. Consistent with a theoretical analysis, we observed a long lifetime
of these repulsively bound pairs, even under conditions when they collide with one an-
other. We also recognized clear signatures of the pairs in the characteristic momentum
distribution and through spectroscopic measurements.

Publications

The following articles have been published in the framework of this PhD thesis. The full
articles are attached in the appendix.

• Coherent optical transfer of Feshbach molecules to a lower vibrational state.
K. Winkler, F. Lang, G. Thalhammer, P.v.d. Straten, R. Grimm, and J. Hecker Den-
schlag.
Phys. Rev. Lett. 98, 043201, 2007.

• Repulsively bound atom pairs in an optical lattice.
K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A. J. Daley,
A. Kantian, H. P. Büchler, and P. Zoller.
Nature 441, 853, 2006.

• Long distance transport of ultracold atoms using a 1D optical lattice.
S. Schmid, G. Thalhammer, K. Winkler, F. Lang, and J. Hecker Denschlag.
New Journal of Physics 8, 159, 2006

• Long-lived Feshbach molecules in a three-dimensional optical lattice.
G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and J. Hecker Denschlag.
Phys. Rev. Lett. 96, 050402, 2006.

• Atom-molecule dark states in a Bose-Einstein condensate.
K. Winkler, G. Thalhammer, M. Theis, H. Ritsch, R. Grimm, and J. Hecker Denschlag.
Phys. Rev. Lett. 95, 063202, 2005.

• Inducing an optical Feshbach resonance via stimulated Raman coupling.
G. Thalhammer, M. Theis, K. Winkler, R. Grimm, and J. Hecker Denschlag.
Physical Review A 71, 033403, 2005.
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• Tuning the scattering length with an optically induced Feshbach resonance.
M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm and J. Hecker
Denschlag.
Phys. Rev. Lett. 93, 123001, 2004.
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1 Experimental Procedures

The starting point of all the experiments described in my thesis is a pure sample of an
ultracold cloud of 87Rubidium molecules in an three dimensional optical lattice. In this
chapter I will give a short overview about the experimental steps needed to obtain these
ultracold molecules. The single steps can be summarized as follows:

• Pre-cooling and trapping of 87Rubidium atoms in a magneto optical trap (MOT)

• Magnetic transport of the cold atomic cloud into a glass-cell

• Bose-Einstein condensation

• Loading of the Bose-Einstein condensate (BEC) into a 3D optical lattice

• Molecule production by sweeping across a Feshbach resonance

• Purification by removing all remaining unbound atoms

To obtain a pure molecular sample there are several technical requirements to be met. We
need a special experimental apparatus working at ultrahigh vacuum conditions because
at all stages of the experiment the atoms and molecules have to be protected from colli-
sions with background gas. We started to construct this apparatus in 2001 [THEIS (2005);
WINKLER (2002)]. Thereby we followed the design of the Bloch/Esslinger/Hänsch-group
at the LMU in Munich to separate the magneto-optical trap (MOT) chamber from the
place where the Bose-Einstein condensate is created (see Fig. 1.1) [GREINER et al. (2001)].
The big advantage of this design is an exceptionally good optical access from all six orthog-
onal directions at the glass cell (see Fig. 1.1) where all our experiments are carried out.
We need additionally a complex laser- and magnetic field system for cooling, trapping
and manipulating the atoms and molecules. A computer system controls exactly the time
sequences of the different processes.
The technical details of the experimental setup will not be discussed here since they are
already described in previous theses in our group. A detailed description of the vacuum
apparatus and the magnetic transport can be found in the doctoral thesis of Matthias
Theis [THEIS (2005)] and in my diploma thesis [WINKLER (2002)]. The laser system and
the computer control system is reviewed in the thesis of Gregor Thalhammer [THALHAM-
MER (2007)].
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1 Experimental Procedures
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ion getter pump
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1.4 m

1.0 m

Figure 1.1:
Overview of the vacuum system: the left part is the MOT chamber, which is
separated by a differential pumping tube from the XUHV section with the
glas cell. The pre-cooled atoms in the MOT chamber are magnetically trans-
ported into the glass cell where the BEC is produced in a magnetic trap and
all the experiments are carried out.

1.1 Preparation and transport of the cold atomic cloud

In a first step about 3×109 87Rubidium atoms are loaded within 6 s into a magneto-optical
trap (MOT) directly from the background gas and are then cooled further to about 50µK
in a molasses cooling phase. The background gas pressure in the MOT chamber is about
5×10−8 mbar. After optically pumping into the |F = 1,mF = −1〉 electronic ground state
we load the atom cloud into a magnetic quadrupole trap with a gradient of 130 G/cm
in the (strong) vertical direction. Within 1.4 s the atoms are then moved via a magnetic
transfer line over a distance of 48 cm including a 120° corner into a glass cell (for details
see [WINKLER (2002); THEIS (2005)]). The glass cell is at a pressure below 10−11 mbar.
For our magnetic transport (similar to that described in [GREINER et al. (2001)]) 13 pairs
of quadrupole coils are used (see Fig. 1.2). Each of the transfer coils has an inner diam-
eter of 23.6 mm, an outer diameter of 65 mm, and a height of 5.7 mm and consist of 34
windings. They are arranged in two layers above and below the vacuum chamber with a
separation of 50 mm. Peak currents of 75 A are necessary to maintain a vertical gradient of
130 G/cm during transfer. In the glass cell we load the cloud into a Quadrupole-Ioffe con-
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1.2 Bose-Einstein condensation

magnetic
 transport line

differential
pumping tube

MOT-chamber

gate
valve

glass cell

Figure 1.2:
Part of the vacuum apparatus and magnetic transfer line. The drawing
shows how the 13 pairs of transfer coils (red, blue and green), the MOT coil
(yellow, left-hand side), the push coil (green, left-hand side) and the QUIC
trap are arranged around the vacuum chambers.

figuration (QUIC) trap [ESSLINGER et al. (1998)], ending up with typically 4× 108 atoms
at a temperature of about 250µK. All three coils of the QUIC trap are operated at a cur-
rent of 40 A, dissipating 350 W. This results in trap frequencies of ωradial/2π = 150Hz and
ωaxial/2π= 15Hz at a magnetic bias field of 2 G.

1.2 Bose-Einstein condensation

To achieve Bose-Einstein condensation we use forced radio-frequency (rf) evaporation
for a period of 14 s (see Fig. 1.3). About 1 s before reaching Bose-Einstein condensation
we reduce the current through the QUIC trap from 40 A to 30 A to avoid that the trap fre-
quency is a multiple of the 50 Hz power line frequency. We experimentally observed that
this procedure reduces the oscillation of the BEC in the trap considerably.
The Bose Einstein Condensate (BEC) used for our measurements consists typically of
about 5×105 87Rb atoms in the spin state |F = 1,mF = −1〉 [THALHAMMER et al. (2005)].
In principle it is possible for us to obtain BECs with up to 2×106 atoms. However it turned
out that for experiments in optical lattices a smaller number of particles is favorable (see
Sec. 1.3).
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1 Experimental Procedures

Figure 1.3:
Bose Einstein condensation: from left to right the temperature is decreased
by changing the final value of the radio frequency used for the forced evapo-
ration. Left: thermal cloud near BEC transition, center: a BEC is growing out
of the thermal cloud, right: pure BEC of about 1× 106 atoms. These "3d"-
pictures are derived from absorption images (see Sec. 1.5). The peak height
and the color represent the atomic density.

Transport of the Bose-Einstein condensate

After creating the BEC, the QUIC trap is converted into a Ioffe-type magnetic trap with trap
frequencies ωx,y,z = 2π× (7,19,20) Hz by adjusting the currents through the quadrupole
and Ioffe coils and by applying additional magnetic field gradients (see Fig. 1.4) [THAL-
HAMMER (2007)]. This causes the BEC to move over a distance of 8 mm into the center of
the QUIC quadrupole coils which are later used to generate the homogeneous magnetic
field for Feshbach ramping (see Sec. 1.4). It is important that the BEC is exactly in the cen-
ter of the quadrupole coils to minimize the magnetic field gradients of the homogeneous
magnetic field.
To change the position of the BEC, the current in the quadrupole coils is reduced from
30 A to about 14.6 A while we leave the current in the Ioffe coil constant at 30 A. We use ad-
ditional coils (coils 1,2 in Fig. 1.4) in anti-Helmholtz configuration for an exact horizontal
positioning. Because of the strongly reduced trap frequencies of the moved trap, the BEC
considerably sags down (about 2.5 mm). We use a levitation coil, which creates a vertical
gradient, to compensate this sagging of the BEC. In the moved Ioffe-type magnetic trap
we reach a peak density of the BEC of about 4×1013 cm−3.

8



1.3 Optical lattice potential

Quadrupol coil1

Quadrupol coil2

Levitation coil
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coils1 coils2

BEC

8mm

Figure 1.4:
The BEC is moved over a distance of 8 mm into the center of the QUIC
quadrupole coils by adjusting the currents through the quadrupole and Ioffe
coils and by applying additional magnetic field gradients (see text).

1.3 Optical lattice potential

We use an three dimensional optical lattice for the preparation of a pure ultracold molec-
ular sample. The lattice serves several purposes. First, it isolates the molecules from each
other and shields them from detrimental collisions. This allows to create a long-lived sam-
ple also with dimers of bosonic atoms. Second, due to the high trap frequencies in the sin-
gle lattice sites, the matrix elements for atom-molecule coupling are strongly enhanced
allowing an efficient atom-molecule conversion (see Sec. 1.4). Additionally, lattice sites
occupied with exactly two atoms represent a perfectly controlled quantum system which
can be rigorously treated theoretically (see Sec. 3.1). An optical lattice can be created by
superimposing two counter-propagating laser beams which form a standing wave in one
dimension. In the focus of beam the resulting periodic potential has the form

V (r, z) =V0 e−2r 2/w2
0 sin2(klatz), (1.1)

with klat = 2π/λ the wave number. λ is the wavelength of the lattice laser, V0 is the poten-
tial depth of the optical lattice, w0 the beam waist. z is the direction of the beam propa-
gation, r is the radial direction. The potential depth V0 is thereby four times larger than
the depth of the dipole trap without retro-reflection, due to the constructive interference
between the two counter propagating laser beams. V0 can be calculated through
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1 Experimental Procedures

(a) (b)

mirror

Figure 1.5:
(a) A gaussian laser beam forms a standing wave when it gets retro-reflected.
(b) Three superimposed orthogonal standing waves form in the intersection
point a 3D lattice.

[GRIMM et al. (2000)]

V0 ∼ 4× 3πc2

2w 3
0

Γ

∆
I , (1.2)

with c being the speed of light and Γ the line-width of the excited state (which is 2π×
5.9 MHz for 87Rb). ∆ is the relative detuning to the center of the D1 line at λ1 = 795 nm
and D2 line at λ2 = 780 nm. I is the light intensity. Note, that Eq. (1.2) is only valid for
large detunings ∆>> Γ.
The easiest way to implement counter-propagating laser beams is simply to retro-reflect
a single laser beam (see Fig. 1.5).

3D optical lattice

To form a three dimensional lattice three standing waves can be superimposed orthogo-
nally to each other. The resulting microtraps in the intersection point of the laser beams
have a trap frequency of

ωho =
√

2V0k2
lat/m (1.3)

in a harmonic approximation and spacing of a =λ/2 with m the atom mass.
The 3D lattice used for our experiments is cubic and consists of three retro-reflected in-
tensity stabilized laser beams which propagate orthogonally to each other. They are de-
rived from a frequency-stable single-mode Titanium:Sapphire laser (≈ 500 kHz linewidth)
with a wavelength of typically λ = 830.44 nm. For this wavelength, the laser is detuned
by about 100 GHz from the closest transition to an excited molecular level, minimizing
light induced losses as a precondition for long molecular lifetimes [THALHAMMER et al.
(2006)]. The laser beams are polarized perpendicularly to each other, and their frequen-
cies differ by several tens of MHz to avoid disturbing interference effects. The waists of
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1.3 Optical lattice potential

photodiode 1

camera 1

camera 2

absorption 1

absorption 2

= PBS

lattice beam 1 

lattice beam 2 

photodiode 2

mirror

mirror

= fiber outcoupler

Figure 1.6:
Alignment of the lattice beams: We retro-reflect three independent laser
beams to create a 3D optical lattice (shown are only two directions). We
measure the intensity of the lattice beams with photodiodes behind the
retro-reflecting mirrors which transmit 1% of the laser light. The photodi-
ode signal is used to stabilize the lattice laser beam intensity. We overlap, by
using polarizing beam splitters (PBS), all three lattice laser beams with laser
beams for the absorption imaging. After passing the glass cell we separate
the beams again with a second PBS. In this way we are able to independently
observe the BEC in all three directions in space. Additionally we can also de-
tect the lattice laser beams on the CCD-cameras. This has the big advantage
that it is relatively easy to overlap the lattice laser beams with the BEC and
also to control the beam-size.

all three beams are about 160µm. The maximum obtainable power is about 110 mW per
beam, which results in calculated lattice depths up to 40 recoil energies Er. Er = h2/2mλ2,
where h is Planck’s constant. We have verified the lattice depths by measuring the energy
gap between bands of the lattice [HECKER DENSCHLAG et al. (2002)]. The relative uncer-
tainty of our lattice depth is ±10%.
In our experimental setup we overlap, by using polarizing beams splitters (PBS), all three
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1 Experimental Procedures

lattice laser beams with laser beams for the absorption imaging (see Fig. 1.6). After pass-
ing the glass cell the beams are separated again with a second PBS. In this way we are
able to independently observe the BEC in all three directions in space. Additionally we
can also detect the lattice laser beams on the CCD-cameras because a small part of the
lattice laser light arrives after passing the PBS at the camera. This has the big advantage
that it is relatively easy to overlap the lattice laser beams with the BEC and also to control
the beam-size. To create the optical lattice we retro-reflect the laser beams with plane
cavity mirrors which transmit 1% of the laser light. This allows us to measure the inten-
sity of the lattice beams with photodiodes behind the retro-reflecting mirrors. We use the
photodiode signal to stabilize the lattice laser beam intensities.

1.4 Preparation of an ultracold pure molecular sample

In this section I will describe how we prepare an ultracold pure molecular sample in a 3D
lattice. "Pure" means that the individual sites of the lattice are either empty or filled with a
single molecule. "Ultracold" means that the molecules are in the vibrational ground state
of the lattice.
To produce the molecules in the lattice we sweep across a so-called magnetic Feshbach
resonance [STÖFERLE et al. (2006); THALHAMMER et al. (2006); VOLZ et al. (2006); OS-
PELKAUS et al. (2006)]. The key feature of this experimental technique is the adiabatic
transfer of the scattering state of two atoms into the highest excited diatomic vibrational
bound state (for an excellent review of molecule production with Feshbach resonances
see [KÖHLER et al. (2006)]). The basic concept can be seen in Fig. 1.7: the scattering state
of two free atoms crosses a bound state at a certain magnetic field strength. A coupling
between the two states leads to an avoided crossing. By changing slowly enough the exter-
nal homogeneous magnetic field, the scattering state can be transferred adiabatically into
the bound state and vice-versa. The probability of creating a molecule is given by [KÖHLER

et al. (2006)]

Pmol = 1−exp

(
−2

p
6ħ

ma3
ho

∣∣∣∣abg∆B

Ḃ

∣∣∣∣
)

, (1.4)

where abg = 100.5 a0 is the background scattering length, ∆B = 0.21 G the width of the

Feshbach resonance and Ḃ the ramp speed at the Feshbach resonance. aho = √ħ/mωho

is the harmonic oscillator length, with ωho the trap frequency.

Experimental realization

In order to prepare an ultracold pure molecular sample, the atomic BEC is first adiabat-
ically loaded into a 35 Er deep 3D optical lattice within 100 ms. Afterwards we turn off
the magnetic trap and by suddenly reversing the bias magnetic field of a few Gauss, we
flip the spins of our atoms to the high field seeking state |F = 1,mF = +1〉 with an effi-
ciency higher than 99%. This state features a Feshbach resonance at 1007.4 G [VOLZ et al.
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Figure 1.7:
Schematic illustration of the molecular association of a pair of 87Rubidium
atoms via a downward magnetic field sweep in a spherical harmonic atom
trap with an trapping frequency ofωho = 2π×39kHz. This value corresponds
to the trap frequency for Rubidium atoms in the sites of an optical lattice
with a depth of 35 Er and a wavelength λ = 830 nm. The dashed lines in-
dicate the vibrational levels (v = 0, . . . , 6) of the harmonic trap and the
energy Er es(B) of the bound state without a coupling between the states.
With the coupling (solid lines) we observe avoided crossings whereas the
molecular bound state is connected with the lowest vibrational state. Pic-
ture from KÖHLER et al. (2006).

(2003)]. Afterwards, we ramp up a homogeneous magnetic field in 3 ms to about 1015 G
using the QUIC quadrupole coils in Helmholtz configuration [THALHAMMER et al. (2006)].
The fast diabatic crossing of the Feshbach resonance has basically no effect on the atoms
in the lattice. This means that the atoms remain in the vibrational ground state of the
lattice. Afterwards we slowly ramp in 5 ms from 1015 G to 1000 G crossing the Feshbach
resonance at 1007.4 G. Molecules are adiabatically produced in the multiply occupied lat-
tice sites. At this stage typically 10-20% of the condensate atoms are grouped in pairs of
two into the lattice sites. 50-60% of the condensate atoms are found in singly occupied
sites, and another 20-30% of atoms are located in triply and more highly occupied lattice
sites [THALHAMMER et al. (2006)]. Note, that these values strongly depend on the den-
sity of the BEC and trap parameters like the radial confinement of the lattice laser beams.
We observed for a smaller atom number N in the BEC, corresponding to lower density
nBEC (0) ∝ N 2/5 [DALFOVO et al. (1999)], a decreasing number of atoms in triply and more
highly occupied lattice sites while the number of atoms in singly and doubly occupied
lattice sites increases.
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Figure 1.8:
Adiabatic association and dissociation of Feshbach molecules: After ramp-
ing the magnetic field to about 1013 G, we ramp the field in 2.5ms to a vari-
able hold value Bh as shown in the left hand side inset. Crossing the Fesh-
bach resonance at 1007.4 G (dashed lines), we observe a decrease in atom
numbers (red triangles). If we ramp the magnetic field back over the Fesh-
bach resonance (right hand side inset in Fig. 1.8) we observe a reappearing
of a part of the "missing" atoms (blue squares). This number corresponds to
atoms in doubly occupied lattice sites which form molecules after the first
Feshbach ramp and are dissociated again with second ramp. We attribute
the irretrievable loss of certain number of the atoms (difference between red
triangles and blue squares at Bh > 1007.4) to inelastic collisions involving
molecules for sites initially occupied by three or more atoms.

Adiabatic association and dissociation of Feshbach molecules

We can investigate the number of atoms which are located in singly, doubly or multiply
occupied lattice sites by an adiabatic association and dissociation of Feshbach molecules.
The data in Fig. 1.8 are measured as follows [THALHAMMER (2007)]: after ramping the
magnetic field to about 1013 G, we ramp the field in 2.5 ms to a variable hold value Bh , as
shown in the left hand side inset in Fig. 1.8. Crossing the Feshbach resonance at 1007.4 G
(dashed vertical line), we observe a decrease in atom numbers. If we ramp the magnetic
field back over the Feshbach resonance (right hand side inset in Fig. 1.8) we observe a
reappearance of a part of the "missing" atoms. This number corresponds to the atoms in
doubly occupied lattice sites in which molecules are formed after the first Feshbach ramp.
We can dissociate these molecules into atoms with near unity efficiency by ramping back
over the Feshbach resonance [THALHAMMER et al. (2006)]. We attribute the irretrievable
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Figure 1.9:
Purification scheme: We apply a combined microwave and light pulse at a
magnetic field of 1000 G for 3 ms. (a) The microwave drives the transition at a
frequency of 9113 MHz between levels which correlate with |F = 1,mF =+1〉
and |F = 2,mF = +2〉. (b) The light pulse drives the closed transition |F =
2,mF = +2〉 → |F ′ = 3,mF = +3〉. Plotted is the magnetic field dependence
of the 5P3/2 excited state. The optical transition frequency is 1402 MHz blue
detuned compared to the transition at zero magnetic field.

loss of certain number of the atoms to inelastic collisions involving molecules for sites ini-
tially occupied by three or more atoms. Therefore, after the Feshbach ramp the remaining
occupied sites each contain either a single atom or a single molecule.
We observe that reducing the atom number of the BEC leads to higher fraction of atoms
in doubly occupied sites but not to a higher absolute number. Therefore we work in our
experiments normally with large BECs with ∼ 5−10×105 atoms to maximize the molecule
number. However, optimizing the trap parameters for a given atom number would lead to
a higher percentage of doubly occupied sites even for large BECs and therefore also would
improve the absolute molecule number.

Purification scheme

In order to create a pure molecular sample, we have developed an advanced purification
scheme to remove all the single atoms that are not bound in molecules [THALHAMMER

et al. (2006)]. This scheme combines the great selectivity of microwave excitation with
the high efficiency of atom removal through resonant light pressure [XU et al. (2003)]. We
apply a combined microwave and light pulse at a magnetic field of 1000 G for about 3 ms.
The microwave drives the transition at a frequency of 9113 MHz between levels that cor-
relate with |F = 1,mF =+1〉 and |F = 2,mF =+2〉.
We use a microwave waveguide as antenna. The waveguide has the form of a rectangular
tube (∼ 1.5×3×15cm) which is open at one side. We supply this waveguide with a 2 Watt
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amplifier (for details see [THALHAMMER (2007)]). The light pulse drives the closed transi-
tion |F = 2,mF = +2〉 → |F ′ = 3,mF = +3〉 (see Fig. 1.9). The optical transition frequency
is 1402 MHz blue detuned compared to the transition at zero magnetic field. We find the
optimum light intensity by increasing the intensity until no more atoms can be detected
after the combined pulse.
The direct effect of the microwave and light field pulse on the molecules is negligible
because the radiation is off resonance. As an indirect effect, however, we find that we
lose about 40% of the molecules, probably due to inelastic collisions with the blown away
atoms. Further losses are not observed in subsequent purification pulses. We end up with
a pure molecular sample formed from about 10% of the initial atoms, which corresponds
to typically 3×104 molecules.
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2hk

a b

Figure 1.10:
Typical time of flight (∼ 15ms) absorption pictures of: (a) A BEC, released
from a magnetic trap. (b) Atoms released from an optical three dimensional
lattice. For this measurement the lattice is ramped down from a lattice depth
of 35 Er to zero in about 2 ms. The momentum distribution of the atoms,
which is fully contained in a cube of width 2ħk, corresponds to the first Bril-
louin zone of the lattice. This demonstrates that the atoms are in the vibra-
tional ground state of the lattice sites. For a typical time of flight of 15 ms,
the width of Brillouin zone corresponds to width of about 165µm.

1.5 Measurement of atom and molecule numbers

Atom numbers are measured in our experiment with absorption imaging [KETTERLE et al.
(1999)] at low magnetic fields (≈ 2 G) after release from the optical lattice and typically
15 ms of ballistic expansion. The absorption imaging investigates the shadow an atom
cloud casts onto our CCD camera when we illuminate the cloud with a near resonant
laser beam.
We apply the near resonant absorption laser beam for 100µs. This beam drives the closed
transition |F = 2〉 → |F ′ = 3〉 at B ∼ 0 G. We detune the absorption laser beam from the
atomic resonance typically by 0 to 15 MHz, depending on the atom numbers, to avoid a
saturation effect [THEIS (2005)]. We simultaneously apply a repumping laser beam which
drives the transition |F = 1〉 → |F ′ = 1〉 in order to transfer the atoms from the hyperfine
state |F = 1〉, which we use normally for our experiments, to state |F = 2〉. Both laser
beams are linearly polarized. In order to determine molecule numbers, the molecules
are first dissociated into atoms by slowly ramping back across the Feshbach resonance
and then quickly switching off the magnetic field. The atoms can then be detected as de-
scribed before.
We also use absorption imaging to map out the band occupation of the lattice. For this
purpose, the lattice is ramped down in 2 ms and we typically observe a momentum distri-
bution, which is fully contained in a cube of width 2ħk (see Fig. 1.10 (b)), corresponding
to the first Brillouin zone of the lattice [GREINER et al. (2001)]. This demonstrates that
atoms and molecules are in the vibrational ground state of the lattice sites (a detailed dis-
cussion of atoms in the ground state of an optical lattice can be found in Sec. 3.1).
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2 Coherent Optical Transfer of Feshbach
Molecules to a Lower Vibrational State

Since molecules have more internal degrees of freedom than atoms, ultracold molecules
lend themselves to an even larger number of interesting studies in, for instance, few body
collision physics [CHIN et al. (2005); STAANUM et al. (2006); ZAHZAM et al. (2006)], chem-
istry in the ultracold regime, high resolution spectroscopy, as well as quantum compu-
tation [DEMILLE (2002)]. Furthermore, molecules in their vibrational ground state are
of special interest, because they allow the formation of an intrinsically stable molecular
BEC. Current pathways towards ultracold molecules in well-defined quantum states are
either based on sympathetic cooling [DOYLE et al. (2004)] or association of ultracold neu-
tral atoms, using photoassociation [JONES et al. (2006)] or Feshbach resonances [KÖHLER

et al. (2006)]. The method of Feshbach ramping has proved especially successful and ef-
ficient, but it only produces molecules in the least bound vibrational level. In order to se-
lectively convert molecules into more deeply bound states, it has been proposed [JAKSCH

et al. (2002)] to use a sequence of stimulated optical Raman transitions to step molecules
down the vibrational ladder. This process takes place while the molecules are kept in an
optical lattice, which isolates them from each other and thus shields them from detrimen-
tal collisions.
In the experiments described in this chapter, we realized an efficient and highly selective
transfer scheme, where an ensemble of 87Rb2 Feshbach molecules in an optical lattice
is coherently converted to a deeper bound molecular state. This chapter is organized as
follows: First I give a basic introduction to the scheme we use to transfer the molecules
to a deeper bound state. This transfer is based on an optical Raman transition and is
called "STImulated Raman Adiabatic Passage (STIRAP)". Then I describe the experimen-
tal setup for the measurements presented in this chapter. Afterwards I show spectroscopy
measurements which we performed to identify a suitable excited molecular state for STI-
RAP and discuss the observation of molecular dark resonances with a long lifetime. These
long-living dark states are a necessary precondition for our STIRAP experiments. Sub-
sequently I review the successful experimental realization of population transfer of the
molecules with STIRAP and discuss the adiabaticity of the process. After that I present
an interferometrical test of the coherence of a molecular superposition state and shortly
discuss the lifetime of the molecules in both vibrational states. In the outlook I discuss
the possibility to use STIRAP to transfer molecules to the vibrational ground state of the
singlet and triplet potential.
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2 Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State

laser 2 laser 1

|b〉

Ω2 Ω1

|g 〉
|a〉

∆

δ

Figure 2.1:
Simple three level system for STIRAP: |a〉 and |g 〉 are the electronic ground
states, |b〉 is an excited state. These states are coupled with laser fields. Ω1,2

denote the corresponding Rabi frequencies. ∆ and δ are the laser detunings
(see text).

2.1 Stimulated Raman Adiabatic Passage

The stimulated Raman adiabatic passage (STIRAP) is known as a fast, efficient and robust
process for population transfer based on a Raman transition [BERGMANN et al. (1998)].
The idea of STIRAP is to keep the molecules during the transfer in a dark superposition
state, which decouples from the light and thus suppresses losses due to spontaneous light
scattering.
The possibility of an efficient population transfer by appropriate delayed laser pulses was
first recognized by OREG et al. (1984) in a theoretical work and is closely connected with
the observation of dark states in 1976 [ARIMONDO AND ORRIOLS (1976)]. The first exper-
imental realization of population transfer with STIRAP was demonstrated in the group of
Klaas Bergmann at the university of Kaiserslautern [GAUBATZ et al. (1988)]. Gaubatz et
al. showed an efficient excitation of molecules to specific high vibrational states when the
molecules are flying through two displaced laser beams.
The method of population transfer with STIRAP can be understood with a relatively sim-
ple three level system [KUKLINSKI et al. (1989)], as discussed in the following:

Three level system

We label the three levels with |a〉, |b〉 and |g 〉 (see Fig. 2.1). |a〉, |g 〉 are electronic ground
states while |b〉 is an excited state. State |a〉 is coupled with a laser field (laser 1) to state
|b〉 and state |g 〉 is coupled with another laser field (laser 2) to state |b〉.
∆+δ= (Ea −Eb)/ħ−ω1 is the detuning of the laser 1 from the resonance of the |a〉 → |b〉
transition. δ = (Ea − Eg )/ħ− (ω1 −ω2) is the two photon detuning. ω1 and ω2 are the
frequencies of the corresponding laser fields.
We can write the Hamilton matrix, which describes the coupling of the three states by two
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2.1 Stimulated Raman Adiabatic Passage

coherent radiation fields, within the rotating wave approximation (RWA) [SHORE (1990)]

H =ħ
 0 Ω1/2 0
Ω1/2 (∆+δ) Ω2/2

0 Ω2/2 δ

 (2.1)

The coupling strength between the states is determined by the time dependent Rabi fre-
quenciesΩ1(t ) andΩ2(t ), while the detuning from the intermediate state or from the two-
photon resonance appears as the elements on the diagonal. The Rabi frequencies Ω1(t )
andΩ2(t ) are given by

Ω1,2(t ) = d1,2E1,2(t )

ħ , (2.2)

where E1,2(t ) is the time dependent electric-field amplitude of the corresponding laser
field (= E1,2(t )sin(ω1,2t )). d1,2 is the corresponding transition dipole matrix element.
The evolving system can be described by the time dependent Schrödinger equation

iħ d

dt
|ψ〉 = H |ψ〉 (2.3)

where

|ψ(t )〉 =
a(t )

b(t )
g (t )

 (2.4)

is a vector of time dependent probability amplitudes a(t ),b(t ), g (t ). The absolute square

Pn(t ) = |n(t )|2 (2.5)

provides the probability of finding the system at time t in state |n〉 (n = a,b, g ), with P (t ) =
|a(t )|2 +|b(t )|2 +|g (t )|2 = 1.
Losses from the intermediate state |b〉 to other states out of the system are treated simply
by including an imaginary decay rate in the Hamilton matrix (2.1):

H =ħ
 0 Ω1/2 0
Ω1/2 (∆+δ)− iγb/2 Ω2/2

0 Ω2/2 δ

 (2.6)

The resulting Hamiltonian (2.6) is non-Hermitian. However, within the Schrödinger equa-
tion it provides correct results if the molecules do not decay from |b〉 into the states |a〉 and
|g 〉 but into states out of the system [BERGMANN et al. (1998)]. To a very good approxima-
tion this is the case in our experiments.
A more complete description, allowing decay into |a〉 and |g 〉, requires a treatment based
on the density-matrix formalism [SHORE (1990)].
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2 Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State

Dark States

A very interesting property of the three level system coupled with a coherent radiation
field is the existence of a dark state [ARIMONDO AND ORRIOLS (1976)]. This dark state
|ψDS〉 is an eigenstate ("Dressed State") of the three level system and fulfils

iħ d

dt
|ψDS〉 = H |ψDS〉 = E |ψDS〉. (2.7)

When the two photon detuning is zero (δ= 0), equation (2.7) has the following solution:

|ψDS〉 = 1√
Ω1

2 +Ω2
2

(
Ω2|a〉−Ω1|g 〉

)
. (2.8)

The dark state is a coherent superposition of state |a〉 and |g 〉, which has no contribution
of the "leaky" state |b〉 and so ideally does not decay. The presence of a detuning ∆ 6= 0
does not prevent a dark state. The stationary eigenvector (2.8) has a constant eigenenergy
E which is independent of the Rabi frequencies and a detuning ∆ (see Sec. 2.5).

Population transfer with STIRAP

STIRAP is a method to coherently transfer population between states without losses. Dur-
ing the transfer the population is kept always in a dark state, which is at all times free of
any contribution from the leaky state |b〉 [BERGMANN et al. (1998)]. The procedure can be
explained with formula (2.8):
Let’s assume that the population is initially in state |a〉. The state |a〉 is in a dark state
|ψDS(t )〉 if the probability

PDS(t = 0) = ∣∣〈a
∣∣ψDS

〉∣∣2 = 1. (2.9)

To fulfil this condition, initially only laser 2 (Ω2), which couples state |g 〉 with state |b〉,
has to be switched on. Subsequently we can transfer the population from |a〉 to |g 〉 by
adiabatically changing the Rabi frequencies Ω1(t ) and Ω2(t ) (see Fig. 2.2), keeping the
population always in a dark superposition state. At the end of the process only laser 1 has
to be on, so that the probability is unity to find all the molecules in state |g 〉:

PDS(tend ) = ∣∣〈g
∣∣ψDS

〉∣∣2 = 1. (2.10)

This scheme seems to be ”counterintuitive” because initially there is no population in |g 〉
or |b〉, and so laser 2 does not change the population. However this does not mean that
laser 2 has no effect. In fact, this laser creates a coherent superposition of the two unpop-
ulated states |g 〉 and |b〉. This coherent superposition state is then coupled to the popu-
lated state |a〉 by ramping up laser 1. By adiabatically changing the Rabi frequencies the
population is transferred from |a〉 to |g 〉 without transfer population to the radiative de-
caying intermediate state |b〉. The criteria for the adiabaticity of the process are discussed
in detail in Sec. 2.5.
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Figure 2.2:
(a) ”Counterintuitive” pulse sequence. (b) Population transfer as a function
of time. In the absence of losses a 100% population transfer is possible. The
data are results from numerical calculations using the Schrödinger equa-
tion (2.7).
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Figure 2.3:
(a) Level scheme for STIRAP. Lasers 1, 2 couple the ground state molecular
levels |a〉, |g 〉 to the excited level |b〉with Rabi frequenciesΩ1 andΩ2, respec-
tively. ∆ and δ denote detunings. (b) Zeeman diagram of relevant energy lev-
els. At 1007.4 G a molecular state crosses the threshold of the unbound two
atom continuum (dashed line) giving rise to a Feshbach resonance. From
there this molecular state adiabatically connects to the last bound vibra-
tional level |a〉, the state of the Feshbach molecules.

2.2 Experimental Setup

Preparation of an ultracold ensemble of Feshbach molecule

The starting point for our STIRAP experiments is a pure ensemble of typically 2−3×104

ultracold 87Rb2 Feshbach molecules which are held in the lowest Bloch band of a cubic 3D
optical lattice (for details see Sec. 1.4). There is no more than a single molecule per site
and the whole molecular ensemble occupies a volume of about 20×20×20µm3. The lattice
is 50 Er deep for molecules1 (Er = 2π2ħ2/mλ2, where m is the mass of the atoms and λ=
830.44nm the wavelength of the lattice laser), suppressing tunneling between sites. The
molecular ensemble is initially produced from an atomic 87Rb Bose-Einstein condensate
(BEC) after loading it into the lattice, subsequent Feshbach ramping at 1007.40 G [VOLZ

et al. (2003)] and a final purification step which removes all chemically unbound atoms
(see Sec. 1.4).

1The molecules experience twice the dipole potential compared to atoms.
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Figure 2.4:
Setup for the STIRAP experiments: we illuminate a cloud of ultracold
molecules with Raman laser light pulses to coherently transfer them to a
deeper molecular state. The molecules are held in a three dimensional lat-
tice (plotted is only a lattice beam in one direction). The polarization of the
Raman light is parallel to the magnetic field of 973 G.

Experimental three level system

In our experiment we transfer Feshbach molecules with a STIRAP pulse from their last
bound vibrational level to the second to last bound vibrational level. We label for conve-
nience the state of the Feshbach molecules |a〉 and the deeper molecular bound state |g 〉.
The excited molecular state is labeled with |b〉 (see Fig. 2.3). The Feshbach molecules in
state |a〉 have a binding energy of ∼ 24 MHz×h (below a magnetic field of about 1000 G),
the second to last bound vibrational level |g 〉 has a binding energy of 637 MHz×h at 973 G.
Both levels have a rotational quantum number l = 0 and a total spin F = 2,mF = 2. The
level |g 〉 is known from previous experiments [WYNAR et al. (2000); ROM et al. (2004);
THALHAMMER et al. (2005); WINKLER et al. (2005)].

Setup for the population transfer

In order to transfer the Feshbach molecules to the second to last bound vibrational level
|g 〉 we illuminate the molecules in the optical lattice with Raman laser light pulses (see
Fig. 2.4).
To detect the more deeply bound molecules in |g 〉, a second STIRAP pulse converts the
molecules back to the last bound vibrational level |a〉, where they are detected as atoms
after dissociation via Feshbach ramping (for details see Sec. 1.5).
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2 Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State

Raman laser beam generation

The Raman laser beams used for the STIRAP process are both derived from a single Ti-
tanium Sapphire laser (model 899-01 from Coherent) with a short term line-width of less
than 1 MHz. The Titanium Sapphire (Ti:Sa) laser is offset locked relative to the D2-line
of atomic rubidium with the help of a scanning optical cavity, which yields an absolute
frequency stability of better than 5 MHz (for details of the locking scheme see [HELLWIG

(2005)]). The frequency difference between the two beams is created with an acousto-
optical modulator (AOM) with a frequency of about 307 MHz in a double-pass configu-
ration (see Fig. 2.5). This allows precise control of the relative frequency difference be-
tween the beams over several tens of MHz and ensures phase-locking. By changing the
RF-power used for the AOM we are able to control the relative intensity between the two
laser beams. Both beams propagate collinearly and have a waist of about 290µm at the
location of the molecular ensemble. The polarization of the beams is parallel to the direc-
tion of the magnetic bias field (∼ 1000G).
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Figure 2.5:
Raman laser beam generation: The frequency difference between the two
beams (∆ν ∼ 614 MHz) is created with an AOM with a frequency of about
307 MHz in a double-pass configuration. The zero (0.) and first (1.) diffrac-
tion order of the incoming laser beam, which is derived from a single Ti-
tanium Sapphire laser, are retro-reflected independently, after collimating
them again with a second lens. The reflected first order beam gets diffracted
again re-passing the AOM. The frequency of the resulting beam (1.1.) is
changed by two times the AOM frequency. The beam (1.1.) is collinear with
the zero order of the reflected zero order beam (0.0.). Passing two times the
λ/4 plate, the polarization of the beams gets changed by π/2. This method
allows us to spatially separate the two lasers beams (1.1. + 0.0.) from the in-
coming beam at the polarizing beam splitter (PBS) without losses. For a per-
fect spatial overlap of the two beams we couple them into the same optical
fiber. By changing the RF-power used for the AOM we are able to control the
relative intensity between the two laser beams. The maximum reachable
power ratio between the (0.0.) and (1.1.) beam after the optical fiber is in
the case of an optimal alignment about 1:1000. We measure the intensities
of both beams with a photodiode.
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Figure 2.6:
The molecular excited state potentials of 87Rb2 relevant to this experiment.
The Hund’s case (a) labels are shown at short range, the Hund’s case (c) labels
are shown for long range [JONES et al. (2006)]. For our experiments we use
a level of the shallow upper 0−

g long range potential (inset). Figure adapted
from [WYNAR (2000)]

2.3 Finding the "right" excited state

In order to efficiently carry out STIRAP, a suitable excited molecular level, |b〉, has to be
identified. Finding a ”good” excited molecular level can be difficult because not only a
strong coupling between the ground and excited state is needed, but also a level which
has no other excited states in the direct vicinity. This is because coupling to other excited
molecular states leads to a loss of the molecules, since these levels typically decay spon-
taneously into a variety of undetected vibrational levels in the ground state.
After testing several levels of the 0−

g long range potential (see Fig. 2.6) for their suitabil-
ity, we finally chose the electronically excited molecular state |0−

g ,ν = 31, J = 0〉 located

6.87cm−1 below the S1/2+P3/2 dissociation asymptote [FIORETTI et al. (2001)]. This line is
strong and solitary, i.e. within a 2 GHz vicinity no other strong molecular lines are found
which could interfere with STIRAP (see Fig. 2.7).
The coupling of an optical molecular transition crucially depends on the Franck-Condon
factor2, i.e. the square of the overlap between initial and final vibrational wavefunctions

2The dipole matrix element d for an optical molecular transition is given in a first approximation (and for
an allowed transitions) by the value for the atomic transition times the square root of the Franck-Condon
factor.
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Figure 2.7:
One color spectrum as a function of the one photon detuning (δ+∆). The ab-
sorption line at (δ+∆)/2π= 0 is the exited molecular state |0−

g , J = 0, v = 31〉
which we are using for our experiments. A positive detuning (δ+∆> 0) cor-
responds to a higher frequency ("blue" detuning) and a negative detuning
(δ+∆< 0) to a lower frequency ("red" detuning). The inset is a zoom on the
weaker lines in the red.

[JONES et al. (2006)]. For STIRAP it is advantageous that the chosen level |b〉 has a similar
Franck-Condon overlap with states |a〉 and |g 〉. This can be understood as follows:
Let’s assume that the Franck-Condon overlap |g 〉 → |b〉 is by a factor of 100 smaller than
|a〉 → |b〉. The power of laser 2 would have to be increased by a factor of 10000 to get the
same Rabi frequencies Ω1 and Ω2, since the Rabi frequency scales with the root of the
laser intensity. However, laser 2 also couples state |a〉 to the short-lived excited molecular
state |b〉 with a detuning δ1, with δ1 the frequency difference of the two laser beams (see
Fig. 2.8). This coupling leads to a loss of the molecules. The corresponding loss rate is
given by

γ= Ω2
off ·γb

γ2
b +4δ2

1

, (2.11)

for Ωoff < γb , with γb the decay rate of the excited state [METCALF AND VAN DER STRATEN

(2002)]). Ωoff is given byΩoff = d1 ·E2/ħ. In this numerical exampleΩoff is 100 times larger
than Ω1 because E2 = 100·E1. Therefore, the loss rate γ is 10000 times stronger as in the
case of equal Franck-Condon factors because γ∝Ω2

off. For small frequency difference δ1

of the two Raman lasers, as it is the case for our experiments (δ1/2π≈ 614 MHz), this loss
channel cannot be neglected.
But also in the case of a larger frequency difference of the two Raman lasers this could be a
limiting factor, because a coupling to other molecular states of the excited state potentials
is possible (see Fig. 2.8). The state |0−

g ,ν = 31, J = 0〉 was the best state we found to fulfill
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δ1

δ1

δ2

|g 〉

|b〉

laser2 laser1

|a〉

laser2

laser1

|x〉

Figure 2.8:
Losses due to an assignment problem: laser 2 couples off-resonantly |a〉 →
|b〉 and laser 1 |g 〉→ |b〉. The detuning δ1 is equal to the frequency difference
of the two laser beams. Also a coupling to other excited molecular states has
to be considered. Such a possible other excited state is labeled in this plot
with |x〉. Laser 2 has a detuning δ2 relative to this state.

all our requirements although ∼ 2.0GHz to the blue is another strong line and ∼ 1GHz to
the red is the first of bundle of weak lines (see Fig. 2.7).
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Figure 2.9:
Dark resonance. The data show the remaining fraction of Feshbach
molecules in state |a〉, after subjecting them to a 200µs square pulse of Ra-
man laser light, as a function of the two-photon detuning δ. The strong sup-
pression of loss at δ = 0 is due to the appearance of a dark state. The laser
intensities are I1 = 2.6mW/cm2, I2 = 51mW/cm2. The solid line is a fit curve
with model (2.13).

2.4 Dark Resonances

With the choice of states |a〉, |b〉, |g 〉, we observe a clear molecular dark resonance when
coupling them with resonant Raman laser light (see Fig. 2.9). The data in Fig. 2.9 and
Fig. 2.10 show the remaining fraction of Feshbach molecules in state |a〉, after subject-
ing them to a 200µs square pulse of Raman laser light, as a function of the two-photon
detuning δ. The strong suppression of loss at δ = 0 is due to the appearance of a dark
state. ∆ is in general tuned close to zero and for the shown measurements happens to be
∆/2π ≈ 2.5MHz, which gives rise to the slightly asymmetric line shape of the dark states
(see Fig. 2.10). The corresponding molecular dark superposition states at δ = 0 shows
a long lifetime of several ms for typical intensities used in our measurements. This is a
necessary precondition for our STIRAP experiments, because the molecules have to be
kept in a dark state during the whole STIRAP process, which in our case typically takes
hundreds of µs.

Extended three level model

We are able to understand the measured data by using an extended three level model in
which we include, in contrast to Eq. (2.6), also decay of the molecular ground states |a〉
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Figure 2.10:
Zoom on the dark resonance of figure 2.9 (red dots). For a direct com-
parison, the black crosses are measured with a different intensity I2 =
13mW/cm2. The laser intensity I1 = 2.6mW/cm2 is equal for both measure-
ments. ∆ is in general tuned close to zero and for the shown measurements
happens to be ∆/2π ≈ 2.5MHz, which gives rise to the slightly asymmetric
line shape of the dark states. The solid line is a fit curve with model (2.13).
For γb À Ω2 the width of the dark state is approximately given by Ω2

2/γb ,
corresponding to power broadening [WINKLER et al. (2005)].

and |g 〉:

H =ħ
−iγa/2 Ω1/2 0
Ω1/2 (∆+δ)− iγb/2 Ω2/2

0 Ω2/2 δ− iγg /2

 (2.12)

The evolving system is described by the time dependent Schrödinger equation (2.3). We
can then write the quantum mechanical probability amplitudes a, b, and g for a molecule
in the respective states |a〉, |b〉 and |g 〉 in terms of the following set of differential equations
which we solve numerically with the program MATLAB:

i ȧ = (−iγa/2)a − 1
2Ω1b,

i ḃ = [
(∆+δ)− iγb/2

]
b − 1

2 (Ω1a +Ω2g ),

i ġ = (δ− iγg /2)g − 1
2Ω2b.

(2.13)

Here, the Rabi frequenciesΩ1,Ω2, the detunings ∆ and δ are defined as shown in Fig. 2.3.
γb = 2π ·12MHz is the decay rate of the excited molecular state |b〉. The effective de-
cay rates γa ,γg are intensity dependent and are mainly due to the coupling of |a〉 with
laser 2 and |g 〉 with laser 1 (see Fig. 2.11). We determine γa (γg ) by shining laser 2 (laser 1)
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Figure 2.11:
(a) We determine the loss rates γa and γg , which are caused by an assign-
ment problem (see Fig. 2.8), by shining laser 2 on the molecules in state |a〉
and laser 1 on the molecules in state |g 〉, after preparation of the molecules
in the respective states. The losses are treated in our model (2.13) as inten-
sity dependent loss rates γa,g of the molecular states |a〉 and |g 〉 (see text).
(b) Measured time dependent losses shining laser 2 on the molecules in state
|a〉 (red dots) and laser 1 on the molecules in state |g 〉 (blue diamonds).
The intensity of the corresponding laser beam is for both measurements
I1,2 = 0.15 W/cm2 . We fit the data with an exponential decay, exp(−t ·γa,g ),
where γa,g is intensity dependent (∝ I2,1).

on the molecules in state |a〉 (|g 〉) after preparation of the molecules in the respective
states (see Sec. 2.5) and measuring the time dependent losses. We fit the data with an
exponential decay, exp(−t ·γa,g ), where γa,g is intensity dependent (∝ I2,1). We find that
γa/I2 = 2π×0.72kHz/(W cm−2) and γg /I1 = 2π×0.40kHz/(W cm−2). Fitting similar spec-
tra as shown in Fig. 2.9, 2.10 we are able to obtain accurate values for the Rabi frequen-
cies: Ω1 = 2π× 2.9MHz(I1/(W cm−2))1/2 and Ω2 = 2π× 6.0MHz(I2/(W cm−2))1/2. From
these independent measurements, all parameters of Eqs. (2.13) are determined without
further adjustable parameters.
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Figure 2.12:
STIRAP: (a) Counterintuitive pulse scheme. Shown are laser intensities as a
function of time (laser 1: dashed line, laser 2: solid line). The first STIRAP
pulse with length τp = 200µs transfers the molecule from state |a〉 to state
|g 〉. After a holding time τh = 5ms, the second pulse (identical, but reversed)
transfers the molecules back to |a〉. I max

1,2 indicates the maximal intensity of
laser 1 (2) in the pulse, respectively. (b) Corresponding population in state
|a〉 (data points, solid line) and state |g 〉 (dashed line). The data points are
measurements where at a given point in time the STIRAP lasers are abruptly
switched off and the molecule population in state |a〉 is determined. For
these measurements ∆ ≈ 0 ≈ δ. The lines are model calculations (see text).
(c) Efficiency for population transfer from state |a〉 to state |g 〉 and back via
STIRAP as a function of the two photon detuning δ. The line is a model
calculation, showing a Gaussian line shape with a FWHM width of ≈ 22kHz.

2.5 Population transfer with STIRAP

In order to transfer the molecules from state |a〉 to state |g 〉, we carry out a STIRAP pulse
which consists of a succession of two phase locked laser pulses (see Fig. 2.12 (a)). We first
switch on laser 2 and then ramp its intensity to zero within the pulse time τp = 200µs. Si-
multaneously we ramp up the intensity of laser 1 from zero to its final value. We fix the
ratio of the maximal pulse intensities of laser1 and 2 to I max

2 /I max
1 = 1/3.2 in order to par-

tially compensate for the unequal Franck-Condon factor of the |a〉 → |b〉 and |g 〉 → |b〉
transitions. Ideally, after the first STIRAP pulse all molecules from state |a〉 should end
up in state |g 〉. In order to determine the population in state |g 〉, we apply, after a holding
time of τh = 5ms, a second STIRAP pulse which is the mirror image in time of pulse 1. This
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Figure 2.13:
Efficiency for population transfer from state |a〉 to state |g 〉 and back with
two STIRAP pulses. (a) Efficiency versus the laser intensity I max

2 (fixed
pulse length of τp = 200µs). (b) Efficiency versus the pulse length τp

(fixed laser intensity I max
2 = 44mW/cm2). For (a) and (b) the intensity ratio

I max
2 /I max

1 = 1/3.2. The lines are from calculations without free parameters
using Eqs. 2.13. Setting γa = γg = 0, the efficiency would reach unity for a
fully adiabatic transfer (dashed lines). Using for γa ,γg the experimentally
determined values, the calculations (solid lines) are in good agreement with
the data.

transfers the molecules back into state |a〉. We then ramp the magnetic field over the Fes-
hbach resonance at 1007.4G which dissociates the molecules with unit efficiency [THAL-
HAMMER et al. (2006)] into pairs of atoms. These are subsequently detected with standard
absorption imaging. Figure 2.12 (b) shows in a time resolved way how molecules in state
|a〉 first disappear and then reappear during the course of the STIRAP sequence. After
applying the first STIRAP pulse, no molecules can be observed in state |a〉. This is to be
expected, since any molecule which is left over in state |a〉 at the end of the first STIRAP
pulse is in a bright state and will be quickly removed by resonantly scattering photons
from laser 1. This confirms, that after completion of the second STIRAP pulse we only
detect molecules that were previously in state |g 〉. We observe an efficiency of 75% for the
full cycle of conversion into state |g 〉 and back. Figure 2.12 (c) shows how this efficiency
depends critically on the two photon detuning δ. The lines in Fig. 2.12 (b) and (c) are
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2 Coherent Optical Transfer of Feshbach Molecules to a Lower Vibrational State

model calculations without free parameter (see Eq. (2.13)). In the calculations the time
dependent pulse shapes (see Fig. 2.12(a)) are included.
In Figure 2.13 we investigate further the complete STIRAP cycle efficiency as a function
of the laser intensity and pulse length. In these measurements we use pulses with the
same shape as in Fig. 2.12(a), which are re-scaled to adjust pulse time τp and laser inten-
sity. Again, for the best settings we reach an efficiency of about 75% for the two pulses,
which corresponds to a transfer efficiency to state |g 〉 of about 87%. The dependence of
the efficiency on intensity and pulse length can be qualitatively understood as follows.
For short pulse lengths or low intensities, the dark state cannot adiabatically follow the
STIRAP pulse, resulting in a low transfer efficiency. For very long pulse lengths and high
intensities the losses due to an imperfect dark state become dominant, also resulting in a
low transfer efficiency. Thus in order to find an optimum value for the transfer efficiency
there is a trade-off between adiabaticity and inelastic photon scattering. The agreement
between theory and experiment is very good as we are able to consistently describe all
data in Figs. 2.9, 2.12 and 2.13 with a single set of parameters.

Adiabaticity of STIRAP

An insufficient coupling by the coherent radiation fields may prevent the state vector |ψ〉
from adiabatically following the evolution of the dark state |ψDS〉, and loss of population
due to non-adiabatic transfer to the bright states |ψ+〉 and |ψ−〉 may occur [BERGMANN

et al. (1998)]. |ψ±〉 are the two other "eigenstates" of our three level system, which are
linear combinations of the three bare states |a〉, |b〉 and |g 〉:

|ψ+〉 = sinΘsinΦ|a〉+cosΦ|b〉+cosΘsinΦ|g 〉,
|ψ−〉 = sinΘcosΦ|a〉− sinΦ|b〉+cosΘcosΦ|g 〉. (2.14)

The dark state has in this notation the form

|ψDS〉 = cosΘ|a〉− sinΘ|g 〉. (2.15)

The anglesΘ andΦ are defined as

tanΘ= Ω1

Ω2
, (2.16)

tan2Φ= 2·Ωe f f

∆
, (2.17)

withΩ1,2(t ) the time dependent Rabi frequencies,∆ the one photon detuning andΩe f f =√
Ω2

1 +Ω2
2 the effective Rabi frequency. The Hamiltonian matrix element for non-adiabatic

transfer between state |ψDS〉, which carries the population and evolves in time, and either
one of the states |ψ+〉 or |ψ−〉 is given by α = 〈

ψ±
∣∣ψ̇DS

〉
[MESSIAH (1990)]. α character-

izes the rotational speed of the eigenaxes of the corresponding Hamiltonian (2.1). Non
adiabatic coupling is small if∣∣∣α

ω

∣∣∣2
¿ 1, (2.18)
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Figure 2.14:
STIRAP. (a) Gaussian pulse shapes Ω2,1(t ) = Ωmax exp(−(t ± t0)2/d 2) with d
the pulse width and 2· t0 the time delay between the two pulses. (b) Split-
ting of the eigenvalues: For Gaussian pulse shapes the optimum time delay
is equal to the pulse width, 2t0 = d . In this case the splitting ω of the eigen-
states is optimized to fulfil the adiabatic criterion (2.19). (c) The population
in the starting level |a〉 and final level |g 〉.

where ω = |ω± −ωDS| is the "Bohr frequency" of the transition |ψDS〉 → |ψ±〉 [MESSIAH

(1990)]. ω± = ∆±
√
∆2 +Ω2

1 +Ω2
2 and ωDS are the dressed state eigenvalues of the three

level system (2.1). ωDS is constant (normally set to zero) for all times and is independent
of the Rabi frequencies Ω1 and Ω2 (see Fig. 2.14 (b)). For a ∆ = 0 the separation of the
corresponding eigenvalues ω is given by the effective Rabi frequency Ωeff. α can be cal-
culated from Eqs. (2.14) and (2.15), resulting in α=−Θ̇sinΦ. Setting sinΦ= 1 and using
Eq. (2.16) the condition (2.18) can be written in the form [BERGMANN et al. (1998)]∣∣∣∣∣Ω̇1Ω2 −Ω1Ω̇2

Ω2
1 +Ω2

2

∣∣∣∣∣¿|ω|. (2.19)

When the laser pulses have a smooth shape, a convenient ”global” adiabaticity criterion
may be derived from (2.19) by taking a time average of the left-hand side. This procedure
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Figure 2.15:
Calculated population transfer efficiency for ∆= 0 as a function of the pulse
area Ω̃eff ·τp . The STIRAP pulse length τp is 100µs, a typical value used in
our experiments. For a γb = 2π×12MHz one has to increase the mean effec-
tive Rabi frequency Ω̃eff by a factor of about 100 slower for being adiabatic
(solid curve on the right) compared to the case where γb = 0 (solid curve
on the left). The solid lines are calculated from numerical simulations using
model (2.6). The red dashed line is a calculation with formula (2.21).

leads to the condition [BERGMANN et al. (1998)]

Ω̃eff ·τp > 10, (2.20)

where Ω̃eff ·τp = ∫ τp

0 dt
√
Ω1(t )2 +Ω2(t )2 is the STIRAP pulse area, with τp is the pulse time.

The numerical value of 10 is obtained from numerical simulations (see Fig. 2.15) assum-
ing Gaussian pulse shapesΩ1,2(t ) =Ωmax1,2 · exp(−(t∓t0)2/d 2) with d the pulse width and
2t0 the time delay between the two pulses. For Gaussian pulse shapes the optimum time
delay is equal to the pulse width, 2t0 = d . In this case the splitting ω of the eigenstates is
optimal (see Fig. 2.14).
However, Eq. (2.20) is only valid for Ω̃eff À γb , where γb is the decay rate of the excited
state |b〉. In the adiabatic limit state |b〉 never gets populated and its decay is irrele-
vant. However, if the decay rate becomes sufficiently large compared to the splitting of
the eigenstates adiabaticity breaks down and the transfer efficiency of STIRAP decreases.
Hence, the transfer has to be much slower for being adiabatic. This is the case for our
experiments where Ωe f f is typically smaller than γb . Numerical simulations with the ex-
tended Hamiltonian matrix (2.6), which includes the decay rate γb of the excited state,
show for the case Ω̃eff < γb that we have to be slower by a factor of about 100 to be adia-
batic compared to the case where γb = 0 (see Fig. 2.15). In the limit of Ω̃2

eff ·τp À γb an
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Figure 2.16:
Calculated population transfer efficiency as a function of the STIRAP pulse
area Ω̃eff ·τp . In contrast to Fig. 2.15, intensity dependent loss (γa,b ∝ I2,1) is
included. The population transfer efficiency is calculated for various STIRAP
pulse lengths τp : 1µs (left), 10µs (middle), and 100µs (right). ∆ is set to zero.
The maximum reachable population transfer remains constant. For this cal-
culation we included the measured intensity dependent loss rates γa,g (see
Sec. 2.4).

approximate analytic solution is given by [VITANOV AND STENHOLM (1997)]:

Pg (tend ) = exp(− π2

p
2

γb

Ω̃2
eff ·τp

), (2.21)

where Pg (tend ) is the transferred population after the STIRAP pulse sequence. One could
now assume that the best strategy to reach high transfer efficiencies is to use Rabi frequen-
cies larger than γb . This would increase the splitting of the eigenvalues and one could
again reduce the pulse area (see Fig. 2.14 (b)). However, additionally to the decay rate of
the excited state, also losses due to spontaneous light scattering play a role for the ”real”
STIRAP, as pointed out already in Sec. 2.4. Hence, the gain in adiabaticity by using larger
Rabi frequencies is compensated by a higher loss due to the light scattering, as shown
in Fig. 2.16, since the loss rates γa,g scale with the intensity of the laser beams (see e.g.
Eq. (2.13)). Therefore, we find that the maximum reachable population transfer remains
constant.
A detuning ∆ 6= 0 does not prevent STIRAP, but causes a weaker splitting ω of the eigen-
values. Thus, the population transfer efficiency decreases for an increasing one photon
detuning∆ at a constant Rabi frequency and pulse length. In Fig. 2.17 we simulate this sit-
uation for Gaussian pulses shapes with a maximum Rabi frequencyΩmax1,2 = 2π×1MHz,
a pulse length τp of 100µs (pulse area Ω̃e f f ·τp ≈ 500) and without off resonant losses. For
a ∆ÀΩmax1,2 the population transfer efficiency decreases ∝ 1/∆2. Therefore, normally
the best choice is a detuning ∆ of zero, as it was the case for our STIRAP experiments.
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Figure 2.17:
Transferred population as a function of the detuning∆, calculated for Gaus-
sian pulses shapes with a maximum Rabi frequency Ωmax1,2 = 2π× 1MHz
and a pulse length τp of 100µs. The decay rate γb of the excited state is
γb = 2π×12 MHz. The decay rates γa,g are set to zero for this simulation. The
pulse area Ω̃eff ·τp ≈ 500, which leads to a 80% population transfer efficiency
for ∆= 0 (see also Fig. 2.15). The values for Ωmax1,2 and τp are comparable
with the ones used in our STIRAP experiments.
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Figure 2.18:
Coherence of the (|a〉−|g 〉) superposition state. Shown is the molecule num-
ber in state |a〉 as a function of holding time τh for different detunings δ as
indicated. The oscillations indicate coherent flopping of the molecular su-
perposition state between the dark and a bright state. The lines are given by
1/2× (exp(−τh/τ)cos(δ ·τh)+1), with a damping time τ= 2ms.

2.6 Testing the Coherence

During STIRAP the molecules are in a quantum superposition,Ω2|a〉−Ω1|g 〉, which is dy-
namically evolving with the intensities of the lasers. In order to probe the coherence of
this superposition, we perform a Ramsey-type experiment. First, we create a dark super-
position state with equal population in the two states,

ψ≈ 1p
2

(|a〉− |g 〉), (2.22)

by going halfway into the first STIRAP pulse of Fig. 2.12 (a)3. We then simultaneously
switch off both STIRAP lasers for a variable holding time τh. After the hold time we switch
the lasers on again and retrace in time the same STIRAP half pulse. As a result we observe
oscillations in the number of molecules in level |a〉 as a function of the holding time τh

3(2.22) is valid even for a two-photon detuning δ 6= 0 simply because the fraction which is not in the dark
state decays. However, δ has to be small compared to the width of the dark resonance so that the losses
are negligible.
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(see Fig. 2.18). The interference signal is calculated in a straightforward manner [WEITZ

et al. (1994)]: During the holding time, the superposition state ψ freely evolves:

ψτh = e−i H/ħτhψ= (|a〉−e iδτh |g 〉)/
p

2. (2.23)

H is the Hamiltonian matrix in the rotating frame ("dressed state picture") without light
interaction (Ω1 =Ω2 = 0) and is given by

H =ħ
0 0 0

0 ∆+δ 0
0 0 δ

 , (2.24)

with δ= (Ea −Eg )/ħ−(ω2−ω1) the two photon detuning. Calculate the probability to find
ψτh in a dark state after the hold time τh , we find that for a δ 6= 0,ψτh is coherently flopping
between the dark and a bright state with a frequency equal to the two-photon detuning δ:

〈ψτh |ψDS〉 = 1

2
(〈a|−e iδτh〈g |)(|a〉− |g 〉) = 1

2
(1+e iδτh ). (2.25)

At the end of the hold time, when we switch on again the STIRAP lasers, the dark state
is subsequently transferred back to state |a〉 whereas the bright state will be immediately
destroyed by the light and leads to complete loss of the corresponding molecules. The
measured molecule number in |a〉 after the second STIRAP pulse is the absolute square
of (2.25):

|〈ψτh |ψDS〉|2 = 1

2
(1+e iδτh )× 1

2
(1+e−iδτh ) = 1/2× (1+cos(δτh)). (2.26)

With a two photon detuning δ = 0 (Fig. 2.18 (a)) we observe no oscillations because the
phase of ψτh evolves equal to phase of the light field and the superposition state is always
in a dark state. However, we observe for all the different detunings δ in Fig. 2.18 a damp-
ing on a time scale of about 2 ms. This damping can be explained due to a dephasing
which is caused by a magnetic field inhomogeneity of about 20 mG over the molecular
cloud. This inhomogeneity leads to a spatial variation of 2π×250Hz in the two-photon
detuning δ. Therefore, the molecules in different lattice sites "see" a different two photon
detuning δ and so each molecule is flopping differently between dark and bright state (see
Eq. (2.26)). The observed population in the dark state is then an average of single oscilla-
tions, as indicated in Fig. 2.19.
Additionally we observe a slight shift of the oscillation frequency with time on the order
of 2π×50Hz/ms. This can be attributed to a small drift of the magnetic field (∼ 5mG/ms)
during the measurements. We suspect a power line problem of our power supplies, which
leads to an oscillatory noise on the magnetic field, to be the origin of this drift. An in-
dependent measurement of this magnetic field noise (see [THALHAMMER (2007)]) agrees
with the drift observed in these coherence measurements.
The black line shown in Fig. 2.19 is an average of 20000 calculated oscillations, each with
a different detuning δ. The different detunings are chosen from a normal distribution
with mean δ̃ and a standard deviation of σ= 100 Hz. The mean value δ̃ includes the time
dependent frequency shift and is δ̃/2π= (1.48−0.05/ms×τh) kHz. The red data points in
Fig. 2.19 are the same as used in Fig. 2.18 (b).
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Figure 2.19:
Population in the dark state as function of time: A magnetic field inho-
mogeneity of ∼ 20mG over the molecule cloud leads to different two pho-
ton detunings δ (indicated with the green lines) for different lattice sites
causing a ”damping” due to dephasing. The black line is an average of
20000 oscillations, each with a different detuning δ. The different detunings
are chosen from a normal distribution with mean δ̃ and a standard devia-
tion of σ = 100 Hz. The mean value δ̃ includes the frequency shift and is
δ̃/2π = (1.48− 0.05/ms× τh) kHz. The red data points in Fig. 2.19 are the
same as used in Fig. 2.18 (b).
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Figure 2.20:
Zeeman shift of the excited molecular state |b〉: We determine the data
points by measuring the resonance frequency of the one photon transition
|a〉 → |b〉 for different magnetic fields and afterwards subtracting the Zee-
man shift of the molecular state |a〉 (upper blue line) from the measured
resonance frequencies. The resulting data-points are constant with the mag-
netic field. This means that the shift of the resonance frequency can be
mainly attributed to the Zeeman shift of the molecular state |a〉. Conse-
quently the excited state |b〉 does not shift with the magnetic field (within
the error bars). The dashed red line corresponds to the energy of the dis-
sociation threshold. The lower blue line corresponds to a state |u〉 with
the quantum numbers (F=2,F=2),v=-5,l=0,mF = 2 assigned at zero magnetic
field [MARTE et al. (2002)].

2.7 Additional measurements

2.7.1 Zeeman shift of the excited molecular state

We measure the magnetic field dependence of the resonance frequency of one photon
transition |a〉→ |b〉 to determine the Zeeman shift of the excited molecular state |b〉. This
measurement provides an additional hint that |b〉 is a state of the |0−

g 〉 potential. The data-
points shown in Fig. 2.20 are determined as follows:
We measure the resonance frequency of one photon transition for different magnetic
fields. Afterwards we subtract the Zeeman shift of the molecular state |a〉 from the mea-
sured resonance frequencies. The resulting data are constant with the magnetic field, as
one can see in Fig. 2.20. This means that the shift of the resonance frequency can be
mainly attributed to the Zeeman shift of our molecular state |a〉 (upper blue line). Conse-
quently the excited state |b〉 does not shift with the magnetic field (within the error bars).
This is what we expect from a |0−

g 〉 state because of its zero magnetic moment (Ω = 0,
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where Ω is the projection of the total electronic angular momentum J = L+S along the
internuclear axis. L and S are the total orbital angular momentum and the total electron
spin, respectively. Ω is a good quantum number for Hund’s case c, which is valid for this
long range potential [JONES et al. (2006)]).
Because of the zero magnetic moment, the spectrum of the pure long range state |0−

g 〉 has
also no hyperfine splitting (see Fig. 2.7), while states with Ω > 0 have a first order hyper-
fine structure.
The magnetic field dependence of the bound state energies (blue solid lines in Fig. 2.20) is
calculated with a FORTRAN code obtained from Paul Julienne (NIST) which uses a Fourier
grid method. The magnetic field dependence of the dissociation threshold, which corre-
sponds to the energy of two atoms in the high field seeking state |F = 1,mF = 1〉, is calcu-
lated with the Breit-Rabi formula (dashed red line in Fig. 2.20).

2.7.2 Magnetic field dependence of the two photon resonance
frequency

The dark resonance (see Sec. 2.4) is an ideal tool to measure the two-photon resonance
frequency because their position is independent on the laser intensities and on the one
photon detuning ∆. We use this tool to measure the data points in Fig. 2.21 (a). We ob-
serve that the measured two-photon resonance frequencies ν, which correspond to the
energy difference of the state |a〉 and |g 〉 divided by the Planck’s constant h, are not con-
stant if we change the magnetic field. This variation of ν is caused by the coupling of state
|a〉 and |u〉 (see Fig. 2.21 (c)).
We can model the dependence of measured resonance frequenciesνwith a Landau-Zener
model which determines the two-level dressed state energies [KÖHLER et al. (2006)]

E± = E1 +E2

2
±

√
(E2 −E1)2 + (2hΩau)2

2
. (2.27)

The energy E1 = Ea0 −Eg = hν0 is the energy difference of the bare state |a0〉 and state
|g 〉 (see Fig 2.21 (c)). ν0 denotes the unperturbed two photon resonance frequency which
is constant because the bare state |a0〉 and state |g 〉 have the same magnetic moment.
E2 = Eu0−Eg = E1+µr el · (B−B0) is the energy of the bare state |u0〉 relative to |g 〉. B0 is the
magnetic field position of the avoided molecule-molecule crossing and is B0 ≈ 1001.7G
[DÜRR et al. (2004A)]. µr el = µu0 −µa0 is the relative magnetic moment between the
bare state |u0〉 and the bare state |a0〉. µr el is calculated independently with a program
from Paul Julienne (NIST) which provides the bound state energies using a Fourier grid
method and is µr el = h × 3.9 MHz/G. 2hΩau is the energy splitting of the two dressed
states |a〉 and |u〉. The data analysis results to a splitting 2Ωau = (12±0.5)MHz and ν0 =
(613.035±0.025)MHz. The errors correspond to a 95% confidence interval. The value for
Ωau roughly agrees with a measurement of the Rempe-group at the Max-Planck institute
in Garching (2Ωau = 13MHz [DÜRR et al. (2004A)]), and with a measurement for which we
use a radio frequency transition between the two states to determine the energy splitting.
This really precise measurement gives a splitting 2Ωau = 13.32MHz.
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Figure 2.21:
(a) Two photon resonance frequency ν as a function of the magnetic field
(B − B0). B0 ∼ 1001.7 G is the magnetic field position of the avoided
molecule-molecule crossing of the bare states |a0〉 and |u0〉 below the
Feshbach resonance (see (c)). The data are fitted with a Landau-Zener
model (2.27) (red solid lines). The upper red solid line asymptotically ap-
proaches the horizontal dashed line at ν = ν0 = 613.035MHz. The verti-
cal dashed line shows the position of another molecule-molecule crossing
which prevents a further ramping to lower magnetic field values. (b) The
solid line is the derivative of the curve in (a). At a magnetic field value of
973 G (∼= −29G), at which we normally do our STIRAP measurements, the
dependence of the two-photon resonance frequency on the magnetic field
is about 10 kHz/G. (c) Definition of the energies E+,− and E1,2. The black dot
indicates the position of the Feshbach resonance.
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Figure 2.22:
Measured coupling strength cab (≡Ω1/(2π× I 1/2

1 )) of the one photon transi-
tion |a〉 → |b〉 as a function of the magnetic field. At ∼ 1006G the coupling
strength is by a factor of about twenty weaker than for magnetic fields lower
than 1000 G.

The solid line in Fig. 2.21 (b) is the derivative of the curve in (a). At a magnetic field
value of 973 G (∼=−29G in Fig. 2.21), at which we normally do our STIRAP measurements,
the dependence of the two-photon resonance frequency on the magnetic field is about
10 kHz/G.

2.7.3 Magnetic field dependence of the coupling strength

On the avoided molecule-molecule crossing, which is located below the Feshbach reso-
nance at 1007.4 G (see Fig. 2.20), the coupling strength of the transition |a〉→ |b〉 is modi-
fied because of the mixing of the two molecular states |a〉 and |u〉. The mixing changes the
wavefunction of the molecules and therefore also the Franck-Condon factor of the transi-
tion, i.e. the square of the overlap between initial and final vibrational wavefunction. This
is shown in Fig. 2.22: on the avoided crossing the measured coupling strength of the one
photon transition |a〉→ |b〉 strongly depends on the magnetic field. At a magnetic field of
e.g. B ∼ 1006G the coupling strength is by a factor of about twenty weaker than for mag-
netic fields lower than 1000 G (see Fig. 2.22).
The coupling strengths in Fig. 2.22 are defined as cab =Ω1/(2π · I 1/2

1 ), whereΩ1 = 2π ·cab · I 1/2
1

is the Rabi frequency of the transition |a〉→ |b〉 and I1 the intensity of the corresponding
laser beam. cab is directly related to the dipole matrix element d and is

cab = 1

2π ·ħ

√
2

c·ε0
|d1|. (2.28)

This follows fromΩ1 = d1 ·E1/ħ and I1 = c·ε0|E1|2/2, with c being the speed of light and ε0

the vacuum permittivity.
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Figure 2.23:
Lifetime of the molecules in state |g 〉 (blue points) and state |a〉 (red points)
at a lattice depth of 60 Er for molecules. The continuous lines are expo-
nential fits to the data indicating a lifetime of τg = 750(±110) ms and τa =
410(±70) ms for the molecules in state |g 〉 and |a〉, respectively. The error
corresponds to a 95% confidence interval for the fit parameters τa,g .

We determine the data in Fig. 2.22 by measuring the intensity I1 and the Rabi frequency
Ω1. I1 can be determined by measuring the beam power and the beam size at the position
of the molecular cloud. Ω1 can be determined from the molecular loss rate γloss at the
one photon resonance position at δ = 0 (see Fig. 2.7). The loss rate γl oss ≈ Ω2

1/γb for
Ω1 ¿ γb and δ= 0 [METCALF AND VAN DER STRATEN (2002)]. For a given length tp of the
laser light pulse, the number of remaining particles N at the resonance position δ = 0 is
given by N (t ) = N0 − Nloss = N0 · exp(−γl oss · tp ). N0 and Nl oss can be determined from
Lorentzian fits to one color spectra similar to the one shown in Fig. 2.7. The Lorentzian
fit model has the form N = N0 −Nl oss · w 2/(4δ2 +w 2), with δ the detuning from the one
photon resonance (for∆= 0, see Fig. 2.3) and w the width of the resonance. The coupling
strength cab is then given by

cab =
√

ln

(
N0

N0 −Nloss

)
·

γb

tp · I1 · (2π)2
. (2.29)

2.7.4 Lifetime measurements

For a measurement of the lifetime of the molecules in state |g 〉, the molecules are first
transferred from |a〉 to |g 〉 and after a variable hold time in state |g 〉 they are transferred
back to |a〉. This can be done by varying the time between the two STIRAP pulses (see
Fig. 2.12 (a)). Immediately afterwards the molecules in state |a〉 are dissociated into atoms
and then the optical lattice and the magnetic bias field are quickly switched off. The atoms
are detected with absorption imaging as described in Sec. 1.5.
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Figure 2.23 shows the measured lifetimes of the molecules in state |g 〉 and state |a〉 for a
lattice depth of 60 Er for molecules. The hold time is limited to below 300 ms due to the
heating up of the coils which produce the homogeneous bias field of about 1000 G. At the
lattice depth of 60 Er for molecules, we observe a lifetime τg of ∼ 0.8 s for the molecules in
state |g 〉 (assuming exponential decay), which is longer than the lifetime τa of ∼ 0.4 s for
Feshbach molecules in state |a〉. At these deep lattices molecular decay is exclusively due
to inelastic scattering of lattice photons.
The lattice laser light, which leads to the mentioned inelastic scattering of photons, has a
wavelength of 830.44 nm. For this wavelength, the laser is detuned by about 100 GHz from
the closest transition to an excited molecular level (for details see [THALHAMMER (2007)]).
The difference between the lifetimes τg and τa can be explained by a weaker coupling of
state |g 〉 with the lattice laser light to the nearest excited molecular states.
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2.8 Outlook for experiments with ultracold molecules

Using STIRAP we have demonstrated a coherent transfer of a molecular quantum gas from
a weakly bound molecular level to a more deeply bound molecular level with a high trans-
fer efficiency of 87%. The method can be in principle extended in a straight forward man-
ner to create arbitrarily deeply bound molecules. Indeed, it seems to be very promising to
transfer the Feshbach molecules to the vibrational ground state (v = 0) of the triplet po-
tential a3Σ+

u (see. Fig. 2.24) with a single STIRAP transition. The molecules in the triplet
ground state could be stable under collisions because of their pure triplet character. A
relaxation to vibrational states of the singlet potential should be strongly suppressed be-
cause of angular momentum conservation in a collision of two triplet molecules. The
stability of the molecules under collision is crucial for the creation of a molecular Bose-
Einstein condensate. Such a molecular BEC could be created by adiabatically ramping
down the optical 3D lattice, if the molecules are in a Mott insulator state. The Mott insula-
tor can be melted and a superfluid state of molecules can be directly created, as proposed
by JAKSCH et al. (2002). Also in the case that the temperature of the sample is above the
critical temperature Tc for Bose-Einstein condensation [DALFOVO et al. (1999)], a BEC of
molecules could be created by subsequent evaporative cooling of the molecules.
The coupling for an optical molecular transition depends on the Franck-Condon factor,
i.e. the square of the overlap between initial and final vibrational wavefunctions [JONES

et al. (2006)]. Therefore, for a STIRAP transition to the triplet ground state a "good" ex-
cited molecular state |b〉 has to be found. For a "good" state |b〉 both couplings, |a〉→ |b〉
and |g 〉 → |b〉, are large enough to obtain Rabi frequencies Ω1,2 in the order of 1 MHz
with attainable laser light intensities (<1 kW/cm2). Rabi frequencies on this order of mag-
nitude are favorable for several reasons: First, the timescale for an adiabatic transfer of
molecules remains short enough to avoid problems with the relative phase stability of
the lasers used in the STIRAP process. Such phase fluctuations would lead to losses due
to non-adiabatic coupling and could be significant on long STIRAP time scales. Second,
the width wDS of the dark state resonance is directly connected with the Rabi frequencies
Ω1,2 of the two-photon transition, as discussed in Sec. 2.4. In the case of a small width
wDS (wDS/2π ≤ 10kHz, which corresponds to Rabi frequencies Ω1,2 ≤ 2π ·0.3MHz), the
requirements on the stability of the magnetic- and light fields become very high. Addi-
tionally, the search for the two photon resonances becomes difficult if wDS is small.
Calculations from Christiane Koch show that the vibrational levels v ′ of the excited state
3Σ+

g , which is asymptotically connected to the 5S1/2 +5P1/2 collisional state, are promis-
ing candidates for a STIRAP transition to the triplet ground state (see Fig. 2.25). Mainly
one of the first excited states (v ′ ≈ 1− 30) of this 3Σ+

g potential seems to be suitable for
STIRAP because the Franck-Condon factors for the transition |a〉→ |b〉 and |g 〉→ |b〉 have
a similar and reasonable value. The calculated coupling strengths (≡Ω/(2π · I 1/2) are on
the order of 1 MHz/(Wcm−2)1/2. The level v ′ = 3, e.g., has an energy of about 9500 cm−1

relative to dissociation threshold of the ground state (at E=0, see Fig. 2.24). This energy
corresponds to a wavelength of ∼ 1050nm for the transition |a〉 → |b〉. The second laser,
which connects the ground state v = 0 of the triplet potential a3Σ+

u with the excited state
|b〉, needs to have an about 25 nm shorter wavelength relative to laser 1 because of the
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Figure 2.24:
The Born-Oppenheimer potentials of 87Rb2 in the conventional Hund’s
case (a) notation for the molecular states. The shown excited state molecular
potentials are asymptotically connected to the 5S1/2 +5P1/2 or 5S1/2 +5P3/2

collisional states. The red arrows indicate the lasers which couple the corre-
sponding vibrational levels v of the triplet ground state potential a3Σ+

u (see
inset) with a level v ′ of the excited state potential 3Σ+

g . Starting with Fesh-
bach molecules in state v = 39 (binding-energy ≈ 24MHz×h) it should be
possible to reach the vibrational ground state (v = 0) of the triplet potential
with a single STIRAP pulse (see text).
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Figure 2.25:
Calculated coupling strengths c for the transitions (a) |a〉→ |b〉 and (b) |g 〉→
|b〉 to the vibrational levels |b〉 = v ′ of the excited state potential 3Σ+

g . |a〉 is
our initial state (v = 39) of the Feshbach molecules and |g 〉 is the vibrational
ground state (v = 0) of the triplet potential a3Σ+

g . The coupling strengths c

are defined as c=Ω/(2π · I 1/2), whereΩ is the Rabi frequency and I the laser
intensity. The data are based on calculations of Christiane Koch.

binding energy of this state (see Fig. 2.24, inset). However, lasers with both wavelength
are easily available.
Taking one of the first vibrational levels v ′ of the exited state 3Σ+

g would have the advan-
tage that laser 1, which connects |a〉 with |b〉, cannot couple the state |g 〉 to other states
of the 3Σ+

g potential since there are no more states available. Additionally a coupling to

states of the 1Σ+
u or 1Πu potential is suppressed because of selection rules which allow

only bound-bound transitions of g states to u states and vice versa [JONES et al. (2006)].
However, our initial Feshbach state |a〉 does not have a definite singlet or triplet character
and so transitions to both g and u excited states are allowed. Hence, laser 2 could couple
|a〉 to states of the 3Σ+

g , 3Πg , 1Σ+
u and 1Πu potentials. Therefore, a possible level v ′ has to

be tested experimentally for its suitability, since exact data for the levels are not known.
The vibrational ground state X 1Σ+

g (v = 0) of the singlet potential is more difficult a reach,
because it seems to not be possible to transfer the molecules with a single step to v = 0.
In [JAKSCH et al. (2002)] the authors propose a three step scheme to transfer atoms (in our
case molecules) to the singlet ground state. Jaksch et al. suggest to produce with a first
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two photon transition molecules in the level X 1Σ+
g (v = 120)/a3Σ+

u (v = 35) with a binding

energy of 30 GHz×h. The next step could be a two photon transition X 1Σ+
g (v = 120) −→1

Σ+
u (v ′ = 185) −→ X 1Σ+

g (v = 52) and then subsequently X 1Σ+
g (v = 52) −→1 Σ+

u (v ′ = 24) −→
X 1Σ+

g (v = 0). Jaksch et al. propose to use a two photon Raman process with an inter-
mediate detuning (∆ 6= 0) for the transitions. However STIRAP, which is nothing else but
a special kind of a Raman process (as already the name "STImulated Raman Adiabatic
Passage" implies), should be more stable, because it is not sensitive on fluctuations of the
pulse length, laser intensity or laser detunig. Thus STIRAP is also a promising tool for the
creation of a molecular BEC in the singlet ground state.
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3 Repulsively Bound Atom Pairs in an
Optical Lattice

Throughout physics, stable composite objects are usually formed via attractive forces,
which allow the constituents to lower their energy by binding together. Repulsive forces
separate particles in free space. However, in a structured environment such as a periodic
potential and in the absence of dissipation, stable composite objects can exist even for
repulsive interactions.
In this part of my thesis I review an experiment [WINKLER et al. (2006)] in which we have
observed such a novel kind of bound state of two atoms which is based on repulsive in-
teractions between the particles. The repulsively bound pairs exhibit long lifetimes, even
under conditions when they collide with one another. Stable repulsively bound objects
should be viewed as a general phenomenon and their existence will be ubiquitous in cold
atoms lattice physics. Although the experiment described here is based on bosonic 87Rb
atoms, other composites with fermions [HOFSTETTER et al. (2002)] or Bose-Fermi mix-
tures [LEWENSTEIN et al. (2004)] should exist in an analogous manner. Furthermore, re-
pulsively bound objects could also be formed with more than two particles.
In the following I will first explain the theoretical background of interacting bosonic atoms
in an optical lattice. Then I will show an analytic solution for a single repulsively atom pair
in the lattice. Afterwards I will shortly discuss the numerical method we used to simulate a
lattice gas of many interacting repulsively bound pairs. The analytic description of a single
pair and the numerical simulations were done by a theoretical physics team in Innsbruck
around Hans-Peter Büchler, Andrew Daley and Peter Zoller and will be shown here for the
sake of completeness. Afterwards I will present our experimental results which demon-
strate several key properties of the pairs. We experimentally investigate the lifetime, the
quasi-momentum distribution and the binding energy of the pairs. By varying the effec-
tive interaction between the atoms with the help of the Feshbach resonance we can also
create lattice induced bound atom pairs which are based on attractive interactions. Fi-
nally, I briefly discuss possible future experiments with repulsively bound pairs.
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Figure 3.1:
Energy spectrum for a single particle in a 1D lattice for three different po-
tential depths V0 as a function of the quasi-momentum. The band width
of the lowest Bloch band is given by 4J , where J is the hopping energy (see
Eq. (3.5)). a is the lattice period and Er = π2ħ2/2ma2 denotes the recoil en-
ergy. The dotted line corresponds to the lattice depth V0.

3.1 Interacting bosons in an optical lattice

Optical lattices are generated by pairs of counter-propagating laser beams, where the re-
sulting standing wave intensity pattern forms a periodic array of microtraps for the cold
atoms, with period given by half the wavelength of the light, a = λ/2 (for details see
Sec. 1.3). The periodicity of the potential Vlat gives rise to a band structure for the atom
dynamics with Bloch bands separated by band gaps, which can be controlled via the laser
parameters and configuration, as shown in Fig. 3.1. The Bloch bands are given by the
eigenenergies En,q of the Bloch functionsΦn

q (x) (see e.g. [GREINER (2003)]):

HΦn
q (x) = En,qΦ

n
q (x) with H = 1

2m
p̂2 +Vlat(x) (3.1)

The dynamics of particles moving in well separated bands can be described by using Wan-
nier functions (see e.g. [JAKSCH AND ZOLLER (2005)]). These are complete sets of orthog-
onal normalized real mode functions for each band n. The Wannier functions localized at
lattice site x j are defined by

w(x −x j ) = θ−1/2
∑
q

e−i qx jΦn
q (x) (3.2)
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3.1 Interacting bosons in an optical lattice

with θ a normalization constant. The Wannier functions are used for describing particles
trapped in the lattice since they allow to attribute to the particles a mean position x j . Ad-
ditionally, they easily account for local interactions between particles since the dominant
contribution to the interaction energy arises from particles occupying the same lattice site
x j . The Wannier functions for a three dimensional lattice can be calculated simply from
the product of the Wannier functions in the one dimensional case

w(r) =
3∏

j=1
w(x j ). (3.3)

The dynamics of an atomic Bose-Einstein condensate loaded into the lowest band of a suf-
ficiently deep optical lattice is well described by a single band Bose-Hubbard model [FISHER

et al. (1989)] considering only the Wannier function of the lowest Bloch band (n = 0). This
leads to the Bose-Hubbard Hamiltonian [JAKSCH et al. (1998)]

Ĥ =−J
∑
〈i j 〉

b̂†
i b̂ j + U

2

∑
j

b̂†
j b̂ j

(
b̂†

j b̂ j −1
)
+∑

i
εi b̂†

j b̂ j . (3.4)

This single band model is valid because the kinetic energy and interaction energy in this
system are much smaller than the separation to the first excited Bloch band, which is
ħω j =

p
4V0Er in a harmonic approximation. ω j is also the oscillation frequency in the

wells and the resulting width of the Bloch band is 4J .

U J
−−−−→

Figure 3.2:
J and U denote respectively the tunneling rate of atoms between neighbor-
ing sites, and the collisional energy shift from interactions between atoms
on the same site.

In the Bose-Hubbard Hamiltonian (3.4) b̂i (b̂†
i ) are destruction (creation) operators for the

bosonic atoms at site i which obey the canonical commutation relations [b̂i , b̂†
j ] = δi j . The

operator b̂†
j b̂ j = n̂ j (also called number operator) counts the number of bosons on the j th

lattice site and 〈i j 〉 denotes the summation which is carried out over nearest neighboring
lattice sites. The first term in the Bose-Hubbard Hamiltonian (3.4) is called the hopping
term and describes the tunneling of bosons between neighboring potential wells. J/ħ
denotes the tunneling rate of atoms between neighboring sites and this rate is given by
the tunnel matrix element

J =−
∫

d 3xw∗(r− ri )[−ħ2∇/2m +Vlat(r)]w(r− r j ). (3.5)
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Figure 3.3:
Tunneling matrix element J and onsite interaction energy U (top) and U /J
(bottom) versus lattice depth of an isotropic three dimensional lattice with
the same depth in each direction. Changing the strength of the lattice po-
tential, the ratio U /J can be continuously adjusted over several orders of
magnitude.

Vlat(r) is the three dimensional optical lattice potential of the form

Vlat(r) =
3∑

j=1
V0 sin2(klatx j ), (3.6)

with the wave number klat = 2π/λ and V0 the lattice depth (see also Sec. 1.3). The hop-
ping term of the Hamiltonian tends to delocalize each atom over the lattice. In the limit
J >>U the system is superfluid (SF) and possesses first order long range off diagonal cor-
relations [JAKSCH AND ZOLLER (2005)].
The interaction of n atoms, each interacting with n − 1 other atoms on the same lattice
site, is described by the second term of the Bose-Hubbard Hamiltonian (3.4). The inter-
action potential between the atoms is approximated by a short-range pseudo-potential
with as the s-wave scattering length and m the mass of the atoms. U denotes the colli-
sional energy shift and quantifies the repulsion between two atoms on a single lattice site
and is given by

U = (4πħ2as/m)
∫

d 3x | w(r) |4, (3.7)
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3.1 Interacting bosons in an optical lattice

with as the s-wave scattering length. Due to the short range of the interactions compared
to the lattice spacing, the interaction energy is well described by this term, which charac-
terizes a purely on-site interaction. The interaction term tends to localize atoms to lattice
sites. In the limit of a dominating U (U >> J ) the system is not any more superfluid but
becomes Mott isolating [GREINER et al. (2002)]. The quantum phase transition between
superfluid and Mott isolating state takes place at about U ≈ 5.8J × z with z the number of
nearest neighbors of each lattice site [JAKSCH et al. (1998); JAKSCH AND ZOLLER (2005)].
The external confinement which gives rise to an energy offset εi ≈Vext(xi ) on the ith lattice
is described by the third term of the Bose-Hubbard Hamiltonian (3.4). For a homogenous
system εi is zero.
For a given optical lattice potential U and J can be evaluated numerically (see Fig. 3.3).
When the potential depth of the optical lattice is increased, the tunneling barrier between
neighboring lattice sites is raised and therefore the tunneling matrix element J decreases
exponentially. The on-site interaction U on the other hand is slightly increased in a deeper
lattice due to a tighter confinement of the wavefunction on a lattice site. Therefore the ra-
tio U /J can be continuously adjusted over a wide range by changing the strength of the
lattice potential.

Repulsively bound atom pairs

The Bose-Hubbard Hamiltonian (3.4) predicts the existence of stable repulsively bound
atom pairs. These are most intuitively understood in the limit of strong repulsive inter-
action U >> J (where U > 0 but this energy is still smaller than the separation to the first
excited Bloch band, U ¿ω). If a state is prepared with two atoms occupying a single site,
|2i 〉 ≡ (b̂†

i
2|vac〉)/

p
2 , then it will have a potential energy offset ≈U with respect to states

where the atoms are separated (see Fig. 3.8 (a)). This state will be unable to decay by con-
verting the potential energy into kinetic energy, as the Bloch band provides a maximum
kinetic energy for two atoms both at the edge of the Brillouin zone given by 8J << U .
Instead, the atoms will remain together, and tunnel through the lattice as a bound com-
posite object, a repulsively bound pair.
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Figure 3.4:
(a) A state with two atoms located on the same site of an optical lattice has
an energy offset ≈ U with respect to states where the atoms are separated.
Breaking up of the pair is suppressed due to the lattice band structure and
energy conservation, so that the pair remains bound as a composite object,
which can tunnel through the lattice. In the figure, n = 0 denotes the lowest
Bloch band and n = 1 the first excited band. (b) The atom pair can tunnel
through the lattice as a composite object.

3.2 Analytical solution of two particle problem in an optical
lattice

The analytic description of a single pair is based on notes of Hans-Peter Büchler. This ana-
lytic description is shown here for the sake of completeness and for a general understand-
ing of the repulsively bound pairs. A similar discussion can be found in [HECKER DEN-
SCHLAG AND DALEY (2006)]. I have added in the following description several intermedi-
ate steps to simplify the understanding.

General Discussion

Our understanding of the stable repulsively bound pairs can be made more formal by an
exact solution of the two particle Lippmann-Schwinger scattering equation on the lattice
corresponding to the Bose-Hubbard Hamiltonian Eq. (3.4). Denoting the primitive lattice
vectors in each of the d dimensions by ei , we can write the position of the two atoms
by x = ∑d

i=1 xi ei and y = ∑d
i=1 yi ei , where xi , yi are integers, and we can write the two

atom wavefunction in the formΨ(x,y). The related Schrödinger equation from the Bose-
Hubbard model (3.4) with homogeneous background, εi = 0, then takes the form

HΨ(x,y) = [Hki n +Hi nt ]Ψ(x,y) = [−J
(
∆̃x + ∆̃y

)+Uδx,y
]
Ψ(x,y) = EΨ(x,y), (3.8)

where the operator

∆̃xΨ(x,y)=
d∑

i=1

[
Ψ(x+ei ,y)+Ψ(x−ei ,y)−2Ψ(x,y)

]
(3.9)
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3.2 Analytical solution of two particle problem in an optical lattice

denotes a discrete lattice Laplacian on a cubic lattice. Note that in order to express this
in terms of the discrete lattice Laplacian we have added 4d JΨ(x,y) to each side of the
Schrödinger equation. This effectively changes the zero of energy, so that E → E+4Jd . We
then introduce relative coordinates r = x−y existing on the same lattice structure as the
co-ordinate x, and center of mass coordinates R = (x+y)/2, existing on a lattice with the
same symmetry as the original lattice but smaller lattice constant a/2. We then separate
the wavefunction using the ansatz

Ψ(x,y) = exp(i KR)ψK(r), (3.10)

with K = k1+k2 the center of mass quasi-momentum. This allows us to reduce the Schrödinger
equation to a single particle problem in the relative coordinate,[−2J∆̃K

r +EK +Uδr,0
]
ψK(r) = EψK(r) (3.11)

where EK = 4J
∑d

i=1 [1−cos(Kei /2)] is the kinetic energy of the center of mass motion, and
where the discrete lattice Laplacian for a square lattice is now given by

∆̃K
r ψ(r)=

d∑
i=1

cos(Kei /2)
[
ψ(r+ei )+ψ(r−ei )−2ψ(r)

]
. (3.12)

The solutions of this Schrödinger equation can be found using the Greens function of the
non-interacting problem with U = 0, which is defined by

[E −EK −H0]GK(E ,r) = δr,0, (3.13)

with δr,0 the three-dimensional Kronecker delta, and H0 = −2J∆̃K
r the Hamiltonian of

the non-interacting system. Then any solution ψK(r) satisfies [COHEN TANNOUDJI et al.
(1999)]

ψK(r) =ψ0(r)+∑
r′

G(E ,r− r′)V (r′)ψK(r′), (3.14)

where ψ0(r) is a solution of the homogeneous equation

[E −EK −H0]ψ0(r) = 0. (3.15)

The Green function G(E ,r) in Eq. (3.14) can be found by substituting G(E ,r) in Eq. (3.13)
with its Fourier transform [CSERTI (2000)]:

[E −EK −H0]G(E ,r) = [E −EK −H0] [1/(2π)d ]
∫ π

−π
dd k G̃(E ,k)exp(i kr) =

= [1/(2π)d ]
∫ π

−π
dd k [E −EK −H0]G̃(E ,k)exp(i kr) =

= [1/(2π)d ]
∫ π

−π
dd k [E −EK −εK(k)]G̃(E ,k)exp(i kr) = δr,0.

(3.16)

61



3 Repulsively Bound Atom Pairs in an Optical Lattice

k = (k2−k1)/2 is here the relative quasi-momentum, and εK(k) accounts for the dispersion
relation of the non-interacting system (U = 0),

εK(k) = 4J
d∑

i=1
cos

Kei

2
[1−cos(kei )] . (3.17)

εK(k) can be calculated from the equation for the eigenvalues

εK(k)exp(i kr) = H0 exp(i kr) =−2J∆̃K
r exp(i kr) =

=−2J
d∑

i=1
cos

Kei

2

[
exp(i k(r+ei ))+exp(i k(r−ei ))−2exp(i kr)

]=
=−2J

d∑
i=1

cos
Kei

2

[
exp(i kei )+exp(−i kei )−2

]
exp(i kr) =

= 4J
d∑

i=1
cos

Kei

2
[1−cos(kei )]exp(i kr).

(3.18)

From the δ-function in Eq. (3.16)

δr,0 = [1/(2π)d ]
∫ π

−π
dd k exp(i kr) (3.19)

follows that

G̃K(E ,k) = 1

E −EK −εK(k)
. (3.20)

G(E ,r) can be calculated from the Fourier transformation of G̃(E ,k) and we obtain the
solution

G(E ,r) = [1/(2π)d ]
∫ π

−π
dd k G̃(E ,k)exp(i kr). (3.21)

The solutions of Eq. (3.11) can be divided into two classes: scattering states, and bound
(localized) states. We we will first analyze the scattering states.

Scattering States

Similarly to scattering problems involving particles in free space, the scattering states of
particles on the lattice with energy E obey the Lippmann-Schwinger equation

ψE (r) =ψ0
E (r)+∑

r1

GK(E ,r− r1)V (r1)ψE (r1) (3.22)

with ψ0
E = exp(i kr) an eigenstate of H0 with energy E = εK(k). The equation (3.22) can be

solved with an iteration method [COHEN TANNOUDJI et al. (1999)]: renaming the variables
(r −→ r1;r1 −→ r2) gives

ψE (r1) = e i kr1 +∑
r2

GK(E ,r1 − r2)V (r2)ψE (r2) (3.23)
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3.2 Analytical solution of two particle problem in an optical lattice

If we put the expression in Eq.(3.23) in to Eq. (3.22) and repeat this step we get the Born
series

ψE (r) =ψ0
E (r)+∑

r1

GK(E ,r− r1)V (r1)e i kr1

+∑
r1

∑
r2

GK(E ,r− r1)V (r1)e i kr1GK(E ,r1 − r2)V (r2)e i kr2

+∑
r1

∑
r2

∑
r3

GK(E ,r− r1)V (r1)e i kr1

×GK(E ,r1 − r2)V (r2)e i kr2GK(E ,r2 − r3)V (r3)e i kr3 + ....

(3.24)

A re-summation of the Born expansion results in:

ψE (r) =ψ0
E (r)+

∞∑
n=1

∑
r1...rn

GK(E ,r− r1)V (r1)e i kr1 ...GK(E ,rn−1 − rn)V (rn)GK(E ,rn)e i krn .

(3.25)

In the present situation with a short range potential V (rn) = Uδrn,0 we can then write
Eq. (3.25) as

ψE (r) =ψ0
E (r)+

∞∑
n=1

U nGK(E ,0)n−1GK(E ,r)

=ψ0
E (r)+2J ×GK(E ,r)

U

2J

∞∑
n=0

(
U

2J

)n

(2J ×GK(E ,0))n .

(3.26)

The geometric series
∑∞

n=0 xn = 1
1−x for |x| < 1 and so the sum in Eq. (3.26) gives

∞∑
n=0

(
αKU

2J

)n

= 1

1−αKU /2J
(3.27)

with αK = 2J ×GK(E ,0) and we obtain

ψE (r) = exp(i kr)−8πJ fE (K)GK(E ,r) (3.28)

with scattering amplitude

fE (K) =− 1

4π

U /(2J )

1−αKU /(2J )
, (3.29)

and

GK(E ,0) = 1

2J

∫ π

−π
dk

(2π)d

1

(E −EK)/(2J )−2
∑d

i=1 cos Kei
2 (1−cos(kei ))

. (3.30)

The scattering statesψE (r) correspond to two free atoms moving on the lattice and under-
going scattering processes. The corresponding energies appear as a continuum in Fig. 3.6.
In order to make a connection to the scattering length in free space, we can consider the
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3 Repulsively Bound Atom Pairs in an Optical Lattice

limit of small momenta of the incoming plane wave, i.e., k → 0, K → 0 and E → 0. Then
GK(E ,r) becomes in the limit r →∞

GK(E ,r) ∼− 1

4π

e i kr

r
(3.31)

and the solution (3.28) reduces to

ψE (r) ∼ψ0
E (r)+ f (k,k′)

e i kr

r
(3.32)

with the scattering amplitude

f (k,k′) =−as =− 1

4π

U /(2J )

1−α0U /(2J )
, (3.33)

equivalent to the s-wave scattering length as , while the constant α0 = limE→0(αK) be-
comes α0 ≈−0.25 [CSERTI (2000)].

Bound States

Note that the scattering amplitude in Eq. (3.28) contains a pole, associated with a bound
state. We now focus on these bound states in the regime, U > 0, which will correspond to
a repulsively bound pair. First we note that we can write Eq. (3.13) in the form

[E −EK −H0]GK(E ,r) = 1

GK(E ,0)
δr,0GK(E ,r), (3.34)

because GK(E ,0) = δr,0GK(E ,r)). As a consequence, the function ψBS
K (r) = GK(E ,r) is a

solution of the Schrödinger equation if the self-consistency relation is satisfied

U = 1

GK(E ,0)
, (3.35)

which determines the energy EBS of the bound stateψBS
K . The resulting bound state wave-

function,ψBS
K (r) falls off exponentially for large r , and describes a bound two particle state

traveling with center of mass momenta K through the lattice. The momentum distribu-
tion of this bound state is then given by GK(EBS,k)

ψ̃BS
K (k) = 1

EBS −EK −εK(k)
. (3.36)

Note, that this wavefunction is not normalized. In three dimensions, Eq. (3.35) only has
a solution for interaction strengths above a critical value, U >Uc = −2J/G(0,0) ≈ 8J , and
thus we require U >Uc for the formation of the bound two-particle state. The energy EBS

can thereby be calculated from a integration over the first Brillouin zone with the volume
V0 = (2π/a)d for a d-dimensional cubic lattice

G(E ,0) =
∫

dk

V0

1

EBS −EK −εK(k)
= 1

U
. (3.37)
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Figure 3.5:
WavefunctionsψBS

K (r) showing the amplitude for various site separations for
repulsively bound pairs (as = 100a0) in 1D with K = 0. r denotes the sepa-
ration between the two atoms. (a) U /J = 30 (V0 = 10 Er) and (b) U /J = 3
(V0 = 3 Er).

The wavefunction ψBS
K (r) which is the Fourier transform of ψ̃BS

K (k) in Eq. (3.36) is square-
integrable, as shown in Fig. 3.5. For a deep lattice, i.e. U /J À 1, bound pairs essentially
consist of two atoms occupying the same site, whereas for small U /J , the pair is delocal-
ized over several lattice sites. A main feature of the repulsive pair wavefunction is its oscil-
lating character: the wavefunction amplitude alternates sign from one site to the next, as
shown in Fig. 3.5. In quasi-momentum space this corresponds to a wavefunction which
is peaked at the edges of the first Brillouin zone, which is discussed in detail in Sec. 3.5.2.
When motion is confined to one dimension the bound two particle state exists for arbi-

trarily small repulsive interaction U > 0, in contrast to the three-dimensional situation.
Eq. (3.35) reduces to

G(E ,0) = a

4πJ

∫ π/a

−π/a

dk

EBS/2J −2[1−cos(K a/2)]−2cos(K a/2)[1−cos(ka)]
= 1

U
. (3.38)

The integral in Eq. (3.38) can be easily solved (e.g. with Maple, Mathematica) and the
energy of the bound pairs, computed from Eq. (3.38) is

EBS(K ) = 4J

(
1+

√
(cos

K a

2
)2 + (U /4J )2

)
, (3.39)

which can be seen plotted in Fig. 3.6 as Bloch band of a stable composite object above
the continuum of two particle scattering states. The figure shows how the binding energy
(separation of these states from the continuum) increases as U /J is increased, and how
the curvature of the band becomes less pronounced. In the limit of strong interaction,
U À J the bound state energy reduces to EBS(K ) ∼ 4J +U + (4J 2/U )(1+cosK a), which is
consistent with our expectation of a positive binding energy U , and the center of mass
energy of a composite object with an effective tunneling matrix element J 2/U .
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Figure 3.6:
Two particle energy spectrum in a 1D lattice for four different potential
depths V0 as a function of center of mass quasi-momentum K . The Bloch
band for repulsively bound pairs is located above the continuum of un-
bound scattering states. The grey level for the shading of the continuum
is proportional to the density of states.
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3.3 Numerical simulations

3.3 Numerical simulations

We want to be able to treat not just a single repulsively bound pair, but a lattice gas of many
interacting repulsively bound pairs. This is important both in order to properly describe
the effects of interactions on experimental measurements, and to investigate many-body
effects on the behavior of the pairs.
For that purpose, Andrew Daley and collaborators have performed numerical calculations
to simulate a lattice gas of pairs. Here I only briefly discuss their approach. A more de-
tailed discussion can be found in [HECKER DENSCHLAG AND DALEY (2006)].
In brief, the system of interacting repulsively bound pair in one spatial dimension can be
treated by directly simulating the Bose-Hubbard model time-dependently, using time-
dependent Density Matrix Renormalisation Group (DMRG) methods (for a review see
[SCHOLLWÖCK (2005)]). Typically 10− 30 pairs in 60 lattice sites are studied. The start-
ing point is an initial product state, corresponding to a random distribution of doubly-
occupied and unoccupied lattice sites. Reducing the values of U and increasing the value
of J , the same time dependence for the depth of the lattice V0(t ) as in the experiment is
used. The single particle momentum distributions can then be calculated efficiently from
the matrix product state representation, and the results are averaged over different initial
configurations, to match the averaging over different 1D tubes in the experiment. Also
lattice modulation spectroscopy (see also Sec. 3.5.3) can be performed, computing the
time evolution of the many-body state when the parameters U and J vary as a function of
time, based on the time dependence of the lattice depth V0(t ) used in our experiments.
The results of the numerical simulations are shown in the following sections in compari-
son with the experimental results (see e.g. Fig. 3.17 and Fig. 3.22).
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3 Repulsively Bound Atom Pairs in an Optical Lattice

Figure 3.7:
Atom pairs in an optical lattice: the lattice sites are either empty or filled with
exactly two atoms.

3.4 Production of repulsively bound pairs

In this section I will explain how we experimentally produce a sample of repulsively bound
pairs. The procedure is as follows: We start with a pure sample of Rb2 Feshbach molecules
in the vibrational ground state of a three dimensional lattice. Each lattice site is occupied
by not more than a single molecule (for details see section 1.4). Sweeping across a Fesh-
bach resonance at 1007.4 G we adiabatically dissociate the molecules and obtain a lattice
correspondingly filled with 2×104 atom pairs. Away from the Feshbach resonance, the ef-
fective interaction U between the atoms is repulsive with scattering length as = +100 a0.
Therefore an atom pair has a positive potential energy offset ≈ U with respect to a state
where the two atoms are separated.
We estimate the distribution of pairs in the lattice from a typical distribution of atoms in
a Mott insulating state [FISHER et al. (1989); JAKSCH et al. (1998); GREINER et al. (2002)].
A Mott insulator with our experimental parameters has a shell like structure of singly and
doubly occupied lattice sites and a core of triply occupied sites [JAKSCH et al. (1998)].
Crossing a Feshbach resonance, we create molecules in the multiply occupied lattice sites.
Only the atoms in doubly occupied lattice sites form stable molecules. The atoms in the
higher occupied lattice sites are lost due to inelastic atom-molecule collisions (for details
see Sec. 1.4). Applying a cleaning procedure we are able to remove all the single atoms.
Therefore we expect a shell of molecules/atom pairs. However, we loose in our cleaning
procedure about 50% of the molecules (see Sec. 1.4). This leads to an estimated effective
filling factor of pairs in the lattice of typically 0.3−0.5.
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Figure 3.8:
Long lifetime of repulsively bound atom pairs that are held in a 3D optical
lattice. The potential depth is (10±0.5)Er in one direction and (35±1.5)Er

in the perpendicular directions. Shown is the remaining fraction of pairs for
a scattering length as of 100 a0 (diamonds) and a scattering length of about
(0±10) a0 (circles) as a function of the hold time. The lines are fitted curves
of an exponential (dashed line) and the sum of two exponentials (solid line).

3.5 Experiments with repulsively bound pairs

In the following sections I will discuss the properties of the repulsively bound pairs which
we experimentally investigate by measuring their lifetime, quasi-momentum distribution
and binding energies. By varying the effective interaction between the atoms with the help
of the Feshbach resonance we can also create lattice induced bound atom pairs which are
based on attractive interactions.

3.5.1 Measurement of the pair lifetime

We measure the lifetime of the repulsively bound pairs to study their stability in vari-
ous regimes. These lifetime measurements are based on adiabatically lowering the lat-
tice depth V0 from typically V0 = 35Er to a chosen height. Then we hold the pairs for a
variable time at this lattice depth. During the hold time, the pair can then potentially dis-
sociate into two free atoms. In order to measure the remaining pair number, the lattice
is adiabatically raised again to its full initial depth of V0 = 35Er after the hold time. Us-
ing the Feshbach resonance, atoms in doubly occupied sites are converted to Feshbach
molecules with near unit efficiency. A combined rf-light purification pulse then removes
all remaining single atoms, which stem from the dissociated pairs, as in the original prepa-
ration step (see Sec. 1.4). Afterwards the molecules are again converted back into atoms,
and can then be detected via conventional absorption imaging (see Sec. 1.5).

69



3 Repulsively Bound Atom Pairs in an Optical Lattice

0 2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

lattice depth V0 (Er)

no
rm

al
iz

ed
 p

ai
r 

nu
m

be
r (a)

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

time (ms)

no
rm

al
iz

ed
 p

ai
r 

nu
m

be
r (b) 2 E

r
4 E

r
6 E

r

Figure 3.9:
(a) Pair stability in 1D as a function of the lattice depth V0. For this measure-
ment we adiabatically ramp the lattice depth V0 in one direction in 25 ms
from 35 Er to a chosen value. After a hold time of 20 ms we ramp the lattice
in another 25 ms back to 35 Er and count the number of remaining pairs. At
a V0 below 7Er we observe increasing losses of pairs. (b) Loss as a function
of time for a given lattice depth (V0 ∼ 2Er,4Er and 6Er): the decay exhibits
two timescales: a fast decay within a few ms on top of a slow decay of hun-
dreds of ms. The lines are fit curves given by the sum of two exponentials,
Npairs = Nfast0 exp(−t/τfast)+Nslow exp(−t/τslow).

We can observe the nature of the repulsive binding nicely in the following experiment (see
Fig. 3.8): After production of the atom pairs, we allow the atoms to tunnel through the lat-
tice along one dimension. This is done by decreasing the lattice depth in one (horizontal)
direction to about 10Er, while the perpendicular directions remain at 35Er. If the on-site
interaction U of the atoms is tuned to zero with the help of the Feshbach resonance, the
pairs break up within a few ms, corresponding to the tunneling timescale. However, if the
effective interaction between the atoms is repulsive, we observe a remarkably long life-
time of t = 700 ms (determined by an exponential fit). This lifetime is mainly limited by
inelastic scattering of lattice photons and greatly exceeds the calculated time for an atom
to tunnel from one site to the next, h/(4J ) ∼ 4ms.
However, we observe in our experiments an increasing loss of pairs as we lower the lattice
potential V0 below a certain value. This is shown in Fig. 3.9. For this measurement we
adiabatically change the lattice depth V0 (one horizontal direction) in 25 ms from 35 Er to
a chosen value. After a hold time of 20 ms we ramp the lattice in another in 25 ms back to
35 Er and count the number of remaining pairs. As one can see in Fig. 3.9, the loss of pairs
starts below a 1D lattice depth of ∼ 7Er.
The decay of pairs below this lattice height of 7 Er exhibits two timescales: a fast de-
cay within a few ms on top of a slow decay of hundreds of ms (see Fig. 3.9 (b)). We fit
the data in Fig. 3.9 (b) with the sum of two exponentials, Npairs = Nfast0 exp(−t/τfast) +
Nslow exp(−t/τslow). The timescale of the fast decay (τfast) depends on the lattice depth
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Figure 3.10:
(a) Lifetime of the pairs as a function of lattice depth. The data points are
the results of fitting a sum of two exponential curves to data similar to the
one shown in Fig. 3.9 (b). The experimental error bars correspond to the
95% confidence interval for the fit parameters. The blue line is given by
h/(∆EBS ·4.8) (see text). (b) The number of fast decaying (Nfast) and slow
decaying pairs (Nslow) crucially depends on the lattice depth.

while the timescale of the slow decay (τslow) is constant within the error-bars (see Fig. 3.10 (a)).
The initial number of pairs is reduced for lattice depths below 6 Er, as one can see in
Fig. 3.9 (b). This is because some of the pairs decay already while we ramp the lattice
to its final depth in 25 ms. Therefore, the "correct" number of fast decaying pairs is given
by Nfast = N0 −Nslow, where N0 is the number of pairs without changing the lattice depth.
The number of fast decaying (Nfast) and slow decaying pairs (Nslow) crucially depends on
the lattice depth, as one can see in Fig. 3.10 (b).

Possible explanation for the pair decay

Theoretically, single repulsively bound pairs in 1D can not spontaneously decay into the
continuum even for arbitrarily low lattice depths because the binding gap never com-
pletely vanishes (see Fig. 3.11). In the following, I conceptualize possible scenarios which
could explain a decay of pairs as inelastic scattering processes and a resonant decay due
to external gradients.

Inelastic scattering

It is possible that the pairs decay in an inelastic scattering process. This can be explained
best with an example: Let’s assume, two pairs with a total momentum of K1 = π/a and
K2 = −π/a scatter. In the scattering process of the two pairs the momentum has to be
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Figure 3.11:
(a) Two particle energy spectrum in a 1D lattice as a function of center
of mass quasi-momentum K . The Bloch band for repulsively bound pairs
(red line) is located above the continuum of unbound scattering states (grey
area). The width of the Bloch band for pairs is ∆EBS. (b) Positive "bind-
ing" energy of the pairs in 1D as a function of the lattice depth V0 for a total
quasi-momentum K of 0 (red solid line) and π/a (blue dashed line). This
binding energy is dependent on the total momentum of the pair and is given
by Eb(K ) = EBS(K )−8J (1+cos(K a/2)). Black line: Width of the Bloch band
for pairs ∆EBS as a function of the lattice depth.

conserved, K1 +K2 = K̃1 + K̃2. For K̃1 = K̃2 = 0, one of the pairs can increase its energy
by ∆EBS. ∆EBS is the width of the Bloch band for a pair (see Fig. 3.11). Due to energy
conservation the second pair can now decay into the scattering continuum of two free
atoms (grey area in Fig. 3.11 (a)) if its resulting energy

EBS(K =±π/a)−∆EBS ≤ 8J , (3.40)

with 8J the kinetic energy which two free atoms in the lowest Bloch band of the lattice can
maximally have. This energy is equal to two times of the width of the lowest Bloch band
for atoms which is given by 4J .
The calculated critical lattice depth for the condition (EBS(K =±π/a)−∆EBS = 8J ) is about
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4.5 Er. Below this value we can expect inelastic two body scattering processes which lead
to a decay of pairs. This value of 4.5 Er is calculated for a three dimensional lattice with a
variable lattice depth in one direction. The lattice depth in the two perpendicular direc-
tions is kept at 35 Er. These are typical settings for our 1D measurements.
Initially only pairs with a K ∼ ±π/a can decay, because in a inelastic scattering process
one of the pairs can increase/decrease its energy by the maximum possibly energy ∆EBS.
In a scattering processes of two pairs with a K < ±π/a this amount of energy is smaller,
corresponding to their momentum K (see Fig. 3.11 (b)). Two pairs with an initial momen-
tum K = 0 can not decay in the two body scattering process, because an increase/decrease
of energy is not possible.
We can explain the fast decay by the fact that initially only pairs with a K ∼±π/a can de-
cay in an inelastic scattering process, as discussed before. With a decreasing lattice depth
more and more pairs have a momentum K which allows the decay in a scattering pro-
cess. The timescale of the fast decay should depend on the tunneling rate of the pairs,
but also on the distribution of the pairs in the lattice. In fact, we observe an exponentially
decreasing τfast for a decreasing lattice depth (see Fig. 3.10 (a), blue diamonds). This is
what we expect since the tunneling rate exponentially decreases with a decreasing lattice
depth. The tunneling rate for pairs is proportional to the width of the Bloch band for pairs
∆EBS (≈ 4J 2/U for U À J ) (see Fig. 3.11 (b), black line) and is given by∆EBS/4ħ. The calcu-
lated time for a pair to tunnel from one site to the next is given approximately by h/∆EBS.
In fact, the measured timescale of the fast decay τfast scales like the calculated tunneling
time for pairs (∝ 1/J 2) and not like the tunneling time for atoms (∝ 1/J ). This is shown in
Fig. 3.10 (a): the calculated tunneling times for pairs agree with the measured timescale
of the fast decay (τfast) if we multiply the calculated values with a certain factor (= 4.8)
(blue line). Note that this factor is taken just to compare the scaling of the data.
The slow decay could stem from a momentum re-distribution in the lattice under the in-
fluence of an external force F . An external force could lead to Bloch oscillations of the
pairs with a timescale which is proportional to this force. The timescale of the oscilla-
tions is given by τBloch = h/(|F |a), with a the lattice spacing [BEN DAHAN et al. (1996)].
The pairs constantly change their momentum K during the Bloch oscillations. With the
"right" momentum K the pairs can decay again in a scattering process.
The origin of the force F could be the radial confinement due to the beam shape of the
lattice laser beams. The effective potential of this radial confinement is in a harmonic ap-
proximation Vext ≈V0 ·2r 2/w 2, with r the distance from the trap center and w the waist of
the lattice laser beams (see also Sec. 1.3). If we lower the lattice in 1D the radial confine-
ment of the two perpendicular lattice beams is always present. This confinement leads
to an effective potential of Vext = 4·35Er ·r 2/w 2 for a lattice depth of 35 Er of the perpen-
dicular lattices. The external force, which is given by the gradient of the potential Vext, is
F = dVext/dr = 8·35Er ·r /w 2. This force leads e.g. to a oscillation timescale τBloch ≈ 7 ms
for atoms which are 10µm displaced from the trap center.
The energy difference ∆Elat from lattice site to lattice site due to the radial confinement
of the lattice laser beams is about ±0.1Er for a this distance (r ≈ ±10µm) from the trap
center.
The time scale of the oscillation should be independent of the one dimensional lattice
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∆Eg Eb

Figure 3.12:
Lattice with a gradient: an atom pair can resonantly decay if its energy is
equal to the energy of two free atoms in the lattice. This is the case for Eb =
∆Eg, where ∆Eg is the energy difference from lattice site to lattice site. Note,
that the energy of the pair as a compound object shifted by Eb relative to the
energy of a single atom in the lattice.

depth because the external confinement is mainly determined by the perpendicular lat-
tice laser beams. In fact, we observe in our measurements that the timescale τslow of the
slow decay does not depend on the 1D lattice depth within the error bars (see Fig. 3.10 (a),
red circles).
Additionally to the gradient which is caused by radial confinement of the laser beams,
we have a magnetic field gradient due to the inhomogeneity of the "homogeneous" bias
field of about 1000 G. The magnetic field gradient leads to a inhomogeneity of about∆B ≈
20mG over the molecular cloud (see also Sec. 2.6). However, in a current measurement
we found out that the magnetic field gradient is mainly along one horizontal lattice direc-
tion where we keep the lattice high during the 1D measurements1. In the lattice direction
where we lower the lattice depth, the magnetic field gradient ∆B should be < 5mG. This
value corresponds to an energy ∆Emag =µ ·∆B < 10kHz·h, with µ≈ h ·2MHz/G the mag-
netic moment of the atoms at a magnetic field of about 1000 G. Assuming a cloud size of
about 20µm in 1D, the energy difference ∆Emag would lead to energy shift < 0.05Er from
lattice site to lattice site.

Resonant decay

The external gradients could be the origin of an additional decay channel for the pairs.
This can be explained as follows: The decay of the atom pair occurs as one of the atoms
"tunnels" into a neighboring lattice site. However, the neighboring sites are shifted due to
the gradients by |∆Eg| = |∆Elat +∆Emag| (see Fig. 3.12). A single atom pair can resonantly
decay if its energy is equal to the energy of two free atoms in the lattice. This is the case
for Eb = |∆Eg| (see Fig. 3.12). Assuming an external gradient |∆Eg| of up to 0.3 Er per lat-

1The position of the cloud was displaced by about 150µm relative to the symmetry center of the
quadrupole coils in the direction of the lattice beam 1 (see Fig. 1.6)
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tice constant (from site to site), the pairs could decay due to this resonant process below a
lattice depth of 7Er. Note, that ∆Eg depends on the position of the pairs in the lattice and
Eb(K ) depends on the total moment K of the pair (see Fig. 3.9). Therefore also the pair
decay due to this resonant process should be dependent on the total momentum K and
the pair position in the lattice.
The effect of an external gradient can be seen when we lower the lattice depth V0 simul-
taneously in all three directions. In this case we have a known energy difference |∆Eg|
of about 0.27 Er from lattice site to lattice site in the vertical direction due to the gravi-
tation potential. Additionally we have a gradient due the radial confinement of the laser
beams and a magnetic field gradient, as discussed before. However, if we lower the lattice
depth V0 in all three directions also the radial confinement is reduced and |∆Elat| should
be < 0.05Er.
As shown in Fig. 3.13 (a), we observe increasing losses of pairs already below a V0 of
∼ 15Er. For this measurement we adiabatically ramp the lattice depth V0 in 5 ms from
35 Er to a chosen value. After a hold time of 5 ms we ramp the lattice in another 5 ms back
to 35 Er.
The pairs can resonantly break up if the binding energy of the pair is equal to this energy
difference |∆Eg | of about 0.27 Er from site to site (horizontal dashed line). For pairs with
a total momentum K = 0 this breaking up can already happen at a lattice depth of ∼ 15Er

(Fig. 3.13 (b), right vertical dashed line), for pairs with a total momentum K = (π,π,π)/a
this happens at ∼ 11Er (Fig. 3.13 (b), left vertical dashed line). This assumption explains
very well the observed behavior in Fig. 3.13. The "positive" binding energies of the pairs
in 3D are calculated with Eq. (3.37).
However, we observe that we do not loose more than ∼ 80% of the pairs even if we go to
low values of the lattice potential (V0 < 10). A possible explanation is that some of the
atoms could be randomly paired in the lattice sites when we ramp up again the lattice.
Additional measurements and numerical simulations of the Hubbard model should be
able to test these assumptions on the pair decay.
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Figure 3.13:
(a) Pair stability as a function of the 3D lattice depth V0. For this measure-
ment we adiabatically ramp the lattice depth of all three lattice beams in
5 ms from 35 Er to a chosen value V0. After a hold time of 5 ms we ramp the
lattice in another in 5 ms back to 35 Er. We observe increasing losses of pairs
already below a V0 of ∼ 15Er (right dashed line) compared to the case where
we lower the lattice only in one dimension (see Fig. 3.9). For lattice depths
below ∼ 10Er (left dashed line) the number of remaining pairs is constant
(see text). (b) Positive "binding" energy of the pairs as a function of the 3D
lattice depth V0 for different total momenta K. Due to the gravitation po-
tential we have a mean energy difference of about 0.27 Er from lattice site
to lattice site in the vertical direction. If the binding energy of the pair is
equal to this mean energy difference of 0.27 Er (horizontal dashed line) the
pair can break up. For pairs with a total momentum K = 0 this happens al-
ready at ∼ 15Er (right vertical dashed line), for pairs with a total momentum
K = (π,π,π)/a this happens at ∼ 11Er (left vertical dashed line).
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Figure 3.14:
(a) The pair wavefunction ψBS

K (r ) for K = 0, showing the amplitude at each
site with U /J = 30 (V0 ≈ 10Er, blue bars) and U /J = 3 (V0 ≈ 3Er, orange bars).
(b) The square modulus of the corresponding momentum space wavefunc-
tions |ψBS

K (k)|2 for K = 0. This momentum space wavefunctions are equiva-
lent to the single-particle momentum distributions. Note the characteristic
peaks at the edge of the Brillouin zone.

3.5.2 Quasi-momentum distribution

For a deep lattice an atom pair consists of two atoms occupying a single lattice site. How-
ever, for a shallow lattice the single atoms of a pair are not any more localized in one
lattice site: the atom pair wavefunction is "smeared out" over many lattice sites. This one
can see in Fig. 3.14 (a): the pair wavefunctionψBS

K (r ) in relative coordinates is delocalized
over many lattice sites, depending on the lattice depth V0. A main feature of the repulsive
pair wavefunction ψBS

K (r ) is its oscillating character: the wavefunction amplitude alter-
nates sign from one site to the next. However, this wavefunction ψBS

K (r ) is not directly
measurable.
But how can we get experimentally information on the pair wavefunction? It turned out
that we can measure the quasi-momentum distribution of the pairs by a time of flight
measurement. For such a measurement we simply have to ramp down the lattice poten-
tial. The ramp speed has to be rapidly enough for the pair wavefunction not to change, but
slow enough such that the population of the energy bands is not changed during the ramp.
A state with quasi-momentum q is then mapped to a state with free particle momentum
p = q as the lattice is turned off. The free particle momentum p is finally converted onto
a spatial distribution by making a picture of the expanded cloud after ballistic expansion
[GREINER et al. (2001); HECKER DENSCHLAG et al. (2002); GREINER (2003)].
The quasi-momentum distribution of individual atoms is directly given by the square
modulus of the corresponding momentum space wavefunction |ψ̃BS

K (k)|2 (see Fig. 3.14 (b)).
The momentum space wavefunction ψ̃BS

K (k) is given by the Fourier transform of ψBS
K (r ).

The alternating sign of the amplitude ofψBS
K (r ) leads to a momentum space wavefunction

ψ̃BS
K (k) which shows characteristic peaks at the edges of the Brillouin zone (see Fig. 3.14 (b)).
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Figure 3.15:
Absorption images of the atomic distribution after release from a 3D lattice
and a subsequent 15ms time of flight. The horizontal and vertical dashed
lines enclose the first Brillouin zone. (a) For this measurement we prepared
atoms in a 3D lattice with only singly occupied sites. The observed momen-
tum distribution is flat. This is reminiscent for a dephased ensemble of ul-
tracold atoms in the lowest band of a lattice [GREINER et al. (2001)]. (b) The
repulsively bound pairs show a momentum distribution which is peaked at
the edges of the Brillouin zone. This characteristic is a clear signature of the
wavefunction for repulsively bound pairs. For both measurements the lat-
tice depth is adiabatically lowered in 1D to a value below 3 Er.

The amplitude of the peaks grows with increasing width 4J of the Bloch band.
Using this technique of mapping the quasi-momentum to free particle momentum we
have experimentally investigated the quasi-momentum distribution of the pairs in vari-
ous regimes. For these measurements, we first adiabatically lower the lattice depth in a
horizontal direction at a rate of 1.3 Er/ms to a pre-chosen height V0 while the lattice depth
in the other two directions are kept high (35 Er). This will prepare repulsively bound pairs
at the chosen lattice depth. We then turn off the lattice rapidly with linear ramps with
rates of 0.2 Er/µs. The resulting momentum distribution is then converted onto a spatial
distribution after typically 15ms time of flight.
In Figure 3.15 one can nicely see the the different momentum distribution of atom pairs
and single atoms after release from a 3D lattice and a subsequent 15ms time of flight.
For the single atoms the observed momentum distribution is flat (see Fig. 3.15 (a)). This
is reminiscent for a dephased ensemble of ultracold atoms in the lowest band of a lat-
tice [GREINER et al. (2001)]. However, the repulsively bound pairs show a momentum
distribution which is peaked at the edges of the Brillouin zone (see Fig. 3.15 (b)). This
characteristic pattern is a clear signature of the wavefunction for repulsively bound pairs.
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Figure 3.16:
Calculated single atom quasi-momentum distributions for different total
quasi-momenta K and a lattice depth V0 = 5Er. The curve below is the sum
of all the different quasi-momentum distributions for different K , assuming
a homogeneous distribution of K from −π/a to π/a.

It is important to note that we measure the distribution of single atom quasi-momenta in
a large sample. For atom pairs with a fixed center of mass quasi-momentum K = k1 +k2

(→ k = k1 −K /2), the quasi-momentum distribution of the individual atoms is given by

P = ∣∣ψ̃BS
K (k)

∣∣2 = ∣∣ψ̃BS
K (k1 −K /2)

∣∣2 =
∣∣∣∣ 1

EBS −EK −εK (k1 −K /2)

∣∣∣∣2

=
∣∣∣∣∣ 1

4J
·

1√
(cos(K a/2))2 + (U /4J )2 +cos(K a/2)cos((k1 −K /2) · a)

∣∣∣∣∣
2

,

(3.41)

where k1 ranges from −π/a to π/a.
Note, that Eq. (3.41) provides the same result for k = −(k2 −K /2) as for k = k1 −K /2 be-
cause of the symmetry of the cosine-function (cos(k a) = cos(−k a)).
The observed momentum distribution of the atoms is an average over a distribution of
center of mass quasi momenta K . That we still obtain the peaked distribution charac-
teristic of repulsively bound pairs is non-trivial. In fact, if we just take a single repul-
sively bound pair with center of mass quasi-momentum K 6= 0, its single atom quasi-
momentum distribution will not be peaked anymore at the edges of the first Brillouin
zone (see Fig. 3.16). The peak will be somewhat translated towards the center of the
first Brillouin zone. Fortunately, with increasing |K |, the peak in the single-particle quasi-
momentum distribution also becomes less pronounced and vanishes at K = π/a. As a
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Figure 3.17:
Quasi-momentum distributions of atoms in the lattice as a function of lat-
tice depth V0. (a) The single lines show the corresponding quasi-momentum
distributions in the horizontal-direction, after integration over the vertical-
direction of the absorption pictures (see e.g. Fig. 3.15). (b) For comparison
numerical simulations are shown. The density values have been scaled to
facilitate comparison between experimental and theoretical results.

result, when we average over a roughly uniform distribution of center of mass quasi mo-
menta K for a dilute gas of repulsively bound pairs, we still observe the pronounced peaks
at the edges of the Brillouin zone.
Figure 3.17 shows in a continuous fashion the dependence on the 1D lattice depth V0 of
the quasi-momentum distribution for repulsively bound pairs for both experiment and
numerical simulation. The peak structure is more pronounced for lower values of V0, and
diminishes for larger V0. When the two particles are localized on the same site, the quasi-
momentum distribution is essentially flat. This one can see in Fig. 3.17: for deep lattices
we observe a homogenously filled first Brillouin zone and the quasi-momentum distri-
bution has a flat top shape. However, for a shallow lattice the pair wavefunction ψBS

K (r )
is delocalized over many lattice sites and the quasi-momentum distribution shows the
characteristic peaks at the edges of the Brillouin zone.
The agreement between experimental data and theoretical simulations is quite good, as
one can see in Fig. 3.17. However, it turned out that the simulated momentum distribu-
tions depend on the distribution of the pairs in the lattice. This is because the interaction
between the single pairs can influence the distribution of the total momentum K . There-
fore, the numerical simulations do not provide exactly the same results as the calculations
for a single pair (see Fig. 3.16).
Additionally one can see in Fig. 3.17 that the experimental distributions appear to ex-
tend beyond the first Brillouin zone. This is an experimental artifact related to the quick
turning off of the lattice and can be understood as follows: The adiabaticity criterion for
the transfer from the lowest into the nth energy band of a non interacting gas is given by
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Figure 3.18:
Comparison between a measured and a calculated momentum distribution.
We prepare for the measurement the repulsively bound pairs at the 1D lat-
tice depth of 5 Er. We then turn off the lattice rapidly with linear ramps with
rates of 0.2 Er/µs. The measured distribution (red dots) is the same as in
Fig. 3.17 at that initial lattice depth V0. The measured momentum distribu-
tion nicely agrees with the simulated single atom momentum distribution
which includes the excitation into higher bands (blue solid line). The single
atom momentum distribution without excitation is given by the black solid
line (see text).

[HECKER DENSCHLAG et al. (2002)]:

|〈n, q |d H/d t |0, q〉|¿ |En,q −E0,q |2/ħ, (3.42)

where |n, q〉 is the Bloch state with the quasi momentum q in the nth energy band. H is
the Hamilton operator for a particle in a periodic potential (see Eq.(3.1)).
In the case of (q ∼ 0) the energy difference of first (n = 0) and second (n = 1) band remains
finite even for very low lattice depths V0 ( (E1,0 −E0,0) ≥ 4Er for any V0). Condition (3.42)
then reads [HECKER DENSCHLAG et al. (2002)]

d

d t
V0/Er ¿ 16Er/ħ∼ 5·105s−1. (3.43)

However, at the borders of the first Brillouin zone (q ∼±π/a), the gap between the the first
and second Bloch band gets very small for low lattice depths since |E1,(±π/a)−E0,(±π/a)| = 0
for V0 = 0. Therefore, our turning off of the lattice with a ramp speed of d

d t V0/Er ∼ 2·105s−1

is too fast as q approaches the Brillouin zone boundary.
This means that especially the single atoms with a quasi-momentum q = k1,2 ∼±π/a can
populate the second Bloch band. This leads to smearing out of the sharp structure at the
edge of the Brillouin zone what can be clearly seen in Fig. 3.18: The measured momentum
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distribution (red dots) extends beyond the first Brillouin zone and does not agree exactly
with the calculated single atom quasi-momenta (black line) for that lattice depth (∼5 Er).
However, we can simulate the turning off of the lattice and determine the probability to
excite a particle with a certain momentum q to higher Bloch bands. This is realized by
numerically calculating the time dependent evolution of the single particle Hamiltonian
H of a 1D lattice. We can determine with this method the probability, as a function of the
initial quasi-momentum q , that an atom has a momentum p = q+2nħklat after switching
off the lattice. The atom distribution in the corresponding Brillouin zones is determined
by multiplying this probability with the single atom quasi-momentum distribution for an
initial lattice depth V0 (see Fig. 3.18, black line). The result of this calculation is given by
the blue solid line in Fig. 3.18. The observed momentum distribution nicely agrees with
this prediction of the single atom momentum distribution which includes the excitation
into higher bands (blue solid line).

Quasi-momentum distribution in 3D

Figure 3.17 shows the peaked structure of the momentum distribution in the 1D case. But
what happens if we lower the lattice simultaneously in all three directions from the same
lattice depth? It turns out, that such a measurement is much more complicated for us
because the pairs decay below a 3D lattice depth of about 15 Er, as discussed in Sec. 3.5.1.
Therefore, we are not able to prepare the sample of pairs at a certain 3D lattice depth be-
low 15 Er and above this value the momentum distribution is essentially flat. However, if
we ramp the lattice relatively fast (in a few ms) from a lattice depth above 15 Er to zero we
observe a momentum distribution which is peaked at the corners of the Brillouin zone, as
shown in Fig. 3.19 (a). We are able observe this feature because the ramp speed is faster
then the pair decay occurs. However, we can not attribute the momentum distribution to
a certain 3D lattice depth. The observed momentum distribution corresponds presum-
ably to a pair quasi-momentum distribution for a lattice depth below 5Er.
Figure 3.19 (b) shows for a comparison the calculated quasi-momentum distribution of
pairs in a lattice with a depth of 5Er. The simulated quasi-momentum distribution shows
also prominent peaks in the corners of the first Brillouin zone. This confirms the peaked
structure of the observed momentum distribution.
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2hk

(b)(a)

2hk

Figure 3.19:
(a) Absorption image of the atomic distribution after release from the 3D
lattice and a subsequent 15ms time of flight. The horizontal and vertical
dashed lines enclose the first Brillouin zone. For the this measurement the
lattice depth in all three directions is ramped simultaneously in 5 ms from
35 Er to zero. (b) Numerical calculation of the quasi-momentum distribu-
tion for a 3D lattice depth of 5Er.

Figure 3.20:
3D picture of the experimental data of Fig. 3.19 (a). The peak height and the
color represent the atomic density.
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Figure 3.21:
Modulation spectroscopy of repulsively bound pairs. (a) By modulating the
optical lattice amplitude with the proper frequency, the pair can dump its
binding energy into the lattice motion and subsequently break up. (b) Typi-
cal resonance dip showing the remaining number of atom pairs as a function
of the modulation frequency, for V0 ≈ 6Er. The black line is a Gaussian fit, a
choice which was justified by numerical calculations.

3.5.3 Modulation spectroscopy

By modulating the depth of the lattice at a chosen frequency we can determine the bind-
ing energy of the pairs (see Fig. 3.21 (a)). For appropriate modulation frequencies, the
pairs can "dump" their binding energy into the lattice motion and dissociate. The disso-
ciation occurs as one of the atoms "tunnels" in a neighboring lattice site. Figure 3.21 (b)
shows a typical resonance curve of the number of remaining pairs as a function of the
modulation frequency. The resonance frequency of about 1.5 kHz (for a lattice depth of
V0 = 6 Er) agrees well with the calculated binding energy of a pair.
We perform this modulation spectroscopy for a variety of lattice depths V0 in one direc-
tion while keeping the lattice in the other two directions at about 30 Er (see Fig. 3.22). For
these measurements we sinusoidally modulate the intensity of one lattice beam in hori-
zonal direction for 40 ms. The modulation amplitude corresponds to a lattice depth of 1 to
4 Er. The amplitude is adjusted for different 1D lattice depths to get reasonable resonance
dips.
The behavior of the binding energy as a function of the lattice depth provides an addi-
tional key signature of repulsively bound pairs. As shown in Fig. 3.22 (b), the resonance
positions are in good agreement with numerical simulations, which are performed by An-
drew Daley. For a lattice depth above 10 Er the resonance positions essentially coincide
with the interaction energy U . For a lattice depth below 10 Er both the experimental data
and the numerical simulations show a significantly larger frequency as given by U /h. As
the pairs decay into a scattering continuum of free atoms, the center of the resonance
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Figure 3.22:
(a) Two particle energy spectrum in a 1D lattice as a function of center of
mass quasi-momentum K . Modulating the lattice, the repulsively bound
pairs can decay into two free atoms. The possible energy of the two free
atom is given by the continuum of scattering states (grey area). (b) Mea-
sured resonance frequencies of the modulation spectroscopy as a function
of the 1D lattice depth. The resonance frequency was determined from res-
onance curves similar to the one in Fig. 3.21 (b). The experimental points
(filled circles) show good agreement with numerical simulations (crosses).
The experimental error bars correspond to the 95% confidence interval for
the Gaussian fit parameters of the resonance dips. The data points coincide
with the mean energy difference of the bound state energy EBS(K ) to the cen-
ter of the scattering continuum (= 4J ) (black solid line). The blue solid line is
given by U /h, with U the on-site collisional energy shift. (c) Corresponding
measured and simulated widths (FWHM) of the resonance dips.
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Figure 3.23:
Simulation of the broadening of the resonance dips (black line). The dashed
blue line is a fit of a Gaussian curve to the data (red dots). The resulting
FWHM-width of the Gaussian fit curve is ∼ 1.35 kHz. The data are from a
modulation spectroscopy measurement at lattice depth of about 7 Er.

dips is given by the average energy difference of the pair energy EBS(K ) to the center of
the scattering continuum 4J (see Fig. 3.22 (a)). This energy difference is given by

∆Ẽ = a

2π

∫ π/a

−π/a
(EBS(K )−4J )dK , (3.44)

assuming a homogeneous distribution of the total momentum K . The measured reso-
nance positions nicely coincide with∆Ẽ/h (black solid line), as one can see in Fig. 3.22 (b).
We could not perform modulation spectroscopy measurements below a lattice depth of
∼4 Er because the lifetime of the pairs is strongly reduced below this value (see Sec. 3.5.1).
The width of the resonance dips can be understood, as the pair will decay into a contin-
uum of scattering states which has an energy width of up to 8J , depending on the ini-
tial center of mass quasi-momentum K (see Fig. 3.22 (a)). However, as one can see in
Fig. 3.22 (b), the measured widths (FWHM) of the resonance curves do not agree with the
calculated widths. We observe an experimental minimum width of about 1 kHz also for a
lattice depth V0 > 10 Er.
This broadening of the resonance dips could be explained by inhomogeneity effects in
the lattice due to gradients. These gradients are caused by the radial confinement of the
lattice laser beams and by an inhomogeneity of the magnetic bias field (see Sec. 3.5.1)
and lead to a position dependent energy difference from lattice site to lattice site. Mod-
ulating the lattice, the decay of an atom pair occurs as one of the atoms "tunnels" in a
neighboring lattice site. However, the resonance frequency is then different for each pair,
depending on the position of the pair in the lattice. This effect would lead to a broadening
of the resonance dips.
We can simulate this broadening by summing single resonance curves, each of them shifted
by a different frequency from the center frequency position (∆Ẽ/h). This is shown in
Fig. 3.23: Assuming a homogeneous distribution of energy difference from 0 to 0.2Er
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from site to site, the calculations show a broadening of the resonance dips which is con-
sistent with the observed one (see Fig. 3.23). The calculated curve (black line) is given
by the sum of single Gaussian curves2. The width of the single Gaussian curves (FWHM
= 0.5 kHz) corresponds to the expected width of the resonance dip for this lattice depth,
which is roughly given by 4J/h. The single Gaussian curves are homogeneously shifted
by -0.65 kHz to +0.65 kHz (corresponding to -0.2 to 0.2 Er) from the center resonance fre-
quency position (1.56 kHz). The resulting curve does not have any more a Gaussian shape.
This can also be observed in the measured spectra (see e.g. Fig. 3.23 and Fig. 3.22 (b)).
This broadening effect due to external gradients is able to explain the measured widths
shown in Fig. 3.21 (c).

Determination of the scattering length

The modulation spectroscopy is also an interesting application for measuring the scatter-
ing length as in the lattice. This is possible because the measured resonance frequencies,
which coincide with U /ħ for a deep enough lattice (see Fig. 3.22), are directly propor-
tional to as (see Eq. (3.7)).
We measure the resonance frequencies of the modulation spectra near the Feshbach reso-
nance at 1007.4 G at a lattice depth V0 of 10 Er. We normalize these resonance frequencies
relative to a measurement of the resonance frequency at a magnetic field of about 1020 G
to avoid an error due to a non exactly known lattice depth. At this magnetic field the value
of scattering length is as = abg = 100 a0, where abg is the background scattering length.
We can determine the scattering lengths by multiplying the normalized resonance fre-
quencies with abg . The resulting data points (filled circles) are fitted with a model which
determines the magnetic-field dependence of the scattering length:

as = abg ·

(
1− ∆B

B −B0

)
,

with ∆B the width and B0 the position of the Feshbach resonance [GÓRAL et al. (2004)].
We calibrate the position of B0 to the position given in [MARTE et al. (2002)]. The width
∆B , the only free fit parameter, is 215(±15)mG. The error corresponds to a 95% confidence
interval. Our measured width ∆B nicely agrees with a measurement (∆B = 210(±20)mG)
of the Rempe group [DÜRR et al. (2004B)]. DÜRR et al. (2004B) determined the width of
the Feshbach resonance by measuring the kinetic energy released in a dissociation pro-
cess of molecules.
We can measure with the modulation spectroscopy only the absolute value of the scatter-
ing length but not the sign. However, we can extract the sign from time of flight absorp-
tion images because the quasi-momentum distribution changes for a negative scattering
length. This will be explained in the following section 3.5.4.

2The numerical simulations show that the shape of the resonance curves is well described by a Gaussian
curve.
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Figure 3.24:
Measurement of the scattering length near the Feshbach resonance at
1007.4 G using modulation spectroscopy. The 1D lattice depth V0 is 10 Er.
The experimental points (filled circles) are fitted with a model which deter-
mines the magnetic-field dependence of the scattering length: as = abg · (1−
∆B /(B −B0)), with abg = 100 a0 the background scattering length (horizon-
tal dashed line), ∆B the width and B0 the position of the Feshbach reso-
nance [GÓRAL et al. (2004)]. The width ∆B , the only free fit parameter, is
215(±15)mG. The error corresponds to a 95% confidence interval.
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Figure 3.25:
From repulsively to attractively bound atom pairs. (a) With the help of a Fes-
hbach resonance around 1007.4 G, we can choose the effective interaction
of the paired atoms by controlling the scattering length as . The inserted im-
ages show momentum distributions similar to the ones of Fig. 3.15. For ef-
fectively attractive interaction the momentum distribution is peaked around
zero momentum. (b) The momentum distribution for atom pairs as a func-
tion of magnetic field. One can see in a continuous fashion the change of
the momentum distribution if the magnetic field is ramped below ∼ 1007.6.
Below this value the scattering length is negative (see (a)). At zero scattering
length the distribution has a flat top shape. The shown data correspond to
experiments where the lattice depth V0 had been adiabatically lowered in 1D
below 3 Er.

3.5.4 Attractively bound pairs

Making use of the Feshbach resonance at 1007.4 G we can tune the effective interaction
of the atoms within the pair (see Fig. 3.25 (a)). It is then possible to also create bound
atom pairs which are based on attractive interaction. After initial production of repul-
sively bound atom pairs in the deep lattice (V0 = 35Er) at about 1015 G, we adiabatically
lower the homogenous magnetic offset field to certain value. This tunes, depending on
magnetic field value, the scattering length of the atomic pair from its default value of
as = 100 a0 to negative scattering lengths of up to as =−110 a0 (see Fig. 3.24). Afterwards
we measure the quasi-momentum distribution of the pairs by lowering the optical lattice,
as discussed in Sec. 3.5.2. In contrast to repulsively bound pairs where the momentum
distribution is peaked at the edges of the first Brillouin zone, the momentum distribution
for attractively bound pairs is peaked in the center of the first Brillouin zone.
The Bloch band for attractively bound pairs is located below the continuum of scattering
states (see Fig. 3.26 (a)). The bound state energy can be simply calculated by replacing
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Figure 3.26:
(a) Two particle energy spectrum in a 1D lattice as a function of center of
mass quasi-momentum K . The Bloch band for attractively bound pairs is
located below the continuum of scattering states (grey area). (b) Calculated
single atom quasi-momentum distribution for attractively bound pairs at a
1D lattice depth of 5 Er, assuming a homogeneous distribution of K .

U →−U in the derivation for the analytic solution in Sec. 3.2 (see Eq. (3.35)). The bound
state energy for attractively bound pairs is then

EattrBS(K ) = 4J

(
1−

√
(cos

K a

2
)2 + (U /4J )2

)
. (3.45)

The corresponding wavefunction (1D) in momentum space is given by

ψ̃attrBS
K (k) = 1

EattrBS −EK −εK (k)
. (3.46)

The calculated single atom momentum distribution after release from the lattice (see
Sec. 3.5.2) is in fact peaked at the center of the Brillouin zone in the case of attractively
bound pairs (see Fig. 3.26 (b)).
Fig. 3.25 (b) shows how the quasi-momentum distribution of the pairs changes continu-
ously as the scattering length is changed. Interestingly, for non-interacting atoms (as =
0 → U = 0) the distribution again becomes a flat top shape. With respect to stability, we
find that lifetimes of bound atom pairs are similar for scattering lengths of equal size but
opposite sign.
It is to note, that attractively bound pairs are directly related to so-called "confinement-
induced molecules". Such "molecules" were first observed in a 1D Fermi gas by the group
of Tilmann Esslinger at the ETH in Zürich [MORITZ et al. (2005)]. Moritz et al. provided
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evidence of these "confinement-induced molecules" by measuring their binding energy
with rf-spectroscopy.
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3.6 Outlook for experiments with atom pairs

In our experiments we have demonstrated the formation of a novel composite object in
an optical lattice: a stable bound state that arises from the lattice band structure and re-
pulsion between the constituents.
A possible next experimental step could be to study the stability of pairs for different on-
site interaction potentials U . This can be realized by changing the scattering length as

with the help of the Feshbach resonance. In the case of a large U the stability of pairs
should increase because of a larger gap between the bound state and the continuum of
scattering states. Therefore, the lifetime limiting effects discussed in Sec. 3.5.1 should be
suppressed. With such a method it could be possible to realize a condensate of pairs, to-
gether with the means to characterize long-range order in this system.
A condensate of pairs would have not anymore a homogeneous distribution of the total
momentum K , but a specific value of K . Therefore it could be also possible to observe
Bloch oscillations of the pairs and so observe the different momentum distribution for
different K ’s (see Sec. 3.5.2).

Figure 3.27:
Possible realization of repulsively bound pairs with fermionic atoms. In the
case of two identical fermions (same spin) the atoms have to be in different
bands due to the Pauli exclusion principle (left). Fermions of different spins
or Bose-Fermi mixtures, however, can occupy the same band (right).

Also it would be very interesting to study repulsively bound pairs formed from fermions
or boson-fermion mixtures. These systems will exhibit interesting physics based on their
composite nature and the quantum statistics of their components.
In a single species fermion experiment it is not possible to put two identical fermions into
the same site and band due to the Pauli exclusion principle. The two atoms would have
to be at least in different bands (see Fig. 3.27, left), and even then the interaction between
them typically would be very small in the ultracold regime.
These problems do not arise using a two-component spin mix of fermions (see Fig. 3.27,
right), as two atoms of different spin can share the same site and band and can also inter-
act strongly [CHIN et al. (2006); STÖFERLE et al. (2006)]. The fact that a higher site occu-
pancy than two is again strictly forbidden could be advantageous in the initial production
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of pairs. Furthermore, the pairing of two fermions can result in a pair with bosonic char-
acter. In a 3D environment pairing of fermions recently lead to interesting experiments
studying the BEC-BCS transition (see e.g. [REGAL et al. (2004); CHIN et al. (2004); ZWIER-
LEIN et al. (2004)]). It would be interesting to study similar properties to this transition
with repulsive pairing, investigating the system as the interaction strength is changed.
Also it would be very interesting to study repulsive pairs which are a composite objects of
a fermion and a boson [OTT et al. (2004); GÜNTER et al. (2006); OSPELKAUS et al. (2006)].
One question would be how these bound states would interact with each other, and how,
for example, the bosonic atoms within the pair would mediate next neighbor interac-
tions [LEWENSTEIN et al. (2004)].
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Using the technique of stimulated Raman adiabatic passage (STIRAP) we have coherently transferred
ultracold 87Rb2 Feshbach molecules into a more deeply bound vibrational quantum level. Our measure-
ments indicate a high transfer efficiency of up to 87%. Because the molecules are held in an optical lattice
with not more than a single molecule per lattice site, inelastic collisions between the molecules are
suppressed and we observe long molecular lifetimes of about 1 s. Using STIRAP we have created
quantum superpositions of the two molecular states and tested their coherence interferometrically. These
results represent an important step towards Bose-Einstein condensation of molecules in the vibrational
ground state.

DOI: 10.1103/PhysRevLett.98.043201 PACS numbers: 34.50.Rk, 03.75.Nt, 32.80.Pj, 42.50.Gy

Recently, there has been a rapidly growing interest in
ultracold molecules since they lend themselves to a large
number of interesting studies in, for instance, few body
collision physics [1–3], chemistry in the ultracold regime,
high resolution spectroscopy, as well as quantum compu-
tation [4]. Furthermore, molecules in their vibrational
ground state are of special interest, because they allow
for the formation of an intrinsically stable molecular
Bose-Einstein condensate (BEC). Current pathways to-
wards the production of ultracold molecules in well-
defined quantum states are either based on sympathetic
cooling [5] or association of ultracold neutral atoms using
photoassociation [6] or Feshbach resonances [7]. The
method of Feshbach ramping has proved especially suc-
cessful and efficient, but it only produces molecules in the
last bound vibrational level. In order to selectively convert
molecules into more deeply bound states, it has been
proposed [8] to use a sequence of stimulated optical
Raman transitions to step molecules down the vibrational
ladder. This process takes place while the molecules are
held in an optical lattice isolating them from each other and
thus shielding them from detrimental collisions. Recently,
optical transfer of molecules into their vibrational ground
state was demonstrated experimentally using a ‘‘pump-
dump’’ method without a lattice at a moderate efficiency
and selectivity [9].

Here we report the realization of an efficient and highly
selective transfer scheme, where an ensemble of 87Rb2
Feshbach molecules in an optical lattice is coherently
converted to a deeper bound molecular state via stimulated
Raman adiabatic passage (STIRAP). STIRAP is known as
a fast, efficient, and robust process for population transfer
based on a Raman transition [10]. During transfer it keeps
the molecules in a dark superposition state, which decou-
ples from the light and thus suppresses losses due to
spontaneous light scattering. In our proof-of-principle ex-

periment we transfer the Feshbach molecules with a
STIRAP pulse from their last bound vibrational level
(binding energy 24 MHz� h), which we denote jai, to
the second-to-last bound vibrational level, jgi [see Fig. 1(a)
and 1(b)]. Both levels have a rotational quantum number
l � 0 and a total spin F � 2, mF � 2. The level jgi is
known from previous experiments [11–14]. It has a binding
energy of 637 MHz� h at 973 G and can be conveniently
reached via Raman beams generated with an acousto-optic
modulator (AOM). In order to detect the more deeply
bound molecules, a second STIRAP pulse converts the
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FIG. 1 (color online). (a) Level scheme for STIRAP. Lasers 1,
2 couple the ground state molecular levels jai, jgi to the excited
level jbi with Rabi frequencies �1, �2, respectively. � and �
denote detunings. �a, �b, �g give effective decay rates of the
levels. (b) Zeeman diagram of relevant energy levels. At
1007.4 G a molecular state crosses the threshold of the unbound
two atom continuum (dashed line) giving rise to a Feshbach
resonance. From there this molecular state adiabatically con-
nects to the last bound vibrational level jai, the state of the
Feshbach molecules.
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molecules back to the last bound vibrational level, where
they are detected as atoms after dissociation via Feshbach
ramping. The complete cycle has an efficiency of 75%,
indicating a single STIRAP efficiency of 87%.

We use essentially the same setup as in Ref. [15].
Starting point for the experiments is a pure ensemble of
2� 104 ultracold 87Rb2 Feshbach molecules which are
held in the lowest Bloch band of a cubic 3D optical lattice.
There is no more than a single molecule per site and the
whole molecular ensemble occupies a volume of about
20� 20� 20 �m3. The lattice is 50 Er deep for mole-
cules (Er � 2�2

@
2=m�2, where m is the mass of the atoms

and � � 830:44 nm the wavelength of the lattice laser),
suppressing tunneling between sites. The molecular en-
semble is initially produced from an atomic 87Rb BEC
after loading it into the lattice, subsequent Feshbach ramp-
ing at 1007.40 G [16] and a final purification step [15]
which removes all chemically unbound atoms. Lowering
the magnetic field to 973 G transfers the atoms to the
adiabatically connected state jai, which has nearly the
same magnetic moment as jgi (see Fig. 1). This results in
an almost magnetic field insensitive Raman transition [17].

In order to efficiently carry out STIRAP, a suitable
excited molecular level, jbi, has to be identified (see
Fig. 1). We chose the electronically excited molecular state
j0�g ; � � 31; J � 0i located 6:87 cm�1 below the S1=2 �

P3=2 dissociation asymptote [18]. The corresponding line is
strong and solitary; i.e., within a 2 GHz vicinity no other
strong molecular lines are found which could interfere with
STIRAP. Coupling to other excited molecular states leads
to loss of the molecules, since these levels typically decay
spontaneously into a variety of undetected vibrational lev-
els in the ground state. Furthermore, it is advantageous that
the chosen level jbi has a similar Franck-Condon overlap
with states jai and jgi. It can be shown that this also helps
to minimize losses through off-resonant coupling channels.

With this choice of states jai, jbi, jgi, we observe a clear
molecular dark resonance when coupling the states with
resonant Raman laser light (see Fig. 2). The corresponding
molecular dark superposition state shows a long lifetime.
This is a necessary precondition for our STIRAP experi-
ments, because the molecules have to be kept in a dark
state during the whole STIRAP process which in our case
typically takes hundreds of�s. The Raman laser beams are
both derived from a single Ti:sapphire laser with a short
term linewidth of less than 1 MHz. The Ti:sapphire laser is
offset locked relative to the D2 line of atomic rubidium
with the help of a scanning optical cavity, which yields an
absolute frequency stability of better than 5 MHz. The
frequency difference between the two beams is created
with an acousto-optical modulator (AOM) with a fre-
quency of about 307 MHz in a double-pass configuration.
This allows precise control of the relative frequency dif-
ference between the beams over several tens of MHz and
ensures phase locking. Both beams propagate collinearly
and have a waist of about 290 �m at the location of the

molecular ensemble. The polarization of the beams is
parallel to the direction of the magnetic bias field of 973 G.

In order to transfer the molecules from state jai to state
jgi, we carry out a STIRAP pulse which consists of a so-
called counterintuitive succession of two laser pulses [see
Fig. 3(a)]. We first switch on laser 2 and then ramp its
intensity to zero within the pulse time �p � 200 �s.
Simultaneously we ramp up the intensity of laser 1 from
zero to its final value. We fix the ratio of the maximal pulse
intensities of laser 1 and 2 to Imax

2 =Imax
1 � 1=3:2 in order to

partially compensate for the unequal Franck-Condon fac-
tor of the jai � jbi and jgi � jbi transitions. Ideally, after
the first STIRAP pulse all molecules from state jai should
end up in state jgi. In order to determine the population in
state jgi, we apply, after a holding time of �h � 5 ms, a
second STIRAP pulse which is the mirror image in time of
pulse 1. This transfers the molecules back into state jai. We
then ramp the magnetic field over the Feshbach resonance
at 1007.4 G which dissociates the molecules with unit
efficiency [15] into pairs of atoms. These are subsequently
detected with standard absorption imaging. Figure 3(b)
shows in a time resolved way how molecules in state jai
first disappear and then reappear during the course of the
STIRAP sequence. After applying the first STIRAP pulse,
no molecules can be observed in state jai. This is to be
expected, since any molecule which is left over in state jai
at the end of the first STIRAP pulse is in a bright state and
will be quickly removed by resonantly scattering photons
from laser 1. This confirms, that after completion of the
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FIG. 2 (color online). Dark resonance. The data show the
remaining fraction of Feshbach molecules in state jai, after
subjecting them to a 200 �s square pulse of Raman laser light
in a narrow range around 0 of the two-photon detuning �. The
inset shows the scan over the whole line of state jbi. The strong
suppression of loss at � � 0 is due to the appearance of a dark
state. The laser intensities are I1 � 2:6 mW=cm2, I2 �
13 mW=cm2 (�), I2 � 51 mW=cm2 (�). � is in general tuned
close to zero and for the shown measurements happens to be
�=2� � 2:5 MHz, which gives rise to the slightly asymmetric
line shape of the dark states. The solid and dashed lines are
model calculations (see text).
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second STIRAP pulse we only detect molecules that were
previously in state jgi. We observe an efficiency of 75% for
the full cycle of conversion into state jgi and back.
Figure 3(c) shows how this efficiency depends critically
on the two-photon detuning �.

In Fig. 4 we investigate further the complete STIRAP
cycle efficiency as a function of the laser intensity and
pulse length. In these measurements we use pulses with the
same shape as in Fig. 3(a), which are rescaled to adjust
pulse time �p and laser intensity. Again, for the best
settings we reach an efficiency of about 75% for the two
pulses, which corresponds to a transfer efficiency to state
jgi of about 87%. The dependence of the efficiency on
intensity and pulse length can be qualitatively understood
as follows. For short pulse lengths or low intensities, the
dark state cannot adiabatically follow the STIRAP pulse,
resulting in a low transfer efficiency. For very long pulse
lengths and high intensities the losses due to an imperfect
dark state become dominant, also resulting in a low transfer
efficiency. Thus in order to find an optimum value for the
transfer efficiency there is a trade off between adiabaticity
and inelastic photon scattering.

We are also able to quantitatively understand our data by
using a three level model. It describes the evolution of the
quantum mechanical probability amplitudes a, b, and g for
a molecule in the respective states jai, jbi, and jgi in terms
of the following set of differential equations:

 i _a � ��i�a=2�a� 1
2�1b;

i _b � ���� �� � i�b=2	b� 1
2��1a��2g�;

i _g � ��� i�g=2�g� 1
2�2b:

(1)

Here, the Rabi frequencies �1, �2, the detunings � and
�, and the decay rates �a, �b, �g are defined as shown in
Fig. 1. After experimentally determining �1, �2 and
�a, �g and using �b � 2�� 12 MHz, we are able to
consistently describe all data in Figs. 2–4 with a single
set of parameters. From one-photon and two-photon
scans (as, e.g., in Fig. 2) we obtain �1 � 2��
2:9 MHz�I1=�W cm�2�	1=2 and �2 � 2��
6:0 MHz�I2=�W cm�2�	1=2. The effective decay rates �a,
�g are intensity dependent and are mainly due to the off-
resonant coupling of jai with laser 2 and jgi with laser 1.
We determine �a (�g) by shining laser 2 (laser 1) on the
molecules in state jai (jgi) and measuring the off-resonant
losses. We find that �a=I2 � 2�� 0:72 kHz=�W cm�2�
and �g=I1 � 2�� 0:40 kHz=�W cm�2�. From these inde-
pendent measurements, all parameters of Eqs. (1) are
determined without further adjustable parameters. In the
calculations shown in Fig. 3(b), 3(c), and 4 the time
dependent pulse shapes [see Fig. 3(a)] are included. The
agreement between theory and experiment is very good.
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FIG. 4 (color online). Efficiency for population transfer from
state jai to state jgi and back with two STIRAP pulses.
(a) Efficiency vs the laser intensity Imax

2 (fixed pulse length of
�p � 200 �s). (b) Efficiency vs the pulse length �p (fixed laser
intensity Imax

2 � 44 mW=cm2). For (a) and (b) the intensity ratio
Imax

2 =Imax
1 � 1=3:2. The lines are from calculations without free

parameters using Eqs. (1). Setting �a � �g � 0, the efficiency
would reach unity for a fully adiabatic transfer (dashed lines).
Using for �a, �a the experimentally determined values, the
calculations (solid lines) are in good agreement with the data.
The error bars represent a 1� statistical error.
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FIG. 3 (color online). STIRAP. (a) Counterintuitive pulse
scheme. Shown are laser intensities as a function of time (laser
1: dashed line, laser 2: solid line). The first STIRAP pulse with
length �p � 200 �s transfers the molecule from state jai to state
jgi. After a holding time �h � 5 ms, the second pulse (identical,
but reversed) transfers the molecules back to jai. Imax

1;2 indicates
the maximal intensity of laser 1 (2) in the pulse, respectively.
(b) Corresponding population in state jai (data points, solid line)
and state jgi (dashed line). The data points are measurements
where at a given point in time the STIRAP lasers are abruptly
switched off and the molecule population in state jai is deter-
mined. For these measurements � � 0 � �. The lines are model
calculations (see text). (c) Efficiency for population transfer
from state jai to state jgi and back via STIRAP as a function
of the two-photon detuning �. The line is a model calculation,
showing a Gaussian line shape with a FWHM width of
� 22 kHz.
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During STIRAP the molecules are in a quantum super-
position, �2jai ��1jgi. In order to probe the coherence
of this superposition, we perform a Ramsey-type experi-
ment. First we create a dark superposition state with equal
population in the two states, jai � jgi, by going halfway
into the first STIRAP pulse of Fig. 3(a). We then simulta-
neously switch off both STIRAP lasers for a variable
holding time �h, after which we retrace in time the same
STIRAP half pulse. As a result we observe oscillations in
the number of molecules in level jai as a function of the
holding time �h (see Fig. 5). During the holding time, the
superposition state freely evolves, coherently flopping be-
tween the dark and a bright state with a frequency equal to
the two-photon detuning �. At the end of the holding time,
when we switch on again the STIRAP lasers, the dark state
is transferred back to state jai whereas the bright state will
be immediately destroyed by the light and leads to com-
plete loss of the corresponding molecules. The observed
oscillations are exponentially damped on a time scale of
about 2 ms. This damping can be explained by a magnetic
field inhomogeneity of about 20 mG over the molecular
cloud, which leads to a spatial variation of 2�� 250 Hz in
the two-photon detuning �. Additionally we observe a
slight shift of the oscillation frequency with time on the
order of 2�� 50 Hz=ms. This can be attributed to a small
drift of the magnetic field.

Furthermore, we have performed lifetime measurements
of the molecules in state jgi by varying the holding time �h
between the two STIRAP pulses [see Fig. 3(a)]. At a lattice
depth of 60 Er for molecules, we observe a long lifetime of
0.8 s (assuming exponential decay), which is longer than

the lifetime of 0.4 s for Feshbach molecules in state jai. At
these deep lattices molecular decay is exclusively due to
inelastic scattering of lattice photons.

To conclude, using STIRAP we have demonstrated a
coherent transfer of a molecular quantum gas from a
weakly bound molecular level to a more deeply bound
molecular level with a high transfer efficiency of 87%.
The method can be extended in a straightforward manner
to create arbitrarily deeply bound molecules. With a single
STIRAP pulse all vibrational levels down to level
X1��g �v � 116�=a3��u �v � 32� should be easily reached
since the Franck-Condon factors to state jbi are of similar
order as for level jgi [19]. This includes the level
X1��g �v � 119�=a3��u �v � 35� with its binding energy
of 30 GHz� h, from which the vibrational ground state
X1��g �v � 0� of the singlet potential can be reached with
two additional Raman (or STIRAP) transitions [8]. Thus
STIRAP is a promising tool for the creation of a molecular
BEC in the molecular ground state.
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FIG. 5 (color online). Coherence of the (jai � jgi) superposi-
tion state. Shown is the molecule number in state jai as a
function of holding time �h for different detunings � as indi-
cated. The oscillations indicate coherent flopping of the molecu-
lar superposition state between the dark and a bright state. The
lines are given by 0:5 exp���h=�� cos���h� � 0:5, with a damp-
ing time � � 2 ms.
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Repulsively bound atom pairs in an optical lattice
K. Winkler1, G. Thalhammer1, F. Lang1, R. Grimm1,3, J. Hecker Denschlag1, A. J. Daley2,3, A. Kantian2,3,
H. P. Büchler2,3 & P. Zoller2,3

Throughout physics, stable composite objects are usually formed
by way of attractive forces, which allow the constituents to lower
their energy by binding together. Repulsive forces separate par-
ticles in free space. However, in a structured environment such as a
periodic potential and in the absence of dissipation, stable com-
posite objects can exist even for repulsive interactions. Here we
report the observation of such an exotic bound state, which
comprises a pair of ultracold rubidium atoms in an optical lattice.
Consistent with our theoretical analysis, these repulsively bound
pairs exhibit long lifetimes, even under conditions when they
collide with one another. Signatures of the pairs are also recog-
nized in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional
condensed matter systems of such repulsively bound pairs, owing
to the presence of strong decay channels. Our results exemplify the
strong correspondence between the optical lattice physics of
ultracold bosonic atoms and the Bose–Hubbard model1,2—a link
that is vital for future applications of these systems to the study of
strongly correlated condensed matter and to quantum
information.
Cold atoms loaded into a three-dimensional (3D) optical lattice

provide a realization of a quantum lattice gas1,2. An optical lattice can
be generated by pairs of counterpropagating laser beams, where the
resulting standing wave intensity pattern forms a periodic array of
microtraps for the cold atoms, with period a given by half the
wavelength of the light, l/2. The periodicity of the potential gives
rise to a band structure for the atom dynamics with Bloch bands
separated by bandgaps, which can be controlled by the laser param-
eters and beam configuration. The dynamics of ultracold atoms
loaded into the lowest band of a sufficiently deep optical lattice is well
described by the Bose–Hubbard model with hamiltonian1,3:

Ĥ¼2J
ki;jl

X
b̂
†

i b̂j þ
U

2 i

X
n̂iðn̂i 2 1Þþ

i

X
1in̂i ð1Þ

Here b̂i (b̂i
†) are destruction (creation) operators for the bosonic

atoms at site i, and n̂i ¼ b̂i
† b̂i is the corresponding number operator.

J/" denotes the nearest-neighbour tunnelling rate, U the on-site
collisional energy shift, and 1i the background potential. The high
degree of control available over the parameters in this system—for
example, changing the relative values ofU and J by varying the lattice
depth, V0—has led to seminal experiments on strongly correlated
gases in optical lattices. These experiments include the study of
the superfluid–Mott insulator transition4, the realization of one-
dimensional (1D) quantum liquids with atomic gases5,6 (see also refs
7 and 8), and the investigation of disordered systems9. 3D optical
lattices have also opened new avenues in cold collision physics and
chemistry10–13.
A striking prediction of the Bose–Hubbard hamiltonian (equation

(1)) is the existence of stable repulsively bound atom pairs. These are
most intuitively understood for strong repulsive interaction

jUj .. J, U . 0, where an example of such a pair is a state of two
atoms occupying a single site, j2il ; ðb̂†2i jvaclÞ=

ffiffiffi
2

p
, where jvacl is the

vacuum state. This state has a potential energy offset U with respect
to states where the atoms are separated (Fig. 1a). The pair is unable to
decay by converting the potential energy into kinetic energy, as the
Bloch band allows a maximum kinetic energy for two atoms given by
8J, twice its width. The pair can move around the lattice, with both
atoms tunnelling to a neighbouring site (Fig. 1b), but the atoms
cannot move independently. The stability of repulsively bound pairs
is intimately connected with the absence of dissipation, in contrast to
solid state lattices, for example, where interactions with phonons
typically lead to rapid relaxation.
We obtain experimental evidence for repulsively bound pairs with

a sample of ultracold 87Rb atoms in a cubic 3D optical lattice with
lattice period a ¼ 415.22 nm. The key tool used to prepare and
observe the pairs is their adiabatic conversion into chemically

LETTERS

Figure 1 | Atom pairs in an optical lattice. a, Repulsive interaction
(scattering length a . 0) between two atoms sharing a lattice site in the
lowest band (n ¼ 0) gives rise to an interaction energyU. Breaking up of the
pair is suppressed owing to the lattice band structure and energy
conservation. b, The pair is a composite object that can tunnel through the
lattice. c, Long lifetime of repulsively bound atom pairs that are held in a 3D
optical lattice. The potential depth is (10 ^ 0.5)E r in one direction and
(35 ^ 1.5)E r in the perpendicular directions. Shown is the remaining
fraction of pairs for a scattering length of 100a0 (open diamonds; a0 is the
Bohr radius) and a scattering length of about (0 ^ 10)a0 (filled circles) as a
function of the hold time. The lines are fitted curves of an exponential
(dashed line) and the sum of two exponentials (solid line).
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bound dimers using a magnetic-field sweep across a Feshbach
resonance13–20 at 1,007.40 G. The initial state is prepared from a
pure sample of Rb2 Feshbach molecules in the vibrational ground
state of the lattice where each lattice site is occupied by not more than
a single molecule (see Methods). Sweeping across the Feshbach
resonance, we adiabatically dissociate the dimers and obtain a lattice
correspondingly filled with 2 £ 104 atom pairs, at an effective filling
factor of typically 0.3. Away from the Feshbach resonance, the
effective interaction between the atoms is repulsive with scattering
length a s ¼ þ100a0 (where a0 is the Bohr radius).
In order to demonstrate the stability of repulsively bound pairs, we

lower the lattice potential in one direction from its initial depth of
V0 ¼ 35E r (corresponding to J/" < 2p £ 0.7Hz and U/J < 3,700,
where E r ¼ 2p2"2/ml2 and m is the mass of the atoms) in 1ms to a
depth of V0 ¼ 10E r. This increases dramatically the tunnelling rates
along this direction to J/" < 2p £ 63Hz (U/J < 30), potentially
allowing the atom pairs to quickly separate. After a variable hold
time we determine the number of remaining pairs. This is done by
adiabatically raising the lattice to its full initial depth of V0 ¼ 35E r,
and converting doubly occupied sites to Feshbach molecules with
near unit efficiency13. A purification pulse13 then removes all remain-
ing atoms due to dissociated pairs. Afterwards the molecules are
again converted back into atoms, and can then be detected by
conventional absorption imaging.
The results of these lifetime measurements are shown in Fig. 1c.

For repulsive interaction (a s ¼ 100a0), the atom pair sample exhibits
the remarkably long lifetime of 700ms (exponential fit). This lifetime
is mainly limited by inelastic scattering of lattice photons13, and
greatly exceeds the calculated time for an atom to tunnel from one
site to the next, 2p"/(4J) < 4ms. In contrast, if we turn off the
on-site interaction by tuning the scattering length near zero, we
observe a much faster decay in the number of doubly occupied sites
owing to the rapid diffusion of unbound atoms through the lattice
(Fig. 1c). This observation clearly demonstrates that the stability of
the pairs is induced by the on-site interaction U.
We can more deeply understand these repulsively bound pairs

through an exact solution of the two-particle Lippmann–Schwinger
scattering equation based on the Bose–Hubbard model. We write
the two-atom wavefunction as W(x, y), where the positions of the
two particles are denoted x ¼ Si x i e i and y ¼ Si yie i , with e i
being the primitive lattice vectors, and x i ,yi integer numbers. Intro-
ducing centre of mass, R ¼ (x þ y)/2, and relative coordinates,
r ¼ x 2 y, we can solve the Schrödinger equation with the ansatz
W(x, y) ¼ exp(iKR)wK(r), where K is the quasi-momentum of the
centre of mass motion and wK(r) is the pair wavefunction. We derive
two types of solutions (for details see Methods), each of which are
eigenstates of K. These states, as illustrated in Fig. 2a, correspond to
(1) unbound scattering solutions (shaded area in Fig. 2a), where the
two particles move on the lattice, and scatter from each other
according to the interaction U, and (2) repulsively bound pairs for

which wK(r) is square integrable. In one and two dimensions, states
of repulsively bound pairs always exist for non-zeroU, while in three
dimensions they exist above a critical value Ucrit < 0.5J.
In this Letter, we focus primarily on the 1D situation, which in the

experiment corresponds to a low depth of the lattice along one
direction, whilst the lattice in the perpendicular directions
remains very deep (35E r). Here the energy of the bound pairs is

EðKÞ ¼ 2J
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðcos Ka

2 Þ
2 þ ðU=2JÞ2

q
þ 2

h i
: This is plotted in Fig. 2a as

the Bloch band of a stable composite object above the continuum of
two-particle scattering states. In the limit of strong interaction,
U .. J, this reduces to E(K) < 4J þ U þ (4J 2/U)(1 þ cosKa),
which shows that the bound pairs indeed have binding energy of,U
and hop through the lattice with an effective tunnelling rate J2/("U).
Figure 2b shows the pair wavefunctions wK(r) for repulsively

bound pairs (a s ¼ 100a 0) in one dimension with K ¼ 0, for
U/J ¼ 30 (V 0 < 10E r) and U/J ¼ 3 (V 0 < 3E r). For large U/J,
bound pairs essentially consist of two atoms occupying the same
site, whereas for small U/J, the pair is delocalized over several lattice
sites. The corresponding quasi-momentum distribution can be
found from the Fourier transform ~w0ðkÞ of the pair wavefunction
(Fig. 2c), where k is the relative quasi-momentum. Because K ¼ 0,
j ~w0ðkÞj

2
is also equal to the single-particle quasi-momentum distri-

bution. When the two particles are localized on the same site, the
quasi-momentum distribution is essentially flat. However, for lower
U/J the wavefunction is characteristically peaked at the edges of the
Brillouin zone. This occurs because the energy of the repulsively
bound state is above that of the continuum, and thus the contri-
bution to the corresponding wavepacket of single-particle quasi-
momentum states with higher energy is favoured. In contrast, if we
had U , 0, the pair would be attractively bound, and would have
energy lower than that in the continuum. Thus contributions from
the low-energy quasi-momentum states would be favoured, leading
to a single peak in the centre of the Brillouin zone. In both cases, the
amplitude of the peaks grows with increasing width 4J of the Bloch
band. In general, the stable bound pairs will not be prepared in a fixed
quasi-momentum state K in an experiment, but rather in a super-
position of different momentum states. For non-zero K, the peaks in
the single-particle quasi-momentum distribution are translated byK,
but their strength is also reduced. As a consequence, for typical
symmetric distributions of K, the peak at the edge of the Brillouin
zone remains present, but is less strong than in the optimal case of
vanishing K. We have verified this using many-body numerical
simulations, which were performed using time-dependent density-
matrix renormalization group methods21–23.
We have experimentally investigated the quasi-momentum distri-

bution of the pairs in various regimes by mapping it onto a spatial
distribution, whichwemeasured using standard absorption imaging.
For this, we first adiabatically lower the lattice depth in the X

Figure 2 |Atompair states in one dimension. a, Spectrum of energy E of the
1D hamiltonian for U/J ¼ 8 (V0 < 6E r) as a function of centre of mass
quasi-momentum K. The Bloch band for repulsively bound pairs is located
above the continuumof unbound states. The grey level for the shading of the
continuum is proportional to the density of states. b, The pair wavefunction

w0(r), showing the amplitude at each site with U/J ¼ 30 (V0 < 10E r, blue
bars) and U/J ¼ 3 (V0 < 3E r, orange bars). c, The square modulus of the
corresponding momentum space wavefunctions j ~w0ðkÞj

2; which are
equivalent to the single-particle momentum distributions, as K ¼ 0.
Note the characteristic peaks at the edge of the Brillouin zone.
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direction (Fig. 3a) at a rate of 1.3E r (ms21) to a pre-chosen height
while the lattice depth in the other two directions is kept high (35E r).
This will prepare repulsively bound pairs at the chosen lattice depth.
We then turn off the lattice rapidly enough for the pair wavefunction
not to change, but slowly with respect to the bandgap, so that single-
particle quasi-momenta are mapped to real momenta24,25. We have
typically employed linear ramps with rates of 0.2E r ms

21. The result-
ing momentum distribution is converted to a spatial distribution
after ,15ms time of flight.
Figure 3a–c shows typical measured quasi-momentum distri-

butions that were obtained after adiabatically lowering the lattice
depth in theX direction to the lowest values, below 3E r. If only empty
sites and sites with single atoms are present in the lattice, then the first
Brillouin zone is homogeneously filled24 (Fig. 3a). For repulsively
bound pairs, the momentum distribution is, in general, peaked at the
edges of the first Brillouin zone (Fig. 3b), whereas for attractively
bound pairs, it is peaked in the centre of the first Brillouin zone
(Fig. 3c). In order to change the interaction between the atoms from
repulsive to attractive, we change the scattering length, making use
of the Feshbach resonance26 at 1,007.40 G. Figure 3d and e
shows the dependence on lattice depth V0 of the single-particle
quasi-momentum distribution for repulsively bound pairs from
experiment and numerical simulation, respectively. As expected,
the peak structure is more pronounced for lower values of V0, and
diminishes for larger V0. This characteristic is a clear signature of the
pair wavefunction for repulsively bound pairs.
We also performed spectroscopic measurements, determining

the binding energy from pair dissociation produced by modulating
the depth of the lattice at a chosen frequency. On resonance, the
modulation allows pairs to release their binding energy. Figure 4a
shows the number of remaining pairs as a function of themodulation
frequency. This was repeated for a variety of lattice depths V0 in one
directionwhile keeping the lattice in the other two directions at 35E r.
The behaviour of the binding energy as a function of the lattice depth
provides an additional key signature of repulsively bound pairs. As
shown in Fig. 4b, the resonance positions are in good agreement with
numerical simulations and essentially coincide with the interaction
energy, U.
It is important to note that for sufficiently large U/J, repulsively

bound pairs are stable under collisions with each other. This is
particularly evident in the limit U .. J where, by energy arguments,

the elastic scattering between pairs is the only open channel. This
means that even a relatively dense quantum lattice gas of these objects
can be long-lived. When the lattice height is lowered so that U/J
becomes sufficiently small, it is possible for a certain fraction of the
pairs to dissociate by collisionwith other pairs. In our experiments, we
observe the onset of this behaviour for lattice depths lower than 6E r,
that is,U/J < 9. The dynamics of the collisions and details of the decay
depend crucially on lattice depth and the local density of pairs
across the lattice. Further details of these processes will be discussed
elsewhere.
In conclusion, we have demonstrated the formation of a novel

composite object in an optical lattice: a stable bound state that arises
from the lattice band structure and repulsion between the constitu-
ents. Although no direct analogue to repulsively bound atomic pairs
is known to exist, the formation of ametastable state is reminiscent of
trapping light in photonic bandgap materials27, or extended lifetimes
of excited atoms in cavity quantum electrodynamics28. In both cases,
decay is suppressed by restriction of the accessible light field modes.
Stable repulsively bound objects should be viewed as a general
phenomenon, and their existence will be ubiquitous in cold atom
lattice physics. They also give rise to new potential composites with
fermions29 or Bose–Fermi mixtures30, and can be formed in an
analogous manner with more than two particles. The stability of
repulsively bound objects could thus be the basis of a wealth of new
quantum many-body states or phases. In particular, the next exper-
imental step in investigating repulsively bound atomic pairs is the
possible realization of a condensate of pairs, together with the means
to characterise long-range order in this system.

METHODS
Preparation of pure molecular sample.We use a set-up which was described in
detail in ref. 13, starting with a Bose–Einstein condensate of 6 £ 105 87Rb atoms
in an Ioffe-type magnetic trap with trap frequencies qx,y,z ¼ 2p £ (7, 19, 20)
Hz).Within 100ms the Bose–Einstein condensate is adiabatically loaded into the
cubic 3D optical lattice which is 35E r deep. After turning off the magnetic trap,
we flip the spins of our atoms from their initial state jF ¼ 1,mF ¼ 21l to jF ¼ 1,
mF ¼ þ1l by suddenly reversing the bias magnetic field of a few gauss. This spin
state features a 210-mG-wide Feshbach resonance at 1,007.40 G (ref. 26). By
adiabatically ramping over this resonance we convert pairs of atoms in multiply
occupied lattice sites into Rb2 Feshbach molecules. Fast inelastic collisions of
molecules within lattice sites and a subsequent combined radio-frequency and
optical purification pulse remove all chemically unbound atoms, thus creating a
pure molecular sample of about 2 £ 104 molecules.
Exact solution for single pair bound state. Within the Bose–Hubbard
model (equation (1)), the Schrödinger equation describing two particles in a

Figure 3 | Quasi-momentum distribution of atoms in the lattice.
a–c, Absorption images of the atomic distribution after release from the 3D
lattice and a subsequent 15-ms time of flight. The horizontal and vertical
black lines enclose the first Brillouin zone. a, Distribution when lattice sites
are occupied by single atoms; b, distribution for repulsively bound atom
pairs (see text for details); c, same as b but pairs are attractively bound.
d, e, The quasi-momentum distribution for pairs in the X direction as a
function of lattice depth V0, after integration over the Ydirection.
d, Experiment; e, numerical calculation. See Methods for a definition of E r.

Figure 4 | Modulation spectroscopy of repulsively bound pairs.
a, Typical resonance dip showing the remaining number of atom pairs as a
function of the modulation frequency, for V0 < 6E r. The solid line is a
gaussian fit, a choice that was justified by numerical calculations.
b, Plot showing the measured resonance frequencies (filled circles) as a
function of the lattice depth. They show good agreement with numerical
simulations (crosses) and also coincide with the on-site collisional energy
shift U (line). Experimental error bars correspond to the 95% confidence
interval for the gaussian fit parameters of the resonance dips.
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homogenous optical lattice takes the form

2J ~D
0

x þ
~D
0

y

� �
þUdx;y

h i
Wðx;yÞ ¼ EWðx;yÞ ð2Þ

where the vectors x and y describe the positions of the two particles as
defined in the main text. The operator ~DK

xWðxÞ ¼
Pd

i¼1 cos ðKei=2Þ½Wðxþ e iÞþ
Wðx2 e iÞ2 2WðxÞ� denotes the discrete lattice laplacian with d the dimension-
ality in the cubic lattice, and dx,y is a Kronecker delta. Writing the wavefunction
in relative and centre of mass coordinates W(x, y) ¼ exp(iKR)wK(r), the
Schrödinger equation (2) then reduces to a single-particle problem in the
relative coordinate

22J ~D
K

r þ EK þUdr;0

h i
wK ðrÞ ¼ EwK ðrÞ ð3Þ

with EK ¼ 4JSi[1 2 cos(Kei/2)] being the kinetic energy of the centre of mass
motion.

The short range character of the interaction potential allows for a
resummation of the perturbation expansion generated by the corresponding
Lippmann–Schwinger equation. We obtain the scattering states

wðþÞðrÞ ¼ exp ðikrÞ2 8pJ f EðKÞGKðE; rÞ ð4Þ

with scattering amplitude

f EðKÞ ¼2
1

4p

U=ð2JÞ

12GK ðE;0ÞU
ð5Þ

where the total energy E ¼ 1k,K þ EK, and 1k,K ¼ 4JSicos(Kei/2)[1 2 cos(kei)].
Furthermore, GK(E, r) denotes the Green’s function of the non-interacting
problem, which in Fourier space takes the form ~GKðE;kÞ ¼ 1=ðE2 1k;K þ ihÞ:

The energy spectrum for these states in one dimension is shown as a function
of K by the shaded region in Fig. 2a. In addition, the pole in the scattering
amplitude indicates the presence of an additional bound state. The energy Ebs

of the bound state is determined by GK(Ebs,0)U ¼ 1 and the bound state
wavefunction takes the form wbs(r) ¼ cGK(Ebs, r), with c being a normalization
factor.
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fermionic atoms in an optical lattice. Phys. Rev. Lett. 96, 030401 (2006).
13. Thalhammer, G. et al. Long-lived Feshbach molecules in a 3D optical lattice.

Phys. Rev. Lett. 96, 050402 (2006).
14. Donley, E. A., Claussen, N. R., Thompson, S. T. & Wieman, C. E. Atom–-

molecule coherence in a Bose–-Einstein condensate. Nature 417, 529–-533
(2002).

15. Regal, C. A., Ticknor, C., Bohn, J. L. & Jin, D. S. Creation of ultracold molecules
from a Fermi gas of atoms. Nature 424, 47–-50 (2003).

16. Herbig, J. et al. Preparation of a pure molecular quantum gas. Science 301,
1510–-1513 (2003).

17. Xu, K. et al. Formation of quantum-degenerate sodium molecules. Phys. Rev.
Lett. 91, 210402 (2003).

18. Cubizolles, J., Bourdel, T., Kokkelmans, S. J. J. M. F., Shlyapnikov, G. V. &
Salomon, C. Production of long-lived ultracold Li2 molecules from a Fermi gas.
Phys. Rev. Lett. 91, 240401 (2003).
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Abstract. We study the horizontal transport of ultracold atoms over
macroscopic distances of up to 20 cm with a moving 1D optical lattice. By
using an optical Bessel beam to form the optical lattice, we can achieve nearly
homogeneous trapping conditions over the full transport length, which is crucial
in order to hold the atoms against gravity for such a wide range. Fast transport
velocities of up to 6 m s−1 (corresponding to about 1100 photon recoils) and
accelerations of up to 2600 m s−2 are reached. Even at high velocities the
momentum of the atoms is precisely defined with an uncertainty of less than one
photon recoil. This allows for construction of an atom catapult with high kinetic
energy resolution, which might have applications in novel collision experiments.
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1. Introduction

Fast, large-distance transport of Bose–Einstein condensates (BEC) from their place of production
to other locations is of central interest in the field of ultracold atoms. It allows for exposure
of BECs to all different kinds of environments, spawning progress in BEC manipulation and
probing.

Transport of cold atoms has already been explored in various approaches using magnetic and
optical fields. Magnetic fields have been used to shift atoms, e.g. on atom chips (for a review see
[1]) and to move laser-cooled clouds of atoms over macroscopic distances of tens of centimetres,
e.g. [2, 3]. By changing the position of an optical dipole trap, a BEC has been transferred over
distances of about 40 cm within several seconds [4]. This approach consisted of mechanically
relocating the focusing lens of the dipole trap with a large translation stage. A moving optical
lattice offers another interesting possibility to transport ultracold atoms. Acceleration of atoms
with lattices is intimately connected to the techniques of Raman transitions [5], STIRAP [6, 7] and
the phenomenon of Bloch oscillations [8, 9]; (for a recent review on atoms in optical lattices see
[10]). Acceleration with optical lattices allows for precise momentum transfer in multiples of two
photon recoils to the atoms. Transport of single, laser-cooled atoms in a deep optical lattice over
short distances of several mm has been reported in [11]. Coherent transport of atoms over several
lattice sites has been described in [12]. Even beyond the field of ultracold atoms, applications of
optical lattices for transport are of interest, e.g. to relocate submicron sized polystyrene spheres
immersed in heavy water [13].

Here, we experimentally investigate transporting BECs and ultracold thermal samples with
an optical lattice over macroscopic distances of tens of centimetres. Our method features the
combination of the following important characteristics. The transport of the atoms is in the
quantum regime, where all atoms are in the vibrational ground state of the lattice. With our
setup, mechanical noise is avoided and we achieve precise positioning (on the order of the
imaging resolution of 1 µm). We demonstrate high transport velocities of up to 6 m s−1, which
are accurately controlled on the quantum level. The velocity spread of the atoms is not more than
2 mm s−1, corresponding to 1/3 of a photon recoil.

2. Basic principle of transport

Horizontal transport of atoms over larger distances holds two challenges: how to move the atoms
and how to support them against gravity. Our approach here is to use a special 1D optical lattice
trap, which is formed by a Bessel laser beam and a counterpropagating Gaussian beam. The lattice
part of the trap moves the atoms axially, whereas the Bessel beam leads to radial confinement
holding the atoms against gravity.

In brief, lattice transport works like this. We first load the atoms into a 1D optical lattice,
which in general is a standing wave interference pattern of two counterpropagating laser beams
far red-detuned from the atomic resonance line (see figure 1). Afterwards the optical lattice
is carefully moved, ‘dragging’ along the atoms. Upon arrival at the destination, the atoms are
released from the lattice.

New Journal of Physics 8 (2006) 159 (http://www.njp.org/)
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Figure 1. Scheme for atom transport. Two counterpropagating laser beams form
a standing wave dipole trap. A BEC is loaded adiabatically into the vibrational
ground state of this 1D optical lattice. A relative frequency detuning �ν between
the two laser beams results in a lattice motion at a velocity v = �ν · λ/2 which
drags along the trapped atoms. We chose the counterpropagating laser beams to
consist of a Gaussian beam with diameter 2w0 and a Bessel beam with a central
spot diameter of 2r0. The (in principle) diffraction-free propagation of the Bessel
beam leads to tight radial confinement of the atoms over long distances, which
supports the atoms against gravity during horizontal transport.

The lattice motion is induced by dynamically changing the relative frequency detuning �ν

of the two laser beams, which corresponds to a lattice velocity

v = λ

2
�ν, (1)

where λ is the laser wavelength of the lattice.
In comparison to the classical notion of simply ‘dragging’ along the atoms in the lattice,

atom transport is more subtle on the quantum level. Here, only momenta in multiples of two
photon recoil momenta, 2h̄k = 4πh̄/λ can be transferred to the atoms. This quantized momentum
transfer can be understood in several ways, e.g. based on stimulated Raman transitions or based
on the concept of Bloch-like oscillations in lattice potentials. For a more thorough discussion in
this context, the reader is referred to [14].

In order to prevent the atoms from falling in the gravitational field, the lattice has to act as
an optical dipole trap in the radial direction. It turns out that for radial trapping, optical lattices
formed by Bessel beams have a clear advantage over Gaussian beam lattices. To make this point
clear, we now show, that a standard optical lattice based on Gaussian beams is not well suited for
long distance transports on the order of 50 cm. During transport, we require the maximum radial
confining force Fmax to be larger than gravity mg, where m is the atomic mass and g ≈ 9.81 m s−2

is the acceleration due to gravity. For a Gaussian beam this is

Fmax = 3

4π3
√

e

λ3

c

�

�

P0

w(z)3
> mg, (2)

where � is the natural linewidth of the relevant atomic transition, � the detuning from this
transition, w(z) the beam radius and P0 the total power of the beam. The strong dependence on
the beam radius w(z) suggests, that w(z) = w0

√
1 + (z/zR)2 should not vary too much over the

transport distance. If we thus require the Rayleigh range zR = πw2
0/λ to equal the distance of

25 cm, the waist has to be w0 ≈ 260 µm. For a lattice beam wavelength of e.g. λ = 830 nm, the
detuning from the D-lines of 87Rb is � ≈ 2π × 130 THz. To hold the atoms against gravity for
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Figure 2. Gaussian and Bessel beams. (a) The radial intensity distribution of a
Gaussian beam changes as it propagates. The smaller the waist w0 of the beam,
the higher its divergence (for a given wavelength). (b) Bessel beam: the radial
distribution and in particular the radius of the central spot r0 do not change with
z (see equation (8)). (c) Within a certain axial range zmax a Bessel-like beam can
be produced by illuminating an axicon lens with a collimated laser beam.

all z, where |z| < zR, a total laser power of P0 ≈ 10 W is needed, which is difficult to produce.
In addition, the spontaneous photon scattering rate

�scatt = 3

8π3h̄

λ3

c

(
�

�

)2
P0

w(z)2
(3)

would reach values on the order of �scatt = 2 s−1. For typical transport times of 200 ms, this
means substantial heating and atomic losses.

A better choice for transport are zero order Bessel beams (figure 2). They exhibit an intensity
pattern which consists of an inner intensity spot surrounded by concentric rings and which does
not change during propagation. In our experiments, we have formed a standing light wave by
interfering a Bessel beam with a counterpropagating Gaussian beam, giving rise to an optical
lattice which is radially modulated according to the Bessel beam.1 Atoms loaded into the tightly
confined inner spot of the Bessel beam can be held against gravity for moderate light intensities,
which minimizes the spontaneous photon scattering rate. In comparison to the transport with a
Gaussian beam, the scattering rate in a Bessel beam transport can be kept as low as 0.05 s−1 by
using the beam parameters of our experiment.

3. Bessel beams

Bessel beams are a solution of the Helmholtz equation and were first discussed and experimentally
investigated about two decades ago [15, 16].

1 In principle, one could also use a pure Bessel lattice (produced by two counterpropagating Bessel beams) for
transport. This would improve radial confinement, however, alignment is more involved.
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In cylindrical coordinates, the electric field distribution of a Bessel beam of order l is given by

E(r, ϕ, z) = E0 eiβz eilϕJl(αr), (4)

where Jl(αr) is the Bessel function of the first kind with integer order l. The beam is characterized
by the parameters α and β. In the following, we restrict the discussion to order l = 0 which we
have used in the experiment. By taking the absolute square of this expression, one gets the
intensity distribution given by

I(r, z) = I0J
2
0 (αr), (5)

where α determines the radius r0 of the central spot via the first zero crossing of J0(αr)

r0 ≈ 4.81

2α
. (6)

As pointed out before, r0 and I0 do not change with the axial position z. Because of this axial
independence, the Bessel beams are said to be ‘diffraction-free’.

Bessel-like beams were realized experimentally for the first time by illuminating a circular
slit [16]. Since this method is very inefficient, two other ways are common now-a-days. To
generate Bessel beams of arbitrary order, holographic elements, such as phase-gratings, are used
[17]. In our setup, we use a zero order Bessel beam, which can be produced efficiently by simply
illuminating an axicon (conical lens) with a collimated laser beam [18]. How this comes about
can be understood by looking at the Fourier transform of the Bessel field

Ẽ(k⊥, ϕk, kz) =
∫

d3rE(r, ϕ, z)e−ik⊥r cos(ϕ−ϕk)e−ikzz ∝ eilϕkδ(kz − β)δ(k⊥ − α). (7)

Thus a Bessel beam is a superposition of plane waves with (k⊥, kz) = (α, β). The k-vectors of
the plane waves all have the same magnitude |k| = k = 2π/λ = √

α2 + β2 and they are forming
a cone with radius k⊥ and height kz. Using an axicon with apex angle δ and index of refraction
n, α and β are given by

α = π(n − 1)

2λ tan δ/2
(8)

and

β =
√

k2 − α2. (9)

These experimentally produced Bessel beams are not ideal in the sense that their range
zmax = kwin

0 /α is limited by the finite size (waist win
0 ) of the beam impinging on the axicon lens

(see figure 2(c)). Also, the intensity of the Bessel beams might not be independent of the axial
coordinate z, as it is also determined by the radial intensity distribution of the impinging beam
(e.g. see figure 4(b)).

4. Experimental setup

We work with a 87Rb-BEC in the internal state |F = 1, mF = −1〉, initially held in a Ioffe-
type magnetic trap with trap frequencies of 2πνx,y,z = 2π (7, 19 and 20 Hz) [19, 20]. From
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the magnetic trap, the condensate is adiabatically loaded in about 100 ms into the inner core
of the 1D optical lattice formed by a Bessel beam of central spot radius r0 = 36 µm and
a counterpropagating Gaussian beam with a waist of w0 = 85 µm. About 70 lattice sites
are occupied with atoms in the vibrational ground state. The lattice periodicity is 415 nm,
corresponding to the laser wavelength of 830 nm. For our geometry (see below) the total power
needed for the Bessel beam to support the atoms against gravity is typically 200 mW, since only
a few per cent (≈10 mW) of the total power are stored in the central spot. For the Gaussian beam,
a power of roughly 20 mW is chosen, leading to an optical trapping potential at the centre (r = 0)
of U(z) = −U0 + Ulatt sin2(kz), where the lattice depth (effective axial trap depth) is Ulatt ≈ 10Er

and the total trap depth U0 ≈ 11Er. Here, Er = (h̄k)2/(2m) is the recoil energy.
The corresponding trap frequencies are ν⊥ = 4.81

√
U0/(8mr2

0)/(2π) = 97 Hz in the radial
direction and νz = k

√
2Ulatt/m/(2π) = 21 kHz in the axial direction. In order to better analyse

the transport properties, we mostly perform round trips, where the atoms are first moved to a
distance D and then back to their initial spot, which lies in the field of vision of our CCD camera.
Once back, the atoms are adiabatically reloaded into the Ioffe-type magnetic trap. To obtain the
resulting atomic momentum distribution, a standard absorption imaging picture is taken after
sudden release from the magnetic trap and typically 12 ms of time-of-flight.

The lattice beams for the optical lattice are derived from a Ti:Sapphire-laser operating at
830 nm. The light is split into two beams, each of which is controlled in amplitude, phase and
frequency with an acousto-optical modulator (AOM). For both AOMs, the radio-frequency (RF)
driver consists of a home-built 300 MHz programmable frequency generator, which gives us
full control over amplitude, frequency and phase of the radio-wave at any instant of time. The
frequency generator is based on anAD9854 digital synthesizer chip fromAnalogue Devices and a
8-bit micro-controller ATmega162 from Atmel, on which the desired frequency ramps are stored
and from which they are sent to the AD9854 upon request. After passing the AOMs, the two laser
beams are mode-cleaned in single-mode fibres and converted into collimated Gaussian beams.
One of the Gaussian beams passes the axicon lens (apex angle = 178◦, radius = 25.4 mm, Del
Mar Photonics) with a waist of win

0 = 2 mm, producing the Bessel beam. From there the beam
propagates towards the condensate, which—before transport—is located 5 cm away.

5. Transport of ultracold atoms

Figure 3 shows results of a first experiment, where we have transported atoms over short distances
of up to 1 mm (round trip), so that they never leave the field of view of the camera. The atoms
move perpendicularly to the direction of observation. In situ images of the atomic cloud in the
optical lattice are taken at various times during transport and the centre of mass position of
the cloud is determined. As is clear from figure 3(a), we find very good agreement between the
expected and the measured position of the atoms. In figures 3(b) and (c), calculations are shown
for the corresponding velocity v(t) and acceleration a(t) of the optical lattice, respectively. As
discussed before (see equation (1)), the velocity v of the lattice translates directly into a relative
detuning �ν of the laser beam, which we control via the AOMs. In order to suppress unwanted
heating and losses of atoms during transport, we have chosen very smooth frequency ramps
�ν(t) such that the acceleration is described by a cubic spline interpolation curve which is
continuously differentiable (details are given in the appendix). In this way, also the derivative of
the acceleration (commonly called the jerk) is kept small.
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Figure 3. (a) Position, (b) velocity and (c) acceleration of the atomic cloud
as a function of time for a typical transport sequence, here a round-trip over
a short distance of 1 mm. Piecewise defined cubic polynomials are used for the
acceleration ramp (see appendix for an analytical expression). By integrating over
time, velocity and position are obtained. The frequency detuning �ν, which is
used to program the RF synthesizers, corresponds directly to the velocity v via
equation (1). The position ramp is compared with in situ measurements of the
cloud’s position (◦).

In the next set of experiments, we extended the atomic transport to more macroscopic
distances of up to 20 cm (40 cm round trip), where we moved the atoms basically from one end
of the vacuum chamber to the other and back. However, the transport distance was always limited
by the finite range zmax of the Bessel beam (see figures 2(c) and 4). As shown in figure 4, the total
number of atoms abruptly decreases at the axial position, where the maximum radial force drops
below gravity. It is also clear from the figure how the range of the Bessel beam is increased by
enlarging the waist win

0 of the incoming Gaussian beam. Of course, for a given total laser power,
the maximum radial force decreases as the Bessel beam diameter is increased. For the transport
distances of 12 and 20 cm, the total power in the Bessel beam was approximately 400 mW. For
comparison, we have also transported atoms with a lattice formed by two counterpropagating
Gaussian beams (see figure 4(a)). For this transport, both laser beams have a Rayleigh range of
zR ≈ 2 cm corresponding to a waist of 70 µm. The laser power of the two beams was ≈130 and
≈35 mW, respectively. We observe a sudden drop in atom number when the transport distance
exceeds the Rayleigh range. Using the scaling law given in equation (2), it should be clear that
transports of atoms over tens of centimetres with a Gaussian lattice is hard to achieve.
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Figure 4. Long distance transports. (a) Shown is the number of remaining atoms
after a round-trip transport (see figure 3) over various one-way distances D.
The first two data sets are obtained with two different Bessel beams which are
created by illuminating an axicon with a Gaussian beam with a waist win

0 = 1
and 2 mm, respectively. The transport time T was kept constant at T = 130 ms
and T = 280 ms, respectively. The third data set (�) corresponds to a transport
in a Gaussian beam lattice (see text). The calculated maximum radial trapping
force of the two Bessel beam lattice traps is shown in (b) in units of mg,
where g ≈ 9.81 m s−2 denotes the gravitational acceleration. The variation of the
trapping force with distance is an imperfection of the Bessel beam and reflects
its creation from a Gaussian beam. When the maximum radial force drops below
1g, gravity pulls the atoms out of the trap, as can be clearly seen in (a).

Interestingly, the curve corresponding to the Bessel beam with waist win
0 = 1 mm in

figure 4(a) exhibits a pronounced minimum in the number of remaining atoms at a distance
of about 3 cm. The position of this minimum coincides with the position, where the lattice depth
has a maximum (see figure 4(b)). This clearly indicates, that high light intensities adversely
affect atom lifetimes in the lattice. Although we have not studied in detail the origin of the
atomic losses in this work, they should partially originate from spontaneous photon scattering
and three body recombination. In the deep lattice here (60Er), the calculated photon scattering
rate is �scatt = 0.4 s−1. The tight lattice confinement leads to a high calculated atomic density

New Journal of Physics 8 (2006) 159 (http://www.njp.org/)



9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

–1 –0.5 0 0.5 1.0 1.5
0

0.5

1

 

 

–1 –0.5 0 0.5 1.0 1.5
0

0.5

1

–1.5 –1 –0.5 0 0.5 1.0 1.5
0

0.5

1N
or

m
al

iz
ed

 a
to

m
 d

en
si

ty

–1.5 –1 –0.5 0 0.5 1.0
0

0.5

1

Momentum (hk)

D = 18 cm

D = 10 cm

D = 5 cm

D = 0 cm

Total (measured)

Thermal (fit)

Condensed (fit)

Figure 5. Transporting BEC. Shown are the momentum distributions (thin black
lines) of the atoms after a return-trip transport over various one-way distances D.
A bimodal distribution (a blue parabolic distribution for the condensed fraction
and a red Gaussian distribution for the thermal fraction) is fit to the data. For
D below 10 cm, a significant fraction of the atomic cloud is still condensed.
For D = 18 cm, (≈ the limit in our experiments) only a thermal cloud remains,
however, with a temperature below the recoil limit (T < 0.2Er/kB ≈ 30 nK).

of n0 ≈ 2 × 1014 cm−3. Adopting L = 5.8 × 10−30 cm6 s−1 as rate coefficient for the three body
recombination [21], we expect a corresponding loss rate Ln2

0 = 0.3 s−1.
In figure 5, we have studied the transport of a BEC, which is especially sensitive to heating

and instabilities. It is important to determine, whether the atoms are still Bose-condensed after
the transport and what their temperature is afterwards. Figure 5 shows momentum-distributions
for various transport distances D, which were obtained after adiabatically reloading the atoms
into the magnetic trap by ramping down the lattice and subsequent time-of-flight measurements.

Before discussing these results, we point out that loading the BEC adiabatically into the
stationary optical lattice is already critical. We observe a strong dependence of the condensate
fraction on the lattice depth. For too low lattice depths, most atoms fall out of the lattice trap due
to the gravitational field. For too high lattice depths, all atoms are trapped but the condensate
fraction is very small. One explanation for this is that high lattice depths lead to the regime of
2D pancake shaped condensates where tunnelling between adjacent lattice sites is suppressed.
Relative dephasing of the pancake shaped condensates will then reduce the condensate fraction
after release from the lattice. We obtain the best loading results for a 11Er deep trap, where we lose
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about 65% of the atoms, but maximize the condensate fraction. Because high lattice intensities
are detrimental for the BEC, we readjust the power of the lattice during transport, such that the
intensity is kept constant over the transport range. The adjustments are based on the calculated
axial intensity distribution of the Bessel beam. In this way, we reach transport distances for BEC
of 10 cm.We believe, that more sophisticated fine tuning of the power adjustments should increase
the transport length considerably. After transport distances of D = 18 cm (36 cm round trip), the
atomic cloud is thermal. Its momentum spread, however, is merely 0.3h̄k, which corresponds
to a temperature of 30 nK. Additionally, we want to point out that the loss of atoms due to the
transport is negligible (<10%) compared to the loss through loading and simply holding in such
a low lattice potential (≈65%).

An outstanding feature of the lattice transport scheme is the precise positioning of the atomic
cloud. Aside from uncontrolled phase shifts due to residual mechanical noise, such as vibrating
optical components, we have perfect control over the relative phase of the lattice lasers with our
RF/AOM setup. This would in principle result in an arbitrary accuracy in positioning the optical
lattice. We have experimentally investigated the positioning capabilities in our setup. For this,
we measured in many runs the position of the atomic cloud in the lattice after it had undergone a
return trip with a transport distance of D = 10 cm. The position jitter, i.e. the standard deviation
from the mean position, was slightly below 1 µm. For comparison, we obtain very similar values
for the position jitter when investigating BECs in the lattice before transport. Hence, the position
jitter introduced through the transport scheme is negligible.

Another important property of the lattice transport scheme is its high speed. For example,
for a transport over 20 cm (40 cm round trip) with negligible loss, a total transport time of
200 ms turns out to be sufficient. This is more than an order of magnitude faster than in the MIT
experiment [4], where an optical tweezer was mechanically relocated. The reason for this speed
up as compared to the optical tweezer is mainly the much higher axial trapping frequency of the
lattice and the non-mechanical setup.

In order to determine experimentally the lower limit of transportation time, we have
investigated round-trip transports (D = 5 mm), where we have varied the maximum acceleration
and the lattice depth (figure 6(a)). The number of atoms, which still remain in the lattice after
transport, is measured. As soon as the maximum acceleration exceeds a critical value, the number
of atoms starts to drop. For a given lattice depth, we define a critical acceleration acrit as the
maximum acceleration of the particular transport where 50% of the atoms still reach their final
destination. Figure 6(b) shows the critical acceleration acrit as a function of lattice depth. The
upper bound on acceleration observed here can be understood from classical considerations. In
our lattice, the maximum confining force along the axial direction is given by Ulattk, where k is
the wave vector of the light field. Thus in order to keep an atom bound to the lattice, we require
the acceleration a to be small enough such that

ma < Ulattk. (10)

Our data in figure 6 are in good agreement with this limit.2

There is in principle also a lower bound on the acceleration, which is due to instabilities
exhibited by BECs with repulsive interactions loaded into periodic potentials [23]–[26]. Due to
the fact that these instabilities mainly occur at the edge of the Brillouin zones, the time spent

2 In the weak lattice regime (Ulatt � 10Er) transport losses would be dominated by Landau–Zener tunnelling, see
e.g. [14, 22].
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Figure 6. Critical acceleration in lattice. (a) For several round-trip transports with
varying maximum acceleration a and lattice depth (see legend), the number of
remaining atoms after transport is shown. As the maximum acceleration exceeds
a critical value, the number of atoms starts to drop significantly. We define a
critical acceleration as the maximum acceleration for transports in which 50% of
the atoms still reach their final destination. This critical acceleration is shown as
a function of the lattice depth in (b). The experimentally determined values are
compared with the limit expected from classical considerations: acrit = Ulattk/m.

in this critical momentum range should be kept small. For our lattice parameters, nearly half of
the Brillouin zone is an unstable region, where the lifetime of the BEC is only on the order of
10 ms [25]. Thus we tend to sweep through the Brillouin zone in much less than �t = 20 ms,
which corresponds to an acceleration of a = v̇ 	 2vr/�t 
 0.6 m s−2. In this way, BECs may
be transported without introducing too much heating through these instabilities.

In contrast to acceleration, the transport velocity in our experiment is only technically
limited due to the finite AOM bandwidth. As discussed before, the lattice is set in motion
by introducing a detuning between the two beams via AOMs (equation (1)). For detunings
exceeding the bandwidth of the AOM, the diffraction efficiency of the modulator starts to drop
significantly. Consequently the lattice confinement vanishes, and the atoms are lost. In our setup,
we can conveniently reach velocities of up to v = 6 m s−1 ≈ 1100vr, corresponding to a typical
AOM bandwidth of 15 MHz. This upper bound actually limits the transport time for long distance
transports (D > 5 cm).
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Figure 7. Stability requirements for transport. Sudden phase jumps are
introduced in the relative phase of the two counterpropagating lattice laser beams.
The corresponding abrupt displacements of the optical lattice lead to heating and
loss of the atoms. We measure the number of atoms which remain in the lattice
after transport. (a) Data obtained after a single relative phase jump of variable
magnitude. (b) A phase jitter (200 positive Poissonian-distributed phase jumps
with a variable mean value) is introduced during transport. Mean values on the
order of a few degrees already lead to a severe loss of atoms.

Finally we have investigated the importance of phase stability of the optical lattice for the
transport (see figure 7). For this, we purposely introduced sudden phase jumps during transport
to one of the lattice beams. The timescale for the phase jumps, as given by AOM response time
of about 100 ns, was much smaller than the inverse trapping frequencies. The phase jumps lead
to abrupt displacements of the optical lattice, causing heating and loss of atoms. In figure 7(a),
the atomic losses due to a single phase jump during transport are shown. Phase jumps of 60◦

typically induce a 50% loss of atoms. For continuous phase jitter (see figure 7(b)), the sensitivity
is much larger.

6. Atom catapult

In addition to transport of ultracold atoms, acceleration of atoms to precisely defined velocities
is another interesting application of the moving optical lattice. For instance, it could be used
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Figure 8. Atom catapult. After acceleration in x-direction and subsequent release
from the lattice, the position of the atomic cloud is tracked as it flies ballistically
through the field of view of the CCD camera. Shown are two data sets where
atoms were accelerated to velocities of either vx = 10vr or vx = 290vr. (a) The
horizontal position x as a function of time. (b) For the slower cloud (vx = 10vr) a
parabolic trajectory y = −g/2 · (x/vx)

2 is observed as it falls under the influence
of gravity.

to study collisions of BECs with a very high but well-defined relative velocity, similar to the
experiments described in [27, 28]. As already shown above, we have precise control to impart
a well-defined number of up to 1100 photon recoils to the atoms. This corresponds to a large
kinetic energy of kB × 200 mK. At the same time, the momentum spread of the atoms is about
1/3 of a recoil (see figure 5). To illustrate this, we have performed two sets of experiments, where
we accelerate a cloud of atoms to velocities v = 10vr and v = 290vr ≈ 1.6 m s−1. After adiabatic
release from the lattice, we track their position in free flight (see figure 8). Initially the atomic
cloud is placed about 8 cm away from the position of the magnetic trap. It is then accelerated
back towards its original location. Before the atoms pass the camera’s field of vision, the lattice
beams are turned off within about 5 ms, to allow a ballistic flight of the cloud. Using absorption
imaging, the position of the atomic cloud as a function of time is determined. The slope of the
straight lines in figure 8(a) corresponds nicely to the expected velocity. However, due to a time
jitter problem, individual measurements are somewhat less precise than one would expect.3 For
v = 10vr, figure 8(b) shows the trajectory of the ballistic free fall of the atoms in gravity.

3 This is linked to the fact that our clock for the system control is synchronized to the 50 Hz of the power grid.
Fluctuations of the line frequency lead to shot to shot variations in the ballistic flight time of the atoms, which
translates into an apparent position jitter.

New Journal of Physics 8 (2006) 159 (http://www.njp.org/)



14 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

7. Conclusion

In conclusion, we have realized a long distance optical transport for ultracold atoms, using a
moveable standing wave dipole trap. With the help of a diffraction-free Bessel beam, macroscopic
distances are covered for both BEC and ultracold thermal clouds. The lattice transport features
a fairly simple setup, as well as a fast transport speed and high positional accuracy. Limitations
are mainly technical and leave large room for improvement. In addition to transport, the lattice
can also be used as an accelerator to impart a large but well-defined number of photon recoils to
the atoms.
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Appendix. Transport ramp

We give here the analytic expression for the lattice acceleration a(t) as a function of time t which
was implemented in our experiments (see for example figure 3). a(t) is a smooth piecewise
defined cubic polynomial,

a(t) =
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for 3T/4 < t � T.

Here, D is the distance over which the lattice is moved and T is the duration of the transport.
From a(t), both the velocity v(t) and the location x(t) may be derived via integration over time.
Our choice for the acceleration a(t) features a very smooth transport. The acceleration a(t) and
its derivative ȧ(t) are zero at the beginning (t = 0) and at the end (t = T ) of the transport. At
t = T/4 and t = 3T/4, the absolute value of the acceleration reaches a maximum.
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We have created and trapped a pure sample of 87Rb2 Feshbach molecules in a three-dimensional optical
lattice. Compared to previous experiments without a lattice, we find dramatic improvements such as long
lifetimes of up to 700 ms and a near unit efficiency for converting tightly confined atom pairs into
molecules. The lattice shields the trapped molecules from collisions and, thus, overcomes the problem of
inelastic decay by vibrational quenching. Furthermore, we have developed an advanced purification
scheme that removes residual atoms, resulting in a lattice in which individual sites are either empty or
filled with a single molecule in the vibrational ground state of the lattice.

DOI: 10.1103/PhysRevLett.96.050402 PACS numbers: 03.75.Lm, 03.75.Nt, 32.80.Lg, 34.50.�s

Using magnetic Feshbach resonances [1] to create ultra-
cold diatomic molecules in their highest rovibrational state
has become a key to exciting developments and break-
throughs. Feshbach molecules made of bosonic atoms
behave in a strikingly different way from Feshbach mole-
cules made of fermionic atoms. For weakly bound dimers
of fermionic atoms, vibrational quenching and inelastic
decay are strongly suppressed by a Pauli blocking effect
in a close encounter of two molecules [2]. This has been
vital to the experimental creation of molecular Bose-
Einstein condensates (BEC) and investigations of the
crossover to a strongly interacting fermionic superfluid
[3]. For dimers of bosonic atoms [4–7], however, progress
has been hampered by strong inelastic decay due to atom-
molecule and molecule-molecule collisions. Therefore, the
experiments have been focused on the transient regime,
studying, e.g., the collision and dissociation dynamics
[6–11].

A three-dimensional optical lattice offers many interest-
ing opportunities for research on ultracold molecules.
Lattice sites occupied with exactly two atoms represent a
perfectly controlled quantum system which can be rigor-
ously treated theoretically. Matrix elements for atom-
molecule coupling are strongly enhanced with the prospect
of efficient atom-molecule conversion. Moreover, it is ex-
pected that the lattice can isolate molecules from each
other and shield them from detrimental collisions so that
a long-lived sample can be created also with dimers of
bosonic atoms. Recently, first experiments with molecules
in a lattice have studied photoassociation [12,13] or dem-
onstrated modifications of the binding energy of tightly
confined Feshbach molecules [14].

In this Letter, we report on the creation of a pure sample
of ultracold Rb2 Feshbach molecules trapped in a 3D
optical lattice. The observed long lifetimes of up to
700 ms greatly exceed previous values reported for dimers
of bosonic atoms [6,7,9,10]. Further, we experimentally
investigate association and dissociation of the Feshbach
molecules and reach efficiencies of 95% for convert-
ing pairs of atoms into molecules. In brief, we adiabati-

cally load a 87Rb BEC into the vibrational ground state
of the lattice. For our experimental conditions, about 20%
of the condensate atoms are grouped in pairs of two into
the lattice sites. By ramping adiabatically over a mag-
netic Feshbach resonance at 1007.4 G, we convert these
pairs into molecules. Another 20% of atoms are located in
triply and more highly occupied lattice sites. After the
Feshbach ramp, however, inelastic collisions between the
created molecules and atoms within the high occu-
pancy sites quickly remove these particles from the lattice.
Finally, the remaining 60% of the condensate atoms
are found in singly occupied sites and are unaffected
by the Feshbach ramp. Using a novel resonant purifica-
tion scheme, we can remove these atoms from the lattice,
which results in a pure molecular sample with each
molecule being shielded from the others by the lattice
potential.

The starting point for our experiments is an almost pure
BEC of about 6� 105 87Rb atoms in the spin state
jF � 1; mF � �1i [15]. It is transferred from a quadrupole
Ioffe configuration trap (QUIC) into another Ioffe-type
magnetic trap with trap frequencies !x;y;z � 2��
�7; 19; 20� Hz, leading to a peak density of the BEC of
about 4� 1013 cm�3. Our 3D lattice is cubic and consists
of three retroreflected intensity-stabilized laser beams
which propagate orthogonally to each other. They are
derived from a frequency-stable single-mode Ti:sapphire
laser (�500 kHz linewidth) with a wavelength of � �
830:44 nm. For this wavelength, the laser is detuned by
about 100 GHz from the closest transition to an excited
molecular level, minimizing light induced losses as a pre-
condition for long molecular lifetimes. The laser beams are
polarized perpendicularly to each other, and their frequen-
cies differ by several tens of megahertz to avoid disturbing
interference effects. The waists of all three beams are about
160 �m, and the maximum obtainable power is about
110 mW per beam, which results in calculated lattice
depths of up to 40 recoil energies (Er � h2=2m�2, where
m is the atomic mass of 87Rb and h is Planck’s constant).
We have verified the lattice depths by measuring the energy
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gap between bands of the lattice [16]. The relative uncer-
tainty of our lattice depth is �15%.

After the BEC is adiabatically loaded into a 35Er deep
3D optical lattice within 100 ms, we turn off the magnetic
trap. By suddenly reversing the bias magnetic field of a few
gauss, we flip the spins of our atoms to the high field
seeking state jF � 1; mF � �1i with an efficiency higher
than 99% (see also [17]). This state features the Feshbach
resonance at 1007.4 G. Afterwards, we ramp up a homo-
geneous magnetic field in 3 ms to about 1015 G using the
QUIC quadrupole coils in Helmholtz configuration. The
current through the coils is actively stabilized to a relative
accuracy of about 10�4. The fast diabatic crossing of the
Feshbach resonance has basically no effect on the atoms in
the lattice. If we slowly ramp in 5 ms from 1015 to 1000 G
(crossing the Feshbach resonance at 1007 G), molecules
are adiabatically produced in the multiply occupied lattice
sites. If, however, we cross the Feshbach resonance very
quickly, e.g., by simply switching off the magnetic field,
less than 10% of the atoms are converted into molecules.
Note that, after the first Feshbach ramp, we observe an
immediate irretrievable loss of 20% of the atoms. We
attribute this loss to inelastic collisions involving mole-
cules for sites initially occupied by 3 or more atoms. The
remaining occupied sites each contain either a single atom
or a single molecule.

Atom numbers are measured with absorption imaging at
low magnetic fields (�2 G) after release from the optical
lattice and 11 ms of ballistic expansion. In order to deter-
mine molecule numbers, they are first dissociated into
atoms by slowly ramping back across the Feshbach reso-
nance and then quickly switching off the magnetic field.
We also use absorption imaging to map out the band
occupation of the lattice. For this, the lattice is ramped
down in 2 ms, and we typically observe a momentum
distribution which is fully contained in a cube of width
2@k corresponding to the first Brillouin zone of the lattice
[18]. This demonstrates that atoms and molecules are in the
vibrational ground state of the lattice sites.

In order to create a pure molecular sample, we have
developed an advanced purification scheme to remove all
atoms which combines the great selectivity of microwave
excitation with the high efficiency of atom removal
through resonant light pressure [7]. We apply a combined
microwave and light pulse at a magnetic field of 1000 G for
3 ms. The microwave drives the transition at a frequency of
9113 MHz between levels which correlate with jF � 1;
mF � �1i and jF � 2; mF � �2i. The light pulse drives
the closed transition jF � 2; mF � �2i ! jF � 3; mF �
�3i. The optical transition frequency is 1402 MHz blue
detuned compared to the transition at zero magnetic field.
After this pulse, which heats the atoms out of the lattice
and an additional hold time (	20 ms), no more atoms can
be detected. The direct effect of the microwave and light
field pulse on the molecules is negligible because the

radiation is off resonance. As an indirect effect, however,
we find that during the first purification pulse we still lose
about 40% of the molecules, probably due to inelastic
collisions with the blown away atoms. Further losses are
not observed in subsequent purification pulses. We end up
with a pure molecular sample formed from about 10% of
the initial atoms, which corresponds to 3� 104 molecules.

We have investigated the lifetimes of the Feshbach
molecules in the lattice under various conditions (see
Figs. 1 and 2). Figure 1 shows the decay of molecules at
a lattice depth of 10Er. The pure molecular sample exhibits
a remarkably long lifetime of 700 ms. For the case of an
unpurified sample, where the atoms at singly occupied sites
have not been removed, the lifetime of the molecules is
considerably reduced to � 35 ms. This observation sug-
gests that the molecular decay is based on a process where
an atom tunnels to a site occupied by a molecule and
inelastically collides with it. These inelastic collisions
can, in principle, also happen between two molecules.
However, compared to an atom, a molecule has a much
lower tunneling rate, since it experiences twice the dipole
potential and has twice the mass of a single atom. Using
simple scaling arguments, for a molecule to have the same
tunneling rate as an atom, the lattice light intensity needs to
be more than 4 times smaller. This explains the compara-
tively long lifetime of the purified molecular samples. We
note that, if molecular decay is based on inelastic colli-
sions, its time dependence is intrinsically nonexponential.
However, exact modeling of the decay would be quite
involved and requires precise knowledge of atom or mole-
cule distributions in the lattice. Since these distributions
are not known to us, we simply base our estimates for the
molecular lifetimes on an exponential decay law.

Figure 2 shows the measured lifetimes of the molecules
for various lattice depths. For sufficiently high lattice
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FIG. 1 (color online). Decay of molecules in a 3D optical
lattice with a potential depth of �10� 2�Er. Shown is the
remaining fraction of molecules in purified (solid circles) and
unpurified (squares) samples as a function of hold time. The
continuous lines are exponential fits to the data indicating a
lifetime of 700 and 35 ms for purified and unpurified molecular
samples, respectively. In order to determine molecule numbers in
the unpurified sample, purification was performed at the end of
the hold time. The hold time was limited to below 400 ms due to
the heating up of the coils.
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depths, we observe a lifetime for the purified molecular
sample inversely proportional to the lattice depth (see
dashed line in Fig. 2). From this, we conclude that above
a lattice depth of about 12Er the tunneling of the molecules
is strongly suppressed, and the lifetime is limited by light
induced losses due to off-resonant transitions to an excited
molecular state which subsequently decays. Below this
value, decay is dominated by tunneling [19] and following
inelastic collisions. Thus, the molecular lifetime is maxi-
mized in a tradeoff between tunneling and light induced
losses. As already shown in Fig. 1, the presence of atoms
considerably reduces the lifetime of the molecules, even at
larger lattice depths. In the limit of vanishing lattice depths,
our experimental lifetimes decrease to values similar to
those observed in Refs. [6–10]. Figure 2 clearly demon-
strates that shielding of the molecules against inelastic
collisions grows with increasing lattice depth.

We now investigate the dynamics for both association
and dissociation of a single Feshbach molecule in a lattice
site during Feshbach ramping. This fundamental system is
of special interest since it can be theoretically treated
exactly and solved analytically [21]. We prepare a purified
sample of molecules at 1000 G in a lattice of 35Er depth.
We then ramp the magnetic field in a symmetric way across
the Feshbach resonance up to 1015 G and back (see Fig. 3).
Afterwards, purification is applied to remove atoms which
have not recombined to form molecules. In a last step, the
molecule number is measured. If dissociation and associa-
tion are not fully adiabatic in a conversion cycle, a loss of
molecules will result; e.g., during the association ramp, a
pair of atoms might not be converted into a molecule or
during dissociation the molecule might break up into two
atoms which, after tunneling, are located in separate sites.
For slow ramps, we observe small loss signals indicating
high adiabaticity for the dissociation-association cycle. In
order to increase the loss signal, to improve its accuracy,
and to check for consistency, we repeated this experiment
with a higher number of cycles (see Fig. 3). The two data

sets in Fig. 3(b) correspond to two different ramp speeds
(2� 103 G=s, 8� 103 G=s) and can be described by the
exponential functions 0:95n and 0:89n, respectively, where
n is the number of cycles. Thus, for a slow Feshbach ramp
(2� 103 G=s), we observe an unprecedented high effi-
ciency of up to 95% for the whole dissociation-association
cycle. For a faster ramp (8� 103 G=s), the efficiency
drops to 89%. We have taken care that light induced losses
have been corrected for in the data [Fig. 3(b)]. Our high
conversion efficiencies in the optical lattice are in strong
contrast to the low values of	10% observed previously in
a 87Rb BEC [10] which were presumably limited by strong
inelastic collisions. In our deep lattice, however, inelastic
collisions are suppressed.

After having determined the efficiency for the full
dissociation-association cycle, we now study dissociation
and association individually. Figure 4(a) shows the mea-
sured conversion efficiency of atom pairs to molecules for
different ramp speeds. The atom pairs were prepared by
creating a pure molecular sample and then dissociating the
molecules by slowly (2� 103 G=s) ramping backward
over the Feshbach resonance. Then, again, the magnetic
field was swept across the Feshbach resonance at various
speeds, and, finally, after switching off completely the
magnetic field, the remaining nonconverted atoms are
detected. The dashed line in Fig. 4(a) is based on a
Landau-Zener expression without adjustable parameters
[21] and is given by
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FIG. 3 (color online). (a) Scheme for measurement of conver-
sion efficiency, shown for 7 dissociation-association cycles. The
shaded areas indicate the application of our purification proce-
dure to remove atoms. The dashed line at 1007 G shows the
position of the Feshbach resonance. (b) Conversion efficiency
for a given number of complete dissociation-association cycles
for two different ramp speeds of the magnetic field. We measure
a conversion efficiency of 95% per cycle for the slow ramp and
89% per cycle for the fast ramp. The solid lines are described by
exponential fit curves as described in the text. The lattice depth is
35Er.
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FIG. 2 (color online). Molecular lifetimes for purified molecu-
lar samples (circles) and for unpurified samples (squares) as a
function of the lattice depth. For this measurement, the lattice
depth was reduced from 35Er to the given value after the
creation of the molecules. The dashed line is inversely propor-
tional to the lattice depth.
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where p is the probability of creating a molecule, abg �

100:5a0 the background scattering length, �B � 0:21 G
[10] the width of the Feshbach resonance, _B the ramp speed
at the Feshbach resonance, and aho �

�������������
@=m!

p
the har-

monic oscillator length. Using the best estimate for our
trapping frequency of ! � 2�� �39� 3� kHz (corre-
sponding to a lattice depth of 35� 5Er), we get good
agreement with our data. We note that, even for the slowest
ramp speeds, the measured conversion efficiency never
reaches unity but levels off at 95%, in agreement with
the results in Fig. 3. This, however, does not exclude a
true unit conversion efficiency for atom pairs into mole-
cules, because it is possible that 5% of the atoms are not
grouped in pairs, e.g., due to nonadiabaticity in dissocia-
tion and tunneling. In order to facilitate the comparison of
the data distribution and theory, we have scaled the
Landau-Zener curve by a factor of 0.95 (dashed line).
The maximum controllable ramp speed (	105 G=s; see
Fig. 4) is limited by the performance of our current supply
for the magnetic field coils. The data point at 3� 106 G=s
was obtained by simply switching off the coil currents with
an external switch. The abrupt switching induces eddy
currents, which results in a less controlled ramp with a
large error margin. For fast switching, we measured a
conversion efficiency of 5� 5%.

In Fig. 4(b), we study the dissociation of a purified
sample of molecules. We measure the number of atoms
which populate the lowest band of the lattice after disso-
ciation. At low ramp speeds, Feshbach molecules get

adiabatically converted to pairs of atoms in the lattice
ground state. At higher speeds, molecules are energetically
lifted above the molecule threshold and can decay into
higher lattice bands or into the continuum. Assuming the
reversibility of the Landau-Zener transition, we use the
same theory curve as in Fig. 4(a). For higher ramp speeds,
we measure larger atom numbers than expected. This is
probably due to imperfections of our data analysis which
can overestimate the atom number in the lowest band by
adding in some atoms from higher bands.

To summarize, we have demonstrated that ultracold
Feshbach molecules can be created with high conversion
efficiency in a 3D optical lattice. After purification, we
observe long molecular lifetimes up to 700 ms. These
strong improvements over previous experiments open
promising perspectives for applications, e.g., in high reso-
lution molecular spectroscopy and quantum information
processing in optical lattices. They may also represent an
important step in the creation of a stable BEC of molecules
in their vibrational ground state.
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[6] S. Dürr et al., Phys. Rev. Lett. 92, 020406 (2004).
[7] K. Xu et al., Phys. Rev. Lett. 91, 210402 (2003).
[8] E. Hodby et al., Phys. Rev. Lett. 94, 120402 (2005).
[9] T. Mukaiyama et al., Phys. Rev. Lett. 92, 180402 (2004).
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FIG. 4 (color online). (a) Conversion efficiency of atoms
(mostly pairs) into molecules as a function of the ramp speed.
(b) A purified sample of molecules is dissociated into atom pairs
at different ramp speeds. We measure the number of atoms
which are observed in the first Brillouin zone of the lattice after
release, i.e., atoms that populate the lowest energy band of the
lattice. The data is normalized to the atom number at the lowest
ramp speeds. The continuous lines in (a) and (b) are calculations
as described in the text.

PRL 96, 050402 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
10 FEBRUARY 2006

050402-4



Atom-Molecule Dark States in a Bose-Einstein Condensate

K. Winkler,1 G. Thalhammer,1 M. Theis,1 H. Ritsch,2 R. Grimm,1,3 and J. Hecker Denschlag1

1Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
2Institut für Theoretische Physik, Universität Innsbruck, 6020 Innsbruck, Austria
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We have created a dark quantum superposition state of a Rb Bose-Einstein condensate and a degenerate
gas of Rb2 ground-state molecules in a specific rovibrational state using two-color photoassociation. As a
signature for the decoupling of this coherent atom-molecule gas from the light field, we observe a striking
suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state
is limited to about 100 Rb2 molecules due to laser induced decay. The experimental findings can be well
described by a simple three mode model.

DOI: 10.1103/PhysRevLett.95.063202 PACS numbers: 34.50.Rk, 03.75.Nt, 32.80.Pj, 42.50.Gy

The phenomenon of coherent dark states is well known
in quantum optics and is based on a superposition of long-
lived system eigenstates which decouple from the light
field. Since their discovery [1] dark states have found
numerous applications. Prominent examples are electro-
magnetically induced transparency and lasing without in-
version [2], subrecoil laser cooling [3], and ultrasensitive
magnetometers [4]. A particular application is the coherent
transfer of population between two long-lived states by a
stimulated Raman adiabatic passage (STIRAP) [5].

In the emerging field of ultracold molecules, the con-
version of atomic into molecular Bose-Einstein conden-
sates (BECs) is a central issue. A series of recent
experiments on the creation of molecular quantum gases
rely on the application of Feshbach resonances [6]. This
coupling mechanism, however, is restricted to the creation
of molecules in the highest rovibrational level and is only
practicable for a limited number of systems. As a more
general method, a stimulated optical Raman transition can
directly produce deeply bound molecules as demonstrated
a few years ago [7,8]. STIRAP was proposed as a promis-
ing way for a fast, efficient, and robust process to convert a
BEC of atoms into a molecular condensate [9–15]. The
central prerequisite for this kind of STIRAP is a dark
superposition state of a BEC of atoms and a BEC of
molecules.

In this Letter, we report the observation of such a col-
lective multiparticle dark state in which atoms in a BEC are
pairwise coupled coherently to ground-state molecules.
This dark atom-molecule BEC shows up in a striking
suppression of photoassociative loss, as illustrated by the
spectra in Fig. 1. In one-color photoassociation, the exci-
tation of a molecular transition produces a resonant loss
feature that reflects the optical transition linewidth; see
Fig. 1(a). The presence of a second laser field coupling
the electronically excited molecular state to a long-lived
ground-state level can drastically reduce this loss, as shown
in Fig. 1(b) and 1(c). In Fig. 1(b), for example, we observe
a striking loss suppression by about a factor of 70 on
resonance.

Already the mere observation of an atom-molecule dark
resonance in a BEC proves that a coherent, quantum
degenerate gas of molecules has been formed. This follows
from the facts that (1) the dark state is by definition a
coherent superposition of atoms and molecules and (2)
the atomic BEC is a coherent matter wave. In this fully
coherent situation, the molecular fraction itself must be
quantum degenerate with a phase-space density corre-
sponding to the number of molecules. The very narrow
resonance lines indicate the high resolution of our mea-
surements and the potential sensitivity of the dark state as
an analysis tool. Using a BEC allows direct interpretation
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FIG. 1. Dark resonances in two-color photoassociation.
(a) Atomic loss signal in one-color photoassociation as a func-
tion of the laser detuning from the electronically excited mo-
lecular line. (b), (c) When we apply a second laser (fixed
frequency) which resonantly (� � 0) couples the excited mo-
lecular state to a long-lived molecular ground state, the losses are
strongly suppressed at � � 0. Depending on the intensity of laser
2, this dark resonance can get very narrow. The atom lifetime on
the dark resonance in (b) is 140 ms whereas in (a) atoms have an
initial decay time of about 2 ms. Intensities of laser 1 (I1) and 2
(I2) are as indicated.
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and clear understanding of our data without ambiguity.
Thermal averaging of signal features plays no role in
contrast to previous measurements in thermal gases
[8,16,17].

The starting point of our measurements is a BEC of 4�
105 87Rb atoms in the spin state jF � 1; mF � �1i [18]. In
the level scheme of Fig. 2 the atomic BEC state is repre-
sented by jai. Laser 1 couples this state to the excited
molecular state jbi. Laser 2 couples jbi to the molecular
ground state jgi. We choose level jbi to be the electroni-
cally excited molecular state j0�g ; v � 1; J � 2i located
26:8 cm�1 below the S1=2 � P3=2 dissociation asymptote
[18]. For level jgi we choose the second to last bound state
in the ground-state potential. It has a binding energy of
Eb=h � 636 MHz [7]. jai, jbi, and jgi form the lambda
system for the atom-molecule dark states.

We illuminate the trapped condensate for typically
10 ms with two phase-locked laser beams in a Raman
configuration as shown in Fig. 2. Both laser beams are
derived either from a single diode laser or, for higher
optical powers, from a Ti:sapphire laser. The frequency
difference between the two beams is created with an
acousto-optical modulator at a center frequency of about
320 MHz in a double-pass configuration. This allows
precise control of the beams’ relative frequency difference
over several tens of MHz. Both beams propagate colli-
nearly and are aligned along the weak axis of the trap. They
have a waist of about 100 �m, and their linear polarization
is perpendicular to the magnetic bias field of the trap. The
diode laser and the Ti:sapphire laser both have linewidths
of less than 1 MHz. They are offset locked relative to the
D2 line of atomic rubidium with the help of a scanning
optical cavity. This yields an absolute frequency stability
of better than 10 MHz.

We are able to describe all of our spectra with a rela-
tively simple three-mode model. Although the atom-

molecule dark states are intrinsically complicated and en-
tangled, in a first approximation the atoms and molecules
can be represented as coherent matter fields [9–15]. Using
the notation of Mackie et al. [11] we obtain a set of
differential equations for the normalized field amplitudes
a, b, and g of the BEC state, the excited molecular and
ground state, respectively:

i _a � ��1a
�b; (1a)

i _b � �	�� �
 � i�b=2�b� 1
2	�1aa��2g
; (1b)

i _g � 	�� i�g=2
g� 1
2�2b: (1c)

We refer to �1 as the free-bound Rabi frequency (see
Fig. 2). It scales with intensity I1 of laser 1 and initial atom
density � as �1 /

����
I1

p ����
�

p
, where the factor

����
�

p
follows

directly from the transition matrix element of a free-bound
transition [13]. The bound-bound Rabi frequency �2 /����
I2

p
only depends on the intensity I2 of laser 2. The detun-

ings � and � are defined as depicted in Fig. 2. �b and �g

denote the effective decay rates of state jbi and jgi (for
details, see Fig. 2). jaj2; jbj2 and jgj2 give the ratio between
the respective atom (molecule) number and the initial atom
number. In the absence of losses, i.e., �b � �g � 0, par-
ticle numbers are conserved globally, jaj2 � 2jbj2 �
2jgj2 � 1. Unlike the previous theoretical treatments
[9–15] where the decay rate �g was basically neglected,
we find that �g is relatively large and intensity dependent,
�g � �g	I1
. In our simple model we do not include
atomic continuum states other than the BEC state. We
neglect inhomogeneity effects due to the trapping poten-
tials and finite size laser beams. Energy shifts caused by the
mean-field interaction of atoms and molecules are small
and neglected.

In order to determine the parameters of our model and to
check it for consistency, we performed measurements in a
broad parameter range of intensities and detunings. Fits to
the photoassociation curves determine all unknown pa-
rameters of the system such as �1, �2, �b, and �g.
Figure 3 shows photoassociation spectra for a relatively
high laser power I2 � 20 W=cm2 and various detunings �.
For a small detuning � [Fig. 3(a)] the dark resonance line
from Fig. 1 has broadened considerably. This spectrum can
also be viewed as two absorption lines resulting from a
strong Autler-Townes splitting which was also observed in
thermal gases [8,17]. From the 30 MHz separating the two
resonance dips, the magnitude of the Rabi frequency �2

can be directly determined. For a larger detuning �, the
resulting spectrum becomes asymmetric and turns into a
narrow and a broad dip; see Fig. 3(b) and 3(c). The narrow
loss feature is related to the two-photon Raman transition
while the broad dip is due to the one-photon transition
jai ! jbi. Note that similar to Fig. 1, losses are suppressed
at � � 0.

Figure 4 shows the dark resonances in the low power
limit where I1 is held constant and I2 is lowered in 4 steps.

|g〉

|b〉

γ b

Ω2

laser 2 Ω1

laser 1
|a〉

∆
δ

γ g

FIG. 2. Level scheme. � and � denote the detunings. �1 and
�2 are the Rabi frequencies. The excited molecular state jbi
spontaneously decays with a rate �b to levels outside this
scheme. The molecular state jgi is attributed a decay rate �g

which phenomenologically takes into account losses through
inelastic collisions and laser induced dissociation, e.g., when
laser 1 couples jgi to the unstable state jbi. In all our measure-
ments laser 1 is scanned (varying �) while laser 2 is held fixed at
a particular detuning �.
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The dark state transforms more and more into a gray state,
because losses become more dominant due to a nonzero
decay rate �g. The height of the dark resonance decreases
when the pumping rate �2

2=�b comes in the range of the
decay rate of the molecular ground state �g. This allows for
a convenient determination of �g. From Fig. 4 it is also
clear that the width of the dark resonance decreases with
�2. For �2 � �b the width is given by �2

2=�b � �g,
corresponding to power broadening and the effective
ground-state relaxation. The following set of parameters
describes all our measurements quite accurately. It was
used, in particular, for the calculated solid lines in Fig. 4
and it is consistent with previous measurements [18]:
�1=	

����
I1

p �����������
�=�0

p

 � 2�� 8 kHz=	Wcm�2
1=2 at a peak

density of �0 � 2� 1014 cm�3, �2=
����
I2

p
� 2��

7 MHz=	Wcm�2
1=2, and �b � 2�� 13 MHz. We find
that the decay rate �g of the ground-state molecular level
increases with the intensity I1 of laser 1 as shown in Fig. 5.
A dependence of �g on I2 was negligible in our experi-
ments where typically I2=I1 � 1=5 . . . 1=500. We model

the behavior of �g as �g � 2�� 6 kHz=	Wcm�2
I1 �
�bg, the sum of a light-induced decay rate proportional to
I1 and a background decay rate �bg due to inelastic colli-
sions in the absence of light. From measurements at low
intensities we can estimate an upper value for the back-
ground decay rate of about �bg � 2�� 1 kHz for �0 �

2� 1014 cm�3. This value for �bg is consistent with pre-
vious experimental results for 87Rb at similar atom den-
sities [7]. The increase of �g with I1 is due to several
imperfections which break the ideal three-level lambda
system. Laser 1 also couples the molecular ground state
jgi to the short-lived excited molecular state jbi, which
leads to an incoherent loss of the molecules due to sponta-
neous decay. Because of the rather small frequency differ-
ence ( � 2�� 636 MHz) of the two Raman lasers and the
strong bound-bound transition, this cannot be neglected. In
addition, only 290 MHz below level jbi exists another
excited molecular state j0�g ; v � 1; J � 0i which repre-
sents an additional loss channel [18]. These two contribu-
tions explain about one third of our observed losses.
Furthermore, losses can also stem from a photodissocia-
tion transition which couples ground-state molecules di-
rectly to the continuum above the S1=2 � P1=2 dissociation
asymptote.

Having determined the parameters we can use model (1)
to calculate the fraction of ground-state molecules jgj2. For
the measurements presented in Fig. 4 we have a peak
molecular fraction of 2� 10�4 corresponding to about
100 molecules (at � � 0 and I2=I1 � 1=500). For com-
parison, for I2=I1 � 1=40 the molecule number is only
about 25 at � � 0. It is interesting to note how few mole-
cules are needed to stabilize almost a million atoms against
photoassociation. This large asymmetry of the particle
numbers reflects the different coupling strengths of the
free-bound and bound-bound transitions. Naturally the
question arises how the experimental parameters should
be chosen to optimize the number of molecules. This is
nontrivial due to the finite decay rate �g. With model (1)
we have numerically mapped out molecule numbers as a
function of time, detuning, and laser intensities, starting
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out with a pure atomic BEC and simply switching on the
lasers. In general, within a few �s of evolution, the dark
state is formed. This involves only negligible losses of
atoms since the dark state is very close to our initial BEC
state. The maximum number of molecules of every evolu-
tion is then determined. We find that we can optimize the
molecular production by working at � � 0 although other
values for � can be used. For � � 0 the maximum number
of molecules corresponds to � � 0, hence both lasers are
on resonance. Figure 6 shows the molecular fraction as a
function of the laser intensities. In Fig. 6(a), as I2=I1 is
lowered from high values, the molecule fraction initially
grows and follows a straight dotted line. Because of the
finite �g the molecular fraction curve rolls over for some
value of I2=I1, when the molecule loss rate is larger than
its production rate. A smaller �g would lead to a larger
number of molecules (dashed line). In the limit �g � 0 the
molecular fraction is located on the dotted line. We note
that for our parameter range, this line coincides with the
ideal (�g � 0) route for a STIRAP conversion from
atoms to molecules. The finite �g in our experiments leads
to a maximum molecule number at I2=I1 � 1=500, a ratio
which we also used in our measurements (see Fig. 4, open
diamonds). For this optimum value the dependence of the
molecular fraction on I1 is shown in Fig. 6(b). Here it
becomes clear that the laser intensities have to be kept
above a certain threshold so that losses are not dominated
by the background decay rate �bg of the molecular state.

To summarize, we have created a novel multiparticle
dark state where an optical Raman transition coherently
couples an atomic Rb BEC of about 4� 105 atoms to a
quantum degenerate gas of up to 100 Rb2 ground-state
molecules. Our investigations can be extended in a straight
forward manner to create and study BECs of arbitrarily
deeply bound molecules and coherent atom-molecule mix-

tures. The dark resonance has proven itself as a useful tool
to analyze the atom-molecule system and to optimize the
optical conversion of atomic to molecular BECs. An in-
crease of the number of molecules by several orders of
magnitude should be possible by choosing better suited
ground and excited molecular states for the free-bound
Raman transition.

We appreciate the help of George Ruff and Michael
Hellwig at an early stage of the experiment. We thank
Paul Julienne, Eite Tiesinga, Peter Drummond, and
Karen Kheruntsyan for valuable discussions. This work
was supported by the Austrian Science Fund (FWF) within
SFB 15 (project parts 12 and 17) and the European Union
in the frame of the Cold Molecules TMR Network under
Contract No. HPRN-CT-2002-00290.

Note added.—Recently, atom-molecule dark states have
also been observed in a sodium gas [19].
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FIG. 6. (a) Maximum molecular fraction as function of the
intensity ratio I2=I1 at a fixed intensity I1 � 10 W=cm2 and
(b) as a function of intensity I1 at a fixed intensity ratio I2=I1 �
1=500. The solid lines show the molecule fraction for the
measured decay rate �g � 2�� 6 kHz=	Wcm�2
I1 � �bg.
The dashed lines show the molecule fraction assuming a lower
decay rate �g � 2�� 1 kHz=	Wcm�2
I1 � �bg. The dotted
line corresponds to �g � 0. The calculations are based on
Eqs. (1) with � � 0.
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We demonstrate a method of inducing an optical Feshbach resonance based on a coherent free-bound
stimulated Raman transition. In our experiment atoms in a87Rb Bose-Einstein condensate are exposed to two
phase-locked Raman laser beams which couple pairs of colliding atoms to a molecular ground state. By
controlling the power and relative detuning of the two laser beams, we can change the atomic scattering length
considerably. The dependence of scattering length on these parameters is studied experimentally and modeled
theoretically.

DOI: 10.1103/PhysRevA.71.033403 PACS numberssd: 34.50.Rk, 32.80.Pj, 03.75.Nt, 34.20.Cf

I. INTRODUCTION

Feshbach resonances have become a central tool in the
physics of ultracold quantum gases during the last years be-
cause they allow for a tuning of the interactions between
atoms. Controlling interparticle interactions is a central key
in many fields of modern physics and is especially relevant
for future applications in quantum computation and explor-
ing novel many-particle quantum effects. Beautiful experi-
ments using magnetically tunable Feshbach resonancesf1,2g
have been performed, ranging from ultrahigh-resolution mo-
lecular spectroscopyf3g to the coherent coupling of atomic
and molecular statesf4g as well as the creation of bright
matter wave solitonsf5g. It also led to the production of new
atomic f6g and molecularf7g Bose-Einstein condensates
sBEC’sd and allowed control of pairing in ultracold fermi-
onic gasesf8g.

Recently we demonstrated how atom-atom interactions in
a 87Rb BEC can also be tuned with an optically induced
Feshbach resonancef9g ssee alsof10gd, a scheme which was
originally proposed by Fedichevet al. f11,12g. Optically in-
duced Feshbach resonances offer advantages over magneti-
cally tuned Feshbach resonances since the intensity and de-
tuning of optical fields can be rapidly changed. Furthermore,
complex spatial intensity distributions can be easily pro-
duced and optical transitions are always available even when
no magnetic Feshbach resonances exist. A disadvantage of
optically induced Feshbach resonance is the inherent loss of
atoms due to excitation and spontaneous decay of the mo-
lecular statef9g. Typical lifetimes for excited molecular
states are on the order of 10 ns which corresponds to a line-
width of 2p316 MHz. Evidently, coupling to molecular
states with longer lifetime should improve the situation.
Ground-state molecules are stable against radiative decay,
and narrow transition linewidths on the order of kHz have
been observed in two-photon Raman photoassociation
f13,14g. This raises the question whether it is possible to
create optical Feshbach resonances using stimulated Raman
transitions and whether this scheme might be advantageous
compared to the one-photon optical Feshbach resonance.

In this paper we indeed demonstrate that optical Feshbach
resonances can be induced using a coherent two-color Ra-

man transition to a highly vibrationally excited molecular
ground state in a87Rb BEC. In the experiment we show how
the scattering length and loss rates can be tuned as a function
of the intensity of the lasers and their detuning from molecu-
lar lines. We use Bragg spectroscopyf15g as a fast method to
measure the scattering length in our samplef9g. To fit and
analyze our data we use a model by Bohn and Juliennef16g.
We find that using the Raman scheme for optically induced
Feshbach resonances leads to similar results in tuning of the
scattering length as for the single-photon Feshbach scheme.
The Raman scheme does not lead to an improvement com-
pared to the one-photon scheme because its atomic loss rate
is not lower for a given change in scattering length. How-
ever, using a stimulated Raman transition does offer experi-
mental advantages. To tune over the Feshbach resonance, the
relative frequency of the two laser beams only has to be
changed typically by several MHz which can be conve-
niently done using an acousto-optic modulator. This allows
for very fast and precise control of the scattering length. On
the other hand, working with a one-photon optical Feshbach
resonance in the low-loss regime typically requires large de-
tunings and scan ranges on the order of GHz. The Raman
scheme relaxes the necessity for absolute frequency control
of the lasers which can be tedious to maintain far away from
atomic lines. Since off-resonant light fields in general lead to
dipole forces acting on the atoms, a variation of the scatter-
ing length via optical tuning leads to a variation of the dipole
forces on the atomic sample. This unwanted effect can be
made negligible for the Raman scheme which tunes over
resonance within a small frequency range.

The paper is organized as follows: We start in Sec. II by
discussing the Raman scheme with a simple theoretical
model. In Sec. III we describe in detail our experimental
setup and the measurement method. In Sec. IV we discuss
the experimental results which are compared with a theoret-
ical model. The Appendix gives details of the model that is
used to describe the data.

II. RAMAN SCHEME FOR OPTICAL FESHBACH TUNING

Before discussing optical Feshbach tuning based on a
two-photon Raman transition, it is instructive to briefly recall
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the one-photon scheme firstf9,11,12g. This configuration
uses a single laser beam tuned close to a transition from the
scattering state of colliding atoms to a bound level in an
excited molecular potentialsstatesu0l and u1l in Fig. 1d.
Varying the detuningD1 or the intensityI1 modifies the cou-
pling and hence the scattering length. Atomic loss can occur
through population of the electronically excited molecular
state which has a decay width ofg1.

Introducing a second laser as shown in Fig. 1 will now
couple the collisional stateu0l to a bound levelu2l in the
ground-state potential. As we will show, this allows for a
tuning of the scattering length similar to the one-photon
scheme. We now have, however, four parameters which can
be used to influence the scattering length: the intensitiesI1
and I2 of lasers 1 and 2 and the detuningsD1 and D2 as
shown in Fig. 1.1

Fromf16g fEqs.s4.8d–s4.11dg one can extract approximate
expressions for the inelastic collision rate coefficientKinel

and the scattering lengtha in a Bose-Einstein condensate:2

Kinel =
2p"

m

1

ki

G01g1

sD1 − V12
2 /D2d2 + sg1/2d2 , s1d

a = abg −
1

2ki

G01sD1 − V12
2 /D2d

sD1 − V12
2 /D2d2 + sg1/2d2 . s2d

HereG01 denotes the on-resonance stimulated transition rate
from u0l to u1l which is proportional toI1. V12 is the Rabi
frequency for the coupling of the statesu1l and u2l and is
proportional toÎI2. "ki is the relative momentum of the col-
lision, where" is Planck’s constant divided by 2p. abg is the
background scattering length andm is the atomic mass.

Equationss1d and s2d neglect spontaneous decay from
stateu2l sg2=0d and assumeG01!g1. SettingV12=0 yields
the expressions for the one-photon Feshbach resonance as
given in f9g. Equationss1d and s2d yield a Lorentzian and a
corresponding dispersive line shape as a function ofD1. In
our experiments, however, we holdD1 constant and scanD2.
Figure 2 shows typical curves forKinel anda for two detun-
ings D1. The curves forKinel are slightly asymmetric, but for
D1@V12 they can be well approximated by Lorentzians. This
can be seen by expanding the denominator of Eq.s1d in
terms ofD2 at the resonance position. A light shift displaces
the position of the resonance toV12

2/D1. It is also interesting
to note that the resonance width decreases with increasing
detuningD1 asg1sV12/D1d2.

In a sense the two-photon Raman-Feshbach resonance can
be coined in terms of a one-photon Feshbach scheme. The
detuningD2 effectively replaces the detuningD1 of the one-
photon Feshbach scheme.3

Since Eqs.s1d and s2d have exactly the same form as for
the one-photon Feshbach resonance, it follows that, given a1As we observe a significant light shift of levelu1l, depending on

the intensityI1 of laser 1f9g, we measure the detuningD1 from the
observed position of the one-photon line at a given intensity of laser
1. Note thatD1 is a one-photon detuning whereasD2 is a two-
photon detuning.

2Kinel is reduced by a factor of 2 as compared to the case of
thermal atoms. This is because in a BEC all atoms share the same
quantum state.

3There is even a more direct way to understand the two-photon
Feshbach resonance in terms of a one-photon Feshbach resonance.
Laser 1 couples the collision stateu0l to a virtual levelu28l, which
is generated by laser 2 acting on levelu2l. The splitting betweenu28l
and u1l is given byD28=D1−D2. Its linewidth isg1sV12/D28d

2 and
the transition rateG028=G01sV12/D28d

2.

FIG. 1. Schematic diagram of the transitions used for optically
coupling the collisional stateu0l to molecular statesu1l and u2l. u1l
is electronically excited whereasu2l is in the electronic ground
state. D1 and D2 are defined to be positive for the shown
configuration.

FIG. 2. Kinel and scattering lengtha according to Eqs.s1d and
s2d, plotted for two values ofD1. Solid line: D1/2p=100 MHz.
Dashed line:D1/2p=50 MHz. The other parameters areG01/2p
=50 kHz,V12/2p=30 MHz, andg1/2p=25 MHz. The wave num-
ber ki =2.53105 m−1 corresponds to the finite size of the conden-
sate wave function.a0 is the Bohr radius.
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fixed free-bound transition rateG01, the maximum tuning
range of the scattering length for the two-photon case cannot
be larger than in a one-photon scheme. Furthermore, given a
fixed change in scattering length, the loss rate as determined
by Kinel is not lower for the Raman scheme than for the
one-photon scheme.

III. EXPERIMENTAL SETUP AND METHODS

A. Production of BEC’s

For the experiments we produce87Rb BEC’s of typically
1.23106 atoms in the spin stateuF=1,mF=−1l. Our setup
comprises a magnetic transfer linef17g to transport atoms
from a magneto-optic trapsMOTd chamber to a glass cell
where the BEC is produced and all experiments are carried
out. In a first step about 33109 atoms are loaded within 4 s
into a MOT directly from the background gas and are then
cooled further to about 50µK in a molasses cooling phase.
After optically pumping into theuF=1,mF=−1l state we
load the atom cloud into a magnetic quadrupole trap with a
gradient of 130 G/cm in thesstrongd vertical direction.
Within 1.4 s the atoms are then moved via a magnetic trans-
fer line4 over a distance of 48 cm including a 120° corner
into a glass cell which is at a pressure below 10−11 mbar. In
this cell we finally load the cloud into a QUIC trapsa type of
magnetic trap that incorporates the quadrupole and Ioffe con-
figurationd f18g, ending up with typically 43108 atoms at a
temperature of about 250µK. All three coils of the QUIC
trap are operated at a current of 40 A, dissipating 350 W.
This results in trap frequencies ofvradial/2p=150 Hz and
vaxial/2p=15 Hz at a magnetic bias field of 2 G. To achieve
Bose-Einstein condensation we use forced radio-frequency
evaporation for a period of 20 s. The stop frequency is cho-
sen so that we end up with condensates with a thermal back-
ground of about 25% of noncondensed atoms. At this value
we concurrently get the highest number of atoms in the con-
densate and good reproducibility. For our measurements we
consider only the condensed atoms.

B. Raman lasers

To realize the Raman scheme shown in Fig. 1 we use the
electronically excited molecular stateu1l= u0g

−, n=1, J=2l
located 26.8 cm−1 below thesS1/2+P3/2d dissociation asymp-
tote f9,19g. About 290 MHz below theJ=2 line, there is
another rotational level withJ=0.5 Although about 5 times
weaker than theJ=2 line, its effect cannot be totally ne-
glected in our experiment. We choose levelu2l to be the

second to last bound state in the ground-state potential. It has
a binding energy of 636 MHz3h f13g whereh is Planck’s
constant.

The Raman laser beams are derived from a Ti:sapphire
laser using an acousto-optical modulator at a center fre-
quency of about 318 MHz in a double-pass configuration.
This allows precise control of their relative frequency differ-
ence over several tens of MHz. Both Raman lasers propagate
collinearly and are aligned along the weak axis of the mag-
netic trapssee Fig. 3d. They have a 1/e2 waist of 76µm, and
their linear polarization is perpendicular to the magnetic bias
field of the trap.

The Ti:sapphire laser is intensity stabilized and its fre-
quency has a linewidth of about 3 MHz. In order to stabilize
its frequency relative to the photoassociation lines, the laser
is offset locked relative to theD2 line of atomic rubidium
with the help of a scanning optical cavity. This yields an
absolute frequency accuracy of better than 10 MHz. In all
our experiments the Raman laser intensities were set toI1
=300 W/cm2 and I2=60 W/cm2 at the location of the con-
densate, if not stated otherwise.

C. Bragg spectroscopy

To measure optically induced changes in the scattering
length a, we use Bragg spectroscopyf9,15g. This method
allows for a fast measurement on time scales below 100µs
which is vital because of the rapid photoassociation losses

4For our magnetic transportssimilar to that described inf17gd 13
pairs of quadrupole coils are used. These transfer coils each have an
inner diameter of 23.6 mm, an outer diameter of 65 mm, and a
height of 5.7 mm and consist of 34 windings. They are arranged in
two layers above and below the vacuum chamber with a separation
of 50 mm. Peak currents of 75 A are necessary to maintain a vertical
gradient of 130 G/cm during transfer.

5Due to different light shiftsf9g for the J=0 andJ=2 lines, their
splitting is intensity dependent. The value of 290 MHz is valid for
an intensity of 300 W/cm2.

FIG. 3. Top left: experimental arrangement of the laser beams
stop viewd. Top right: absorption image obtained after Bragg-
diffracting a portion of the atoms to a state with a momentum of
two photon recoilsslower atom cloudd and subsequent time of flight
expansion. Bottom: Bragg resonance curves for two different rela-
tive detunings of the Raman lasers. The relative shift of 700 Hz is
due to two different scattering lengths which are optically induced
in the condensates. The atom numbers are the same for both curves.
Shown is the percentage of diffracted atoms versus the frequency
difference of the Bragg lattice beams. For better comparison we
have scaled up the right curve by 10%.
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we experience in our experiments. A moving lattice com-
posed of two counter propagating beams with wave number
k and a frequency differenceDf is used to diffract some of
the condensate atoms to a state with nonzero momentum.
When energy and momentum conservation are fulfilled, the
Bragg lattice resonantly transfers a momentum of two pho-
ton recoils 2"k in a first-order diffraction process. For the
case of a homogeneous condensate of densityn, the reso-
nance energy for Bragg diffraction is given by the sum of
transferred kinetic energyhDf0=s2"kd2/2m and the change
in mean-field energy 4p"2na/m.6 This corresponds to a fre-
quency difference of the Bragg lasers of

Df r = Df0 +
2"

m
na. s3d

If the condensate is initially not at rest, the kinetic energy
contributionDf0 to the Bragg resonance frequencyfEq. s3dg
contains an additional term 2"kp/m, wherep is the initial
atom momentum in the direction of the Bragg lattice. In our
experiments we observe such a motional shift corresponding
to condensate momentum of up top=0.1 "k. This momen-
tum can partly be attributed to optical dipole forces of Ra-
man beams which are slightly noncentered on the conden-
sate. Partly it can be attributed to a forced oscillation of the
condensate in the magnetic trap at 150 Hz which coincides
with the trapping frequency. Since this oscillation is driven
by a higher harmonic of the line frequencys50 Hzd, it is in
phase with the line frequency and we are able to stabilize the
initial condensate momentum by synchronizing the experi-
ment to the line. A stable initial condensate momentum can
then be determined and canceled out by measuringDf r alter-
nately for Bragg diffraction to the +2"k and −2"k momen-
tum components. After these measures we were left with a
residual momentum noise level of up top=0.01"k.

In our setup the Bragg lattice beams are oriented along the
horizontal direction perpendicular to the Raman laser beams
ssee Fig. 3d and have a width of<0.9 mm. We extract both
beams from a single grating-stabilized diode laser and use
two acousto-optical modulators to control the frequency dif-
ference. The laser is tuned 1.4 nm below the87RbD2 line
which definesDf0 in Eq. s3d to be 15.14 kHz. This frequency
is much larger than the typical mean-field contribution,
2"na/m, which in our experiments was below 3 kHz.

We illuminate the trapped condensate for 100µs with the
Bragg lattice light. After 12 ms of free expansion the dif-
fracted atoms are spatially separated from the remaining at-
oms. Absorption imaging allows us to determine the diffrac-
tion efficiency. By adjusting the Bragg laser intensity
stypically 1 mWd we keep the maximum diffraction effi-
ciency between 15% and 20%. When we scan the frequency
differenceDf and measure the fraction of Bragg-diffracted
atoms we obtain curves as shown in Fig. 3sbottomd. These
curves have a width of approximately 9 kHz as determined
by the 100µs length of our Bragg pulses. The shape of the
curves is given by the Fourier transform of our square light

pulses which we use to fit the data to obtain the resonance
positionDf r f9g. The shift between the two Bragg spectros-
copy curves in Fig. 3sbottomd is optically induced by shin-
ing in the Raman lasers at the same time as the Bragg lattice.
For both curves the atom numbers are the same andD1
=60 MHz. Only the Raman detuningD2 differs by 26 MHz.
According to Eq.s3d this observed shift in Bragg resonance
frequency is then due to a change in scattering length, in-
duced by tuningD2. This demonstrates that we can tune the
scattering lengtha with a Raman Feshbach resonance.

D. Determination of scattering length

We use Eq.s3d to determine the scattering lengtha from
the measurements of the Bragg resonance frequencyDf r.
Equations3d, however, is derived for the case of a homoge-
neous condensate. Our trapped condensate, in contrast,
which is subject to photoassociation losses, exhibits a time-
and position-dependent densityn. This can be taken into ac-
count by replacing the densityn in Eq. s3d by an appropriate
effective valuen̄.

A simple approach to estimaten̄ is to calculate the spatial
and time average of the condensate densityn over the dura-
tion of the Raman pulse lengthT. For this we use the rate
equation for the local densityṅ=−2Kineln

2 for two-atom
losses. The inelastic collision rate coefficientKinel governing
this process is obtained from measuring the atom number at
the beginning and end of the light pulse. This procedure
already yields good results which differ less than 10% from
an improved approach which we use for our data analysis
and which is explained in the following.

The improved approach consists of a full numerical simu-
lation which describes Bragg diffraction in a dynamically
and spatially resolved way. We divide the condensate into
density classes and treat their time dependence individually.
The Bragg diffraction process is identified as a Rabi oscilla-
tion between a coherent two level system—i.e., the BEC
component at rest and the Bragg-diffracted component. The
changing density of the condensate due to loss is reflected in
a time-dependent resonance frequencyfsee Eq.s3dg. As a
result of these calculations we obtain for each density class a
Bragg resonance curve similar to the experimental ones
shown in Fig. 3. Averaging over these resonance curves and
determining the center position yields the simulated value for
the Bragg resonanceDf r. Using Df r=Df0+2"n̄a/m we can
then determine the effective densityn̄.

IV. RESULTS

A. Raman scans

Figure 4 presents measurements where the detuningD1 of
laser 1 from the excited molecular state is set toD1/2p
=60 MHz. The intensities of the Raman lasers 1 and 2 are
300 W/cm2 and 60 W/cm2, respectively. Figure 4sad shows
the atom number after illuminating a condensate of initially
1.43106 atoms for 100µs with the Raman lasers. Scanning
the Raman detuningD2 we find a strong loss of atoms on
resonance. As already expected from Eq.s1d the line shape is
slightly asymmetric. Figure 4sbd shows the resonance fre-

6This is valid in the limit that only a small fraction of the conden-
sate is diffracted.
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quencyDf r as measured by Bragg spectroscopy. When we
analyze the data in Figs. 4sad and 4sbd with the improved
procedure described in Sec. III D we obtain values for the
scattering length which are shown in Fig. 4scd. The scattering
length a shows a dispersive variation between 50a0 and
140a0 as we scan over the resonance. The dispersive scat-
tering length curve is offset by about 20a0 from the back-
ground scattering lengthabg=100a0 for 87Rb in the uF=1,
mF=−1l statef20–22g. This is due to the one-photon Fesh-
bach tuning of laser 1, in agreement with our previous mea-
surementsf9g.

We find that Eqs.s1d ands2d are not sufficient to describe
these data properly, mainly because they neglect the decay
rate g2. A more complete modelssee the Appendixd, also
taking into account both theJ=0 andJ=2 rotational levels,
was used for creating fit curves,7 depicted as solid lines in
Fig. 4. The fact that the data for atomic loss as well as for the
scattering lengtha are both well described by the theoretical

curves is an intrinsic consistency check for our model and
our data analysis.

The shape of the signalDf r in Fig. 4sbd is a combination
of the effects of the varying scattering lengtha and the vary-
ing atom numberfsee Eq.s3dg. This is illustrated by the
dashed and continuous lines in Fig. 4sbd: The dashed line
shows the expected signal if only the variations in atom
number would occur and the scattering length stayed
constant.8 The solid line takes the variations in both atom
number and scattering length into account. The deviation of
the measured data points from the dashed line is due to an
optical induced change of the scattering length.

B. Dependence on detuning

We now investigate how detuningD1 affects the scattering
length a. Figure 5 shows a set of three curves showing the
scattering length for detuningsD1/2p=40, 60, and 90 MHz.

The measurements clearly show that the position and
width of the resonances depend onD1. The change in posi-
tion can be mainly explained as light shifts of levelsu1l and
u2l due to laser 2. The decrease of the resonance width with
increasing detuningD1 follows directly our discussion in
Sec. II. The solid lines are model calculations as described in
detail in the Appendix. They are derived from a simultaneous
fit to the data shown in Fig. 5 and a large number of atom
loss measurements with different detuningssnot shownd. The
set of fit parameters is listed in the Appendix. We also use
this same set of parameters for the theoretical curves in Figs.
6 and 7.

7The resulting fit parameters are similar to those given in the
Appendix.

8To account for the one-photon Feshbach tuning of laser 1, a value
for the background scattering lengthabg=80a0 was used for the
calculation.

FIG. 4. Optical Feshbach resonance using a Raman scheme.sad
shows the measured atom number after the Raman pulse,sbd the
measured Bragg resonance frequency, andscd the scattering length,
as determined fromsad andsbd. In sad the solid circles correspond to
measurements where Bragg spectroscopy was used to determine the
scattering length, while the small open circles stem from additional
loss measurements without Bragg spectroscopy. From our measure-
ments we estimate the uncertainty of the Bragg resonance fre-
quency to be smaller then ±100 Hz, as indicated by the error bar in
sbd. The solid lines insad, sbd, andscd are from a model calculation
ssee the Appendix and textd. The dashed line insbd shows the ex-
pected signal if there was only loss in atom number but no change
in scattering lengthssee also discussion in textd. The vertical line
indicates the location of maximal loss insad and helps to compare
the relative positions of the three curves.

FIG. 5. Variation of the scattering length with Raman detuning
for three various detuningsD1 from the excited molecular state. The
solid line is a calculationssee the Appendixd which uses a single set
of parameters for all curves.
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It is interesting to note from Fig. 5 that the amplitude of
the dispersive scattering length signal decreases asD1 be-
comes larger. This is not to be expected from the simple
model Eqs.s1d and s2d. To investigate this effect we have
performed scans for atom loss and scattering length for sev-
eral detuningsD1. Figure 6 shows the maximum variation in
scattering length,Da=amax−amin, obtained for detuningsD1
ranging from 40 MHz to 200 MHz. Here,amax andamin are
the maximal and minimal scattering length values for corre-
sponding scan curves. Typical scan curves are shown in Fig.
5. Each data point in Fig. 6 was derived from a complete
scan and corresponds to one day of data collection.

An analysis of our data using our theoretical model indi-
cates that the decrease ofDa as a function ofD1 is a conse-
quence of two effects.

sid To properly model these measurements we have to
assign to the molecular stateu2l in the ground-state potential

a non-negligible decay widthg2/2p<2 MHz. For compari-
son, two calculations of a three-level model are plotted in
Fig. 6. For smallg2/2p=100 kHz sdashed lined Da de-
creases only weakly. Forg2/2p=2 MHz sdotted lined the
theory fits the data much better. Such a large decay rate of a
ground-state level is surprising. It seems too large to be ex-
plained purely by collisions. We find that the decay rate in-
creases with the light intensity. At low light powers of a few
W/cm2 we have observed very narrow linewidthsg2/2p on
the order of a few kHz, similar to the values reported by
f13,14g. The broadening of the molecular ground level could
be due to coupling to excited molecular levels. We can ex-
clude, however, from our experimental data that these levels
are located within our experimental scanning range between
the statesu1l andu3l. This would lead to additional resonance
features in the scattering length, absorption, and light shifts,
which are inconsistent with our data. In contrast, our data
indicate a relatively constant background loss rate of the
ground level over the experimental scan range. This allows
us to analyze the data successfully with our simple few-level
model. Besides coupling to excited molecular states, we sus-
pect that coupling to thed-wave shape resonance of the scat-
tering channel also gives rise to a sizable contribution to the
molecular decay rate. Because thed-wave shape resonance is
located very closesa few MHzd to threshold, it is resonantly
coupled to the molecular ground-state level via the Raman
transition. To include the shape resonance is beyond the
reach of our simple model and has to be investigated later.

sii d The second reason for the decrease inDa is a quan-
tum interference effect involving both theJ=2 andJ=0 ro-
tational levels as predicted by our model. At a detuning of
D1/2p<250 MHz the interference effect leads to a complete
disappearance of the optical Feshbach resonance. We ob-
serve this in a corresponding disappearance of the atom loss
feature in our measurementssnot shownd. The interference
effect alone—i.e., without a 2 MHz linewidth—is not suffi-
cient to explain the experimental data in Fig. 6.

C. Dependence on intensity

From the simple model Eq.s2d it is clear that the maxi-
mum variation in scattering lengthDa is proportional toG01
and consequently scales linearly with the intensityI1 of laser
1. We have verified this dependence recentlyf9g for the case
of a one-photon optical Feshbach resonance.

In contrast, the dependence ofDa on intensityI2 of laser
2 is not so trivial. According to the simple model, Eqs.s1d
and s2d, which neglects the decay rateg2, the maximum
changeDa is independent ofI2. It is also clear, that forI2
=0 we haveDa=0 since there is no dependence of scattering
length onD2 at all. This unphysical discontinuous behavior
can be resolved if we introduce a finite decay rateg2.0. We
then find that for increasing intensityI2,Da rises mono-
tonously from zero to a value where it saturates. We observe
this general behavior in our measurements presented in Fig.
7. Our full model, as described in the Appendix, describes
the measured data well if we set the decay rate tog2/2p
=2 MHz ssolid lined. In contrast, the dashed line in Fig. 7
shows the calculation for the same model whereg2 is set to

FIG. 6. Maximum variation in scattering lengthDa=amax

−amin versus one-photon detuningD1. Solid line: full model calcu-
lation ssee the Appendixd. Dotted line: three-level modelssee Fig.
1d, with g2/2p=2 MHz. Dashed line: three-level model, with
g2/2p=100 kHz.

FIG. 7. Maximum variation in scattering lengthDa=amax

−amin versus I2. For this data setI1=300 W/cm2 and D1

=60 MHz. The solid line is a full model calculationssee the Ap-
pendixd. The dashed line stems from the same model, but with
g2/2p set to 100 kHz and is scaled by a factor of 0.84 for better
comparison.
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g2/2p=100 kHz. Saturation then occurs at a much lower
intensity I2 than forg2/2p=2 MHz.

V. CONCLUSION

Our experiments demonstrate the use of an optical Fesh-
bach resonance for tuning of the scattering length via stimu-
lated Raman coupling to a bound molecular state. Our results
show that there is no advantage over a one-photon scheme
when comparing tuning range and loss rate. However, for
certain applications a Raman scheme is experimentally more
favorable since it demands a lower tuning range of the lasers.
Our presented theoretical model is in good agreement with
our data and might be helpful when tailoring experimental
parameters for a specific application. Furthermore, it gives
insight into the process of creating stable ultracold molecules
via two-photon photoassociation.
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APPENDIX: THEORETICAL MODEL AND FIT
PARAMETERS

We use a theoretical model by Bohn and Juliennef16g to
fit the data in Figs. 4–7. In the following we give a short
summary of this model and present the procedure to calcu-
late the scattering matrixS, the loss coefficientKinel, and the
scattering lengtha. The model has the advantage that it is
concise and intuitive and it allows treatment of multilevel
systems with several couplings between the levels. The nu-
merical calculations involve simple manipulations of small
matrices.

In Fig. 8 the level scheme for our two models involving
four and six levels are shown. We first restrict our description
to the four-level model as shown in the right part of Fig. 8. In
this way our description stays compact and matrices are kept
small. The extension to six or more levels follows the same
scheme.

Four-level model

Compared to Fig. 1 an additional excited levelu3l is
added. This level corresponds to the rotational levelJ=0 and
lies 290 MHz below theJ=2 rotational levelu1l f9g. We
work in the dressed atom picture and every leveluil is attrib-
uted a detuningDi ssee Fig. 8d. D0 is arbitrarily set to 0. The
transition strengths from the continuumu0l to levelsu1l and
u3l are described by stimulated ratesG01 and G03 which are
proportional to the intensityI1 of laser 1. The transitions
between the bound levelsu2l andu1l , u3l are characterized by
the Rabi frequenciesV12 and V23, respectively, which are

proportional toÎI2. Spontaneous decay from the bound lev-
els leading to atomic losses is formally taken into account by
introducing artificial levelsuail for each leveluil to which a
transition at rategi takes placesnot shown in Fig. 8d. All
these couplings between different levels are summarized in
the symmetric reaction matrixK. We arrange the level names
in the orders0, a1,a2,a3, 1, 2, 3d and use them as row and
column indices. The nonzero matrix elements of theK ma-
trix then readK01=ÎG01/2, K03=ÎG03/2, Kiai

=Îgi /2, K12

=V12, andK23=V23. Levels 0, a1,a2, and a3 are referred to as
open channels, levels 1, 2, and 3 as closed channels. The
reaction matrixK is partitioned into open and closed channel
blocks,

K = S 0 Koc

Kco KccD .

Koc reads in our case

Koc =1
ÎG01/2 0 ÎG03/2

Îg1/2 0 0

0 Îg2/2 0

0 0 Îg3/2
2 .

Kco is the transposed matrix ofKoc and

Kcc = 1 0 V12 0

V12 0 V23

0 V23 0
2 .

From K the reducedK matrix

Kred= KocsD − Kccd−1Kco

is calculated, eliminating the closed channels 1–3, whereD
denotes a diagonal matrix with diagonal elements

FIG. 8. Extended level schemescompare to Fig. 1d for the four-
level modelsright-hand sided and its extension with six levels. State
u3l corresponds to theJ=0 level and lies 290 MHz below theJ
=2 level u1l. The four-level model is based on levelsu0l , u1l , u2l,
and u3l. The auxiliary levelsu18l and u38l are introduced in the
extended model to describe the coupling betweenu2l and u1l , u3l,
respectively, due to laser 1ssee textd.
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sD1,D2,D3d. This determines the unitary 434 scattering ma-
trix S:

S= s1 + iK redds1 − iK redd−1.

From the matrix elementsSij of S the trap loss coefficient
Kinel is calculated by

Kinel =
p"

mki
o

i

uS0ai
u2 =

p"

mki
s1 − uS00u2d,

wherem=mRb/2 is the reduced Rb mass and"ki the relative
momentum of the colliding atoms. The scattering length is
obtained fromS00 via

a = abg −
1

2ki

ImsS00d
ResS00d

,

where ResS00d and ImsS00d denote the real and imaginary
parts ofS00, respectively.

In the limit of small relative momentum"ki and small
coupling strengthsG0i !gi, Kinel and the light-induced
change of the scattering lengtha−abg are independent ofki
because theG0i are proportional toki sWigner threshold re-
gimed f16g.

Extension of the four-level model

The four-level model neglects that laser 1sof which the
intensity is typically 5 times greater than that of laser 2d also
couples the levelsu2l-u1l andu2l-u3l. However, this coupling
should be taken into account since laser 1 is not far detuned
from these transitionsssee Fig. 8d due to the small binding
energy of stateu3l s636 MHz3hd which is comparable to
typical detuningsD1. It mainly leads to broadening and light
shifting of level u2l. The additional coupling can approxi-
mately be taken care of by adding another two auxiliary lev-
els u18l and u38l with detunings D18=D1+D2+2p
3636 MHz andD38=D3+D2+2p3636 MHz as shown in
Fig. 8. The coupling strengthsV182 and V238 are fixed by
V182=V12

ÎI1/ I2 andV238=V23
ÎI1/ I2. Compared to the four-

level model no new fit parameters are introduced. We can
calculateKinel and the scattering lengtha following the same
recipe as for the four-level model, only with larger matrices.
Fitting the data in Figs. 4–7 this extended model produced
much better results than the four-level model. For complete-
ness we give here the fit parameters which were used in the
calculations in Figs. 5–7 sI1=300 W/cm2 and I2
=60 W/cm2d: G01/2p=42 kHz, G03/2p=8 kHz, V12/2p
=32 MHz, V23/2p=12 MHz, g1/2p=25 MHz, g3/2p
=22 MHz, andg2/2p=2 MHz. We usedki =2.5310−5 m−1.
Due to the limitations of our model, these fit parameters
should not be mistaken as the true values of the correspond-
ing physical quantities.
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We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by
Fedichev et al. [Phys. Rev. Lett. 77, 2913 (1996)]. In our experiment, atoms in a 87Rb condensate are
exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By
controlling the power and detuning of the laser beam we can change the atomic scattering length over a
wide range. In view of laser-driven atomic losses, we use Bragg spectroscopy as a fast method to
measure the scattering length of the atoms.

DOI: 10.1103/PhysRevLett.93.123001 PACS numbers: 34.50.Rk, 03.75.Nt, 32.80.Pj, 34.20.Cf

The great progress in the field of ultracold quantum
gases in recent years can be largely attributed to the
existence of magnetically tunable Feshbach resonances
[1]. Since their first experimental introduction into the
field [2–4], they have been widely used to arbitrarily tune
the interactions between atoms.

In general, a Feshbach resonance occurs when a collid-
ing pair of atoms is resonantly coupled to a molecular
bound state. A magnetically tunable Feshbach resonance
is based on Zeeman shifting a bound molecular state into
resonance with the scattering state. Alternative coupling
schemes for inducing Feshbach resonances have been
proposed but never experimentally applied to control
atomic interactions. The use of radio frequency [5] and
static electric fields [6] was suggested. Fedichev et al. [7]
proposed optical coupling of the scattering state with the
molecular state, which was theoretically analyzed further
in [8,9]. This scheme, often referred to as ‘‘optical
Feshbach resonance,’’ can be controlled via laser detun-
ing and laser power.

Inducing Feshbach resonances with optical fields offers
experimental advantages compared to magnetic fields.
The intensity and detuning of optical fields can be rapidly
changed. Furthermore, complex spatial intensity distri-
butions can be easily produced which result in corre-
sponding scattering length patterns across the sample.
Optical transitions are always available, even when no
magnetic Feshbach resonances exist. Recently, Fatemi et
al. [10] observed optical Feshbach resonances in photo-
association spectroscopy. They used photoionization to
probe optically induced changes in the scattering wave
function. However, the direct influence of the optical
Feshbach resonance on the atomic scattering properties
was not studied.

In this Letter, we report a direct measurement of the
atomic scattering length a in a BEC of 87Rb jF �
1; mF � �1i as we cross an optical Feshbach resonance.
With moderate laser intensities of about 500 W=cm2, we
can change the scattering length over 1 order of magni-
tude from 10 a0 to 190 a0 (a0 � 1 Bohr radius).

To optically modify the scattering length, we use laser
light tuned close to a photoassociation resonance which
couples the continuum state of incoming free atoms to an
excited molecular level (see inset in Fig. 1). This changes
the wave function and consequently the scattering length
of the scattering state. It also leads to atomic loss due to
spontaneous decay via the molecular state. The resonant
transition rate between the continuum state and the mo-
lecular state, which we denote �stim, is proportional to the
laser intensity. In our experiment, �stim=2� is on the order
of a few 10 kHz. This is 3 orders of magnitude less than
the spontaneous decay rate �spon from the excited mo-
lecular state. In [8], Bohn and Julienne give convenient
expressions for the scattering length a and the inelastic
collision rate coefficient Kinel which describes the photo-
association loss. For �stim � �spon, these expressions can

FIG. 1. Scattering length a (solid line) and inelastic collision
rate coeffient Kinel (broken line) as a function of the laser
detuning from the photoassociation resonance. The curves
are based on Eqs. (1) and (2) for typical experimental parame-
ters: �stim=2� � 54kHz, �spon=2� � 20MHz, ki �
2:47� 105m�1, abg � 100a0 (dotted line). Inset: Scheme for
optically coupling the scattering state with an excited molecu-
lar state.
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be approximated and, for a condensate [11], read:

a � abg �
1

2ki

�stim�

�2 � ��spon=2	2
(1)

Kinel �
2� �h
m

1

ki

�stim�spon

�2 � ��spon=2	2
(2)

where abg is the scattering length in the absence of light,
� is the detuning from the photoassociation line, m the
atomic mass, and �hki the relative momentum of the col-
lision. Figure 1 shows a and Kinel as functions of the
detuning � for typical experimental parameters.
According to Eqs. (1) and (2), one should in general
choose large detuning and strong coupling in order to
maximize the change in scattering length while keeping
the losses low.

Our experiments are carried out with an almost pure
87Rb condensate in the jF � 1; mF � �1i spin state with
typically 1� 106 atoms. The setup uses a magnetic trans-
port scheme [12] to transfer atoms from a magneto-
optical trap (MOT) chamber to a glass cell where the
BEC is produced by rf-evaporation in a cigar shaped
quadrupole and Ioffe configuration (QUIC) trap [13]
with trap frequencies !axial=2� � 15Hz and !radial=2� �
150Hz. The intensity stabilized photoassociation laser
beam ( 
 40 mW) is derived from a Ti:Sa laser. It is
aligned along the axial direction of the cigar shaped
BEC and has a waist radius of 76 �m. Its linear polar-
ization is perpendicular to the trapping magnetic bias
field of 2 Gauss. In our experiments, we limit the maxi-
mum laser intensities to about 500 W=cm2 because we
observe the appearance of a growing component of ther-
mal atoms for higher intensities. This effect is negligible
for laser powers below 500 W=cm2.

In order to identify a suitable molecular level with
strong coupling to the continuum state, we investigated
molecular lines in the 1g and 0�g potentials, which connect
to the �S1=2 � P3=2	 and �S1=2 � P1=2	 asymptotes. We
choose the excited state j0�g ��S1=2 � P3=2	; � � 1; J �

2i which is located 26:8 cm�1 below the D2 line [14].
Figure 2 shows the corresponding photoassociation line
together with the line for J � 0. At a laser intensity of
460 W=cm2, the measured atom losses yield a peak in-
elastic collision rate Kinel � �2� 1	 � 10�10cm3=s,
which is a factor of 5 weaker than Kinel in the example
of [8]. Losses due to excitation of the D2 line can be
neglected. We observe a strong intensity dependent light
shift of 215 MHz=�kW cm�2	 of the photoassociation
line which might be mainly explained by coupling to a
d-wave shape resonance [15].

Measuring the scattering length close to a photoasso-
ciation resonance requires a fast experimental method as
atom losses restrict the observation time to below 100 �s
in our experiments. Thus, the scattering length can nei-
ther be extracted from measurements of the collision rate

[4] nor from the mean-field energy in a condensate ex-
pansion [2], both of which require a few ms. Instead, we
use Bragg spectroscopy [16] to determine the mean-field
energy by imposing on the atoms a moving optical lattice
composed of two counter-propagating laser beams with
wave number k and an adjustable frequency difference
�f. The Bragg lattice transfers a momentum of 2 �hk to the
atoms in a first order diffraction process. This is resonant
when energy conservation is fulfilled, which for nonin-
teracting atoms reads h�f0 � �2 �hk	2=2m. For a conden-
sate, however, the resonance frequency �fr is shifted by
the mean-field energy. In the Thomas-Fermi approxima-
tion, this yields a value of

�fr � �f0 �
8 �h
7m

n0a (3)

where n0 denotes the atomic peak density [16]. Observing
this shift of the Bragg resonance frequency therefore
allows to measure the product of density and scattering
length.

We derive the two Bragg beams from a laser which is
1.4 nm blue detuned relative to the 87Rb D2 line. This
determines �f0 to be 15.14 kHz. Two acousto-optical
modulators are used to control the frequency difference
�f between the two counter-propagating beams. The
beams have a diameter of 
 900 �m and are aligned
along the radial trap axis in a horizontal direction. In
our measurements, we apply a 70 �s square-pulse of
Bragg light to the condensate. After 12 ms of time of
flight, when the momentum components of the conden-
sate have spatially separated, we use absorption imaging
to measure the portion of condensate atoms that have been
diffracted. We always choose the intensity of the lattice
such that about 15%–20% of the atoms are diffracted at
resonance. Scanning �f and determining the percentage
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FIG. 2. Photoassociation spectrum of the excited molecular
state used in the experiment. The two lines belong to the state
j0�g ��S1=2 � P3=2	; � � 1i and have rotational quantum num-
bers J � 0; 2, respectively. Shown is the remaining atom num-
ber after exposing a BEC to a 70 �s light pulse of 460 W=cm2

intensity. The detuning is given relative to the J � 2 line. Each
data point is an average of three measurements.
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of diffracted atoms yields curves as shown in Fig. 3 from
which we extract the resonance positions. Shining in a
photoassociation laser pulse (70 �s square-pulse) at the
same time as the Bragg pulse shifts the resonance posi-
tion. This shift depends on the detuning � from the
molecular line (filled and open circles in Fig. 3).

For short illumination times T as in our experiment,
the shape of the spectra fits well to the Fourier transform
of the rectangular light pulse, sin2
���f�
�fr	T�=��f��fr	

2, which we use to fit the data (see
Fig. 3). Our measurements show that in spite of the
Fourier-limited width of the Bragg resonance of 13 kHz
(FWHM), we can resolve the peak position to better than
�100 Hz.

When we invert the frequency difference of the Bragg
laser beams and diffract atoms to a momentum state with
�2 �hk instead of �2 �hk, we notice that the absolute value
of the resonance frequency j�frj changes. This can be
explained by an initial condensate momentum of up to
0:05 �hk which we find to slowly vary from day to day.
This initial momentum is due to residual experimental
imperfections like optical dipole forces of a slightly non-
centered photoassociation beam. To eliminate this effect,
we always measure �fr for �2 �hk as well as for �2 �hk and
then take the difference.

Figure 4 shows the data we obtain from scanning
the photoassociation laser over the optical resonance for
a fixed laser intensity of 460 W=cm2. The number of
atoms in the condensate at the end of the laser pulse
is plotted in Fig. 4(a) indicating the position of the
molecular line. On resonance, about 90% of the atoms
are lost after the 70 �s of interaction time. Figure 4(b)
shows the resonance frequency �fr for Bragg diffraction
as a function of laser detuning �. For large positive
(and negative) detuning �, the value of �fr agrees with

the 16.6 kHz expected from theory for the back-
ground scattering length abg � 100 a0 [17,18] and a
BEC with 
 8:2� 105 atoms. As we tune across the
molecular resonance, the measured resonance frequen-
cies exhibit a distorted dispersive shape. Following
Eq. (3), this is the result of the combination of two effects:
first, the scattering length a varies with � which alone
should result in a dispersive line shape as in Fig. 1.
Second, the atomic density n0 decreases due to photo-
association losses which would, if the scattering length
was constant, result in a symmetrical dip for �fr. On the
right-hand side of the resonance, these two effects nearly
compensate each other whereas on the left-hand side, the
effects add up to produce a prominent dip in �fr.

In order to extract the scattering length a from the
measured frequencies one can, in a first approach, replace
the dynamically changing density n0 in Eq. (3) by a time
averaged value hn0it. The average hn0it can be derived
from the rate equation for the local density _n �
�2Kineln

2 [19] describing two-atom losses. This yields
values for a which differ only marginally from the ones in
Fig. 4(c). The data in Fig. 4(c) were obtained from a more
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FIG. 3. Two Bragg resonance curves with an optically in-
duced relative shift of 0.75 kHz. The percentage of the dif-
fracted atoms is plotted against the frequency difference of the
lattice beams. The two curves correspond to a detuning
�=2� � �47 MHz (filled circles) and �=2� � �47 MHz
(open circles) at a photoassociation laser intensity of
460 W=cm2. The lines shown are fits to the data. For better
comparison the right curve (open circles) has been scaled by a
factor of 1.09 to the same height as the left one.

FIG. 4. Optical Feshbach resonance. In (a), the final atom
number is plotted versus the detuning of the photoassociation
laser (the dashed line is a Lorentz curve to guide the eye). The
data in (b) display the measured Bragg resonance frequencies.
In (c), the values for the scattering length obtained from the
data in (a) and (b) are plotted. The continuous line is a fit of
Eq. (1) to the data.

VOLUME 93, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S week ending
17 SEPTEMBER 2004

123001-3 123001-3



detailed examination which takes into account the full
spatially resolved time evolution of the condensate den-
sity [20]. This includes the dynamical flattening of the
condensate density profile caused by the rapid atom loss
which is much faster than the trap frequencies [19].
Figure 4(c) shows that with a laser power of
460 W=cm2, we can tune the scattering length over a
range from 10 a0 to 190 a0. A fit of Eq. (1) to these data
for a yields a spontaneous decay width �spon=2� of
20 MHz and a resonant inelastic collision rate coefficient
Kinel � 1:7� 10�10cm3=s. These values agree with those
we obtain from atom loss measurements. Thus, our data
consistently confirm the intrinsic relation between a and
Kinel as expressed in Eqs. (1) and (2).

The measured width �spon=2� of 20 MHz is larger than
the expected molecular decay width of 12 MHz (corre-
sponding to 2 times the atomic width). This might be
explained by the line width of the Ti:Sa laser of about
4 MHz and a power broadening of the line due to different
light shifts of unresolved molecular hyperfine states
[18,19].

Figure 5 demonstrates the linear dependence of the
scattering length a on the photoassociation laser intensity.
For these measurements, we determine the Bragg reso-
nance frequency for the detunings �=2� 
 �50 MHz at
various photoassociation laser intensities. This is slightly
complicated by the light shift and broadening of the
photoassociation line which lead to an uncertainty in
�=2� of �10 MHz. We keep the final atom number and
density fixed by adjusting the pulse duration for each laser
intensity. This ensures that only changes in a are reflected
in the varying mean-field shift. In Fig. 5, we plot the
frequency difference �f��50MHz	 ��f��50MHz	
which increases our signal.

In conclusion, our experiments demonstrate the tuna-
bility of the scattering length in ultracold samples by
optically coupling free atoms to a bound molecular state.
Because of the exquisite control one has over laser fields,

we expect optical Feshbach resonances to be valuable
when it comes to controlling atom-atom interactions in
demanding applications. The inherent losses suggest the
use of high laser intensities at large detuning and a good
choice of the molecular state in order to optimize the ratio
of change in scattering length and loss rate. Optical
Feshbach tuning could be particularly useful to control
atomic interactions in optical lattices which are discussed
as potential future quantum information processors.
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