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Abstract

This thesis explores the dynamic behavior of an ultracold strongly interacting
Fermi gas. In particular measurements on collective excitation modes and the
gas under rotation are performed. The strongly interacting gas is realized using
an optically trapped Fermi gas of 6Li atoms, where the interactions can be tuned
using a broad Feshbach resonance. This tunability also allows us to control the
coupling between two atoms and to explore the crossover from a molecular Bose-
Einstein condensate (BEC) to a Bardeen-Cooper-Schrieffer (BCS) superfluid.

Performing precision measurements of the frequency of the radial compression
mode, we test theoretical predictions for the equation of state in the BEC-BCS
crossover. The experiment confirms recent quantum Monte-Carlo results and
rule out simple mean-field BCS theory. Furthermore the results show the long-
sought beyond-mean-field effects in the strongly interacting BEC regime.

We investigate the radial quadrupole mode to probe the dynamic behavior in
the BEC-BCS crossover, without being influenced by changes in the equation of
state. We find that in the unitarity limit and on the BEC side of the crossover,
the observed oscillation frequencies of the mode agree with standard hydrody-
namic theory. However, on the BCS side of the crossover, a striking down shift
of the frequency is observed as a precursor to an abrupt transition to collisionless
behavior. The interpretation of this behavior is still under debate.

A scissors mode excitation in an elliptical trap is used to characterize the tem-
perature dependence of the dynamics of the strongly interacting gas in terms of
hydrodynamic or near-collisionless behavior. We obtain a crossover phase dia-
gram for the dynamic behavior, showing a large region where a non-superfluid
strongly interacting gas shows hydrodynamic behavior. In addition we find a
novel temperature-dependent damping peak, suggesting a relation to the super-
fluid phase transition, in a narrow interaction regime on the BCS side of the
crossover.

To get a deeper insight into the dynamic behavior of the strongly interacting
Fermi gas above the critical temperature, we perform detailed measurements of
three different collective modes in the unitarity limit. The results are compared
to theoretical calculations that take into account Pauli blocking and pair corre-
lations in the normal state above the critical temperature for superfluidity. We
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show that these two effects nearly compensate each other and the behavior of
the gas is close to that of a classical gas.

As a first experiment on rotating strongly interacting Fermi gas we investigate
the lifetime of the angular momentum. To determine the angular momentum
we measure the precession of the radial quadrupole mode. We find that in the
vicinity of the Feshbach resonance, the deeply hydrodynamic behavior in the
normal phase leads to a very long lifetime of the angular momentum. Further-
more, we examine the dependence of the decay rate of the angular momentum
on the ellipticity of the trapping potential and the interaction strength.

With the knowledge we gained from the previous experiment, we were able to
study the moment of inertia of the gas. This allowed us to show superfluidity
and to reveal the superfluid critical temperature for the strongly interacting
Fermi gas, as the moment of inertia strongly depends on the superfluid fraction
in the gas.



Zusammenfassung

Im Rahmen dieser Doktorarbeit wird das dynamische Verhalten eines stark
wechselwirkenden Fermigases untersucht. Im speziellen werden Messungen von
kollektiven Anregungen durchgeführt und das Verhalten des rotierenden Gases
erforscht. Das Fermigas besteht aus optisch gefangenen 6Li Atomen, die es
erlauben die Wechselwirkung mit Hilfe einer breiten Feshbach-Resonanz zu kon-
trollieren. Des weiteren ist es dadurch möglich die Kopplung zwischen den
Atomen zu beeinflussen und den Übergang von einem molekularen Bose-Einstein
Kondensat (BEC) zu einem Bardeen-Cooper-Schrieffer (BCS) Superfluid zu un-
tersuchen.

Mit Hilfe von Präzisionsmessungen der Frequenz der radialen Kompression-
smode testen wir theoretische Vorhersagen für die Zustandsgleichung im BEC-
BCS Übergangsbereich. Unsere experimentellen Daten bestätigen ein aktuelle
Quanten Monte-Carlo Vorhersage und schließen ein einfaches “mean-field” BCS
Model aus. Weiters zeigen unsere experimentellen Ergebnisse im stark wechsel-
wirkenden BEC Regime bereits vor langer Zeit vorhergesagte Effekte die über
die “mean-field” Theorie hinausgehen.

Im weiteren untersuchen wir die radiale Quadrupolmode um das dynamisch
Verhalten des Gases im BEC-BCS Übergangsbereich zu erforschen, ohne von
der sich ändernden Zustandsgleichung beeinflusst zu werden. Unsere Ergebnisse
zeigen, dass im Unitaritäts-Limit und auf der BEC Seite des Übergangsbereichs
die beobachtete Oszillationsfrequenz der Mode mit den Vorhersagen der üblichen
hydrodynamischen Theorie übereinstimmt. Auf der BCS Seite des Übergangs-
bereichs beobachten wir jedoch eine unerwartete deutlich Verringerung der Fre-
quenz, gefolgt von einem Übergang zu stossfreiem Verhalten. Die genau Ursache
für dieses Verhalten ist noch immer nicht geklärt.

Die Temperaturabhängigkeit des dynamischen Verhalten wird mit Hilfe der
sogenannten Scissorsmode in einer elliptischen Falle untersucht. Durch unsere
Messungen können wir ein Phasendiagramm, dass das dynamische Verhalten
des Gases zeigt, erstellen. In diesem Phasendiagramm ist ein großer Bereich
sichtbar in dem das stark wechselwirkende Gas hydrodynamisches Verhalten
zeigt, obwohl es nicht superfluid ist. Zusätzlich dazu zeigen unsere Messungen
einen neuartigen Peak in der Temperaturabhängigkeit der Dämpfung der Mode
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auf der BCS Seite des Übergangsbereichs. Dieses Verhalten deutet auf einen
Zusammenhang mit dem superfluiden Phasenübergang hin.

Um einen tieferen Einblick in das dynamische Verhalten des stark wechselwirk-
enden Gases oberhalb der kritischen Temperatur zu bekommen, untersuchen wir
drei unterschiedliche Moden im Unitaritäts-Limit. Die erzielten Ergebnisse wer-
den mit theoretischen Berechnungen verglichen die sowohl das Paulsche Auss-
chließungsprinzip als auch Paar Korrelationen für ein Gas oberhalb der kritis-
chen Temperatur beinhalten. Unsere Ergebnisse zeigen, dass sich die beiden
eben erwähnten Effekte gegenseitig kompensieren und somit das Verhalten des
Gases vergleichbar dem eines klassischen Gases ist.

Als erstes Experiment zu rotierenden stark wechselwirkenden fermionischen
Gasen untersuchen wir die Lebensdauer des Drehimpulses. Um den Drehimpuls
zu bestimmen messen wir die Präzession der Quadrupolmode. Wir zeigen, dass
in der unmittelbaren Nähe der Feshbach-Resonanz das tief hydrodynamische
Verhalten in der normalen Phase zu einer besonders langen Lebensdauer des
Drehmoments führt. Außerdem untersuchen wir die Abhängigkeit der Zerfall-
srate des Drehimpulses von der Elliptizität des Fallenpotentials und der Wech-
selwirkungsstärke.

Mit dem Wissen über rotierende Gase aus dem vorhergehenden Experiment,
war es möglich das Trägheitsmoment des Gases zu untersuchen. Messungen
des Trägheitsmoments ermöglichten es uns Superfluidität nachzuweisen und die
kritische Temperatur für Superfluidität im stark wechselwirkenden Gas zu bes-
timmen, da das Trägheitsmoment vom superfluiden Anteil im Gas abhängt.
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CHAPTER 1

Introduction

The experimental results presented in this thesis are part of a class of exper-
iments which study the behavior of atomic strongly interacting Fermi gases.
Systems of strongly interacting fermions can be found in many different areas of
physics, like in condensed matter physics (high-temperature superconductors),
in high-energy matter (quark-gluon plasma), and in astrophysics (neutron stars).
In all these different areas, strongly interacting fermions pose great challenges for
many-body quantum theories. The atomic ultracold Fermi gas, which is under
investigation here, is a unique model systems to investigate strongly interacting
fermions, because of their tunable interactions and controllable confinement.
Thereby we can systematically explore this system and also test theoretical
models which even have their origin in other areas of physics. In this thesis, we
focus on the dynamic behavior of an ultracold strongly interacting Fermi gas
consisting of 6Li atoms to explore the rich physics of such a system.

The dynamic behavior of an ultracold atomic Fermi gas is an important source
of information on the physical nature of the system. In an ultracold gas not only
the scattering properties of single atoms influence the dynamic behavior but also
the particle statistics. The dominant scattering process for an ultracold gas is
s-wave scattering. But for a Fermi gas consisting of only a single atomic spin
state the Pauli exclusion principle prohibits s-wave scattering. Therefore such
a gas shows collisionless behavior, which means that the atoms freely move in
the trap without scattering. A different dynamic behavior of the gas arises for
bosonic atoms as s-wave scattering is allowed in this case. In a Bose gas both
collisionless and hydrodynamic behavior can occur, depending on the scattering
rate for the atoms. In contrast to collisionless behavior, hydrodynamic behavior
means that the gas behaves like a fluid. This happens when the scattering
rate is very high but also when the gas becomes superfluid. For a Bose gas a
Bose-Einstein condensate (BEC) can form at sufficiently low temperature, which
shows superfluid hydrodynamic behavior.

In our experiments, we use an equal mixture of two different spin states,
which leads to a reacher dynamic behavior of the gas. It allows for s-wave
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2 INTRODUCTION

scattering between different spin states and furthermore to continuously tune
the scattering length using a Feshbach resonance. Note that also in a mixture of
two spin states the Pauli exclusion principal plays an important role. Although
s-wave collisions are allowed between different atomic states the available phase
space for scattering is reduced if the Fermi gas is degenerate. This reduces the
scattering rate and eventually leads again to collisionless behavior of the gas.

The formation of pairs can lead to completely different dynamic behavior of
the gas. One way of pairing the atoms is the formation of molecules. Here
we consider a very weakly bound molecular state where the binding energy can
be tuned using an external magnetic field; see Fig. 1.1. Close to a Feshbach
resonance, the scattering length directly depends on the binding energy of this
molecular state [Chi08]. Furthermore the center of the Feshbach resonance is at
the magnetic field where the molecular state reaches the energy continuum of free
atoms. Beyond the point where the molecular state reached the atom continuum,
pairing is still possible via a mechanism described by Cooper [Coo56]; these
pairs are therefore called Cooper pairs. In contrast to molecules, here pairing
is a many-body effect. This means that pair formation is only possible in the
presence of the Fermi gas itself. Note that close to the Feshbach resonance,
where the gas cannot be considered as dilute, the nature of the pairs is more
complex than simple molecules or Cooper pairs.

When decreasing the temperature one always ends up with superfluid behavior
in the system. For a gas consisting of bosonic molecules a molecular BEC forms
[Joc03a, Gre03, Zwi03]. For the case of many-body pairing the gas becomes su-
perfluid at low temperature, which is called a Bardeen-Cooper-Schrieffer (BCS)
superfluid [Bar57a, Bar57b]. Changing the magnetic field these to regimes are
smoothly connected. The intermediate region between the BEC and the BCS
regime is called the BEC-BCS crossover region [Eag69, Leg80, Noz85, Eng97].
In this region the scattering length exceeds the interparticle spacing and there-
fore the gas cannot be considered as dilute anymore. This region is thus called
a strongly interacting Fermi gas.

Experiments in strongly interacting Fermi gases of atoms

Starting 2002 [O’H02], there was tremendous progress in experiments which in-
vestigate atomic strongly interacting Fermi gases1. The first experiments on
strongly interacting Fermi gases focused on the realization of pair condensates
both in the molecular regime [Joc03a, Gre03, Zwi03], which is the starting point
for many of the experiments, and on the BCS side of the Feshbach resonance
[Reg04, Zwi04, Zwi05b]. Measurements of the cloud size [Bar04b] and the expan-
sion of the cloud [Bou04] showed that there is a smooth crossover from the BEC
to the BCS regime. Using rf-spectroscopy several experiments were performed to
study the pairing gap [Chi04, Shi07, Sch08a], the size of the pairs [Sch08b], and
single-particle excitations [Ste08]. Pairing throughout the crossover was further

1Reviews on strongly interacting Fermi gases, including most of the experiments mentioned
below, and a detailed theory description of the BEC-BCS crossover regime can be found
in Refs. [Ing08, Gio08].
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Fig. 1.1: The upper panel shows the s-wave scattering length between 6Li atoms
in the lowest two energy states for magnetic fields close to the Feshbach reso-
nance at 834 G [Bar05b]. The resonant behavior of the scattering length comes
along with a weakly bound molecular state which connects to the free atom
continuum at the position of the Feshbach resonance. The lower panel shows
the binding energy divided by the Boltzmann constant Eb/kB of this molecular
state. The fact that the molecular state is connected to the free atom continuum
allows to adiabatically convert the fermionic atoms into bosonic molecules. Fur-
thermore the Feshbach resonance smoothly connects the molecular BEC regime
with the BCS regime.

studied using optical molecular spectroscopy [Par05] and the excitation spectrum
was also investigated using a magnetic field modulation technique [Gre05]. Ther-
modynamic properties like the heat capacity [Kin05b] and the entropy [Luo07]
were investigated. The momentum distribution of the gas in the crossover regime
was studied using expansion measurements both in the low temperature limit
[Reg05] and as a function of the temperature [Che06]. Expansion measurements
were further used to determine the potential energy of the gas [Ste06]. Recent
experiments using Bragg spectroscopy probe the dynamic and static structure
factor [Vee08] and could determine the critical temperature using fast mag-
netic field ramps [Ina08]. Furthermore experiments on spin polarized strongly
interacting Fermi gases attracted lots of attention as they showed new quan-
tum phases [Par06a, Zwi06b, Zwi06a, Par06b, Shi06, Sch07a, Shi08b, Shi08a].



4 INTRODUCTION

Recently experiments on Fermi gases consisting of a mixture of three differ-
ent states investigated the collisional stability in the strongly interacting regime
[Ott08, Huc09].

The dynamic behavior of the strongly interacting gas was first investigated
looking at the expansion of the gas [O’H02, Bou03], which clearly showed hy-
drodynamic behavior. Soon after experiments on collective excitation modes
have been performed as they can provide further insight into the dynamic be-
havior of degenerate quantum gases. Collective modes have been studied very
early in atomic BEC research, both in experiments [Jin96, Mew96] and in theory
[Str96a]. Measurements on collective oscillations have proven powerful tools for
the investigation of various phenomena in atomic BECs [Jin97, SK98, Ono00,
Mar00, Che02]. In the case of fermions, collective modes were first studied for
weakly interacting gases [Gen01]. Building on this rich experience, collective
modes attracted immediate attention to study strongly interacting Fermi gases
[Kin04a, Bar04a, Kin04b, Kin05a]. These experiments already showed interest-
ing hydrodynamic behavior and smooth or sudden transitions to collisionless
dynamics, which are still not fully understood.

Beside measurements on collective modes the dynamic behavior of the strongly
interacting gas was studied by measuring the sound velocity [Jos07] and inves-
tigating irrotational flow during expansion [Cla07]. Last but not least, super-
fluidity of the crossover gas was proven by the formation of a vortex lattice
[Zwi05a]. In subsequent experiments the behavior of the superfluid under ex-
pansion [Sch07b] and critical velocity for superfluid flow was explored [Mil07].

Dynamics of the strongly interacting gas

In the following we will briefly discuss the special dynamic properties of a
strongly interacting gas, including superfluidity, and the differences compared
to dilute systems. Finally we will introduce the experiments performed in this
thesis.

The strongly interacting Fermi gas has special properties concerning the dy-
namic behavior of the gas. When the interactions are strong the hydrody-
namic behavior is not only restricted to the superfluid phase but also extends
into the normal phase up to temperatures close to the Fermi temperature2

[Cla07, Wri07, Rie08]. This is in contrast to dilute, ultracold atomic gases
where hydrodynamic behavior is only reached below the superfluid critical tem-
perature. The hydrodynamic behavior of the normal phase strongly depends on
Pauli blocking and pairing which themselves depend on temperature and scat-
tering length. At temperatures above the Fermi temperature also a gas in the
strongly interacting region shows collisionless behavior as the scattering cross
section decreases with increasing temperature [Chi08].

In a strongly interacting Fermi gas the center of the Feshbach resonance is
a particularly interesting configuration. Here the scattering length, which is
the only microscopic parameter that influences the gas, takes an infinite value.

2The Fermi temperature is defined as TF = EF /k, where EF is the Fermi energy and k is
the Boltzmann constant.
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Fig. 1.2: Phase diagram for the dynamic behavior in a strongly interacting
Fermi gas. The interaction parameter 1/kF a is plotted on the horizontal axis
and on the vertical axis the normalized temperature T/TF is plotted. The pa-
rameter a is the s-wave scattering length. The blue color indicates where the gas
shows hydrodynamic behavior. The transition from hydrodynamic to collision-
less behavior as a function of the temperature is in general very smooth when
the gas is strongly interacting. The dashed line shows the expected behavior
for the superfluid critical temperature. When the interaction strength is very
large, |1/kF a| < 0.5, hydrodynamic behavior shows up clearly above the critical
temperature. This is in contrast to the dilute BEC and BCS regimes, where
hydrodynamic behavior only shows up together with superfluidity. The gray
points with the errorbars are experimental data from measurements of the tem-
perature dependent behavior of the scissors mode, see Chapter 4. They mark
the transition from hydrodynamic to collisionless behavior. The red cross is the
critical temperature obtained from measurements of the moment of inertia, see
Chapter 7.

Therefore the scattering length is no longer a relevant quantity to describe the
system and the behavior of such systems becomes totally independent of the
microscopic details of the interparticle interactions. Consequently, k−1

F and EF

alone define the relevant scales for length and energy3, and the Fermi gas acquires
universal properties. As a consequence the equation of state has the same density
dependence as the ideal Fermi gas, apart from a dimensionless factor.

The strong interactions of the gas lead to distinct differences compared to di-
lute systems and in general complicate theoretical studies [Gio08]. As mentioned

3The parameter kF is the Fermi wave number given by EF = ~2k2
F /2M , where M is the

mass of the atom
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above one difference is the dynamic behavior of the normal phase, which shows
collisionless behavior in the BEC and BCS regime but hydrodynamic behavior
in the crossover region. Furthermore, different to the dilute BEC regime, in
the crossover region there is no bimodal density distribution for temperatures
below the superfluid phase transition. Therefore the consequences of superflu-
idity cannot be seen from a major change in the appearance of the gas4. An
important difference to the BCS regime is the formation of pairs already for
temperatures above the phase transition. One often refers to the temperature
range of these preformed pairs as the pseudogap regime. The differences men-
tioned above makes it in general more challenging to actually determine when
the superfluid phase is reached.

The superfluid phase is of special interest in the crossover region as the
strongly interacting gas is a new type of fermionic superfluid. It differs from
3He, conventional and even High-Tc superconductors in its high critical temper-
ature Tc when compared to TF [Ing08]. To reveal superfluidity from its dynamic
behavior one has to take care that in a strongly interacting Fermi gas both the
superfluid but also the normal phase, which also has very low viscosity, show
almost perfect hydrodynamic behavior. Therefore signatures that are unique to
superfluids need to be addressed in an experiment. These are for example, fric-
tionless flow, second sound, and the Josephson effect. Furthermore the behavior
of a rotating gas can reveal superfluidity as rotational properties of a degenerate
gas are quite different in the superfluid and normal phase. While the ground
state of a superfluid gas with angular momentum contains quantized vortices5,
the normal gas rotates like a rigid body. In fact it was the formation of a vortex
lattice provided first evidence for the superfluidity of a gas in the BEC-BCS
crossover regime [Zwi05a]. Another striking consequence of superfluidity is the
reduction of the moment of inertia with respect to its rigid-body value. The
reduction (quenching) of the moment of inertia is again based on the fact that
a superfluid cannot rotate like a rigid body. As a result, the apparent moment
of inertia is smaller than that of a normal, rigid rotating system because the
superfluid part does not rotate although the normal part is rotating. The ob-
servation of a quenched moment of inertia is part of the work presented in this
thesis.

The studies of a strongly interacting Fermi gas performed in this thesis investi-
gate the behavior of collective modes and the behavior of the gas under rotation.
In this thesis systematic investigations of the radial compression mode, the ra-
dial quadrupole mode and the scissors mode are performed. Measurements on
the compression mode serve as a sensitive probe for the equation of state of the
gas in the low temperature limit throughout the BEC-BCS crossover regime.
In contrast to the compression mode, the frequency of the radial quadrupole
mode allows one to test the hydrodynamic behavior without being influenced by

4One exception is the strongly interacting gas with imbalanced spin population, where the
phase transition leads to a change of the cloud shape due to phase separation [Zwi06a].

5If a superfluid is anisotropic in the plane perpendicular to the rotation axis also the irrota-
tional flow of a superfluid contains angular momentum although there are no vortices.
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the equation of state. This made it possible to investigate the transition from
hydrodynamic to collisionless behavior with decreasing coupling strength of the
atom pairs on the BCS side of the crossover. The investigation of the scissors
mode focuses on the temperature dependence of the dynamic behavior in the
crossover region. This measurement uncovers the range of temperatures and in-
teraction strengths where hydrodynamic behavior of the normal phase appears.
In addition a comparative study of all the three modes mentioned is performed
to address open questions concerning the transition from hydrodynamic to col-
lisionless behavior for a unitarity-limited gas.

Although collective modes allow to study the dynamic behavior of the gas
they cannot directly reveal superfluid behavior of the gas. To show superfluid
behavior of the strongly interacting Fermi gas we study the gas under rotation.
We reveal superfluid behavior by demonstrating quenching of the moment of
inertia. Quenching of the moment of inertia was first shown in liquid helium
[Hes67] and also serves as a firm indicator for nucleon superfluidity [Rin80].
More recent a nonclassical moment of inertia in bulk solid helium was reported
[Kim04a]. The reduction of the moment of inertia does not only serve as a proof
for superfluidity but also contains information on the amount of the superfluid
density in the system and thus allows to determine Tc.

In a preceding experiment on the rotating strongly interacting gas we inves-
tigate the lifetime of angular momentum, confined in a trap with controllable
ellipticity. We find that in the vicinity of a Feshbach resonance the deeply hy-
drodynamic behavior in the normal phase leads to a very long lifetime of the
angular momentum. Furthermore, we examine the dependence of the decay rate
of the angular momentum on the ellipticity of the trapping potential and the
interaction strength.

Overview

This thesis contains six articles, which are presented within separate chapters.
At the beginning of each article, there is a short note indicating the primary
contributions of the author of this thesis to that article.

A detailed description of the experimental setup can be found in the Ph.D.
theses of S. Jochim [Joc04], M. Bartenstein [Bar05a], and A. Altmeyer [Alt07a]
as well as in the diploma theses of G. Hendl [Hen03], C. Kohstall [Koh07],
and myself [Rie04]. A detailed interpretation and additional information on the
experiments published in the articles presented in Chapters 2 and 3 can be found
in the PhD thesis of A. Altmeyer [Alt07a].

Chapter 2, Precision Measurements of Collective Oscillations in the BEC-
BCS Crossover, deals with precision measurements of the frequency of the radial
compression mode. The results allow for a test of theoretical predictions for the
equation of state in the BEC-BCS crossover and show the long-sought beyond-
mean-field effects in the strongly interacting BEC regime.

In Chapter 3, Dynamics of a strongly interacting Fermi gas: the radial quadrupole
mode, we report on measurements of an elementary surface mode. The radial
quadrupole mode allows us to probe hydrodynamic behavior in the BEC-BCS
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crossover without being influenced by changes in the equation of state. The mea-
surements show a striking down shift of the oscillation frequency on the BCS
side of the crossover followed by an abrupt transition to collisionless behavior.
The interpretation of this behavior is still under debate.

In Chapter 4, Finite-Temperature Collective Dynamics of a Fermi Gas in the
BEC-BCS Crossover, we study the scissors mode to characterize the dynamics of
the gas. We obtain a crossover phase diagram for collisional properties, showing
a large region where a non-superfluid strongly interacting gas shows hydrody-
namic behavior. Furthermore, in a narrow interaction regime on the BCS side of
the crossover, we find a novel temperature-dependent damping peak, suggesting
a relation to the superfluid phase transition.

In Chapter 5, Collective oscillations of a Fermi gas in the unitarity limit:
Temperature effects and the role of pair correlations, we present detailed mea-
surements of the frequency and damping of three different collective modes for a
unitarity-limited gas. The results are compared to theoretical calculations that
take into account Pauli blocking and pairing effects in the normal state above Tc.
We show that these two effects nearly compensate each other and the behavior
of the gas is close to the one of a classical gas.

In Chapter 6, Lifetime of angular momentum in a rotating strongly interacting
Fermi gas, we investigate the lifetime of angular momentum in the strongly in-
teracting Fermi gas, confined in a trap with controllable ellipticity. We find that
in the vicinity of a Feshbach resonance, the deeply hydrodynamic behavior in the
normal phase leads to a very long lifetime of the angular momentum. Further-
more, we examine the dependence of the decay rate of the angular momentum
on the ellipticity of the trapping potential and the interaction strength.

In Chapter 7, Quenching of the moment of inertia in a strongly interacting
Fermi gas, we report on the observation of a quenched moment of inertia as a
consequence of superfluidity in a rotating, strongly interacting Fermi gas6. To
determine the moment of inertia of the trapped, rotating gas we measure the
precession of the radial quadrupole mode. Studying the moment of inertia as a
function of the temperature reveals the superfluid phase transition.

In Chapter 8 we give an outlook for possible future directions of the experi-
ment.

6At the time I handed in this thesis this article was still in preparation.



CHAPTER 2

Publication

Precision Measurements of Collective Oscillations in
the BEC-BCS Crossover†

Phys. Rev. Lett. 98, 040401 (2007)

A. Altmeyer,1 S. Riedl,1,2 C. Kohstall,1 M. J. Wright,1 R. Geursen,1 M.
Bartenstein,1 C. Chin,3 J. Hecker Denschlag,1 and R. Grimm1,2

1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität
Innsbruck, 6020 Innsbruck, Austria

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der
Wissenschaften, 6020 Innsbruck, Austria

We report on precision measurements of the frequency of the radial compres-
sion mode in a strongly interacting, optically trapped Fermi gas of 6Li atoms.
Our results allow for a test of theoretical predictions for the equation of state
in the BEC-BCS crossover. We confirm recent quantum Monte-Carlo results
and rule out simple mean-field BCS theory. Our results show the long-sought
beyond-mean-field effects in the strongly interacting BEC regime.

Ultracold, strongly interacting Fermi gases [O’H02, Bou03, Joc03a, Gre03,
Zwi03, Bar04b, Reg04, Zwi04, Bou04, Kin04a, Bar04a, Kin04b, Chi04, Zwi05a,
Par05] have attracted considerable attention over the past few years, serving as
unique model systems to create, control, and investigate novel states of quantum
matter. Experimentally, the availability of such systems has opened up excit-
ing possibilities to study many-body quantum phenomena like molecular Bose-
Einstein condensation (BEC) [Joc03a, Gre03, Zwi03] and the crossover from

†The primary contribution of the author of the present thesis to this publication is the setup
of the new imaging system, together with the investigation of the effects of the residual
trap ellipticity and the anharmonicity of the trapping potential on the compression mode
frequency. This includes the development of a automated scheme to analysis the sloshing
mode data. He also worked on maintaining and improving the experimental setup.

9



10 PRECISION MEASUREMENTS OF COLLECTIVE OSCILLATIONS

BEC to a Bardeen-Cooper-Schrieffer (BCS) type superfluid [Bar04b, Reg04,
Zwi04, Bou04, Kin04a, Bar04a, Chi04, Kin04b, Zwi05a, Par05]. These experi-
ments may also lead to a better understanding of strongly interacting quantum
systems in different areas of physics, ranging from high-Tc superconductors to
neutron stars and the quark-gluon plasma.

A degenerate two-component Fermi gas undergoes the BEC-BCS crossover
[Eag69, Leg80, Noz85, Eng97] when the s-wave scattering length a is varied
from positive to negative values across a scattering resonance. In the crossover
region, where a is comparable with or larger than the interparticle spacing, the
equation of state is governed by many-body effects. Understanding the equation
of state is a fundamentally important challenge and constitutes a difficult task
for many-body quantum theories, even in the zero-temperature limit. Mean-field
BCS theory [Eag69, Leg80, Noz85, Eng97] provides a reasonable interpolation
between the well-understood limits. More sophisticated crossover approaches
[Pie05] yield quantitatively different results in certain regimes, none of them
however providing a complete description of the problem. The most advanced
theoretical results were obtained by numerical calculations based on a quantum
Monte-Carlo (QMC) approach [Ast04].

On the BEC side of the crossover, there is an interesting competition in the
equation of state between the strong interactions in a Bose gas and the onset of
fermionic behavior. For a strongly interacting Bose gas, one can expect quan-
tum depletion to increase the average energy per particle. To lowest order, this
beyond-mean-field effect leads a correction to the equation of state predicted by
Lee, Huang, and Yang (LHY) almost 50 years ago [Lee57b, Lee57a]. Beyond
mean-field effects are expected to reduce the compressibility of a strongly in-
teracting Bose gas as compared to the weakly interacting case. However, when
approaching the resonance, fermionic behavior emerges and the system loses
its purely bosonic character, which increases the compressibility of the strongly
interacting gas. Mean-field BCS theory does not contain beyond-mean field ef-
fects and the LHY correction is absent there. However, the QMC results predict
beyond-mean-field effects to be visible on the BEC-side of the crossover [Ast04].

In this Letter, we report on precision measurements of the radial compression
mode in an optically trapped, strongly interacting Fermi gas of 6Li atoms. The
mode serves as a sensitive probe for the compressibility and thus the equation
of state of a superfluid gas in the BEC-BCS crossover [Str04, Hei04, Hu04,
Bul05, Kim04b, Man05, Ast05]. We reach a precision level that allows us to
distinguish between the predictions resulting from mean field BCS theory and
QMC calculations. Previous experiments on collective modes, performed at
Duke University [Kin04a, Kin04b] and at Innsbruck University [Bar04a], showed
frequency changes in the BEC-BCS crossover in both the slow axial mode and the
fast radial compression mode of a cigar-shaped sample. The accuracy, however,
was insufficient for a conclusive test of the different many-body theories in the
strongly interacting regime.

We prepare a strongly interacting, degenerate gas of 6Li atoms in the lowest
two internal states as described in our previous publications [Bar04b, Bar04a,
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Fig. 2.1: Radial sloshing observed at a trap power of 540mW and B = 735G
(1/kF a = 1.55). The two-dimensional center-of-mass motion is represented in
a coordinate system (x′, y′) rotated by 45◦ with respect to the principal axes of
the trap. The beat signal between the two sloshing eigenmodes demonstrates
the ellipticity of the trap with the two eigenfrequencies ωx/2π = 570Hz and
ωy/2π = 608 Hz (ellipticity ε = 0.066).

.

Chi04]. The broad Feshbach resonance centered at a magnetic field of B = 834 G
facilitates precise tuning of the scattering length a [Bar05b]. Forced evaporative
cooling is performed in a 1030-nm near-infrared laser beam focussed to a waist
of 54µm at 764G. This results in a deeply degenerate cloud of N = 2.0(5) ×
105 atoms. By adiabatically increasing the trap laser power after cooling, the
sample is recompressed to achieve nearly harmonic confinement. In the axial
direction the gas is magnetically confined in the curvature of the field used for
Feshbach tuning with an axial trap frequency of ωz/2π = 22.4 Hz at 834G.
The experiments reported here are performed at two different final values of
the laser power of the recompressed trap. At 135mW (540mW), the trap is
1.8µK (7.3µK) deep and the radial trap frequency is ωr ≈ 2π× 290 Hz (590 Hz).
The Fermi energy of a non-interacting cloud is calculated to EF = ~2k2

F /2m =
~(3ω2

rωzN)1/3 = kB × 500 nK (800 nK); here m is the mass of an atom and kB

is Boltzmann’s constant.

Since our first measurements on collective excitation modes [Bar04a], we have
upgraded our apparatus with a two-dimensional acousto-optical deflection sys-
tem for the trapping beam and a new imaging system along the trapping beam
axis. These two improvements provide us with full access to manipulate and
observe the radial motion.

The trap beam profile is somewhat elliptic because of imperfections and aber-



12 PRECISION MEASUREMENTS OF COLLECTIVE OSCILLATIONS

0 5 10 15 20

70

80

90

 ra
di

al
 w

id
th

 (µ
m

)

hold time (ms)

 

 

Fig. 2.2: Radial compression oscillation observed for the same conditions as the
sloshing mode data in Fig. 2.1. The radial width is determined by averaging
the horizontal and vertical Thomas-Fermi radii after expansion. Here we obtain
ωc/2π = 1185Hz.

rations in the optical set up. To simultaneously excite the two eigenmodes of the
radial sloshing motion, we initially displace the trapped sample into a direction
between the horizontal and vertical principal axes of the radial potential. After
a variable hold time, during which the cloud oscillates freely, we turn off the
optical trap. After a time of flight of typically 4ms we take an absorption image
of the released cloud. The center-of-mass position of the cloud then reflects its
momentum at the instant of release. The experimental results in Fig. 2.1 demon-
strate the sloshing with a beat between the two eigenmodes. A careful analysis
of such data [Alt07a] allows us to determine the eigenfrequencies ωx (horizontal
sloshing) and ωy (vertical sloshing) to within a relative uncertainty of typically
2 × 10−3. We finally derive the mean sloshing frequency ω⊥ =

√
ωxωy and the

ellipticity parameter ε = (ωy − ωx)/ω⊥.

To excite the radial compression oscillation we reduce the trap light power for
a short time interval of ∼100µs, inducing an oscillation with a relative amplitude
of typically 10%. After a variable hold time the cloud is released from the trap.
From fits of two-dimensional Thomas-Fermi profiles to images of the expanding
cloud taken 4ms after release, we determine the mean cloud radius. A typical set
of measurements is shown in Fig. 2.2. A fit of a damped harmonic oscillation to
such data yields the frequency ωc and damping rate γ of the radial compression
mode.

Our experiments are performed close to the limit of an elongated harmonic
trap potential with cylindrical symmetry. This elementary case is of great gen-
eral relevance for many quantum gas experiments in optical and magnetic traps
(see, e.g., [Che02]), and collective excitations are conveniently normalized to the
trap frequency ωr [Str04, Hei04, Hu04, Bul05, Kim04b, Man05, Ast05]. The
compression mode frequency can then be written as ωc = fcωr, where fc is a
dimensionless function of the interaction parameter 1/kF a and is related to an
effective polytropic index Γ [Str04, Hei04, Hu04, Bul05, Kim04b, Man05, Ast05]
of the equation of state by ω2

c = 2(Γ + 1)ω2
r .
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In order to compare our experimental results with theory, we consider the
quantity fc, i.e. the normalized compression mode frequency of the ideal, cylin-
drically symmetric, elongated trap. We find, that for our experimental condi-
tions, fc is approximated by the ratio ωc/ω⊥ of the measured compression mode
(ωc) and mean sloshing mode (ω⊥) frequencies to better than one percent. On
the desired accuracy level of 10−3, however, two small effects have to be taken
into account: the residual trap ellipticity and the anharmonicity of the radial
potential in combination with the spatial extension of the trapped sample. We
thus introduce two small corresponding corrections, expressing fc in the form
fc = (1− κε2 + bα) ωc/ω⊥.

For the ellipticity correction κε2, a straightforward solution of the hydrody-
namic eigenfrequency equation [Alt07a] yields κ = (2 + Γ)/4Γ, where Γ can be
approximated by Γ = (ωc/ω⊥)2/2 − 1. For the anharmonicity correction, the
parameter α = 1

2
mω2

⊥r2
rms/U0 relates the potential energy associated with the

root-mean-square radius rrms of the trapped cloud1 to the trap depth. The co-
efficient b results from the differential anharmonicity shifts in the compression
and sloshing modes and can be calculated according to [Str, Kin06, Alt07a].
We obtain [Alt07a] b = 0.167 and 0.280 in the limits of BEC and unitarity,
respectively.

Our measurements on the sloshing and compression modes are summarized
in Table 2.1, including the two small corrections. For the data in the strongly
interacting BEC regime (1/kF a & 1) we used the weaker trap with ω⊥/2π ≈
290Hz to minimize unwanted heating by inelastic collisions. Closer to resonance
(1/kF a . 1) inelastic processes are strongly suppressed, but the increasing cloud
size introduces larger anharmonicity shifts. Here we chose the deeper trap with
ω⊥/2π ≈ 590Hz. On the BCS side of the resonance we observed increased
damping as a precursor of the breakdown of hydrodynamics [Bar04a, Kin04b].
We thus restricted our measurements to magnetic fields below 850G to ensure
low damping rates (γ/ω⊥ < 0.01) and superfluid hydrodynamics.

At a given magnetic field, a set of measurements on the sloshing and com-
pression modes typically takes a few hours. To minimize uncertainties from
slow drifts and day-to-day variations we always took the sloshing mode refer-
ence measurement right before or after the compression mode data. By repeating
measurements under identical settings we found a typical remaining fractional
uncertainty for the normalized compression mode frequencies of 5× 10−3, which
is about 2-3 times larger than the fit errors of individual measurements.

In Fig. 6.6 we show our final results on the normalized compression mode
frequency in the BEC-BCS crossover. The two theory curves [Ast05] correspond
to the equation of state from mean-field BCS theory (lower curve) and the
one from quantum Monte-Carlo calculations (upper curve). Our data confirm
the quantum Monte-Carlo predictions and rule out the mean-field BCS theory.
In the strongly interacting BEC regime (1/kF a & 1) our data are well above
the value of 2. This highlights the presence of the long-sought beyond-mean-

1We obtain rrms from in-situ measurements of axial profiles [Bar04b], using the relation
rrms = 2ω2

z/ω2
rzrms.
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sloshing compression corr.
B 1/kF a ω⊥/2π ε ωc/2π γ/ω⊥ κε2 bα

(G) (Hz) (Hz) (10−4)
727.8 2.21 292.7(5) 0.083(3) 596.3(6) 0.007(2) 48 20
735.1 1.96 298.6(5) 0.091(3) 602.8(8) 0.008(3) 60 26
742.5 1.75 294.5(5) 0.067(3) 593.2(7) 0.005(2) 33 28
749.8 1.55 296.3(4) 0.073(3) 599.0(7) 0.006(2) 38 28
760.9 1.27 296.0(4) 0.088(2) 592.3(7) 0.009(2) 58 24
771.9 1.03 293.6(7) 0.074(5) 586.2(8) 0.007(3) 41 27
834.1 0 287.5(7) 0.073(5) 519.4(9) 0.014(3) 55 94
757.2 1.07 605.0(9) 0.065(3) 1210.9(12) 0.010(2) 32 13
768.2 0.87 592.5(7) 0.069(2) 1186.6(12) 0.012(2) 36 16
775.6 0.75 590.2(4) 0.060(1) 1170.2(21) 0.007(4) 28 14
782.2 0.64 604.8(9) 0.061(3) 1187.1(16) 0.006(3) 29 16
801.3 0.38 586.8(7) 0.063(2) 1135.2(12) 0.010(2) 33 24
812.3 0.24 586.5(7) 0.058(2) 1106.9(16) 0.014(3) 30 33
834.1 0 596.3(9) 0.070(3) 1089.0(12) 0.010(2) 48 40
849.1 -0.14 583.2(7) 0.052(2) 1046.7(37) 0.007(2) 29 47

Table 2.1: Experimental data on radial collective modes in the BEC-BCS
crossover. The data in the upper seven (lower eight) rows refer to the sets
of measurements taken in the shallower (deeper) trap with U0 = 1.8µK and
EF = 500 nK (U0 = 7.3µK and EF = 800 nK). The values in parentheses in-
dicate 1σ fit uncertainties of individual measurements. Note that a systematic
scaling uncertainty of ∼4% for 1/kF a results from the uncertainty in the atom
number N = 2.0(5)× 105.

field effects [Lee57b, Lee57a] in collective modes of a strongly interacting gas
[Pit98, Str04, Hei04, Hu04, Bul05, Kim04b, Man05].

We finally address the question how non-zero temperatures influence the com-
pression mode frequency. At unitarity, a recent experiment [Kin05a] has found
small frequency upshifts with temperature. For a BEC, however, theory [Gio00]
predicts temperature-induced down-shifts, which compete with the up-shifts
from beyond-mean-field effects. We have performed a set of measurements on
temperature shifts in the strongly interacting BEC regime (1/kF a = 0.94). Be-
fore exciting the collective oscillation, the evaporatively cooled gas was kept
in the recompressed trap for a variable hold time of up to 1.5 s. During this
time residual heating by inelastic processes slowly increased the temperature,
which we observed as a substantial increase of damping with time. The damp-
ing rate γ thus serves us as a very sensitive, but uncalibrated thermometer
[Kin04a, Kin05a]. Fig. 2.4, where we plot the normalized compression mode fre-
quency versus damping rate, clearly shows a temperature-induced down-shift.
We note that previous measurements in the strongly interacting BEC regime
[Bar04a, Kin04b] were performed at relatively large damping rates in the range
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Fig. 2.3: Normalized compression mode frequency fc versus interaction param-
eter 1/kF a. The experimental data include the small corrections for trap ellip-
ticity and anharmonicity and can thus be directly compared to theory in the
limit of an elongated harmonic trap with cylindrical symmetry. The open and
filled circles refer to the measurements listed in Table 2.1 for ω⊥/2π ≈ 290Hz
and 590 Hz, respectively. The error bars indicate the typical scatter of the
data points. The filled triangle shows a zero-temperature extrapolation of the
measurements displayed in Fig. 2.4. The theory curves refer to mean-field BCS
theory (lower curve) and QMC calculations (upper curve) and correspond to the
data presented in Ref. [Ast05]. The horizontal dashed lines indicate the values
for the BEC limit (fc = 2) and the unitarity limit (fc =

√
10/3 = 1.826).

between 0.05 and 0.1, where frequency down-shifts are significant.

With our new knowledge on systematic frequency shifts in collective mode
measurements, let us comment on the previous experiments performed in Inns-
bruck [Bar04a] and at Duke University [Kin04a, Kin04b]. We have reanalyzed
our old data on the radial compression mode and identified a previously unde-
termined ellipticity of ε ≈ 0.2 as the main problem in our data interpretation
[Alt06]. The fact that we had normalized the compression mode frequency to
the vertical trap frequency (ωc/ωy) led to a substantial down shift in the hy-
drodynamic regime, but not in the collisionless regime. We furthermore believe
that significant temperature shifts were present in the previous collective mode
experiments. In particular for the strongly interacting BEC regime, tempera-
ture shifts in our old data on the axial mode [Bar04a] and the Duke data on
the radial mode [Kin04b] provide a plausible explanation for these measure-
ments being closer to the predictions of mean-field BCS theory than to the more
advanced QMC results.
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Fig. 2.4: Normalized compression mode frequency fc versus damping rate for
1/kF a = 0.94 (U0 = 7.3µK). The error bars represent 1σ fit uncertainties. The
dashed lines indicate the zero-temperature values predicted by QMC calcula-
tions (upper line) and mean-field BCS theory (lower line).

In conclusion, our work shows that collective modes allow for precision tests
of many-body theories in strongly interacting quantum gases. In future exper-
iments, the observation of collective oscillation modes will serve as a powerful
tool to investigate strongly interacting superfluids in a more general context,
e.g. in mixtures of fermionic quantum gases.
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and for many useful discussions. We thank G. Astrakharchik for providing us
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within SFB 15 (project part 21). S.R. is supported within the Doktorandenpro-
gramm of the Austrian Academy of Sciences. C.C. acknowledges travel support
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Dynamics of a strongly interacting Fermi gas:
the radial quadrupole mode†
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Wissenschaften, 6020 Innsbruck, Austria

We report on measurements of an elementary surface mode in an ultracold,
strongly interacting Fermi gas of 6Li atoms. The radial quadrupole mode al-
lows us to probe hydrodynamic behavior in the BEC-BCS crossover without
being influenced by changes in the equation of state. We examine frequency
and damping of this mode, along with its expansion dynamics. In the uni-
tarity limit and on the BEC side of the resonance, the observed frequencies
agree with standard hydrodynamic theory. However, on the BCS side of the
crossover, a striking down shift of the oscillation frequency is observed in the
hydrodynamic regime as a precursor to an abrupt transition to collisionless
behavior; this indicates coupling of the oscillation to fermionic pairs.

†The primary contribution of the author of the present thesis to this publication is the
construction of the scanning system together with C.K. and the development of the ex-
citation scheme for the quadrupole mode. Together with M.J.W. he performed the data
analysis with a special focus on the expansion effects. He also worked on maintaining the
experimental setup.

17



18 THE RADIAL QUADRUPOLE MODE

3.1 Introduction

The advent of ultracold, strongly interacting Fermi gases [O’H02, Bou03], molec-
ular Bose-Einstein condensates [Joc03a, Gre03, Zwi03], and fermionic conden-
sates [Reg04, Zwi04] has opened up unique possibilities to study the fundamental
physics of interacting fermions. The availability of controllable model systems
with tunable interactions provides unprecedented experimental access to the
many-body physics of fermionic quantum systems, which is of great fundamen-
tal importance for various branches of physics [Ing08].

A fundamental problem, which has been discussed in the theoretical literature
for decades [Eag69, Leg80, Noz85, Eng97], is the crossover from Bose-Einstein
condensation (BEC) to a macroscopic quantum state in the Bardeen-Cooper-
Schrieffer (BCS) regime. In this crossover, the nature of pairing changes from
the formation of bosonic molecules by fermionic atoms to pairing supported by
many-body effects. With novel model systems now available in ultracold Fermi
gases, the BEC-BCS crossover has recently stimulated a great deal of interest
in both theory and experiment [Ing08].

Collective excitation modes in trapped ultracold Fermi gases provide powerful
tools to investigate the macroscopic properties of a system in the BEC-BCS
crossover [Vara]. For experiments of this class, ultracold 6Li gases have excellent
properties. This is because of their stability in the molecular regime [Cub03,
Joc03b, Joc03a] and precise magnetic tunability of interactions based on a broad
Feshbach resonance [Hou98, Bar05b]. Early experiments on collective modes in
the BEC-BCS crossover provided evidence for superfluidity [Kin04a] and showed
a striking transition from hydrodynamic to collisionless behavior [Bar04a]. More
recent experiments yielded a precision test of the equation of state [Alt07b].
The previous experiments have focussed on collective modes with compression
character, where both the hydrodynamic properties and the equation of state
determine the mode frequency [Kin04a, Bar04a, Kin04b, Kin05a, Alt06, Alt07b].

In this Article, we report on measurements of a pure surface mode in the
BEC-BCS crossover, which provides new insight into the dynamics of the sys-
tem. The “radial quadrupole mode” in an elongated trap, the fundamentals
of which are discussed in Sec. 5.3, allows for a test of hydrodynamic behavior
without being influenced by changes in the equation of state. In Sec. 3.3, we
present our experimental setup and the main procedures. We introduce a tool to
excite collective oscillations with an acousto-optic scanning system. The results
of our measurements, presented in Sec. 3.4, provide us with new insight on the
abrupt transition from hydrodynamic to collisionless behavior, first observed in
[Bar04a]. The present work provides strong evidence that quasi-static hydrody-
namic theory [Varb] does not apply to collective modes of a strongly interacting
fermionic superfluid, when the oscillation frequencies approach the pairing gap
[Chi04].
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Fig. 3.1: Illustration of the radial quadrupole mode as an elementary collective
excitation of an elongated, trapped atom cloud.

3.2 Radial Quadrupole Mode

The confining potential in our experiments is close to the limit of an elongated
harmonic trap with cylindrical symmetry. In this case, we can consider purely
radial collective oscillations, neglecting the axial motion. The frequencies of the
radial modes can be expressed in units of the radial trap frequency ωr. We note
that our experiments are performed in a three-dimensional regime, where the
energy ~ωr is typically a factor of 30 below the chemical potential and finite-size
effects can be neglected.

In this situation, there are two elementary collective modes of the system,
the radial compression mode and the radial quadrupole mode [Str96a, Vara].
We focus on the quadrupole mode, which is illustrated in Fig. 3.1. This mode
corresponds to an oscillating radial deformation, which can be interpreted as
a standing surface wave. The mode was first demonstrated in atomic BEC
experiments [Ono00] and applied to investigate rotating systems [Bre03], but so
far it has not been studied in strongly interacting Fermi gases.

Being a pure surface mode, the frequency ωq of the radial quadrupole mode
does not depend on the compressibility of the system. The frequency ωq does
not depend on the equation of state but on the collisional properties. In the
hydrodynamic regime, whether the gas is a superfluid or a classical gas with a
collision rate strongly exceeding the radial trap frequency, the frequency of this
mode is given by [Str96a]

ωq =
√

2 ωr. (3.1)
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In contrast, for a collisionless gas, where the atoms freely oscillate in the trap,
the frequency is

ωq = 2 ωr. (3.2)

Because ωq is insensitive to the compressibility of the gas and the difference
between the collisonless and the hydrodynamic frequencies is large, the radial
quadrupole mode can serve as an excellent tool to probe pure hydrodynamics.
Particularly interesting is the transition from hydrodynamic to collisionless be-
havior at lowest temperatures. Such a change occurs in a strongly interacting
Fermi gas on the BCS side of the resonance [Bar04a, Kin04b, Alt06]. Near
this transition, measurements on the compression mode indicated frequency
down shifts, which raised questions concerning the validity of standard hydro-
dynamic theory in this interaction regime [Com04, Com06]. Previous experi-
ments could not unambiguously identify the origin of frequency shifts near the
hydrodynamic-to-collisionless transition, which is a particular motivation for
probing the crossover gas with the radial quadrupole mode.

3.3 Experimental Procedure

The apparatus and the basic preparation methods for experiments with a strongly
interacting Fermi gas of 6Li atoms have been described in our previous work
[Joc03a, Bar04b, Bar04a, Chi04]. As a starting point, we produce a molecular
BEC of 6Li2 [Joc03a, Bar04b]. By changing an external magnetic field, we can
control the inter-particle interactions in the vicinity of a Feshbach resonance,
which is centered at 834G [Hou98, Bar05b]. The interactions are characterized
by the atomic s-wave scattering length a.

We start our experiments with an ensemble of about N = 4×105 atoms in an
almost pure BEC at a magnetic field of 764 G. In order to change the properties
of the system adiabatically, we slowly ramp to the final magnetic field, where the
measurements are performed [Bar04b]. The temperature of the gas is typically
below 0.1 TF, unless stated otherwise.

In order to observe the collective oscillations, we take absorption images of the
cloud in the x-y-plane after release from the trap. We illuminate the atoms with
a probe beam along the z-direction of the cigar-shaped cloud. The probe light
causes a resonant excitation of the D2-line, at a wavelength of 671nm. We use
dichroic mirrors for combining and separating the probe and the dipole trapping
beam. The frequency of the probe beam can be tuned over a range of more than
1GHz, which enables resonant imaging over the whole range of magnetic fields
that we create in our experiments.

The gas is confined in a nearly harmonic trapping potential, which has an
axially symmetric, cigar-shaped trap geometry. Optical confinement in the ra-
dial direction is created by a focused 1030-nm near-infrared laser beam with a
waist of ∼ 58 µm. The potential in the axial direction consists of a combina-
tion of optical and magnetic confinement [Joc03a]; the magnetic confinement
is dominant under the conditions of the present experiments. We set the laser
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Fig. 3.2: Schematic illustration of the scanning system. A wide collimated beam
passes through an AOM. The resulting deflection angle depends on the driving
frequency of the AOM. The beam passes through a lens at the distance of one
focal length behind the AOM. The lens focuses the beam for atom trapping.
A change in deflection angle results in a parallel shift of the beam position in
the focal plane. The solid and dashed lines show the beam path for different
deflection angles. The zeroth order beam is not shown.

power to 270 mW, which results in a radial trap frequency of ωr ≈ 2π× 370 Hz
and an axial trap frequency of ωz ≈ 2π × 22 Hz at a magnetic field of 764 G.
The trap frequencies correspond to a Fermi energy of a noninteracting cloud
EF = ~(ω2

r ωz3N)1/3 = kB × 740nK.

In order to excite collective oscillations, we suddenly change the optical trap-
ping potential. The position and shape of our trapping potential in the x-y-plane
can be manipulated through the use of a two-dimensional scanning system. One
feature of the system is that we can rapidly displace the trap laterally. Fast
modulation of the beam position enables us to create time-averaged potentials
[Mil01, Fri01].

The scanning system is constructed by use of two acousto-optic modulators
(AOMs), which are aligned for vertical and horizontal deflections. Fig. 3.2 illus-
trates the principle of our scanning system for one direction. A collimated beam
passes through an AOM and is deflected depending on the driving frequency. A
lens is placed at a distance of one focal length behind the AOM, so that the de-
flection results in a parallel displacement of the beam. By changing the driving
frequency of the AOM, the lateral position of the focus is shifted. This system
enables us to displace the focus of the trapping beam in the horizontal and the
vertical direction by up to four times the beam waist in all directions. Further-
more, the deflection can be modulated by frequencies of up to ∼ 1MHz within
3dB bandwidth. In our trap configuration, we use modulation frequencies of
100kHz, which greatly exceeds the trap frequency. We create elliptic potentials,
i.e. potentials with ωx 6= ωy, by modulating the trap position along a specific
direction. We use this for the excitation of the quadrupole mode. By choosing
a suited modulation function1, these elliptic potentials are nearly harmonic.

1We use a periodic modulation with an arc sine-like function. This results in much better
harmonic potentials than a simple sawtooth modulation ramp [Koh07].
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Fig. 3.3: Timing scheme for the excitation of the radial quadrupole mode. The
ellipticity of the trap is slowly ramped up within 100 ms. This results in a change
of α in the trap frequencies, where α characterizes the ellipticity, and sets the
initial, normalized deformation ∆W/W0 = −2α. W0 is defined as the width of
the cloud in the trap without excitation. At t = 0, the elliptic deformation is
switched off and the oscillation in the trap begins. (Shown here is an oscillation
in the hydrodynamic regime.) The oscillation continues until the trap is turned
off at t = ttrap, which is usually between 0 and 10 ms. At t = ttrap, the cloud is
released from the trap and expands for the time tTOF, which is typically 2 ms.

When we excite the quadrupole mode, we first adiabatically deform the trap-
ping potential in ∼ 100 ms to an elliptic shape. This slow deformation ensures
that the cloud stays in thermal equilibrium even in the near-collisionless regime
and no excitations occur. We suddenly switch off the deformation leading to an
oscillation in the x-y-plane of the elliptic cloud in the originally round trap.

The initial deformation corresponds to different trap frequencies in horizontal
and vertical direction where ω0x = (1+α)ωr and ω0y = (1−α)ωr. The parameter
α determines the amplitude of the emerging oscillation; we choose it for most of
our measurements (unless stated otherwise) to be α ≈ 0.05. We increase α by
increasing the modulation for the time averaged potential along the y-direction.
As the modulation decreases the confinement strength of the dipole trap, we
simultaneously ramp up the trap power to ensure that the mean trap frequency
ωr =

√
ω0xω0y remains constant. This avoids excitation of the compression

mode.
Fig. 3.3 shows the timing scheme for the excitation of the radial quadrupole

mode. At t = 0, the collective oscillation is excited and the cloud starts oscil-
lating in the trap for a variable time ttrap. Horizontal and vertical widths of the
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Fig. 3.4: Typical radial quadrupole oscillations in the hydrodynamic (a) and
collisionless (b) regimes. The solid lines show fits to our data according to
Eq.(3.3). The dashed lines indicate ∆W = 0. The expansion time tTOF is 2
ms. In (a), the oscillation in the unitarity limit (B = 834G) is shown, whereas
(b) shows the oscillations for B = 1132G (1/kFa ≈ −1.34).

cloud, Wx and Wy, oscillate in the trap out of phase with a relative phase shift of
π. As an observable, we choose the difference in widths ∆W = Wx−Wy, which
cancels out small effects of residual compression oscillations. For normalization,
we introduce the width W0 of the cloud in the trap without excitation.

Experimentally, we determine the collective quadrupole oscillations after sud-
denly switching off the trap and a subsequent expansion time tTOF. We then
take an absorption image of the cloud and determine its horizontal and vertical
widths Wx and Wy via a two-dimensional Thomas-Fermi profile fit. From these
measurements after expansion, we can determine the in-trap behavior.

Typical data sets of radial quadrupole oscillations are shown in Fig. 3.4. Fig. 3.4(a)
shows an oscillation in the hydrodynamic regime; here we observe a weakly
damped harmonic oscillation centered about a small constant offset. Fig. 3.4(b)
shows the typical behavior in the collisionless regime. The frequency of the
oscillation is clearly higher than in the hydrodynamic regime. The oscillation
shows stronger damping and has an exponentially time-varying offset.

We find that, for both regimes, the dependence of ∆W on ttrap can be well
described by the fit function

∆W = A e−κttrap cos (ωqttrap + φ)

+ C e−ξttrap + y0,
(3.3)
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which is explained in detail in Appendix B.
Note that the frequency ωq and the damping constant κ are independent of the

expansion during tTOF and characterize the behavior of the trapped oscillating
atom cloud. In contrast, the amplitude A and the phase shift φ depend on
the expansion time and provide further information on the dynamics of the
gas. The offset function C e−ξttrap with amplitude C and damping constant
ξ results from thermalization effects and is only relevant in the collisionless
regime (see discussion in Appendix B). The constant offset y0 results from a
slight inhomogeneity of the magnetic field, which gives rise to a weak saddle
potential. This increases (decreases) the cloud size in y-direction (x-direction)
during expansion.

3.4 Experimental Results

Here we first discuss our measurements of the frequency ωq and the damping rate
κ of the in-trap oscillation (Sec. 3.4.1). We then present the data for the phase
offset φ and the amplitude A (Sec. 3.4.2). Finally, we explore the hydrodynamic-
to-collisionless transition (Sec. 3.4.3). As commonly used in the field of BEC-
BCS crossover physics [Ing08], the dimensionless parameter 1/kFa is introduced
to characterize the interaction regime. The parameter kF =

√
2mEF/~ is the

Fermi wave number and m is the mass of an atom.

3.4.1 Frequency and damping

In Fig. 3.5, we show the results for the frequency ωq and the damping rate
κ of the radial quadrupole mode throughout the BEC-BCS crossover. Both
ωq and κ are normalized to the trap frequency ωr, which we determine by a
sloshing mode measurement [Alt07b]. We include small corrections resulting
from anharmonicity of the trapping potential and the residual ellipticity of the
trap (see Appendix C).

The data confirm the expected transition between the hydrodynamic and the
collisionless regime on the BCS side of the resonance (see Sec. 5.3). The tran-
sition is qualitatively different from the hydrodynamic-to-collisionless crossover
in a classical gas [Bug05] or in a Fermi gas without superfluidity [Vic00]. In-
stead of a continuous and monotonous variation of the frequency between the
two limits (

√
2 ωr and 2 ωr), an abrupt change occurs. When this transition is

approached from the hydrodynamic side, a striking frequency downshift shows
up as a precursor of the transition to higher frequencies. In the transition region
(shaded area in Fig. 3.5), no data points are shown because of the large damping
and correspondingly very large uncertainties for the measured frequency.

The damping rate shows similar behavior as in our previous measurements
on the radial compression mode [Bar04a, Alt06]. Maximum damping occurs
near the hydrodynamic-to-collisionless transition, whereas minimum damping
is observed slightly below the resonance. In general, we find that damping is
roughly two times larger for the quadrupole mode than for the compression
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Fig. 3.5: Frequency ωq (upper plot) and damping rate κ (lower plot) of the
radial quadrupole mode. Both quantities are normalized to the radial trap
frequency ωr and plotted versus the interaction parameter 1/kFa. The dashed
lines indicate the theoretical predictions in the hydrodynamic (ωq/ωr =

√
2) and

in the collisionless limit (ωq/ωr = 2). The shaded area marks the transition from
hydrodynamic to collisionless behavior between 1/kFa ≈ −0.72 (B ≈ 930G)
and 1/kFa ≈ −0.85 (B ≈ 960G).

mode at the same temperature2. The faster damping of the quadrupole mode
is plausible in view of the larger frequency change at the transition.

We now discuss the behavior in different regions in more detail:

1/kFa ≈ 0 : In the unitarity limit, the normalized frequency agrees well with the
theoretically expected value of ωq/ωr =

√
2 for a hydrodynamic gas, see

Eq. (3.1). To check for consistency with previous experiments [Alt07b],

2Note that in the present measurements, the temperatures are somewhat higher than in our
recent compression mode measurements [Alt07b]. There are essentially two reasons for
the higher temperatures. First, the atoms stay longer in the recompressed trap because
of the longer excitation scheme of the quadrupole mode. Second, for the quadrupole
measurements we optimized our evaporative cooling scheme regarding particle number
and not temperature.
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we here also reproduced the frequency
√

10/3 ωr of the radial compression
mode on the 10−3 accuracy level. The damping is low for the Fermi gas in
the unitarity limit. In contrast to the compression mode, the quadrupole
mode frequency stays constant throughout the crossover, indicating that
it is independent of the equation of state.

1/kFa > 0 : In the strongly interacting BEC regime, there is an increase in the
damping and a slight increase in the frequency for increasing 1/kFa. As
the gas is more susceptible to heating by inelastic processes in the deep
molecular regime [Vara], both effects may be due to a thermal component
in this region.

1/kFa ≈ −0.8 : The frequency exhibits the pronounced “jump” from the hydro-
dynamic to the collisionless frequency. This transition is accompanied by
a pronounced maximum of the damping rate.

1/kFa . −0.8 : The frequency stays almost constant about 5% above the theo-
retically expected value of ωq = 2ωr. Interaction effects in the attractive
Fermi gas are likely to cause this significant upshift [Ped03, Urb07]. As
we cannot experimentally realize a non-interacting Fermi gas above the
resonance, we could not perform further experimental checks.

1/kFa . 0 and 1/kFa & −0.8 : In this regime, we detect a substantial down
shift in the quadrupole mode frequency. The effect begins to show up
already slightly above the resonance (1/kFa = 0) and increases to a
magnitude of almost 20% (ωq/ωr ≈ 1.15 at 1/kFa = −0.72), before
the transition to collisionless behavior occurs. Indications of a similar
down shift have been observed already in compression mode experiments
[Bar04a, Alt06, Kin04b], but here the down shift is considerably larger and
not blurred by changes in the equation of state.

A plausible explanation for the curious behavior of the collective mode fre-
quency on the BCS side of the resonance is provided by coupling of the oscillation
to the pairing gap [Com04, Chi04, Vara]. If we assume that the abrupt transi-
tion is caused by pair breaking resulting from resonant coupling of the oscillation
to the gap, then the down shift may be interpreted as a coupling effect when
the gap is not much larger than the oscillation frequency [Com06]. A similar
shift may also arise from coupling of hydrodynamics and quasiparticle motion
[Urb07]. The observed phenomenon still awaits a full theoretical interpretation.

3.4.2 Phase shift and amplitude

Additional information on the interaction regime is provided by the phase shift
φ and the amplitude A of the observed oscillation (see Eq.(3.3)). This is use-
ful since extremely high damping in the transition region makes a meaningful
determination of frequency and damping practically impossible. We find that
both amplitude and phase shift, however, can be determined with reasonable
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Fig. 3.6: (a) Phase shift φ and (b) relative amplitude of the quadrupole mode
versus interaction parameter 1/kFa after tTOF = 2ms expansion. The hori-
zontal lines show calculations from our theoretical model: the solid lines in
the collisionless limit, the dotted lines in the hydrodynamic regime at unitar-
ity (γ = 2/3) and the dashed lines in the hydrodynamic regime in the BEC
limit (γ = 1). These calculated values can be read off from Fig. 3.10 for the
phase and Fig. 3.9 for the amplitude. The shaded area marks the transition
between hydrodynamic and collisionless behavior between 1/kFa ≈ −0.72 and
1/kFa ≈ −0.85 (see also Fig. 3.5).

uncertainties even in the transition regime.
In the following, we present measurements of phase shift and amplitude. These

are compared to model calculations, which are described in detail in Appendix
A.

In Fig. 3.6, the phase φ and the relative amplitude are plotted versus the
interaction parameter 1/kFa. The relative amplitude is given by the amplitude
A (definition see Eq.(3.3)) divided by the average width of the cloud after ex-
pansion. The average width is obtained by averaging (Wx + Wy)/2 over one
oscillation period using the same data set from which we extract A.

In the transition area around 1/kFa = −0.8, the phase shift φ shows the step-
like change at the transition from the hydrodynamic to the collisionless regime.
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Fig. 3.7: (color online) Oscillations of the quadrupole surface mode at a mag-
netic field of 920 G and 1/kFa = −0.66. The filled circles correspond to a cold
ensemble, whereas the open triangles correspond to a heated ensemble. The
solid lines are fits to the data according to Eq.(3.3).

This is similar to the jump in frequency in Fig. 3.5. In the collisionless and
unitary regimes, the phase agrees with the theoretically expected values (solid
line and dotted line, respectively).

As a general trend, the relative amplitude is larger in the hydrodynamic and
smaller in the collisionless regime. In the hydrodynamic regime, the relative
amplitude decreases for decreasing 1/kFa, which is explained by the change of γ
from 1 to 2/3; γ is the polytropic index of the equation of state (see AppendixA).
At unitarity, the relative amplitude agrees well with the numerically calculated
value for γ = 2/3 (dotted line). In the collisionless limit, the relative amplitude
is half of the value at unitarity, which is also consistent with our calculations
in App.A 3. We note that at the transition from the hydrodynamic to the
collisionless regime, the value of the relative amplitude decreases even below the
collisionless value.

In summary, the behavior of the phase shift and the amplitude agrees with our
model presented in Appendix A (see also Fig. 3.9 and Fig. 3.10), in particular
the prominent change in the phase offset is confirmed.

3.4.3 Further observations

The measurements presented in the preceding subsections were taken under fixed
experimental conditions, where only the scattering length a was varied. In this
subsection we investigate how the transition from hydrodynamic to collisionless
behavior depends on the experimental parameters excitation amplitude, trap
depth and temperature. In a first set of experiments, we explored whether the
position of the transition depends on the excitation amplitude. We increase
or decrease the amplitude by a factor of 2. This allows us to compare the
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oscillations where the amplitude is ∼ 20 %, ∼ 10 % and ∼ 5 % of the averaged
width. We do not observe any significant change in the position of the transition.

In general, we find that the transition always occurs when the mode frequency
is similar to the pairing gap. This is supported by the fact that when we vary the
trap depth the transition occurs at a constant scattering length (a ≈ −5000a0,
B ≈ 960G) and does not depend on 1/kFa 3. A change in laser power of our
trapping laser influences both Fermi energy EF and the frequency ωq. As we
increase the trap power by a factor of 10, we also increase the radial trap fre-
quencies by a factor of

√
10 ≈ 3.2. This changes the Fermi energy by a factor

of 2.2 and the pairing gap, which scales like the trap frequencies, by roughly
a factor of 3 [Chi04]. These findings suggest that the transition is linked to a
coupling of the collective oscillation to the pairing gap. This is also in agreement
with earlier results on the radial compression mode [Bar04a, Vara].

To explore the temperature dependence of the transition between the hydro-
dynamic and the collisionless phase, we use a controlled heating scheme similar
to the one described in [Alt07b], where we hold the gas in a recompressed trap
and let it heat up. We set the magnetic field to 920G (1/kFa = −0.66), i.e.
slightly below the hydrodynamic-to-collisionless transition, where the regime is
still clearly hydrodynamic. We observe the oscillations in a gas at the lowest
temperature we can achieve in our experiments (filled circles) and in a “hotter”
gas (open triangles) in Fig. 3.7. The temperature of the cold gas is . 0.1 TF and
we believe the temperature of the heated gas to be . 0.2 TF. Figure 3.7 clearly
shows that the frequency for the colder ensemble is lower than that of the heated
one and the amplitude is lower by roughly a factor of 2. Using our model in
AppendixA this indicates a temperature driven transfer of the ensemble from
the hydrodynamic to the collisionless regime.

Thus we find that the radial quadrupole mode is suited to detect temperature
induced changes of the collisional regime of the gas. An exploration of the phase
diagram of our system depending on temperature is possible, but beyond the
scope of this article. In our lab, work is currently in progress on the radial
scissors mode, which turns out to be an even better tool for the exploration of
temperature effects.

3.5 Conclusions

We have presented measurements on the radial quadrupole mode of an ultra-
cold 6Li Fermi gas in the BEC-BCS crossover. As a pure surface excitation,
this elementary mode probes hydrodynamic behavior without being affected by
changes in the equation of state. We have measured the characteristic properties
of this collective mode in a wide range of interaction strengths.

Our observations provide new insight into the dynamics of the gas, in par-
ticular on the BCS side of the crossover, where the character of the oscillations

3Due to the increased Fermi wave number kF for the deeper trap configuration, the transition
in terms of the interaction parameter shifts from 1/kFa ≈ −0.8 to 1/kFa ≈ −0.5.
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abruptly changes from hydrodynamic to collisionless behavior. Our measure-
ments presented in this paper show the phenomenon much clearer than in the
radial compression mode [Bar04a, Kin04b, Alt06] and provide quantitative data
on the behavior near the transition. In particular, the data show that a sub-
stantial down shift of the collective mode frequency occurs in the hydrodynamic
regime as a precursor of the transition.

The experimental results support the interpretation that the coupling of os-
cillation mode and pairing gap [Com04, Chi04, Vara] plays a crucial role for the
collective excitation dynamics on the BCS side of the crossover. We anticipate
that our new quantitative data on the hydrodynamic-to-collisionless transition
will stimulate further theoretical investigations on this intriguing phenomenon.
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3.6 Appendix A: Scaling approach and expansion

effects

Here we present a theoretical model to describe the oscillation of the cloud
in the trap as well as its expansion after release; the model adopts the scaling
approach applied in [Bru00, Men02, Kin06]. The interplay between the dynamics
of the collective mode and the expansion behavior is of particular interest as
it introduces novel methods to investigate the collisional regime. We use a
scaling approach for both the hydrodynamic and the collisionless regime [Bru00,
Men02, Kin06]. In App.A 1, the limit of a hydrodynamic gas is presented,
whereas in App.A 2, the model in the collisionless regime is discussed. Based
on these models, we show calculated results for the amplitude and the phase
after expansion in App.A 3.

The scaling approach describes the cloud at the time t after excitation [Bru00,
Men02, Kin06]. Using the scaling function bi(t) for i = x, y, the width Wi(t) for
all times t > 0 can be written as

Wi(t) = bi(t)Wi(0), (3.4)

where Wx(0) = (1 − α)W0 and Wy(0) = (1 + α)W0 are the initial widths at
excitation and W0 is the width of the cloud without excitation. The initial
conditions for the scaling function are bi(0) = 1 and ḃi(0) = 0.
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3.6.1 Dynamic behavior in the hydrodynamic limit

In the hydrodynamic limit, the equations of hydrodynamics lead to the following
differential equations for bx and by [Men02]

b̈x =
ω2

0x

bx (bxby)
γ − bx ω2

x,

b̈y =
ω2

0y

by (bxby)
γ − by ω2

y, (3.5)

where γ is the polytropic index of the equation of state and bz(t) = 1 for our
elongated trap geometry. The parameters ω0x and ω0y are the trap frequencies
at the moment of excitation (t = 0), when the cloud has no further excitation
and is in thermal equilibrium. In contrast to this, ωx(t) and ωy(t) are the time
dependent trap frequencies. The timing scheme is illustrated in Fig. 3.3. The
following equation summarizes the behavior of the trap frequencies ωi(t):

ωi(t) =





ω0i , t = 0
ωr , 0 < t < ttrap

0 , t > ttrap.
(3.6)

This enables us to calculate the scaling functions bx and by as solutions of
Eq.(3.5) for the in-trap oscillation. In the limit of small amplitudes (α ¿ 1)
solutions are

bx = 1 + α(1− cos ωqt),

by = 1− α(1− cos ωqt), (3.7)

where ωq =
√

2 ωr is the radial quadrupole oscillation frequency. Together with
Eq.(3.4), we are able to determine the difference in widths of the cloud to be

∆W = −2 αW0 cos ωqt. (3.8)

3.6.2 Dynamic behavior in the collisionless limit

In the collisionless limit, the following set of two uncoupled equations charac-
terizes bi, where i stands for x, y, [Bru00]

b̈i =
ω2

0i

b3
i

− biω
2
i . (3.9)

In the limit of small amplitudes (α ¿ 1) solutions of the in-trap oscillation are

bx = 1 +
α

2
(1− cos ωqt),

by = 1− α

2
(1− cos ωqt), (3.10)
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Fig. 3.8: Phase space dynamics for the quadrupole mode in the collisionless
regime. Shown are phase space contours of an ensemble of particles which is
held in a round trap (i.e. ωx = ωy = ωr). In (a) and (b) the situation during the
oscillation in the trap is shown for two different times t. The solid line indicates
the equilibrium phase space contour (without excitation), whereas the dotted
(dashed) line shows the contour in the x (y) direction after excitation of the
oscillation mode. (c) After long times, residual thermalization finally damps
out the oscillations and leads to a circular phase space contour.

where ωq = 2 ωr is the radial quadrupole oscillation frequency. Together with
Eq.(3.4), we are able to determine the difference in widths of the cloud to be

∆W = −αW0 (1 + cos ωqt) . (3.11)

In contrast to the hydrodynamic limit, the oscillation is initially not centered
around ∆W = 0. Furthermore the oscillation has an amplitude 1/2 of the am-
plitude in the hydrodynamic gas.
Besides the finding of analytical solutions, it is enlightning to understand the

collective oscillations in the collisionless limit by considering the phase space
dynamics of the cloud. In Fig. 3.8, we show the contours of phase space dis-
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tributions in the x- and y- directions. The axes are scaled such that for the
round trap, i.e. ωx = ωy = ωr, the dynamics of any point in phase space is
a simple circular rotation about the origin with frequency ωr. Thus, the solid
circle in Fig. 3.8 (a) indicates an equilibrium phase space contour for the round
trap. Right after applying the excitation scheme as described in Sec. 3.3 the
phase space contours in the x- and y- direction are given by the dashed and
dotted ellipses in Fig. 3.8 (a). Since the gas is fully thermalized at the instant
of excitation, the initial momentum distribution in x- and y- direction is the
same. As time progresses, the elliptic contours will rotate with frequency ωr

(see Fig. 3.8 (b)), which corresponds to oscillations in the trap. We note that
both the spatial and the momentum distribution in the x-direction are never
larger than the ones in the y-direction. Therefore, ∆W oscillates between 2αW0

and zero and the aspect ratio of the cloud never inverts. This is to be compared
to the hydrodynamic case where ∆W oscillates between ±2αW0.

Residual thermalization effects in a near collisionless gas will damp out the
initial oscillation amplitude of αW0 and one will eventually end up again with
a circular phase space contour (see Fig. 3.8 (c)). This is studied in detail in
Appendix B.

3.6.3 Amplitude and phase on expansion

Here we present our calculated results based on the models in App. 3.6.1 and
App. 3.6.2 for the hydrodynamic and the collisionless limit, respectively. We
show the relative amplitude that is given by the amplitude A (definition see
Eq.(3.3)) divided by the average width of the cloud after expansion (for defi-
nition details see Sec. 3.4.2). Calculations of this relative amplitude are shown
in Fig. 3.9, whereas calculations and measurements for the phase offset φ are
shown in Fig. 3.10.

Fig. 3.9 shows the calculated relative amplitude of a surface mode oscillation
in the hydrodynamic (dashed and dotted curves) and in the collisionless (solid
curve) regime as function of the reduced expansion time ωrtTOF. The hydrody-
namic curves are calculated for the BEC limit of γ = 1 (upper, dashed curve)
and in the unitarity limit of γ = 2/3 (lower, dotted curve). The amplitude in
the collisionless regime is smaller than in the hydrodynamic regime. Initially the
amplitude of the excitation is half as large in the collisionless as in the hydrody-
namic regime, as already explained in App. 3.6.2. In expansion the normalized
amplitude stays constant in the collisionless regime and in the hydrodynamic
regime for γ = 1. For γ = 2/3 in the hydrodynamic regime it decreases for
longer expansion times.

In Fig. 3.10 we compare experimental data for the phase shift φ with numerical
simulations. The data have been taken at unitarity where 1/kFa = 0 (hydrody-
namic, open circles), and on the BCS-side of the resonance at 1/kFa = −1.34
(collisionless, closed triangles). The dashed line is based on a model for the hy-
drodynamic interaction regime and the solid line on a model for the collisionless
regime. The data agree with the theoretical model where no free fit parameters
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Fig. 3.9: (color online). Calculated relative amplitude of a surface mode oscil-
lation versus reduced time of flight ωrtTOF after release from the trapping po-
tential. The values are calculated for the hydrodynamic (dashed curve: γ = 1,
dotted curve: γ = 2/3) and collisionless regime (solid curve). The vertical
dotted line marks the typical expansion time in our experiments.

are used. This confirms our approach presented above.

3.7 Appendix B: Thermalization effects in a

near-collisionless gas

Here we describe thermalization effects in a near-collisionless gas that are not
included in the model for the collisionless limit in App. 3.6.2. Despite the word
“collisionless”, collisions play a crucial role for thermalization for our experimen-
tal parameters. A typical time scale for thermalization processes is only a few
oscillation cycles long. By analyzing the theory, we are able to introduce a uni-
versal fit function, as given by Eq.(3.3), which describes the oscillation both in
the hydrodynamic and in the near-collisionless regime.

The measured behavior of the nearly collisionless quadrupole oscillation (see
Fig. 3.4) has two characteristics: after excitation the oscillation is centered
around ∆W = (Wx(0) −Wy(0))/2, then after some time it is centered around
∆W = 0. These two limits are consistent with thermalization of the gas on a
relevant time scale greater than the period of the oscillation.

In order to model these effects, we follow a theory based on a classical gas
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Fig. 3.10: (color online) Phase φ of the collective surface mode as detected by
fits according to Eq.(3.3) versus reduced expansion time ωrtTOF at unitarity
(open circles) and at 1/kFa = −1.34 (filled triangles). The lines are numerical
simulations for the hydrodynamic (dashed line) and collisionless regime (solid
line). The vertical dotted line marks the typical expansion time in our experi-
ments.

in the transition between the hydrodynamic and the collisionless behavior de-
scribed in [Ped03]. An application of this theory for the compression mode in
the hydrodynamic regime has been used in [Kin06]. Here we will handle ther-
malization effects of the quadrupole mode in the near-collisionless regime.

Using the classical Boltzmann-Vlasov kinetic equation in the relaxation-time
approximation and ignoring mean field effects one can derive the following cou-
pled differential equations [Ped03]

b̈i = ω2
0i

θi

bi

− ω2
i bi (3.12)

and

θ̇i =
1

τR

(θi − θ̄)− 2
ḃi

bi

θi. (3.13)

The parameter bi is the scaling function described earlier in Appendix A; θi is
a scaling parameter directly related to the temperature and θ̄ = 1

3
Σkθk. The

initial condition for θi is θi(0) = 1, as long as the gas is in thermal equilibrium
at the moment of the excitation. The parameter τR is the relaxation time which
describes the time scale of collisions. In the collisionless limit, when τR → ∞,
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Fig. 3.11: Calculated quadrupole oscillations in the near-collisionless regime.
The lines show the relative difference in width ∆W as a function of the reduced
time ωrttrap. The oscillation is modeled according to Eq.(3.12) and (3.13). The
dark line shows the result of the calculation when ωrτR = 2.3 and the grey line
shows the coscillation in the collisionless limit at ωrτR = 1000.

the differential equations (3.12) simplify to the simple form in Eq. (3.9). For the
hydrodynamic limit (τR → 0), we find Eq. (3.5).

The solutions to these equations depend on the parameter τR as can be seen
in Fig. 3.11. Our measured data in the collisionless regime are well described by
ωrτR ∼ 2.3 (compare to Fig. 3.4).

The universal fit function

We find that the model calculations from (3.12) and (3.13) can be well described
with the following fit function

∆W = A e−κttrap cos (ωqttrap + φ)

+ C e−ξttrap + y0.
(3.14)

The first term describes the exponentially damped oscillations. The second term
describes the shift of the center of the oscillation in the collisionless regime. The
third term y0 is a constant offset which will be discussed later.

We have used Eq.(3.14) to fit our experimental measurements. We find that
the free fit parameters ξ and κ are related through ξ/κ ≈ 1.5 for all our mea-
surements in the near-collisionless regime. In the hydrodynamic regime C = 0,
and therefore ξ becomes irrelevant.
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The constant offset y0 is due to an experimental artifact that results from a
slight inhomogeneity of the magnetic field. At the location of the atoms the
inhomogeneous magnetic field leads to a weak saddle potential which causes a
slight anisotropic expansion during time of flight. This anisotropy is responsible
for a slight offset in ∆W .

3.8 Appendix C: Corrections to the normalized

frequency

The theoretical normalized frequencies ωq/ωr are calculated for perfectly har-
monic trapping potentials in an idealized symmetric trap geometry. There are
small derivations from this conditions in real experiments. In order to compare
the experimental data to the idealized theoretical case, we have to correct our
data. The measured normalized frequency ωq/ωr of the radial quadrupole mode
has to be increased because of two small corrections. The larger correction is
based upon a slight anharmonicity of the trapping potential and the spatial ex-
tension of the cloud in the trap. The smaller correction is caused by a small
residual ellipticity of the trapping potential.

The potential created by our trapping beam has a Gaussian shape. This
results in a nearly harmonic potential in the center of the trap; however, for
higher precision one must take into account higher order terms of the potential.
Anharmonicity effects influence both our measurements of the sloshing mode
frequency, where we determine ωr, and our measurements of the quadrupole
mode frequency ωq. As we evaluate the normalized frequency ωq/ωr, the anhar-
monicity effects on sloshing and quadrupole mode almost cancel out each other.
The small remaining correction to the normalized frequency is included by mul-
tiplying with a prefactor 1+ bσ [Alt07b, Alt07a]. The anharmonicity parameter
σ relates the energy of the oscillation to the total potential depth and is defined
by σ = 1

2
mω2

rr
2
rms/V0, where rrms is the root-mean-square radius of the trapped

cloud and V0 is the potential depth. The parameter b depends on the interaction
regime. In the hydrodynamic regime, it is given by (4 + 10γ)/(2 + 7γ), whereas
in the collisionless regime b is determined by 6/5 [Alt07a]. Here, γ is the poly-
tropic index of the equation of state. In our experiments, typically bσ ≈ 0.014 ,
but bσ can rise to an upper limit of bσ < 0.027.

In the hydrodynamic regime, there is also a correction due to residual elliptic-
ity effects. This correction takes into account that we compare our measurements
with a theory for non-elliptic geometries. The ellipticity ε of the trap is defined
by ε = (ωy − ωx)/ωr. In our experiments, the ellipticity is small and given by
ε ≈ 0.07. Therefore, we can apply the ellipticity correction by multiplication of
a prefactor 1+λε2 [Alt07b, Alt07a], where the interaction dependent factor λ is
given by (γ + 2)/(4γ). Altogether, λε2 is smaller than 0.006 for all data points.
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We report on experimental studies on the collective behavior of a strongly
interacting Fermi gas with tunable interactions and variable temperature. A
scissors mode excitation in an elliptical trap is used to characterize the dy-
namics of the quantum gas in terms of hydrodynamic or near-collisionless
behavior. We obtain a crossover phase diagram for collisional properties,
showing a large region where a non-superfluid strongly interacting gas shows
hydrodynamic behavior. In a narrow interaction regime on the BCS side of
the crossover, we find a novel temperature-dependent damping peak, suggest-
ing a relation to the superfluid phase transition.

Ultracold Fermi gases with tunable interactions have opened up intriguing pos-
sibilities to study the crossover from bosonic to fermionic behavior in strongly
interacting many-body quantum systems [Ing08]. In the zero-temperature limit,
a Bose-Einstein condensate (BEC) of molecules is smoothly connected with a

†The primary contribution of the author of the present thesis to this publication is the
development of the experimental procedure to excite and detect the scissors mode oscilla-
tion. Together with M.J.W. he recorded and analysed the data for this publication. The
temperature measurement was implemented by M.J.W..
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superfluid of paired fermions in the Bardeen-Cooper-Schrieffer (BCS) regime.
In recent years, great progress has been achieved in the theoretical description
of the ground state at zero temperature, and fundamental properties have been
experimentally tested with considerable accuracy [Gio08]. Finite-temperature
phenomena in the BEC-BCS crossover, however, pose great challenges for their
theoretical description. Experimental observations of finite-temperature behav-
ior in the crossover have focussed on the measurement of condensate fractions
[Reg04, Zwi04], on the spectroscopic investigation of pairing phenomena [Chi04],
or on the special case of unitarity-limited interactions [Kin05a, Ste06, Cla07].

To understand the collective dynamics of an ultracold quantum gas, it is
crucial to study the conditions for hydrodynamic behavior. Collective mode
experiments have probed the dynamics of strongly interacting Fermi gases for
variable interaction strength near zero temperature [Bar04a, Kin04b, Alt07b,
Alt07c]. The results show the existence of both a hydrodynamic regime of
collective motion and a near-collisionless regime with independent motion of
the trapped particles. The role of temperature, however, remained essentially
unexplored.

In this Letter, we explore the collective behavior of a finite-temperature,
strongly interacting Fermi gas of 6Li atoms throughout the BEC-BCS crossover.
In order to characterize the transition from hydrodynamic to collisionless be-
havior, we analyze scissors mode oscillations at different temperatures. With
varying temperature, the oscillations show a smooth transition between the two
collisional regimes along with a broad maximum in the damping rate. We dis-
cover an unexpected second peak in the damping rate at lower temperatures in
a narrow region on the BCS side of the crossover, where the gas remains hydro-
dynamic. This suggests the lower-temperature damping peak to be connected
to the transition from a superfluid to a normal hydrodynamic gas.

The scissors mode in ultracold quantum gas experiments [GO99a, Mar00] is
an angular oscillation of the cloud about a principle axis of an elliptical trap,
see Fig. 4.1(a). In our experiments, we confine the atoms in a harmonic, triaxial
optical dipole trap. We choose the geometry of the trap to produce an elliptically
shaped gas in the x-y plane with very weak confinement along the z axis. The
scissors mode experiments are done in the x-y plane. In terms of trap frequencies,
the standard configuration is ωx > ωy À ωz, where these trap frequencies are
defined along the principle axes of the trap. If the gas is hydrodynamic, the
angle of the gas oscillates collectively with a single frequency of (ω2

x + ω2
y)

1/2. If
the gas is collisionless, the trapped atoms oscillate independently, resulting in
a two-frequency oscillation. The larger frequency is given by ωx + ωy. When
the collisional regime is changed this frequency is adiabatically connected to
the hydrodynamic frequency. The smaller frequency is given by ωx − ωy and is
absent in the hydrodynamic limit [GO99a].

The preparation of a strongly interacting Fermi gas of 6Li proceeds in the same
way as described in our previous work [Joc03a, Alt07c]. The result is a deeply
degenerate, balanced two-component spin mixture of typically N = 4 × 105

atoms with tunable s-wave interactions near a broad Feshbach resonance, which
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Fig. 4.1: (a) Schematic showing the excitation of the scissors mode. (1) The
gas (shaded region) is at rest, in equilibrium with the trap (heavy solid line).
(2) The trap is suddenly rotated. (3) The gas oscillates around the new equilib-
rium position. (b) Scissors mode oscillations observed at the lowest obtainable
temperature (T ≈ 0.1TF at 834 G) for various magnetic fields. On the left
side, where B = 750 G, 834 G, and 900 G (1/kF a = 1.4, 0.0, and −0.6),
the gas is hydrodynamic. On the right side, where B = 661 G, 970 G, and
1132 G (1/kF a = 5.0, −1.0, and −1.44), the gas is nearly collisionless and ex-
hibits the characteristic two-frequency oscillation. Here ωx = 2π × 580Hz, ωy

= 2π × 270Hz, and TF = 0.69 µK.
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is centered at a magnetic field B = 834 G. Rapid spatial modulation of the
trapping beam by two acousto-optical deflectors is used to create a time-averaged
elliptical trapping potential for the scissors mode [Alt07c]. The aspect ratio is
set to ωx/ωy ≈ 2.0. We employ a trap with frequencies ωx = 2π × 830 Hz and
ωy = 2π× 415 Hz (ωz = 2π × 22 Hz), if not indicated otherwise. This results in
a Fermi temperature TF = (~ω̄/kB) (3N)1/3 = 0.94µK, where ω̄ = (ωxωyωz)

1/3.
The trap depth corresponds to about 12TF . To excite the scissors mode, we
suddenly rotate the angle of the trap by ∼ 5 degrees, see Fig. 1(a).

The angle of the oscillating cloud is determined by processing absorption im-
ages, taken after a short expansion time of 400 µs. A two-dimensional Thomas-
Fermi profile is fit to the images, where the tilt of the principle axes of the cloud
is a free parameter, see Fig. 4.1(a). Note that the short expansion somewhat
decreases the ellipticity of the cloud, but increases the amplitude of the scis-
sors mode oscillation [Mod03]. In the hydrodynamic regime, we fit a damped
cosine function to the experimental data. In the collisionless regime, we fit the
oscillation to a sum of two damped cosine functions each with their own free pa-
rameters. In the region between these two limits, we find that a single damped
cosine function fits the data reasonably well, as the lower-frequency component
damps out very quickly [GO99a].

First, we examine the collective behavior of the gas at our lowest obtainable
temperatures. We compare scissors mode oscillations at different settings of the
magnetic field, i.e. different values of 1/kF a. Typical scissors mode oscillations
are shown in Fig. 4.1(b). At B = 661 G, far on the BEC side of resonance,
the gas exhibits nearly collisionless behavior. Here inelastic collisions result in
heating the gas above the critical temperature for BEC. In the regime where
the gas is strongly interacting, B = 750 G, 834 G, and 900 G, the gas oscillates
collectively. High precision measurements taken at B = 834 G show the scissors
mode oscillation yields a frequency that agrees with theory within one percent.
Far on the BCS side, at B = 970 G and 1132 G, the gas exhibits behavior that
is nearly collisionless. The abrupt transition between the hydrodynamic and
collisionless regimes at low temperature occurs at essentially the same magnetic
field, B ≈ 950 G, as in other collective mode experiments [Bar04a, Kin04b,
Alt07c].

To explore finite-temperature collisional behavior, we extend the scissors mode
measurements. To set the temperature, we use a controlled heating scheme.
Here, we suddenly compress the trap and allow for subsequent equilibration1.
We control the temperature of the gas by adjusting the amount of compression.

The determination of the temperature T in an ultracold, strongly interacting
Fermi gas is in general difficult [Kin05b]. We can measure an effective tem-
perature (or entropy) parameter T̃ at the center of the Feshbach resonance,
B = 834 G. We determine T̃ by fitting integrated, one-dimensional, density

1Sudden compression of the trap excites the axial mode which is long lived. Since the fre-
quency is much smaller than the scissors mode frequency, it can be neglected. Nonetheless,
we carried out a direct comparison without the axial mode present and found the same
behavior.
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Fig. 4.2: Frequency and damping rate for the scissors mode oscillation for B
= 895 G (1/kF a = −0.45, solid squares) and at B = 834 G (1/kF a = 0, open
circles). The frequency limits in the hydrodynamic and collisionless regimes
are shown by the horizontal lines in (a), including small corrections for the
anharmonicity of the trap [Rie08]. The lines in (b) are introduced as guides
to the eye. For T̃ greater than 1.14, the scissors mode oscillations are fit by a
two-frequency cosine function (for details see text).

profiles in the manner described in [Kin05b, Kin06, Sta05]. At B = 834 G,
for T/TF > 0.3, the parameter T̃ is proportional to the real temperature with
T/TF ≈ T̃ /1.5. For lower temperatures, an empirical conversion has been de-
termined2 [Kin05b, Kin06, Sta05]. The parameter T̃ , measured in the unitarity
limit at 834G, can be used also as a temperature scale for other interaction
regimes under the condition that entropy is conserved in adiabatic sweeps of the
magnetic field [Che05a].

In Figure 4.2, we show the frequency and damping rate as a function of T̃
for two cases, in the unitarity limit (1/kF a = 0.00) and at the BCS side of the
crossover (1/kF a = −0.45). The frequency behavior in Fig. 4.2(a) is qualitatively
the same for both cases. At low temperatures, the gas shows the hydrodynamic
frequency and, at the highest temperatures, we observe the behavior character-
istic for the collisionless gas. With varying temperature, the changing frequency
smoothly connects the hydrodynamic with the collisionless regime. Quantita-
tively, the transition occurs at somewhat higher T̃ in the unitarity limit. In

2T̃ ≈ 1.2(T/TF )1.49 for (T/TF ) < 0.3.
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Fig. 4.3: Low-temperature damping peak observed in a narrow magnetic-field
region at the BCS side of the resonance (1/kF a ≈ −0.5). The solid lines are
introduced as guides to the eye.

the transition region, the damping rate shows a maximum that accompanies the
change in frequency, see Fig. 4.2(b). We introduce the temperature parameter
T̃H for this damping maximum, marking the transition between hydrodynamic
and collisionless behavior.

The temperature dependence of the damping rate in Fig. 4.2(b) reveals a qual-
itatively different behavior between the two interaction regimes. An additional
peak shows up at lower temperatures for the BCS side of the crossover, while
this peak is absent in the unitarity limit. Remarkably, this novel feature is not
associated with a change in the frequency.

We could detect the low-temperature damping peak only in a very narrow
range at the BCS side of the crossover. This feature was found between mag-
netic fields of 890G and 920G, corresponding to interaction parameters 1/kF a
between −0.6 and −0.4. In Fig. 4.3, we show the low-temperature damping
peak as it changes in this narrow region. Closer to resonance, the peak becomes
very narrow, shifts toward higher temperatures, and finally seems to disappear.
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To mark the location of this peak, we introduce the temperature parameter T̃S.

We now discuss our observations in terms of a crossover phase diagram for
the scissors mode excitation3. In Fig. 4.4(a), we plot T̃H (closed circles) and T̃S

(open squares) as a function of the interaction parameter. The data points for
T̃H show a pronounced maximum at the center of the resonance. To facilitate
an interpretation of the experimental data, we convert T̃H and T̃S into real
temperatures TH and TS, following the theory of Ref. [Che05a]. Fig. 4.4(b) shows
the resulting phase diagram, including a theoretical prediction [Per04] (see also
[Che05b]) of the temperature TC for the phase transition to a superfluid state.

Near the center of the Feshbach resonance, hydrodynamic behavior is observed
far above the superfluid transition temperature. The large difference between TH

and TC confirms the existence of a non-superfluid hydrodynamic region above
TC [Min01, Kin05a, Cla07]. Our measurements show that this normal-gas hy-
drodynamic regime is restricted to the narrow, strongly interacting region near
resonance where 1/kF a stays well below unity. On the BEC side, TH is close
to the expected value for TC . Here one can assume that hydrodynamic behav-
ior essentially results from the formation of a molecular BEC. A surrounding
non-condensed molecular gas would exhibit near-collisionless properties, similar
to what has been measured in atomic BEC experiments [Mar01]. On the BCS
side of resonance, TH falls off very rapidly. In this region, collective modes may
couple to the weakly bound fermion pairs [Bar04a, Alt07c]. We did not observe
hydrodynamic behavior beyond that point.

For the low-temperature damping peak found at the BCS side of the crossover
near 1/kF a ≈ −0.5, our phase diagram in Fig. 4.4(b) suggests a close relation to
the superfluid phase transition. The peak occurs at roughly 0.6 TC , and it follows
the general behavior of the superfluid transition to move toward higher tempera-
ture as it approaches the resonance. This points to a scenario where a substantial
superfluid core in the center of the trap is surrounded by a non-superfluid, but
still hydrodynamic fraction in the outer region of the trap. Whether damping
results from the coupling of these two components or whether other mechanisms
are responsible for this phenomenon remains an open question. We note that
the low-temperature damping peak is not specific to the scissors mode. We
have also found a corresponding, but less pronounced peak in measurements of
the radial breathing mode. Further investigations and better theoretical under-
standing will be required to answer the intriguing question whether the novel
damping peak does indeed mark the transition from the normal hydrodynamic
to the superfluid state.

In conclusion, we have investigated hydrodynamic behavior at finite temper-
atures in the BEC-BCS crossover using scissors mode excitations. Our mea-
surements highlight the existence of a region of non-superfluid hydrodynamics

3In a comparative study of different collective modes [Rie08] we found the scissors mode
to behave very similar to the radial quadrupole mode [Alt07c], which is also a surface
mode. The radial compression mode behaves quite differently [Kin05a, Rie08]. The axial
mode [Bar04a] shows in general hydrodynamic behavior in a much wider parameter range
because of its much lower frequency.
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in the strongly interacting regime where |kF a| & 1. In the unitarity limit, pre-
dominant hydrodynamic behavior is found up to ∼0.6 TF , which substantially
exceeds the superfluid transition temperature of ∼0.3 TF . With increasing tem-
perature, the transition from hydrodynamic to collisionless behavior proceeds
in general smoothly and is accompanied by a local maximum of damping. In
addition, we have discovered a novel low-temperature damping peak at the BCS
side of the crossover, which suggests a relation to the superfluid phase tran-
sition. With this observation, experiments on collective oscillation modes of
Fermi gases in the BEC-BCS crossover continue to produce puzzling observa-
tions [Bar04a, Kin05a, Alt07c] with the potential to stimulate deeper theoretical
understanding of the physics of strongly interacting Fermi gases.

We thank S. Stringari for stimulating discussions. We also thank Q. Chen,
K. Levin, and J. E. Thomas for discussions concerning determination of the
temperature. We acknowledge support by the Austrian Science Fund (FWF)
within SFB 15 (project part 21). M.J.W. is supported by a Marie Curie Incom-
ing International Fellowship within the 6th European Community Framework
Program.
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We present detailed measurements of the frequency and damping of three
different collective modes in an ultracold trapped Fermi gas of 6Li atoms with
resonantly tuned interactions. The measurements are carried out over a wide
range of temperatures. We focus on the unitarity limit, where the scattering
length is much greater than all other relevant length scales. The results are
compared to theoretical calculations that take into account Pauli blocking
and pair correlations in the normal state above the critical temperature for
superfluidity. We show that these two effects nearly compensate each other
and the behavior of the gas is close to that of a classical gas.

†The author of the present thesis performed all the measurements in this publication and
analyzed the effect of anharmonicity on the collective modes. The theory part of this
publication was done by G.M.B. and H.S.
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5.1 Introduction

The study of collective oscillations in quantum liquids and gases has yielded a
wealth of insights into the properties of strongly correlated systems. An early
example concerning strongly correlated Fermions is the observed transition from
ordinary first sound to zero sound in the normal state of liquid 3He as the
temperature is lowered [Abe66]. In this Article we explore related phenomena in
an ultracold quantum gas of fermions in the unitarity limit [Ing08] by measuring
three different collective modes under similar conditions. The frequency and
damping of the modes exhibit the characteristic transition from hydrodynamic
behavior at low temperature to collisionless behavior at higher temperature.
The experimental observations are compared to theoretical model calculations
that apply to the normal state of the gas above the critical temperature Tc

for superfluidity. In the unitarity limit, the strongly correlated normal state
between Tc and the Fermi temperature TF is arguably not as well understood
as the T = 0 superfluid phase [Gio08]. It is shown that the combined effects of
temperature and pair correlations account for most of the observed features in
this interesting temperature regime.

Our measurements of the collective modes are carried out for an elongated
trap geometry, which has previously been shown to be well suited for studying
the dynamical behavior of a strongly interacting Fermi gas [Bar04a, Kin04a,
Kin04b, Kin05a, Alt07b, Alt07c, Wri07]. We focus on two collective excitations
of a cylindrically symmetric cigar-shaped cloud, namely the radial compression
mode and the radial quadrupole mode. In addition we study the scissors mode
under conditions where the cloud exhibits pronounced ellipticity in the plane
perpendicular to the direction of the cigar-shaped cloud. In all three modes, the
cloud oscillates mainly in the plane normal to the direction of the cigar-shaped
cloud. For a sketch of the modes see Fig. 5.1.

Previous experiments on collective modes in a strongly interacting Fermi gas
studied the effect of the interaction strength in the zero-temperature limit.
[Bar04a, Kin04a, Kin04b, Alt07b, Alt07c]. Systematic investigations were per-
formed studying the radial compression mode [Bar04a, Kin04a, Alt07b] and
the radial quadrupole mode [Alt07c]. Measurements on the compression mode
served as a sensitive probe for the equation of state of the gas in the zero tem-
perature limit throughout the BEC-BCS crossover regime. In contrast to the
compression mode, the frequency of the radial quadrupole mode allows one to
test the hydrodynamic behavior without being influenced by the equation of
state. This made it possible to investigate the transition from hydrodynamic to
collisionless behavior with decreasing coupling strength of the atom pairs on the
BCS side of the crossover.

While the hydrodynamic behavior in the zero-temperature limit is now well
understood as a result of superfluidity, an understanding of the effects of temper-
ature on the collective modes has remained a challenge. Only few experiments
have so far addressed this problem [Alt07b, Kin05a, Wri07, Kin04a]. Previously,
the temperature dependence of the radial compression mode [Kin05a] and the
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Fig. 5.1: Sketch of the three collective modes investigated in this work: the
compression mode, the quadrupole mode and the scissors mode (from left to
right). The oscillations take place in the plane of tight confinement, perpendicu-
lar to the direction of the elongated, cigar-shaped cloud. While the compression
mode represents an oscillation of the overall cloud volume, the other two modes
only involve surface deformations. Exciting the quadrupole mode leads to an
oscillating elliptic shape. The scissors mode appears as an angular oscillation
of an elliptic cloud about a principal axis of an elliptic trap geometry.

scissors mode was studied [Wri07]. Our present experiments aim at address-
ing the open questions raised by the different results obtained in these experi-
ments: The frequency and damping of the radial compression mode was studied
as function of the temperature in an experiment performed at Duke University
[Kin05a]. There the mode frequency appeared to stay close to the hydrodynamic
value even for temperatures exceeding the Fermi temperature. This surprising
finding stands in contrast to scissors mode measurements, performed later at
Innsbruck University [Wri07], which clearly showed a transition to collisionless
behavior in the same temperature range. Furthermore the Duke data on the
damping of the compression mode did not show a maximum as it was seen in
the Innsbruck data on the scissors mode measurement. These apparent discrep-
ancies are a particular motivation for our present study of different collective
modes under similar experimental conditions.

5.2 Experimental Procedure

The apparatus and the basic preparation methods for experiments with a strongly
interacting Fermi gas of 6Li atoms have been described in our previous work
[Joc03a, Bar04b]. As a starting point, we produce a molecular BEC of 6Li2.
By changing an external magnetic field, we can control the interparticle interac-
tions in the vicinity of a Feshbach resonance, which is centered at 834G [Bar05b].
The measurements of the collective modes are performed at the center of the
Feshbach resonance, where the interactions are unitarity limited.

The atoms are confined in an elongated, nearly harmonic trapping poten-
tial, where the trap frequencies ωx and ωy in the transverse direction are much
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compression quadrupole scissors
ωx/2π (Hz) 1100 1800 1600
ωy/2π (Hz) 1100 1800 700
ωz/2π (Hz) 26 32 30
TF (µK) 1.8 2.7 1.9

V0/k (µK) 19 50 40

Table 5.1: Trap parameters for the different modes.

larger then the axial trap frequency ωz. The confinement in the transverse di-
rection is created by an optical dipole trap using a focused 1030 nm laser beam
with a waist of 47µm. Note that the Gaussian shape of the laser beam leads
to significant anharmonicities in the trapping potential. The potential in the
axial direction consists of a combination of optical and magnetic confinement;
the magnetic confinement is dominant under the conditions of the present ex-
periments. The trap parameters, given in Table 5.1, represent a compromise
between trap stability and anharmonic effects1. The Fermi temperature is given
by TF = EF /k, where the Fermi energy EF = ~(3Nωxωyωz)

1/3 = ~2k2
F /2m, kF

is the Fermi wavenumber and k is the Boltzmann constant. The parameter V0 is
the trap depth, and N is the total number of atoms, given by N = 6× 105. The
interactions are characterized by the dimensionless parameter 1/kF a, where a is
the s-wave scattering length.

To control the aspect ratio ωx/ωy, we use rapid spatial modulation of the
trapping beam by two acousto-optical deflectors, resulting in the creation of
time-averaged trapping potentials [Alt07c]. This on one hand allows us to com-
pensate for residual ellipticity of the trapping potential on the percent level and
thus to realize a cylindrical symmetric trap (ωx = ωy). On the other hand it
allows for the excitation of surface modes by deliberately introducing elliptic
trapping potentials (ωx 6= ωy). The procedures used to excite the modes are
outlined in Appendix A. To change the temperature we apply a controlled heat-
ing scheme via sudden compression of the gas as described in [Wri07]. Detection
of the cloud is done by absorption imaging which displays the shape of the cloud
in the x-y plane after expansion. For each mode under investigation we deter-
mine the frequency and damping following the procedures of our previous work
[Alt07c, Wri07, Alt07b]; see also Appendix A.

Because of the Gaussian shape of the trapping potential, corrections are
needed for a precise comparison of the experimental observation to the idealized
case of perfect harmonic trapping. Especially for higher temperatures, when
the size of the cloud is larger, anharmonic corrections become important. This

1Anharmonic effects depend on the ratio between the Fermi energy and trap depth EF /V0

[Str]. Reducing this ratio decreases the anharmonic effects. This can be done by increasing
the power of the trapping beam since the EF increases slower then V0 because of the
magnetic trapping along the axial direction. On the other hand we find larger heating
rates and larger drifts in the trap depth with increasing power.



TEMPERATURE EFFECTS AND THE ROLE OF PAIR CORRELATIONS 53

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.90

0.92

0.94

0.96

0.98

1.00

s/
x

 T/TF

 

 

Fig. 5.2: Sloshing mode frequency ωs normalized by the trap frequency ωx as
a function of temperature. The measured frequency shows a decrease with in-
creasing temperature, (dots) which is due to the increase in the size of the cloud.
The lines show the expected frequency from a first-order anharmonic correction;
see Appendix B. To determine the cloud size for different temperatures we as-
sume a harmonic potential (solid line) and a Gaussian potential (dashed line),
respectively. The calculation of 〈x2〉 is based on density profiles derived by Q.
Chen, J. Stajic, and K. Levin; see Ref. [Che05a]

is demonstrated by measurements of the transverse sloshing mode frequency
ωs (Fig. 5.2), which clearly show a substantial decrease with increasing tem-
perature. To reduce the anharmonic effects on the frequencies of the collective
modes under investigation, we normalize the compression and quadrupole collec-
tive mode frequencies to the sloshing mode frequency in the transverse direction.
This normalization reduces the anharmonic effects to a large extent since the de-
crease of the sloshing mode frequency with increasing cloud size is of the same
order as the corresponding decrease of the frequency of the transverse modes
[Str]. To normalize the scissors mode frequency we take the geometric average
of the two different sloshing mode frequencies in the transverse direction.

For each of the trap parameters of the different modes we determine the slosh-
ing mode frequency as a function of the temperature. As an example we show
ωs for the trap parameters used for the compression mode measurement; see
Fig. 5.2. We compare ωs/ωx (dots) to a theoretical model which allows us to
calculate the sloshing frequency as a function of the cloud size; see Appendix B.
Assuming a harmonic potential to derive the mean squared size 〈x2〉 underesti-
mates the anharmonic effects (solid line) in particular for higher temperatures.
Taking into account a Gaussian potential1 to determine 〈x2〉 (dashed line) gives
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results that agree much better with the measured sloshing frequency.
Since the purpose of this article is a comparative study of different collective

modes and not the precision measurement of a single mode as in previous work
[Alt07b], we follow a faster yet simpler procedure to normalize the frequencies.
We measure the sloshing mode frequency only on particular temperatures of
interest. From these points we determine the temperature dependence of the
sloshing frequency by interpolation. Even though the normalization takes into
account the temperature dependence of the anharmonicity, it does not reduce
effects due to drifts in the power of the trapping beam. We believe this to be
the main source for the scatter of the data in Fig. 5.4.

To determine the temperature of the gas we first adiabatically change the
magnetic field to 1132G 2, where 1/kF a ≈ −1, to reduce the effect of interactions
on the density distribution [Luo07]. Under this condition, for T > 0.2TF , the
interaction effect on the density distribution is sufficiently weak to treat the
gas as a non-interacting one to determine the temperature from time-of-flight
images. We fit the density distribution after 2ms release from the trap to a
finite-temperature Thomas-Fermi profile. The temperature measured at 1132G
is converted to the temperature in the unitarity regime under the assumption
that the conversion takes place isentropically, following the approach of Ref.
[Che05a]. Statistical uncertainties for the temperature stay well below 0.05TF .

5.3 Theory

We shall compare our experimental findings to the results of model calculations
that apply to the normal state of the gas, i.e. at temperatures above Tc. In
this Section, we outline our theoretical approach to the calculation of mode fre-
quencies for T > Tc. A more detailed description can be found in Refs. [Mas05]
and [Bru05]. We assume that single-particle excitations are reasonably well de-
fined in the sense that most of the spectral weight of the single-particle spectral
function is located at a peak corresponding to that of non-interacting particles.
The low-energy dynamics of the gas can then be described by a semiclassical
distribution function f(r,p, t) which satisfies the Boltzmann equation. A col-
lective mode corresponds to a deviation δf = f − f 0 away from the equilibrium
distribution f 0(r,p). Writing δf(r,p, t) = f 0(r,p)[1 − f 0(r,p)]Φ(r,p, t) and
linearizing the Boltzmann equation in δf(r,p, t) yields

f 0(1− f 0)

(
∂Φ

∂t
+ ṙ · ∂Φ

∂r
+ ṗ · ∂Φ

∂p

)
= −I[Φ], (5.1)

where ṙ = v = p/m, ṗ = −∂V/∂r and I is the collision integral. We take the
potential V (r) to be harmonic and given by V (r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2.

To describe the collective modes we expand the deviation function in a set of
basis functions φi according to

Φ(r,p, t) = e−iωt
∑

i

ciφi(r,p), (5.2)

2This is the largest magnetic field where absorption images can be taken.



TEMPERATURE EFFECTS AND THE ROLE OF PAIR CORRELATIONS 55

where ω is the mode frequency. For the compression mode with a velocity field
v ∝ (x, y, z), we use the functions

φ1 = x2 + y2, φ2 = xpx + ypy, φ3 = p2
x + p2

y, φ4 = p2
z. (5.3)

For the quadrupole mode with a velocity field v ∝ (y, x, 0) (ignoring the small
velocity along the axial direction), we use

φ1 = x2 − y2, φ2 = xpx − ypy, φ3 = p2
x − p2

y, (5.4)

whereas the basis functions for the scissors mode are given in Ref. [Bru07]. Our
choice of basis functions is physically motivated by the characteristic features
of the three different modes illustrated in Fig. 5.1. Since we limit ourselves to
a few simple functions, the basis sets are not complete, but we do not expect
qualitative changes to occur as a result of including more basis functions in our
calculation.

We now insert the expansion (5.2) into (5.1) and take moments by multiplying
with the functions φi and integrating over both r and p. This yields a set of
linear equations for the coefficients ci for each of the collective modes. The
corresponding determinants give the mode frequencies. For the compression
mode, we obtain

iω(ω2 − 4ω2
⊥) +

1

τ

(
10

3
ω2
⊥ − ω2

)
= 0, (5.5)

and for the quadrupole mode, we get

iω(ω2 − 4ω2
⊥) +

1

τ

(
2ω2

⊥ − ω2
)

= 0. (5.6)

The equation for the scissors mode is given in Ref. [Bru07].
The effective collision rate 1/τ in (5.5) and (5.6) is given by

1

τ
=

∫
d3rd3ppxpyI[pxpy]∫

d3rd3pp2
xp

2
yf

0(1− f 0)
. (5.7)

Note that this expression for 1/τ involves a spatial average over the cloud. In
the collisionless limit, ωτ À 1, the two equations (5.5) and (5.6) both yield
ω = 2ω⊥, where ω⊥ = ωx = ωy, while in the hydrodynamic limit, ωτ ¿ 1,

they result in ω =
√

10/3ω⊥ for the compression mode and ω =
√

2ω⊥ for the
quadrupole mode.

The dependence on temperature T and scattering length a enters through τ .
In particular, Pauli blocking and pair correlations strongly depend on T and a,
and we now examine their role on the effective collision rate. In Fig. 5.3, we
plot 1/τ as a function of temperature for a gas in the unitarity limit |a| → ∞
using three different approximations for the collision integral. First, the dashed
curve gives the effective collision rate in the classical regime using the vacuum
expression Tvac = T0/(1 + iqa) for the scattering matrix with T0 = 4π~2a/m.
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Fig. 5.3: (Color online) The effective collision rate for a gas in the unitarity
limit. The dashed curve is the classical result, the dash-dotted includes Pauli
blocking, and the solid line includes pairing correlations in the scattering matrix.
The superfluid region for T < Tc is indicated.

The s-wave differential cross section dσ/dΩ which enters in the collision integral
I is related to the scattering T matrix by dσ/dΩ = m2|T |2/(4π~2)2. In the
classical regime, we then get from (5.7)

1

τclass

=
4

45π

kTF

~
T 2

F

T 2
(5.8)

for a gas in the unitarity limit [Bru07]. The small prefactor 4/(45π) ≈ 0.028 in
(5.8) implies that the effective collision rate is significantly smaller than what one
would expect from simple estimates or dimensional analysis at unitarity. Second,
the dash-dotted curve gives the effective collision rate when Pauli blocking effects
are included as in [Mas05], while we still use the vacuum expression Tvac for the
scattering matrix. Pauli blocking effects reduce the available phase space for
scattering thereby reducing the scattering rate. For T ¿ TF Pauli blocking in
a normal Fermi system gives 1/τ ∝ T 2. Finally, we plot as a solid curve in
Fig. 5.3 the effective collision rate taking into account both Pauli blocking and
many-body effects for T in the ladder approximation which includes the Cooper
(pairing) instability. This gives T = T0/(1−T0Π) where Π is the pair propagator.
Since our treatment of the pair correlations only apply to the normal state of the
gas, we plot this curve for temperatures greater than the critical temperature
Tc, which within the ladder approximation used here is given by Tc ≈ 0.3TF for
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a trap [Bru05].
We see that 1/τ is increased by the pairing correlations for the T -matrix. The

pairing correlations significantly increase the effective collision rate for tempera-
tures (T −Tc)/Tc . 1 [Bru05]. One often refers to this temperature range as the
pseudogap regime. In fact, pairing correlations almost cancel the Pauli blocking
effect in the collision integral above Tc and 1/τ is fairly accurately given by the
classical value as can be seen from Fig. 5.3. At high temperatures, this can-
celation can be demonstrated analytically by carrying out a high-temperature
expansion of (5.7). We obtain after some algebra the simple expression

1

τ
=

1

τclass

[
1 +

1

32

(
TF

T

)3
]

. (5.9)

The presence of the small prefactor 1/32 in (5.9) shows that the leading cor-
rection to the classical limit is less than 3% at temperatures above the Fermi
temperature TF .

5.4 Results and Discussion

The theoretical results of the previous section were all obtained for a purely
harmonic potential. Since anharmonicity plays an important role in our ex-
periments, as discussed in Sec. 5.2, we normalize the measured frequencies and
damping rates for the collective modes to the measured temperature-dependent
sloshing frequencies, for which an example is shown in Fig. 5.2. In the following
we compare our observations to the theoretical results. It should be emphasized
that the theoretical expressions for the frequency and damping contain no free
parameters to fit theory and experiment.

First we discuss the frequency for the three modes under investigation as a
function of the temperature, as plotted in Fig. 5.4. In all three cases the theo-
retical expression for the frequency (the full lines in Fig. 5.4) smoothly changes
from the hydrodynamic value at the lowest temperature considered to the colli-
sionless value at high temperatures. The normalized frequencies in the hydrody-
namic limit for the quadrupole mode and compression mode are

√
2 ≈ 1.41 and√

10/3 ≈ 1.83, respectively. The normalized frequency in the collisionless limit
for both these modes is 2. Using the geometric average of the trap frequencies to
normalize the scissors mode frequency, one gets, using the ratio ωx/ωy = 16/7

from Table I, that
√

(ω2
x + ω2

y)/(ωxωy) ≈ 1.64 in the hydrodynamic limit and

(ωx + ωy)/
√

ωxωy ≈ 2.17 in the collisionless limit. Note that the scissors mode
consists of a two-frequency oscillation in the collisionless limit. Here we only con-
sider the larger frequency component. The lower frequency component exhibits
increasing damping toward lower temperatures and disappears in the hydrody-
namic limit [GO99a].

Figure 5.4 illustrates that there is a reasonable overall agreement between ex-
periment and theory, although some differences exist. The agreement is best for
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Fig. 5.4: Observed normalized mode frequencies versus temperature for the
quadrupole mode, the scissors mode and the compression mode. The error bars
indicate the statistical error of a single frequency measurement. The full lines
are the result of the theory for the normal state described in section 5.3, which
includes the combined effects of Pauli blocking and pair correlations; note that
these curves start at T = 0.3TF , which in the ladder approximation used here is
the transition temperature to the superfluid state. For illustrative purposes we
also show the theoretical results when only Pauli blocking is taken into account
(dash-dotted lines) and those for a classical gas (dashed lines).

the scissors mode, while for the quadrupole mode the changeover from hydro-
dynamic to collisionless behavior happens at a lower temperature than the one
found theoretically. The measured compression mode frequency, which shows
considerable scatter, increases with increasing temperature and is close to the
collisionless value at the highest temperature measured.

The observed change from the hydrodynamic to the collisionless frequency
for the compression mode is in contrast to Ref. [Kin05a], where the frequency
remains close to the hydrodynamic value for the same temperature range. We
attribute this discrepancy to different treatments of anharmonic effects, which
are particularly important for this mode since the difference between the hydro-
dynamic and collisionless frequency is of the same order as the frequency shift
due to anharmonic effects. In Ref. [Kin05a] the data are corrected by including
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Fig. 5.5: Normalized mode damping versus temperature for the quadrupole
mode, the scissors mode and the compression mode. The points are experimen-
tal values, while the full lines represent our calculated values, taking into account
both Pauli blocking and pairing effects. The dash-dotted line only takes Pauli
blocking into account, while the dashed line is the classical (high-temperature)
result.

anharmonic effects to first order, while we adopt the point of view that the main
anharmonic effects can be taken into account by normalizing the measured oscil-
lation frequencies to the measured temperature-dependent sloshing frequencies.
Figure 5.2 illustrates that a simple first-order treatment of anharmonic effects on
the sloshing frequency does not account quantitatively for the observed variation
with temperature.

At very low temperatures the measured frequencies are close to the hydrody-
namic values because the gas is in the superfluid phase [Alt07b, Alt07c]. Without
pair correlations, but with Pauli blocking, at these low temperatures the frequen-
cies would assume their collisionless values as illustrated by the dash-dotted lines
in Fig. 5.4.

We now proceed to consider the damping of the oscillations. The experimen-
tal values for the normalized damping rate are shown in Fig. 5.5. Theoretically,
one expects the damping to vanish in the hydrodynamic and collisionless lim-
its and exhibit a maximum in between, as brought out by the calculations in
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Sec. 5.3. Experimentally, both the quadrupole and the scissors mode exhibit the
expected maximum in damping in the transition region. For the compression
mode, however, the damping does not decrease at higher temperatures. This sur-
prising behavior for the compression mode has already been found in [Kin05a].
A possible reason for the increasing damping is dephasing-induced damping due
to anharmonicity. Anharmonic effects are more important for the compression
mode as the intrinsic damping is relatively small due to the small difference be-
tween the frequencies in the collisionless and hydrodynamic limits [GO99b]. In
contrast to the case of frequency discussed above, we cannot expect to take into
account the main effects of anharmonicity by normalizing the measured damp-
ing rate to the temperature-dependent sloshing mode frequencies. This makes
it delicate to compare our experimental results to those of a theory based on
a purely harmonic potential. The damping of the quadrupole mode shows the
expected qualitative behavior, although the maximum in damping happens at
a lower temperature compared to theory. This is consistent with the frequency
data for this mode, since the transition there also happens at lower tempera-
ture. For the scissors mode the experimental data agree fairly well with theory,
although some discrepancy exists at the lowest temperatures.

We can relate the frequency and damping of the quadrupole mode directly to
each other by eliminating the collision rate 1/τ in (5.6). Writing ω = ωQ − iΓQ

for the solution of (5.6) with ωQ and ΓQ being the quadrupole frequency and
damping, we obtain

ΓQ =

√
−ω2

⊥ − ω2
Q +

√
8ω2

Q − 7ω2
⊥. (5.10)

A similar relation holds for the two other modes. This allows us to com-
pare theory and experiment independently of any approximations involved in
the evaluation of 1/τ . Figure 5.6 shows the normalized damping rate versus the
normalized frequency of the quadrupole and the scissors mode; we do not show
the data for the compression mode because of the apparent problems discussed
before. We find that the maximum damping of the quadrupole mode is larger
than expected. For the scissors mode the damping is larger only at low frequen-
cies. This suggests that the difference between theory and experiment is not
a consequence of the approximations entering the calculation of the relaxation
rate but could be due to anharmonic effects or the need for larger basis sets to
describe the modes [see (5.3) and (5.4)].

5.5 Conclusion

In this work we have presented measurements of the frequency and damping of
three different collective modes under similar conditions for an ultracold Fermi
gas of 6Li atoms in the unitarity limit. The experimental results obtained in
the normal state of the gas are in reasonable agreement with our theoretical
calculations, which take into account Pauli blocking and pair correlations. The
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Fig. 5.6: Normalized mode damping versus normalized frequency for the
quadrupole and scissors mode. The solid line shows the expected behavior
for a harmonic trap. The arrows point toward the direction of increasing tem-
perature.
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remaining discrepancies may originate in a variety of sources such as our treat-
ment of anharmonic effects, the temperature calibration, and the use of a re-
stricted basis for solving the Boltzmann equation. Also they may reflect the
need to incorporate further interaction effects in the kinetic equation, which
forms the starting point for the theoretical calculations. For instance, there are
self-energy shifts on the left-hand side of the kinetic equation which could be
important. The study of collective modes is a sensitive probe of the properties
of strongly interacting particles such as the gas of 6Li atoms under investigation,
and further work on temperature-dependent phenomena will undoubtedly shed
more light on these interesting many-body systems.
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5.6 Appendix A

Here we present more details of the experimental procedures used to excite the
three collective modes.

To excite the radial quadrupole mode we adiabatically deform the radially
symmetric trap to an elliptic shape while keeping the average trap frequency
constant before turning off the deformation suddenly [Alt07c]. The deformation
is chosen such that the amplitude of the mode oscillation relative to the cloud size
is below 10%. A two-dimensional Thomas-Fermi profile is fitted to the images,
taken after a short expansion time of 0.5 ms. The difference in the width of the
main axes is determined for different hold times and fitted to a damped sine
function, from which we determine the frequency and damping of the mode.

The excitation of the radial compression mode is done by a sudden compres-
sion of the cloud. To determine the frequency and damping of the compression
mode we follow the same procedure as for the quadrupole mode but fitting to
the sum of the widths. Here we use an expansion time of 2 ms before taking the
image.

The scissors mode appears as an angular oscillation of an elliptic cloud about
a principal axis of an elliptic trap. To excite this oscillation we create an ellip-
tic trap in the x − y plane and suddenly rotate the angle of the principal axes
by 5 degrees [Wri07]. The tilt of the principal axes of the cloud is determined
0.8 ms after releasing the cloud from the trap for different hold time. If the gas
is hydrodynamic, we fit a single damped sine function to the oscillation of the
angle. However, for a collisionless gas, the oscillation exhibits two frequencies.
Thus we fit a sum of two damped sine functions each with their own free pa-
rameters. When the behavior changes from hydrodynamic to collisionless the
single damped sine function fits the data reasonably well, as discussed in [Wri07].
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Since the larger of the two frequencies in the collisionless regime smoothly con-
nects to the hydrodynamic frequency at low temperatures we only consider this
frequency in the paper.

5.7 Appendix B

Here we briefly discuss the calculation of the transverse sloshing modes including
anharmonic corrections to lowest order. The transverse trapping potential is

V (x, y) = V0(1− e−x2/a2−y2/b2) '

V0

(
x2

a2
+

y2

b2
− x4

2a4
− y4

2b4
− x2y2

a2b2

)
. (5.11)

Concentrating without loss of generality on the sloshing mode in the x-direction,
we choose the function Φ = c1x + c2px. Putting this into the linearized Boltz-
mann equation (5.1), eliminating c2, and taking the moment

∫
dxdyn(x, y) with

n(x, y) the density (we ignore the axial direction), we obtain for the sloshing
frequency

ω2
s = ω2

x

(
1− mω2

x〈x2〉+ mω2
y〈y2〉

2V0

)
. (5.12)

Here 〈x2〉 =
∫

n(x, y)x2dxdy/
∫

n(x, y)dxdy and we have used ω2
x = 2V0/ma2

together with ω2
y = 2V0/mb2.
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We investigate the lifetime of angular momentum in an ultracold strongly
interacting Fermi gas, confined in a trap with controllable ellipticity. To
determine the angular momentum we measure the precession of the radial
quadrupole mode. We find that in the vicinity of a Feshbach resonance,
the deeply hydrodynamic behavior in the normal phase leads to a very long
lifetime of the angular momentum. Furthermore, we examine the dependence
of the decay rate of the angular momentum on the ellipticity of the trapping
potential and the interaction strength. The results are in general agreement
with the theoretically expected behavior for a Boltzmann gas.

6.1 Introduction

The dynamics of an ultracold quantum gas is an important source of information
on the physical nature of the system. A particularly interesting situation is an
atomic Fermi gas in the vicinity of a Feshbach resonance [Ing08, Gio08]. The

†The author of the present thesis developed the experimental procedure, performed the
measurements and made the data analysis for this publication. Thereby he was supported
by E.R.S.G. and C.K..
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Feshbach resonance allows us to tune the two-body interaction and thus to
control the coupling between the atoms. It connects a molecular Bose-Einstein
condensate (BEC) with a Bardeen-Cooper-Schrieffer (BCS) superfluid. In the
crossover region between these two limiting cases, the center of the Feshbach
resonance is of special interest. Here the unitarity-limited interactions lead to
universal behavior of the Fermi gas.

The strong two-body interactions close to the Feshbach resonance lead to
very low viscosity and hydrodynamic behavior in the normal phase, similar to
the properties of a superfluid [Cla07, Wri07]. The coexistence of normal and su-
perfluid hydrodynamic behavior is a special property of the strongly interacting
Fermi gas, which stands in contrast to ultracold Bose gases, where deep hydro-
dynamic behavior is usually restricted to the superfluid condensate fraction. The
low-viscosity hydrodynamic behavior leads to a long lifetime of collective motion
in the system. Using collective modes the dynamics has been investigated in a
broad range of temperatures and interaction strengths in the crossover region
[Cla07, Wri07, Bar04a, Kin04a, Kin04b, Kin05a, Alt07b, Alt07c, Rie08], includ-
ing the hydrodynamic regime in the normal phase. Another important collective
motion is the rotation of the gas, which is of particular interest in relation to
superfluidity [Zwi05a].

In this Article, we study the lifetime of the angular momentum of a rotating
strongly interacting Fermi gas. We determine the angular momentum using the
precession of the radial quadrupole mode. This method is well established to
study the angular momentum in experiments with BEC [Che00, Hal01a, Lea02].
We observe that the unique hydrodynamic behavior of the strongly interacting
Fermi gas leads to particularly long lifetimes of the angular momentum. We per-
form a quantitative analysis of the dissipation of the angular momentum caused
by the trap anisotropy for a gas in the unitarity limit. The measurements show
general agreement with the expected behavior for a Boltzmann gas [GO00]. As
shown in a previous study comparing experiment and theory [Rie08], a Boltz-
mann gas describes the behavior of a gas in the normal state with unitarity-
limited interactions reasonably well. Finally we study the dependence of the
lifetime on the interaction strength of the gas in the crossover region between
the BEC and BCS regime.

6.2 Experimental procedure

To realize an ultracold strongly interacting Fermi gas we trap and cool an equal
mixture of 6Li atoms in the lowest two atomic states as described in our previous
work [Joc03a, Alt07c]. We control the interparticle interaction by changing the
external magnetic field in the vicinity of a broad Feshbach resonance centered at
834 G [Bar05b]. The atoms are held by an optical dipole trap using a red-detuned
single focused laser beam and an additional magnetic trap along the beam; this
magnetic confinement dominates over the optical confinement along the beam
under the conditions of the present experiments. The resulting trap provides
weak confinement along the beam (z axis) and stronger transverse confinement
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(x-y plane), leading to a cigar-shaped cloud. The trap is well approximated by
a harmonic potential with trap frequencies ωx ≈ ωy ≈ 2π × 800 Hz and ωz =
2π × 25 Hz. The trap, in general, also has a small transverse ellipticity, which
can be controlled during the experiments. We define an average transverse trap
frequency as ωr =

√
ωxωy. The Fermi energy of the noninteracting gas is given by

EF = ~(3Nωxωyωz)
1/3 = ~2k2

F /2M where N = 5×105 is the total atom number,
M is the atomic mass, and kF is the Fermi wave number. The corresponding
Fermi temperature is TF = EF /k = 1.3 µK, with k as the Boltzmann constant.
The interaction strength is characterized by the dimensionless parameter 1/kF a,
where a is the atomic s-wave scattering length.

To dynamically control the shape of the trapping potential in the transverse
plane, we use a rapid spatial modulation of the trapping laser beam by two
acousto-optical deflectors, which allows us to create time-averaged trapping po-
tentials [Alt07c]. The control over the potential shape has two different applica-
tions for the measurements. As a first application we use it to adjust the static
ellipticity ε = (ω2

x−ω2
y)/(ω

2
x +ω2

y) of the trap in the x-y plane. This allows us to
compensate for residual ellipticity of the trapping potential, i.e., of the trapping
laser beam, and also to induce a well defined ellipticity. The second application
is the creation of a rotating elliptic potential with a constant ellipticity ε′ 1. This
is needed to spin up the gas. Both the static ellipticity in the x-y plane and
the rotating elliptic potential can be controlled independently. To determine the
ellipticity we measure the frequency of the sloshing mode along the two princi-
pal axes of the elliptic potential. This allows controlling the ellipticity with an
accuracy down to typically 0.005.

To measure the angular momentum of the cloud, we exploit the fact that
collective excitation modes are sensitive to the rotation of the cloud. Here
we use the precession of the radial quadrupole mode to determine the angular
momentum of the rotating cloud; see Fig. 6.1. This method works under the
general condition that the gas behaves hydrodynamically [Che03]. In our case
of a strongly interacting Fermi gas, this method probes both the superfluid and
the classically hydrodynamic part and does not distinguish between these two
components. For the case of atomic BEC, the precession has been well studied
in theory [Sin97, Dod97, Svi98, Zam98] and used in experiments to determine
the angular momentum of the BEC [Che00, Hal01a, Lea02]. For an atomic BEC
the non-condensed part is usually collisionless and does not contribute to the
mode precession.

The radial quadrupole mode consists of two collective excitations with angular
quantum numbers m = +2 and m = −2 and frequencies ω+ and ω−, respectively.
These two excitations correspond to an elliptic deformation of the cloud rotating
in opposite directions. The superposition of the excitations results in the radial
quadrupole mode. For a gas at rest the two excitations are degenerate, while
for a gas carrying angular momentum the frequencies are different, which causes
a precession of the mode, see Fig. 6.1. The mode precesses with a frequency

1ε′ = (ω′2x − ω′2y )/(ω′2x + ω′2y ), where ω′x and ω′y are the trap frequencies in the frame of the
rotating potential.
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Fig. 6.1: Oscillation of the cloud after excitation of the radial quadrupole mode.
For a rotating hydrodynamic gas the principal axes of the quadrupole mode
oscillation precess with a frequency determined by the angular momentum of
the gas. To follow the precession we measure the angle of the long axis of the
cloud. Note that every half oscillation period this angle changes by π/2 because
of the mode oscillation; see also Fig. 6.2. The oscillation of the cloud shape is
determined by measuring the widths along the short (WS) and the long axis
(WL) of the cloud.

Ωφ = (ω+ − ω−)/4. The angular momentum itself can be calculated from the
precession frequency [Zam98] using

Ωφ = Lz/(2Mr2
rms). (6.1)

Here Lz is the average angular momentum per atom and r2
rms is the mean value

of x2 + y2 of the density distribution2.
To excite the quadrupole mode we switch on an elliptic potential for 50 µs;

this short elliptic deformation does not affect the angular momentum of the gas.
For the excitation we make sure that ωr does not change. This ensures that no
compression mode is excited and only an equal superposition of the m = ±2
modes is created [Alt07c].

To follow the quadrupole oscillation we determine the angle of the long axis,
φ, and the difference of the widths along the principle axes of the cloud, ∆W =
WL−WS, after a variable wait time in the trap; see Fig. 6.1. Therefore we fit a
zero-temperature two-dimensional Thomas-Fermi profile to absorption images3.

2We determine rrms at unitarity from the trap parameters using EF = 2Mω2
rr2

rms

√
1 + β

where we used the universal scaling parameter β = −0.56 [Gio08]. Note that this underes-
timates rrms by a few percent because it does not take into account the finite temperature
and the rotation of the gas. This does not effect the measurement of the lifetime of rotation
as this depends on the relative change of Lz.

3For the parameters used in the experiment a zero temperature Thomas-Fermi profile fits
the density distribution reasonably well.
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Fig. 6.2: Evolution of the quadrupole mode in a rotating Fermi gas in the uni-
tarity limit. The upper panel shows the precession of the principal axes of the
mode. The experimental data are shown by the dots. The solid line represents
a fit according to Eq. 6.2. The dashed lines correspond to the idealized pre-
cession of the angle when there is no damping present in the mode. Whenever
the oscillation of the difference in widths ∆W 2/W 2

0 (lower panel) has a local
maximum the observed precession angle coincides with the idealized precession.
The parameter W0 is the average width of the cloud. The finite value of φ at
zero wait time results from the precession of the cloud during expansion. Here
Lz = 1.7~ and T/TF ≈ 0.2.

We also keep the angle of the long axis a free fit parameter. The width of the
cloud is defined as twice the Thomas-Fermi radius.

To resolve the density distribution in the x-y plane, we let the cloud expand
for 0.8 ms before taking the image. The expansion does not only increase the
width of the cloud but also leads to an increase in the precession angle as a
consequence of the angular momentum. A quantitative analysis of the small
contribution to the total precession angle that results from the expansion is
given in Appendix B.

Figure 6.2 shows the evolution of the precessing quadrupole mode. The upper
part shows the precession angle. The finite value of φ at zero wait time results
from the expansion. The periodic jumps of the precession angle reflect the alter-
nation between the long and the short axis while the quadrupole mode evolves.
As the precession proceeds, these jumps become more and more smooth. This is
caused by stronger damping of the m = −2 excitation compared to the m = +2
excitation. Similar behavior has been observed in Ref. [Bre03] for the case of
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a BEC. There the authors discussed two possible mechanisms where the differ-
ence in damping is due to either a rotating thermal cloud [Wil02] or Kelvin mode
excitations [Che03]. From our measurements we cannot discriminate between
these two mechanisms.

To fit the observed precession of the quadrupole mode, we use the function
given in Appendix A. We find very good agreement between the data and the
expected behavior. For the data set shown in Fig. 6.2 the angular momentum
is 1.7~. The average damping rate is (Γ− + Γ+)/2 = (460 ± 30) s−1, while
the difference in the damping rate of the m = −2 compared to the m = +2
excitation is Γ− − Γ+ = (80± 40) s−1.

We find that a simplified procedure can be used to determine the angular
momentum from a single measurement, instead of fitting the whole precession
curve. If the measurement is taken at a time when ∆W 2 has a local maximum,
the precession angle φ is independent of the distortion caused by the difference
in the damping rates between the two excitations; see Fig. 6.2. This allows us
to determine the difference ω+ − ω− = 4 φ/∆t and therefore to determine Lz

with a single measurement. The duration ∆t is the sum of the wait time in the
trap and an effective precession time te, which accounts for the precession of
the quadrupole mode during expansion as discussed in Appendix B. Depending
on the damping of the mode oscillation, we measure the precession angle at the
first or second maximum4 of ∆W 2.

To determine the temperature of the gas in the unitarity limit, we first adia-
batically change the magnetic field to 1132 G 5, where 1/kF a ≈ −1, to reduce the
effect of interactions on the density distribution [Luo07]. Under this condition,
for T > 0.2TF , the interaction effect on the density distribution is sufficiently
weak to treat the gas as a noninteracting one and to determine the temperature
from time-of-flight images. We fit the density distribution after 2ms release
from the trap to a finite-temperature Thomas-Fermi profile. The temperature
measured at 1132 G is converted to the temperature in the unitarity limit un-
der the assumption that the conversion takes place isentropically, following the
approach of Ref. [Che05a].

6.3 Spinning up the gas

To spin up the gas we introduce a rotating anisotropy into the initially round
trap in the x-y plane. More specifically, we suddenly switch to a rotating elliptic
trap potential with a rotation frequency Ωt and ellipticity ε′ = 0.03, rotate for
a time trot on the order of 100ms, and then ramp down the ellipticity in 50 ms
while the trap is still rotating.

In the case of hydrodynamic behavior of the gas this spinning up method is

4Note that the frequency of quadrupole mode oscillation ωq depends on the rotation frequency
of the gas via ω2

q = 2ω2
r − Ω2. This leads to a tiny shift of the maxima of ∆W 2 but does

not affect our measurement of Lz within our experimental uncertainty.
5This is the largest magnetic field where absorption images can be taken with our current

experimental setup.
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Fig. 6.3: The angular momentum Lz as a function of the rotation frequency Ωt

of the elliptic trap. Here we spin up the gas for trot = 60 ms. The temperature
is T/TF ≈ 0.2. The gas is in the unitarity limit.

resonantly enhanced in a certain range of rotation frequencies; see Fig. 7.3. The
reason for this behavior is the resonant excitation of quadrupolar flow which
leads to a dynamic instability when Ωt is close to half the oscillation frequency
of the radial quadrupole mode ωq/2 = 0.71ωr. This effect was used to nucleate
vortices in a BEC [Mad00] and was further studied in Refs. [Mad01, Hod02]. A
signature of the resonant excitation is a strong elliptic deformation of the cloud
shape which exceeds the ellipticity of the trap ε′ during the spin-up process.
We clearly see this effect when we spin up the gas. We also find that the
rotation frequency where Lz starts to increase strongly depends on ε′ and trot in
a similar way as it was observed in Refs. [Mad01, Hod02]. Note that we cannot
draw any conclusion concerning superfluidity from the resonant behavior of Lz

in Fig. 7.3 because it is only a consequence of hydrodynamic behavior and the
strongly interacting gas is hydrodynamic both below and above Tc. In fact, for
temperatures clearly above Tc we a find similar behavior for Lz as a function of
Ωt.

For an atomic BEC, Lz was found to first increase abruptly from 0 to 1~ with
Ωt, caused by the appearance of a centered vortex [Che00]. As the formation of
pairs is necessary for superfluidity in the BEC-BCS crossover regime, the angular
momentum per atom of a single vortex in the center of the cloud amounts to
Lz = ~/2. We do not observe such an abrupt increase in Lz. Nevertheless this
does not exclude that vortices are created during our spin-up process; the abrupt
change in Lz is not a necessary consequence of the creation of vortices as the



72 LIFETIME OF ANGULAR MOMENTUM IN A ROTATING GAS

angular momentum of a vortex depends on its position in an inhomogeneous gas
[Che00]. Furthermore our measurement of Lz cannot distinguish between the
angular momentum carried by the superfluid and the normal part of the cloud.
Also, we cannot directly observe vortices in our absorption images; we believe
that the reason is the very elongated cloud which strongly decreases the contrast
of the vortex core in the absorption images.

During our spin-up process we observe a significant heating of the gas de-
pending on the rotation frequency and the rotation time. We keep these two
parameters as small as possible. We find that a rotation frequency of Ωt/ωr = 0.6
and trot = 200 ms lead to an angular momentum of about Lz = 2~. This is suffi-
cient to perform the measurements, and at the same time does only moderately
increase the temperature.

We determine the temperature of the gas after the spin-up process. To avoid
complications in the temperature measurement, we wait until the rotation has
completely decayed. To keep this wait time short, on the order of 100 ms, we
speed up the decay by increasing the ellipticity of the trap; see discussion below.
Note that the low initial angular momentum used in the experiments, always
staying below 3~, does not lead to a significant increase in the temperature when
the rotation energy is completely converted into heat6.

6.4 Lifetime of the angular momentum

In an elliptic trap the angular momentum is not a conserved quantity and hence
can decay. The dissipation of Lz is due to the friction of the gas caused by
the trap anisotropy. Here we investigate the dependence of the decay of Lz on
the static ellipticity for the case of unitarity-limited interactions. We compare
our experimental results to the predicted behavior for a rotating Boltzmann gas
[GO00]. Finally we study the dependence of the decay rate on the interaction
strength in the BEC-BCS crossover regime.

The fact that the gas consists of two different components, the normal and the
superfluid part, leads in general to a complex behavior for the decay of Lz. For
example, in the case of a BEC an exponential decay is related to the corotation
of the thermal cloud with the condensate [Zhu01, AS02]. When the thermal
cloud is not rotating, theoretical [Zhu01] and experimental [Mad00] studies show
nonexponetial behavior. For a gas completely in the hydrodynamic regime it is
expected that the decrease in Lz has an exponential form [GO00].

To measure the decay rate of the angular momentum, we use the following
procedure. After spinning up the gas as discussed in Sec. 6.3, we slowly increase
the static ellipticity within 10 ms, wait for a certain hold time to let the angular
momentum partially decay, and then we remove the ellipticity again within

6To estimate the increase of the temperature through the decay of the rotation we assume
that the rotation energy is completely converted into heat. In the experiments Lz is well
below 3~ which leads to a relative temperature increase of ∆T/T < 0.02 in the relevant
temperature range. This is clearly below the uncertainty of our temperature measurement.
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Fig. 6.4: Decay of the angular momentum Lz for a gas in the unitarity limit.
The temperature is T/TF = 0.22(3). We fit an exponential decay behavior
(solid lines) to the experimental data points. For low ellipticity ε = 0.009 (open
dots) the lifetime is 1.4 s, while at higher ellipticity ε = 0.1 (filled dots) the
lifetime is only 0.14 s. To better see the difference of the lifetime for the two
ellipticities we normalized Lz by its initial value L0. For the lower ellipticity
L0 = 2.2~ and for the higher ellipticity 1.6~.

10 ms. Finally we excite the radial quadrupole mode and observe the precession
to determine Lz using the simplified procedure discussed earlier.

In Fig. 6.4 we show two examples for the decay of Lz. We find that the
decay of the angular momentum perfectly fits an exponential behavior for all
the static ellipticities, temperatures, and interaction strengths we used. For the
lowest temperatures obtained, the lifetime for a gas in the unitarity limit goes up
to 1.4 s, presumably limited by a residual anisotropy of the trap. This lifetime is
by more than a factor of thousand larger than the radial trap oscillation period.
Furthermore the lifetime of the angular momentum is much larger than the
lifetime of collective excitation modes. For example, the lifetime of the radial
quadrupole mode under the same conditions is only 2 ms. A larger ellipticity of
the trap significantly decreases the lifetime of Lz.

In the following we investigate quantitatively the dependence of the decay rate
of the angular momentum, λ, on ellipticity and temperature. The experimental
results are shown in Fig. 6.5 for two different temperatures. The full circles
display the data for a temperature of T/TF = 0.22(3) and the open circles
correspond to a temperature of T/TF = 0.35(2). For better comparison with
theory, we plot the normalized decay rate λ/ωr. A strong increase in the decay
rate with increasing ellipticity shows the important role of the trap anisotropy
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Fig. 6.5: Normalized decay rate of the angular momentum as a function of
the ellipticity for a gas in the unitarity limit. The temperatures are T/TF =
0.22(3) (filled dots) and 0.35(2) (open dots). The solid lines are fits based on
the expected behavior for a Boltzmann gas [GO00]. The inset shows the low
ellipticity region.

on the lifetime of the angular momentum. For both temperatures the qualitative
behavior of the decay rate is the same.

Next we compare the behavior of the decay rate with a theoretical prediction
for a Boltzmann gas [GO00]. As we showed recently in Ref. [Rie08], a Boltzmann
gas describes the behavior of a unitarity-limited gas in the normal state reason-
ably well. The predicted behavior of the decay rate is given by λ/ωr = 2ε2ωrτ
under the assumption that ε ¿ 1/(4ωrτ) 7, where τ is the relaxation time or
effective collision time [Rie08, Vic00, Hua87]. This condition is well fulfilled in
our system because the gas is in the hydrodynamic regime where ωrτ ¿ 1. We
compare this theoretical prediction, with τ as a free parameter, to our measure-
ments. We find ωrτ = 0.108(5) for the lower temperature and ωrτ = 0.28(1) for
the higher temperature data.

Note that at very low ellipticity, ε < 0.02´, the observed decay rate for both
temperatures lies significantly above the expected behavior; see inset of Fig. 6.5.
We attribute this to an additional anisotropy of the trap beyond simple ellip-
ticity. This weak anisotropy becomes relevant only at very low ε. Furthermore
the finite linear heating rate of the trapped gas of 0.05TF s−1 becomes important
when the decay rate is very low, which means that the lifetime of Lz is on the
order of seconds. In this case the temperature cannot be assumed to be constant
during the decay of Lz.

7For the temperatures used in the measurements 1/(4ωrτ) > 0.9 for a gas in the unitarity
limit.
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Fig. 6.6: Lifetime of the angular momentum versus interaction parameter 1/kF a
for ε = 0.09. The temperature for 1/kF a = 0 is T/TF = 0.22(3).

A recent calculation of the relaxation time τ for a Fermi gas in the unitarity
limit [Rie08] allows us to compare the experimental values for ωrτ to theory. For
T/TF = 0.35 the obtained relaxation time of ωrτ = 0.28 is clearly larger than
the calculated value of ωrτ = 0.13. This means that the theory predicts that
the gas is somewhat deeper in the hydrodynamic regime compared to the exper-
imental findings. Similar deviations showed up when the theory was compared
to the temperature dependence of collective oscillations [Rie08]. For the lower
temperature the obtained value for ωrτ cannot be compared to the calculation
of Ref. [Rie08] as the theory is restricted to higher temperatures.

Finally we study the decay of the angular momentum in the crossover region
between the BEC and BCS regimes. We measure the decay rate for different
interaction parameters 1/kF a. The experimental sequence is the same as for the
decay rate in the unitarity limit beside ramping the magnetic field to the desired
value in 100ms before increasing the ellipticity and ramping back the magnetic
field in 100 ms before exciting the quadrupole mode. Here the magnetic field is
changed slowly such that the gas is not collectively excited. The ellipticity for
all magnetic fields is set to be ε = 0.09. This sizeable value of ε ensures that a
small anisotropy beyond ellipticity does not affect the decay rate and makes the
measurement less sensitive to heating while the angular momentum damps out
as discussed above.

Figure 6.6 shows the decay rate of the angular momentum as a function of the
interaction strength. The lifetime is largest where the interaction is strongest
and accordingly the relaxation time is short. In addition to the two-body in-
teraction strength, pairing effects play an important role for the relaxation time
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[Rie08]. This might explain the higher decay rates for 1/kF a < 0, where the
pairing is weak, compared to the decay rates for 1/kF a > 0, where the atoms
are bound to molecules. Similar behavior has been seen in [Zwi05a] for the life-
time of a vortex lattice. Note that Ref. [Zwi05a] also reported a decrease in the
lifetime in a narrow region around 1/kF a = 0, which we do not observe for our
trap parameters.

In summary the hydrodynamic behavior in the crossover region leads to a very
long lifetime of Lz.

6.5 Conclusion

In this work we have presented measurements on a strongly interacting Fermi gas
carrying angular momentum. The angular momentum of the gas exhibits long
lifetimes due to the deeply hydrodynamic behavior of the normal state in such
a system. We investigated the decay rate of the angular momentum depending
on the ellipticity of the trapping potential for two different temperatures. We
find that the experimental results are in good agreement with the expected
behavior for a simple Boltzmann gas. The dependence of the decay rate of
the angular momentum on the interaction strength in the BEC-BCS crossover
region confirms that the collective motion is very stable as long as the interaction
strength is sufficiently large.

The long lifetime of the angular momentum in a rotating strongly interacting
Fermi gas allows us to further investigate rotational properties both in the su-
perfluid and normal phase in detail and with high precision. Currently we inves-
tigate the moment of inertia of the gas for different temperatures; see Chapter 7.
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6.6 Appendix A

To calculate the precession angle and the oscillation of the width we assume that
the frequency and damping rate for the m = ±2 excitations are independent.
For the damping of each excitation we assume an exponential behavior. A
superposition of the two excitations results in the fit function for the precession
angle [Bre03]

tan (2(φ− φe)) =

e−(Γ+−Γ−)t sin (ω+t + 2φ0)− sin (ω−t + 2φ0)

e−(Γ+−Γ−)t cos (ω+t + 2φ0) + cos (ω−t + 2φ0)
(6.2)

Here ω± are the frequencies, Γ± are the damping rates, φ0 is the initial angle for
the two excitations and φe is the precession angle resulting from the expansion
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of the cloud. For the oscillation of the width difference ∆W we get

∆W 2 = 4Ae−(Γ++Γ−)t cos2

(
(ω+ + ω−)

2
t + 2φ0

)

+ A(e−Γ+t − e−Γ−t)2, (6.3)

where A is the amplitude of the oscillation.

6.7 Appendix B

Here we calculate the effect of the expansion of the cloud on the precession
angle. Assuming conservation of angular momentum during the expansion, the
rotation frequency Ω of the gas decreases as the size of the cloud is increasing.
We introduce an effective precession time te which accounts for the changing
precession angle φ during expansion. The total change in the precession angle
resulting from the expansion is given by

φe =

∫ tTOF

0

φ̇(t)dt = φ̇(0)te, (6.4)

where φ̇(0) is the precession frequency when the gas is still trapped and tTOF is
the expansion time. Assuming that also during the expansion φ̇(t) = Lz/(2Mr2

rms(t))
is still valid and inserting this into Eq. 6.4 we get

te =

∫ tTOF

0

r2
rms(0)/r2

rms(t)dt. (6.5)

To calculate the relative increase of the cloud size during expansion, r2
rms(t)/r

2
rms(0),

we use the scaling approach; see e.g. [Alt07c]. For our experimental param-
eters, ωr = 800 Hz and tTOF = 0.8 ms, we get an effective precession time of
te = 0.26 ms. This is shorter than the typical precession time in the trap of
0.75 ms.
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We report on the observation of a quenched moment of inertia as a con-
sequence of superfluidity in a rotating, strongly interacting Fermi gas. To
determine the moment of inertia of the trapped, rotating gas we measure the
precession of the radial quadrupole mode. The measurements do not only
provide evidence for superfluidity in the gas but also reveal the superfluid
critical temperature.

A striking consequence of superfluidity is the reduction of the moment of
inertia (MOI) with respect to its classical, rigid-body value. This so called
quenching of the MOI is based on the fact that a superfluid cannot rotate like a
rigid body and, as a result, the apparent MOI is smaller than that of a normal,
rigid rotating system. Therefore the quenching of the MOI reveals superfluidity.
Furthermore it contains information on the superfluid density distribution of
the system. Quenching of the MOI was shown in liquid helium [Hes67] but
also serves as a firm indicator for nucleon superfluidity [Rin80]. More recent

†The author of the present thesis developed the experimental procedure, performed the
measurements and made the data analysis for this publication. Thereby he was supported
by E.R.S.G. and C.K..
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Fig. 7.1: Schematic illustration of a strongly interacting Fermi gas in a slowly
rotating trap. The classical part in the outer trap region rotates with a fre-
quency Ω, which in an equilibrium state corresponds to the rotation frequency
Ωtrap imposed by the trap. The superfluid core cannot rotate and does not
contribute to the MOI.

a nonclassical MOI in bulk solid helium was reported demonstrating superfluid
behavior [Kim04a].

In this Letter, we report on the observation of a quenched MOI in a slowly
rotating, strongly interacting Fermi gas [Ing08] and its application to study the
superfluid phase transition. The basic experimental situation is illustrated in
Fig. 7.1. Below Tc, the harmonically trapped cloud consists of a superfluid core
and a surrounding classically hydrodynamic cloud. The slightly elliptic trap
rotates with an angular velocity Ωtrap. The outer part of the cloud is subject
to friction and thus follows the trap rotation with an internal angular velocity
Ω. After a certain spin-up time, an equilibrium state of full rotation can be
reached where Ω = Ωtrap. The superfluid core cannot carry angular momentum,
supposed that vortex nucleation is avoided.

Our measurements rely on the possibility to determine the total angular mo-
mentum L of a rotating hydrodynamic cloud by detecting the precession of a
radial quadrupole excitation. This method is well established and has been
extensively used in the context of atomic Bose-Einstein condensates [Che00,
Hal01a, Lea02] and recently also with strongly interacting Fermi gases [Rie09].
The precession frequency can be written as Ωprec = L/(2Θrig) [Zam98], where
Θrig is the MOI under the assumption that the whole cloud is rotating rigidly,
including the superfluid part. Expressing the angular momentum L = ΘΩ in
terms of the apparent MOI, Θ, and the internal rotation frequency, Ω, one arrives
at the simple expression

Ωprec =
Θ

2Θrig

Ω . (7.1)

The maximum possible precession frequency of Ωprec = Ωrot/2 corresponds to a
fully rotating (Ω = Ωtrap), classically hydrodynamic gas above Tc (Θ = Θrig). A
lower precession frequency can be due to an incompletely rotating classical part,
or to the quenching of the MOI. Consequently, to observe the quenching effect
(Θ/Θrig < 1), one has to make sure that the classical component is set into full
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rotation.

To deduce superfluid behavior from the measurement of the MOI, one has
to make sure that the velocity field of the normal component of the gas has a
rigid form. If this is not the case, a reduced MOI can also be found above the
superfluid transition temperature as has been shown by [Cla07]. Superfluidity
in a strongly interacting Fermi gas has first been established by the observation
of a vortex lattice [Zwi05a].

The starting point for our experiments is a strongly interacting Fermi gas
consisting of an equal mixture of 6Li atoms in the lowest two atomic states.
We cool the gas until it is far in the degenerate regime using the techniques
described in our previous work [Joc03a, Alt07c]. A broad Feshbach resonance
centered at 834 G [Bar05b] allows us to tune the interaction strength. If not
otherwise stated the measurements presented in this paper are performed at the
center of the Feshbach resonance where the Fermi gas is unitarity-limited and
therefore acquires universal properties [Gio08].

The atoms are confined in a combination of an optical dipole trap using a red-
detuned, single focused laser beam and a magnetic trap. The optical dipole trap
creates strong confinement perpendicular to the laser beam (x-y plane). The
weaker confinement along the beam (z-direction) is dominated by the magnetic
trap under the conditions of the present experiment. For the trap parameters
used, the trap is well approximated by a harmonic potential with trap frequencies
ωx = ωy ≈ 2π × 680Hz and ωz = 2π × 24 Hz, leading to a cigar-shaped cloud.
The Fermi energy of the noninteracting gas is given by EF = ~(3Nωxωyωz)

1/3

where N = 6 × 105 is the total atom number. The Fermi temperature is TF =
EF /k = 1.3 µK, with k the Boltzmann constant.

To set the gas into rotation, with the rotation axis in z-direction, we use
a rotating elliptic potential. To create this potential we employ a scanning
system for the trapping laser beam which creates a time averaged optical dipole
potential in the x-y plane [Alt07c]. Recently we successfully used this technique
to spin up the strongly interacting Fermi gas [Rie09]. In contrast to the previous
experiment, here we use a lower rotation frequency of Ωtrap = 0.3 ωx and a
ellipticity of ε′ = 0.1 for our rotating elliptic potential1. The low value of Ωtrap

avoids a resonant process which can lead to vortex creation2.

In addition we use the scanning system to compensate residual ellipticity of
the trapping laser beam to obtain an almost perfect cylindrical symmetry of the
trapping potential. This leads to a very long lifetime of the rotation of the gas
of about 1 s [Rie09], large enough to be able to perform the measurements on

1ε′ = (ω′2x − ω′2y )/(ω′2x + ω′2y ), where ω′x and ω′y are the trapfrequencies in the frame of the
rotating potential.

2As it was shown in Refs. [Mad01, Hod02] vortices enter the gas via a resonant process which
occurs when the rotation frequency of the elliptic potential is close to a critical frequency
of 0.71ωx. To verify that no vortices are created via this process, we make use of the fact
that during the resonant process the aspect ratio of the cloud exceeds by far the aspect
ratio of the rotating potential [Rie09]. For the parameters of the current spin-up we find
that the aspect ratio of the cloud stays constant and consequently never exceeds the aspect
ratio of the rotating potential.
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the MOI.
To determine the MOI, we excite the radial quadrupole mode and measure the

precession of the mode. The excitation scheme for the mode and the procedure
to determine Ωprec are given in Ref. [Rie09]. To determine the MOI from the
measurement of Ωprec we have to distinguish between the effect of Ω and Θ/Θrig

on Ωprec; see Eq. 7.1. This is possible because, on the one hand, Ω slowly
increases when we spin up the gas until it saturates at its maximum value,
which is set by Ωtrap. On the other hand Θ/Θrig only depends on temperature.
Therefore we can determine Θ/Θrig after spinning the gas until Ω saturates.

To determine the temperature we follow the procedure described in Ref. [Rie09].
In brief, we determine the temperature of the gas after the spin-up process and
after an adiabatic change of the magnetic field to 1132 G where the gas can
be treated as a noninteracting one3. Different to the procedure described in
Ref. [Rie09], here we give the temperature for the noninteracting gas Ti and
do not convert to the temperature of a unitarity-limited gas, unless otherwise
noted. The statistical uncertainty of the temperature measurement is about 5%
for the relevant temperature range of the measurements.

The experimental sequence to measure the MOI for different temperatures
is shown in Fig. 7.2. For the measurement to work it is important that the
temperature is constant after spinning up the gas for a certain time trot as Θ/Θrig

depends on temperature. But during the spin up we find that the temperature
of the gas increase with a constant heating rate of about Ṫi/TF = 0.13 s−1. To
overcome this problem we preheat the gas before spinning it up such that the
temperature is constant after spinning the gas for different trot.

The heating prior to spinning up the gas is again done by spinning the gas for
a certain time. It takes advantage of the constant heating rate when we spin the
gas. Furthermore we use the same parameters as for the main spin up process so
we get the same heating rate. Before we start the actual spin-up we damp out
the rotation in the gas. Damping out the rotation does only lead to a negligible
increase of the temperature [Rie09]. To obtain a constant temperature after the
spin-up, the rotation time to heat the gas theat is chosen such that the total
rotation time ttot = theat + trot is constant. To achieve different temperatures we
simply change ttot. From the constant heating rate during rotation we get an
increase of Ti/TF of about 0.026 for an increase of ttot by 0.2 s. Note that the
maximum value of trot is limited by ttot and therefore Ωprec might not saturate
when ttot is too small.

To check that the temperature for different ttot is indeed constant we plot the
average width of the cloud in the inset of Fig. 7.2. Note that if the gas has its
maximum rotation frequency of 2π×200 Hz the width of the cloud is 1% smaller
compared to the nonrotating case4.

3This is the largest magnetic field where absorption images can be taken with our current
experimental setup.

4The density of the rotating gas is described by a Thomas-Fermi profile with the centrifugal
term added to the trapping potential. The centrifugal term leads to an increased width
of the trapped gas compared to a nonrotating gas. On the other hand this decreases the
expansion velocity leading to a small decrease of the cloud size after expansion for our
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Fig. 7.2: The upper part, A, shows the spin up procedure leading to a constant
temperature after spinning up the gas for different time trot. On the graph the
ellipticity of the potential is drawn as a function of time. The gray bars indicate
when the potential is rotating. To turn on the rotating potential adiabatically
the ellipticity is increased and decreased in 50 ms. In the first part of the
sequence we heat up the gas. Therefore we first spin the gas for a time theat and
afterwards damp out the rotation of the gas by turning of the rotation of the
potential but keeping the ellipticity for 200ms. To increase the damping rate
of the rotation we increase the magnetic field to 920G [Rie09] in 110ms and
turn it back to the position of the Feshbach resonance in the same time before
we start with the actual spin up. The times theat and trot do not include the
time when we increase and decrease the ellipticity. The lower part, B, shows
the precession frequency of the quadrupole mode as a function of trot using the
experimental sequence shown in A. The different symbols correspond to ttot of
0.2 s (open squares), 0.4 s (filled squares), 0.6 s (open circles), 0.8 s (filled circle).
An increase of ttot by 0.2 s corresponds to a temperature increase of 0.26TF . The
lines fit the increase in Ωprec. For lower temperature Ωprec saturates at a lower
value caused by the quenching of the moment of inertia due to superfluidity in
the gas. The inset shows the average width of the cloud in the x-y plane. The
constant width proofs that the temperature is indeed constant for different trot.
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The experimental results for the measurement of the MOI for a strongly in-
teracting Fermi gas at unitarity are shown in Fig. 7.2. The different symbols
show Ωprec as a function of trot for different ttot. Each data point shown in the
Figures is the average over three or more measurements. For the relatively high
temperatures when ttot = 0.6 s and 0.8 s the precession frequency saturates at
almost the same value. We attribute this to the fact that the gas is in the
normal regime or contains only a very small superfluid component. Thus the
corresponding value of Θ/Θrig is about one. For ttot = 0.4 s the precession fre-
quency clearly saturates at a lower value which corresponds to Θ/Θrig = 0.87
and hence the MOI is quenched. For the lowest temperature, when ttot = 0.2 s,
the precession frequency hardly saturates as ttot is to short to spin up the gas
completely. Nevertheless the data suggest that Θ/Θrig = 0.73.

When Θ/Θrig ≈ 1, the value of Ωprec is slightly lower than Ωtrap/2 although
the gas is in the normal regime. This can be explained by friction of the rotating
gas caused by a small trap anisotropy [Rie09]. This reduces the maximum value
of Ω during the spin-up and leads to a damping of Ω by about 10% after the
spin-up before the quadrupole mode is excited. Note that this damping cannot
lead to the observed decrease of the saturation value of Ωprec with temperature
as the damping rate is smaller at lower temperature [Rie09].

One assumption we made so far in our interpretation is that the superfluid
part of the gas does not carry angular momentum. Nevertheless, this could
be possible if the superfluid contains quantized vortices, which we cannot com-
pletely exclude. Although we spin up the gas very carefully, vortices could be
created via the rotating normal part of the cloud [Hal01b]. These vortices can
lead to an increase of the measured precession frequency but as the signature
of quenching is a decrease of the maximum precession frequency, they can only
quantitatively distort the measurement of the MOI. Note that we cannot directly
see vortices in our absorption images [Rie09].

In the following measurement we determine the critical temperature for su-
perfluidity based on the quenching of the MOI. The idea of the Tc measurement
is to determine Θ/Θrig as a function of temperature and to identify the tem-
perature where Θ/Θrig reaches one. As in the previous measurement we extract
Θ/Θrig from the precession frequency of the quadrupole mode.

Here we simply spin the gas and determine Ωprec after different rotation time.
To determine the MOI it is again important that Ω is saturated. But while we
spin the gas also the temperature and therefore Θ/Θrig increases. This means
that the increase in Ωprec can be due to an increase in Ω as well as an increase
in Θ/Θrig. Nevertheless it is possible to distinguish between the two effects
when the change in Ω takes place on a much shorter timescale compared to the
increase in Θ/Θrig while we rotate the gas. In this case the increase in Ωprec

is dominantly caused by Θ/Θrig after rotating the gas for a long time as Ω is
already saturated then.

In the experiment, Fig. 7.3, we find that after a rotation time of about 850 ms
the precession frequency saturates, meaning that both Θ/Θrig and Ω do not

experimental parameters.
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Fig. 7.3: The precession frequency of the quadrupole mode as a function of
temperature and rotation time. For temperatures above Ti/TF = 0.15 the
increase of Ωprec is dominated by Θ/Θrig which allows to determine Tc from
the point where Ωprec saturates (see main text). The solid line fits the data for
temperatures above T/TF = 0.15. It first increase linearly and stays constant
afterwards. This is the expected behavior of Θ/Θrig for a gas in the BCS
phase [Far00, Urb03] which is shown in the inset. Here the slope of Θ/Θrig

suddenly changes at Tc. The star marks Tc. The horizontal errorbar shows the
uncertainty of the temperature measurement. If Θ/Θrig approaches one very
slowly, as for a BEC, the star marks the lower limit for Tc.

increase further. Note that Ωprec saturates again slightly below Ωtrap/2 due to
damping of Ω. Next we check if close to the temperature where Ωprec saturates,
the increase in Θ/Θrig dominates the increase in Ωprec. Therefore we repeat the
measurement, but this time we start to spin the gas at the temperature which
corresponds to 850ms of rotation in the previous measurement. As Θ/Θrig is
already constant at that temperature this measurement reveals the time needed
to spin up the gas. We find a spin up time on the order of 100 ms. For lower
temperatures the spin up time is expected to be larger [GO00]. This means that
for very short rotation times we cannot extract Θ/Θrig. Therefore Fig. 7.3 can
only reveal Θ/Θrig for temperatures close to the point where Ωprec saturates and
above.

To set a limit to the region where the increase of Θ/Θrig is the dominating
source for the increase in Ωprec, we compare the data to the measurement of
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Θ/Θrig shown in Fig. 7.2. Therefore we first determine the increase of Θ/Θrig

with temperature from the data shown in figure Fig. 7.2. Using the lowest three
temperatures we determine a linear increase of Θ/Θrig with temperature of
4.2(5)TF /Ti. If Θ/Θrig is the dominating source for the increase of Ωprec in
Fig. 7.3 we should find the same increase of Θ/Θrig there. Therefore we fit the
solid line shown in Fig. 7.3 to the data points with Ti/TF > 0.15. There Ωprec

increases almost linearly before it stays constant. The increase of Θ/Θrig with
temperature is 3.5(4)TF /Ti and agrees with the previous measurement. This
makes us confident that for Ti/TF > 0.15 the data shown in Fig. 7.3 reveals the
change in Θ/Θrig.

Finally we determine Tc from the point where Ωprec saturates. Therefore we
consider two different models for the temperature dependence of Θ/Θrig. First
we assume a linear increase of the MOI which stops right at Tc. Very similar be-
havior of Θ/Θrig is expected for a gas in the BCS phase [Far00, Urb03]; see inset
of Fig. 7.3. The corresponding fit function is shown as the solid line. The star
marks the critical temperature of Ti/TF = 0.195(14), where the main contribu-
tion for the uncertainty stems from the temperature measurement. Converting
this temperature valid for the noninteracting gas to the actual temperature in
the unitarity limit leads to 0.245 TF following the theory from Ref. [Che05a] and
0.20 TF using the conversion given in Ref. [Luo09]. The obtained value for Tc is
close to previous experimental results [Reg04, Kin05b, Luo07, Ina08] and theory
predictions [Gio08, Hau08]. Second we assume that Θ/Θrig approaches one very
slowly as it is the case for a ideal Bose gas [Str96b]; see inset of Fig. 7.3. If this
is the case it is not possible to determine Tc without the exact knowledge on
how the MOI behaves as function of the temperature. In this case the value for
Tc determined above serves as a lower limit.

In conclusion we showed quenching of the moment of inertia of a strongly
interacting Fermi gas, which is a direct consequence of superfluidity. Further-
more we determined Tc from the point where the moment of inertia reaches its
classical value.

We acknowledge support by the Austrian Science Fund (FWF) within SFB
15 (project part 21) and SFB 40 (project part 4).



CHAPTER 8

Outlook

Second sound

An interesting dynamic effect in a superfluid gas is the appearance of second
sound [Lan41, Kha65]. Second sound is theoretically predicted by the two-fluid
hydrodynamic equations, first derived by Landau. In contrast to a density wave,
second sound shows up as a temperature modulation of a gas containing both a
superfluid and normal part. In superfluid 4He Peshkov was the first to excite and
measure the speed of second sound by producing a local heat pulse [Pes46]. A
first experiment that studied second sound in ultracold gases has been performed
in a dilute Bose gas [SK98]. The rather weak interactions in such a system
makes a systematic investigation of second sound rather difficult. In particular
hydrodynamic behavior of the normal part of the gas and sufficiently strong
interactions between the superfluid and normal part cannot be achieved easily.
In a strongly interacting gas both of these conditions are naturally satisfied
making it an ideal candidate to investigate second sound. Nevertheless the
excitation and detection of second sound in an ultracold gas is a challenging task.
In a recent article [Tay09] the coupling between collective modes and entropy
oscillations was studied theoretically revealing a promising way of exciting and
detecting second sound.

Interference between molecular condensates

A striking property of a superfluid quantum gas is the existence of a macroscopic
wavefunction. In dilute atomic quantum gases coherence and the existence of
a macroscopic wavefunction can be demonstrated by directly interfering two
condensates [And97]. In a recent experiment we demonstrate coherence of a
molecular BEC by observing interference fringes when overlapping two conden-
sates. Therefore we load the gas into a double well potential which is created
by our acousto-optical modulation system. The interference fringes are detected
when the two condensates overlap after release from the double well potential,
see Fig. 8.1. This experiment is a first step towards the investigation of matter
wave coherence in a strongly interacting Fermi gas. Furthermore the possibility
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Fig. 8.1: The Figure shows the expansion of two separated molecular Bose-
Einstein condensates (B = 700 G) after release from a double well potential.
During the expansion the two condensates overlap and thereby develop inter-
ference fringes. The expansion time is indicated on the right. The anisotropic
shape of the cloud mainly results from a magnetic potential that is present
during the expansion.

to determine the relative phase between two separated condensates is impor-
tant in future experiments which study the Josephson effect in the BEC-BCS
crossover regime [Spu07, Sal09].
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