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ABSTRACT

Physical systems that appear to be completely different at first glance can, under
certain conditions, exhibit the same behavior. This is the essence of the concept
of universality, which enables ultracold atoms to be employed as a versatile
model system. The unique controllability of interparticle interactions between
ultracold atoms allows one to investigate fundamental questions of universal
few-body physics also arising in various other quantum systems.
This thesis presents experimental studies of universal three- and four-body

phenomena performed in an ultracold quantum gas of cesium atoms by trap-
loss spectroscopy. By varying the magnetic field, we exploit the large tunability
of the effective two-body interaction strength resulting from broad and narrow
scattering resonances. These so-called Feshbach resonances make cesium a prime
candidate for exploring universal few-body physics.
The main part of this thesis examines the Efimov scenario, which predicts

the existence of an infinite series of universally related three-body bound states
for resonant two-body interactions. For attractive effective interactions, these
trimer states couple to the free-atom continuum or, for repulsive ones, to the
atom-dimer threshold. Both situations lead to experimentally detectable en-
hancements of the particle loss, which are referred to as tri-atomic and atom-
dimer Efimov resonances, respectively. We investigate the latter in an ultracold
sample of atoms and weakly bound dimers. These measurements yield the first
evidence of an atom-dimer Efimov resonance. We observe a slight shift of the
resonance position in comparison to what universal theory would lead us to
expect. In another experiment, the properties of the three-body parameter,
which incorporates all unknown short-range interactions in universal theories,
are studied in an atomic cesium gas. For this, three-body losses are investigated
in the vicinity of different Feshbach resonances. We observe several Efimov fea-
tures, including three tri-atomic Efimov resonances. The analysis of our findings
shows that the three-body parameter stays essentially constant for the Feshbach
resonances investigated.
Utilizing an ultracold atom-dimer sample, we observe a magnetically control-

lable exchange process. This experiment represents the first demonstration of
an elementary reaction process in the regime of universal interactions. Complete
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control is achieved by tuning the effective interaction strength.
Universal four-body processes in pure dimer and atom samples are another

focus of research covered in this thesis. A collisional study based on universal
dimers reveals a pronounced loss minimum. This phenomenon, which offers
insight into an elementary four-body process, is still not completely understood.
We extend our investigations by including non-universal dimer states and detect
several narrow loss resonances. Due to the shape of the resonances, we can
conclude that these features are induced by coupling of the dimers to tetramer
states; so far, the properties of these states remain unknown.
A recent theoretical study suggests the existence of two universal four-body

states accompanying each Efimov trimer state. To verify this study, we analyze
four-body losses in an ultracold atomic sample, thereby identifying two reso-
nances representing the first evidence for these universal four-body states. This
result is in good agreement with the expectations from theory.



ZUSAMMENFASSUNG

Physikalische Systeme, die auf den ersten Blick völlig unterschiedlich wirken,
können unter bestimmten Bedingungen das gleiche Verhalten aufweisen. Auf
dieser Eigenschaft beruht das Konzept der Universalität, welches die Verwen-
dung ultrakalter Atome als vielseitiges Modellsystem erlaubt. Die einzigartige
Kontrollmöglichkeit der interatomaren Wechselwirkungen ultrakalter Atome er-
möglicht die Untersuchung grundlegender Fragen der universellen Mehrteilchen-
physik, die auch in verschiedenen anderen Quantensystemen von Relevanz sind.
Diese Doktorarbeit präsentiert experimentelle Studien universeller Drei- und

Vierkörperphänomene, die unter Verwendung eines ultrakalten atomaren
Cäsium-Quantengases mittels “Fallen-Verlust”-Spektroskopie durchgeführt wur-
den. Durch Variation des Magnetfeldes machen wir uns die große Abstimmbar-
keit der effektiven Zweikörperwechselwirkungsstärke zunutze, die aus breiten
und schmalen Zweikörperresonanzen resultiert. Diese sogenannten Feshbach-
Resonanzen machen Cäsium zu einem erstklassigen Kandidaten für die Erfor-
schung von Mehrteilchenphysik im universellen Wechselwirkungsbereich.
Der Hauptteil dieser Arbeit behandelt das Efimov Szenario, welches die Exis-

tenz einer unendlichen Serie von universell zusammenhängenden, gebundenen
Dreikörperzuständen vorhersagt. Diese Trimerzustände koppeln für effektiv an-
ziehende Zweikörperwechselwirkungen mit dem Kontinuum freier Atome, und
für abstoßende Wechselwirkungen mit der Atom-Dimer-Schwelle. In beiden Fäl-
len kommt es zu experimentell nachweisbaren Verlustresonanzen, die dement-
sprechend als dreiatomige beziehungsweise als Atom-Dimer Efimov-Resonanzen
bezeichnet werden. Wir weisen experimentell erstmals die Existenz einer Atom-
Dimer Efimov-Resonanz unter Verwendung eines ultrakalten Atom-Dimer-
Gemisches nach. Die ermittelte Resonanzposition weicht geringfügig von jener
ab, welche laut universeller Theorie zu erwarten wäre. In einem weiteren Experi-
ment werden in einem atomaren Cäsiumgas die Eigenschaften des Dreikörperpa-
rameters studiert, der in universellen Theorien die unbekannten, kurzreichweiti-
gen Wechselwirkungen beinhaltet. Dazu untersuchen wir Dreikörperverluste in
der Nähe unterschiedlicher Feshbach-Resonanzen. Bei dieser Messung werden
einige Efimov-verwandte Phänomene entdeckt, unter anderem drei dreiatomige
Efimov-Resonanzen. Die Auswertung unserer Ergebnisse zeigt, dass der Drei-
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körperparameter für die betrachteten Streuszenarien im Wesentlichen konstant
ist.
Mit Hilfe eines ultrakalten Atom-Dimer-Gemisches studieren wir einen magne-

tisch steuerbaren Austauschprozess. Dieses Experiment stellt die erste Demons-
tration eines elementaren Reaktionsprozesses im Regime universeller Wechsel-
wirkungen dar. Die Kontrolle über diesen Vorgang wird mittels der magnetischen
Abstimmbarkeit der Wechselwirkungsstärke ausgeübt.
Ein weiterer Forschungschwerpunkt dieser Arbeit liegt auf universellen Vier-

körperprozessen in reinen Atom- beziehungsweise Dimer-Quantengasen. Die Un-
tersuchung inelastischer Zweikörperkollisionen in einem Gas schwach gebundener
Dimere enthüllt ein ausgeprägtes Verlustminimum. Dieses Phänomen, welches
Einsicht in einen elementaren Vierkörperprozess gibt, entzieht sich derzeit noch
unserem Verständnis. Eine Erweiterung dieser Studie unter Einbeziehung nicht-
universeller Dimerzustände bringt mehrere schmale Verlustresonanzen zum Vor-
schein, die auf die Kopplung mit komplexen molekularen Strukturen hinweisen.
Aufgrund der Form der Resonanzen gehen wir davon aus, dass diese durch Te-
tramerzustände verursacht werden, deren Eigenschaften noch nicht vollständig
bekannt sind.
Eine vor kurzem veröffentlichte theoretische Arbeit deutet auf die Existenz

zweier universeller Vierkörperzustände hin, die jeweils mit einem Efimov-Zustand
einhergehen. Zur Überprüfung dieses Szenarios werden Vierkörperverlustmes-
sungen in einem ultrakalten atomaren Gas durchgeführt. Wir finden dabei zwei
Resonanzen, die mit den theoretischen Erwartungen übereinstimmen und einen
ersten Beweis für die Existenz dieser universellen Vierkörperzustände darstellen.
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CHAPTER 1

INTRODUCTION

Experiments on ultracold atomic quantum gases have led to a tremendous
progress in the understanding of few- and many-body phenomena in the past
two decades. This success is closely linked to the unique degree of control of
such systems, which allows to investigate the fundamental behavior of quantum
matter under various conditions1.
The major motivation for experimental investigation of few-body physics with

ultracold atoms is related to the concept of universality. In physics, universal-
ity generally refers to a situation in which systems that are different at short
distances have identical long-distance behavior [Bra06]. Based on this concept,
ultracold atoms are an ideal model system for exploring few-body phenomena
that also appear in various fields that are, at first sight, completely different,
such as nuclear and molecular physics. Even though the typical energy regime
for experiments on ultracold atoms (peV) differs by many orders of magnitude
from the one connected to nuclear matter (MeV), both systems can be described
in the same theoretical framework within the universal regime.
In the field of few-body physics, a theoretical milestone was reached in the

early seventies by V. Efimov, who discovered several fundamental properties
of the universal quantum three-body system [Efi70]. Most intriguing was the
existence of an infinite series of universal three-body bound states, occurring in
systems of three identical bosons with resonant pair-wise interactions. These
so-called Efimov states feature several peculiar properties that are described
in detail in Sec. 1.2. V. Efimov originally proposed nuclear systems as prime
candidates for the experimental observation of Efimov states. Unfortunately, no
clear proof was found and those states remained elusive for more than 35 years.
In fall 2005, Kraemer et al. delivered the first evidence for universal Efimov
quantum states in an ultracold sample of 133Cs atoms [Kra06b]. Since then,
Efimov states have been observed in an increasing number of experiments on
ultracold quantum gases [Kra06b, Ott08, Huc09, Kno09, Zac09, Bar09, Gro09,
Pol09a, Wil09, Nak10, Gro10, Lom10a, Lom10b, Nak11, Ber11b, Fer11]. Two

1This introduction is partly based on Ref. [Fer11].
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2 INTRODUCTION

of these publications are part of this thesis; see Chapters 2 and 4.
Efimov’s fascinating three-body states are not the only universal few-body

system by far. Concerning the four-body sector, Efimov’s scenario has recently
been extended by two theoretical studies [Ham07b, Ste09], proclaiming that each
Efimov trimer is closely related to the appearance of two universal four-body
states. The first experimental evidence for these states was also obtained in
an ultracold sample of 133Cs atoms and is presented in Chapter 6 of this thesis
(see also Ref. [Fer09a]). Additional atom experiments have as well observed
indications for these four-body states [Zac09, Pol09a, Ber11b].
There are numerous phenomena in the field of few-body physics that require

additional experimental and theoretical investigation. A deeper understanding
of (universal) few-body physics would allow to bridge the gap to many-body
physics and result in a clearer view on phenomena encountered in different fields
of physics.
This thesis presents experiments performed with ultracold bosonic samples

of 133Cs atoms in order to study universal three- and four-body phenomena.
Several of these experiments can be satisfactorily explained in the framework
of universal theory. Some results deviate slightly from simple universal theory
models, indicating that a more realistic description might be necessary. Other
findings show unexpected results and open up new fields of few-body physics,
which still elude adequate understanding.
In Sec. 1.1, the basic elements of two-body scattering and the concept of two-

body universality are introduced. Sec. 1.2 describes the Efimov scenario, being
the most prominent situation for three-body universality. The extension to the
four-body sector is outlined in Sec. 1.3. In Sec. 1.4, ultracold atom experiments
focussing on universal three- and four-body physics are summarized, including
the contributions of this PhD thesis. An overview of the thesis is given in
Sec. 1.5.

1.1. Two-body scattering physics

In this section, the basic concepts of two-body scattering physics for neutral and
indistinguishable atoms are introduced, which are necessary for understanding
the universal few-body phenomena presented in this thesis.

Interaction potentials and the s-wave scattering length

The basic scattering properties are a consequence of the shape of the two-body
interaction potentials, which result from the overall effect of the exchange, spin-
dipole and van der Waals interactions. The (exponentially decreasing) short-
range exchange interaction originates from the antisymmetry of the electronic
wave function and leads to a splitting into singlet and triplet Born-Oppenheimer
potentials, as shown in Fig 1.1. The weak spin-dipole interaction results from
the interaction of the electronic spins and is modified by second-order spin-
orbit coupling [Köh06b]. On a long-range scale, the dominant contribution to
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Figure 1.1.: Singlet 1Σ+
g and triplet 3Σ+

u Born-Oppenheimer ground state
potential-energy curves for the Cs2 dimer. The exchange energy, which low-
ers (raises) the singlet (triplet) potential, is dominant for small interparticle
distances, given in the unit angstrom Å. In the long-range regime, the van der
Waals interaction ∝ R−6 describes the behavior of the potential curves. Inset: In
the asymptotic limit R → ∞, the energy curves split into three distinct hyper-
fine scattering potentials, which result from possible values of the total atomic
angular momentum F = 3, 4. The energy difference between these potential
curves is defined by the atomic hyperfine splitting. Taken from Ref. [Chi01]
with small modifications.

elastic scattering stems from the van der Waals interaction, representing the
induced dipole-dipole interaction via VvdW = −C6/R

6, with the van der Waals
coefficient C6 and the interparticle distance R. The natural length and energy
scales associated with the van der Waals interaction are the van der Waals length
RvdW and energy EvdW, which are defined as [Chi10]

RvdW =
1

2

(
mC6

~2

)1/4

and EvdW =
~2

m

1

R2
vdW

, (1.1)

with the reduced Planck constant ~ = h/(2π) and the atomic mass m. As for
neutral atoms the van der Waals interaction is the most far reaching contribution
to the interaction potential, RvdW determines the characteristic range of the
interaction rint = RvdW.
In principle, determining two-body scattering properties requires solving the

Schrödinger equation, including the interaction potentials, for an incoming plane
wave with atomic wave vector k, which relates to the relative collision energy of
the two atoms by Erel = ~2k2/m. Unfortunately, the deep scattering potentials
are usually never known with sufficient accuracy to permit precise calculations on
threshold scattering properties. Especially the fast oscillations of the scattering
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wave function, which are induced by the exchange interaction, crucially depend
on exact knowledge of the potentials. However, in most situations only the long-
range behavior is of interest, and therefore it is sufficient to know the effective
influence of the interaction potentials on the scattered wave function in the
asymptotic limit of large particle distances (R → ∞).
In the asymptotic limit, the two-body scattering process can be described for

spherical symmetric potentials as the superposition of an incoming plane wave
and an outgoing spherical wave, which are related via the scattering amplitude.
This problem is typically reformulated by expanding the in- and outgoing waves
into contributions from different angular momenta ℓ via a partial wave expansion.
To each of these partial waves, denoted by ℓ, a scattering phase shift δℓ(k)
is assigned, which describes the phase shift of the outgoing partial wave with
respect to the incoming one. If inelastic processes are present, these phase shifts
can be complex-valued with positive imaginary part [Bra06]. The centrifugal
potential ~2ℓ(ℓ+1)/(mR2) sets an energy dependent limit for the partial waves
taking part in the scattering process. For atomic collisions in the ultracold
regime, where the atomic wave vector k → 0, the phase shifts δℓ(k) approach zero
according to k2ℓ+1 [Bra06]. Therefore, elastic collisions of (indistinguishable)
bosons in the ultracold regime2 are entirely described by the s-wave phase shift
δ0(k).
For colliding atoms, the phase δ0(k) is generally a function of the momentum

~k. At sufficiently low energies, δ0(k) can be written by the so-called effective-
range expansion as [Chi10]

k cot δ0(k) = −1

a
+

1

2
r0k

2. (1.2)

The s-wave scattering length a is the main parameter for the description of
universal few-body phenomena in the ultracold regime. The effective range r0
is directly related to the long-range behavior of the van der Waals interaction
[Chi10]. In the low energy limit k → 0, it follows that k cot δ0(k) = −1/a.
For low particle momenta in the order of ~/r0, the large size of the de Broglie
wavelength λdB =

√
2π~2/(mkBT ), with kB being Boltmann’s constant and T

the temperature of the sample, prevents the atoms from resolving the internal
structure of the real interaction potential. Therefore, in the long-distance regime
the effect of this interaction potential is indistinguishable from the one resulting
from a differently shaped (model) potential which yields an equal value for a,
as, for example, an adjusted zero-range potential.
The s-wave scattering length is connected with the elastic collision cross sec-

tion σ0(k) via [Chi10]

σ0(k) =
8πa2

1 + k2a2
ka≪1−→ 8πa2 (1.3)

ka≫1−→ 8π/k2. (1.4)

2Because of exchange symmetry, only even (odd) partial waves are allowed for indistinguish-
able bosons (fermions), independent of the collision energy.
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For ka ≫ 1, elastic collisions are unitarity limited by the collision energy.
For a Bose-Einstein condensate (BEC), the s-wave scattering length defines

the mean-field energy of the system Emf = 4π~2na/m [Ket99], with the particle
density n, and thereby other properties, such as the size of the BEC.

Universal regime

The significance of the s-wave scattering length a is revealed in the universal
regime, which is entered when a is much larger than the characteristic range
of interaction. For ultracold atom collisions, this typically corresponds to a
situation where |a| ≫ r0, RvdW. In this case, the properties of the two-body
system depend only on a and not on the particular details of the interaction
potential. This independence on the short-range properties of the system is
the key characteristic of universal theories. Hence, even though systems have
distinct short-range interactions, for identical values of a the important long-
range properties are the same. This is the concept of universality.
One of the universal properties is the existence of a shallow universal bound

state for positive and large a with a binding energy Eb given as

Eb =
~2

ma2
. (1.5)

The wave function of this so-called halo dimer state extends far into the classi-
cally forbidden region, with only a small fraction being within the short-range
region [Jen04, Köh06b]; see Fig. 1.2. This state has a halo character with a mean
distance of the atoms ⟨r⟩ = a/2, which by far exceeds the classical turning point
of the interaction potential. According to Eq. (1.1), the condition a ≫ RvdW

translates to Eb ≪ EvdW.
There are many situations in real-world systems where a is indeed the largest

length scale, but does not considerably exceed the characteristic interaction
range. In this intermediate regime some of the universal properties are main-
tained by taking into account non-universal correction. For example, the binding
energy for a weakly bound system can be refined by introducing finite range cor-
rections associated with the mean scattering length ā and the so-called Feshbach
resonance parameter R∗ [Chi10],

Eb =
~2

m(a− ā+R∗)2
. (1.6)

The mean scattering length ā relates to the van der Waals length via ā =
4πRvdw/Γ(1/4)

2 = 0.955978 . . . Rvdw,
3 which corresponds to an energy scale

defined by Ē = ~2/(mā2) = 1.09422 . . . RvdW [Gri93]. The Feshbach resonance
parameter R∗ = ā/sres, with the resonance strength sres defined in Eq. (1.8)
[Pet04a]. It is quite interesting how non-universal contributions can have an
impact on universal quantities in this intermediate regime. Especially in the
three-body sector, this is a partly unsolved question.

3Here, Γ(x) refers to the gamma function.
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Figure 1.2.: Helium dimer interaction potential (dashed curve) and radial prob-
ability density (solid curve) as an example of a halo dimer state. For the shallow
bound state (dotted line), the major fraction of the wavefunction is outside the
classical turning point Rclassical = 27 a0 (dot-dashed line) at large interparticle
distances R (given on a logarithmic scale). Taken from Ref. [Köh06b] with small
modifications.

Universal two-body systems in nature

For neutral atoms, the magnitude of the s-wave scattering length is typically
in the order of RvdW. Nature, however, offers some universal systems where a
exceeds the characteristic interaction range. Generally, for atomic systems, a
changes considerably for different species as well as for different isotopes.

The 4He atom features a large positive scattering length of a ∼ 197 a0 [Gri00b],
exceeding the van der Waals length RvdW ≈ 10.2 a0. Therefore the 4He interac-
tion potential has a weakly bound universal dimer state with Eb ∼ h× 28 MHz
[Sch94, Luo93, Köh06b]; see Fig. 1.2.

One of the earliest examples of universality, originating from nuclear physics, is
the deuteron, which in the 1930s motivated theoretical approaches to exploiting
the separation of length scales [Bet35a, Bet35b]. It is a weakly bound state with
a binding energy of 2.2 MeV, which is considerably lower than the natural low-
energy scale of the interaction potential4 Eπ ∼ 21 MeV [Bra06]. For this system
the natural energy scale Eπ is related to the range of the one-pion-exchange
potential Rπ ≈ ~/(mπc) = 1.4 fm.

For neutron-neutron scattering of opposite spin states, the s-wave scattering
length a = −18.5 fm is also larger than the effective range r0 = 2.8 fm and the
range of the one-pion-exchange potential.

In principle, the scattering process of two α particles, where α stands for the

4This corresponds to the s-wave scattering length being larger than the characteristic inter-
action range.
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4He nucleus, features a large s-wave scattering length [Efi90] a ≈ 5 fm, which
exceeds the effective range r0 ≈ 2.5 fm [Bra06]. Here, the Coulomb force between
the α particles does not allow for a bound state, and shifts the ground state
energy to about 0.1 MeV above the α-α scattering threshold [Bra06]. Therefore,
the 8Be nucleus is short-lived.

Feshbach resonances

Even though several nuclear systems exist where nature provides a large s-wave
scattering length, a fixed a hinders the study of universal physics. The major
success of atomic quantum gases originates from the tunability of a via the
Feshbach resonance phenomenon. This phenomenon, arising from the coupling
of a discrete state (molecular state) to the continuum (scattering states), was
first theoretically treated by Feshbach and Fano independently of each other
[Fes58, Fes62, Fan35, Fan61, Fan05]. Feshbach described this phenomenon in
the context of nuclear physics, whereas Fano approached the problem from the
side of atomic physics.

To understand Feshbach resonances it is useful to introduce the concept of
scattering channels. In the asymptotic limit R → ∞, two atoms can be defi-
nitely specified by their internal quantum numbers, typically their atomic spin
quantum numbers. The two-body scattering (Born-Oppenheimer) potentials
which relate to these quantum numbers and the rotational quantum number are
referred to as their scattering channel. The channel in which atoms are initially
prepared with an energy E is called the entrance-channel. For bosons in the
ultracold regime, the entrance-channel is an s-wave channel, as only scattering
in the lowest partial wave (ℓ = 0) takes place. Channels can be classified by their
energy Ec in the limit R → ∞, as either closed channels with Ec > E or open
channels5, where Ec < E. The exchange and dipole-dipole interactions feature
off-diagonal elements in this channel basis, which lead to coupling of different
channels.

The most prominent way to experimentally induce a Feshbach resonance is re-
lated to the magnetic field dependent Zeeman shift, which allows to energetically
shift different channels against each other. When a molecular state belonging
to a closed channel is tuned in resonance with the atomic scattering state in
the entrance channel, a magnetic Feshbach resonance6 is induced [Chi10]7. The
coupling of the states leads to resonant interaction, which allows to magneti-
cally tune a from plus to minus infinity, with a divergence at the center of the

5Those names result from the fact that only open channels are energetically allowed for
separated atoms.

6Feshbach resonances can also be induced by means of optical [Fed96a, Fat00, The04] or
rf coupling [Moe96, Han10, Kau09] of the scattering state to a molecular state. Large
inevitable losses, which have been experimentally encountered, are the downside of these
methods.

7Contrary to a Feshbach resonance, a shape resonance is induced when the scattering state
is coupled to a metastable state behind a potential barrier of an open channel.
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Figure 1.3.: Magnetically tunable Feshbach resonance scenario in an ultracold
collision. (a) Basic entrance (black solid line) and closed-channel (red solid line)
model for a Feshbach resonance. The last bound state (black dashed line) in
the entrance channel defines the background scattering length abg. The energy
difference δE between the zero energy (grey dash-dotted line) and the closed
channel molecular bound state (red dashed line) can be magnetically tuned. In
the ultracold regime, the collision energy Erel → 0. For ultracold collisions, the
coupling of the two channels induces a Feshbach resonance when δE → 0. The
right-hand panel shows the Feshbach resonance properties. (b) s-wave scattering
length a in terms of abg and (c) binding energy Eb of the halo dimer state in
the vicinity of a magnetically tunable Feshbach resonance with width ∆. Far
out from the resonance, the energy dependence of the molecular state is related
to the magnetic moment difference ∆µ of the closed and entrance channel. The
inset shows the universal regime, where the binding energy can be appropriately
described by Eq. (1.5). A similar figure can be found in Ref. [Chi10].

resonance. This behavior is conveniently parametrized by [Chi10]

a(B) = abg

(
1− ∆

B −B0

)
, (1.7)

where B0 and ∆ are the pole and the width of the Feshbach resonance, re-
spectively, and abg is the background scattering length, which is the “natural”
scattering length of the entrance channel. This scenario is depicted in Fig 1.3.

The channel coupling mixes the closed and open channels near the center of the
resonance, and the closed-channel molecular state takes over the character of the
open channel. For 1/a → 0, this leads to a quadratic dependence of the binding
energy Eb (Eq. (1.5)) on the magnetic detuning B − B0; see Fig 1.3(c). The
strength of this mixing determines the magnetic field range for which universality
is applicable. For this, it is helpful to define the resonance strength sres according
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to [Chi10]

sres =
abg
ā

∆µ∆

Ē
, (1.8)

with the magnetic moment difference ∆µ between the open and closed channel.
This allows to classify Feshbach resonances in the limiting cases as either en-
trance channel dominated resonances with sres ≫ 1 or closed channel dominated
resonances with sres ≪ 1. For entrance channel dominated resonances, the near-
threshold scattering and bound states inherit the spin character of the entrance
channel. Thereby, the universal regime, where Eq. (1.5) is applicable, extends to
magnetic field strengths for which the detuning from the resonance pole |B−B0|
corresponds to a large fraction of the resonance width ∆. These resonances are
typically called broad resonances and are well described by Eq. (1.7). For closed
channel dominated resonances, which are called narrow resonances, the bound
state is universal only for a small fraction of ∆ near B0; the resonance has to be
modeled by a coupled-channel approach, which takes into account the properties
of both channels and their coupling [Chi10].
In the following, Feshbach resonances will be labeled according to the ro-

tational angular momentum quantum number ℓ of the molecular state in the
closed channel that induces the resonance. The common notation is used, de-
noting states with ℓ = 0, 2, 4, . . . as s, d, g, . . . [Rus29].

Cesium scattering properties

Even before the link between universal few-body physics and the benefical prop-
erties of ultracold atoms was found, the intriguing scattering properties of ce-
sium raised major interest in the physics community. Initially, the motivation
was to perform Bose-Einstein condensation (BEC) of this alkali species, which
only offers one stable isotope, the naturally existent 133Cs. First studies focused
on the magnetically trappable states, starting with the doubly polarized state
|F = 4,mF = 4⟩. Here, F and mF refer to the total atomic angular momentum
quantum number8 and its magnetic projection number. For this state, Arndt
et al. [Arn97] found a large s-wave scattering length hindering Bose-Einstein
condensation due to strong enhancement of inelastic two-body losses [Söd98].
Attempts to condense cesium in the |F = 3,mF = −3⟩ state were also in vain
for the same reason [GO98], raising the question whether condensation in the ab-
solute ground state, |F = 3,mF = 3⟩ is possible. In the absolute atomic ground
state inelastic two-body losses are energetically forbidden. However, this state
is not magnetically trappable and three-body losses, which scale as a4, could
inhibit the formation of a stable condensate.
In 2003, Bose-Einstein condensation of cesium was successfully achieved by

Weber et al. in the Innsbruck group9 [Web03b]. For this, an atom sample was
prepared in the absolute ground state |F = 3,mF = 3⟩ by means of optical
trapping. This method allowed to independently tune the magnetic fields and

8Note that F is also referred to as the hyperfine state of the atom.
9The experiments presented in this PhD thesis were performed in the same laboratory.
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adjust the s-wave scattering length during the experimental stages for optimizing
the evaporation conditions. A key feature in this experiment was the existence
of a broad Feshbach resonance, situated at -12 G (see Appendix A), which
provided a large tunability of a in the magnetic low-field region. This broad
s-wave Feshbach resonance results from the coupling to an ℓ = 0 closed channel
state.

Still, the absolute ground state is the most favorable state of cesium for per-
forming ultracold atom experiments and therefore chosen as initial state for all
experiments presented in this PhD thesis. All the ongoing discussion of cesium
refers to this state.

There are two key features making cesium a prime candidate for the obser-
vation of universal few-body phenomena. First, a weakly bound state with
Eb ∼ h × 10 kHz in the open channel gives rise to an extremely large back-
ground scattering length of about abg ∼ 2000 a0, greatly exceeding the van der
Waals length of 101 a0 [Chi04b]10. This factor leads, according to Eq. (1.8), to
large values for the resonance strength for occurring Feshbach resonances and
thereby large universal windows. Secondly, the spin-dipole interaction, incorpo-
rating the second order spin-orbit coupling interaction, are particularly strong
for heavy atoms such as cesium [Mie96, Kot00, Köh06b]. This effect enhances
the coupling to molecular states stemming from higher-order partial wave chan-
nels. For this reason, cesium features a variety of many broad, intermediate and
narrow Feshbach resonances, which create a suitable playground for the study
of few-body phenomena.

The first experimental studies of the scattering properties of cesium were
performed at Stanford University [Chi00, Chi04b]11. Intense investigations of the
near-threshold molecular structure were carried out by our group in Innsbruck
[Mar07a] up to magnetic field strengths of 60 G (see FigF.3).

Most remarkable are three broad s-wave resonances with poles near −12 G,
549 G and 787 G as shown in Fig. 1.4. The resonance positions were derived
in Refs. [Chi10, Chi04b] and Appendix F. These three resonances are strongly
entrance channel dominated with sres > 100 and thereby offer a broad universal
regime12.

A main part of this PhD work was the extension of the magnetic field sys-
tem, in order to take advantage of the broad resonances at 549 G and 787 G.
The former setup was suitable for reaching a magnetic field strength of about
150 G, allowing to perform measurement at the low-field resonance. As the
center of this resonance (-12 G) cannot be accessed with the |F = 3,mF = 3⟩
state, the s-wave scattering length was limited to a tuning range between ap-
proximately −2500 a0 (0 G) and 1600 a0 (150 G). After a major upgrade, which
is described in Appendix B, the maximum for experimentally achievable mag-
netic field strengths is increased to about 1400 G, which allows to utilize the
full tunability provided by the broad s-wave Feshbach resonance in the magnetic

10The van der Waals coefficient for cesium is C6 = 6860Eha
6
0 [Chi04b], where Eh is a hartree.

11Note that these studies were not limited to the |F = 3,mF = 3⟩ state.
12For the resonance at 787 G, sres > 1000.
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Figure 1.4.: Cesium scattering properties in the absolute atomic ground state
|F = 3,mF = 3⟩ and near threshold s-wave molecular open and closed chan-
nel bound states. (a) The interesting scattering properties of cesium result
from three broad s-wave Feshbach resonances with poles near -12 G, 549 G and
787 G, in combination with a large background scattering length originating
from a weakly bound state in the open channel. Feshbach resonances resulting
from the coupling to molecular states with ℓ > 0 are neglected in this figure.
(b) The near threshold s-wave dimer states are responsible for the broad s-wave
Feshbach resonances shown in (a). The molecular states are labeled accord-
ing to f(F1, F2), with f = |F1 + F2| and the indices (1,2) referring to the two
atoms. The background scattering length results from the weakest bound 6(3,3)
state, whereas the 6(4,4), 7(3,4) and 6(3,4) states induce the broad Feshbach
resonances.

high-field region. The experiments presented in Chapter 4 and Appendix F were
performed with the upgraded magnetic field system13. A recent experimental
study of Feshbach resonances and binding energies in the magnetic high-field re-
gion up to 1000 G is part of this thesis, presented in Appendix F. These results
will soon be published in a separate article [Ber11a].

13Bose-Einstein condensates were also created in the magnetic high-field region. The collapse
of these condensates was used to determine the positions of the zero-crossings of the broad
s-wave Feshbach resonances [Zen11].
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1.2. Universality in three-body systems

The Efimov scenario represents a solution for the quantum three-body problem
in the universal regime. This section gives an overview of this scenario and its
implications, being a main research topic of this thesis.

The Efimov effect

In 1970, Vitaly Efimov discovered the first strong evidence of universality in a
three-body system [Efi70]. He investigated theoretically the 3-body spectrum
of identical bosons with resonant pairwise interactions (|a| → ∞) that are in-
duced by short range potentials. This study brought up several astonishing and
counterintuitive predictions, the most striking of them being the existence of
an infinite series of “giant” trimer states in the resonant limit a → ±∞. This
scenario is depicted in Fig. 1.5. In the resonant limit, the binding energy of the
nth Efimov trimer state E

(n)
T relates to the consecutive trimers according to a

strict geometric scaling law [Bra06],

E
(n+1)
T

E
(n)
T

= e−2π/s0 ≈ 1

515.03
, (1.9)

where s0 ≈ 1.0062378 for identical bosons. Consequentially, there is an infi-
nite number of arbitrarily shallow Efimov states accumulating at E

(n→∞)
T → 0.

As the binding energies decrease, the size of each successively shallower Efimov
trimer increases by a factor eπ/s0 ≈ 22.7. Even though these bizarre predic-
tions were strongly debated, the Efimov effect was subsequently theoretically
confirmed shortly after its discovery [Ama71, Ama72].
The Efimov trimer states connect the domain of negative scattering length

(a < 0), where no weakly bound dimer exists, with the one of positive scattering
length (a > 0) via a = ±∞. The region of a < 0 is also referred to as the
Borromean region. This expression originates from the similarities of the trimer
states, persisting in the absence of weakly bound dimer states, to the Borromean
rings: removal of any one of the three components destroys the whole system.
In the Borromean region, the Efimov states become unbound as they cross the
tri-atomic14 zero-energy threshold. In the crossing region, three particles can
resonantly couple to an Efimov trimer in a low-energy collision (red arrows in
Fig. 1.5). The value of the s-wave scattering length at which the nth Efimov

trimer crosses the threshold is referred to as a
(n)
− . In the region of a > 0, the

Efimov states of non-Borromean character couple to the atom-dimer threshold
at a

(n)
∗ (blue arrows in Fig. 1.5). The crossing points of successive Efimov states

are determined by the geometric scaling factor as [Bra06]

a
(n+1)
−

a
(n)
−

=
a
(n+1)
∗

a
(n)
∗

= eπ/s0 ≈ 22.7. (1.10)

14Although the Efimov scenario is, due to universality, valid for all kinds of systems, we refer
only to atomic systems in this description, for reasons of simplicity.
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Figure 1.5.: Visualization of a series of universal trimer states in the Efimov
scenario. The plot shows the binding energies of the trimer states (red lines) as
a function of the inverse scattering length 1/a. The horizontal line corresponds
to the three atom threshold (A+A+A). For a > 0 a universal dimer state exists,
which defines the atom-dimer (D+A) threshold (blue line). The shaded regions
symbolize the scattering continuum for three atoms and for an atom plus a
dimer. For resonant interactions 1/a → 0, the Efimov scenario predicts an
infinite number of trimer states with an energy scaling factor of 1/515. The
trimer states connect the free atom threshold at a < 0 with the atom-dimer
threshold at a > 0 via a = ±∞. The arrows mark the positions where the
trimer becomes unbound at the atom threshold (red) at a− and the atom-dimer
threshold (blue) at a∗. The values for a−, where consecutive trimers become
unbound, are related via the universal scaling factor 22.7. Features on the
positive and negative side are connected via the universal relations given in
Eq. (1.14). Only three Efimov states are depicted in the figure, and the scaling
factor is artificially reduced from 22.7 to 2. Taken from Ref. [Fer11].

Furthermore, universality relates a
(n)
− and a

(n)
∗ by a

(n)
− = −22.7

1.06
a
(n)
∗ [Bra06]. These

relations are important cornerstones for the verification of experimentally ob-
served Efimov states.

Near the atom-dimer threshold, the Efimov trimer state can be understood as
an atom-dimer system, with a size a2AD/3 defined by the atom-dimer scattering
length aAD. Furthermore, aAD diverges as a → a∗ if effects from deeply bound
dimers are ignored. The qualitative behavior of aAD is one of the remarkable
universal results on low-energy 3-body observables derived by V. Efimov [Efi71,
Efi79]. Over the years, a quantitative derivation of aAD, parameterizing the
decay to deeply bound states by the introduction of the inelasticity parameter
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η∗, was performed, which resulted in [Sim81, Bra03, Bra06]

aAD = (1.46 + 2.15 cot[s0 ln(a/a∗) + iη∗]) a. (1.11)

Here, the index n on a∗ has been dropped, as Eq. (1.11) is independent on
the definite value of n. This follows from the geometric scaling law, which is
responsible for the periodicity of aAD. In the following, for quantities that are
independent of n due to their periodicity, this index is neglected.
Following from the discussion above, it is clear that only a finite number

of bound trimer states exists for finite a. This number is in the order of
Nb = (s0/π) ln(|a|/rint) [Bra06], thereby limiting the number of observable
trimer states for experimental systems where the tunability of a is limited.

Theoretical approaches to the three-body problem

One intuitive route to analyzing the three-body problem is by starting from a
convenient set of coordinates, the hyperspherical coordinates15 [Nie01, Bra06].
Using this description, the Schrödinger equation reduces to six independent co-
ordinates in the center of mass frame, five hyperangular variables and the hy-
perradius Rhyp. The hyperradius relates to the size of the three particle system
via R2

hyp = 1
3
(R2

12 + R2
23 + R2

31), where Rij refers to the interparticle distance of
atoms i and j. Similar to the well-known two-body problem, the essence of this
method is to treat Rhyp as a parameter and to solve the Schrödinger equation for
a fixed Rhyp. This results in Born-Oppenheimer-like three-body potential curves
that feature an R−2

hyp-dependence, with the bound states being the Efimov states.
As early as 1935, Thomas analyzed the quantum three-body problem for a

two-body potential supporting a single bound state in the zero-range limit, where
rint → 0 simultaneously with the two-body potential depth V0 → −∞ in such
a way that the energy of the two-body bound state is kept fixed [Tho35]. He
showed that such a two-body potential leads to a 3-body spectrum that is un-
bounded from below, the so-called Thomas collapse. This behavior follows from
the unphysical assumption of a zero-range potential and does not appear in real
systems. The Thomas effect is closely related to the Efimov effect [Adh88],
where rint is fixed and a → ±∞.
After the findings of Efimov, major interest arose in the universal three-body

problem [Ama71, Ama72]. In 1993, Federov et al. found a simple derivation to
solve the coordinate space Faddeev equations involved [Fad61, Fed93]. Within
the last years, several (partly) new approaches for the investigation of the uni-
versal three-body problem led to a tremendous growth of the field, including,
for example, numerically solving the Schrödinger equation with model potentials
[Sun02, D’I04, D’I05a] or treating the problem in the framework of effective field
theory [Bed99a, Bed99b]. Each approach is based on the assumption that the
effective two-body interaction is much larger than the characteristic two-body

15It is beyond the scope of this introduction to give a detailed description of the derivation of
the Efimov effect. The main aim here is to give a basic understanding of the three-body
problem. For a detailed discussion, see for example Ref. [Bra06].
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interaction range, a ≫ rint. Similar to the two-body case, this condition defines
the universal regime for three interacting particles. For neutral atoms, where
the van der Waals interaction dominates the long-range tail of the interaction
potential, this condition is typically fulfilled for a ≫ RvdW. In the derivation of
the Efimov effect, genuine three-body interactions are usually ignored in order
to simplify matters, and only pair-wise interactions are taken into account.

Limitations of universal theory - The three-body parameter

All theoretical approaches used so far are based on the possibility of simplifying
the three-body problem in the universal regime. Even though the real short-
range interaction potentials are not known with sufficient accuracy to perform ab
initio calculations, universal theory allows to solve the problem by substituting
these unknown potentials by “handier” model potentials or adequate boundary
conditions to reproduce the long-range behavior defined by a. This reflects the
big advantage of universal theories. However, there is a drawback. Though the
different theoretical approaches yield the correct scaling behavior, there remains
one free parameter, the so-called three-body parameter. It includes all effects
resulting from short-range physics, which have been ignored in simplified ap-
proaches. In dependence on the theoretical approach, there are several ways to
define this three-body parameter. Furthermore, different theoretical approaches
yield different three-body parameters, even for equal values of a. In the Efimov
scenario, this corresponds to an arbitrary shift of the “ladder” of trimer bound
state energies, which simultaneously shifts the positions of a− and a∗. In nuclear
physics, this phenomenon is well known from calculations of the triton binding
energy and referred to as the Phillips line [Phi68]. In this way, the Thomas col-
lapse can be understood as resulting from the removal of the only non-universal
length scale, rint, which would fix the three-body parameter.

Candidates for Efimov trimers in nature

Until 2006, when the first experimental evidence of an Efimov state was reported
in an ultracold atomic quantum gas of 133Cs [Kra06b], the most promising can-
didate was actually 4He [Jen04]. First, a theoretical study by Lim et al. [Lim77]
suggested that the excited trimer state of 4He is an Efimov state. Even though
this interpretation is widely accepted, the existence of this state has not yet been
confirmed experimentally [Brü05]. Some discussion arose whether the ground
state trimer of 4He, which was observed in 1994 [Sch96], could be called an Efi-
mov state [Esr96, Bra03]. According to a study by Esry et al. [Esr96] this state
does not completely fulfill the properties of an Efimov state.
Other systems where states with Efimovian character can be found are halo

nuclei [Jen04]. In particular systems with two valence nucleons, such as 18C and
20C, which both consist of a core nucleus and two valence neutrons, are possible
candidates for Efimov states [Fed94, Bra06]. The triton, consisting of one proton
and two neutrons, can, according to Refs. [Bra06, Efi81], be defined as an Efimov
state. In nuclear systems such as the 3He core, the Coulomb interaction due to
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proton-proton repulsion is not short-range, thereby complicating the theoretical
analysis [Bra06].

Although some of the trimers mentioned above might have Efimovian char-
acter, the lack of tunability of the interaction strength limits the possibility of
studying the Efimov scenario in these cases. The smoking gun for experimen-
tally verifying this scenario is based on showing that universal relations hold for
real systems. The main benefit of ultracold atom experiments is the tunability
of the interaction strength in the vicinity of a Feshbach resonance. This is the
key ingredient for the success story of ultracold atom experiments for the study
of Efimov physics. Moreover, ultracold atomic gases allow for several other ad-
justments to the system. One of them is the temperature, which is typically
between a few nK and hundreds of µK and allows to investigate Efimov states
above the scattering threshold [Yam07]. The dimensionality of atomic systems
can be changed by means of optical lattices [Blo08]. Low-dimensional systems
have highly non-trivial properties, where, for identical bosons, the Efimov effect
only appears in three dimensions [Nie01, Bra06].

Several predictions resulting from universal theory concern the situation of
general three-body systems, with unequal scattering lengths and/or unequal
masses. The Efimov effect does not occur in a situation where only one pair
features a large scattering length, but it does if two pairs are resonantly inter-
acting [Ama72, Efi72, Efi73, D’I05b, Bra06]. In the situation of distinguishable
particles, the mass ratio determines the value of s0 and thereby the universal
scaling factor [Ama72, Efi72, Efi73, D’I06b, D’I06a]. Mixture experiments of
bosonic and/or fermionic atoms allow to extend the study of the Efimov effect.
These investigations may help to learn more about trimer properties in other
universal systems, such as the ones mentioned above. In the following discussion,
the focus is on atomic systems in the universal regime, although the universally
derived properties are valid for other systems as well.

Three-body recombination

The key link connecting Efimov’s early predictions and ultracold atom experi-
ments is the process of three-body recombination. In this process, three particles
collide and successively recombine to a deeply bound dimer (D) and a free atom
(A), A+A+A → D+A. The energy released in this process is typically much
larger than the trap depth, leading to loss of the three particles. Three-body
recombination, which can be described by

dnA

dt
= −L3nA(t)

3, (1.12)

features a strong dependency on the atomic density nA. Therefore, it is an
obstacle to the achievement of Bose-Einstein condensation, even in a situation
where one- or two-particle loss processes are suppressed. The understanding
of the three-body loss rate L3 in the framework of universal theory began to
emerge more than a decade ago, when several theory groups tried to derive the
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Figure 1.6.: Influence of the Efimov trimer states and potentials on the three-
body recombination process in an ultracold atom (Cs) sample. (a) For a < 0, the
three-body Efimov potential (red line) is the lowest scattering channel for three
free atoms with collision energy E (blue horizontal line) and features a repulsive
barrier with a maximum at Rhyp = |a|. The Efimov trimer (red horizontal line) is
a bound state in the three-body potential. Its binding energy can be tuned into
resonance with the collision energy of the scattering state by variation of a. The
free atoms can tunnel through the repulsive barrier and couple to the trimer state
behind the barrier (similar to a shape resonance). The trimer state enhances
losses to deeply bound atom-dimer states (indicated by the arrow) as the wave
function overlap is increased. The value a− corresponds to the scattering length,
where the Efimov trimer energy coincides with the E = 0 threshold. (b) For
a > 0, the atom-dimer channel, which supports the trimer states, is energetically
below the three atom scattering threshold by an amount corresponding to the
dimer binding energy. Two distinct pathways, symbolized by the blue and yellow
arrows, allow the atoms to recombine into the atom-dimer channel at R ≈ a.
These two paths can interfere constructively and destructively, showing minima
and maxima in the three-body recombination rate. The original figure can be
found in Ref. [Esr06], the picture shown here is a redrawn version.

dependence of the three-body loss rate. The overall dependence of L3 on the
s-wave scattering length follows from a simple dimensional analysis as [Web03c]

L3 = nlC(a)
~a4

m
, (1.13)

where nl refers to the number of particles lost in this process. Typically, nl = 3.
In this equation, the general a4-scaling is separated from the non-trivial physics
embedded in the C(a)-parameter.
First calculations performed by Fedichev et al. in 1996 for large and positive

values of a resulted in a fixed value of C(a) = 3.9 [Fed96b]. This value was
doubted by Nielsen et al., who, in a different approach for the same regime,
derived an upper boundary of C(a) ≤ 68.4 [Nie99]. This value is close to the
experimentally determined C(a) ≈ 75 by Weber et al. [Web03c]. In 1999,
a numerical study by Esry et al. [Esr99] based on model potentials revealed
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the connection of three body recombination with the Efimov scenario for large
postive and negative scattering lengths. The results of this study are still in
agreement with experimental findings. A qualitative picture of these recombi-
nation processes based on hyperspherical potential curves is given in the next
paragraphs and shown in Fig. 1.6.

For negative s-wave scattering lengths, the three-body potential is deep enough
to support at least one Efimov trimer bound state if a < a

(1)
− . At a = a

(n)
− , the

nth trimer state has the same energy as the scattering threshold for three free
atoms, see Fig. 1.6(a). The three-body potential features a repulsive barrier,
with a maximum at Rhyp = |a|. Therefore, the Efimov state leads to a shape
resonance for three free atoms and low collision energies. The coupling to trimer
states drastically enhances three-body recombination due to the fact that the
wave function overlap to deeply bound atom-dimer states is strongly increased.
This scenario induces a tri-atomic Efimov resonance [Efi79], which is the prime
observable for Efimov physics in ultracold atom experiments.

In the case of a large and positive scattering length, the behavior is even
more fascinating. The lowest three-body channel, which supports Efimov trimer
bound states for a > a

(1)
∗ , is energetically shifted by the dimer binding energy

from the repulsive entrance channel of the three scattering atoms; see Fig. 1.6(b).
Two distinct paths allow the system to transition from the entrance to the
Efimov channel at Rhyp ≈ a. In the first path (yellow arrow in Fig. 1.6(b)), the
atoms bounce off the repulsive barrier of the entrance channel and recombine
for increasing Rhyp. Whereas in the second path (blue arrow in Fig. 1.6(b)),
recombination happens for decreasing Rhyp, then the system rebounds off the
Efimov channel. These two pathways interfere constructively and destructively,
which is reflected by three-body recombination minima and maxima. The s-
wave scattering length, where the nth recombination minimum is observed, is
labeled a

(n)
+ . Successive minima follow the Efimov scaling law and appear at

a
(n+1)
+ /a

(n)
+ = eπ/s0 ≈ 22.7. They are universally related to a− and a∗ according

to [Bra06]

a
(n)
− = −22.7(n−m+1)

1.06
a(m)
∗ = −4.9× 22.7(n−m)a

(m)
+ . (1.14)

Observation of recombination minima and the universal relations provides a
strong evidence for the verification of Efimov physics. Interestingly, even before
the first Efimov related observation was reported in 2006, a recombination min-
imum at +210 a0 was utilized for efficient evaporation cooling in an ultracold
sample of 133Cs, without knowledge of the origin of this benefit [Kra04].

A major step in the interpretation of three-body recombination measurements
followed from effective field theory, which provided analytic expressions for C(a)
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given as [Bra04, Bra01, Bed00, Bra06]

C(a) =


4590 sinh(2η−)

sin2[s0 ln(a/a−)] + sinh2 η−
for a < 0, (1.15a)

67.1 e−2η+(sin2[s0 ln(a/a+)] + sin2 η+)

+16.8 (1− e−4η+) for a > 0. (1.15b)

The inelasticity parameters16 η± originate from the non-universal decay rate to
deeply bound molecules and are therefore not accessible by universal theory.
The log-periodic oscillatory behavior of C(a) = C(eπ/s0a) ≈ C(22.7a) reflects
the periodicity of the Efimov scenario.

Atom-dimer relaxation

Conceptually similar to three-body recombination is the two-body loss process
observed in an atom-dimer system for a large and positive s-wave scattering
length. During an atom-dimer collision, the weakly bound dimer (D∗) relaxes
into a more deeply bound dimer state (D), A + D∗ → A + D. This collisional
relaxation, also known as vibrational quenching, results in a loss of the atom
and dimer from the trap due to the conversion of the dimer binding energy into
kinetic energy distributed among the particles involved. This process is strongly
favored in the vicinity of a∗, where the Efimov trimer couples to the atom dimer
threshold and the atom-dimer cross section is resonantly enhanced (Eq. (1.11)).
The loss process can be described by

dnD

dt
=

dnA

dt
= −β(a)nD(t)nA(t), (1.16)

with the relaxation rate coefficient β(a) and the dimer density nD. The uni-
versal expression for β(a) is provided by effective field theory and, in the zero-
temperature limit, reads as [Bra04, Bra07, D’I05b, Hel09]17

β = CAD(a)
~a
m

, (1.17)

with

CAD(a) =
20.3 sinh(2η∗)

sin2 [s0 ln(a/a∗)] + sinh2 η∗
. (1.18)

As for C(a), the log-periodic oscillatory behavior of CAD(a) follows from the
periodicity of the Efimov effect, resulting in an atom-dimer loss resonance each
time an Efimov trimer couples to the atom-dimer threshold.

16These parameters are sometimes referred to as the imaginary part of the three-body pa-
rameter [Bra06, Mar08a].

17Note that in Ref. [Bra07] the temperature effect was studied as well. Due to an error in
the thermal averaging procedure, the height of the resonance peaks were not correctly
determined [Bra09a].
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Unitarity limit

In principle, recombination loss measurements in the vicinity of a Feshbach
resonance would allow to observe the infinite ladder of Efimov states succes-
sively intersecting with the atom threshold. Unfortunately, two experimental
limitations considerably narrow the number of detectable trimer states. First,
magnetic field instabilities, which are normally in the mG regime, translate
into a strong variation of the s-wave scattering length near the pole. For this
reason, broad Feshbach resonances are favorable for the experimental investiga-
tion of few-body phenomena. The more crucial restriction is connected to the
unitarity limit in few-body collisions. Similar to the elastic two-body collision
cross-section (Eq. (1.3)), the limitation of the scattering matrix sets a natural
border for three body recombination losses. In Ref. [D’I04] this limit has been
derived as a function of the temperature according to

Lmax
3 =

36
√
3π2~5

(kBT )2m3
. (1.19)

The unitarity limit for four-body recombination is given in a similar manner as
[Gre11]

Lmax
4 =

256
√
2π7/2~8

(kBT )7/2m9/2
. (1.20)

In general, recombination losses follow a strong temperature dependence, ac-
cording to LN ∝ T− 3N−5

2 [Gre11]. In order to observe a recombination loss
resonance, the visibility of the structure demands that the background losses
are smaller than the unitarity limit. This restriction limits the number of ob-
servable Efimov features to one or two in experiments with atoms of the same
mass. Experiments on atomic mixtures with a more advantageous mass ratio
and scaling factor would allow the observation of more resonances before the
unitarity limit is reached [D’I06b].

Open questions

The possibility to observe Efimov physics experimentally raises several questions
about the predictive power of universal theories for real-world systems and moti-
vated the experiments presented in this PhD thesis, as well as experimental and
theoretical work of other groups. One of the key questions is, what happens in
the transition regime between the universal a ≫ Rvdw and the non-universal re-
gion a ∼ Rvdw? How sensitive are the universal relations and scaling behaviors?
One way to approach this interesting regime theoretically is by incorporating
finite-range corrections in the universal theory [Ham07a, Pla09, Thø08b]. It
is still unclear whether these corrections can explain the experimental findings
presented in Sec. 1.4 and Chapter 2.
Another important issue concerns the properties of the three-body parameter.

Because it incorporates unknown effects resulting from the details of two- and
real three-body potentials, it cannot be determined by the simplified universal
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theories18 and has to be obtained experimentally. This parameter determines
the values of a− and the universally related observables. Therefore, a− is an
experimentally appropriate way to define the three-body parameter. The key
question is how this parameter varies in different scattering scenarios for Fesh-
bach resonances stemming from different molecular levels. Even a magnetic field
dependence of the three-body parameter cannot be excluded a priori [D’I09c].
Little is known about the effects of genuine three-body forces on universal the-
ories. D’Incao et al. performed a model calculation incorporating a unique
three-body force via the Axilrod-Teller potential [Axi43], which led to a small
shift of the resonance position a−. Generally, three-body forces are expected
to play a minor role, as they modify the three-body potentials at length scales
much smaller than RvdW [Sol03]. However, this issue is still not fully resolved.
If three-body forces are assumed to have a negligible effect on the constancy
of the three-body parameter, it is sufficient to understand the role of pair-wise
two-body interactions. Theoretical work suggests that for closed-channel domi-
nated Feshbach resonances with R∗ ≫ a the three-body parameter is expected
to be fixed by the length scale set by R∗ [Pet04a, Gog08]. However, this re-
sult is still discussed [Wan11a]. For open-channel dominated resonances, the
largest non-universal length scale is connected to RvdW. This raises hope that
a refined theoretical approach, for example by including several bound states
[Lee07], might be able to describe the three-body scattering properties in the
universal regime sufficiently well. Even if approaches are found that satisfacto-
rily explain the scattering physics at broad and narrow resonances, the question
remains how they connect to a situation encountered at intermediate Feshbach
resonances.
Some of these issues raised above have been addressed in this thesis and other

experimental work on ultracold atomic gases, as outlined in Sec. 1.4.

1.3. Universality in four-body systems

Shortly after Efimov’s prediction of the existence of an infinite number of uni-
versal three-body bound states, it was questioned whether this intriguing phe-
nomenon also occurs for four and more bodies. Amado and Greenwood showed
that there is no “true” Efimov effect for N ≥ 4 [Ama73], meaning that the tun-
ing of an (N − 1)-bound state to zero energy cannot produce an infinite number
of N -body bound states accumulating at zero energy. However, this conclusion
does not prohibit the appearance of other classes of universal four-body states.
One class of universal four-body states with Efimovian character can be found

in the vicinity of the atom-dimer Efimov resonance position a∗. There, the atom-
dimer scattering length diverges aad → ∞ (Eq. (1.11)), giving rise to an Efimov
scenario involving the atom-atom-dimer system [Bra06]. In this case, the four-
body problem is reduced to three interacting particles with unequal masses.

18In effective field theory, the three-body parameter typically enters as a regulator to ensure
that the momentum integral in the Skorniakov-Ter-Martirosian equation is independent
on the definite value of the ultraviolet cutoff [Bra06].
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Figure 1.7.: Extended Efimov scenario showing the universal tetramer states.
This figure is an extension of Fig. 1.5, where the dashed lines correspond to
the Efimov trimer plus atom (T+A) thresholds. Note that in comparison to
Fig. 1.5, one particle is added to each threshold. In the four-body picture each
Efimov trimer is accompanied by two four body states (green solid lines), which

cross the four atom threshold (A+A+A+A) at a
(n,1)
4b,− and a

(n,2)
4b,− and merge with

the dimer-dimer threshold (D+D) (orange line) at a
(n,1)
4b,∗ and a

(n,2)
4b,∗ . The arrows

symbolize the positions where the tetramers couple to the free atom threshold
(green) and the dimer-dimer threshold (brown). Taken from Ref. [Fer11].

Open questions

There has been a growing number of studies on the four (and more) body prob-
lem [Adh81, Nau87, Sø02, Pla04, Yam06, Han06, Thø08a]. Besides the issue of
applicability of universal theory to real-world four-body systems, one particular
question is whether a four-body parameter in addition to the three-body param-
eter is needed for the description of universal tetramer states [Yam06, Pla04].
One hint towards answering this questions comes from the field of nuclear

physics. There, a well known correlation exists between three- and four-body
observables, the Tjon line [Tjo75], which connects the binding energy of the
triton with the binding energy of the α particle, without the necessity of intro-
ducing a genuine four-body force term.

The extended Efimov scenario

A fundamental step in understanding the four-body problem resulted from two
articles published by theory groups in Bonn/Ohio [Ham07b] and at JILA in
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Boulder [Ste09]. They predicted that the four-body potential created by an
Efimov trimer and an atom is capable of supporting two universal tetramer
states. Therefore, exactly two universal tetramer states are tied to each Efimov
trimer, as depicted in Fig. 1.7. In this extended Efimov scenario, the values
a
(n,1)
4b,− and a

(n,2)
4b,−, where the tetramer states cross the free atom threshold, are

universally related to a
(n)
− by [Ste09]

a
(n,1)
4b,− = 0.43a

(n)
− and a

(n,2)
4b,− = 0.90a

(n)
− . (1.21)

Furthermore, both tetramer states connect to the dimer-dimer threshold at
[D’I09d]

a
(n,1)
4b,∗ = 2.37a(n)∗ and a

(n,2)
4b,∗ = 6.6a(n)∗ . (1.22)

For the derivation of Eqs. (1.21) and (1.22) no four-body parameter was nec-
essary, indicating that their experimental verification anwers the question of
necessity of such a parameter in this particular case.
Similar to the Efimov scenario, enhancement of four-body recombination at

a
(n,1)
4b,− and a

(n,2)
4b,− leads to losses in an atomic sample according to

dnA

dt
= −L4nA(t)

4, (1.23)

with the four-body loss coefficient L4. A small indication for this process was
already found in the publication concerning the first observation of an Efimov
trimer by Kraemer et al. in 2006. One publication presented in this thesis
(Chapter 6) examines this issue in a separate experiment. This study, which is
outlined in Sec. 1.4, verifies the universal relations given in Eq. (1.21).
For positive scattering lengths, the tetramer is expected to couple to the

dimer-dimer threshold. This process should lead to a variation of the dimer-
dimer scattering length, similar to a Feshbach resonance scenario, allowing to
magnetically tune dimer-dimer interactions. So far, no clear evidence for dimer-
dimer resonances has been reported19.

1.4. Few-body phenomena in ultracold atom

experiments

Here, ultracold atom gas experiments related to the (extended) Efimov scenario
are presented. Unless stated differently, all measurements were based on re-
combination or relaxation loss measurements in the vicinity of broad Feshbach
resonances. To begin with, Efimov-related experiments performed by the Inns-
bruck group, utilizing an ultracold cesium sample, are outlined. Except for the
publication by Kraemer et al. [Kra06b], all of these experiments were performed

19In Ref. [Pol09a], the authors report the observation of two loss resonances at a value where
the dimer-dimer resonances are expected. The process leading to this observation is still
not fully understood as the measurements were performed with an atomic instead of a
dimer sample.
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Figure 1.8.: First evidence of an Efimov trimer, obtained in three-body recom-
bination measurements by Kraemer et al. [Kra06b]. For convenience, the re-

combination length ρ3 ∝ L
1/4
3 (instead of L3) is displayed as a function of the

scattering length in this figure. For a definition of ρ3 see for example Chapter 4.
The dots and triangles correspond to measurements performed with initial tem-
peratures around 10 nK and 200 nK, respectively. The open diamonds are data
from another setup with a temperature of 250 nK. The open squares are data
taken from Ref. [Web03c]. For a < 0, a loss resonance at a

(1)
− = −872(22) a0

was observed, originating from an Efimov trimer crossing the atom threshold.
The higher-temperature samples yield a less-pronounced loss maximum due to
the unitarity limit (Eq. (1.19)). At positive scattering lengths a recombination

minimum was found at a
(1)
+ = 210(10) a0. The straight lines visualize the gen-

eral a4 scaling of L3, which corresponds to a linear behavior for ρ3. The curve
represents a fit to the low temperature data according to the universal theory
given in Eqs. (1.15a) and (1.15b). The inset shows a zoom on the minimum.
The values given here differ slighly from the ones in Ref. [Kra06b] due to an
improved a(B) conversion, see Appendix F.

during the PhD work of the author of this thesis and are presented in detail in
the following chapters. In order to avoid a thematic overlap, Ref. [Fer11] is omit-
ted in this thesis, as this publication mainly focusses on an introduction to the
Efimov scenario in a similar way as in the introduction given here. A summary
of experiments performed by other groups, with atomic systems different from
cesium, is given in the second part of this section.
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Observations in an ultracold quantum gas of cesium atoms

The first evidence for an Efimov trimer was obtained in an ultracold atomic
gas of cesium by the Innsbruck group20 [Kra06b] in fall 2005. The large tun-
ability of the s-wave scattering length, which was the basis for these find-
ings, resulted from an entrance channel dominated Feshbach resonance with
the pole at -12 G (as discussed in Sec. 1.1), allowing for a broad universal win-
dow of a = [−2500 a0, 1600 a0], accessible even at relatively low magnetic field
strengths. For a < 0, a tri-atomic Efimov resonance was observed in three-body
recombination measurements at a

(1)
− = −872(22) a0. For a > 0, a recombination

minimum was found at21 a
(1)
+ = +210(10) a0; see Fig. 1.8. Furthermore, a tem-

perature dependent shift of the tri-atomic Efimov resonance was found [Näg06],
which agreed with theoretical expectations [Yam07]. This shift relates to the
existence of the trimer state above the free atom threshold; see Fig. 1.6(a).
The confirmation of the universal relation linking these two resonances was

the smoking gun for relating the experimental findings to Efimov physics. The
experimentally obtained value, a

(1)
− /a

(1)
+ = −4.2(2), agrees nicely with the the-

oretical expectation, a
(n)
− /a

(n)
+ = −4.9 (Eq. (1.14)). The small deviation might

originate from non-universal corrections, as the magnitude of a
(1)
+ was in the

order of RvdW = 101 a0. The quantitative agreement led to the conclusion that
this experiment was the first indication of the existence of the Efimov scenario
in real systems. However, the results were strongly disputed [D’I09c], as the
connection from a < 0 to a > 0 was via a zero-crossing (a = 0) and not a
pole (a = ±∞) as in the original Efimov scenario. The authors of Ref. [D’I09c]
claimed that due to variations in the three-body parameter an accidental cor-
relation of the experimental findings could not be excluded. Contrary to that,
Refs. [Lee07, Pla08] found good agreement of their model calculations with the
experimental observations. The investigation of this issue was an important
motivation for this PhD thesis.
Another experimental cornerstone for verifying the Efimov scenario was the

confirmation of an Efimov trimer state coupling to the atom-dimer threshold.
For this, we prepared an ultracold atom-dimer cesium sample and measured
the atom-dimer relaxation rate β(a). These measurements revealed the first

observation of an atom-dimer Efimov resonance at a
(2)
∗ = 367(13), which is

connected to the first excited trimer state22, as presented in Chapter 2 (see also
Ref. [Kno09]). Good qualitative agreement with the theoretically expected shape
of the loss resonance was found (Eq. (1.18)), even though the overall value of
the relaxation rate was smaller than calculations in the zero-temperature limit
suggested. An extension of universal theory considering finite-temperature ef-
fects partly resolved this issue [Bra07, Bra09a, Hel09]. Still, quite puzzling is the

20This experiment was performed at the same lab where the experiments presented in this
PhD thesis were carried out.

21These values differ slightly from the ones given in Ref. [Kra06b], as the data has been refitted
according to a new conversion of a(B), as described in detail in Appendix F.

22Note that in Chapter 2 the excited Efimov trimer state is labeled as n = 1, and the ground
trimer state as n′ = 0.
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universal relation between the atom-dimer and the tri-atomic Efimov resonance,
a
(2)
∗ /|a(1)− | ≈ 0.4, which deviates from the universal value of 1.06 (Eq. (1.14)) by

a factor of 2. Studies on finite-range corrections show that these non-universal
contributions decrease the value of a

(n+1)
∗ /|a(n)− | [Ham07a, Pla09, Thø08b]. The

question remains whether this effect by itself explains the experimental findings.
The properties of the three-body parameter, which, experimentally, can be

conveniently parametrized by the resonance position a−, are a controversial is-
sue [D’I09c]. The questions whether the three-body parameter is magnetic field
dependent, and whether it changes for different Feshbach resonances, still have
no definite answer. In order to shed light on this matter, we investigated three-
body recombination in the vicinity of several Feshbach resonances, including
the high-field s-wave resonances at 549 G and 787 G. The study was extended
to an overlapping g-wave (ℓ = 4) Feshbach resonance23 of intermediate strength
(sres ∼ 1) situated at 553.3 G. This experiment is described in detail in Chapter 4
(see also Ref. [Ber11b]). At the 787 G Feshbach resonance, which is the broadest
of the resonances, we found a tri-atomic Efimov resonances for a < 0 and a re-
combination minimum for a > 0, with a

(1)
− /a

(1)
+ = −3.5(3) being not far from the

expectations of universal theory (Eq. (1.14)). Furthermore, two more tri-atomic
Efimov resonances were observed at the overlapping g- and s-wave Feshbach
resonances around 550 G. Comparison of the measured resonance positions a

(1)
− ,

including the one reported by Kraemer et al. [Kra06b], yielded an astonishing
result. These four Efimov resonances, resulting from different Feshbach reso-
nance scenarios, delivered matching values of a

(1)
− within a few percent of an

Efimov period. This shows that the three-body parameter is almost constant
over a magnetic field range spanning more than 800 G across a series of Feshbach
resonances. This result excludes strong variation of the three-body parameter,
as suggested in Ref. [D’I09c]. Interestingly, the values for a

(1)
− , normalized to

the mean scattering length, a
(1)
− /ā = −9.5(4), agree well with the ones derived

in experiments on 7Li [Pol09a, Gro10] and 6Li [Wil09, Ott08, Huc09, Wen09],
which vary between −8 and −10. This points to a deeper connection of the van
der Waals length with the three-body parameter in the case of open-channel
dominated Feshbach resonances.
Further investigations of the magnetic high-field region revealed another re-

combination minimum in the vicinity of the 549 G s-wave Feshbach resonance,
agreeing nicely with the assumption of a constant three-body parameter; see
Ref. [Fer11]. During this study, we found two tri-atomic Efimov resonances at
two relatively broad d-wave Feshbach resonances (ℓ = 2). Unfortunately, the
a(B) conversion was not accurate enough to determine the values of a− in these
cases.
Concerning the four-body sector, we could in 2008 announce the first evidence

for two universal tetramer states as proposed in Ref. [Ste09]. These states were
observed in recombination measurements in the magnetic low field region, close
to the tri-atomic Efimov resonance reported in Ref. [Kra06b]. The obtained

universal ratios, a
(1,1)
4b,−/a

(1)
− and a

(1,2)
4b,−/a

(1)
− , were measured for the ground and the

23Appendix F describes the determination of the according Feshbach resonance properties.
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excited tetramer state, yielding 0.47 and 0.84, respectively. These values are
remarkably close to the universally derived values of 0.43 and 0.9 (Eq. (1.21)).
Moreover, it was possible to experimentally distinguish between three- and four-
body recombinations, showing that the observed loss resonances truly relate
to a four-body process. These results verified the extended Efimov scenario of
Ref. [Ste09] and demonstrated that no four-body parameter is needed to describe
this universal scenario.

Before Ref. [Ste09] was published, we performed measurements in the mag-
netic low-field region, investigating collisions between tunable halo dimers; see
Chapter 5 (and also Ref. [Fer08]). For this elementary four-boson process, we
found a pronounced loss minimum in the dimer-dimer relaxation rate, which
still lacks an adequate description. In 2009, D’Incao et al. suggested that
the observed phenomena might be related to the universal tetramer states of
the extended Efimov scenario coupling to the dimer-dimer threshold [D’I09d].
However, the expected positions of these resonances do not agree with those
experimental data. Due to the constrained tunability of a in the magnetic low-
field region, this issue could not be investigated any further. The new high-field
setup allows to investigate this question in the near future, possibly revealing
whether the observed resonance is connected to an universal tetramer state.

Observations in other ultracold quantum gas experiments

The first test of Efimov’s universal scaling law was carried out in experiments
on 39K by the Florence group [Zac09] by observation of consecutive Efimov
resonances. For a > 0, two recombination minima were found with a ratio
a
(2)
+ /a

(1)
+ = 25(4), which is in agreement with the universal scaling factor of 22.7.

Furthermore, two small loss maxima were found, which were related to atom-
dimer Efimov resonances via an “avalanche effect”24. These atom-dimer related
loss maxima reproduced the universal scaling behavior quite well, with a scaling
factor of 30.6(14). For a < 0, a single tri-atomic resonance was observed. Fur-
thermore an indication for the related ground state tetramer state, connected to
this Efimov state, was found. Interestingly, the resonances obtained for positive
and negative a deviated substantially (by about ∼ 50%) from the universal pre-
dictions. The authors expected effective range corrections to be responsible for
this variation, as the first recombination minimum and atom-dimer resonance
are not (far) in the universal regime.

Another experiment reporting on the observation of consecutive Efimov reso-
nances was performed by the Rice group [Pol09a]. An ultracold sample of 7Li in
its absolute atomic ground state was utilized for the observation of 11 Efimov
and Efimov-related resonances. These results included for a < 0 two tri-atomic

24In this process, atoms decay by three-body recombination to the weakly bound dimer state.
In the second step, these dimers scatter resonantly with several atoms before the dimers
leave the trap. These scattering processes are enhanced due to the resonance in the elastic
atom-dimer cross section near the atom-dimer Efimov resonance; see Eq. (1.11). As the
dimer’s kinetic energy greatly exceeds the trap depth, several atoms are lost in this process,
leading to an atomic loss resonance.
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loss resonance as well as the related four tetramer resonances and for a > 0 two
recombination minima and an atom-dimer resonance, caused by the “avalanche
effect”. Furthermore, this group reported the discovery of two dimer-dimer res-
onances connected to the universal tetramer states. The process behind these
resonances is still unknown, as the experiments were performed with a pure
atom sample. All the scaling factors and universal relations on either side of the
Feshbach resonance were in good agreement with universal theory. However,
the connection between both sides featured an systematic discrepancy, deviat-
ing from the theoretically expected value by a factor of 2. The authors suggested
a variation of the three-body parameter as being responsible for this deviation,
which is in opposite direction as compared to the one observed in Ref. [Zac09].

Shortly after the Rice group published their data, measurements were per-
formed by the Bar Ilan group [Gro10], utilizing the same atomic system (7Li)
as the Rice group in the absolute atomic ground state, |F = 1,mF = 1⟩. The
Bar Ilan group found one recombination minimum and one tri-atomic Efimov
resonance, confirming the universal relation between positive and negative a,
in contradiction to the results of the Rice group. Even though the resonance
positions in terms of the magnetic field strength were in agreement with the
results of the Rice group, it was pointed out that the used a(B) conversion fea-
tured strong discrepancies, when comparing the analysis of these two groups.
The Bar Ilan group used molecular spectroscopy in combination with a coupled
channel calculation for determining the properties of the Feshbach resonance,
whereas the Rice group relied on in-situ BEC size measurements [Pol09b]. As
spectroscopy is generally expected to yield more accurate results25, the results
of Ref. [Gro10] suggest a reinterpretation of the Rice data. The a(B) conversion
derived in Ref. [Gro10] calls in question the observation of the second tri-atomic
resonance, which is likely not Efimov-related, but can be attributed to an en-
hancement of losses at the pole of the Feshbach resonance instead. In another
experiment, the Bar Ilan group analyzed three-body recombination in the sec-
ond lowest state (|F = 1,mF = 0⟩)26 [Gro09]. In this atomic state, they found
also a recombination minimum and a tri-atomic Efimov resonance, which agree
well with the universal relations.

Furthermore, these two experiments allowed to study the three-body parame-
ter for a situation of two different states of the same atomic species. They found
equal resonance positions a

(1)
− and a

(1)
+ , and therefore equal three-body parame-

ters, for both atomic states [Gro10]. As the 7Li-measurements were performed
at magnetic field strengths of about 800 G, the atoms were well described by the
Paschen-Back effect. The two analyzed states feature a different nuclear spin,
but similar electron spin, resulting in very similar two-body potentials. The
nuclear-spin independence of the three-body parameter suggests that unique
three-body forces are either nuclear-spin independent or make only a minor con-

25For the characterization of the high-field Feshbach resonances in our cesium sample we used
the same method; see Appendix F.

26Chronologically, the experiment in the |F = 1,mF = 0⟩-state was performed before the one
utilizing the |F = 1,mF = 1⟩-state.
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tribution to the three-body parameter.

The first evidence of Efimov resonances in a bosonic mixture experiment was
reported by the Florence group [Bar09]. The measurements were performed
with an ultracold sample of 41K and 87Rb in the vicinity of a broad interspecies
Feshbach resonance. This mixture exhibits two heteronuclear three-body chan-
nels: KKRb and KRbRb with scaling factors of eπ/s0 = 3.51 × 105 and 131,
respectively. Even though these scaling factors are not favorable for the ob-
servation of Efimov physics, the Florence group found two tri-atomic Efimov
resonances, one attributed to the KKRb combination and one to the KRbRb
channel. More favorable scaling factors are expected for light-heavy-heavy com-
binations of LiYbYb (eπ/s0 = 4.5), LiCsCs (5.5) and LiRbRb (7.9) [Bar09, Efi73].

Major interest was aroused by a series of experiments exploring Efimov physics
in a three-component spin mixture of fermionic 6Li by three groups in Heidel-
berg, at Penn State University and in Tokyo. The intriguing scattering proper-
ties result from three very broad overlapping Feshbach resonances atB0 = 690 G,
811 G and 834 G [Bar05], which allow to tune the three different s-wave scat-
tering lengths to large values simultaneously. Furthermore, the background
scattering lengths change from very small values at zero magnetic field to about
−2000 a0 at magnetic fields strengths exceeding 1000 G. Therefore, the scattering
lengths decrease at first for increasing magnetic fields and then increase due to
the Feshbach resonances. Initially, the magnetic low-field side, B < B0, of these
Feshbach resonances was investigated. Here, two tri-atomic resonances were
found, which are connected to the same Efimov ground state [Ott08, Huc09].
Shortly afterwards, a study on the high-field side, B > B0, of the Feshbach
resonances revealed another tri-atomic resonance, originating from an excited
Efimov trimer state [Wil09]. These results were studied theoretically, verifying
the connection to Efimov physics [Bra09b, Nai09, Flo09, D’I09b]. Interestingly,
for the Efimov ground state resonances, a change of the width of the loss reso-
nances, which is related to the inelasticity parameter η, was observed. As the
width depends on the lifetime of the Efimov trimers, which decay into a deeply
bound dimer plus an atom, η is expected to depend on the decay probability of
the trimer state. Wenz et al. suggested introducing an energy-dependent η(Eb),
which is a simple function of the binding energy Eb of the energetically nearest
dimer states [Wen09]. This simple model was able to reproduce the measured
data quite well. Furthermore, two studies performed on atom-dimer samples
revealed two atom-dimer Efimov resonances [Lom10a, Nak10], as predicted in
Ref. [Bra10]. Even though the tri-atomic resonances supported the idea of a fixed
three-body parameter, the positions of the atom-dimer resonances disagreed
with this assumption. Hence, the authors of Refs. [Lom10a, Nak10, Nai11] con-
cluded an energy- and possible magnetic field dependence of the three-body
parameter. A conceptually different route to studying Efimov trimers has been
introduced in Refs. [Lom10b, Nak11]. Instead of measuring the value at which
the trimer becomes unbound at the atomic or the atom-dimer threshold, rf-
spectroscopy was used to determine its binding energy below the threshold27.

27This method favors fermionic systems, due to the lifetime of the initial atom-dimer sample.
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Due to the limited lifetime of the trimers, which is estimated to range between
a few nanoseconds to microseconds [Bra10], no macroscopic samples of Efimov
trimers could be produced with this method. Nevertheless, the binding energy
measurements indicated a non-trivial energy or magnetic field dependence of
the three-body parameter, similar to the results obtained in the observations of
atom-dimer resonances.

1.5. Overview

This thesis includes six publications primarily investigating universal three- and
four-body physics. Some of these articles examine open questions connected to
the applicability of universal theory to real-world systems, whereas others report
on the observation of unexpected phenomena motivating the search for theoret-
ical explanations. The author of the present PhD thesis also contributed to a
conference proceeding [Kno09] and a review article on Efimov physics [Fer11],
which are not presented here.

All experiments presented in the following chapters were performed with an ul-
tracold bosonic 133Cs sample, most of them utilizing the absolute atomic ground
state, |F = 3,mF = 3⟩. The publications presented in Chapters 2, 3, 5, 6 and
7 are based on exploiting the tunability of the broad -12 G Feshbach resonance
in the magnetic low-field region. The experimental setup for these experiments
is described in detail in the theses of the PhD and diploma students working
prior to and temporarily with the author of the present thesis in the lab: Tino
Weber [Web03a], Jens Herbig [Her05], Tobias Kraemer [Kra06a], Michael Mark
[Mar03, Mar08b] and Harald Schöbel [Sch07]28. In order to to take advantage
of the (theoretically) unlimited tunability of the broad high-field Feshbach reso-
nances at 549 G and 787 G, a major technical upgrade has been accomplished,
which allows to access the magnetic high-field region up to 1400 G. The tech-
nical advances necessary for these upgrade are described in the appendices of
this PhD thesis and, partly, in the diploma thesis of Walter Harm [Har10], who
worked with the author of the present thesis on the realization of the newly
implemented magnetic field system. The experiments presented in Chapter 4
were performed utilizing the new experimental high-field setup.

Chapter 2, Observation of an Efimov-like trimer resonance in ultracold atom-
dimer scattering, reports on the first evidence of an atom-dimer Efimov loss
resonance. This experiment was performed with an atom-dimer sample by de-
termining the relaxation rate in dependence on a. The observed loss resonance
is in good qualitative agreement with the expectations from universal theory. A
puzzling shift of the expected position of the atom-dimer resonance in compar-
ison to universal theory (Eq. (1.14)) might be the consequence of non-universal
effects.

Chapter 3, Magnetically controlled exchange process in an ultracold atom-

28For the sake of completeness, note that the diploma thesis of Johann Danzl [Dan07] was
also carried out in this lab, although it concerns a separate project.
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dimer mixture, describes an exchange process A2+B → A+AB in an ultracold
mixture of weakly bound dimers (A2) and free atoms (B). This is an elementary
proof-of-principle experiment, showing the first evidence for a reaction process
controlled by the s-wave scattering length in the regime of universal interactions.
Chapter 4, Universality of the three-body parameter for Efimov states in ul-

tracold cesium, investigates the properties of the three-body parameter in the
vicinity of different Feshbach resonances. Three tri-atomic Efimov resonances
and a recombination minimum in the magnetic high-field region were obtained
and compared with the resonance reported in Kraemer et al. [Kra06b]. This
study suggests that in this situation the three-body parameter is essentially in-
dependent on the magnetic field. Moreover, this publication presents the first
evidence for an Efimov resonance observed in the vicinity of a g-wave Fesh-
bach resonance, originating from a molecular state with higher-order rotational
angular momentum.
Chapter 5, Collisions between tunable halo dimers: exploring an elementary

four-body process with identical bosons, presents results on inelastic collisions
in a pure sample of universal dimers. In this experiment, a pronounced loss
minimum is identified while tuning the s-wave scattering length. These results
give insight into an elementary four-body process. It is still an open question
whether this minimum is related to a universal tetramer approaching the dimer-
dimer threshold.
Chapter 6, Evidence for universal four-body states tied to an Efimov trimer,

presents the first observation of two universal tetramer states coupling to the
free atom threshold in the vicinity of the tri-atomic Efimov resonance, reported
by Kraemer et al. [Kra06b]. These measurements verify the extended Efimov
scenario as presented in Ref. [D’I09d].
Chapter 7, Collisions of ultracold trapped cesium Feshbach molecules, contains

a collisional study of universal and non-universal dimer states. This chapter
reports on several narrow loss resonances, which indicate the coupling to (non-
universal) tetramer states. This process can be understood as a Feshbach-like
resonance for ultracold molecules.
Chapter 8 gives an outlook on some future directions of research in the field

of universal few-body physics.
The appendices give an overview of the technical modifications implemented in

order to access the magnetic high-field region. Appendix A describes the energy
level structure of 133Cs in the ground and excited state manifold. Appendix B
covers technical details of the new magnetic field system, which allows to achieve
magnetic field strengths up to 1400 G. Appendix C discusses the experimental
setup for the new absorption imaging system suitable for the magnetic high-field
region. Appendix D describes the upgrade of the micro-wave setup for the high-
field region. Appendix E explains the method for determining binding energies
of weakly bound dimers as well as the technical setup. Appendix F presents
new data on Feshbach resonances and dimer binding energies in the magnetic
high-field region. This appendix explains the derivation of the a(B) conversion,
which is the basis for the publications related to the high-field region.
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PUBLICATION

Observation of an Efimov-like trimer resonance in
ultracold atom-dimer scattering†

Nature Phys. 5, 227 (2009)

S. Knoop,1 F. Ferlaino,1 M. Mark,1 M. Berninger,1 H. Schöbel,1 H.-C. Nägerl,1

and R. Grimm1,2

1Institut für Experimentalphysik und Zentrum für Quantenphysik,
Universität Innsbruck, 6020 Innsbruck, Austria

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie

der Wissenschaften, 6020 Innsbruck, Austria

The field of few-body physics has originally been motivated by understand-
ing nuclear matter. New model systems to experimentally explore few-body
quantum systems can now be realized in ultracold gases with tunable inter-
actions [Kra06b, Bra06, Chi10]. Albeit the vastly different energy regimes
of ultracold and nuclear matter (peV as compared to MeV), few-body phe-
nomena acquire universal properties for near-resonant two-body interactions
[Bra06]. Efimov states represent a paradigm for universal quantum states in
the three-body sector [Efi70]. After decades of theoretical work, a first ex-
perimental signature of such a weakly bound trimer state was recently found
under conditions where a weakly bound dimer state [Jen04, Köh06b, Fer08]
is absent. Here we report on a trimer state in the opposite regime where
such a dimer state exists. The trimer state manifests itself in a resonant
enhancement of inelastic collisions in a mixture of atoms and dimers. Our
observation is closely related to an atom-dimer resonance as predicted by Efi-
mov [Efi79, Nie02, Bra07], but occurs in the theoretically challenging regime
where the trimer spectrum reveals effects beyond the universal limit.

†The primary contribution of the author of the present thesis to this publication was the
maintenance and improvement of the experimental setup together with M.M. and H.S.
The author performed the measurements together with S.K. and F.F. The data analysis
was carried out by S.K.
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Trimer states arise as a natural consequence of two-body binding forces, but
the general understanding of a quantum system of three interacting particles is
a remarkably difficult task. For resonant two-body interactions, however, the
energy spectrum follows simple, yet surprising rules as manifested in Efimov’s
scenario describing a series of trimer states [Efi70]. Systems in nuclear physics
[Jen04] and molecular physics [Brü05, Bac00] were considered as candidates
for Efimov states, but only recently ultracold atomic gases have opened up
the possibility to realize and explore the required interaction conditions in a
controlled way [Kra06b, Chi10]. In view of these new developments, the question
becomes particulary important how idealized few-body scenarios are connected
to near-universal systems existing in the real world.

A universal three-body system of identical bosons can be fully characterized
by two parameters, the two-body scattering length a and an additional three-
body parameter; the latter results from short-range physics [Bra06]. In principle,
knowledge on one Efimov trimer state, as for example its binding energy for a
given value of a, is sufficient to determine the three-body parameter and thus
to predict the complete spectrum. A test of universality in a real three-body
system is possible, when at least two different pieces of information on the trimer
spectrum become experimentally available. For the caesium system, information
was obtained by measuring three-body recombination [Kra06b]. The observation
of a triatomic resonance marked the particular value of the negative scattering
length where a trimer state of Borromean character [Jen04] reaches the thresh-
old for dissociation into three free atoms. Observations at positive scattering
lengths revealed a decay minimum, but an interpretation in terms of universal
arguments is questionable because of ambiguities concerning the origin of this
feature [D’I09c].

Here we follow a new experimental approach and show that an atom-dimer
mixture provides experimental access to the situation where a non-Borromean
trimer state couples to the threshold for dissociation into a free atom and a
dimer. The phenomenon that we observe is a resonance in atom-dimer scatter-
ing, which manifests itself in resonantly enhanced inelastic decay. The resonance
location provides an unambiguous piece of information which complements the
previous results on caesium and facilitates a comparison with universal predic-
tions concerning the spectrum of trimer states.

For caesium atom in the lowest internal state (hyperfine and projection quan-
tum numbers F = 3 and mF = 3) the s-wave scattering length a shows a
pronounced dependence on the magnetic field in the low-field region below 50G;
see inset of Fig. 2.1. Over a wide range, |a| is very large and exceeds the range
of the attractive van der Waals potential, which can be characterized [Chi10]
by a length rvdW ≃ 100 a0, where a0 is Bohr’s radius, and a corresponding en-
ergy EvdW ≃ h × 2.7 MHz. Universality in general requires scattering lengths
much larger than rvdW and energies much smaller than EvdW. For caesium, a
near-universal halo dimer state [Jen04, Köh06b, Fer08] exists for large positive
a with a binding energy of Eb = ~/(ma2) ≪ EvdW, where m is the atomic mass.

A schematic of the relevant three-body energy spectrum is shown in Fig. 2.1,
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Figure 2.1.: Three-body spectrum of caesium. The energies E of the atom-dimer
thresholds (blue solid curves) are shown as function of the magnetic field B. The
red dashed lines illustrate Efimov-like trimer states, which are labelled by n′ and
n on the left- and right-hand side of the zero crossing of the scattering length at
17 G, respectively. For the trimer states the energy dependence is not precisely
known. The giant three-body loss resonance found at 7.5 G [Kra06b] has pin-
pointed the intersection of an Efimov state with the three-atom threshold (open
arrow). The intersection of an Efimov state with an atom-dimer threshold (filled
arrow) leads to a resonance in atom-dimer relaxation. Zero energy corresponds
to three atoms in the lowest spin state, labelled by the total spin quantum num-
ber F = 3 and its projection mF = 3. The inset shows the scattering length a as
a function of the magnetic field B. The grey areas represent the non-universal
regions, where |a| < rvdW = 100 a0 or Eb > EvdW = h× 2.7 MHz.

illustrating the energies of trimer states (red dashed curves) and atom-dimer
thresholds (blue solid curves). The energy dependencies of the thresholds are
well known, because of the precise knowledge the caesium two-body spectrum
[Mar07a]. The dimer state that corresponds to the atom-dimer threshold at
positive magnetic fields has near-universal halo character in a wide magnetic-
field range above 20 G [Fer08]. The trimer states are located in the regime where
|a| exceeds rvdW, with binding energies well below EvdW. We therefore refer to
them as Efimov states [Efi70], although sometimes more strict definitions are
used [Lee07]. An Efimov trimer intersects the three-atom threshold, at which
three free atoms couple resonantly to a trimer. Similarly, an Efimov trimer
couples to a halo dimer and a free atom at the atom-dimer threshold.
The energy spectrum of trimer states is not precisely known, but their appear-

ance at the thresholds can give clear signatures of their locations. The observa-
tion of a giant three-body recombination loss resonance in an ultracold atomic
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caesium sample at 7.5 G, corresponding to a = −850 a0, has pinpointed the
location at which one of the Efimov states (labelled n′ = 0) hits the three-atom
threshold [Kra06b]; see open arrow. The next Efimov resonance in three-body
recombination loss (as caused by the state with n′ = 1) is predicted at nega-
tive magnetic fields, in principle accessible with atoms in the F = 3, mF = −3
state. Unfortunately, in practice its observation will be obscured by fast two-
body losses [Chi10]. Several studies have suggested the intersection of a trimer
state with the atom-dimer threshold for positive magnetic fields below 50 G
(Refs. [Köh06a, Esr07, Mas08]); see filled arrow. Note that in our case the re-
gions with a < 0 and a > 0 are connected via a zero crossing and not via a pole.
Therefore the states with n = 1 and n′ = 1 are not adiabatically connected as
they would in a complete realization of Efimov’s scenario.

The appearance of an Efimov trimer at the atom-dimer threshold is pre-
dicted to manifest itself in a resonant enhancement of atom-dimer relaxation
[Nie02, Bra07]. Relaxation is energetically possible because of the presence of
deeply bound dimer states and leads to loss of both the atom and the dimer
from the trap, as the corresponding release of energy generally exceeds the trap
depth. The resonant coupling of an atom and a dimer to a trimer opens up
strong loss channels as the trimer state decays rapidly into a deeply bound
dimer state plus a free atom. The particle loss is described by the rate equation
ṅD = ṅA = −βnDnA, where nD(nA) is the molecular (atomic) density and β
denotes the loss rate coefficient for atom-dimer relaxation. In the non-universal
regime, relaxation loss in ultracold atom-dimer samples has been studied in
various systems [Muk04, Sta06, Zah06, Sya06] and was found to be essentially
independent of the magnetic field. In the universal regime, suppression of loss
has been observed in systems involving fermions [Ing08].

The experimental realization of an ultracold sample of simultaneously trapped
atoms and dimers is a challenging task and requires special trap conditions (see
Methods section). We prepare an ultracold atomic sample in a crossed-beam
optical dipole trap, after which a part of the atomic ensemble is converted into
dimers by means of Feshbach association [Her03, Köh06b] using a 200-mG-wide
Feshbach resonance at 48 G [Mar07a, Fer08]. For our lowest temperatures of
30 nK we obtain a mixture of about 3 × 104 atoms and 4 × 103 dimers. After
preparation of the mixture we ramp to a certain magnetic field and wait for a
variable storage time. Then we switch off the trap and let the sample expand
before ramping back over the 48-G resonance to dissociate the molecules, af-
ter which standard absorption imaging is performed. During the expansion a
magnetic field gradient is applied to spatially separate the atomic and molecular
cloud (Stern-Gerlach separation) [Her03]. In this way we simultaneously mon-
itor the number of remaining atoms and dimers, see Fig. 2.2a. A typical loss
measurement is shown in Fig. 2.2b. We observe loss of dimers on the timescale
of a few tens of milliseconds. To obtain β we have set up a dimer loss model
based on the above-mentioned rate equation (see Methods section). Because
the number of atoms greatly exceeds the number of dimers, a simple analytic
expression can be derived, which is fitted to the data. The loss of dimers due
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Figure 2.2.: Measuring the atom-dimer relaxation loss rate. (a) Absorption
image of the atom-dimer mixture after release from the trap and Stern-Gerlach
separation. (b) Time evolution of the number of atoms and dimers at 35 G.
Here the loss of dimers can be fitted with an exponential decay curve with
a 1/e lifetime proportional to β−1, as the atom number greatly exceeds the
dimer number and loss due to the dimer-dimer relaxation can be neglected (see
Methods).

to dimer-dimer relaxation is small and is taken into account; the corresponding
loss rate for this process was measured independently using a pure dimer sample
[Fer08].

The relaxation rate coefficient β is shown in Fig. 2.3 as a function of the two-
body scattering length a; the inset shows the same data as a function of the
magnetic field. For a < 0 (B < 17 G) we observe an essentially constant β of
about 1.5×10−11 cm3s−1. In this region, the atom-dimer system is non-universal
and its properties are not directly related to the scattering length. With increas-
ing a, β exhibits a strikingly different behavior. We first observe a sharp rise
in β, which reaches its maximum value at about a = 400 a0 (B = 25G), and a
subsequent smooth decrease towards values similar to those in the non-universal
region. We interpret the observed resonant enhancement as being caused by
the appearance of a three-body bound state at the atom-dimer threshold. Due
to the presence of the near-threshold trimer state, the atom-dimer scattering
length is expected to diverge [Bra06]. In analogy with a usual two-body Fesh-
bach resonance, such a three-body resonance could offer the unique possibility
to tune the atom-dimer interaction from attractive to repulsive while the atomic
two-body scattering length a stays always positive.

An intriguing question is whether the observed resonance is related to a trimer
state that crosses the atom-dimer threshold or emerges from it. The behavior of
the relaxation rate with temperature can provide further insight on this subject.
For crossing states, the trimers also exist in quasi-bound states in the continuum
above the atom-dimer threshold, and the location of the loss maximum will show
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a related shift with temperature. For a trimer state merging with the threshold
such a shift will not occur. Efimov’s scenario predicts that in the Borromean
region an Efimov trimer crosses the three-atom threshold, and measurements on
the triatomic resonance position have indeed revealed a shift with temperature
[Näg06]. In contrast, for the non-Borromean region an Efimov trimer is expected
to merge with the atom-dimer threshold, as illustrated in Fig. 2.1. Figure 2.3
shows two data sets at different temperatures, namely at 40(10) nK (blue open
triangles) and 170(20) nK (red closed squares). We observe β to be independent
of the temperature of the mixture. We do not observe any shift of the resonance
position supporting the expectation from Efimov’s scenario that the trimer state
exists only below the atom-dimer threshold. In addition, also the magnitude of
the loss rate is not affected by the temperature change, indicating that the
measurements are in the threshold regime and not unitarity limited.

At large scattering length trimer states are expected to have Efimovian char-
acter. In the non-Borromean region, Efimov physics manifests itself as a se-
ries of asymmetric resonances in the atom-dimer relaxation rate, in the uni-
versal limit separated by the factor eπ/s0 ≈ 22.7, where s0 = 1.00624. In the
zero-temperature universal limit, an analytic expression of β has been found
within an effective field theory [Bra07]. The loss rate coefficient has the form
β = CAD(a)~a/m with CAD(a) = D

[
sinh(2η∗)/

(
sin2 [s0 ln(a/a∗)] + sinh2 η∗

)]
.

The parameters a∗ and η∗, corresponding to the resonance position and the de-
cay parameter respectively, are both free in the theory since the short-range
physics of realistic three-body system is usually largely unknown. We compare
our findings with the universal predictions by fitting the analytic expression of
β to our 170 nK data in the region where a > rvdW = 100a0, with a∗, η∗ and
D as free parameters. As shown in Fig. 2.3, we observe a good qualitatively
agreement, in particular regarding the characteristic shape of the observed loss
feature. From the fit we obtain a∗ = 367(13) a0, η∗ = 0.30(4), and D = 2.0(2).
In Ref. [Bra07], D is a fixed value, which is predicted to be 20.3 in the zero-
temperature universal limit.

In the ideal Efimov scenario, the locations of the resonance features in atom-

dimer relaxation at a
(n)
∗ > 0 and those in three-body recombination at a

(n′)
− < 0

are connected via the relation a
(n)
∗ /|a(n

′)
− | ≈ 1.06 × 22.7(n−n′−1) [Bra06, Gog08].

With the observation of a
(0)
− = −850(20) a0 [Kra06b] and our present finding of

a
(1)
∗ = 367(13) a0 we obtain a

(1)
∗ /|a(0)− | = 0.43(2), which is significantly smaller

than the value 1.06 in the ideal scenario. Theoretical models that take the finite
range of the two-body potential into account [Ham07a, Thø08b, D’I09c, Pla09]
have shown that finite-range corrections, which are particularly important for
low-lying Efimov states, lead to shifts of the resonance positions. A downshift

of a
(n)
∗ is expected along with an upshift of |a(n

′)
− |. This would indeed result

in a smaller a
(1)
∗ /|a(0)− |. An alternative explanation would be a change in the

three-body parameter between the a < 0 and a > 0 regions, which may occur in
our case where these regions are connected via a zero crossing instead of a pole
in a.
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Figure 2.3.: Loss resonance in atom-dimer relaxation. The loss rate coefficient β
for atom-dimer relaxation is shown as a function of the scattering length a (main
figure) and the magnetic fieldB (inset); measurements are taken at temperatures
of 40(10) nK (blue open triangles) and 170(20) nK (red closed squares). The
error bars on β contain all statistical uncertainties (one standard deviation) from
the fit of the time evolution as well as the trap frequencies and the temperature
measurements (see Methods). The solid curve is a fit of an analytic model from
effective field theory (see text) to the data for a > rvdW = 100 a0.

We have observed a strong loss resonance in an ultracold atom-dimer mixture,
induced by a weakly bound trimer state. Our work demonstrates that atom-
dimer relaxation measurements can provide information on the three-body spec-
trum in a complementary way to three-body atomic recombination. To resolve
the open issues regarding the relation between different resonance features, more
efforts, both experimentally and theoretically, are necessary. On the experimen-
tal side, the realization of the complete Efimov scenario requires a Feshbach
resonance in which both sides of the resonance are accessible. For caesium a
broad Feshbach resonance at 800G is an excellent candidate for this purpose
[Lee07]. A full understanding of the three-body sector in real-world systems
near universality is required as a prerequisite to explore more complex few-body
phenomena [Bra06, Ham07b, Thø08a, Ste09], such as the four-body scenario on
which present experiments are beginning to shed new light [Fer08, Ste09].
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Methods

Preparation

Our ultracold atom-dimer mixture is trapped in a crossed-beam optical dipole
trap generated by two 1,064-nm laser beams with waists of about 250 µm and
36 µm [Fer08]. Since atoms and dimers in general have different magnetic mo-
ments the application of a levitation field is not appropriate and a sufficiently
high optical gradient in the vertical direction to hold the atoms and dimers
against gravity is required. However, to obtain very low temperatures and not
too high densities a tight trap is not advantageous. Here we use an adjustable
elliptic trap potential with weak horizontal confinement and tight confinement in
the vertical direction. The ellipticity is introduced by a rapid spatial oscillation
of the 36-µm waist beam in the horizontal plane with the use of an acousto-optic
modulator, creating a time-averaged optical potential. The final temperature of
the atomic and molecular sample can be set by varying the ellipticity and the
laser power of the laser beam in the final trap configuration, and is in the range
of 30-250 nK. For the lowest temperature samples, the final time-averaged el-
liptic potential is characterized by trap frequencies of 10 Hz and 20 Hz in the
horizontal plane, and 80 Hz in the vertical direction.

Dimer loss model

We measure the atom-dimer relaxation loss rate β by recording the time evo-
lution of the dimer number ND and atom number NA. In a harmonic trap the
atomic and molecular samples can be described by Gaussian density distribu-
tions, where the width depends on the trap frequencies, the temperature and the
mass. Because the polarizability of the halo dimers is twice that of the atoms,
the trap frequencies of the atoms and the dimers are the same. We find that
the atomic and molecular samples have the same temperature [Fer08]. The time
evolution of ND can then be described by the following rate equation:

ṄD = − 8√
27

βn̄AND − αn̄DND, (2.1)

with n̄A = [mω̄2/(4πkBT )]
3/2NA and n̄D = [mω̄2/(2πkBT )]

3/2ND the mean
atomic and molecular density, respectively, m the atomic mass, ω̄ the geometric
mean of the trap frequencies and T the temperature. Here loss of dimers due to
dimer-dimer relaxation is also taken into account via the dimer-dimer relaxation
loss rate coefficient α. Because of the unequal mass, the density distributions
of the atomic and molecular samples are not the same. As a result, an effective
atomic density experienced by the molecular cloud has to be considered, which
is taken into account by the factor 8√

27
in front of the atom-dimer loss term

[Sta06].
Our experiments are carried out in the regime in which NA≫ND and loss of

atoms as a result of atom-dimer relaxation is negligible. Three-body recombina-
tion leads to atom loss on a much longer timescale compared to the molecular
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lifetime. Therefore NA can be taken as a constant and equation (2.1) has the
following solution:

ND(t) =
bNAND,0

(bNA + aND,0)ebNAt − aND,0

, (2.2)

whereND,0 ≡ ND(t = 0), b ≡ 8√
27
β[mω̄2/(4πkBT )]

3/2 and a ≡ α[mω̄2/(2πkBT )]
3/2.

If βNA≫αND, i.e. dimer-dimer relaxation loss is negligible compared to atom-
dimer relaxation loss, equation (2.2) simplifies to

ND(t) = ND,0e
−bNAt, (2.3)

and ND shows an exponential decay with a 1/e lifetime of (bNA)
−1. In our

experiments dimer-dimer relaxation loss can be neglected for B > 20G and
equation (2.3) is fitted to the data. For B < 20G, β is much smaller than α
[Fer08] and the application of equation (2.2) is required, taking α from indepen-
dent loss measurements of a pure dimer sample [Fer08]. For each measurement
of β the trap frequencies and the temperature are determined by sloshing mode
and time-of-flight measurements, respectively.
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der Wissenschaften, 6020 Innsbruck, Austria
3JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440, USA

4Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA

We report on the observation of an elementary exchange process in an op-
tically trapped ultracold sample of atoms and Feshbach molecules. We can
magnetically control the energetic nature of the process and tune it from
endoergic to exoergic, enabling the observation of a pronounced threshold
behavior. In contrast to relaxation to more deeply bound molecular states,
the exchange process does not lead to trap loss. We find excellent agree-
ment between our experimental observations and calculations based on the
solutions of three-body Schrödinger equation in the adiabatic hyperspherical
representation. The high efficiency of the exchange process is explained by
the halo character of both the initial and final molecular states.

The full control of reactive processes on the quantum level is a major prospect
of ultracold chemistry. The strong current efforts to produce samples of trapped

†The primary contribution of the author of the present thesis to this publication was the
maintenance and improvement of the experimental setup together with M.M. The author
performed the measurements together with S.K. and F.F. S.K. analyzed the data based
on the theoretical description of the exchange process provided by J.P.D’I. and B.D.E.
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ultracold molecules [Kre09, Dan08, Dei08, Lan08b, Ni08, Dan10] are provid-
ing experimentalists with new systems, where fundamental questions in this
emerging field can be addressed [Car09]. Molecules can be prepared at ultralow
temperatures in a single internal state, i.e. within a specific quantum state of
its vibrational, rotational or spin quantum numbers. This allows quantum-state
selective studies of elastic, inelastic, and even chemically reactive collisions. The
application of external electromagnetic fields opens up unique possibilities for
controlling the interacting processes, thus leading to a controlled ultracold chem-
istry [Kre08].

Elementary interaction processes in ultracold molecular gases have been stud-
ied experimentally, with the observation of intriguing phenomena such as the sta-
bility of Feshbach molecules created from fermionic atoms [Str03, Cub03, Joc03b]
and the observation of collisional resonances caused by the presence of trimer
[Kno09] and tetramer states [Chi05b, Fer10]. Inelastic collisions are commonly
probed in a trap-loss regime where the products leave the trap following a large
release of internal energy; see e.g. [Muk04, Sta06, Zah06, Sya06, Zir08a, Hud08].
Such trap loss represents a readily detectable signature of the interactions, but
it does not provide information on the reaction products. The situation changes,
however, when the energies of the initial and final state are nearly degenerate,
and the small amount of energy released allow the reaction products to remain
in the trap. Such a scenario provides unique access to study the dynamics of the
reaction but has, to our knowledge, not been observed yet in ultracold gases.

In this Letter, we report on the observation of a controllable exchange process
A2 + B → A + AB in an ultracold mixture of weakly bound dimers (A2) and
free atoms (B). Our experiments provide a proof-of-principle demonstration of
an elementary exchange reaction in the ultracold regime, including the direct
observation of A atoms as a reaction product. Magnetic tuning allows to vary
the energetic nature from endoergic over resonant to exoergic. We theoretically
study the process by numerically solving the three-body Schrödinger equation
in the adiabatic hyperspherical representation [Sun02] using a model potential.
The calculations highlight the important role of large scattering lengths in the
universal halo regime where both the A2 and the AB dimers are very weakly
bound [Köh06b, Fer09b]. Our results can be interpreted as the first observation
of a reaction in the regime of universal interactions [Bra06].

The two atomic constituents A and B are represented by Cs atoms in different
hyperfine states. More specifically, A represents the lowest hyperfine sublevel
|F = 3,mF = 3⟩, and B one of the upper |F = 4,mF ⟩ hyperfine sublevels,
with mF = 2, 3 or 4; the quantum number F denotes the total spin and mF

its projection. The characterization of the weakly bound dimer states according
to the atomic hyperfine spin states is possible as the molecular binding energies
are much smaller than the atomic hyperfine and Zeeman splitting. Since A and
B only differ by their spin state, atom exchange is indistinguishable from spin
exchange and the exchange process generally represents a coherent sum of both.

The magnetic field dependencies of the relevant molecular states play a crucial
role for the exchange process. In Fig. 3.1(a) we schematically show the Zeeman
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Figure 3.1.: (a) Zeeman diagram of the most weakly bound dimer states A2 and
AB below the A+A and A+B dissociation thresholds, respectively; here A and
B are two hyperfine sublevels of Cs. (b) Schematic representation of a crossing
between the A2+B and A+AB channels. (c) The energy difference ∆E between
the A2+B(mF ) and A+AB(mF ) channels, with mF = 2, 3 or 4, showing channel
crossings around 35G for mF = 2 and 3.

diagram of the most weakly bound states A2 and AB below the A+A and A+B
dissociation thresholds, respectively. The magnetic field dependence of the A2

binding energy has been studied both experimentally and theoretically [Chi04b,
Mar07a]. Towards lower magnetic fields the A2 state bends away from the A+A
threshold, and its binding energy increases from h×30 kHz at 45G to h×150 kHz
at 30G. The AB binding energies are essentially independent of the magnetic
field and amount to about h × 5 kHz for mF = 4, and h × 80 kHz for mF = 2
and mF = 3. We obtain these values from scattering length calculations [Jul08],
using a generalized relation between the scattering length and the binding energy
derived from quantum defect theory [Gao04].

As a result of the different magnetic field dependencies of the A2 and AB
binding energies, the A2+B and A+AB channels can cross each other, which is
depicted in Fig. 3.1(b). Such a scenario provides the opportunity to magnetically
tune the exchange process into resonance. A quantitative picture is shown in
Fig. 3.1(c), showing the energy difference ∆E between the A2+B and A+AB
channels. The channels cross for mF = 2 and 3 around 35G, and for higher
magnetic fields the exchange process A2 + B → A + AB is exoergic and thus
energetically allowed. For mF = 4 the exchange process remains endoergic in
the investigated magnetic field range.

The experimental setup has been described earlier [Fer08, Kno09]. In brief, we
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Figure 3.2.: Rate coefficient β for inelastic atom-molecule collisions for the B+A2

mixtures at a temperature of 50(10) nK as function of the magnetic field B, com-
paring the experimental results (symbols) with the model calculations (lines).
The solid curves represent the total A2 loss rate including relaxation to more
deeply bound states, whereas the dashed curve shows the contribution of the
exchange process. The error bars contain the uncertainties of the trap frequen-
cies and temperature measurements, required to convert the measured particle
numbers into densities.

prepare an ultracold thermal sample of Cs atoms at temperatures of 50-100 nK
in state A in a crossed-beam optical dipole trap, with a mean trap frequency of
typically 30Hz. Feshbach association at a narrow Feshbach resonance at 48G
results in an A+A2 atom-molecule mixture consisting of 4000 molecules and
30 000 atoms. By applying a 3-ms microwave (MW) pulse we transfer the atoms
from state A to state B with an efficiency of better than 95% and without any
observable effect on the A2 molecules. After preparation of the B+A2 mixture
we ramp to a certain magnetic field and wait for a variable storage time. Then
we switch off the trap and let the sample expand before ramping back over the
48-G resonance to dissociate the remaining A2 molecules, after which standard
absorption imaging is performed. During expansion we apply the Stern-Gerlach
technique to spatially separate the different atomic and molecular states.

In a first set of experiments, we measure the atom-molecule inelastic collision
rates by recording the time evolution of the number of A2 molecules and B
atoms. In order to extract a rate coefficient β from the data we set up a loss
model, similar to the one described in Ref. [Kno09]. The model includes loss by
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molecule-molecule collisions [Fer08] and atomic loss due to two-body hyperfine-
changing collisions. We derive an analytic expression, which we fit to the data.
We show the results in Fig. 3.2, showing β as function of the magnetic field. The
measured loss rate coefficient includes all atom-molecule collisions that lead to
the loss of A2 molecule from the sample, i.e. both the exchange process as well
as relaxation to more deeply bound vibrational states.

In parallel, we theoretically determine the loss rates for A2+B collisions. We
model the two-body interactions with short-range potentials that have only a
few bound states. Their strength is chosen in such a way to reproduce the energy
of the weakly bound molecular A2 and AB states at each magnetic field. The
results of our calculations are shown in Fig. 3.2 for mF = 3 and 4. The solid
curves display the total loss rate of A2 molecules, including both the exchange
process and relaxation to more deeply bound states. The dashed curve shows
the contribution that results from the exchange process. Because of the sim-
plicity of the model potential the calculations are not expected to have accurate
predictive power regarding the absolute total loss rate. Therefore the calcula-
tions are normalized to the experimental data to facilitate the comparison. The
comparison between theory and experiment shows excellent agreement in the
dependencies of the total loss rates on the magnetic field.

The most striking observation is the resonant enhancement that the rate co-
efficient β shows for both mF = 2 and 3 around 35G. The calculations show
that the resonance is caused by opening up the possibility for the exchange
process. Once energetically allowed, it contributes to 80% of all the inelastic
atom-molecule collisions. Within the theoretical model the results for mF = 2
(not shown in Fig. 3.2) are exactly the same as for mF = 3, but simply shifted
in magnetic field by 1.3 G because of the slight difference in AB binding energy.

A “smoking gun” for the exchange process is the appearance of atoms in state
A. They show up as a reaction product and remain in the trap because of the
small energy release. In a second set of experiments, we measure the number
of A2 molecules and A atoms in a small magnetic field range around 35G after
holding the A2+B mixtures for mF = 2 and 3 for a fixed storage time. The
results are shown in Figs. 3.3(a) and 3.3(b), for the fraction of remaining A2

molecules and A atoms, respectively. We indeed observe the onset of the ap-
pearance of A atoms around 35G, providing clear evidence for the exchange
process. Most of lost A2 molecules are accompanied by the appearance of A
atoms, indicating that the molecular loss is dominated by the exchange process.
The curves in Figs. 3.3(a) and 3.3(b) are obtained from the theoretical total loss
and exchange rates, respectively. The number of A atoms is consistent with the
calculations1.

The observation of A atoms implies that also AB molecules are produced.

1We attribute the small amount of A atoms present at lower magnetic field values to the
imperfect MW transfer. However, because the MW transfer is done at a fixed magnetic
field value, the number of non-transferred A atoms is independent of the magnetic field at
which the measurement is performed. Therefore we expect a constant background, which
is added to the theoretical results to obtain the curves of Fig. 3.3(b).
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Figure 3.3.: Measurement of the fraction of A2 molecules (a) and A atoms (b),
after a fixed storage time of 22ms of the B+A2 mixtures at a temperature of
100(10) nK. The fractions are defined as the A2 molecule and A atom number
normalized to the initial A2 molecule number (about 4000). The data points are
averaged over three to five measurement runs and the error bars represent the
statistical uncertainty. The lines are obtained from the rate equations using the
theoretical results for the total loss rates (a) and exchange rates (b), as shown
in Fig. 3.2.

However, we cannot observe trapped AB molecules because of the absence of
Feshbach resonances in the present magnetic field region to dissociate the AB
molecules [Jul08]. Furthermore, the AB molecule is expected to very rapidly
decay via spin relaxation [Mar07a].

A remarkable finding is the dominance of the exchange process over inelastic
decay to more deeply bound states. This can be explained by the fact that the
exchange process takes place in a regime where the relevant two-body scattering
lengths are very large and the dimer A2 and AB are in the quantum halo regime
[Bra06]. The relevant scattering lengths are shown in Fig. 3.4; they are all
in the universal regime for B > 20G. Near and above the magnetic fields at
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which the A2+B and A+AB channels cross, the dominance of the exchange
process can be attributed to the large wavefunction overlap between these two
channels resulting from the large and similar extent of the A2 and AB states.
That is in contrast to the small overlap between the A2+B channel to more
deeply bound channels because of the small extent of the deeply bound states.
In our calculations we were able to verify that, when the channel crossing occurs
at small scattering lengths, all processes have the same importance and the
exchange process is not favored.

Our theoretical analysis also indicates that for large scattering lengths the ex-
change process occurs predominantly when all three atoms are within distances
comparable to the scattering lengths and, therefore, none of the atoms “see” the
short-range details of the interatomic interactions. In contrast, atom-molecule
collisions that populate more deeply bound states require all three atoms to ap-
proach to short distances. Therefore, our theoretical findings suggest that the
dominance of the exchange process is a consequence of the universal regime of
halo dimers. In fact, the nearly equal experimental rates for the mF = 2 and
mF = 3 cases are consistent with our expectation that, near the channel crossing,
the main collisional behavior depends only on the scattering lengths. Therefore
we also expect atom exchange to be the dominant process in heteronuclear sys-
tems when both the heteronuclear and one of the homonuclear scattering lengths
are large and positive. The possible high efficiency of atom exchange for halo
molecules was already pointed out long time ago [Stw78, Stw04].

Finally we turn to our observations for the mF = 4 case (see Fig. 3.2). Here
we observe no resonance, but instead very small loss rates for B > 20G. We find
that this is well reproduced by the model calculations. Although the A2+B and
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A+AB channels do not cross on the present range of magnetic fields, the fact
that both scattering lengths are large does affect the collisional behavior. In our
numerical calculations we find a strong coupling between between the A2+B and
A+AB channels at interatomic separations comparable to the A+A scattering
length. Such a coupling manifests itself in the appearance of a repulsive barrier in
both channels, leading to the observed suppression of A2+B collisions [D’I09a].
To summarize, we have observed an exchange process in an optically trapped

ultracold sample of atoms and Feshbach molecules. In a mixture of A2 molecules
and B atoms, where A and B are two hyperfine sublevels of Cs, we observe the
appearance of free atoms in state A once the exchange process is magnetically
tuned to be exoergic. This lead to a resonant enhancement near threshold. In
contrast to relaxation to more deeply bound molecular states, the exchange pro-
cess does not lead to trap loss. The magnetic field dependence of the measured
total inelastic collision and exchange rates are in excellent agreement with model
calculations. The high efficiency of the exchange process is explained by the halo
character of both the initial and final molecular states.
Our observation represents an elementary example for the possibility to con-

trol a reaction that involves ultracold molecules. Since field-dependent resonance
and threshold phenomena are ubiquitous in molecular gases, we expect that sim-
ilar possibilities will arise in many situations and offer intriguing possibilities in
the developing field of ultracold molecular quantum gases and controlled ultra-
cold chemistry.
We thank P. S. Julienne for helpful discussions and providing us the scat-

tering length calculations. We acknowledge support by the Austrian Science
Fund (FWF) within SFB 15 (project part 16). S. K. was supported within the
Marie Curie Intra-European Program of the European Commission. F. F. was
supported within the Lise Meitner program of the FWF. J. P. D. and B. D. E.
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We report on the observation of triatomic Efimov resonances in an ultracold
gas of cesium atoms. Exploiting the wide tunability of interactions resulting
from three broad Feshbach resonances in the same spin channel, we mea-
sure magnetic-field dependent three-body recombination loss. The positions
of the loss resonances yield corresponding values for the three-body param-
eter, which in universal few-body physics is required to describe three-body
phenomena and in particular to fix the spectrum of Efimov states. Our obser-
vations show a robust universal behavior with a three-body parameter that
stays essentially constant.

†The author of the present thesis made essential contributions to deriving the concept of
the experiment. In particular, he constructed and implemented the magnetic field system
capable of reaching magnetic field strengths exceeding 1400 G. In this he was supported
by W.H. and A.Z. The author of the present thesis recorded the data and performed the
analysis together with A.Z. and B.H.. A.Z. and B.H. made important contributions to
the improvement of the experimental setup. J.M.H. and P.S.J. derived the magnetic field
dependence of the scattering length via a coupled-channel calculation based on experimen-
tally obtained data.
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The concept of universality manifests itself in the fact that different physi-
cal systems can exhibit basically the same behavior, even if the relevant energy
and length scales differ by many orders of magnitude [Bra06]. Universality thus
allows us to understand in the same theoretical framework physical situations
that at first glance seem completely different. In ultracold atomic collisions, the
universal regime is realized when the s-wave scattering length a, characterizing
the two-body interaction in the zero-energy limit, is much larger than the char-
acteristic range of the interaction potential. Then the essential properties of the
two-body system such as the binding energy of the most weakly bound dimer
state and the dominating part of the two-body wave function can simply be de-
scribed in terms of a, independent of any other system-dependent parameters.
In the three-body sector, the description of a universal system requires an ad-
ditional parameter, which incorporates all relevant short-range interactions not
already included in a. In few-body physics, this important quantity is commonly
referred to as the three-body parameter (3BP).

In Efimov’s famous scenario [Efi70, Bra06], the infinite ladder of three-body
bound states follows a discrete scaling invariance, which determines the relative
energy spectrum of the states. The 3BP fixes the starting point of the ladder
and thus the absolute energies of all states. The parameter enters the theoret-
ical description as a short-range boundary condition for the three-body wave
function in real space or as a high-frequency cut-off in momentum space. To
determine the 3BP from theory would require precise knowledge of both the
two-body interactions and the genuine three-body interactions at short range.
In real systems, this is extremely difficult and the 3BP needs to be determined
experimentally through the observation of few-body features such as Efimov
resonances.

In the last few years, ultracold atomic systems have opened up the possibility
to explore Efimov’s scenario experimentally and to test further predictions of
universal theory [Kra06b, Kno09, Zac09, Pol09a, Gro09, Huc09, Ott08, Wil09,
Bar09, Gro10, Lom10a, Nak10]. The key ingredient of such experiments is the
possibility to control a by an external magnetic field B via the Feshbach res-
onance phenomenon [Chi10]. This naturally leads to the important question
whether the 3BP remains constant or whether it is affected by the magnetic
tuning, in particular when different Feshbach resonances are involved.

The current status of theoretical and experimental research does not pro-
vide a conclusive picture on possible variations of the 3BP. A theoretical study
[D’I09c] points to strong possible variations when different two-body resonances
are exploited in the same system, and even suggests a change of the 3BP on the
two sides of a zero crossing of the scattering length. Other theoretical papers
point to the importance of the particular character of the Feshbach resonance
[Chi10]. While closed-channel dominated (“narrow”) resonances involve an ad-
ditional length scale that may fix the 3BP [Pet04a, Mas08, Wan11a], the case
of entrance-channel dominated (“broad”) resonances leaves the 3BP in principle
open. However, predictions based on two-body scattering properties exist that
apparently fix the 3BP for broad resonances as well [Lee07, JL10, Nai11]. The
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available experimental observations provide only fragmentary information. The
first observation of Efimov physics in an ultracold Cs gas [Kra06b] is consistent
with the assumption of a constant 3BP on both sides of a zero crossing. A later
observation on 39K [Zac09] indicated different values of the 3BP on both sides
of a Feshbach resonance. A similar conclusion was drawn from experiments on
7Li [Pol09a], but other experiments on 7Li showed universal behavior with a
constant 3BP for the whole tuning range of a single resonance [Gro09] and for
another spin channel [Gro10]. Besides these observations on bosonic systems,
experiments on fermionic gases of 6Li [Ott08, Huc09, Wil09] can be interpreted
based on a constant 3BP [Wen09]. A recent experiment on 6Li, however, indi-
cates small variations of the 3BP [Nak11].
In the present work, we investigate universality in an ultracold gas of Cs

atoms, which offers several broad Feshbach resonances in the same spin chan-
nel and thus offers unique possibilities to test for variations of the 3BP. In the
lowest hyperfine and Zeeman sublevel |F =3,mF =3⟩, Cs features a variety of
broad and narrow Feshbach resonances in combination with a large background
scattering length [Chi04b]. Of particular interest are three broad s-wave Fes-
hbach resonances in the range up to 1000G 1, with poles near −10 G, 550 G,
and 800 G [Chi04b, Lee07, Chi10]. The character of these three resonances is
strongly entrance-channel dominated, as highlighted by the large values of their
resonance strength parameter sres [Chi10] of 560, 170, and 1470, respectively.
The resulting magnetic-field dependence a(B) is illustrated in Fig. 4.1. In our
previous work [Kra06b, Kno09] we have focussed on the low-field region up to
150 G. After a major technical upgrade of our coil set-up, we are now in the
position to apply magnetic fields B of up to 1.4 kG with precise control down to
the 20 mG uncertainty level and thus to explore the resonance regions at 550 G
and 800 G 2.
Our ultracold sample consists of about 2× 104 optically trapped 133Cs atoms,

close to quantum degeneracy. The preparation is based on an all-optical cooling
approach as presented in Refs. [Kra04, Mar07a]. The final stage of evaporative
cooling is performed in a crossed-beam dipole trap (laser wavelength 1064 nm)
and stopped shortly before Bose-Einstein condensation is reached. Finally, the
trap is adiabatically recompressed to twice the initial potential depth to suppress
further evaporation loss. At this point, the mean trap frequency is about 10Hz
and the temperature is typically 15 nK.
Our experimental observable is the three-body loss coefficient L3, which in

the framework of universal theory is conveniently expressed as L3 = 3C(a)~a
4

m

[Web03c], where m denotes the atomic mass. The expression separates a log-
periodic function C(a) from the general a4-scaling of three-body loss. For a < 0,
effective field theory [Bra06] provides the analytic expression

C(a) = 4590
sinh(2η−)

sin2[s0 ln(a/a−)] + sinh2 η−
, (4.1)

1Units of gauss instead of the SI unit tesla (1G = 10−4 T) are used to conform to conventional
usage in this field.

2The upgrade of the magnetic field system is described in detail in AppendixB.
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Figure 4.1.: Illustration of the three broad s-wave Feshbach resonances for Cs in
the absolute atomic ground state |F =3,mF =3⟩. The open circle corresponds
to the previous observation of a triatomic Efimov resonance at 7.6G [Kra06b].
The many narrow Feshbach resonances resulting from d- and g-wave molecular
states [Chi04b] are not shown for the sake of clarity. The region with B < 0
corresponds to the state |F =3,mF =−3⟩, which is not stable against two-body
decay. Scattering lengths are given in units of Bohr’s radius a0.

with s0 ≈ 1.00624 for identical bosons. The decay parameter η− is a non-
universal quantity that depends on the deeply-bound molecular spectrum [Wen09].
The scattering length a− marks the situation where an Efimov state intersects
the three-atom threshold and the resulting triatomic Efimov resonance leads to
a giant three-body loss feature. In the following, the quantity a− will serve us
as the representation of the 3BP.

To measure L3 we record the time evolution of the atom number after quickly
(within 10ms) ramping B from the evaporation to the target field strength.
We determine the atom number N by absorption imaging. One-body decay,
as caused by background collisions, is negligible under our experimental condi-
tions. Furthermore, two-body decay is energetically suppressed in the atomic
state used. We can therefore model the decay by Ṅ/N = −L3⟨n2⟩, where the
brackets denote the spatial average weighted with the atomic density distribu-
tion n. Additional, weaker loss contributions caused by four-body recombination
[Fer09a] can be described in terms of an effective L3 [Ste09]. For fitting the decay
curves and extracting L3 we use an analytic expression that takes into account
the density decrease resulting from anti-evaporation heating [Web03c].

The experimental results are a function of B whereas theory expresses L3

as a function of a. It is thus crucial to have a reliable conversion function
a(B). We have obtained a(B) from full coupled-channel calculations on a Cs-Cs
potential obtained by least-squares fitting to extensive new measurements of
binding energies, obtained by magnetic-field modulation spectroscopy [Lan09b],
together with additional measurements of loss maxima and minima that occur at
resonance poles and zero crossings. The new potential provides a much improved
representation of the bound states and scattering across the whole range from
low field to 1000 G. The experimental results and the procedures used to fit
them will be described in a separate publication.
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Figure 4.2.: Recombination loss in the vicinity of the high-field Feshbach res-
onances. The measured recombination length ρ3 is shown for three different
regions (N, 552G < B < 554G; •, 554G < B < 558G; �, 830G < B < 950G),
which are separated by the poles of different Feshbach resonances. The error
bars indicate the statistical uncertainties. For all three regions, the solid lines
represent independent fits to the data at negative a. The dashed lines show
the predictions of effective field theory for a > 0 [Bra06], using the parameters
obtained in the same region at a < 0. The insets show a(B) (solid line, full cal-
culation; dash-dot line, s-wave states only). The arrows in the main figure and
the corresponding dots in the insets refer to the triatomic Efimov resonances.
The small arrow indicates a recombination minimum.

Figure 4.2 shows our experimental results on the magnetic-field dependent
recombination loss near the two broad high-field Feshbach resonances (550G
and 800G regions). For convenience we plot our data in terms of the recombi-
nation length ρ3 = (2mL3/(

√
3~))1/4 [Esr99]. The three filled arrows indicate

three observed loss resonances that do not coincide with the poles of two-body
resonances. We interpret these three features as triatomic Efimov resonances.

In the 800 G region, a single loss resonance shows up at 853G, which lies in the
region of large negative values of a. We fit the L3 data based on Eq. (4.1) 3 and
using the conversion function a(B) described above. The fit generally reproduces
the experimental data well, apart from a small background loss that apparently
does not result from three-body recombination4. For the 3BP the fit yields
the resonance position of a− = −955(28) a0, where the given error includes all
statistical errors. For the decay parameter the fit gives η− = 0.08(1).

For the 550G region, Fig. 4.1 suggests a qualitatively similar behavior as found
in the 800G region. The experimental data, however, reveal a more complicated
structure with three loss maxima and a pronounced minimum. This behavior
is explained by a g-wave resonance (not shown in Fig. 4.1) that overlaps with
the broader s-wave resonance. We have thoroughly investigated this region

3The fits include an additional free scaling factor λ to account for possible systematic errors
in the number density. For the 800 G region, we obtain λ = 0.89. For the lower and upper
550 G region, we obtain λ = 0.46 and λ = 1.06, respectively.

4The smallest values obtained for ρ3 correspond to one-body lifetimes exceeding 100 s.
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Figure 4.3.: Efimov resonances and the 3BP. In (a) and (b), we compare the
resonance previously observed [Kra06b] at 7.6G to the one found at 853G. In (c),
we plot the 3BPs obtained for all four resonances measured in Cs. The dashed
line corresponds to a mean value of am = −921 a0, calculated as a weighted
average of the four different values. The logarithmic scale (to the basis of 22.7)
covers one tenth of the Efimov period.

by Feshbach spectroscopy. These studies clearly identify the central maximum
(554.06G) and the deep minimum (553.73G) as the pole and zero crossing of the
g-wave resonance (see inset). With sres = 0.9, this resonance is an intermediate
case between closed-channel and entrance-channel dominated.

The g-wave resonance causes a splitting that produces two Efimov resonances
instead of one in this region. This explains the upper and the lower loss max-
ima, which are found at 553.30(4) G and 554.71(6) G (arrows in Fig. 4.2). To
determine the parameters of these Efimov resonances, we independently fit the
two relevant regions of negative scattering length using Eq. (4.1) 5. This yields
a− = −1029(58) a0 and −957(80) a0 for the lower and the upper resonances,
respectively.

5The fits include an additional free scaling factor λ to account for possible systematic errors
in the number density. For the 800 G region, we obtain λ = 0.89. For the lower and upper
550 G region, we obtain λ = 0.46 and λ = 1.06, respectively.
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Bres (G) a−/a0 δ1/a0 δ2/a0 δ3/a0 η−
7.56(17) −872(22) 21 3 6 0.10(3)

553.30(4) −1029(58) 43 28 27 0.12(1)
554.71(6) −957(80) 57 25 49 0.19(2)
853.07(56) −955(28) 27 1 4 0.08(1)

Table 4.1.: Parameters of the four triatomic Efimov resonances. The first and
second column give the magnetic field values Bres at the resonance centers and
the corresponding 3BPs together with their full statistical uncertainties. The
individual error contributions δ1, δ2, and δ3 refer to the statistical uncertainties
from the fit to the L3 data, from the determination of the magnetic field strength,
and from the a(B)-conversion, respectively.

We now compare all our observations on triatomic Efimov resonances in Cs.
We also include the previous data of Ref. [Kra06b] on the low-field resonance
(7.6G), which we have refitted using our improved a(B) conversion. The rele-
vant parameters for the four observed Efimov resonances are given in Table 4.1.
Figures 4.3(a) and 4.3(b) show the recombination data for the low-field reso-
nance and the 853G resonance, using a convenient ρ3(a) representation. This
comparison illustrates the striking similarity between both cases. For all four
Efimov resonances, Fig. 4.3(c) shows the 3BP on a logarithmic scale, which re-
lates our results to the universal scaling factor 22.7. Note that the full scale is
only one tenth of the Efimov period, i.e. a factor 22.7

1
10 ≈ 1.37. The error bars

indicate the corresponding uncertainties (1 standard deviation), resulting from
all statistical uncertainties 6. The data points somewhat scatter around an aver-
age value of about −921 a0 (dashed line) with small deviations that stay within
a few percent of the Efimov period. Taking the uncertainties into account, our
data are consistent with a constant 3BP for all four resonances. However, be-
tween the values determined for the two broad resonances at 7.6 and 853G we
find a possible small aberration of about 2.5 standard deviations. This may be
accidental but it may also hint at a small change in the 3BP.

Let us briefly discuss our findings on further few-body observables. For
a > 0, three-body recombination minima are well known features related to
Efimov physics [Bra06, Kra04, Zac09, Pol09a]. In the 800G region, we ob-
serve a minimum at B = 893(1)G (small arrow in Fig. 4.2), corresponding to
a = +270(30) a0, which is very similar to the minimum previously observed in
the low-field region [Kra04] and consistent with a universal connection to the
a < 0 side. In general, however, these minima are difficult to access in Cs and
dedicated experiments will be needed to provide stringent tests also for the a > 0
side. Also atom-dimer resonances [Kno09, Zac09, Pol09a] have not yet been ob-

6Systematic uncertainties are not included in our error budget. They may result from model-
dependent errors in the determination of the scattering length from binding energy and
scattering data and from finite-temperature shifts. All these errors, however, stay well
below the statistical uncertainties.
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served in the high-field region. Additional measurements in the 800G region
(not shown) reveal a pair of four-body resonances at 865.4(5)G and 855.0(2)G,
corresponding to scattering lengths of −444(8) a0 and −862(9) a0. This excel-
lently fits to universal relations [Ste09] and our previous observations at low
magnetic fields [Fer09a].
Our observations show that universality persists in a wide magnetic-field range

across a series of Feshbach resonances in the same spin channel and that the 3BP
shows only minor variations, if any. This rules out a scenario of large variations
as suggested by the model calculations of Ref. [D’I09c]. The apparent fact that
the relevant short-range physics is not substantially affected by the magnetic field
may be connected to the strongly entrance-channel dominated character [Chi10]
of the broad resonances in Cs. However, even the case of overlapping s- and
g-wave Feshbach resonances, where the latter one has intermediate character,
is found to exhibit universal behavior consistent with an essentially constant
3BP. Our observation that universality is robust against passing through many
poles and zero crossings of the scattering length also implies a strong argument
in favor of a universal connection of both sides of a single Feshbach resonance.
This supports conclusions from experiments on 7Li as reported in Refs. [Gro09,
Gro10], in contrast to Ref. [Pol09a] and related work on 39K [Zac09].
With the present experimental data there is growing experimental evidence

that theories based on low-energy two-body scattering and the near-threshold
dimer states [Lee07, JL10, Nai11] can provide reasonable predictions for the 3BP
without invoking genuine short-range three-body forces, which are known to be
substantial for all the alkali metal trimers [Sol03]. We also stress a remarkable
similarity [Gro09] between the Cs data and experimental results on both Li
isotopes. When the 3BP is normalized to the mean scattering length ā of the van
der Waals potential [Chi10], our actual Cs value a−/ā = −9.5(4) is remarkably
close to corresponding values for 7Li [Gro10, Pol09a] and 6Li [Ott08, Huc09,
Wil09, Wen09], which vary in the range between −8 and −10.
Universality in tunable atomic quantum gases near Feshbach resonances ap-

pears to be rather robust, but the understanding of the particular reasons and
conditions remains a challenge to few-body theories.
We thank M. Ueda, T. Mukaiyama, P. Naidon, and S. Jochim for discussions.

We acknowledge support by the Austrian Science Fund FWF within project
P23106. A.Z. is supported within the Marie Curie Intra-European Program of
the European Commission. P.S.J. and J.M.H. acknowledge support from an
AFOSR MURI grant.
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and R. Grimm1,2

1Institut für Experimentalphysik und Zentrum für Quantenphysik,
Universität Innsbruck, 6020 Innsbruck, Austria

2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie
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We study inelastic collisions in a pure, trapped sample of Feshbach molecules
made of bosonic cesium atoms in the quantum halo regime. We measure
the relaxation rate coefficient for decay to lower-lying molecular states and
study the dependence on scattering length and temperature. We identify a
pronounced loss minimum with varying scattering length along with a further
suppression of loss with decreasing temperature. Our observations provide
insight into the physics of a few-body quantum system that consists of four
identical bosons at large values of the two-body scattering length.

Few-body quantum systems in halo states exhibit unique properties [Jen04].
A quantum halo is a very weakly bound state whose wave function extends
far into the classically forbidden range. Halo systems are much larger than
one would expect from the characteristic interaction range of their constituents.

†The primary contribution of the author of the present thesis to this publication was the
construction and implementation of an optical dipole trap with adjustable ellipticity, to-
gether with M.M. and H.S. He also worked on maintaining the experimental setup. He
recorded the data together with F.F. and S.K. F.F. performed the data analysis.
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Many examples for halo states are known in nuclear physics, with the deuteron
being a prominent example [Bla52]. In molecular physics, the He dimer has for
many years served as the prime example of a halo state [Luo93, Sch94].

A particular motivation to study halo states is given by the concept of uni-
versality in few-body systems [Bra06]. Since, in a halo state, short-range details
of the interaction become irrelevant, the system is described by very few pa-
rameters and shows universal behavior in its low-energy observables. A halo
dimer is the elementary two-body halo system. Here the only relevant length
scale is given by the scattering length a, which describes the s-wave interaction
between its two constituents. The size of the halo dimer is directly related to
a and the binding energy is Eb = ~2/(2µa2), where µ is the reduced mass. For
three-body halo systems, universal Efimov states can exist [Efi70, Kra06b]. Here
one additional parameter is required to fully describe the system in the universal
limit. A natural further step is to investigate the universal physics of systems
composed of four identical bosons. The fundamental properties of such systems
are unexplored terrain, with the existence of an additional four-body parameter
[Yam06, Ham07b], the scaling and threshold behavior, and the binding energies
of four body-states [Ham07b] being open issues.

In the field of ultracold gases, the Feshbach association technique [Köh06b]
has provided experimentalists with unprecedented possibilities to create and
study halo dimers. In the case of certain Feshbach resonances, a considerable
range of universality exists, where halo dimers can be conveniently controlled by
a magnetic bias field to vary their binding energy and size. Such tunable halo
dimers are unique probes to explore quantum phenomena related to universality.
A binary collision between two halo dimers can be seen as an elementary four-
body process. For a special kind of halo dimers such a four-body process has
already attracted considerable attention: halo dimers made of fermionic atoms
in different spin states allow to create molecular Bose-Einstein condensates and
to study the crossover to a fermionic superfluid [Ing08]. Here a key point is
the Pauli suppression effect that, in combination with the halo nature of the
dimer, leads to stability against decay into lower-lying molecular states and
favors elastic processes [Pet04b].

In this Letter, we study binary collisions in a pure, trapped sample of tunable
halo dimers made of bosonic atoms. Halo dimers of this class have so far received
much less experimental attention than their fermionic counterparts, although
they represent an important link to universal few-body phenomena in systems
of few interacting bosons; for three particles, an early example is the predicted
atom-dimer“Efimov”resonances [Efi79]. Halo dimers of bosonic atoms have been
realized in ultracold gases of 85Rb and 133Cs [Tho05a, Mar07a] and properties of
the individual dimers, like binding energies, magnetic moments, and spontaneous
decay rates, have been measured. In contrast, their collision properties have
remained unexplored terrain. Because of the absence of a Pauli suppression
effect, substantial inelastic decay to lower-lying molecular states can be expected.
The observation of loss serves as a probe for dimer-dimer interactions [Jen04,
Köh06b].
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Figure 5.1.: Weakly bound Cs2 molecular states at low magnetic fields. (a)
Binding energies of the relevant Cs2 dimer states. The zero-energy level is the
s-wave threshold of two colliding Cs atoms in their absolute hyperfine ground
state sub-level. (b) s-wave scattering length a versus the magnetic field (see
text). The shaded regions in (a) and (b) indicate the non-halo regime with
Eb > EvdW, and a < rvdW, respectively.

Our experiments are performed with 133Cs atoms, which represent an excel-
lent system to study few-body physics with bosons at large scattering lengths
[Kra06b] because of the unique scattering properties [Chi04b]. In the lowest spin
state at low magnetic fields, one finds a broad entrance-channel dominated s-
wave Feshbach resonance [Web03b, Köh06b] along with an extraordinarily large
background scattering length. The scattering properties of ultracold atoms are
governed by the last bound s-wave state below the dissociation threshold as dis-
played in Fig. 5.1. In a wide magnetic-field range, this state carries a quantum
halo character, where the two-body scattering length far exceeds the classical
interaction range of the van der Waals potential, rvdW (≈ 100 a0), and the bind-
ing energy Eb is much smaller than the corresponding EvdW (≈ h× 2.7 MHz) 1.
Here a0 is Bohr’s radius.

1The van der Waals length and energy can be defined as rvdW = 1
2 (mC6/~2)1/4 and EvdW =

~2/mr2vdW, respectively [Köh06b].
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Our experimental procedure to produce an optically trapped sample of tunable
halo dimers involves several stages. We initially prepare ultracold trapped 133Cs
atoms in their absolute hyperfine ground state sublevel |F,mF ⟩ = |3, 3⟩, similarly
to Ref. [Mar07a]. The atoms are optically trapped by two crossed 1064-nm laser
beams with waists of about 250 µm and 36 µm, while a magnetic field levitates
the atoms against gravity [Web03b, Her03]. The levitation field ensures an
optimized evaporative cooling of the atoms, which is realized by lowering the
optical power in the trapping beams. We stop the cooling just before the onset
of Bose-Einstein condensation to avoid too high atomic densities. At our lowest
temperature of 20 nK, we obtain about 1.5× 105 non-condensed atoms.

In the next stage, we create the halo dimers by Feshbach association. Here, the
application of the levitation field is not appropriate since atoms and dimers in
general have different magnetic moments. This leads to special requirements for
the trap design. On the one hand, we need a sufficiently high optical gradient in
the vertical direction to hold the atoms and dimers against gravity. On the other
hand, we want to avoid the high density of a tight trap, which causes fast losses
driven by atom-dimer collisions. These two requirements can be simultaneously
fulfilled by using an elliptic trap potential with weak horizontal confinement and
tight confinement in the vertical direction. Shortly before molecule production,
we adiabatically convert the levitated trap to a non-levitated trap by simulta-
neously changing the levitation field, the optical power, and the trap ellipticity.
The latter is modified by a rapid spatial oscillation of the 36-µm waist beam in
the horizontal plane with the use of an acousto-optic modulator at a frequency
of about 100 kHz, which greatly exceeds the typical trap frequencies, and thus
creates a time-averaged optical potential [Mil01, Fri01, Alt07b]. The adiabatic
change of the trap shape is set in a way to keep the peak density, the tem-
perature, and thus the phase-space density constant2. Right after converting
the trap, we associate the halo dimers by sweeping the magnetic field across
the 200 mG wide d-wave Feshbach resonance located at approximately 48 G
[Mar07a], (see Fig. 5.1).

The molecular temperature can be set by adjusting the temperature of the
initial atomic sample. To selectively measure the atomic and molecular tem-
peratures, we spatially separate the two components with the Stern-Gerlach
technique, and we perform a subsequent time-of-flight imaging, as described in
Refs. [Her03, Mar07a]. In Fig. 5.2(a), we compare the atomic and the molecu-
lar temperatures for a wide range of the initial temperatures. In spite of some
overall heating in the conversion process, we observe that the dimers and the
atoms have the same translational temperature in the trap. This observation
may indicate an elastic interaction between atoms and dimers on the 10 ms time
scale of our preparation sequence and it allows us to conveniently use the atomic
sample to determine the temperature of the molecular gas.

In the last step of the preparation sequence, we selectively remove the atoms
from the dipole trap. This is done by using a double-resonant purification

2For the lowest temperature samples, the final time-averaged elliptic potential has trap fre-
quencies of 10 Hz and 20 Hz in the horizontal plane, and 80 Hz in the vertical direction.
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Figure 5.2.: Measurements on the trapped molecular sample. (a) Comparison
between the atomic and molecular temperatures Ta and Tm at 35 G, where
Eb ≃ h × 87 kHz. The solid line indicates equal temperatures for atoms and
molecules. (b) Number of halo dimers N as a function of the holding time in
trap at 28.3 G (a = 500 a0, squares) and at 45.6 G (a = 900 a0, circles). The
solid lines are fits to the data (see text).

scheme, which combines microwave excitation with resonant light3, similarly to
Ref. [Tha06]. By absorption imaging after the Stern-Gerlach technique we verify
that no atoms are remaining. We do not observe heating or loss of molecules as
induced by the purification sequence.

We then use the pure, trapped sample of tunable halo dimers to study binary
collisions. We measure inelastic decay, resulting from the relaxation into more
deeply bound states. In such a process the conversion of internal into kinetic
energy by far exceeds the trap depth and leads to immediate trap loss of all
particles involved. All our experiments are carried out in a regime of very
low temperatures (kBT ≪ Eb), where the initial kinetic energy of the colliding
dimers is not sufficient to break up the molecules, as observed for 6Li halo
dimers in Ref. [Joc03b]. Moreover, spontaneous dissociation observed for 85Rb
halo dimers [Tho05a, Köh05] is not possible as there is no energetically open
channel. Other density-independent losses, such as background collisions or
light-induced losses, can also be neglected under our experimental conditions.
We can therefore completely attribute the observed losses to inelastic dimer-
dimer collisions. The decay of the trapped dimer sample is thus described by
the usual rate equation Ṅ = −αreln̄N . Here N indicates the number of dimers
and αrel the relaxation rate coefficient. The mean molecular density n̄ is given

by n̄ = [mω̄2/(2πkBT )]
3/2

N with m being the atomic mass and ω̄ denoting the
geometric mean of the trap frequencies.

We measure αrel as a function of the scattering length a for a fixed temperature
T = 120 nK. We ramp the magnetic field to a desired value, and we then perform

3The microwave drives the |3, 3⟩ → |4, 4⟩ hyperfine transition, while the resonant light pulse
drives the closed optical transition |4, 4⟩ → |5, 5⟩, which pushes the atoms out of the optical
trap. The purification is performed at a magnetic field of 35G.
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Figure 5.3.: Scattering length dependence of the relaxation rate coefficient αrel

at 120 nK. The solid line is a linear fit to the data in the region a ≥ 500 a0
(see text). The error bars refer to the statistical uncertainty. The shaded region
indicates the a < rvdW regime; here the experimental uncertainties are larger
because the molecules have to be transferred through several avoided crossings
with higher partial-wave states [Mar07a].

a lifetime measurement on the trapped dimers for storing times up to 2 s. As
an example, the time evolution of the dimer number in the optical trap is shown
in Fig. 5.2(b) at two different values of the magnetic field. We observe the
expected non-exponential decay of the dimer number. We extract the value of
αrel by fitting the data with the above rate equation. The lifetime measurements
are then repeated at different values of the magnetic field in a range from 7 G
to 50 G.
The observed dependence of the relaxation rate coefficient on the scatter-

ing length reveals an interesting behavior; see Fig. 5.3. Non-halo dimers ex-
hibit a relative large and essentially constant collisional rate coefficient. In con-
trast, when the dimers enter the halo regime with increasing scattering length
(a > rvdW), the rate coefficient first drops to a minimum. The minimum is found
at a ≈ 500 a0 (∼5 rvdW). For larger values of a, the rate coefficient increases with
a. General considerations [Bra04, D’I05b, Pet08] suggest to first approximation
a universal linear scaling law for αrel according to αrel = C(~/m)a with a di-
mensionless constant C. From a linear fit for a > 500 a0 (solid line) we obtain
an estimate for C of about 3.
An essentially constant relaxation rate coefficient for varying binding energy
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or magnetic field has been previously measured in collisions between non-halo
dimers. Class of the non-halo dimers includes 23Na2 [Muk04], 87Rb2 [Sya06],
133Cs2 in various molecular states [Chi05b, Kno08], and also 6Li2 p-wave molecules
as a process involving four identical fermions [Ina08]. Our halo dimers composed
of bosonic atoms thus show a novel and qualitatively different behavior.

In a second set of experiments, we study the temperature dependence of the
relaxation rate coefficient. In the ultracold domain, inelastic two-body collision
processes are usually described in terms of a simple rate constant, i.e. a rate
coefficient being independent of the particular collision energy. This applies to
the case of inelastic atom-atom collisions [Lan65], as well as to collisions between
deeply bound dimers [Lee06, Qué08]. In contrast to this usual behavior, we find
a strong temperature dependence of the loss rate coefficient of halo dimers, so
that a simple rate constant model does not apply.

We have focused our measurements on the temperature-dependence in three
different cases: the non-halo regime (120 a0), the loss minimum in the halo
regime (500 a0), and a more extreme halo case with increased loss (800 a0).
As shown in Fig. 5.4, the dimers exhibit the expected constant relaxation rate
outside of the halo regime (≈ 9×10−11 cm3/s). In the halo regime, we observe a
clear decrease of the relaxation rate with decreasing temperature, both at 500 a0
and 800 a0, roughly following a

√
T -dependence. This surprising behavior raises

the question whether the temperature-dependence of the relaxation rate is a
property unique to halo states or whether it can also occur for other weakly
bound Feshbach molecules. In the latter case, a halo dimer may just be seen as
an extreme case of a weakly bound dimer. We speculate that this observation is
related to the fact that collisions between weakly bound dimers can involve more
complex processes which go beyond simple two-body mechanisms. For instance,
the release of binding energy may lead to a fragmentation with three particles in
the exit channel, i.e. a more deeply bound molecule and two free atoms. Breakup
thresholds may manifest themselves in a more complicated dependence on the
collision energy.

The possibility to suppress inelastic loss by controlling temperature and mag-
netic field leads to a favorable situation, in which halo dimers exhibit a high
degree of stability. In particular, at 40 nK and 500 a0, we measure a loss rate
coefficient as low as ∼ 7× 10−12 cm3/s. This unusually small value corresponds
to an order of magnitude improvement in the stability against collisional de-
cay with respect to previously investigated cases of 23Na2 [Muk04] and 87Rb2

[Sya06].

To conclude, we have studied inelastic collisions between tunable halo dimers
composed of bosonic atoms. We have observed a pronounced scattering length
dependence, with a minimum in the loss coefficient as a most striking feature.
We have also found that inelastic loss is further suppressed by decreasing the
temperature. The existence of the minimum raises the question whether this
feature can be understood in terms of universal four-body physics, similar to a
minimum in three-body recombination at large positive scattering length [Esr99,
Nie99, Bra06, Kra06b], which results from the destructive interference of two
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Figure 5.4.: Temperature dependence of the relaxation rate coefficient αrel at
120 a0 (triangles), 500 a0 (squares), and 800 a0 (circles). The solid lines are
introduced as guides to the eye.

decay channels. The slow inelastic decay near the minimum may provide us
with a favorable situation to study elastic dimer-dimer interactions or to search
for universal four-body bound states [Ham07b].
We thank B.Esry, M.Baranov, D.Petrov, G. Shlyapnikov, and T.Köhler for

fruitful discussions. We acknowledge support by the Austrian Science Fund
(FWF) within SFB 15 (project part 16). S. K. is supported within the Marie
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We report on the measurement of four-body recombination rate coefficients in
an atomic gas. Our results obtained with an ultracold sample of cesium atoms
at negative scattering lengths show a resonant enhancement of losses and
provide strong evidence for the existence of a pair of four-body states, which
is strictly connected to Efimov trimers via universal relations. Our findings
confirm recent theoretical predictions and demonstrate the enrichment of the
Efimov scenario when a fourth particle is added to the generic three-body
problem.

Few-body physics produces bizarre and counterintuitive phenomena, with the
Efimov effect representing the major paradigm of the field [Efi70]. Early in
the 1970s, Efimov found a solution to the quantum three-body problem, pre-
dicting the existence of an infinite series of universal weakly bound three-body

†The author of the present thesis performed the data analysis, assisted by W.H. For the
analysis, the author developed a software program to determine the three-body and four-
body loss coefficients and statistical uncertainties, based on a resampling method. He also
worked on maintaining and improving the experimental setup. F.F. performed the data
acquisition together with S.K. J.P.D’I. provided theoretical support.
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states. Surprisingly, these Efimov trimers can even exist under conditions where
a weakly bound dimer state is absent [Jen04, Köh06b, Bra06]. An essential
prerequisite for the Efimov effect is a large two-body scattering length a, far
exceeding the characteristic range of the interaction potential. Ultracold atomic
systems with tunable interactions [Chi10] have opened up unprecedented possi-
bilities to explore such few-body quantum systems under well controllable ex-
perimental conditions. In particular, a can be made much larger than the van
der Waals length rvdW

1, the range of the interatomic interaction.

In the last few years, signatures of Efimov states have been observed in ultra-
cold atomic and molecular gases of cesium atoms [Kra06b, Kno09], and recently
in three-component Fermi gases of 6Li [Ott08, Huc09], in a Bose gas of 39K atoms
[Zac08], and in mixtures of 41K and 87Rb atoms [Bar09]. In all these experi-
ments, Efimov states manifest themselves as resonantly enhanced losses, either
in atomic three-body recombination or in atom-dimer relaxation processes. The
recent observations highlight the universal character of Efimov states, and they
also point to a rich playground for future experiments.

As a next step in complexity, a system of four identical bosons with resonant
two-body interaction challenges our understanding of few-body physics. The
extension of universality to four-body systems has been attracting increasing
interest both in theory [Pla04, Yam06, Han06, Ham07b, Wan09, Ste09] and
experiment [Fer08]. A particular question under debate is the possible relation
between universal three- and four-body states [Pla04, Yam06, Han06, Ham07b,
Ste09]. In this context, Hammer and Platter predicted the four-body system
to support universal tetramer states in close connection with Efimov trimers
[Ham07b].

Recently, von Stecher, D’Incao, and Greene presented key predictions for
universal four-body states [Ste09]. For each Efimov trimer, they demonstrate
the existence of a pair of universal tetramer states according to the conjecture
of Ref. [Ham07b]. Such tetramer states are tied to the corresponding trimer
through simple universal relations that do not invoke any four-body parameter
[Pla04, Han06, Ste09]. The authors of Ref. [Ste09] suggest resonantly enhanced
four-body recombination in an atomic gas as a probe for such universal tetramer
states. They also find hints on the existence of one of the predicted four-body
resonances by reinterpreting our earlier recombination measurements on 133Cs
atoms at large negative scattering lengths [Kra06b]. In this Letter, we present
new measurements on the Cs system dedicated to four-body recombination in
the particular region of interest near a triatomic Efimov resonance. Our results
clearly verify the central predictions of Ref. [Ste09]. We observe two loss reso-
nances as a signature of the predicted tetramer pair and we find strong evidence
for the four-body nature of the underlying recombination process.

The four-body extended Efimov scenario [Ham07b, Ste09] is schematically
illustrated in Fig. 6.1, where the tetramer states (Tetra1 and Tetra2) and the
relevant thresholds are depicted as a function of the inverse scattering length

1The van der Waals length is defined as rvdW = 1
2 (mC6/~2)1/4, where C6 is the van der

Waals dispersion coefficient [Köh06b]. For Cs, rvdW = 100 a0.
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A + A + A + A

D + A + A

D + DT + A

Tetra1

Tetra2

Figure 6.1.: Extended Efimov scenario describing a universal system of four iden-
tical bosons; Energies are plotted as a function of the inverse scattering length.
The red solid lines illustrate the pairs of universal tetramer states (Tetra1 and
Tetra2) associated with each Efimov trimer (T). For illustrative purposes, we
have artificially reduced the universal Efimov scaling factor from 22.7 to about
2. The shaded regions indicate the scattering continuum associated with the
relevant dissociation threshold. The four-body threshold is at zero energy and
refers to four free atoms (A+A+A+A). In the a > 0 region, the dimer-atom-
atom threshold (D+A+A) and the dimer-dimer threshold (D+D) are also de-
picted. The weakly bound dimer, only existing for a ≫ rvdW > 0, has universal
halo character and its binding energy is given by ~2/(ma2) [Jen04, Fer08]. The
open arrow marks the intersection of the first Efimov trimer (T) with the atomic
threshold, while the filled arrows indicate the corresponding locations of the two
universal tetramer states.

1/a. Within the four-body scenario, the Efimov trimers (T) are associated with
trimer-atom thresholds (T+A, dashed lines). The pair of universal tetramer
states (solid lines) lies below the corresponding T+A threshold. The four-body
breakup threshold (A+A+A+A) defines zero energy and refers to the continuum
of four free atoms. For completeness, we also show the a > 0 region. Here, the
picture is even richer because of the presence of the weakly bound dimer state,
whichs leads to the dimer-atom-atom threshold (D+A+A) and the dimer-dimer
threshold (D+D). In the four-body scenario, the tetramer states emerge at the
atomic threshold for a < 0 and connect to the D+D threshold for a > 0.
The Efimov trimer intersects the atomic threshold at a = a∗T, which leads to

the observed triatomic resonance [Kra06b]. The corresponding tetramer states
are predicted [Ste09] to intersect the atomic threshold at scattering length values

a∗Tetra1 ≈ 0.43 a∗T and a∗Tetra2 ≈ 0.9 a∗T. (6.1)
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(a) (b)

Figure 6.2.: Recombination losses in an ultracold sample of Cs atoms. (a) Loss
fraction for a 50-nK sample after a storage time of 250 ms. Here we present all
individual measurements to give an impression of the scatter of our data. The
broad maximum at about −870a0 is caused by a triatomic Efimov resonance
[Kra06b] and the shaded area highlights the resonant loss enhancement that we
attribute to the four-body state Tetra1. The three very narrow loss features
(open circles) are caused by known g-wave Feshbach resonances [Chi04b], which
are irrelevant in the present context. (b) Loss fraction for a 30-nK sample after
a storage time of 8 ms. Each data point represents the average values resulting
from five individual measurements for a given a together with their statistical
errors. The loss enhancement at around −730a0 is caused by the state Tetra2.
The solid lines are spline interpolations guiding the eye.

These universal relations, linking three- and four-body resonances, express the
fact that no additional parameter, namely, the so-called four-body parameter, is
needed to describe the system behavior. In contrast to the connection between
universal two- and three-body systems, where a three-body parameter is required
to locate the trimer states, the universal properties of the four-body system are
thus directly related to the corresponding three-body subsystem.

In analogy to the well-established fact that Efimov trimers lead to loss reso-
nances in an atomic gas [Esr99, Kra06b], universal four-body states can also
be expected to manifest themselves in a resonant increase of atomic losses
[Ste09]. Resonant coupling between four colliding atoms and a tetramer state
(a ≃ a∗Tetra < 0) drastically enhances four-body recombination to lower lying
channels. Possible decay channels are trimer-atom, dimer-dimer, and dimer-
atom-atom channels. In each of these recombination processes, we expect all
the particles to rapidly escape from the trap, as the kinetic energy gained usu-
ally exceeds the trap depth.
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We prepare an ultracold optically trapped atomic sample in the lowest hy-
perfine sublevel (F = 3,mF = 3) 2, as described in Ref. [Fer08]. By varying
the magnetic field between 6 and 17 G, the scattering length a can be tuned
from −1100 to 0 a0 [Web03b], where a0 is Bohr’s radius. For presenting our
experimental data in the following, we convert the applied magnetic field into a
using the fit formula of Ref. [Kra06b]. After several cooling and trapping stages
[Web03b], the atoms are loaded into an optical trap, formed by crossing two
infrared laser beams [Fer08]. The trap frequencies in the three spatial directions
are about (ωx, ωy, ωz) = 2π × (10, 46, 65) Hz. Similar to [Web03b], we support
the optical trap by employing a magnetic levitation field acting against grav-
ity. Evaporative cooling in the levitated trap is stopped just before the onset
of Bose-Einstein condensation in order to avoid implosion of the gas. For our
typical temperature of 50 nK, we obtain about 8 × 104 non-condensed atoms
with a peak density of about 7× 1012 cm−3.

In a first set of experiments, we record the atom number after a fixed stor-
age time in the optical trap for variable scattering length in the a < 0 region.
Figure 6.2 shows the observed losses, containing both three- and four-body con-
tributions. The three-body part consists of a background that follows a general
a4-scaling behavior [Fed96b, Esr99, Web03c] and resonant losses caused by the
triatomic Efimov resonance, which for a 50-nK sample was observed to occur
at a∗T = −870(10) a0 [Kra06b, Näg06]; this is consistent with the large losses
shown in Fig. 6.2(a). Beside this expected behavior of the three-body sub-
system, we clearly observe two additional loss features, one located at about
−410 a0 [Fig. 6.2(a)] and one at about −730 a0 [Fig. 6.2(b)]. The observation of
the resonance at −730 a0 is particularly demanding and requires a careful choice
of parameters as the signal needs to be discriminated against the very strong
background that is caused by three-body losses. Here we use a much shorter
hold time of 8 ms, which is the shortest possible time required to ensure precise
magnetic field control in our apparatus.

We interpret the two observed resonant loss features as the predicted pair of
four-body resonances [Ste09]. For the resonance positions we find a∗Tetra1/a

∗
T ≃

0.47 and a∗Tetra2/a
∗
T ≃ 0.84, which are remarkably close to the predictions of

Eq. (6.1).

In a second set of experiments, we study the time-dependence of the atomic
decay in the optical trap. Here we focus on the region around the resonance at
a∗Tetra1 ≃ −410a0, where the three-body losses are comparatively weak and thus
allow for a detailed analysis of the loss curves. Representative loss measurements
for three different values of a are shown in Fig. 6.3.

The observed decay can be fully attributed to three-body and four-body re-
combination collisions. This is due to the fact that inelastic two-body colli-
sions of atoms in the lowest Zeeman sub-level are energetically suppressed, and
one-body losses, such as background collisions or light-induced losses, can be
completely neglected under our experimental conditions. The corresponding

2F and mF indicate the hyperfine and projection quantum number, respectively.
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(c)(a) (b)

Figure 6.3.: Time evolution of the number of atoms in an optically trapped
sample. The solid lines are the fit to the data based on the full numerical
solution of Eq. (6.2). The dashed and dotted lines correspond to a pure three-
body and pure four-body decay, respectively (see text). (a) For dominant three-
body collisions (a = −870 a0), (b) an intermediate situation (a = −510 a0), and
(c) dominant four-body collisions (a = −410 a0).

differential equation for the decaying atom number reads as

Ṅ/N = −L3⟨n2⟩ − L4⟨n3⟩, (6.2)

where L3 and L4 denote the three- and the four-body recombination rate coeffi-
cient, respectively. The average density is calculated by integrating the density
over the volume ⟨n2⟩ = (1/N)

∫
n3d3r and ⟨n3⟩ = (1/N)

∫
n4d3r. By considering

a thermal density distribution of gaussian shape in the three-dimensional har-
monic trap, we obtain ⟨n2⟩ = n2

p/
√
27 and ⟨n3⟩ = n3

p/8, with

np = N [mω2/(2πkBT )]
3/2 the peak density. Here, m is the atomic mass, T

the temperature, and ω = (ωxωyωz)
1/3 the mean trap frequency. We determine

the trap frequencies and the temperature by sloshing mode and time-of-flight
measurements, respectively.
In general Eq. (6.2) is not analytically solvable. An analytic solution can be

found in the limit of either pure three-body losses or pure four-body losses.
Therefore we fit our decay curves with a numerical solution of Eq. (6.2), keep-

ing both L3 and L4 as free parameters. Note that we have not included anti-
evaporation heating [Web03c] in our model because we do not observe the cor-
responding temperature increase in our experiments. We believe that, for the
fast decay observed here, the sample may not have enough time to thermalize.
Our experimental data clearly reveal a qualitative change of the decay curves

when a is tuned between a∗T and a∗Tetra1. Fig. 6.3(a) shows that for a ≈ a∗T the loss
is dominated by three-body recombination; here the full numerical fitting curve
follows the pure three-body solution. A different situation is found at −410 a0;
see Fig. 6.3(c). Here a pure three-body analysis cannot properly describe the



UNIVERSAL FOUR-BODY STATES 73

(a)

(b)

Figure 6.4.: Loss rate coefficient for (a) three- and (b) four-body recombination
as a function of the scattering length a. The measurements are taken at temper-
atures of about 40 nK. The values are obtained by fitting the numerical solution
of Eq. (6.2) to the decay curve. The error bars on L3 and L4 are the statistical
uncertainties from the fit evaluated with a resampling method [Wes93]. The
open circles in (a) refer to previous data at 250 nK [Kra06b]. The solid curves
result from the theoretical model of Refs. [Ste09, Meh09].

observed behavior and the full numerical solution reveals a predominant four-
body character. In intermediate situations, for which an example is shown in
Fig. 6.3(b), both three- and four-body processes significantly contribute to the
observed decay.

From the decay curves taken at different values of a we determine L3 and L4;
the results are shown in Figs. 6.4(a) and 6.4(b), respectively. The three-body
contribution L3 follows previously observed behavior [Kra06b], as dictated by
the a4-scaling in combination with the Efimov effect.

Our major result is shown in Fig. 6.4(b), where we plot the rate coefficient L4.
Our data provide the first available quantitative information on L4, establish-
ing the role of four-body collisions in ultracold gases. For |a| < |a∗Tetra1|, where
no universal tetramer states exist, the four-body losses are typically very weak.
Here, we measure L4 ≃ 0.2×10−37cm9/s. With increasing |a|, the system under-
goes a significant change in its behavior, with four-body collisions dominating
the atomic decay; see Fig. 6.3(c). We observe a sharp increase of L4, which
reaches its maximum value at a = −412(2) a0. This observation is another
strong piece of evidence for the predicted universal four-body state at a∗Tetra1
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[Ste09]. To directly estimate the relative contributions of three- and four-body
recombination, one can compare L3 with n0 L4, where n0 ≃ 1.0×1013 cm−3 is the
initial peak density at 40 nK. At resonance, n0L4 exceeds L3 by more than one
order of magnitude, with L3 = 0.7 × 10−25 cm6/s and n0L4 = 3 × 10−24 cm6/s.
With further increasing |a|, L4 decreases and L3 increases such that L3 > n0L4.
For |a| > 700 a0, the very fast three-body decay renders the analysis of the loss
curves in terms of L4 unreliable. In addition to the large statistical fit errors
seen in our data in this region, other systematic error sources like a non-thermal
evolution of the atomic density distribution can have a strong influence.
Figure 6.4 also includes the theoretical predictions for L3 and L4 at 40 nK

and demonstrates a remarkable qualitative agreement with our experimental
results. The theoretical approach utilizes a solution of the four-body problem
in the hyperspherical adiabatic representation [Ste09]; the derivation and asso-
ciated calculations of L4, adapted from [Meh09], provide the first quantitative
description of the four-body recombination rate. The calculations only require
to fix the position of the triatomic Efimov resonance as determined in the pre-
vious experiment at 10 nK of Ref. [Kra06b]. The difference in the width and
the amplitude of the four-body resonance between experimental and theoretical
data may be explained by different coupling to possible decay channels.
Our work leads to important conclusions related to the concept of universality

with increasing complexity. The observation of the two four-body resonances
close to the predicted positions [Ste09] points to the universal character of the
underlying states. This also supports the view or Refs. [Pla04, Han06, Ste09]
that a four-body parameter is not required to describe the system. Universal
four-body states then emerge as a genuine consequence of the Efimov spectrum.
This also provides a novel way to test Efimov physics. The Efimovian character
of a three-body resonance can be probed by observing the universal tetramer
resonances tied to it, without the necessity to explore the full geometric scaling
of Efimov physics by changing the scattering length by orders of magnitude.
While our present work has focussed on four-body phenomena at negative

scattering length, a further exciting step will be the exploration of the entire four-
body spectrum. For positive scattering lengths, the spectrum becomes richer
and new phenomena can be expected such as resonant interactions between
four-body states and two-dimer states. In this way, experiments on few-body
phenomena in ultracold atoms will keep on challenging our understanding of the
universal physics of a few resonantly interacting particles.
We are aware of related results in 39K, in which enhanced losses near a Fesh-

bach resonance may be interpreted as a four-body resonance [Zac09]3.
We acknowledge C.Greene and J. von Stecher for stimulating discussions and

for sharing their theoretical curves (Fig. 6.4) with us. We acknowledge support
by the Austrian Science Fund (FWF) within SFB 15 (project part 16). F. F. is
supported within the Lise Meitner program of the FWF. JPD’s contribution was
supported in part by the NSF.

3In the original article [Fer09a], this reference is quoted as “M. Zaccanti (private communi-
cation)”, as Ref. [Zac09] was not available until after the publication of Ref. [Fer09a].
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We study collisions in an optically trapped, pure sample of ultracold Cs2
molecules in various internal states. The molecular gas is created by Fesh-
bach association from a near-degenerate atomic gas, with adjustable temper-
atures in the nanokelvin range. We identify several narrow loss resonances,
which point to the coupling to more complex molecular states and may be
interpreted as Feshbach resonances in dimer-dimer interactions. Moreover,
in some molecular states we observe a surprising temperature dependence in
collisional loss. This shows that the situation cannot be understood in terms
of the usual simple threshold behavior for inelastic two-body collisions. We
interpret this observation as further evidence for a more complex molecular
structure beyond the well-understood dimer physics.

†The primary contribution of the author of the present thesis to this publication was the
maintenance and improvement of the experimental setup, supported by M.M. He performed
the measurements together with F.F. and S.K. The data was analyzed by F.F and S.K.
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7.1. Introduction

Laser control of atoms and molecules has numerous important applications in
physics [Let07]. A major research field emerged from the fascinating possibili-
ties to cool and trap atoms by laser light [Min87, Kaz90, Chu98, CT98, Phi98].
V. S. Letokhov gave very important contributions to the field; here the idea of
confining atoms in standing light waves in 1968 [Let68] and the first demonstra-
tion of atomic-beam cooling in 1981 [And81] represent two early examples for
work that was well ahead of its time. More examples for the pioneering work of
the laser cooling group at the Institute of Spectroscopy in Troitsk can be found
in Refs. [Bal85, Bal88a, Bal88b, Gri90].

The great advances in the field of cooling and trapping in the 1980’s and early
1990’s [Ari92] led to the attainment of Bose-Einstein condensation (BEC) in 1995
[And95, Bra95, Dav95] and the production of a degenerate Fermi gases in 1999
[DeM99]. These achievements heralded the advent of a new era in physics, where
ultracold atomic systems serve as well-controllable model systems to investigate
a wide range of intriguing quantum phenomena [Lew07, Blo08, Gio08, Chi10].

Molecular quantum gases emerged in the last decade. Great breakthroughs
were achieved in the years 2002 and 2003, when molecular quantum gases
could be produced in various systems of bosons [Don02, Her03, Dür04, Xu03]
and fermions [Reg03b, Str03, Cub03, Joc03b]. The key to this success was
the method of Feshbach association, where molecules are formed from collid-
ing atom pairs by tuning a magnetic bias field across a Feshbach resonance
[Köh06b, Chi10, Kre09]. Molecular BEC was achieved at the end of 2003
[Joc03a, Gre03, Zwi03]. In the last few years great progress has been made
in manipulating ultracold molecules, and they have found numerous intriguing
applications [Kre09]. Recent highlights are the transfer of Feshbach molecules to
very deeply bound states [Dan08] and the creation of rovibrational ground-state
molecules [Ni08, Lan08b].

With the experimental availability of ultracold trapped samples of molecules,
it has become very important to understand their interaction properties. For
Feshbach molecules, the interactions are usually dominated by inelastic pro-
cesses, as the molecules in a high rovibrational state carry a large amount of
internal energy. Here the stability of molecules made of fermionic atoms is a re-
markable exception [Pet05, Gio08]. Inelastic collisions between ultracold Fesh-
bach molecules have been studied in various systems [Muk04, Chi05b, Sya06,
Kno08, Fer08, Ina08]. Most of these experiments did not show any significant
dependence on the applied magnetic bias field. Two experiments on Cs2, how-
ever, revealed novel magnetic-field dependent phenomena. In Ref. [Chi05b] we
observed loss resonances in dimer-dimer scattering, and in Ref. [Fer08] we found
a suppression of loss for weakly bound dimers in a halo state.

In this Article, we study the collisional interactions between Cs2 Feshbach
molecules in more detail, building on our previous observations in Refs. [Chi05b,
Fer08]. Our new results provide further evidence for a more complex molecu-
lar structure beyond the well-understood dimer physics. In Sec. 7.2, we start
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Figure 7.1.: Energy spectrum of weakly bound Cs2 dimers versus magnetic field.
The molecular states are labeled by the quantum numbers fℓ(mf ) as discussed
in Sec. 7.2.2; the quantum number mf is omitted for states with mf = f and
mℓ = ℓ. The solid lines represent s-, d-, and g-wave states. The intersections
of the d- and g-wave states cause narrow Feshbach resonances, which can be
used for molecule production. The dashed lines represent l-wave states; they do
not couple to the zero-energy threshold and therefore do not lead to Feshbach
resonances. The stars mark the states and positions where we find the narrow
collisional resonances discussed in Sec. 7.3.

with giving background information on Cs2 Feshbach molecules. In Sec. 7.3, we
present our results on collisional resonances in inelastic dimer-dimer scattering,
which show up in different molecular states. In Sec. 7.4, we report on the obser-
vations of a surprising temperature dependence of dimer-dimer collisions, which
we find in some, but not all of the dimer states. In Sec. 7.5, we finally discuss
our results in view of more complex ultracold molecules.

7.2. Ultracold Feshbach molecules made of cesium

atoms

7.2.1. Cesium as a quantum gas: brief history

Cesium, the heaviest stable alkali species, was considered a candidate for Bose-
Einstein condensation (BEC) already in the early 1990’s [Mon93]. After the
attainment of BEC in Rb and Na [And95, Dav95], it turned out that Cs atoms
are subject to very special collisional interactions, which lead to anomalously
fast spin flips. This inhibited all attempts to reach BEC by the standard mag-
netic trapping approach [Söd98, GO98, Arl98]. The unusual interactions were
understood as a combination of resonant scattering with a very large indirect
spin-spin coupling [Leo00].
It took until the year 2002 that BEC of Cs was reached in an optical dipole

trap [Web03b]. In such a trap [Gri00a], the atoms can be stored in the lowest
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internal state, where they are immune against two-body inelastic decay. It was
crucial for the experiment to magnetically tune the s-wave scattering length in
a way to optimize the collisional properties for the evaporative cooling process
[Kra04, Kra06b]. Since then BEC of cesium has been realized in several other
experiments [Ryc04, Gus08b, Hun08].

The successful production of near-degenerate samples or BECs of Cs opened
up efficient ways to produce ultracold molecules via Feshbach association [Her03,
Mar05, Mar07a, Kno08]. The basic principles and the many applications of this
important association method are reviewed in [Köh06b, Kre09, Chi10]. Besides
the creation of ultracold dimers, the remarkable scattering properties of Cs have
proven very advantageous for the exploration of universal few-body phenomena
related to Efimov states [Kra06b, Fer08, Kno09, Fer09a].

7.2.2. Energy structure of Cs2 Feshbach molecules

The internal structure of Cs2 Feshbach dimers is particularly rich as compared to
other alkali systems, and contributions by higher partial waves play an important
role. Figure 7.1 gives an overview of the molecular states relevant to the present
work, covering the magnetic field region up to 55G and binding energies up
to h × 8MHz, where h is Planck’s constant. Zero energy corresponds to the
dissociation threshold into two Cs atoms in the absolute hyperfine ground state
sublevel |F =3,mF =3⟩.
Our notation fℓ(mf ) for the angular momentum of the molecular states is

explained in detail in Refs. [Chi04b] and [Mar07a]. The rotational angular mo-
mentum and its orientation are denoted by the quantum numbers ℓ and mℓ,
respectively; we follow the convention of labeling states with ℓ = 0, 2, 4, 6, 8, . . .
as s, d, g, i, l, . . .-wave states [Rus29]. The quantum numbers f and mf refer to
the internal spin of the molecular and its orientation, respectively. All molecular
states relevant to the present work obey mf +mℓ = 6, which allows to simplify
the notation by omitting one of these numbers. For states with mf = f and
mℓ = ℓ, we use the notation fℓ for brevity.

Feshbach resonances in general arise from the intersection of a molecular state
with the atomic threshold [Chi10]. For Cs the observation of such resonances
together with an elaborate quantum scattering model provided the essential
information on the near-threshold molecular structure [Chi04b]. Higher-order
interactions are particularly important for Cs [Leo00] and lead to significant
couplings between states up to ∆ℓ = 4. Therefore states up to g-wave character
can couple to the s-wave scattering continuum, leading to observable resonances.
The solid lines in Fig. 7.1 represent states up to g waves (ℓ ≤ 4), which were
identified in this way [Chi04b]. The dashed lines in Fig. 7.1 represent l-wave
states (ℓ = 8), which do not cause observable Feshbach resonances but which can
be populated via avoided crossings with g-wave states [Mar07b, Mar07a, Kno08].

Coupling between molecular states with the same f and ℓ in general leads
to very broad avoided crossings between molecular states. The pronounced
curvature of the 6s state in Fig. 7.1 is a result of such a strong crossing. In
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this case, a weakly bound 6s-state with F1=3 and F2=3 couples to a 6s-state
with F1 =4 and F2 =4. Narrow avoided crossings arise when molecular states
of different f and ℓ intersect [Hut08]. Such crossings are not shown in Fig. 7.1,
where the molecular states just intersect. Nevertheless, the existence of these
weakly avoided crossings between molecular states of different fℓ is crucial for
a controlled state transfer by elaborate magnetic field ramps, as described in
detail in Ref. [Mar07a].

7.2.3. Tunable halo dimers

The state 6s provides experimental access to the “halo” regime [Jen04], which
is of particular interest in view of the universal properties of few-body systems
[Bra06]. For a halo dimer the only relevant length scale is given by the scattering
length a, which describes the s-wave interaction between its two constituents.
The size of the halo dimer is directly related to a and the binding energy is Eb =
~2/(2µa2), where µ is the reduced mass. For ultracold gases, the characteristic
interaction range is determined by the van der Waals potential and the halo
regime is realized for binding energies well below an energy EvdW [Köh06b,
Chi10]; for the s-wave scattering length this condition is equivalent to a ≫
rvdW, where rvdW a characteristic length. For Cs, EvdW ≈ h × 2.7 MHz and
rvdW ≈ 100 a0, where a0 is Bohr’s radius.

In the 6s state of Cs2 we can conveniently control the binding energy via the
magnetic field. The tunable halo dimers realized in this way [Mar07a, Fer08] are
unique probes to explore universal quantum phenomena [Bra06]. As a recent ex-
ample, we have observed a scattering resonance in the interaction of tunable halo
dimers with free atoms [Kno09], which we interpret as an atom-dimer resonance
arising from the coupling to an Efimov trimer state [Efi70, Kra06b].

A binary collision between two halo dimers represents an elementary four-
body process. Collisional studies on halo dimers thus probe universal four-body
physics, as has been demonstrated in the special case of halo dimers made of
fermionic atoms in different spin states [Pet04b, Ing08]. As a first step to ex-
plore universal four-body physics of identical bosons, we have recently mea-
sured collisional decay in a trapped sample of Cs2 Feshbach molecules in the
6s state [Fer08]. The experiments revealed a broad loss minimum around 30G
(a ≈ 500 a0), for which Ref. [D’I09d] presents a possible explanation in terms of
universal four-body physics.

The full understanding of four-body systems is a present frontier of universal
physics. Theoretical work has predicted pairs of four-body states tied to Efimov
trimer states [Ham07b, Ste09]. Very recently we could confirm the existence
of these states by measured four-body recombination in an atomic cesium gas
[Fer09a]. Studies on dimer-dimer interactions are of great interest for future
experiments, as they hold great potential for future investigations, such as the
observation of the resonant coupling of colliding dimers to tetramer states and
systems of a trimer plus a free atom [D’I09d].
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7.2.4. Main experimental procedures

Our experimental procedures to produce an optically trapped sample of Cs2
Feshbach molecules involve several stages. The main steps can be divided into
the preparation of a near-degenerate atomic sample, the Feshbach association
of the dimers, the purification of the molecular sample by removing remaining
atoms, and the state transfer to the desired molecular state for the present
investigation. Here we just give a short account of the main steps; further
details can be found in Ref. [Mar07a].

The cesium atoms are first captured from an atomic beam into a standard
magneto-optical trap, followed by an optical molasses cooling phase. A degen-
erate Raman sideband cooling stage [Tre01] then further increases the phase-
space density and polarizes the atoms into the hyperfine ground state sublevel
|F = 3,mF = 3⟩. Then the atoms are loaded into a large-volume optical dipole
trap, followed by collisional transfer into a much tighter trap [Web03b, Kra04].
The tight trap serves for evaporative cooling; it is formed by two crossed 1064-
nm laser beams with waists of about 250 µm and 36 µm. We stop the cooling
just before the onset of Bose-Einstein condensation to avoid too high atomic
densities.

We magnetically associate the ultracold trapped cesium atoms to dimers on
Feshbach resonances [Her03, Xu03, Dür04, Köh06b]. For this purpose we use
three different resonances, the two g-wave resonances at B = 19.8G and 53.4G
and the d-wave resonance at 47.9G. To prepare a maximum number of molecules
in the trap, it is necessary to separate atoms and molecules as fast as possible,
since atom-dimer collisions dramatically reduce the lifetime of the molecular
sample [Muk04]. We remove the atoms from the dipole trap using a “blast”
technique similar to the schemes of Refs. [Xu03, Tha06]; the atoms are pushed
out of the trap by resonant light, while the effect on the molecules remains
negligible.

The molecular temperature can be set in a range between 40 nK and 300 nK
by adjusting the temperature of the initial atomic sample. This can be done by
variations in the evaporative cooling process and of the trap parameters [Fer08].
The number of trapped molecules is typically around 5000.

Other molecular states than the ones that we can directly access through
the Feshbach association schemes can be populated by controlled state trans-
fer [Mar07b, Mar07a, Lan08a]. The experimental key is the precise control of
Landau-Zener tunneling at avoided crossings through elaborate magnetic field
ramps. By means of the ramp speed we can choose whether a crossing is fol-
lowed adiabatically (slow ramp) or jumped diabatically (fast ramp). In this way,
as demonstrated in Ref. [Mar07a], we can efficiently populate any of the states
shown in Fig. 7.1.

To finally detect the molecules, we apply the standard method [Chi10] to
dissociate the molecules by a reverse Feshbach ramp and to image the resulting
atom cloud.
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Figure 7.2.: Dimer-dimer resonances in the 6s state. The molecule fraction
represents the number of 6s molecules after a 100-ms hold time in the dipole
trap normalized to the corresponding average number detected off any resonance.
The initial molecule number is typically 5000 at a temperature of about 150 nK.
The loss resonances are fitted with Lorentzian profiles. The results of the fits
are listed in Table 7.1.

7.3. Resonances in dimer-dimer scattering

Studies of collisions between molecules can provide essential information on the
interaction physics. We probe the system by studying collisionally induced loss
in a trapped molecular sample. At ultralow temperatures, the dominant colli-
sional mechanism is relaxation into lower-lying bound states. Feshbach dimers
carry a large amount of internal energy, which is in a relaxation event rapidly
converted into kinetic energy . Since this released energy usually far exceeds the
trap depth, both collisional partners can escape from the trap. The resulting
loss signal provides our experimental observable.

The relaxation rate depends on the possible decay channels, i. e. on the avail-
able lower-lying molecular state manifolds, and on the wave-function overlap
between the initial and the final dimer state. For relaxation into deeply bound
states, such a rate does not significantly depend on the applied bias magnetic
field. This can be understood in terms of a simple molecular potential picture.
The magnetic fields typically used in the experiments lead to energy shifts in
the molecular potentials that are usually very small compared to the energy
distance between the initial and final state. Consequently, the wave function
overlap does not change substantially. Typical relaxation rate constants are on
the order of 10−10 - 10−11 cm−3/s [Muk04, Chi05b, Sya06, Kno08, Ina08].
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Figure 7.3.: Time evolution of the number of 6s dimers at 20.24 G (on resonance,
squares) and at 20.11 G (off resonance, open squares). Fits are based on the
standard two-body loss equation; see text.

Remarkable exceptions, in which the relaxation rate varies with the applied
magnetic field, have been observed in collisions between halo molecules [Joc03a,
Gre03, Zwi03, Fer08] and when collisional resonances appear in dimer-dimer
scattering [Chi05b]. In the present Section, we focus on the latter case.

Collisional resonances in dimer-dimer scattering occur when the two dimers
couple to more complex bound states, involving either tetramer or trimer states.
When such a complex state approaches the threshold of two colliding dimers,
either by crossing or merging, it induces a resonant enhancement of relaxation
events and, consequently a resonant increase of losses. The number of dimers as
a function of the magnetic field then shows a sharp loss peak. In analogy to the
case of coupling between two atoms and a dimer state, these enhanced losses
can be viewed as Feshbach-like resonances for ultracold molecules. In a recent
experiment, we observed such dimer-dimer resonances in a sample of g-wave Cs2
dimers [Chi05b].

Here, we carry out a careful and systematic search of dimer-dimer resonances
in a number of different molecular states by performing magnetic field scans
with a typical step size of 5 mG. In particular, we explore the 6g(6) state in a
magnetic field range between 10 to 13 G and 25 to 45 G and the 4g(4) state,
the 4d state and the 6s halo state up to 5 MHz binding energy.

We measure the collisional resonances in dimer-dimer scattering by following
an experimental procedure similar to Ref. [Chi05b]. We first produce a sample of
optically trapped dimers in a desired molecular states, as outlined in Sec. 7.2.4.
We then hold the dimers in the dipole trap for a certain time, typically 100
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to 200 ms. Finally, we record the number of remaining dimers by standard
dissociation detection; see Sec. 7.2.4. The measurement is then repeated for
various magnetic field values in the range of interest and for various molecular
states.

Figure 7.2 shows the three dimer-dimer resonances found in the 6s state. The
observed loss peaks are typically very pronounced, very narrow, and symmetric.
By fitting the loss peaks with Lorentzian profiles, we precisely determine the
positions and we extract the widths of the resonances, as listed in Table 7.1.
We use the Breit-Rabi formula to determine the magnetic-field value from a
measurement of the resonant frequency corresponding to the |F =3,mF =3⟩ →
|F = 4,mF = 4⟩ atomic hyperfine transition. Differently from Ref. [Chi05b], in
which a levitating magnetic field was employed to support the dimers against
gravity, we here use a purely optical trap. The present setup does not suffer
from the corresponding inhomogeneity and thus improves the magnetic field
resolution to about 10 mG, compared to 150 mG resolution obtained with the
levitation field.

The enhancement of losses can be characterized by studying the time depen-
dence of the molecular decay in the optical trap. Figure 7.3 shows the decay
curve for 6s dimers at the 20-G resonance (squares) and slightly below resonance
(open squares). Both on and off resonance, we observe a non-exponential decay
of the dimer number. The decay of the trapped dimer sample is well described
by the usual two-body rate equation

Ṅ = −αreln̄N, (7.1)

where N indicates the number of dimers and αrel the relaxation rate coefficient.
The mean molecular density n̄ is given by n̄ = [mω̄2/(2πkBT )]

3/2
N withm being

the atomic mass and ω̄ denoting the geometric mean of the trap frequencies.
Typically, we observe the relaxation rate coefficient to increase by about a factor
of 5 on resonance.

We perform similar magnetic field scans in the states 6g(6), 4d, and 4g(4).
In the 6g(6) state, we both confirm the existence of the resonances observed in
previous experiments [Chi05b], and we identify three additional new resonances
in the magnetic field range between 25 to 45 G. Up to binding energies of 5 MHz,
we do not observe any resonance for dimers in the 4d and 4g(4) state. Our results
are listed in Table 7.1. For illustrative purposes, we also mark the resonance
positions in Fig. 7.1 (stars).

An important open question is whether the observed resonances are related
to tetramer or trimer states, coupling to the dimer-dimer threshold. The obser-
vation of resonance shapes that are symmetric suggests a coupling to a tetramer
state. In fact, one can expect that the coupling with a trimer plus a free atom
would lead to an asymmetric shape because of the continuum of energy [D’I09d].
However, further investigations are needed to clearly distinguish between these
two processes.
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Dimer branch B(G) ∆B(mG) a(a0)
6s 20.24 (1) 18 (3) 179

30.01 (1) 31 (4) 552
45.52 (1) 21 (4) 893

6g(6) 12.67 (1)a 5 (2)
12.82 (1)a 19 (2)
36.06 (1) 10 (2)
36.80 (1) 19 (5)
42.43 (1) 9 (2)

Table 7.1.: Observed dimer-dimer resonances. The resonances are found in the
states 6s and 6g(6), while no resonances are found in the states 4d and 4g(4).
The locations and the widths of the loss signals, together with their statistical
errors, are obtained from Lorentzian fits. For the 6s state, the Table also gives
the corresponding value of the scattering length [Lan09b].
aThe two resonance positions in the 6g(6) state near 13 G slightly differ from
the values of Ref. [Chi05b]. In this previous experiment, the levitation field
introduced an uncontrolled offset.

molecule temperature (nK)

6s at 39.7 G 6s at 19.1 G 4d at 47.4 G

4g(4) 6g(6) at 39.7 G 6l(5) at 22.1 G

(a) (b) (c)

(d) (e) (f)

19.7 G
19.1 G
16 G

Figure 7.4.: Temperature dependence of the relaxation rate coefficient αrel for
different molecular states: the 6s state in the halo (a) and non-halo regime (b),
the 4d state (c), the 4g(4) state (d) for different binding energies, the 6g(6)
state (e), and the 6l(5) state (f). The data in (a) and (b) are from [Fer08].
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7.4. Temperature dependence of collisional loss

For inelastic processes in the ultracold regime, the relaxation rate coefficient is
usually independent of the collision energy, or the temperature T of the sample.
This threshold law applies for s-wave collisions and for kBT smaller than all other
energy scales in the system [Wei99]. The essential point behind this threshold
law is that relaxation processes into deeply bound states release such a large
amount of internal energy that the collisional energy plays no role. This picture
breaks down when another state is energetically close to the threshold of the
two colliding particles.

In our previous experiments on collisions between 6s dimers, we found a sur-
prising temperature dependence of the relaxation rate coefficient [Fer08]. In the
non-halo regime, αrel showed the expected constant behavior, while a clear in-
crease with temperature was observed in the halo regime. A recent theoretical
work suggests that the temperature dependence observed in the halo state is re-
lated to the existence of a universal trimer state, which lies energetically slightly
above the zero-energy threshold of two colliding atoms [D’I09d].

We here raise the question whether the unusual temperature behavior is a
property unique to halo states or whether it can also occur for other Feshbach
molecules. We thus probe the temperature dependence of the relaxation rate
coefficient for different dimer states, investigating the states 6s, 4d, 4g(4), 6g(6),
and 6l(5).

We measure the time dependence of the molecular decay for various tempera-
tures, recording decay curves similar to Fig. 7.3. The relaxation rate coefficient
αrel is extracted by fitting the decay curve with the usual two-body rate equa-
tion, Eq. (7.1). Our findings are summarized in Fig. 7.4. We observe a clear
temperature dependence in two cases, while the other three cases follow the
threshold law expectation of a constant rate coefficient. In one case the result is
ambiguous. The two cases with a clear temperature dependence are the 6s state
at about 39.7 G (Fig. 7.4a) and the 6g(6) state (Fig. 7.4e); here the relaxation
rate increases with temperature, roughly following a

√
T -dependence. Constant

rate coefficients are observed in the 6s state at about 19.1 G, the 4g(4) state,
and the 6l(5) state. The ambiguous case is the 4d state, which seems to show
a weak temperature dependence; here the situation may be obscured by the
proximity of the d-wave Feshbach resonance at 47.78 G [Lan09b].

Motivated by our previous observation that the temperature dependence of
αrel changes with the magnetic field in the 6s state [Fer08], we perform similar
investigations in the g-wave states. In 4g(4), we check three points between 16.0
and 19.7 G, finding essentially the same behavior of a constant rate coefficient;
see Fig. 7.4d. In 6g(6), we inspect the range between 25 and 45 G (data not
shown), the temperature dependence being preserved over the full range. Com-
paring the observations on the two g-wave states with the behavior of the 6s
state, which in contrast to all other states has a curvature, we find an interesting
systematics. The temperature dependence shows up when the state is parallel
to the atomic threshold, which means that threshold and molecular state have
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the same magnetic moment. This is the case for the 6g(6) state and the 6s state
in the halo regime. In contrast, we do not observe the temperature dependence
when the magnetic moments are different, which is the case for the 4g(4) state,
the 6l(5) state, and for the 6s state in the non-halo regime. It is also interesting
to note that the two states that show a temperature dependence are also the
only two for which resonances in dimer-dimer scattering have been observed.
These observations may just be accidental coincidences, but they may also have
a deeper physical reason.

7.5. Conclusion and outlook

We have reported on two phenomena where ultracold dimer-dimer collisions
point to a more complex structure beyond the two-body physics of dimers. Un-
derstanding this structure is not only important from a fundamental point of
view, it also holds potential for future experimental applications.

The occurrence of narrow loss resonances is most likely explained by cou-
pling to tetramer states. The analogy of this situation to Feshbach resonances
in atom-atom collisions [Chi10] points to potential applications, which can be
found in controlling dimer-dimer interactions and in the association of more
complex molecules. Because of the many open decay channels such molecules
will be inherently unstable, but situations may exist where loss suppression
mechanisms [Pet04b, D’I08] will enable observation times long enough for ex-
perimental applications. Then it may be possible to perform a magnetic field
ramp to associate tetramers from colliding dimers. A related possibility would
be a controlled rearrangement reaction where two dimers are converted into a
trimer and a free atom [D’I09d]. Further possible applications of collisional reso-
nances arise from the prospect to use strong dissipation in dimer-dimer collisions
for realizing strongly correlated states of matter [Sya08].

The temperature dependence observed in some of the investigated collision
channels provides hints on the existence of thresholds which are energetically
slightly above the zero-energy threshold of two colliding dimers; this again points
to the role of more complex molecular states. For the universal 6s halo dimer
state, the existence of a trimer state indeed provides a plausible explanation for
the observed behavior [D’I09d]. For the non-universal 6g(6) state, which shows
a very similar temperature dependence over a wide magnetic field range, we can
only speculate that a non-universal trimer or tetramer state may closely follow
the dimer state’s energy.

We are only beginning to understand the complex interaction properties of
ultracold trapped molecules, but we already see intriguing phenomena with po-
tential applications in this emerging research field.1
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CHAPTER 8

OUTLOOK

The findings presented in this thesis clearly show the successful interplay of ex-
perimental and theoretical work in the universal regime. Experimental research
on ultracold atomic quantum gases has contributed greatly to the verification
and improvement of universal theories. These achievements motivated to extend
the theoretical analysis to more complex systems showing several new few-body
phenomena, which still miss experimental verification. Furthermore, the ques-
tion needs to be answered whether a simple refinement of universal theories by
incorporating non-universal properties exists, which would be capable of appro-
priately describing real-world systems, which are not far in the universal regime.
In particular, further studies on Efimov and four-body states in different sys-
tems, including observation of consecutive resonances, are necessary in order to
get a global overview of the situation in real-world systems. This might help
our understanding of observed experimental discrepancies in comparison to the
expectations arising from universal theory, such as the indicated deviation of
the position of the atom-dimer Efimov resonances.

Up to now, only broad and intermediate Feshbach resonances were utilized
for the study of few-body physics. For very narrow resonances, the three-body
parameter in the Efimov scenario should be fixed by the Feshbach resonance
parameter R∗ as derived in Refs. [Pet04a, Gog08]. This prediction still lacks
experimental verification, which could offer further insight into the properties of
the three-body parameter.

So far, the research on universal phenomena has mainly focused on few-body
processes involving samples with equal atomic isotopes, the exception being
the observation of Efimov resonances in a bosonic RbK mixture [Bar09]. The
rapid growth in the number of atomic mixture experiments allows studying new
universal few-body phenomena. Research on (heteronuclear) Bose-Bose, Bose-
Fermi and Fermi-Fermi mixtures will increase our knowledge of universality in
systems offering different mass ratios, spin states, quantum statistics and inter-
action strengths. In the Efimov scenario, several theoretical predictions exist
for non-identical particle systems [Ama72, Efi72, Efi73, D’I06b, D’I05b, D’I06a],
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Figure 8.1.: Schematic representation of the universal four-body resonances at
the dimer-dimer threshold in the extended Efimov scenario. (a) The plot visu-

alizes the universal tetramer (B4) states (black solid lines) coupling at a
(1)
4b,∗ and

a
(2)
4b,∗ to the dimer-dimer (B2+B2) threshold (lower red curve). The state related

to an Efimov trimer plus a free atom (green dashed line) crosses the dimer-dimer
threshold at acdd and couples to the dimer-atom-atom (B2 + B + B) threshold
(upper red curve) at a∗. The resonance of the atom-dimer scattering length at a∗
induces an Efimov scenario involving two atoms and a dimer (black curves at a∗).
The horizontal dashed line indicates the free atom threshold (B +B +B +B).
(b) The coupling of the tetramer states to the dimer-dimer threshold leads to

a resonant enhancement of the dimer-dimer scattering length add at a
(1)
4b,∗ and

a
(2)
4b,∗. Taken from Ref. [D’I09d] with modified labeling.

which haven’t been tested yet. For example, it is expected that combinations of
light-heavy-heavy particles, such as LiYbYb, LiCsCs and LiRbRb, offer favor-
able universal scaling factors, facilitating the observation of several consecutive
Efimov resonances [Bar09, Efi73].

Furthermore, the conversion of ultracold atomic mixtures into samples of het-
eronuclear molecules opens up the field of ultracold chemistry, which offers a
promising way of studying diverse chemical reactions under controlled circum-
stances [Car09, Osp10b, Kno10]1.

Universal dimer-dimer collisions present a yet barely explored research topic,
which will offer a deeper insight into the properties of elementary four-body pro-
cesses. Especially the coupling of the Efimov-related universal tetramer states
[Ste09, Fer09a]2 to the dimer-dimer threshold are expected to give rise to reso-
nance phenomena in universal dimer samples [D’I09d]3. This scenario is shown in
Fig. 8.1. Experimental verification of this scenario would allow for the creation
of a universal dimer sample with tunable interactions. These measurements

1See also Chapter 3.
2See also Chapter 6.
3Possible evidence for this process might have already been observed in the dimer-dimer
measurements reported in Chapter 5.
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Figure 8.2.: The “cluster plus one atom” scenario of the Efimov family. Each
hyperspherical potential curve (blue solid lines) supports a cluster state (red
solid line), which creates another cluster-atom potential curve (green dashed
line)[Ste10].

would also yield the yet unobserved intersection of the Efimov trimer state at
the dimer-dimer threshold.

Another research route leads to the investigation of universal N -body clusters.
Recent theoretical studies imply that universality can be extended to a so-called
Efimov family, where each Efimov state is associated to a series ofN -body cluster
states, with N > 3 [Ste10, Ste11, Han06]. Different types of cluster states are
expected to exist, such as clusters binding with one or more atoms to create new
clusters. The “cluster plus one atom” scenario, which relates to the extended
Efimov scenario, is depicted in Fig. 8.2. There are several questions concerning
these cluster states, such as whether other higher-order parameters, besides the
s-wave scattering length and the three-body parameter, are needed to fix the
spectrum of these clusters. How do non-universal corrections enter the cluster
scenario? A recent study suggests that no four- or higher-order parameters
are necessary for the determination of five- and six-boson clusters [Ste11]. The
observation of such a cluster state would increase the zoo of few-body states and
open up a completely new direction of research. During the final stage of writing
this thesis, we found experimental indications for the existence of a five-body
cluster state connected to an Efimov trimer in the vicinity of the 787 G s-wave
Feshbach resonance.

So far, experimental research has focused on few-body phenomena in three
dimensions. For the intriguing case of reduced dimensions, no Efimov effect is
expected for identical bosons [Nie01]. Nevertheless, there are several classes of
systems where the Efimov effect should exist even if the number of dimensions is
other than three [Nis11]. Theoretical studies suggest that of the infinite number
of Efimov states in three dimensions, only two states survive the transition into
the two-dimensional space [Nie97]. Recently, a one-dimensional optical lattice
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that allows to study this transition was employed in our experimental setup.
Furthermore, atomic mixture experiments make it in principle possible to create
the fascinating situation of different dimensionalities for different species. This
field is completely unexplored as yet.
The achievement of heteronuclear ground-state molecules in the ultracold

regime [Ni08, Osp10a] is the initial step for studying universal few-body physics
in dipolar quantum gases. A theoretical work on three interacting bosonic
dipoles proposes not only that the Efimov effect persists, but also that dipo-
lar interactions are extremely beneficial for the study of universal trimer states
[Wan11b]. The three-body parameter should be defined by the dipolar interac-
tion range, and the Efimov trimers become ever more long-lived for increasing
dipolar interaction strengths. Therefore, a system of strongly dipolar particles
might provide suitable conditions to directly observe a gas of Efimov trimer
states for the first time.
These future studies will lead to a deeper understanding of the fascinating

world of few-body phenomena, as well as reveal basic properties of quantum
matter.



APPENDIX A

CESIUM ENERGY LEVEL STRUCTURE

In this appendix, an overview of the energy level structure of 133Cs is given, fo-
cussing on its characterization in the magnetic high-field region. In the following,
the magnetic high-field region refers to magnetic field strengths B between 150 G
and 1400 G, which are experimentally accessible after a substantial reconstruc-
tion of our magnetic field system; see Appendix B. Precise knowledge of this
structure is essential for setting up the high-field imaging system (Appendix C)
and performing magnetic-field calibrations by means of microwave-spectroscopy
(Appendix D).
Sec.A.1 summarizes the atomic properties resulting from the hyperfine and

Zeeman interactions, as described in general textbooks on atomic physics, for
example Ref. [Foo05]. In particular, this section focusses on the atomic cesium
system1. The energy level structure of the ground-state and excited-state man-
ifold is discussed in Sec.A.2 and Sec.A.3.

A.1. Hyperfine and Zeeman energies

The energy levels are described by an appropriate set of so-called “good” quan-
tum numbers2, which allow for an adequate characterization of the atomic state.
This set of “good” quantum numbers is determined by the competition of the
energy splittings related to the fine structure and hyperfine structure with the
magnetic-field dependent Zeeman energy. As shown below, these sets differ for
the ground- and excited-state manifold in the magnetic high-field region.
Cesium, being an alkali atom, has an electronic spin angular momentum quan-

tum number3 of S = 1/2, which leads to a splitting of the excited state into a

1An overview of the physical and optical properties of cesium is given in Ref. [Ste03].
2In this sense “good” means that the atomic properties can be easily read out from these
quantum numbers.

3Here, the convention is used that bold letters refer to the angular momentum (S, . . .), and
normal letters (S, . . .) to the magnitude of the eigenvalue

√
S(S + 1)~, . . . of the angular

momentum operators (Ŝ, . . .); the eigenvalue of Ŝz is mS~, and so on.
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fine-structure doublet with total electronic angular momentum quantum num-
bers J = 1/2, 3/2. Due to the large fine-structure splitting of cesium, it is not
possible to observe the Paschen-Back effect for the fine structure, which leaves
J as a good quantum number. The transition frequencies and line widths of the
D1 transition

4 (6 2S1/2 → 6 2P1/2) and the D2 transition (6 2S1/2 → 6 2P3/2) can
be found in TableA.1.

D1 - transition D2 - transition
wavelength (Vaccum) λ 894.592 959 86(11) nm 852.347 275 82(27) nm
frequency ν 335.116 048 807(41) THz 351.725 718 50(11) THz
natural line width γ 4.561 2(57) MHz 5.222 7(66) MHz

Table A.1.: Optical transition properties of the D1-line (6 2S1/2 → 6 2P1/2) and
the D2-line (6

2S1/2 → 6 2P3/2) [Ude99, Ude00]. The natural line width refers to
the full width at half maximum (FWHM).

6 2S1/2

magnetic dipole constant Ahfs h× 2.298 157 942 5 GHz
hyperfine splitting ∆Ehfs h× 9.192 631 770 GHz
fine structure Landé g-factor gJ 2.002 540 32(20)

6 2P1/2 6 2P3/2

magnetic dipole constant Ahfs h× 291.92(2) MHz h× 50.275(3) MHz
electric quadrupole constant Bhfs 0 −h× 0.53(2) MHz
fine structure Landé g-factor gJ 0.665 90(9) 1.334 0(3)

Nuclear g-factor gI −0.000 398 853 95(52)

Table A.2.: Hyperfine structure constants, nuclear g-factor and fine structure
Landé factors for 133Cs in the ground- (6 2S1/2) [Ari77] and excited-states mani-
fold (6 2P1/2 and 6 2P3/2) [Ude99, Raf97, Tan88, Ari77]. The ground state hyper-
fine splitting and magnetic dipole constants are exact, resulting from the current
definition of the second. For the ground-state manifold Bhfs = 0, and the hyper-
fine splitting is related to the magnetic dipole constant by ∆Ehfs = Ahfs(I+1/2),
which results from Eq. (A.1).

The energy levels feature a hyperfine structure due to the coupling of the nu-
clear angular momentum I with J, with I = 7/2 for 133Cs. In the approximation
that J is a good quantum number, the Hamiltonian that describes the hyperfine
interaction is given as [Cor77, Ale93]

Ĥhfs =
Ahfs

~2
Î · Ĵ+

Bhfs

~4
3(Î · Ĵ)2 + 3~2

2
Î · Ĵ− Î2Ĵ2

2I(2I − 1)J(2J − 1)
, (A.1)

4The labeling refers to n2S+1LJ , with the principal quantum number n and L the electronic
orbital angular momentum quantum number in the typical spectroscopic assignment, L =
0, 1, 2, . . . = S, P,D, . . . [Rus29].
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Figure A.1.: Level scheme of 133Cs at zero magnetic field including hyperfine
interaction. The dashed lines show the atomic energy levels without hyperfine
interaction. The prime (′) denotes states of the excited-state manifold. Only
D2 transitions are employed in our experiments, as these transitions offer closed
optical cycles. The imaging cycle at zero magnetic field is operated on the
F = 4 → F ′ = 5 transitions (not shown). Prior to that, the atoms are optically
pumped from the F = 3 to the F = 4 state by a repumper beam resonant on
the F = 3 → F ′ = 3 transition.

with the magnetic dipole constant Ahfs and the electric quadrupole constant
Bhfs. TableA.2 lists the values for the hyperfine structure constants, nuclear
g-factor and fine structure Landé factors gJ of the ground and excited states.

In the low magnetic field regime, where the total atomic angular momentum
F = |J + I| is a good quantum number, the atomic states can be labeled by
a set of good quantum numbers as |α,LSJIFmF ⟩. Here, α denotes all non-
angular momentum quantum numbers. Then, the hyperfine interaction energies
can easily be calculated using Î · Ĵ = 1

2
(F̂2− Ĵ2− Î2) in Eq. (A.1). The resulting

level scheme at zero magnetic field (including hyperfine interaction) is depicted
in Fig.A.1.

The interaction with the magnetic field is described by the Zeeman Hamilto-
nian

ĤB =
µB

~
(L̂+ gSŜ+ gI Î) ·B, (A.2)

which, for a magnetic field along the z-direction and depending on the atomic
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state, becomes

|α,LmLSmsImI⟩ → ĤB =
µB

~
(L̂z + gSŜz + gI Îz)Bz, (A.3)

|α,LSJmJImI⟩ → ĤB =
µB

~
(gJ Ĵz + gI Îz)Bz, (A.4)

|α,LSJIFmF ⟩ → ĤB =
µB

~
gF F̂zBz. (A.5)

The regime of applicability of Eqs. (A.4) and (A.5) results from the magnetic
field dependent competition between hyperfine interaction and Zeeman energy.
In the following, it is assumed that B ≃ Bz (see Eq. (B.4)).
For small magnetic field strengths, hyperfine interaction dominates the Zee-

man energy and the atomic states are well described in the |α,LSJIFmF ⟩ ba-
sis. The energy shift ∆E (with respect to the fine-structure energy levels at
zero magnetic fields) is the result of the hyperfine energy ∆Ehfs and the Zeeman
energy ∆EB [Ari77, Ale93],

∆E = ∆Ehfs +∆EB, (A.6)

∆Ehfs =
1

2
AhfsK +Bhfs

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
, (A.7)

∆EB = µBgFmFB, (A.8)

with
K = F (F + 1)− I(I + 1)− J(J + 1). (A.9)

The hyperfine Landé factor gF is

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)

+gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
(A.10)

≃ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
. (A.11)

If the Zeeman energy exceeds the hyperfine splitting, the hyperfine Paschen-
Back regime is entered, decoupling J and I. The magnetic field strengths em-
ployed in the experiment are large enough for the excited-state manifold to
enter the Paschen-Back regime, but not for the ground-state manifold. The
Paschen-Back eigenstates are |α,LSJmJImI⟩ and the energy shift ∆E is given
by [Ale93]

∆E = ∆Ehfs +∆EB, (A.12)

∆Ehfs = AhfsmJmI

+Bhfs

3(mJmI)
2 + 3

2
mJmI − I(I + 1)J(J + 1)

I(2I − 1)2J(2J − 1)
, (A.13)

∆EB = µB(gJmJ + gImI)B. (A.14)
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Figure A.2.: Magnetic field dependencies of the ground and excited state man-
ifold hyperfine levels. (a) The ground state manifold (6 2S1/2) is calculated
with the Breit-Rabi formula [Bre31]. At zero magnetic field, the hyperfine
states F = 3 and F = 4 feature an energy splitting of h × 9.192 . . . GHz.
This splitting is larger than the Zeeman energy in the experimentally accessible
magnetic field range. Therefore, the states are appropriately described in the
|α,LSJIFmF ⟩ basis. The lowest line illustrates the absolute atomic ground
state |F = 3,mF = 3⟩. (b) The excited state manifold of 6 2P3/2 is derived

by numerical diagonalization of Ĥhfs + ĤB. The four possible hyperfine states
F ′ = 2, 3, 4, 5 feature zero-field energy splittings of h× 151 MHz (F ′ = 2 ↔ 3),
h× 201 MHz (F ′ = 3 ↔ 4) and h× 251 MHz (F ′ = 4 ↔ 5). The Zeeman ener-
gies are comparable to these hyperfine splittings at relatively low magnetic field
strengths of about 100 G. For increasing magnetic field strengths these states
are in the hyperfine Paschen-Back regime and follow the grouping according to
their m′

J quantum number.

A.2. Ground-state manifold

The ground-state manifold can be sufficiently well described in the |α,LSJIFmF ⟩
basis over the whole experimental tuning range of the magnetic field strength
because of the large hyperfine splitting; see Fig.A.2(a). However, for precise
determination of the atomic energies, state mixing has to be taken into account
and Ĥhfs + ĤB has to be diagonalized. For the ground state manifold, this
diagonalization leads to an analytic expression, the Breit-Rabi formula [Bre31].

The Breit-Rabi formula is valid for both the (anomalous) Zeeman and the
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Figure A.3.: (a) Variation of µ(B) of cesium atoms in the absolute atomic ground
states calculated by Eq. (A.15). (b) Sample calculation showing the dependency
of ∇zB|z′ on the vertical position z′ of the atom cloud with respect to ∇zB|0
at the geometric center of the magnetic bias coils. This calculation is based on
typical current configurations of the magnetic bias coils, which are used to reach
500 G (black solid line) and 850 G (red dashed line).

hyperfine Paschen-Back regime5 and reads as [Bre31]

∆E = − ∆Ehfs

2(2I + 1)
+ gIµBmB ± ∆Ehfs

2

√
1 +

4mx

2I + 1
+ x2. (A.15)

The fine-structure mJ and nuclear mI magnetic quantum numbers relate to m
via m = mI + mJ = mI ± 1/2, where the ± sign is the same as in Eq. (A.15)
and

x =
(gJ − gI)µBB

∆Ehfs

. (A.16)

For magnetic field strengths experimentally accessible in our setup m = mF .
This can lead to sign ambiguities in the evaluation of Eq. (A.15), therefore it is
favorable to use the more direct formula

∆E = ∆Ehfs
I

2I + 1
± 1

2
(gJ + 2IgI)µBB, (A.17)

for the two states m = ±(I + 1/2); sign as in Eq. (A.17).

Magnetic moment in the absolute atomic ground state

Typically, a magnetic gradient field6 ∇zB is applied during the experimental
procedure to levitate the atoms against gravity. For this purpose, the gradient

5The Breit-Rabi formula does not take into account the quadratic Zeeman shift, which re-
sults from induced magnetic moments of closed shell electrons. In our case, this effect is
negligible.

6The z-coordinate refers to the vertical direction.
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field has to be adjusted as a function of the magnetic moment µ(B) in order to
fulfill the levitation condition

∂B

∂z
=

mg

µ(B)

for B=0−−−−→ ∂B

∂z
= 31.1

G

cm
, (A.18)

with the 133Cs mass m and the gravitational acceleration in Innsbruck g =
9.80636 m

s2
.

The magnetic moment of atoms in the absolute ground state rises for increas-
ing magnetic field strength from the zero-field value µ(0) ≃ 0.75µB to µ(B) ≃ µB

in the Paschen-Back regime. This leads to a considerable shift of µ(B), even
with experimentally accessible magnetic field strengths; see Fig.A.3(a).
In the experimental sequence, the levitation field is decreased simultaneously

with the increase of µ(B) for higher magnetic field strengths. For the 800 G
(550 G) region, this increase amounts to approximately 11% (8%) in comparison
to µ(0). Experimentally, the adaptation of the levitation field for the 800 G
(550 G) region is smaller than expected: 4± 2%(2± 2%).
This effect might be explained by a misalignment of the trap center relative

to the geometric center of the vacuum chamber, in combination with an axial
magnetic curvature field CBias, which is created as a side-effect by the coils that
produce the magnetic bias field7 BBias. The total magnetic field strength results
from the contributions of BGrad.(z′) = ∇zB

Grad.|0z′ of the Gradient coils and
BBias(z′), and can be written as

B(z′) = BBias(z′) +BGrad.(z′) (A.19)

≃ BBias(0) + CBiasz′ 2 +∇zB
Grad.|0z′. (A.20)

This gives rise to a position-dependent magnetic gradient field according to

∇zB|z′ = ∇zB
Grad.|0 + 2CBiasz′, (A.21)

with CBiasz′ ≪ ∇zB
Grad.|0. Therefore, the magnetic field gradient necessary for

levitation of the atom sample depends on the vertical position of the atom cloud,
relative to the geometric center of the magnetic bias coils; see Fig.A.3(b).

A.3. Excited-state manifold

Only the 6 2P3/2 manifold is discussed here, as only this manifold offers closed
optical cycle transitions and is therefore relevant to our experimental procedure.
Due to the small hyperfine splitting of the 6 2P3/2 states, the IJ-coupling breaks
down at field strengths as low as about 100 G; see Fig.A.2(b). For the mag-
netic field strengths that are applied for high-field imaging (between 500 G and
1000 G; see Sec. C.2), the hyperfine Paschen-Back regime is reached and the
states are appropriately described in the |α,LSJmJImI⟩ basis. In order to take

7These are the so-called Bias coils. A description of the different coils is given in AppendixB.
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into account residual state mixing effects for the calculation of ∆E, the Hamil-
tonian Ĥhfs + ĤB is numerically diagonalized in the |α,LSJmJImI⟩ basis. For
large magnetic field strengths, the results of this procedure, which are shown in
Fig.A.2(b), approach the solutions of Eqs. (A.12) - (A.14).
This diagonalization is simplified by neglecting the small electric quadrupole

constant Bhfs = −h × 0.53(2) MHz, which allows us to write the hyperfine
interaction Hamiltonian as

Ĥhfs ≃
Ahfs

~2
Î · Ĵ =

Ahfs

~2
(
ÎzĴz +

1

2
(Î+Ĵ− + Î−Ĵ−)

)
, (A.22)

with the ladder operators defined as Ĵ± = Ĵx± iĴy and Î± = Îx± iÎy, leading to
off-diagonal matrix elements. The solution involves the diagonalization of one
2× 2 matrix (m′

F = ±4), one 3× 3 matrix (m′
F = ±3) and three 4× 4 matrices

(m′
F = 0,±1,±2), while the m′

F = ±5 states are obtained directly.



APPENDIX B

MAGNETIC FIELD SYSTEM

Magnetic fields play a major role in achieving Bose-Einstein condensation as
well as the observation of (universal) few-body physics due to the tunability of
the s-wave scattering length a with the magnetic field strength B in the vicinity
of a Feshbach resonance. The publications presented in Chapters 2, 3, 5, 6 and
7 are based on a magnetic field setup restricted to the magnetic low-field region
up to 150 G, where a can be tuned between −2500a0 and 1600a0 [Web03a].

To accomplish the experimental results presented in Chapter 4 a major up-
grade of the magnetic field system was necessary. This new system allows per-
forming measurements in the magnetic high-field region up to 1400 G, with
∼ 10 mG stability. The reason for upgrading is the existence of two broad
open-channel dominated Feshbach resonances with poles at 549 G and 787 G;
see Table F.9. The new setup enables us to exploit the unrestricted tunability
of a(B) in the vicinity of these Feshbach resonances.

B.1. Overview

This section gives a short overview of the constituent parts of the upgraded mag-
netic field setup; see Fig. B.1. The setup is based on paired or single coils, which
generate the magnetic field at the geometric center of the vacuum chamber. New
components are marked by the symbol (⋆) and are discussed in this appendix,
whereas components that are parts of the previous setup are explained in the
PhD theses of my predecessors [Mar08b, Kra06a, Her05].

Bias coils⋆ (see Sec. B.2 and Ref. [Har10])

These coils represent the heart of the new magnetic field setup by producing a
stable and homogenous magnetic field up to 1400 G. Basically, the Bias coils
consist of a modular system of three independent units. Each of these units
is composed of one or two coil pairs in Helmholtz configuration and features

101
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individual electronic control, safety installations and water-cooling. This system
is described in detail in this appendix.

Curvature coils⋆ (see Sec. B.3 and Ref. [Har10])

The Bias coils introduce a small curvature of the magnetic field, due to small
inevitable variations from the perfect Helmholtz configuration. Therefore, a set
of Curvature coils has been implemented, which are capable of correcting for
this effect. Moreover, the magnetic field curvature produces trapping and anti-
trapping potentials, which can be exploited in future experiments to create a
hybrid optical and magnetic trap.

Vertical compensation coils⋆ (see Sec. B.4)

The strong magnetic bias field leads to a remanence effect of the surroundings1.
To counterbalance this effect, a set of Vertical Compensation coils was imple-
mented.

Horizontal compensation coils (see Ref. [Her05])

In order to compensate for stray fields2, which rotate the magnetic field vector,
we use two orthogonally oriented pairs of rectangular coils. These so-called
Horizontal Compensation coils create a small horizontal bias field.

Gradient coils (see Ref. [Her05])

Besides the magnetic bias coils, all of them in Helmholtz configuration, a pair
of Gradient coils in Anti-Helmholtz configuration supplies a constant magnetic
field gradient, which is essential for several experimental stages. First, these coils
provide the quadrupole field for the magneto-optical trap. Furthermore, these
coils create a magnetic levitation field, which counteracts gravity; see Sec.A.2.
In experiments involving dimers (Chapters 2, 3, 5, and 7) the magnetic field
gradient was employed to distinguish between atomic and dimer clouds, see for
example Fig. 2.2, by a Stern-Gerlach separation technique.

Supplementary bias coils (see Ref. [Mar08b])

In addition to the strong Bias coils, the experimental setup consists of several
supplementary bias coils, which offer different ranges of applications.
The electronic controls for the strong Bias coils are optimized for large mag-

netic field ramps of several hundred Gauss. Therefore, a different pair of extra

1The origin of this remanence is not unambiguously attributable, as the vacuum chamber is
made from non-magnetic stainless steel of grades AISI 316LN (DIN W.-Nr. 1.4429) and
AISI 316L (1.4435). Both materials are virtually ferrite-free and specified with a magnetic
permeability of µ ≤ 1.005 [Web03a].

2Such magnetic stray fields can be introduced by electronic devices, such as ion pumps, or
magnetized parts in the vicinity of the vacuum chamber.
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Helmholtz-coils (the so-called ExtraHH coils) is used for small magnetic field
ramps of up to 62 G. This pair of coils exhibits switching times of τswitch = 1.5 ms
and is used for Feshbach tuning and molecule production.
To accomplish fast changes of the magnetic field strength, two other coils are

used in the experimental setup. First, a pair of small Helmholtz-coils (the so-
called SmallHH coils) allows for magnetic field jumps of 10 G within a rise time
of 300µs. This pair of coils is situated directly on the re-entrant viewports to
induce smaller eddy currents. On the upper viewport, an even smaller single
coil is placed. This so-called Booster coil enables ultra-fast magnetic field jumps
of up to 8 G within 500 ns, perfectly suited to perform diabatic magnetic field
ramps at molecular avoided level crossings.
A summary of the properties of all the magnetic field coils can be found in

Table B.1.
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Holder
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Figure B.1.: Lateral cut through the main vacuum chamber showing the mag-
netic coil system. The Zeeman-slowed atomic beam enters the chamber from the
left viewport along the y-direction. The trapping and cooling stages, which are
extensively described in Refs. [Web03a, Her05, Kra06a, Mar08b], take place in
the geometrical center of the main chamber. The coils shown in this figure pro-
duce a rotational symmetric magnetic field along the z-direction. Note that the
Horizontal Compensation coils are not shown in this figure. The Bias coils (A)
consist of three separately controllable sets of coils in Helmholtz-configuration,
able to reach a total magnetic field of ∼ 1400 G. The coil body (B) contains
the Gradient coils, which are connected in anti-Helmholtz configuration, and a
pair of coils which produces additional magnetic fields up to ∼ 60 G (ExtraHH
coils). A set of Curvature coils (C) compensates or increases the magnetic field
curvature produced by the Bias coils. Vertical Compensation coils (D) are used
to correct for the magnetization of the chamber and its surroundings. In or-
der to perform fast magnetic field jumps, two coils are mounted directly at the
re-entrant viewports, the so-called SmallHH coils (E), τswitch ∼ 300µs, and the
single Booster coil (F), τswitch ∼ 500 ns.
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B.2. Bias coils

B.2.1. Design

In order to allow the investigation of few-body physics without limitations due
to stability or tunability of the s-wave scattering length, a setup of new bias
coils has been implemented. These coils consist of three separately controlled
units; see Fig. B.2 and TableB.1. Unit 1 almost fulfills the Helmholtz(HH)-
configuration and generates a constant magnetic field in the center of the main
chamber. Units 2 and 3 deviate slightly from the optimum HH-position and
introduce a small magnetic field curvature C ̸= 0; see Sec. B.2.2. The advantage
of this system of individual units is the adjustability of the magnetic field cur-
vature and faster ramping times due to the optimization of the control circuits.
Moreover, constructing a single hard coil body was impossible due to geometric
reasons, as the legs of the vacuum chamber limit the maximum extension of a
single coil body.

Materials

The coils are made of square profile copper tubes (purchased at Eugen Geyer
GmbH), which feature square holes for water-cooling. The side lengths of these
tubes are 5.5 mm for unit 1 and 4 mm for units 2 and 3. The cooling holes have
a side length of 2.7 mm for unit 1 and 2 mm for units 2 and 3. This results in a
conducting area cross-section of Acond = 23 mm2 for unit 1 and Acond = 12 mm2

for units 2 and 3. Due to the difference in area cross-sections, unit 1 is able
to reach a maximum current of 800 A, whereas for units 2 and 3 the current is
restricted to 400 A 3.
The copper tubes are insulated by glass fiber braided sleevings (ETS Favier

TPL), with an insulating layer thickness of 0.25 mm. These sleevings feature a
dielectric strength of ∼ 0.5 − 1.5 kV and are specified to a continuous working
temperature up to +450◦C.
Due to the permeability of the sleeving, each coil was adhered with an epoxy

resin (Hysol RE2039/HD3561, Loctite), which features a strong resistance to
mechanical impact. The dielectric strength of the epoxy resin is sufficiently
large ∼ 1.8 kV/mm, but the heat deflection temperature is only +84◦C.

Coil configuration

In contrast to thin conducting wires, asymmetries in the wiring process lead to
strong magnetic field inhomogeneities for the rather thick copper tubes. Espe-
cially, spiraling out windings and, more importantly, asymmetric wire segments
resulting from vertical layer transition, would provoke a horizontal magnetic
field gradient at the center of the trap. To compensate for this effect, the upper
and lower coils are constructed as perfect mirror images of each other, including
windings and supply lines.

3These restrictions depend on the power supplies in use and the pressure of the cooling water.
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Figure B.2.: Vertical cut showing the design of the newly added coils. The Bias
coils are separated into the units 1, 2 and 3. Diameters and axial distances are
indicated in mm. For the Bias coils, the solid rectangular boxes emphasize the
different units, whereas the dashed lines indicate the different coils, belonging
to the same unit. Likewise, solid boxes point to the Curvature and Vertical
compensation coils. The holders of the coils are not shown in this picture.

Unit 1 features Nr = 3 radial and Na = 4 axial windings, which results in a
total number of N = 11 windings4. Units 2 and 3 are geometrically identical
and each of them is composed of two coils with Nr = 4 and Na = 2, N = 7.
These two coils are connected electrically in series by a solid copper rod, building
up a unit with N = 14 windings in total. Although each of the units 2 and 3
is a constituent entity electronically, physically they consist of four separated
coils5. The main advantage of this design is that water-cooling for all 10 coils is
operated in parallel, optimizing the cooling power; see Sec. B.2.3.

The radial extension of all units is 18 mm. The axial extensions are 24.5 mm
for unit 1 and 18.5 mm for units 2 and 3, including a 0.5 mm layer of epoxy
resin flattening out the horizontal surfaces of the coils.

Mounting

The Bias coils are mounted directly onto the main vacuum chamber by a holder
made of plastic6 using the pre-existing screw-holes of the vacuum chamber. The
holder has an inner (outer) diameter of 242.5 mm (275 mm) aligning the coil
body and a wall thickness in axial direction of 10 mm.

4At least one winding is “lost” due to the transition from one layer to another in the winding
procedure. The design was optimized to reduce the amount of lost windings to one.

5This design was not possible for unit 1 because of geometrical restrictions; see Fig. B.1.
6The material of the holder was chosen to prevent eddy currents.
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The force acting on the Bias coils at maximum magnetic field strength7 was
calculated [Ber87] as ∼ 200 N. This relatively small force legitimates the simple
mounting structure. No vibrations due to current switching occurred in the
experimental cycle.

B.2.2. Curvature and Trap frequencies

The position of the Bias coils deviates slightly from the perfect Helmholtz con-
figuration8, which causes a small magnetic field curvature C.
The definition of C follows from a Taylor series of the magnetic field B =

(Bz, Bρ), which is created by two circular current loops situated at z = ±D
[Mey05],

Bz(I) = µ0I
R2

(D2 +R2)3/2
+

3µ0I

2

R2(4D2 −R2)

(D2 +R2)7/2
(z2 − ρ2/2) + . . .

= Bz=0(I) + Cz(I)(z
2 − ρ2/2) + . . . (B.1)

Bρ(I) = −3µ0I

2

R2(4D2 −R2)

(D2 +R2)7/2
zρ+ . . .

= −Cρ(I)zρ− . . . (B.2)

It directly follows that Cz = Cρ ≡ C. For Bz=0 ≫ C(I)(z2 − ρ2/2) and Bz=0 ≫
C(I)zρ the magnitude of the magnetic field B is approximately

B = |B| ≃
√

(Bz=0(I) + C(I)(z2 − ρ2/2))2 + (C(I)zρ)2 (B.3)

≃ Bz=0(I) + C(I)(z2 − ρ2/2). (B.4)

The magnetic field curvature C(I) leads to a confinement either in radial or
axial direction, in addition to the optical trap, with trapping and anti-trapping
frequencies, respectively, given as [Alt07a]

νmag
ρ =

1

2π

√
µ(B)

m
C(I), (B.5)

νmag
z =

1

2π

√
−2

µ(B)

m
C(I). (B.6)

Considering the values of TableB.1, the radial trapping frequency9 can be esti-
mated using the zero-field magnetic moment10 µ(B) ≃ 0.75µB as

νmag
ρ (Hz) = 0.0283

(
Hz√
A

)√
−2Iunit1(A) + 7Iunit2(A) + 10.3Iunit3(A). (B.7)

7According to TableB.1
8This deviation is inevitable, due to geometric restrictions, which are imposed by the design
of the main vaccum chamber.

9The vertical anti-trapping frequency is νmag
z = i ·

√
2νmag

ρ .
10Strictly speaking, the magnetic field dependence of µ(B) has to be taken into account; see

Sec.A.2.
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This value can be further increased or decreased using the Curvature coils. The
trapping frequency at 1000 G is typically at the order of 1.5 − 2 Hz. In future
applications, this allows for the creation of a hybrid optical and magnetic trap.

B.2.3. Water-cooling system

A major feature of the Bias coils is the internal water-cooling, which allows
current densities exceeding 30 A/mm2. A Grundfos CRE 3-36 centrifugal pump
supplies each of the 10 coils with p = 10 bar of water pressure11. As the water
flow decreases for increasing length of the copper tubes, the water-cooling is
connected to the coils in parallel.
The electric power dissipation P in one unit can be estimated as

P = ♯(coils/unit)
(N × 2πr + ls)ρ

Acond

I2 (B.8)

where r is the mean radius, ls = 2 × 1.5m the length of the supply lines of
the copper tubes12 and ρ = 1.68 × 10−8 Ωm the electric conductivity of cop-
per. This results in P unit1

max = 10 kW and P unit2,3
max = 7 kW for the maximum

currents given in Table B.1. In our situation, the water flow does not follow the
Hagen-Poiseuille equation for laminar flow, due to the fact that the Reynolds
number exceeds the critical value of 2300 for the water pressure in use; see
Fig. B.3. Therefore, the water flow is in the regime of turbulences13, where the
flow resistance grows quadratically with the flow rate. The measured flow rate
f for the large (5.5 mm) and small (4 mm) tubes can be extrapolated14 by a
simple square root fit f(l/min) = cfl

√
p(bar), yielding c5.5mm

fl = 0.46 l
min

1√
bar

and c4mm
fl = 0.24 l

min
1√
bar

, respectively. This results in expected flow rates of

f 5.5mm = 1.5 l/min and f4mm = 0.76 l/min at p = 10 bar. Considering the
number of coils in each unit, each Bias coil unit should feature a water flow of
∼ 3 l/min. This simple estimate fits nicely with the optimized set points of the
safety flow meters in use, which are set to 2.5 l/min for each unit; see Sec. B.2.5.
The temperature increase in the coils can be calculated by

∆T =
P

ρmCWf
(B.9)

11The maximum water pressure is flow dependent, for 35 l/min it is approximately 20 bar.
Apart from this cooling cycle, experimental water-cooling is provided by another 3 bar
pump, which is used for the Gradient and Curvature coils, as well as for the electronic
control board of the Bias coils, the secondary circuit of the CO2 chiller, the CO2 beam
dumps and high-power AOMs.

12The endings of the copper tubes are routed away from the main chamber, down alongside
the optical table and end 10 cm above the floor, where they are connected to the electric
and water supplies. That way, a breakage of the water connection does not endanger the
optical setup.

13In the turbulent regime, convection leads to an efficient heat transfer. Therefore, we assume
that the outgoing water is in thermal equilibrium with the coils.

14For safety reasons we have not performed water flow rate measurements at 10 bar.
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Figure B.3.: Measurements of the water flow rate for 2, 4 and 6 bar. For low
pressures, the water flow increases drastically for both the 5.5 mm tube (red
dots) and the 4 mm tube (black squares). Already at 2 bars the Reynolds
number exceeds the critical number of 2300 (red and black solid lines) and the
turbulent flow regime is reached. The dash-dotted lines are a square-root fit for
the turbulent regime, which correspond very well with the values of the safety
flow meters at 10 bar. The dashed lines mark the expectations for the laminar
regime, following the Hagen Poiseuille equation.

with the density ρm = 998.2 kg/m3 and the specific heat capacity of water
CW = 4186 J/kg/K. For a magnetic field strength of 1400 G this results in
∆T unit1 ∼ 48 ◦C and ∆T unit2,3 ∼ 33 ◦C.

Optimum temperature condition

In principle, the highest achievable magnetic field strength is limited by the max-
imum temperature increase ∆T ∼ 80◦C according to Eq. (B.9). The optimum
temperature condition is reached when ∆T matches for all units. As the flow
rates of the individual units are approximately the same, funit1 ∼ funit2 ∼ funit3

the optimum condition is obtained for Iunit1 = 5
3
Iunit2,3, according to Eq. (B.8)15.

Together with the value given in Table B.1 this leads to a magnetic field of
B(G) = 1.94(G/A)Iunit1 = 3.24(G/A)Iunit2,3. So for the optimum condition ∆T
can be estimated by16

∆T (◦C) ∼ 6.32× 10−5

(
◦C

√
bar

G2

)
×
(
B(G)

)2√
P (bar)

, (B.10)

15The dissipated power is the same for all units for these current configurations.
16This temperature increase is in reference to the incoming water temperature T0 ∼ 16◦C.
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with

Iunit1(A) =
B(G)

1.94
and Iunit2,3(A) =

B(G)

3.24
. (B.11)

For 1000 G, this corresponds to a temperature increase of ∆T ∼ 20◦C for a
current configuration Iunit1 = 520 A and Iunit2,3 = 310 A. Typically, this is
the configuration used in the experiment. The applicability of the optimum
temperature condition is restricted only due to the current limitations set by
the power supplies (800 A/400 A) and the fact that the water pressure should
not exceed 16 bar, which is the specified maximum for several of the water
connections in use.

B.2.4. Control system

The magnetic field system is operated via a self-made Labview software pro-
gram. The current control of each Bias coil unit is based on an active electronic
feedback system, which stabilizes the magnetic field strength to ∼ 10 mG. The
complete control system leads to a 1/e-rise time for the Bias coils of about 6 ms
for a 500 G jump. This value changes moderately for different magnetic field
strengths17.
In this section, the control system of the Bias coil units is described in detail;

see Fig. B.4.

Control interface

The experimental timing sequence is operated via a real-time control and mea-
surement system (Keithley ADwin-Gold-DA)18, which is initialized before each
experimental cycle by a self-written Labview interface [Web03a]. This Adwin-
system is synchronized by a line trigger with the power line to minimize environ-
mental cycle-to-cycle fluctuations [Her05]. The analog channels feature a 16 bit
resolution at a voltage range of ±10 V.
The pre-programmed Adwin-system provides the analog set voltages for the

proportional-integral-derivative (PID) controllers, which regulate the currents
in the magnetic coil-system. The voltage range ± 10 V of the analog Adwin
outputs thereby corresponds to the full current range of the power supplies.
Furthermore, the control system enables a fast switch-off of the coil currents via
digitally controlled insulated-gate bipolar transistors (IGBTs).

Feedback control system

In order to achieve a relative magnetic field stability and hence current stability
of 10−5, an active feedback system has been implemented. This system con-

17In principle, the proportional-integral-derivative (PID) controllers of the feedback control
system can be optimized for each magnetic field strength in order to decrease the rise time.
However, the experimental procedure does not rely on extremely fast magnetic field jumps,
and therefore we keep the calibration of the PIDs fixed.

18For the new magnetic-field system, this Adwin-system has been upgraded to three units,
due to the limited number of 8 available analog channels per unit.



112 APPENDIX: MAGNETIC FIELD SYSTEM

CT

Figure B.4.: Overview of the electronic control system of the Bias coils, as
explained in the text. Figure taken from Ref. [Har10].

stantly monitors the actual current in each Bias coil unit, compares it with the
set value from the Adwin and corrects for the deviation.

The actual currents are measured by highly sensitive current transducers
(CT), Ultrastab 867-1000IHF Danfysik19, which offer a current transfer ratio
of 1000:1. The transducers feature a thermal stability exceeding 0.5 ppm/K, a
response characteristic larger than 100 A/µs and a bandwidth of 0 − 500 kHz.
The output currents of the transducers are converted via precision shunt resis-
tances (VISHAY20), which offer a tolerance of 0.1% and a thermal stability of
2 ppm/K.

The self-made PID controllers analyze the deviations of the voltage signals
from the shunt resistances with the Adwin set values and generate analog 0−5 V

19The current cords of the Bias coil units 2 and 3 pass the current transducers twice in order
to increase the accuracy.

20After purchasing the resistances, it was realized that their resistance values were 3.3 Ω
instead of the 3 Ω ordered. This limits the maximum currents of the power supplies to
730 A and 360 A until the resistances are replaced. Furthermore, the input values of the
Labview control software for the Bias coils are ∼ 10% higher than the real current values,
given in TableB.1
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signals, which control the power-supplies via the analog programming input
connections.

Power supplies

For each unit, the currents through the Bias coils are provided by two paral-
lel connected power supplies of the series SM6000 (DELTA Elektronika)21 in
master-slave configuration.

The two power supplies for unit 1, model SM 15-400, provide a maximum
voltage of Vmax = 17 V and maximum current of Imax = 400 A each, resulting
in an overall maximum current of Iunit1max = 800 A. For each of the units 2 and 3,
two22 SM 30-200 power supplies are used, with Vmax = 33 V and Imax = 200 A,
yielding a total of Iunit2,3max = 400 A.

For the current connections between power supplies, coils and IGBTs, flexible
high-current copper connectors (Druisedt Elektrotechnik) are used. These PVC
isolated connectors feature cross sections of 400 mm2 (unit 1) and 150 mm2

(unit 2 and 3), respectively, which allow a steady-state current-flow without
necessitating active cooling.

Fast switch-off

The coil control system includes a fast switch-off routine using IGBTs, which
are connected in series with each coil unit. The IGBTs were chosen with regard
to the maximum attainable currents, model CM900DU-24NF with Imax = 900 A
for the circuit of unit 1 and model CM600DU-24NF with Imax = 600 A for the
circuits of units 2 and 3 (both purchased at POWEREX).

The IGBTs, which are mounted on a water-cooled23 metal block, close the
electric circuits on receiving a +15 V signal. This control-signal is generated
by amplification of a TTL high-signal (> 3.5 V) from the Adwin-system. After
opening the circuit, the electric power is dissipated via three high-power varistors
(V) (EPCOS, B60K275), which are connected in parallel with the coil body and
feature a break-through voltage of 700 V at a current of 800 A. In addition,
each IGBT is protected by a varistor (EPCOS, S20K385), which is not shown
in Fig. B.4.

The switch-off times have been measured in a test setup aside of the main
vacuum chamber with a result of 100µs for a 360 A jump. Within the environ-

21We purchased the power supplies with the additional options Iso Amp Module and High
Speed Programming. The Iso Amp Module provides galvanic isolation for programming and
prevents earth loops, whereas High Speed Programming allows rise times of 400µs (15− 20
times faster than the normal version) by reducing the output capacitors to 1200 µF (SM 15-
400) and 800 µF (SM 30-200), respectively. Primarily, the High Speed Programming option
was chosen because it enables faster control by the PID, which is necessary for the feedback
system.

22Operation of unit 2 or 3 with only one SM 15-400 power supply each is not possible, due to
the voltage drop over the coils and IGBTs, which exceeds 17 V.

23This cooling water is provided by the 3 bar cooling cycle.
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ment of the vacuum chamber, eddy currents are expected to increase this time
span by an order of magnitude24.

The main motivation for implementing a fast switch-off routine was to make
possible rapid jumps from the magnetic high-field region, where measurements
are performed, to the low-field region, where the low-field imaging takes place.
However, due to the fact that high-field imaging has been implemented, fast
switch-off times are less important. To avoid the risk of damaging the electronic
circuits of other coils by high induced voltages, the IGBTs are always switched
on during experimental runs.

B.2.5. Safety installments

The major risk of the Bias coil system is a malfunction of the 10 bar water-
cooling system. In that case, failure to instantly shut off the current could lead to
severe damage of the experimental setup. Therefore, several safety arrangements
are installed to rapidly shut down the power supplies, if necessary via either the
Interlock or the Remote shut down port of the supplies.

• Interlock
The interlock connector has 2 inputs which have to be connected in order
to turn on the output of the power supplies. As soon as the link between
them is interrupted, the power supplies shut down. All water-flow and
thermo switch control-elements are connected in series with this link and
open the electronic circuit in the event of a failure.

• Remote shut down
Should the voltage applied to the Remote shut down input drop below25

4 V, the power supplies shut down. A series of negative temperature resis-
tances (NTCs) and a manual shut down option are electronically connected
to a self-made control box, which supplies 5 V as long as the input signals
indicate that the system is working properly. This box is explained in
detail in Ref. [Har10] and offers the option of implementing another safety
system.

Water flow control

The outgoing26 cooling water flow for each of the Bias coil units is constantly
controlled by flow meters, which open the electronic safety link of the Interlock
whenever the flow drops below 2.5 l/min. Another flow meter is checking the
overall flow of the whole system. The flow meters have an accuracy of about
10%.

24This was never measured due to safety considerations (see text).
25The working range lies between 4 V and 12 V.
26In this regard, “outgoing” means after passing through the coils.
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Temperature control - Thermo switches

The temperature of the coils is monitored by 20 bimetal thermo switches, which
interrupt the control link of the Interlock if the temperature exceeds 45 ± 5◦C.
Two switches are mounted on the glass fiber sleeving of each coil, 0.5 m and 1 m
away from the coil center. The temperature on the insulation is expected to be
slightly lower than of the copper tube itself.

Temperature control - NTCs

In order to have an independent temperature control, at least two NTCs are
mounted on the glass fiber sleeving of each coil, 0.15 m away from the coil
center. Each of the NTCs is checked independently by a self-made temperature
control circuit, using a microcontroller that converts the values of resistance to
temperatures. The temperatures are compared with the set value of Tset = 45◦C.
The control box receives a TTL signal, for T < Tset [Har10]. Otherwise the power
supplies switch off via Remote shut down.

Manual switch-off

In order to increase the temperature stability in the laboratory, the power sup-
plies are located in a separate room. To manually switch off the power supplies
in case of an emergency, a control switch in the laboratory is connected to the
Remote shut down port of the power supplies.

B.2.6. Fabrication process

Several production steps were necessary to build the precise set of coils, compos-
ing the Bias coils, starting from non-insulated copper tubes. In the following, a
short summary of the elaborate fabrication procedure is given. For the utilized
materials see Sec. B.2.1.

The copper tubes were delivered in a rolled-up form in lengths of 11 m (unit 1)
and 9 m (unit 2 and 3). First, these tubes were straightened out with a moulding
press by applying a force of 10 kN on a tube length of one meter. To assure a
uniform result, for every 0.5 m that were pressed, the tube was rotated by 90◦.

To reverse the effect of cold deformation, the tubes were heated to a tem-
perature of 400◦C at an ambient pressure of 3 × 10−1 mbar for the duration of
two hours27, with a subsequent cooling phase of 30 min. This process reduced
intrinsic mechanic strains and allowed for a smooth winding of the coils. Due to
the low pressure environment, surface oxidation is prevented at this stage. The
tubes were cleaned before and after this procedure, using acetone.

27For this, we put the copper tubes into a closable pipe of 12 m length, which was connected
to a rotary vane pump. The temperature stated above was achieved using heater bands,
which were wound around the pipe, and wrapping the entire pipe with several layers of
aluminum foil.
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(a) (b)

Figure B.5.: Winding tools for the fabrication of the Bias coils for (a) unit 1 and
(b) units 2 and 3. Two mirror-symmetric pairs of tools were used, of which only
one tool of each pair is shown here.

In the next step, the tubes were cut to their final lengths, 10 m (unit 1) and
7.5 m (units 2 and 3), and insulated by covering them with glass fibre braided
sleevings.

For the winding procedure, special Winding tools made of aluminum were
constructed for each coil design. The two mirror-symmetric pairs of Winding
tools for unit 1 and unit 2 and 3, respectively, consist of several parts as shown
in Fig. B.5. The modular structure made it possible to adapt the Winding tools
to each stage of the winding procedure, without the necessitating removal of the
copper tubes. These Winding tools were modeled using a parametric 3D-CAD
software (Pro/Engineer) and generated by a CNC milling machine.

The Winding tools were covered with a 0.2 mm thick adhesive foil of teflon to
enable easy removal of the coils, after the winding process. Without this foil,
not only would the epoxy resin have glued the single windings together, creating
a rigid coil body, but the coil would have stuck to the winding tool as well.

For winding the copper tubes, the Winding tool was mounted on an electron-
ically adjustable rotary table with a rotation velocity of one turn per minute.
Then, an insulated copper tube was attached; half of its length was mounted
alongside the rotational axis of the Winding tool, while the end of the other
half was kept under a tension stress of ∼50 N. During the winding procedure,
which included several stages, the tube was wetted with epoxy resin and softly
hammered onto the channels of the Winding tool. Finally, the rotation of the
table was reversed and the other half of the copper tube was processed in an
analogous way. After 24 h, the epoxy resin reached its final cohesiveness and
the finished coil was removed from the Winding tool.
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B.3. Curvature coils

The main function of the Curvature coils is to modify the magnetic field cur-
vature C(I) at the center of the atom trap. For C(I) > 0, the radial trapping
potential increases according to Eq. (B.5), clearing the way for a large volume
hybrid trap, which is a combination of an optical dipole and magnetic trapping
potential. On the other hand, applying an anti-curvature, C(I) < 0, locally
corrects for the magnetic forces that result from the magnetic field curvature
produced by the Bias coils. This allows to perform, for example, long expansion
measurements.
We implemented two symmetric pairs of in series connected coils, deviating

from the strong Helmholtz-configuration and therefore producing a considerable
magnetic field curvature. These Curvature coils consist of 2×23 windings made
of varnished copper wires with a rectangular cross section of 1 mm × 4 mm.
The coils are attached to aluminum frames, which feature four cuts in order to
reduce eddy currents. The frames for the upper and lower Curvature coils are
placed near the re-entrant viewports; see Fig. B.2.
The current is provided by a 1.5 kW power supply (Umax = 52 V for I < 30 A

or Umax = 26 V for I > 30 A), model SM 52 AR 60 (DELTA Elektronika).
The power supply is actively controlled by a PID-feedback system analogous to
the feedback control of the Bias coils, which is described in Sec. B.2.4. The coil
current is monitored by a current transducer, model 867-60I (Ultrastab), which
is suitable for currents up to 60 A. In contrast to the electronic control circuit
of the Bias coils, an H-bridge was installed for the Curvature coils, which allows
reversing the magnetic field and switching between curvature and anti-curvature.
As power dissipation in the Curvature coils is lower than in the Bias Coils,

simple external water cooling tubes made of copper are sufficient. These tubes
feature an outer (inner) diameter of 6 mm (4 mm) and are positioned on the
outside surfaces of the coil holders. The cooling of the Curvature coils operates
at a pressure of ∼3 bar.
The rise time of the Curvature coils, mounted to the main vacuum chamber,

was measured as 2 ms (without using the electronic feedback circuit). This
results in an inductance of L = 200µH with a calculated resistance of ∼ 100 mΩ.
It has been experimentally observed that an axial misalignment δρCurv of the

Curvature coils, relatively to the Bias coils, leads to a shift of the center of the
radial magnetic trap according to

∆ρmag
center =

CCurv(ICurv)

CBias(IBias) + CCurv(ICurv)
δρCurv. (B.12)

For large magnetic field curvatures resulting from the Curvature coils
CCurv(ICurv) ≫ CBias(IBias), the center of the magnetic trap shifts to the ra-
dial center of the Curvature coils ∆ρmag

center → δρCurv. If the absolute value of
the anti-curvature produced by the Curvature coils approaches the curvature of
the Bias coils, CCurv(ICurv) + CBias(IBias) → 0, the atoms are pushed outwards
radially.
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Besides for variation of the magnetic field curvature, we also use the Curva-
ture coils for the determination of dimer binding energies by rf magnetic field
modulation spectroscopy; see Sec. F.3.1.

B.4. Vertical compensation coils

In order to enable small bi-directional alterations of the magnetic field strength,
a pair of Vertical compensation coils was implemented. They consist of 23 wind-
ings of round copper wire with a thinkness of 1 mm, mounted on a PVC-frame.
These coils are not in perfect Helmholtz configuration. However, the resulting
magnetic field curvature does not have a noticeable effect on the atom cloud,
due to the low currents in use.
The Vertical compensation coils are connected to a bi-directional power supply,

model HighFiness BCS 3/15, with Imax = 3 A and Umax = 15 V, which is con-
trolled directly by the Adwin-system. The circuit also includes a 5Ω-resistance
(Arcol), which is connected in series.
The main task of these coils is to compensate for remanent magnetization28 of

the vacuum chamber and surroundings, which limits the minimal magnetic field
strengths achievable in the experiment. This is especially important during the
Raman sideband cooling stage [Web03a, Ker00, Tre01], where we reverse the
current in the Vertical compensation coils in order to reach the necessary fields
strengths of ∼ 200 mG.

28Increasing the magnetic field strength to 1000 G leads to a strong remanent magnetization
of unknown origin of 1−2 G. So far, we observed no independent fading of this remanence.
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IMAGING AT HIGH MAGNETIC FIELDS

The findings presented in this thesis are based on precise knowledge of the
characteristic properties of the atom cloud and the trapping potential, such as
atom number, temperature and trap frequencies. These properties are derived
from the atom cloud spatial density distribution, which is obtained by means of
absorption imaging [Ket99]. This standard technique in cold atom experiments
is performed by illumination of the atoms with resonant light, either while the
atoms are trapped (in-situ) or after their release from the trap. In this process,
the atoms scatter photons of the imaging light, generating a shadow image,
which is mapped on a charge-coupled device (CCD) chip1.

For measurements performed in the magnetic low-field region, an imaging
setup was used that allows taking pictures at zero field. This setup was adapted
later on for magnetic field strengths up to ∼ 20 G. The low-field setup is out-
lined in the theses of former PhD students working on the experiment; see
Refs. [Web03a, Her05, Kra06a, Mar08b]. However, the low-field imaging setup
is of limited use for experiments in the magnetic high-field region as it involves
magnetic field ramps spanning up to 1000 G. Such ramps lead to additional
atom loss and an increase of the sample temperature, thereby inhibiting accu-
rate investigation of few-body phenomena in the high-field region.

Therefore, a new high-field imaging setup, as described in Sec. C.2, has been
implemented to overcome this problem. The selection of the appropriate imag-
ing and repumper2 transitions, based on the level structure of cesium atoms
described in Appendix A, is explained in Sec. C.1. In Sec. C.3, the image anal-
ysis, used to identify the properties of the atom cloud, is summarized.

1This is in contrast to fluorescence imaging, where the scattered light is collected.
2Actually, the repumper performs a state transfer before the imaging starts and is subse-
quently switched off. No repumping light is necessary during the imaging process, as there
is no noteworthy leakage from the closed imaging cycle transitions in the magnetic high-
field region. Still, to avoid confusion, the laser preparing the initial state for the imaging
cycle is referred to as repumper.
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Figure C.1.: Transitions between the F = 3 hyperfine ground states and the
6 2P3/2 excited states at high magnetic fields. The states are labeled according
to their set of good quantum numbers, which differ for the ground (F,mF )
and excited states (mJ ,mI). Colors indicate the polarizations of light for the
optical transitions: red σ+, blue π and green σ−. At the bottom of the figure
the quantum numbers (mJ ,mI), which contribute to the specific |F = 3,mF ⟩
state, are listed. Typically, the atom sample to be imaged is initially in the
|F = 3,mF = 3⟩ state, which offers no closed optical transitions, due to the
decay to F = 4 (not shown).

C.1. Optical cycling transitions

Absorption imaging requires a closed optical transition between two accessible
states, meaning that there is no or only negligible leakage to other states. As
explained in Appendix A, F and mF remain good quantum numbers for the
ground state manifold in the magnetic high-field region. However, that is not
the case for the 6 2P3/2 manifold, where the states are identified by mJ and mI

for magnetic fields above ∼ 200 G. The different optical D2 transitions starting
from either F = 3 or F = 4 in the ground state manifold are shown in Figs. C.1
and C.2. The D1 transitions do not offer any closed optical cycles.

A summary of the implemented high-field repump and imaging transitions is
shown in Fig. C.3. First, the atoms are transferred from the |F = 3,mF = 3⟩
to the |F = 4,mF = 4⟩ state by the repumper light, which is resonant on the
|F = 3,mF = 3⟩ → |m′

J = 1/2,m′
I = 7/2⟩ σ+-transition. The majority of

atoms subsequently decay to the |F = 4,mF = 4⟩ state. A small leakage to
the |F = 4,mF = 3⟩ dark state decreases the total number of imaged atoms
by 6%, which is taken into account for the imaging analysis. The imaging cycle



APPENDIX: IMAGING AT HIGH MAGNETIC FIELDS 121

F

( )m ,mJ I

4    -4 -3 -2 -1         0 1         2 3 4

( 1/2,-7/2)
(-1/2,-5/2)

( 1/2,-5/2)
(-1/2,-3/2)

( 1/2,-3/2)
(-1/2,-1/2)

( 1/2,-1/2)
(-1/2, 1/2)

( 1/2,1/2)
(-1/2,3/2)

( 1/2,3/2)
(-1/2,5/2)

( 1/2,5/2)
(-1/2,7/2)

mF

62
1/2S

62
3/2P

mI´

mJ´

3/2

1/2

-1/2

-3/2

-7/2     -5/2     -3/2     -1/2      1/2      3/2      5/2       7/2

(1/2,7/2)(-1/2,-7/2)

Figure C.2.: Transitions between the F = 4 hyperfine ground state and excited
states at high magnetic field strengths. The color coding and labeling are the
same as for Fig. C.1. Starting from F = 4, there are two closed transitions
suitable for imaging: |F = 4,mF = 4⟩ → |m′

J = 3/2,m′
I = 7/2⟩ and |F =

4,mF = −4⟩ → |m′
J = −3/2,m′

I = −7/2⟩.

is performed on the |F = 4,mF = 4⟩ → |m′
J = 3/2,m′

I = 7/2⟩ σ+-transition.
Details of the imaging and repumper transitions, such as the calculation of the
repumper leakage, are given below.

Imaging transition

Transitions from F = 3 do not offer closed cycles, due to the inevitable leak-
age to F = 4. In contrast, the F = 4 hyperfine level features two closed
optical transition cycles that are suitable for absorption imaging, namely, a σ+

transition: |F = 4,mF = 4⟩ → |m′
J = 3/2,m′

I = 7/2⟩ and a σ− transition:
|F = 4,mF = −4⟩ → |m′

J = −3/2,m′
I = −7/2⟩. In analogy to the low-field

setup, the transition used in the experiment is the σ+-transition, which involves
atoms initially brought to the |F = 4,mF = 4⟩ state.
The Zeeman shift of the states involved in the transition leads to a strong

magnetic field dependence of the transition frequency. In comparison to the
magnetic zero-field imaging frequency of the |F = 4 → F ′ = 5⟩ transition
[Web03a, Her05, Kra06a, Mar08b], this accounts for a shift of ∼ 1.40 MHz/G,
which amounts to about 1.4 GHz at 1000 G; see Fig. C.4(a). The technical
implementation of laser-locking is described in Sec. C.2.

The optical cross section σ0 for this closed transition and light intensities I
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Figure C.3.: Repumper and imaging transitions in the magnetic high-field re-
gion. The solid lines indicate those transitions, which both involve σ+ polar-
ization, whereas the dotted lines represent the possible decay channels from
|m′

J = 1/2,m′
I = 7/2⟩. The numbers indicate the relative transition strengths

for these decays, calculated by using the expression given in Eq. (C.12). A frac-
tion of 6% of the atoms will end up in the |F = 4,mF = 3⟩ state, which is a
dark state for the repumping light.

well below the saturation intensity3 Is is given on resonance as [Foo05]

σ0 =
3λ2

2π
= 3.469× 10−9 cm2. (C.1)

Other states are of negligible significance for the imaging transition, as the
energetically nearest transition, |F = 4,mF = 4⟩ → |m′

J = 1/2,m′
I = 7/2⟩, is

a π-transition and detuned by more than 1 GHz from the imaging transition at
magnetic fields strengths exceeding 500 G.

Repumper transition

The imaging cycle requires the atoms to be in the |F = 4,mF = 4⟩ state initially,
but most of our experiments are performed with atoms in the |F = 3,mF = 3⟩
state. Therefore, a state transfer is required. For reasons of efficiency, this
transfer is carried out via an optical instead of a microwave transition.
As the |F = 4,mF = 4⟩ stretched state is uniquely related to the quantum

numbers (mJ = 1/2,mI = 7/2), the repumper transition has to involve either

3The saturation intensity is defined as Is =
πhcγ
3λ3 , which is 1.1 mW/cm2 for the D2-transition

of cesium. For the values of λ and γ see TableA.1; c denotes the velocity of light.
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Figure C.4.: Frequency detuning of the (a) imaging and (b) repumper transitions
in the magnetic high-field region. The detunings are in reference to the transition
frequencies of the adiabatically connected zero-field states. Note that the actual
detunings of the beat-lock presented in Sec. C.2 differ by an offset from the one
given in this figure. This is due to the fact that the frequencies of the repumper
and imaging reference light for beat-locking are not the transition frequencies
of the adiabatically connected zero-field states. (a) The frequency shift of the
imaging transition |F = 4,mF = 4⟩ → |m′

J = 3/2,m′
I = 7/2⟩ in comparison to

the zero-field imaging transition |F = 4 → F ′ = 5⟩ [Web03a, Her05, Kra06a,
Mar08b] amounts to 1.40 MHz/G. (b) For the repumper transition |F = 3,mF =
3⟩ → |m′

J = 1/2,m′
I = 7/2⟩, the resonance frequency changes by 2.12 MHz/G

compared to the |F = 3 → F ′ = 4⟩ transition.

the excited state |m′
J = 1/2,m′

I = 7/2⟩ or |m′
J = −1/2,m′

I = 7/2⟩; see Fig. C.1.
This follows from the selection rules for optical transitions, ∆mJ = 0,±1 and
∆mI = 0. As derived below, the |m′

J = 1/2,m′
I = 7/2⟩ state offers a more

efficient transfer to the |F = 4,mF = 4⟩ state.
The repumper transition has been chosen by comparing the strengths and

leakages of the transition process. The transition strength is proportional to
the square of the dipole matrix element |dge|2, which connects the excited state4

|α′, J ′m′
JI

′m′
I⟩ with the ground state |α, JIFmF ⟩ according to

dge = qe⟨α, JIFmF |ϵ r|α′, J ′m′
JI

′m′
I⟩, (C.2)

with the electron charge qe. Interestingly, dgeq involves a different set of good
quantum numbers for the excited state and the ground state. By writing the
polarization unit vector ϵ in the basis related to σ± and π-transitions [Foo05]

ϵ = ϵ−1
ex − iey√

2︸ ︷︷ ︸
σ−

+ ϵ0ez︸︷︷︸
π

+ ϵ+1

(
− ex + iey√

2

)
︸ ︷︷ ︸

σ+

, (C.3)

4The quantum numbers L and S are omitted for simplification.
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the product ϵ r can be expressed in terms of the spherical harmonics Yl,m as

ϵ r = r
1∑

q=−1

ϵqY1,q =:
1∑

q=−1

rq. (C.4)

This allows us to treat each element of dge =
∑1

q=−1 d
q
ge separately,

dgeq = qe⟨α, JIFmF |rq|α′, J ′m′
JI

′m′
I⟩. (C.5)

The ground state can be expanded using the Clebsch-Gordan coefficients as

|α, JIFmF ⟩ =
J∑

mJ=−J

I∑
mI=−I

⟨JmJImI |JIFmF ⟩︸ ︷︷ ︸
Clebsch−Gordan coefficients

|α, JmJImI⟩, (C.6)

where the Clebsch-Gordan coefficients can be expressed in terms of theWigner 3j
symbols by

⟨JmJImI |JIFmF ⟩ = (−1)−J+I−mF
√
2F + 1

(
J I F
mJ mI −mF

)
. (C.7)

As the electric dipole operator does not act on the nuclear spin, Eq. (C.5) can
be simplified by considering only transitions with I = I ′ and mI = m′

I , which
leads to

dgeq = qe

J∑
mJ=−J

(−1)−J+I−mF
√
2F + 1

(
J I F
mJ mI −mF

)
⟨α, JmJ |rq|α′, J ′m′

J⟩.

(C.8)
Using the Wigner-Eckart theorem, the factor to the right in Eq. (C.8) can be
written as a product of a Clebsch-Gordan coefficient and a reduced matrix ele-
ment [Sak94],

⟨α, JmJ |rq|α′, J ′m′
J⟩ =

= ⟨J ′m′
J1q|J ′1JmJ⟩

⟨αJ ||r||α′J ′⟩√
2J ′ + 1

(C.9)

= (−1)−J ′+1−mJ

√
2J + 1√
2J ′ + 1

(
J ′ 1 J
m′

J q −mJ

)
⟨αJ ||r||α′J ′⟩.

(C.10)

Therefore, the dipole matrix element is given as

dgeq = qe

J∑
mJ=−J

(−1)−J+I−mF−J ′+1−mJ

√
2F + 1

√
2J + 1√

2J ′ + 1

·
(

J I F
mJ mI −mF

)(
J ′ 1 J
m′

J q −mJ

)
⟨αJ ||r||α′J ′⟩. (C.11)
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This can be further simplified by the properties of the Wigner 3j-symbols. As
the first 3j-symbol is non-zero only for a particular mJ , the sum is reduced to
a single term. Moreover, as we are only interested in the relative line strength
between different transitions, it is sufficient to compare the factor given below,
which is proportional to |dge|2:

(2F + 1)

[(
J I F
mJ mI −mF

)(
J ′ 1 J
m′

J q −mJ

)]2
. (C.12)

The results for the branching ratios of the possible decay channels reveal that
the |F = 3,mF = 3⟩ → |m′

J = 1/2,m′
I = 7/2⟩ transition leads to a loss of 6%

into the |F = 4,mF = 3⟩ dark state; see Fig. C.3. The alternative transition
|F = 3,mF = 3⟩ → |m′

J = −1/2,m′
I = 7/2⟩ exhibits less favorable transition

strengths, with a loss of 12% to the |F = 4,mF = 3⟩ state. Therefore, the first
transition was implemented experimentally.
The transition frequency changes in dependence of the magnetic field by

2.12 MHz/G, which is shown in Fig. C.4. Off-resonant scattering by σ− po-
larized5 light is suppressed as the energy difference between different m′

J states
exceeds 1 GHz at a magnetic field strength of 500 G. However, the nearest
π-transition, which is to the |m′

J = 1/2,m′
I = 5/2⟩ state, is only detuned by

25 MHz from the repumper transition. In principle, this could cause some
losses. For this reason, the repumper light is, within the experimental uncer-
tainty, purely σ+/σ− polarized.

C.2. Absorption imaging setup

In this section, the laser setup and locking scheme as well as the configuration
of the imaging setup is described. An overview is given in Fig. C.5.

Laser setup and locking scheme

The light for the new imaging system at high magnetic field strengths is provided
by two 852 nm laser diodes (SDL-5411-G1), which are both frequency stabilized
using a Littrow-type extended cavity setup [Ric95, Tha01].
The imaging laser is referenced via beat-lock [Sch99] to the so-called master

laser. This master laser is the heart of the entire diode laser system as it supplies
the reference light for the MOT- and Zeeman lasers, both stabilized via beat-
lock, and the Raman cooling lattice laser, which is stabilized by injection-lock
[Sie86, MR99]. A description of the diode laser system can be found in the PhD
and diploma theses of my predecessors in Refs. [Mar03, Web03a, Her05, Kra06a,
Mar08b]. The master laser is frequency stabilized, 160 MHz red-detuned to the
|F = 4⟩ → |F ′ = 5⟩ zero-field transition by modulation transfer spectroscopy
(MTS) [Raj80, Ber01] and features a frequency width of about 100 kHz.

5As described in Sec. C.2, we use linear polarized light with a polarization orthogonal to the
quantization axis. This corresponds to a superposition of σ+ and σ− polarized light.
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Figure C.5.: Schematic overview of the high and low-field imaging system con-
taining (a) the laser setup and locking scheme as well as (b) the imaging configu-
ration. The solid lines show the light beam paths and the symbolic chains refer to
a locking system of two elements. (a) The low-field (lf) lasers for repumping and
imaging, respectively, are locked to cesium vapor cells (Cs) via either modulation
transfer spectroscopy (MTS) or dichroic-atomic-vapor laser lock (DAVLL). The
corresponding transitions and detunings are given in the figure. The high-field
(hf) lasers are locked to the low-field lasers via beat-locking with a detuning
in the order of a GHz. The imaging and repumper light beams are controlled
by means of acousto-optical modulators (AOMs) via the experimental control
system, consisting of lab computer (PC) and Adwin. The high-field imaging
and repumper light beams are overlapped at a non-polarizing beam splitter. An
electronic rotatable λ/2-plate allows switching between high- and low-field imag-
ing. (b) The imaging and repumper beams, with the exception of the low-field
repumper beam, are linearly polarized, in orthogonal direction to the magnetic
bias field (quantization axis). The shadow image of the atoms is imaged with
a 1.25:1 magnification, produced by a two-lens system, on the CCD-chip of the
camera. The data is read out by the experimental control system. Note that the
MOT repumper is used as the repumper for low-field imaging as well. Therefore,
it illuminates the atoms from six different sides (only four shown in the figure).
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A fast photo detector, exhibiting a maximum cutoff frequency6 of 1.6 GHz, is
used for beat-locking. This photo detector is able to bridge the large frequency
gap of 0.7-1.5 GHz between the master laser frequency and the |F = 4,mF =
4⟩ → |m′

J = 3/2,m′
I = 7/2⟩ high-field imaging transitions. The tunability of

the frequency offset is provided by voltage adjustment of the voltage-controlled
oscillator (VCO) (ZX95-1300S+, Mini-Circuits) of the beat lock circuit via the
lab computer. This tunability allows to bring the imaging light into resonance
for magnetic field strengths ranging from about 400-1000 G. The locked imag-
ing laser inherits the narrow-band characteristic of the master laser and has a
linewidth of about 200 kHz.
The setup of the repumper laser for high-field imaging is similar to that of the

imaging laser. One difference, however, is the fact that the repumper resonantly
couples atoms from the F = 3 hyperfine level. Therefore, the laser is locked,
via beat-lock, to the MOT repumper, which itself is locked via dichroic-atomic-
vapor laser lock (DAVLL) [Cor98] in the middle between the |F = 3⟩ → |F ′ = 2⟩
and the |F = 3⟩ → |F ′ = 3⟩ transitions, detuned 75 MHz from both. The MOT
repumper is also used as repumper for the zero-field imaging. Due to this locking
method, the MOT repumper has a large capture range, at the expense of a rather
broad linewidth of about 3.5 MHz [Kra06a], which leads to a similar linewidth
for the imaging repumper. In principle, the narrow-band Zeeman repumper
laser7, which is locked 200 MHz red-detuned to the cesium |F = 3⟩ → |F ′ = 3⟩
transition line by modulation transfer spectroscopy, could have been used as a
reference as well. However, this would make the imaging system more susceptible
to frequency drifts.
Because of the larger detuning of the repumper beat-lock (2.12 MHz/G) in

comparison to the one for the imaging (1.40 MHz/G), a photo diode with inte-
grated amplification circuit featuring a cutoff frequency of 2.3 GHz (UPD-200-
SP, Alphalas) was implemented in the electronic beat-lock circuit, as well as a
VCO (ZX95-2500W+, Mini-Circuits) suitable for large beating frequencies.

Imaging configuration

Both the imaging and the repumper beams pass through computer controlled
AOMs, which shift the frequencies of the beams by 90 MHz and 84 MHz, re-
spectively. After being matched in polarization, the beams are overlapped in
propagation direction at a non-polarizing beam splitter before they are coupled
to a polarization-maintaining single-mode optical fiber; see Fig. C.5. This is in
contrast to the low-field imaging setup, where the repumper light for the MOT,
which illuminates the atom cloud from six different directions8, provides the
light for the imaging repumper as well.

6This frequency is not limited by the photodiode (S5973, Hamamatsu) itself, but by the
self-made photodiode amplifier circuit.

7This laser also provides the pump light for the Raman sideband cooling. For this, the fre-
quencies are shifted by acusto-optic modulators (AOMs) in order to obtain the appropriate
frequencies for both means.

8Counter propagating along the three distinct spatial axes [Mar03].
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In order to facilitate switching between magnetic high-field and low-field imag-
ing, the out-coupled high-field imaging (and repumper) light is overlapped with
the low-field imaging light at a polarizing beam splitter (PBS). The low- and
high-field imaging beams differ by 90◦ in their linear polarization direction, which
makes it possible to choose the appropriate imaging light via a computer con-
trolled rotatable λ/2-plate in combination with a PBS. Another polarization-
maintaining single-mode optical fiber transports the imaging light to a side view-
port of the main vacuum chamber. At the entrance of the vacuum chamber, the
light is purely linear polarized9, in orthogonal direction to the magnetic quan-
tization axis, with a beam-diameter of about 1.5 cm. The power available for
the experiment is 1.5 mW for the repumper and 150µW for the imaging beam.
This results in an intensity of approximately 0.08 mW/cm2 for the imaging
beam, which is well below the saturation intensity.

The shadow of the atom cloud is focused by two lenses10 onto the CCD chip
of the camera (Theta System SIS-99/PH, 1024× 1024 pixels, 14 bit resolution),
outside the vacuum chamber. The lens setup features a calculated diffraction
limited resolution of 5µm. The measured pixel size corresponds to 6.02(2)µm
[Web03a, Her05].

The imaging sequence is controlled by triggering the AOMs for the imaging
and repumper light and the exposure time of the CCD chip. In contrast to low-
field imaging, where the low-field repumper light is active during the imaging
cycle, this is not possible for the high-field setup, as the CCD chip is situated
along the path of the high-field repumper beam11. Hence, the CCD chip is only
triggered simultaneously with the imaging beam after the repumping beam is
switched off. The sequence begins with 50µs of illumination of the atom cloud
with the repumper light, which we checked to be sufficiently long to saturate
the transfer of atoms to the |F = 4,mF = 4⟩ state. After 1.5 ms the imaging
light is switched on for a duration of 200µs, generating the shadow picture of
the atoms. After 1 s of waiting time a background image without atoms is taken
by another 200µs of illumination. Both pictures are read out using a Labview
interface and analyzed with a Matlab program.

C.3. Diagnostics

The diagnostic methods for determining the particle number and sample tem-
perature are described in Ref. [Web03a] and are summarized here. Prior to this,
the effective absorption cross section is derived, which is an essential input value
for the image analysis.

9For this, the polarization is cleaned with a PBS and a λ/2-plate in front of the viewport.
10The lens system consists of a 40 mm diameter, f = 200 mm achromatic doublet (Linos

Photonics 322293 NIR-ARB2), which is positioned 200 mm from the trap center, and a
50 mm diameter, f = 250 mm achromat (Thorlabs LAC376-B) [Web03a].

11As discussed before, the imaging and repumper light beams are coupled in the same fiber.
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Figure C.6.: Scan of the relative effective absorption cross section σ(δ)/σ(0) to
determine the resonance frequency at (a) 556 G and (b) 881 G. The Lorentzian
fits according to Eq. (C.14) yield a width of 5.6(3) MHz in both cases.

Absorption cross section

The absorption cross section σ0 given in Eq. (C.1) is only valid for resonant light.
In our imaging setup, the light is not exclusively σ+ polarized, contributing the
resonant part, but linearly polarized, which is an equal mixture of σ+ and σ−.
Therefore, the effective absorption cross section is reduced by a factor of 1/2
[Geh03].

In order to correctly derive the total particle number, it has to be considered
that not all atoms are imaged, but only those that have been successfully trans-
ferred to the |F = 4,mF = 4⟩ state by the repumper light. In Sec. C.1, this is
calculated to amount to a fraction of 0.94 of the total number of particles.

Therefore, the effective absorption cross section is

σ = σ0 × 1/2︸︷︷︸
polarization

× 0.94︸︷︷︸
leakage

= 1.632× 10−9 cm2. (C.13)

For the experiments, we ensure that the imaging light is resonant by scan-
ning the detuning δ from resonance. The off-resonant effective absorption cross
section σ(δ) is

σ(δ) =
σ

1 + (2δ/γ)2
, (C.14)

with the linewidth for the D2 transition γ = 5.22 MHz, as listed in TableA.1.
Sample scans of the detuning at 556 G and 881 G are shown in Fig. C.6. In
both cases, the linewidths were measured to be 5.6(3) MHz, not far from the
theoretical zero-field linewidth.

Note that due to the linear polarization used in the imaging setup, the effective
saturation intensity12 is increased by a factor of 2, Is,eff = 2Is ≃ 2.2 mW/cm2.

12For laser intensities IL not small in comparison to Is, the optical pumping effect to the
excited state can be taken into account by using σ(IL, δ) =

σ0

1+IL/Is,eff+(2δ/γ)2 .
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Determination of the particle number

The particle number of a thermal atom cloud can be calculated by using a simple
method. The measured intensity I (in pixels) of the atom shadow image is given
as

I(y, z) = Ibg(y, z) exp(−ση(y, z))︸ ︷︷ ︸
T (y,z)

, (C.15)

with the intensity Ibg(y, z) of the background picture. Here, the column density
η(y, z) is the density n(x, y, z) integrated over the imaging beam direction x,
η(y, z) =

∫
n(x, y, z)dx. The transmission function T (y, z) (in pixels) is derived

by dividing the atom image by the background picture. Using σ from Eq. (C.13),
the column density is calculated as

η(y, z) = − lnT (y, z)

σ
. (C.16)

A fit of η(y, z) with a two-dimensional Gaussian distribution,

η(y, z) = η̂ exp

[
−
(
y − y

wy

)2

−
(
z − z

wz

)2]
, (C.17)

yields the 1/e-widths wy,z, the center of the cloud (y, z) and η̂. These fitted
parameters, together with the pixel size l = 6.02(2)µm, allow to calculate the
particle number Nfit as

Nfit = πl2w2
yw

2
z η̂. (C.18)

Temperature measurement

The temperature of the atom cloud is measured via time-of-flight technique
[Ket99]. For this, the expansion time t after release from the trap is varied
between 10 − 70 ms for successive repetitions of experimental runs13, and the
1/e-widths wy,z(t) are fitted according to

wy,z(t) =
√

wy,z(0) + 2σ2
vy ,vzt

2. (C.19)

The Gaussian widths σvy ,vz of the velocity distribution are related to the tem-
perature T via

σvy ,vz =

√
kBT

m
. (C.20)

The temperatures derived from σvy and σvz differ slightly, due to the fact that af-
ter release from the optical dipole trap, magnetic trapping and/or anti-trapping
forces influence the atom trajectories. In the magnetic high-field region, this
is mainly caused by horizontal trapping and vertical anti-trapping forces pro-
duced by the Bias coils, as discussed in Sec. B.2.2. Limiting the expansion times
decreases the size of this error. In the magnetic low field region, the magnetic
levitation field14 leads to a transversal force as described in Ref. [Her05].

13Without the magnetic levitation field, t is limited to 30 ms by the size of the CCD chip.
14The temperature measurements related to the publications presented in Chapters 2, 3, 5

and 7 were performed without a supporting magnetic leviation field.
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MICROWAVE TRANSITIONS

In principle, microwave (MW) transitions connect states of different hyperfine
levels of the same (ground- or excited-state) manifold. Besides state transfers,
microwave radiation can be used in a similar manner as rf radiation for the
creation of trapping potentials [Spr94, Ago89].
In Sec.D.1, the application of microwave radiation in our experimental setup

is discussed. Sec.D.2 describes the newly implemented microwave setup for the
magnetic high-field region.

D.1. Applications

Magnetic field calibration

For the publications presented in this PhD thesis, the magnetic field strength
B was calibrated by directly probing the atom sample by means of microwave
spectroscopy. This method is based on the magnetic field dependent variation
of transition frequencies within the ground-state manifold due to the Zeeman
effect, as described in Sec.A.2.
For this, a hyperfine transition from the initial |F = 3,mF = 3⟩ to the

|F = 4,mF = 4⟩ state is probed by a 5 ms microwave pulse. In our experiment,
transitions with ∆mF = +1 are preferred1 due to the tilting of the microwave
horn relatively to the vertical magnetic field axis. However, we observe ∆mF =
−1, 0 transitions as well (see Chapter 3), which allows to increase the calibration
range for the magnetic field strength (see Fig.D.3). After a waiting time of
∼ 100 ms, atoms in the excited state are lost due to inelastic two-body collisions2.
The microwave frequency is scanned and the remaining atom number is recorded
in subsequent experimental runs. If the microwave frequency matches the atomic

1According to the selection rules for magnetic dipole transitions, ∆mF = 0,±1.
2For a non-zero magnetic levitation field, the atoms in different states spatially separate
because of the difference in magnetic moment ∆µ(B), thereby allowing shorter waiting
times for the calibration procedure.
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Figure D.1.: Samples of typical calibration measurements of the magnetic field
strength in the high-field region. The microwave drives a hyperfine transition
|F = 3,mF = 3⟩ → |F = 4,mF = 4⟩, leading to a loss-resonance. The reso-
nance frequency is determined by a Gaussian fit. From this value the magnetic
field strength is obtained using the Breit-Rabi formula. The horizontal axis
corresponds to the frequency νSG of a signal generator, which is electronically
mixed with a 10.5 GHz oscillator (see Sec.D.2). In these measurements, only
the blue sideband is resonant (ν = 10.5GHz + νSG). The transition frequencies
and linewidths (FWHM) are (a) νSG = 158.535(2) MHz, ∆ν = 55(5) kHz and
(b) νSG = 1015.669(2) MHz, ∆ν = 45(5) kHz. This results in a magnetic field
strength of 586.225(1) G for (a) and 920.712(1) G for (b).

hyperfine transition frequency ν0, a loss resonance can be observed; see Fig.D.1.
From this transition frequency, the magnetic field strength is determined using
the Breit-Rabi formula (Eq. (A.15)).
The width of the loss resonance ∆ν is a measure for the stability of the

magnetic field system δBnoise, provided that no magnetic gradient (levitation)
field is applied. Then, δBnoise can be estimated as

δBnoise =
h

∆µ(B)
∆ν ≃ 4

7

h

µB

∆ν. (D.1)

In case of a magnetic gradient (levitation) field being applied, the linewidth
of the loss resonance increases according to3

∆ν ≃ ∆µ(B)

h

∂B

∂z
wFWHM

z ≃ 7

4

µB

h

∂B

∂z
wFWHM

z . (D.2)

The FWHM-width wFWHM
z in vertical direction (which is the direction of the

gradient field) is given by [Gri00a]

wFWHM
z = 2

√
2 ln 2σz with σz =

1

ωz

√
kBT

m
, (D.3)

3In this context, the effect of the magnetic field curvature is negligible.
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for a thermal atom cloud confined in a harmonic potential with a vertical trap-
ping frequency νz = ωz/(2π). Note that, strictly speaking, the terms on the
right in Eqs. (D.1) and (D.2) are only valid in the anomalous Zeeman-regime.

Up to now, the magnetic field calibration measurements in the magnetic high-
field region have been performed with a supporting levitation field of 8 G/cm.
These measurements show linewidths of 45 − 55 kHz (FWHM), which sets a
limit for the magnetic field noise of δBnoise < 20 mG, corresponding to a relative
stability of the total magnetic field strength of < 2× 10−5; see Fig.D.1.

Purification of dimer samples

Fast removal of the atoms is necessary for experiments on pure dimer samples,
as atom-dimer relaxation losses limit the lifetime considerably (see Chapter 2).
In experiments which are focused on dimer-dimer processes (see Chapters 5
and 7), microwave transitions are utilized for removing remaining atoms after
dimers have been created via Feshbach association. For this, the atoms are first
transferred from the |F = 3,mF = 3⟩ to the |F = 4,mF = 4⟩ state via an
adiabatic passage, performed by a slight variation of the magnetic field while
a short microwave pulse is applied. Finally, the atoms are pushed out of the
trap by illumination with the low-field imaging light, which operates at the
|F = 4,mF = 4⟩ → |F ′ = 5,m′

F = 5⟩ transition.

State-selective creation of atom-dimer samples

For the publication presented in Chapter 3, ultracold exchange reactions in
different atom-dimer samples are analyzed. For this, the atoms are prepared in
the |F = 4,mF = 2, 3, 4⟩ hyperfine states by a microwave state transfer via an
adiabatic passage.

Binding energy measurements

In the publication of my former colleagues [Mar07a], microwave transitions are
used to obtain the binding energies of the weakly bound open-channel s-wave
state in dependence of the magnetic field strength. For this purpose, a sample of
s-wave dimers is prepared, and the transition frequency to another weakly bound
dimer state, belonging to the closed-channel |F = 3,mF = 3⟩+ |F = 4,mF = 4⟩
potential, is measured. From this bound-bound transition frequency, the binding
energy of the open-channel s-wave state is determined.

A drawback of this method, however, is the fact that it demands a sufficiently
large dimer sample, as well as knowledge of the binding energy of the molecular
state in the closed-channel. Therefore, newer measurements (see Appendix F.3)
are performed by using radio-frequency magnetic-field modulation spectroscopy
as explained in Appendix E.



134 APPENDIX: MICROWAVE TRANSITIONS

Clock
10 MHz

Oscillator
9.15 Ghz
PLDRO

Switch

Control
Signal Generator

0.1-1040 MHz

Switch

Oscillator
10.5 Ghz
PLDRO

MW-
horn

Pre-
amplifier
7 dB

Amplifier
36 dB

Pre-
amplifier
11 dB

Pre-
amplifier
12 dB

Amplifier
23 dB

Mixer

Mixer

TTL

TTL

TTL

Switch
TTL

TTL

AdwinComputer

(a)

(b)
Pre-

amplifier
11 dB

Figure D.2.: Schematic of the microwave setup for (a) the low-field region (lf)
[Mar08b] and (b) the high-field region (hf). The two setups are similar and
described simultaneously. A commercial 10 MHz Rb-clock is the reference for a
phase locked dielectric resonator oscillator (PLDRO, lf: 9.15 GHz, hf: 10.5 GHz).
The (hf: amplified) signal created by a signal generator is mixed with the car-
rier frequency from the PLDRO in order to create sidebands. The carrier and
sidebands are amplified and out-coupled via a microwave-horn. The switches
and amplifiers are controlled by digital logic pulses from the real-time control
system (Adwin), which is programmed in the beginning of each experimental
cycle via the lab computer. The frequency and amplitude of the out-coupled
microwave signal are controlled by the signal generator, which is connected to
the lab computer via a GPIB interface.

D.2. Microwave setup

The microwave setup consists of two parts, which are separately optimized to
drive transitions in either the magnetic low-field or high-field region; see Fig.D.2.
The low-field setup is limited to microwave transitions with a maximum transi-
tion frequency of 10.19 GHz4, which allows to drive |F = 3,mF = 3⟩ → |F =
4,mF = 4⟩ transitions up to ∼ 400 G. As calibration measurements for the
magnetic high-field region of up to 1000 G are necessary, a new high-field setup
has been implemented. The low-field setup is described in the PhD thesis of my
former colleague [Mar08b].

For the high-field setup, we use a phase locked dielectric resonator oscilla-

4The value of 10.19 GHz results from a phase locked dielectric resonator oscillator with a
frequency of 9.15 GHz mixed with the output of a 0.1− 1040 MHz signal generator.
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Figure D.3.: Microwave frequencies for the |F = 3,mF = 3⟩ → |F = 4,mF =
2, 3, 4⟩ transitions calculated with Eq. (A.15). The figures visualize the regions
where (a) the low-field and (b) the high-field setup are applicable. The signs
indicate the regions accessible for the blue (“+”) and red (“-”) sideband. The
legend denotes the final states.

tor (PLDRO) from Amplus Communications (AM-4000-1005), which provides
a carrier frequency of 10.5 GHz5. For phase locking, a 10 MHz reference signal
from a commercial Rb-clock (Stanford Research Systems) is used. The carrier
frequency is electronically mixed (frequency mixer SIM-153, Mini-Circuits) with
the amplified sinusoidal signal from a programmable signal generator (HP8657A,
0.1−1040 MHz). The signal generator is programmed via GBIP by the lab com-
puter, and a digitally controlled switch (ZMSW-1211, Mini-Circuits) allows to
vary the duration of the microwave pulse during the experimental sequence. A
pre-amplifier (ZX60-14012L+, Mini-Circuits) prepares the signal amplitude for
efficient mixing.

The microwave transitions are driven by the tunable sidebands, which are
created in the mixing process. The signal (carrier + sidebands) is amplified
in a two-step process including a pre-amplifier (ZX60-14012L+, Mini-Circuits)
and a power-amplifier (KU 1012 MM, Kuhne electronic). A high-power switch
(MSP2TA-18, Mini-Circuits) allows to switch between the low-field and high-
field microwave setup. The TTL signal for the operation of this switch controls
the power-amplifier6 as well. The final signal is transferred to a microwave-horn,
which is used as an out-coupler to irradiate the microwave into free space. The
horn is mounted on top of the central chamber, slightly tilted, at a distance of
about 5 cm from the atom cloud.

The frequency and power of the microwave radiation is controlled via the
signal generator. The tunability of the two main sidebands allows to cover
a range of 10.5 ± 1.04 GHz. Taking into account the low-field setup, |F =
3,mF = 3⟩ → |F = 4,mF = 4⟩ transitions can be performed at magnetic field

5The exact carrier frequency is 10.499 999 27(5) GHz.
6The amplifier is only switched on several ms before and after the microwave pulse for noise-
reduction.
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Figure D.4.: Power feed to the microwave horn in dependence on the amplitude
and frequency of the signal from the signal generator. (a) The microwave power
is over a wide range linear with the amplitude of the signal, with a saturation
for large powers (blue sidebands - black solid line: 100 MHz, red dashed line:
500 MHz, blue dash-dotted line: 1000 MHz). (b) The microwave power of the
main sidebands for two different input powers (solid line: -20 dBm, dashed line:
-10 dBm). The red sidebands (red) remain more or less on the same level,
whereas the blue sidebands (blue) show a decrease for larger frequencies.

strengths up to 900 G; see Fig.D.3. The carrier frequency is sufficiently off-
resonant that it does not perturb the transitions. Although weaker, transitions
to |F = 4,mF = 2, 3⟩ are possible and increase the range for magnetic field
strength calibration up to ∼ 1200 G. Fig.D.4 shows the dependence of the
microwave output power on the amplitude and frequency of the input signal.
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RADIO-FREQUENCY SPECTROSCOPY

Radio-frequency (rf) radiation is a versatile tool for experiments with ultra-
cold atoms and molecules. The alignment of the radiation with respect to the
quantization axis set by the magnetic bias field allows to differentiate between
tranversal and longitudinal rf radiation, as outlined in Sec. E.1. A theoretical
introduction to rf magnetic field modulation spectroscopy, which is based on
longitudinal rf radiation, is given in Sec. E.2. Sec. E.3 presents a method to pre-
cisely determine binding energies by rf magnetic field modulation spectroscopy.
The experimental implementation of the rf setup is described in Sec. E.4.

E.1. Transversal and longitudinal rf radiation

The experimental utilization of rf radiation is based on the coupling of the
oscillating magnetic radiation field Brf(t) with the magnetic dipole operator1 µ̂
of the particles involved. The alignment of Brf in reference to the magnetic bias
field B allows to differentiate between transversal (Brf(t)⊥B) and longitudinal
(Brf(t)∥B) rf radiation.

Rf spectroscopy techniques, based on a transversal Brf(t), were employed to
dissociate (bound-free transition) and associate (free-bound transition) Feshbach
molecules [Reg03b, Osp06, Bar05, Zir08b, Kle08, Chi05a]. They were also used
to measure the pairing gap in a strongly interacting Fermi gas [Chi04a] and
the mean-field interaction energy of a Fermi gas [Reg03a]. Furthermore, this
technique was successfully applied to determine the energy of Efimov trimers
in a spin mixture of fermionic 6Li [Lom10b, Nak11]. The coherent interaction
of atoms with transversal rf radiation allows the creation of trapping poten-
tials [Zob01, Col04, Les06, Hof06] and the manipulation of Feshbach resonances
similar to an optical Feshbach resonance [Han10, Kau09, Tsc10].

1The magnetic dipole operator µ̂ relates to the angular momentum operators by µ̂ = −µB

~ (L̂+

gSŜ + gI Î) (see Eq. (A.2)), which reduces for the ground-state manifold to µ̂ = −µB

~ gF F̂
in the magnetic field region investigated.
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Application of a longitudinal Brf(t) has recently been proven to be a powerful
method for determining bound state energies and controllable atom-to-molecule,
and vice-versa, state transfers [Tho05b, Web08, Lan09b, Tha09, Bea10, Pas10,
Gro10, Han07, Ber07, Ber06]. Moreover, with this method state transfers be-
tween different molecular bound states (bound-bound transition) were performed
[Lan08a]2.

Longitudinal rf excitation is experimentally achieved by an rf modulation of
the magnetic bias field. Therefore, the application of this method for means of
spectroscopy is referred to as rf magnetic field modulation spectroscopy in the
following.

Note that the interaction Hamiltonian Hrf(t) describing a longitudinal Brf(t)
is diagonal in the bare states basis, whereas for transversal excitations, it has
off-diagonal elements. Therefore, the effectiveness of a longitudinal magnetic
field modulation relies on an additional interchannel coupling mechanism. In
contrast to a transversal Brf(t), which couples states with different projections
of the total magnetic moment quantum number, the longitudinal rf modulation
conserves this quantum number.

E.2. Model for rf magnetic field modulation

spectroscopy

In this section, the association of dimers in an ultracold cloud of thermal atoms
by rf magnetic field modulation is described by a simple model, which is based on
an approach given in Ref. [Bea10]. Note that in contrast to Ref. [Bea10], where
the radiation field is quantized, the model given here treats the field classically.

The frequency related to the association process allows to determine the bind-
ing energy Eb of the dimers. It is assumed that only the continuum states of two
free atoms |at, Erel⟩ with relative (collision) energy Erel and the molecular state
|mol⟩ are involved in the process. The rf modulation field Brf(t) = Brf cos(ωrft),
with modulation amplitude Brf and frequency νrf = ωrf/(2π), is parallel to the
quantization axis defined by the magnetic bias field B.

The complete Hamiltonian Ĥ(t), including the rf modulation, takes the form

Ĥ(t) = Ĥ0 + Ŵ + Ĥrf(t), (E.1)

which is given in matrix representation in the bare state basis (|at,Erel⟩, |mol⟩)
as

Ĥ(t) =

(
Ĥ0,at + Ĥrf(t) Ŵ

Ŵ Ĥ0,mol + Ĥrf(t)

)
. (E.2)

2Bound-bound transitions that we carried out to measure the energy difference of the 4d(4)
and the 6g(6) cesium molecular states at an avoided level crossing are published in
Ref. [Hut08]. Note that the molecular states are labeled according to their quantum num-
bers fℓ(mf ), with f = |F1+F2| and ℓ being the rotational quantum number of the relative
motion of atom 1 and 2.
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The Hamiltonians Ĥ0,at and Ĥ0,mol describe the bare state energies of two atoms
and a molecule, respectively, including the magnetic field dependence of the
Zeeman energy. The time-dependent Hamiltonian describing the effect of the rf
field Ĥrf(t) = −µ̂ ·Brf cos(ωrft) commutes with Ĥ0. The interchannel coupling is
given by Ŵ , which contains all coupling mechanisms that could principally lead
to the appearance of Feshbach resonances, for example, the strong electronic
interaction or the weak relativistic spin-spin and second-order spin-orbit inter-
actions [Köh06b]. This off-diagonal interchannel coupling determines the width
(coupling strength) Γ0 of the related Feshbach resonance [Chi10],

Γ0(Erel) = 2π|⟨mol|Ŵ |at, Erel⟩|2. (E.3)

Eq. (E.1) suggests a bifocal perspective, depending on which of the contribut-
ing Hamiltonians are analyzed first. When starting with Ĥ0 + Ŵ , the resulting
coupled states are no longer eigenstates of Ĥrf(t). These eigenstates are, in
turn, coupled by the interaction Hamiltonian Ĥrf(t). This approach is discussed
in Refs. [Lan09a, Lan08a].

Another way to look at Eq. (E.1) is to first consider Ĥ0 + Ĥrf(t), followed
by the coupling related to Ŵ . The temporal periodicity of Ĥrf(t) gives rise
to the creation of sidebands, which interact according to Ŵ . The subsequent
discussion is based upon this approach, which is valid in the linear Zeeman
regime [Bea10, Pas10]. Note that the Hamiltonian of Eq. (E.1) can also be
analyzed using a Floquet approach [Shi65].

We adopt the convention that an energy of zero corresponds to the energy
of two free atoms in the incoming (open) channel in the limit of zero collision
energy Erel = 0. Now, the energies of the uncoupled time-independent two-atom
and dimer states are given as

(
Ĥ0,at + Ĥrf(t)

) ˜|at,Erel⟩ =
(
Erel − 2µatBrf cos(ωrft)

) ˜|at,Erel⟩, (E.4)(
Ĥ0,mol + Ĥrf(t)

)
|̃mol⟩ =

(
− Eb(B)− µmolBrf cos(ωrft)

)
|̃mol⟩, (E.5)

where µat and µmol are the magnetic moment of the atoms and dimers, re-
spectively. We define the magnetic field dependent binding energy Eb(B) to be
positive for a real bound state. The tilde indicates the eigenstates of Ĥ0+Ĥrf(t).
The time-dependent states are given as

˜|at, Erel(t)⟩ = |at, Erel⟩ · exp
[
− i

~
(
Erel − 2µatBrf cos(ωrft)

)
t
]
, (E.6)

˜|mol(t)⟩ = |mol⟩ · exp
[
− i

~
(
− Eb(B)− µmolBrf cos(ωrft)

)
t
]
. (E.7)

The coupling strength Γ can be calculated according to the Fermi golden rule
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[Nap94] as

Γ(Erel) = 2π

∣∣∣∣ ˜⟨mol(t)|Ŵ ˜|at, Erel(t)⟩
∣∣∣∣2 δ(∆Eif ) (E.8)

= 2π

∣∣∣∣⟨mol|Ŵ |at,Erel⟩

· exp
[
− i

~
(Erel + Eb(B)−∆µBrf cos(ωrft))t

]∣∣∣∣2δ(∆Eif ). (E.9)

Here, ∆µ = 2µat − µmol is the difference of magnetic moments, and the delta
function assures that the energy in the process is conserved, with ∆Eif referring

to the difference in the eigenenergies of the initial and final states ˜|at, Erel⟩ and
|̃mol⟩.
The expression above can be simplified by replacing cos(ωrft)t with its time-

average, which is reasonable for frequencies ωrf ≫ 2π/t,

⟨cos(ωrft) t⟩t =
1

t

∫ t

0

cos(ωrft
′) t′dt′ (E.10)

=
sin(ωrft)

ωrf

+
cos(ωrft)

ω2
rft

− 1

ω2
rft

(E.11)

ωrf t≫1−→ sin(ωrft)

ωrf

. (E.12)

The time-dependent factor exp
[
− i

~(Erel + Eb(B)) t −∆µBrf
sin(ωrf t)

ωrf

]
can be

developed into a series of Bessel functions JN using the Jacobi - Anger expansion

eiz sin(ωrf t) =
∞∑

N=−∞

eiNωrf tJN(z), (E.13)

which corresponds to the creation of sidebands energetically shifted from the
bare states by ±N~ωrf .
Putting this into Eq. (E.9), it follows

Γ(Erel) = 2π

∣∣∣∣⟨mol|Ŵ |at,Erel⟩ (E.14)

·
∞∑

N=−∞

JN

(
∆µBrf

~ωrf

)
exp

[
− i

~
(Erel + Eb(B)−N~ωrf) t]

∣∣∣∣2 · δ(∆Eif ).

From the phase factors of the infinite sum we can read the energy difference
as

∆Eif = Erel + Eb(B)−N~ωrf , (E.15)

which has to be zero due to energy conservation, δ(∆Eif ), hence,

Eb(B) = N~ωrf − Erel, (E.16)
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where N can be identified as the rf photon number. Since for our ultracold
atom sample3 Erel ≪ ~ωrf , this resonance condition is only fulfilled for a certain
N = Nres. Therefore, the series of Bessel functions in Eq.(E.14) can be reduced
to one term, leading to the the final result

Γ(Erel) = 2π

∣∣∣∣⟨mol|Ŵ |at,Erel⟩ · JNres

(
∆µBrf

~ωrf

)∣∣∣∣2 (E.17)

= Γ0(Erel)

∣∣∣∣JNres

(
∆µBrf

~ωrf

)∣∣∣∣2, (E.18)

using the Feshbach coupling strength Γ0 (Eq.(E.3)). Typically, Nres = 1 in the
experiments. However, for large modulation amplitudes two-photon transitions
(Nres = 2) are observed as well.
To summarize, the rf field leads to a sinusoidal time-modulation of the eigenen-

ergies of the system, due to the periodic modulation of the Zeeman energies of
the states. This modulation creates sidebands shifted by an energy of N~ωrf .
When one of these sidebands energetically coincides with the dimer state, an
assisted Feshbach resonance is induced by Ŵ . The coupling strength depends
on the bare Feshbach coupling strength Γ0, the applied rf amplitude Brf , the
frequency νrf = ωrf/(2π) and the magnetic moment difference ∆µ. For both
approaches, the one discussed in Refs. [Lan09a, Lan08a] as well as the one pre-
sented here, the coupling efficiency decreases with increasing νrf , corresponding
to the decrease of the open-channel contribution to the bound state. Note that
as the coupling strength Γ is a result of the interchannel interaction Ŵ , states of
the same molecular potential cannot be coupled by rf magnetic field modulation.

E.3. Determination of binding energies

In this section, the method for precise determination of the dimer binding en-
ergy in a free-bound transition by magnetic field modulation spectroscopy, per-
formed on a thermal atom sample, is described. This method is based on fitting
a theoretically derived line shape of the atom loss to the experimental data
[Web08, Kle08, Bea10].
Experimentally, we obtain Eb(B) by either varying the modulation frequency

νrf at fixed magnetic field strength B (frequency scan) or by changing B, and
thereby Eb(B), while fixing νrf (magnetic field scan). The finite temperature
of the sample leads to a distribution of Erel in the harmonic trap, resulting in
broad and asymmetric loss signals; see Fig. E.1.
As outlined in Sec. E.2, dimers are produced in a process referred to as an

assisted Feshbach resonance when the resonance condition for the rf modulation
frequency νrf , which is stated in Eq. (E.16), is fulfilled. These dimers exhibit
a relatively short lifetime τD, due to atom-dimer relaxation to deeply bound

3T = 50 nK, which is a typical temperature of the atoms sample, corresponds to ωrf ∼
2π × 1 kHz.
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Figure E.1.: Determination of Eb(B) by (a) a frequency scan or (b) a magnetic
field scan. This illustration shows exemplary the energies of the states involved
in an atom-dimer association process as a function of B for a thermal sample.
The dotted horizontal line depicts the zero-energy threshold of two atoms at
rest, Erel = 0. The finite temperature T leads to a Maxwellian distribution
of Erel, illustrated by the shaded area above the zero-energy threshold. The
solid line depicts the binding energy Eb of a weakly bound dimer state. For
decreasing B the dimer state takes on the closed-channel bound state character.
For increasing B, the coupling of the closed-channel dimer state to the weakly
bound open-channel state of Cs in |F = 3,mF = 3⟩ with Eb ≃ 10 kHz leads
to a curvature of Eb until the dimer state is of purely open-channel character.
(a) For a frequency scan, B is fixed and νrf is varied. Atom losses occur if
the resonance condition of Eq. (E.16) is fulfilled, which is typically the case for
Nres = 1. The distribution of Erel leads to an asymmetric line shape of the loss
signal. (b) For a magnetic field scan, νrf is fixed and B is varied. The width of
the loss signal depends on ∆µ(B); note the difference of ∆B for νrf,1 and νrf,2
in the inset. The insets illustrate exemplary the line shapes of loss signals in
an atom-dimer association process; arrows indicate the width of the resonances.
The application of a magnetic gradient field, as well as the existence of magnetic
field noise, increase the width and symmetrize the line shape of the loss signal.

dimers. Typically, three particles are lost in this process, nl = 3 (see Chap-
ter 2). Additionally, dimers can leave the trap, resulting in nl = 2, because
of a mismatch of µmol and the levitation field, which is optimized for atoms4.
For large atom-dimer elastic cross-sections, avalanche effects as described in
Ref. [Zac09] can occur, causing nl > 3. The fitting procedure is independent of
the definite value of nl, as long as nl > 0.
Typically, τD is much smaller than the dimer association time, therefore, the

association process results in a reduction of the atom number Nat according to

dNat

dt
= −nlK2(νrf , Eb(B))

N2
at

Veff

, (E.19)

4In the case that ∆µ ≃ 0, dimers may remain trapped.



APPENDIX: RADIO-FREQUENCY SPECTROSCOPY 143

with the effective volume5 Veff = (4πkBT/(mω̄2))3/2. Eq. (E.19) is valid for a 3D
harmonic trap with the geometric mean of the trap frequencies ω̄ = (ωxωyωz)

1/3.
The two-body loss rate is introduced as K2, assuming a two-body density depen-
dence; however, this does not necessarily mean that two particles are lost from
the trap. Other loss processes, such as three-body recombination, are neglected
in this treatment6.

The loss process is similar to the one treated in the theory for photoassociation
line shapes in Refs. [Nap94, Jon06, Web08, Bea09]. For a thermal sample, K2 is
proportional to7

K2(νrf , Eb(B)) ∝
∫ ∞

0

ΓD Γ(Erel) e
− Erel

kBT(
hνrf − (Erel + Eb(B))

)2
+
(
Γtot(Erel)/2

)2dErel, (E.20)

with ΓD = ~/τD and the total width defined as Γtot(Erel) = ΓD + Γ(Erel).
Eq. (E.20) assumes a thermal distribution of the atoms
f(Erel) ∝ exp(−Erel/(kBT )), which leads to a broadening and asymmetry of
the association spectrum. The probability of transitions from atom pairs to the
dimer states is taken into account by convolution with a Lorentzian distribution.

Generally, atoms are converted to dimers when νrf = (Erel + Eb)/h, which
is reflected in the denominator of Eq. (E.20). As our focus is mainly on the
determination of Eb(B), it is sufficient to understand the relative line strength
for a fixed set of experimental parameters during a measurement, which allows
to apply the following simplifications.

The loss process is typically much faster then the association process, ΓD ≫
Γ(Erel), so it can be assumed that Γtot ≃ ΓD, independent of Erel.

According to Eq. (E.17), Γ(Erel) depends on the bare Feshbach coupling
strength, Γ0(Erel)[Mie00], which features an energy dependence given by the

Wigner threshold-law Γ0(Erel) ∝ E
(2ℓ+1)/2
rel , with ℓ being here the quantum num-

ber of the incoming partial wave [Wig48]. For ultracold collisions ℓ = 0, re-
sulting in Γ0(Erel) ∝

√
Erel. In principle, due to variations of νrf , ∆µ and 8Brf ,

the coupling strength Γ(Erel) changes during a measurement according to the
Bessel function in Eq. (E.17). However, for the limited range where Eq. (E.16)
is fulfilled, this effects can be neglected9, Γ ∝ Γ0.

5The effective volume follows from the two-body loss equation, which is defined for the par-
ticle density n as ṅ = −nlK2n

2. This equation transforms to Eq. (E.19) after integration
over the volume in a 3D harmonic trap.

6Three-body recombination plays a minor role, as rf-association is typically performed at
small (and positive) values of the s-wave scattering length.

7The density of states, which is related to the distribution of the relative energies Erel, is a
constant for a 3D harmonic potential as shown in Ref. [Kle08].

8For a frequency scan νrf is scanned and Brf changes due to the variation of the impedance in
the coils. In a magnetic field scan ∆µ varies slightly in the vicinity of a molecular avoided
crossing.

9This has been experimentally verified by comparing frequency scans and magnetic field
scans, which show the same outcome; see Sec. F.3.1.



144 APPENDIX: RADIO-FREQUENCY SPECTROSCOPY

Therefore, Eq. (E.20) can be written as

K2(νrf , Eb(B)) ≃ Closs

∫ ∞

0

√
Erele

− Erel
kBT(

hνrf − (Erel + Eb(B))
)2

+ (Γtot/2)2
dErel. (E.21)

The coefficient Closs incorporates the parameters that are assumed to be almost
constant during a measurement.

The two-body loss coefficient K2(νrf , Eb(B)) is related to the atom number
Nat(νrf , B, trf) via the solution of Eq. (E.19),

Nat(νrf , B, trf) =
Nat,0

1 + Nat,0

Veff
nlK2(νrf , Eb(B))trf

, (E.22)

with the initial particle number10 Nat,0 = Nat(νrf , B, 0) and trf being the associ-
ation pulse time. The factors nl, Veff and Closs can be combined into an overall
loss factor C ′

loss = nlCloss/Veff . The temperature T can be either fitted or deter-
mined by a separate measurement, and Nat,0 can be taken from the off-resonant
wings of the loss signal.

In order to obtain Eb(B), the experimentally obtained loss signal can be fitted
with the theoretical loss signal by

Nat(νrf , B, trf) = (E.23)

Nat,0

(
1 + C ′

lossNat,0trf

∫ ∞

0

√
Erele

− Erel
kBT(

hνrf − (Erel + Eb(B))
)2

+ (Γtot/2)2
dErel

)−1

,

with the fitting parameters C ′
loss, Γtot and Eb(B).

Simplified determination of the binding energy

A simplified determination of E(B) is possible if the line shape features the
asymmetric pattern related to the thermal distribution [Jon06]. According to
Eq. (E.21), for K2(νrf , Eb(B)) each collision energy Erel contributes a Lorentzian
centered at νrf = (Erel+Eb(B))/h with an amplitude ∝

√
Erel exp[−Erel/(kBT )].

It is easily calculated that the largest contribution to the line comes from Erel =
kBT/2. Therefore, Eb(B) can be determined in a frequency scan by

Eb(B) = hνrf,max −
kBT

2
, (E.24)

with νrf,max being the modulation frequency at which the atom loss features a
maximum11.

10Assuming that the number of atoms at t = 0 is independent of νrf and B.
11In Ref. [Tho05b], this shift has been measured in a 85Rb sample resulting in hνrf,max −

Eb(B) = 0.60(2)kBT .
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Effects of variations of the magnetic bias field

So far, effects on the line shape due to variations of the magnetic bias field δB
have not been taken into consideration. Such variations not only broaden the
loss signals but also lead to more symmetric line shapes for ∆µδB > kBT .
The main contributions are the magnetic gradient field, which leads to δBgrad =

∂B
∂z
wFWHM

z with the FWHM-width given in Eq. (D.3) 12, and magnetic field noise
δBnoise, which is below 20 mG for measurements in the magnetic high-field re-
gion. The effect of magnetic field curvature is negligible in comparison to the
magnetic levitation field.
For an accurate determination of Eb(B), the magnetic field variations have to

be taken into account by convolution of Eq. (E.21) with an adequate distribution
function representing δB.

Effects of magnetic field dependent magnetic moments

Here, the influence of a magnetic field dependence of ∆µ on the derivation of the
dimer binding energy is discussed. If the binding energy exhibits a quadratic
dependence on the magnetic field with ∂2Eb/∂B

2 = 2η, the time-modulated
Eb(B) is given as

Eb(B,Brf , t) = Eb(B) +
∂E

∂B
Brf cos(ωrft) + η(Brf cos(ωrft))

2. (E.25)

Averaging this expression over a period leads to

⟨Eb(Bbias, Brf)⟩t = Eb(Bbias) +
1

2
ηB2

rf , (E.26)

which causes an effective shift of the measured binding energy in dependence of
the modulation amplitude Brf . Eq. (E.16) has then to be corrected for this shift
resulting in13

Eb(B) = N~ωrf − Erel −
1

2
ηB2

rf . (E.27)

E.4. Rf magnetic field modulation setup

Here, the rf setup for the determination of dimer binding energies in the magnetic
high-field region is described (see Fig. E.2), which differs only slightly from the
low-field setup.
The implemented rf setup allows to perform rf magnetic field modulation spec-

troscopy for measuring Eb of weakly bound dimer states. For this, a sinusoidal
signal for the rf association process is created by a signal generator (Agilent
arbitrary waveform generator, 33250A, 80 MHz) which is programmed by the
experimental software via a computer interface (General Purpose Interface Bus).

12This corresponds to a variation of δBgrad ∼ 50 mG for the binding energy measurements in
the high-field region (reported in Sec. F.3.1).

13This effect has been measured in Ref. [Web08].
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Figure E.2.: (a) Experimental setup for the rf magnetic field modulation spec-
troscopy. The signal generator, which is programmed via the experimental con-
trol computer (not shown), is connected to an rf amplifier, which allows to
achieve sufficiently high currents in the Curvature coils to produce Brf ∼ 3 G.
The electric circuit includes four 1 Ω-resistances (R), which are connected in
series. (b) Timing procedure for the rf modulation spectroscopy. The magnetic
field B is ramped from the evaporation field to a magnetic field, where the dimer
association is performed by application of a magnetic field modulation for a time
trf . Then, the remaining atom fraction is imaged via absorption imaging at the
imaging field.

The adjustable parameters are the modulation time trf , the modulation ampli-
tude Brf and the frequency νrf . The signal generator is connected to a 25 W
radio-frequency amplifier (FLL25, Frankonia)14. The amplifier drives the cur-
rent in the Curvature coils15, which are connected in series with 4 × 1Ω high
power resistances (Arcol, 300 W). This setup allows to measure binding energies
exceeding h× 1 Mhz.
Fig. E.3 shows the current in the Curvature coils as well as the amplitude of

the magnetic field modulation Brf as a function of the input power and frequency
of the signal generator.
As the efficiency of the rf amplifier decreases significantly for frequencies be-

low 50 kHz, for measurements in the low-frequency regime the use of an audio
amplifier (LM4780, National Semiconductor) is advantageous.

14For safety reasons, a 20 dB attenuator is placed between the frequency generator and the
rf amplifier.

15The Curvature coils are used due to their favorable properties concerning inductance and
magnetic field strength as described in Sec. B.3 and listed in TableB.1.
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Figure E.3.: Current in the Curvature Coils and Brf as a function of the ampli-
tude and frequency of the signal generator. (a) The current and Brf are shown
in dependence of the peak-to-peak voltage (Vpp), set at the signal generator. A
20 dB attenuator, placed between the output of the signal generator and the
input of the rf amplifier, reduces the input signal strength for the rf amplifier.
(b) The same data as (a), but as a function of the signal input power of the
rf amplifier after attenuation. The data presented in (a) and (b) correspond to
(�) νrf = 100 kHz, (•) νrf = 300 kHz and (�) νrf = 500 kHz. Figure (c) visu-
alizes the dependence of the current and Brf on νrf for (�) 0.5 Vpp (−22 dBm),
(•) 2 Vpp (−10 dBm) and (�) 4 Vpp (−4 dBm). Voltage and power refer to the
output of the signal generator and the input of the rf amplifier, respectively.





APPENDIX F

TWO-BODY SCATTERING PROPERTIES

The interpretation of few-body phenomena relies on precise knowledge of the
underlying two-body scattering physics. Especially the relation between the
magnetic field strength B, being the experimentally accessible parameter, and
the s-wave scattering length a, which is the quantity used in universal theories,
is of utmost importance. The results presented in Chapters 2, 3, 5, 6 and 7,
are based on accurate experiments and analyses of the scattering properties
in the magnetic low-field region (B < 150 G); see Ref. [Chi10] and references
therein. Contrary to the low-field region, the high-field region has not been
experimentally investigated in the literature, until now. In this appendix a
study of the cesium scattering properties in the magnetic high-field region is
presented1.
An overview of the Feshbach resonances at the low- and high-field region is

given in Sec. F.1. Initially, for the study of the high-field region, the positions
of several narrow Feshbach resonances, which result from ℓ > 0 states, are
determined by trap-loss spectroscopy [Chi10]; see Sec. F.2. In a second set of
experiments, binding energies of weakly bound dimer states (ℓ ≥ 0) are measured
via rf-spectroscopy2; see Sec. F.3. Based on these results, the s-wave scattering
length and the properties of the broad s-wave Feshbach resonances are derived by
a coupled-channel calculation performed by J. Hutson and P. Julienne [Hut11].

F.1. Overview of the cesium Feshbach resonances

Essentially, the scattering properties of cesium in the absolute ground state
|F = 3,mF = 3⟩ are governed by three broad s-wave Feshbach resonances with
poles at B0 = −12 G, 549 G and 787 G [Chi10, Chi04b]3; see Fig. F.1. These
s-wave Feshbach resonances stem from molecular s-wave states belonging to
different atom-atom scattering hyperfine potentials.

1The data presented in this appendix will be published soon [Ber11a].
2This method is described in Appendix E.
3The determination of the exact values of the resonance poles is described in this appendix.
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Figure F.1.: Overview of the magnetic field dependence of the s-wave scatter-
ing length for atoms in the |F = 3,mF = 3⟩ state, obtained by considering
only the s-wave Feshbach resonances with poles at -12 G, 549 G and 787 G.
The graph is the result of a coupled-channel calculation performed by J. Hutson
and P. Julienne [Hut11], which is based on the experimental data presented in
Sec. F.2 and F.3. The grey area marks the region that is only accessible with the
|F = 3,mF = −3⟩ state. The dashed vertical line separates the so-called low-
field region (lf) of up to 150 G, which was accessible with the old experimental
setup, from the high-field (hf) region. The new experimental setup allows to
reach magnetic field strengths up to 1400 G. The stars represent Feshbach reso-
nances in the high-field region caused by states with rotational orbital angular
momenta ℓ > 0. The positions of these resonances were obtained by Feshbach
spectroscopy; see Table F.1.

The low-field resonance (B0 = −12 G) is created by a molecular state of the
(F1 = 4, F2 = 4, f = |F1+F2| = 6) potential and features a width of ∆ = 29 G.
Moreover, cesium features many narrow resonances stemming from the coupling
to higher-order rotational angular momentum (ℓ > 0) states, resulting from
weak relativistic spin-spin and second-order spin-orbit interactions; see Fig. F.2.
An overview of the low-field scattering properties and the binding energies of
weakly bound dimers is given in Figs. F.2 and F.3.

We investigated the scattering properties of cesium in the absolute ground
state |F = 3,mF = 3⟩ in the vicinity of the entrance-channel dominated s-wave
Feshbach resonances in the high-field region. The 549 G-resonance is generated
by an s-wave molecular state belonging to the (F1 = 3, F2 = 4, f = 7) potential.
The 787 G-resonance stems from a (F1 = 3, F2 = 4, f = 6) state. Several narrow
and overlapping Feshbach resonances have been identified, resulting from the
coupling to states with ℓ > 0; see Fig. F.1. Note that Feshbach resonances are
only induced by molecular states with the same Zeeman sublevelM = mf+mℓ =
6 as the entrance-channel (mF1,2 = 3).
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Figure F.2.: s-wave scattering length in the magnetic low-field region. The
labeling refers to the molecular states (ℓ, f = |F1 + F2|,mf ), which cause the
Feshbach resonances. The inset shows a zoom-in of the region of the zero crossing
of a connected to the broad low-field s-wave Feshbach resonance. Note that the
20.1 G resonance is actually located at 19.8 G [Mar05]. Taken from [Chi04b].
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Figure F.3.: Binding energies of the weakly bound Feshbach molecules in the
magnetic low-field region. The experimental data points were obtained by mag-
netic moment spectroscopy and microwave spectroscopy [Mar07a]. The state
labeling is according to the quantum numbers fℓ(mf ), with mf = 6−mℓ omit-
ted if mf = f and mℓ = ℓ. The solid lines represent s, d, g and l-wave states.
These lines are obtained from a theoretical model derived at the NIST. Taken
from [Mar07a].
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In the following, molecular states are labeled either according to their quantum
numbers (fℓmf ) or by the capital letters given in Table F.1, if the quantum
state is not unambiguously identified yet. Furthermore, Feshbach resonances
are labeled according to the molecular states that cause the resonances.

F.2. Feshbach spectroscopy

The idea of Feshbach spectroscopy is based on the general a4-scaling [Web03c,
Fed96b, Nie99, Esr99, Bed00] of three-body recombination losses. If two-body
losses are sufficiently supressed4, which is the case for atoms in the absolute
ground state, three-body losses are typically the main cause for particle loss5.
Therefore, poles of Feshbach resonances can be determined by scanning the mag-
netic field strength, with a fixed hold time, for atom loss maxima. This method
is generally referred to as trap-loss spectroscopy. Furthermore, zero-crossings
of a appear as loss-minima, allowing to experimentally determine the width of
the resonances. However, for especially narrow resonances the resolution is not
sufficient to precisely determine the zero-crossings6.
Unfortunately, this method is not applicable to accurately determine the prop-

erties of the broad s-wave Feshbach resonances. The exact position of the pole
is obscured by the unitarity limit [D’I04], which sets a temperature dependent
limit on atom losses; see Fig. F.4. The ascending slope of a(B) at the zero-
crossing, on the other hand, is too small to clearly identify a minimum in losses.
Therefore, the properties of the s-wave Feshbach resonances are determined via
binding energy measurements; see Sec. F.3.

Sample preparation

The sample preparation down to the µK-regime is similar to the one given in the
PhD theses of my former colleagues and described in detail in Refs. [Web03a,
Her05, Kra06a, Mar08b]. In brief, the experimental sequence includes several
standard cooling and trapping techniques. First, atoms from the Zeeman-slowed
atomic beam are accumulated in a magneto-optical trap for 13 s. Then, the MOT
is compressed, by linearly tuning the gradient field from 8 G/cm to 33 G/cm
within 35 ms. In this stage, the frequency of the MOT beams is adjusted
simultaneously. This process is experimentally optimized without determination
of the definite value of the detunings. After a 5 ms optical molasses phase, where
the MOT coils are switched off, the atoms are loaded into an optical lattice,
where Raman-sideband cooling [Web03a, Ker00, Tre01] is performed for 6.5 ms.
At this stage of the experiment, the sample size amounts to N ≃ 1.5 × 107 Cs

4In our experimental setup, one-body losses are negligible due to the ultra-high vacuum
conditions.

5Normally, n-body losses for n > 3 are small in the absence of resonances. Nevertheless,
the loss maximum is always at the pole of the resonance, which follows from the general
scaling Ln ∝ a3n−5 [Meh09].

6The main effects limiting the resolution are magnetic field noise and the magnetic gradient
field.
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Figure F.4.: Feshbach scan from 450 G to 1050 G showing particle loss due
to the two broad high-field s-wave Feshbach resonances at 549 G and 787 G,
as well as several d-wave resonances at ∼ 500 G. The experimental setup for
these measurements is equal to the one used for binding energy measurements,
described in Sec. F.3.1. The dots refer to an evaporation field at 558.7 G and
the diamond symbols to an evaporation field at 894 G. Both measurements
are performed with a T = 50 nK sample in a 1064 nm crossed optical dipole
trap. For the scan, the hold time was 500 ms, leading to a maximum particle
number of 8× 104. The d-wave resonances are not resolved in this plot, and the
main contribution comes from the resonance connected to the 7d6 state with
∆ = 4.5 G; see Ref. [Fer11]. The widths of the s-wave Feshbach resonances do
not allow to accurately determine the Feshbach resonance parameters by method
of Feshbach spectroscopy. Narrow resonances are not shown in this plot due to
the step size of the magnetic field scan.

atoms in the |F = 3,mF = 3⟩ state at a temperature of ∼ 1µK. The sample
is transferred into a large volume far-off resonant dipole trap [Gri00a], which
is generated by two crossed 100 W-CO2 (Coherent-DEOS GEM-100L) beams
with waists of about 600µm. As the trap by itself is not strong enough to hold
the atoms against gravity, an additional magnetic gradient field of 31 G/cm
is applied to levitate the atoms. After 2 s of plain evaporation, resulting to
N ≃ 5× 106 and a temperature of slightly below 1µK, the CO2 trap is spatially
overlapped by a tightly focused crossed dipole trap. For this trap, a 1064 nm
fibre laser (IPG Laser GmbH, 10 W) is used, with waists at the center of the
trap of 40 µm (Dimple 1-beam) and 250 µm (Dimple 2-beam)7.

The sample is further cooled down by 6.5 s of forced evaporation in the mag-
netic low-field region8. For this purpose, the intensity of Dimple 1 is reduced
from 60 mW to 3.5 mW in an almost exponential ramp within these 6.5 s . The
intensity of Dimple 2 is first linearly increased from 0 to 400 mW within the first
half second, and then decreased to 300 mW within the last 3 s of the evaporation
scheme. The switching-off process of the two CO2 lasers starts at t = 1.5 s of
the evaporation stage. One of the CO2 lasers is abruptly switched off, whereas

7The names of the two lasers refer to the so-called “dimple-trick” discussed in Ref. [Web03a].
8At the time of these measurements, the high-field imaging has not yet been installed. There-
fore, evaporation was performed in the magnetic low-field region.
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the other one is ramped down to zero within 2 s. During the whole evaporation
scheme the s-wave scattering length is adjusted by slowly varying the magnetic
field in order to optimize the thermalization rate with respect to inelastic losses.
After 0.7 s of plain evaporation, which make sure that the sample is in thermal
equilibrium, we end up with 105 thermal atoms at a temperature of 70 nK.

In order to decrease the widths of the measured loss resonances, the levitation
field is reduced to 8 G/cm, while simultaneously recompressing the optical trap.
This is performed by increasing the intensity of Dimple 1 to 40 mW within 1 s.
Also, the ellipticity of the trap is modified by a rapid spatial horizontal oscillation
of Dimple 1 using an AOM at a frequency of about 100 kHz, so that the trap
size along Dimple 2 is increased by a factor 1.5. This method is mentioned in
Chapter 5 and discussed in Ref. [Sch07]. After this adiabatic reshaping of the
trap the temperature increases to about 120 nK.

The magnetic field scans are performed by ramping up to the desired value
Bscan in the magnetic high-field region within 10 ms. After a hold time thold,
which has been experimentally optimized for each measurement series and lies
between 0.25 s and 1 s, the magnetic fields are ramped to zero within 30 ms.
The remaining atom cloud is imaged in time-of-flight absorption imaging after
16 ms of expansion. Note that ramping over the broad Feshbach resonances
leads to a significant heating effect and additional atom losses. The magnetic
field calibration is carried out by |F = 3,mF = 3⟩ → |F = 4,mF = 4⟩ micro-
wave transitions as explained in Appendix D.

Results of the Feshbach spectroscopy

The results of the Feshbach spectroscopy are given in Table F.1 and the loss
resonances obtained are shown in Fig. F.5.

In the magnetic field regions that are discussed below9, supplementary mea-
surements increased the accuracy of the positions of poles and zero-crossings.
As these measurements were carried out after the high-field imaging setup was
implemented, the sample preparation is similar to the one described in Sec. F.3.1.

In the magnetic region ranging from 490 G to 506 G, four d-wave Feshbach
resonances, stemming from the following molecular states, were identified: 7d4,
7d6, 7d7 and 7d5; see Fig. F.6. The properties of the 7d6 resonance have been
calculated by J. Hutson and P. Julienne [Hut11], based on the experimental
data. According to these calculations, B0 = 495.06 G and ∆ = 4.5 G. The
large width of this resonance enabled us to identify an Efimov resonance at its
shoulder, see Ref. [Fer11]. For the other d-wave resonances ∆ < 1 G.

The s-wave Feshbach resonance centered at 549 G features an overlapping g-
wave Feshbach resonance, with B0 = 554.06 G and ∆ = 330 mG; see resonance
“G” in Table F.1. This resonance leads to a splitting of the Efimov scenario, as
reported in Chapter 4. The parameters for this resonance are derived from an

9The analysis of Efimov resonances, which were observed in these regions, is based on accurate
knowledge on a(B). Therefore, precise data on Feshbach resonance poles and zero-crossings
in these regions is of utmost importance.
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Figure F.5.: Collection of resonances obtained by Feshbach spectroscopy. We
use capital letters to label the resonances. For the resonances “D” and “M”
only loss minima have been obtained. The “G” resonance is broadened due to
the existence of an Efimov resonance at the Feshbach resonances shoulder; see
Chapter 4. A remaining atom fraction of 1 corresponds to about 3× 104 atoms.

accurate Feshbach scan across the resonance, which is shown in Fig. F.7(a).

Overlapping the broad s-wave Feshbach resonance centered at 787 G, we find
a d-wave resonance with B0 = 820.37 G and ∆ = 0.96 G. It features an Efimov
resonance at 818.89 G; see Ref. [Fer11]. Fig. F.7(b) shows the measurements for
the determination of the loss minimum and maximum of this Feshbach reso-
nance.

F.3. Binding energy measurements

This section treats binding energy measurements of weakly bound dimers. The
binding energies are derived by radio-frequency magnetic-field modulation spec-
troscopy. This technique is described in Appendix E.

In Sec. F.3.1, measurements on the weakly bound dimer states in the high-
field regions at 550 G and 880 G are presented. Some unpublished data for
the magnetic low-field region, which is included for the refinement of the a(B)
conversion, is given in Sec.F.3.2.
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assignment loss loss
fℓmf (F1, F2)ν Fig. F.5 maximum (G) minimum (G)
5d4(3,4) -6 A 460.86(5)

B 461.62(5)
7d4(3,4) -6 C 492.45(3) 492.63(3)
7d6(3,4) -6 D 499.40(10)
7d7(3,4) -6 E 501.24(3)
7d5(3,4) -6 F 505.07(3)
6g3(3,3) -3 G 554.06(2) 553.73(2)

H 557.45(3)
I 562.17(3)
J 565.48(3)

3g(3,4) K 602.54(3)
5g(3,4) -6 L 729.03(3)
6d6(3,4) -6 M 820.37(22) 819.41(2)

N 897.33(3)
O 986.08(3)

Table F.1.: Results of the Feshbach spectroscopy. The assignment relates the
Feshbach resonances to the molecular states which cause the resonance. If
known, the quantum numbers are noted, including the vibrational quantum
number ν. Some of the resonances that are not assigned by quantum num-
bers are supposedly caused by i-wave (ℓ = 6) states. For further discussion all
resonances are labeled by a capital letter (“A”-“O”). The loss minimum of the
6g3 resonance and the loss maximum of the 6d6 resonance result from separate
measurements; see Fig. F.7. For these measurements, the evaporation scheme is
similar to the one described in Sec. F.3.1.

F.3.1. Measurements in the magnetic high-field region

The dimer energies in magnetic high-field regions are investigated by perform-
ing free-bound transitions, particularly focussing on the energies of the s-wave
Feshbach molecules in the universal regime.

Sample preparation

The sample preparation is equal to the one described for Feshbach spectroscopy,
up to the trapping stage in the crossed CO2-trap; see Sec. F.2. However, the
high-field imaging setup (see Appendix C) was implemented before the mea-
surements presented in this section were performed. Therefore, to benefit from
this technical improvement, which allows to perform evaporation and imaging
in the high-field region, the sequence is modified accordingly.
At the beginning of the CO2-trapping stage, the magnetic field is linearly

ramped within 10 ms to the magnetic high-field regime, either the 550 G or
800 G region, crossing the broad s-wave Feshbach resonances. Due to the µK-
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Figure F.6.: d-wave Feshbach resonances in the 500 G region, obtained by Fesh-
bach spectroscopy. The capital letters label the resonances according to Ta-
ble F.1. The solid line is a guide to the eye to indicate the broad d-wave resonance
with B0 = 495 G, which is masked by the unitarity limit, and the zero-crossing
at 499 G (red arrow). In the vicinity of this resonance, an Efimov loss maximum
was identified at 498 G (blue arrow). This measurement was performed with a
50 nK sample prepared similarly to the method described in Sec. F.3.1.

temperature of the sample, three-body losses are unitarity limited and, hence,
relatively low while crossing the resonances at this stage of the preparation
sequence. During the ramp, the magnetic levitation field is adapted to the
magnetic moment of the atoms, which varies considerably for this large change
of the magnetic bias field; see Sec.A.2. After 2 s of plain evaporation, the atoms
are loaded into a tightly focused 1064 nm crossed dipole trap. The laser, trap
parameters and ramping schemes for the evaporation procedure are almost the
same as for the sample preparation discussed in Sec. F.2. In contrast to Sec. F.2,
however, the atoms remain fully levitated and there is no change of the ellipticity
of the trap. After 15 s of forced evaporation, with the CO2s being switched off
during the first five seconds, the optical beam powers of Dimple 1 and Dimple 2
are 3.5 mW and 300 mW, respectively. The last stage of evaporation ends at
a magnetic field strength of 558.7 G (a ≈ 700 a0) or 894 G (a ≈ 300 a0). The
894 G value corresponds to the Efimov minimum reported in Chapter 4. With
this procedure, a non-condensed sample of 3− 5× 104 atoms10 at a temperature
of about 50 nK is achieved.

For rf magnetic field modulation spectroscopy, we perform frequency scans and
magnetic field scans, as described in Sec. E.2, to minimize systematic errors. The
experimental setup for rf magnetic field modulation spectroscopy is described
in Sec. E.4. Both scanning methods show consistent results. Typically, the
rf modulation signal is applied for a variable duration of trf = 0.1 − 1 s in

10In the lowest atomic Zeeman state |F = 3,mF = 3⟩.
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Figure F.7.: Precise magnetic field scan of the region of the overlapping (a) g-
wave Feshbach resonance with B0 = 554.06 G and (b) d-wave resonance with
B0 = 820.37 G. The positions of the poles and zero-crossings are indicated with
a black and red arrow, respectively. Each of these overlapping Feshbach reso-
nances features Efimov loss resonances (blue arrows). The sample preparation
for both measurements is similar to the one described in Sec. F.3.1. (a) The
Feshbach scan across the g-wave resonance is performed with a 30 nK sample.
This g-wave resonance leads to a splitting of the Efimov scenario as described in
Chapter 4, with Efimov loss resonances at 553.30 G (not shown) and 554.71 G.
(b) The parameters of the d-wave Feshbach resonance are derived from an ac-
curate scan with a 30 nK atom sample. Besides the Efimov loss resonance at
853.07 G (reported in Chapter 4), there exists another Efimov loss resonance
on the shoulder of the d-wave Feshbach resonance at 818.19 G; see Ref. [Fer11].
The inset shows a magnification of the d-wave Feshbach resonance.

a frequency range of νrf = 50 − 1500 kHz and with an amplitude of Brf =
0.5 − 3 G. The modulation time and amplitude are experimentally optimized
with respect to the signal-to-noise ratio for each individual frequency region.
Then, the magnetic field is ramped to the imaging field, where the remaining
atom number is recorded by absorption imaging after release from the trap, see
Appendix C.

Discussion of the results

Here, our high-field data on dimer binding energies Eb in the interval h ×
20 kHz < |Eb| < h × 2000 kHz are presented. Note that Eb > 0 is defined
for a real bound state, and Eb < 0 corresponds to a closed-channel bound state
embedded in the continuum of the open channel.

Due to an avoided crossing, both in the 550 G and 800 G region, the s-wave
closed-channel states are adiabatically connected to the s-wave open-channel
bound state, which features Eb ∼ h × 10 kHz. Therefore, Eb approaches the
open-channel bound state energy for B > B0 +∆.

For Eb < h× 200 kHz, the s-wave states exhibit a large open-channel contri-
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Figure F.8.: Typical rf magnetic field modulation spectroscopy loss signals. (a) A
magnetic field scan for νrf = 400 kHz shows three loss resonances in the 550 G
region in the vicinity of an avoided crossing of the 7s6 state and the “H” state.
The loss resonance at 557.05 G results from the state with mainly s-wave char-
acter (green dashed line), whereas the resonance at 557.30 G stems from the
state dominated by the “H” state (blue dash-dotted line). The third resonance
at 557.45 G (turquoise solid line) is the bare Feshbach resonance related to the
“H” state. The (red) solid line illustrates the envelope of the loss resonances.
(b) In the 800 G region, an asymmetric loss signal with an onset at νrf = 137 kHz
is exemplified, which is obtained via a frequency scan for Brf = 911.69 G.

bution. Therefore, the magnetic moment difference ∆µ between the atomic and
the molecular state is small and the data is treated according to the method
explained is Sec. E.3, including magnetic field variations. In this regime, we
observe asymmetric line shapes, stemming from the finite temperature of the
sample, see Fig. F.8.

For Eb > h × 200 kHz, the increased closed-channel contribution leads to
a strong magnetic field dependence of Eb due to the large ∆µ. Those data
are dominated by the magnetic field fluctuations of δBnoise < 20 mG and the
influence of the magnetic levitation field, δBgrad ∼ 50 mG. Therefore, symmetric
loss signals of increased widths are observed, which is why data with Eb >
h× 200 kHz are fitted by a simple Gaussian function, see Fig. F.8.

For molecular states with ℓ > 0, broad and symmetric loss signals are ob-
served, due to the large values of ∆µ. Hence, the loss resonances are fitted by a
Gaussian for all Eb, for the same reasons as stated above.

The results for the 550 G region are shown in Fig. F.9. Interestingly, an
avoided crossing between the s-wave state (7s6) and the “H” state influences Eb

in the range between h × 200 kHz and h × 500 kHz. The results for the bare
state and coupling regions are summarized in Tables F.2 and F.3. The binding
energies for the “G” state (6g3) and the “I” state are listed in Tables F.4 and F.5.

Fig. F.10 presents the findings in the 880 G region. There, an even stronger
avoided crossing of the closed-channel s-wave state (6s6) and the open-channel
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Figure F.9.: (a) s-wave scattering length and (b) binding energy measurements
for the weakly bound molecular spectrum in the 550 G region. (a) The s-
wave scattering length is derived from a coupled-channel calculation based on
the binding energy measurements [Hut11]. The (⋆)-symbols indicate the poles
of the Feshbach resonances and the (�)-symbols the zero-crossings. (b) The
dots show the results of binding energy measurements, which are obtained by rf
magnetic field modulation spectroscopy. The lines indicate the molecular energy
level, neglecting the avoided crossing between the s-wave state (blue solid line)
and the “H” state (red dash-dotted line). The dashed line illustrates the binding
energy of the “G” state (6g3).

s-wave state is observed, compared to the 550 G region. A small avoided crossing
with the “N” state affects the data between 505 and 509 kHz. The results are
summarized in Table F.6, while results for the “M” state (6d6) can be found in
Table F.7.

F.3.2. Measurements in the magnetic low-field region

The near-threshold11 molecular energy structure of cesium in the low-field region
was already investigated by means of microwave spectroscopy, magnetic moment
spectroscopy [Mar07a] and rf magnetic field modulation spectroscopy via free-
bound transitions [Lan09b].

In order to increase the accuracy of the coupled-channel calculation, data
(which has not yet been published) was collected in the low-field region. The
measurements focussed on the precise determination of binding energies of the

11Note that the threshold refers to the open-channel |F = 3,mF = 3⟩ + |F = 3,mF = 3⟩
asymptote for large inter-particle distances.
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Figure F.10.: (a) s-wave scattering length and (b) binding energy measurements
for the weakly bound molecular spectrum in the 880 G region. (a) The s-wave
scattering length is derived from a coupled-channel calculation based on the
binding energy measurements [Hut11]. The (⋆)-symbols indicate the poles of
the Feshbach resonances and the (�)-symbols the zero-crossings. (b) The dots
show the results of binding energy measurements, which are obtained by rf
magnetic field modulation spectroscopy. Lines indicate the molecular energy
level, neglecting the narrow avoided crossing between the s-wave state (blue
solid line) and the “N” state (red dash-dotted line). The inset illustrates a
magnification of this avoided crossing, with lines to guide the eye. The dotted
line displays the binding energy of the “M” state (6d6).

universal s-wave dimer state at a magnetic field of around 30 G. In contrast
to Ref. [Lan09b], the binding energies of the weakly bound s-wave state were
obtained via bound-free transitions in frequency scans. In this process, dimers
are dissociated by a transition to the free atom continuum.

Sample preparation

The preparation procedure for an ultracold sample of thermal dimers in the
halo s-wave state is outlined in Chapters 2 and 5 and described in detail in
Ref. [Mar07a]. Principally, the experimental setup for the rf magnetic field
modulation spectroscopy, as well as the timing sequence, are similar to those
described in Sec. E.4, the difference being that an audio amplifier (LM4780, Na-
tional Semiconductor) drives the current in the Small HH coils12 to produce

12The Curvature coils have not been implemented into the experimental setup at the time
these measurements were performed.
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Figure F.11.: (a) Binding energy measurements in the magnetic low-field region.
The figure includes three different sets of data, which match very well. The
(red) triangles are obtained via micro-wave spectroscopy [Mar07a], whereas the
other data are derived by rf magnetic field modulation spectroscopy. The (blue)
squares show free-bound transition obtained in a neighboring lab [Lan09b]. The
(black) dots indicate the new data, which were extensively recorded by probing
bound-free transitions in the region between 100 kHz and 200 kHz. (b) Sample
dimer loss signal for a bound-free transition obtained in a frequency scan with
B = 28.3 G, trf = 25 ms and Brf = 0.6 G. The data points demonstrate the
strongly asymmetric line shape, featuring a sharp onset and a large high-energy
tail, greatly exceeding the width of a free-bound transition as depicted in Fig. F.8.
The solid line exemplifies an asymmetric Gaussian fit to guide the eyes.

the magnetic field modulation. The ultracold dimer sample is exposed to an rf
magnetic field modulation at the probe magnetic field B for several ms, which
dissociates the dimers into free atoms with kinetic energy Erel. The dissociation
procedure is more efficient than dimer association, as it does not depend on the
availability of a collision partner. The dissociated atoms are either lost from
the trap due to their kinetic energy, which exceeds the trap depth, or because
of atom-dimer relaxation, leading to additional dimer loss. After a Feshbach
ramp, which dissociates the dimers into atoms without considerable loss, the
remaining atoms are imaged.

Discussion of the results

The newly obtained spectroscopy data for the magnetic low-field region are pre-
sented in Table F.8 and Fig. F.11(a). Due to the nature of bound-free transitions,
the line shape does not result from the initial temperature of the dimer sample,
but from the transition probability to the continuum state with kinetic energy
Erel [Bar05]. This leads to an asymmetric loss signal, featuring a large width
and a sharp onset, see Fig. F.11(b), where the binding energy is obtained by
determination of the onset of the loss signal.

The data presented in Table F.8 conform with the one of Ref. [Lan09b].
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F.4. Determination of the scattering length

The s-wave scattering length in different magnetic field regions is derived by
least-square fitting of a full coupled-channel calculation, which is based on opti-
mization of the s-, d- and g-wave Cs-Cs scattering potentials, to the experimen-
tally obtained data. These data include the dimer binding energies13 as well as
the Feshbach resonance poles and zero-crossings reported in this appendix. This
coupled-channel calculation, which was performed by J. Hutson and P. Julienne
[Hut11], yields the parameters of the previously unexplored high-field s-wave
Feshbach resonances and a refinement of the low-field s-wave Feshbach reso-
nance. The parameters are given in Table F.9 and the resulting a(B) is presented
in Fig. F.12. Table F.10 lists the (theoretically derived) Feshbach parameters of
the resonances with ℓ > 0 that are shown in Fig. F.12. Knowledge of a(B) was
the crucial element for the analysis of the recombination loss measurements in
Chapter 4.

13The fit involves, besides the data presented in this appendix, the low-field data of
Refs. [Mar07a, Lan09b].
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s-wave state (7s6)
below avoided crossing above avoided crossing
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

561.86(2) 24(1) 556.82(3) 600(2)
560.87(2) 31(1) 556.72(2) 700(2)
560.73(2) 32(1) 556.71(5) 800(2)
560.45(2) 35(1) 556.53(5) 900(2)
560.12(2) 40(1) 556.47(5) 1000(2)
559.80(2) 45(1) 556.29(10) 1200(2)
559.53(2) 55(1)
558.99(2) 70(1)
558.71(2) 84(1)
558.44(2) 100(2)
558.13(2) 123(2)
558.12(2) 130(2)
558.07(2) 140(2)
557.88(2) 170(2)
557.85(2) 175(2)
557.79(2) 175(2)
557.79(2) 188(2)

at the avoided crossing
“left” branch “right” branch

B(G) Eb/h(kHz) B(G) Eb/h(kHz)
557.28(3) 220(2) 557.66(2) 220(2)
557.24(2) 250(2) 557.62(2) 221(2)
557.24(3) 250(2) 557.60(2) 250(2)
557.21(2) 254(6) 557.61(2) 250(2)
557.17(2) 300(2) 557.56(2) 275(2)
557.18(2) 300(2) 557.53(5) 300(2)
557.16(2) 325(2) 557.30(5) 400(2)
557.12(2) 350(2) 557.21(5) 475(2)
557.07(3) 400(2)
557.05(2) 400(2)
557.04(2) 400(2)
557.02(2) 425(2)
556.98(2) 450(2)
556.92(2) 475(2)
556.96(5) 475(2)
556.93(3) 500(2)

Table F.2.: Binding energies Eb(B) of the s-wave state (7s6) in the 550 G region.
The Table includes values for the s-wave state outside the avoided crossing with
the “H” state (upper part) and both branches within the avoided crossing region
(lower part). The state that, for increasing binding energies, connects the “H”
state with the s-wave state is referred to as the “left” branch, and vice versa as
the “right” branch.



APPENDIX: TWO-BODY SCATTERING PROPERTIES 165

“H” state
above atom threshold below atom threshold
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

557.72(2) -300(2) 557.36(5) 140(10)
557.70(2) -300(2) 557.31(2) 175(2)
557.69(5) -275(2) 557.12(2) 600(5)
557.65(2) -275(2) 557.09(2) 602(5)
557.61(2) -175(2) 557.01(5) 700(2)

Table F.3.: Binding energies Eb(B) of the “H” state, which causes the Feshbach
resonance at B0 = 557.45 G, outside the avoided crossing region with the s-wave
(7s6) state.

“G” state (6g3)
B(G) Eb/h(kHz)

553.82(2) 65(20)
553.77(2) 83(20)
553.74(2) 122(20)
553.69(2) 160(20)
553.66(2) 170(20)
553.60(2) 230(20)
553.52(2) 302(20)
553.44(2) 368(20)

Table F.4.: Binding energies Eb(B) of the “G” state (6g3), which generates the
Feshbach resonance at B0 = 554.06 G.

“I” state
B(G) Eb/h(kHz)

562.01(2) 208(6)
561.92(3) 279(6)
561.84(2) 402(6)

Table F.5.: Binding energies Eb(B) of the“I”state, which generates the Feshbach
resonance at B0 = 562.17 G.
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s-wave state (6s6)
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

946.21(3) 40(1) 907.23(2) 184(2)
937.81(3) 49(1) 905.35(2) 212(2)
929.41(3) 63(1) 904.13(3) 235(2)
923.97(2) 76(1) 902.00(2) 289(2)
920.93(3) 85(2) 899.93(3) 356(2)
920.52(2) 87(2) 898.25(2) 434(2)
918.06(2) 98(2) 897.03(2) 498(2)
915.60(2) 110(2) 896.99(2) 516(2)
912.95(3) 127(2) 896.57(3) 538(5)
912.10(2) 133(2) 894.06(2) 821(5)
911.69(3) 137(2) 892.94(2) 977(5)
910.58(2) 146(2) 890.54(2) 1689(5)
908.33(3) 169(2)

at the avoided crossing
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

“left” branch “right” branch
897.02(2) 505(2) 897.16(2) 505(2)
897.10(2) 509(2) 896.97(2) 509(2)

Table F.6.: Binding energies Eb(B) of the s-wave state (6s6) around 900 G,
including four data points (505 and 509 kHz) in the region of an avoided crossing
with the “N” state. The “N” state causes the Feshbach resonance at B0 =
897.33 G.

“M” state (6d6)
above atom threshold below atom threshold
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

819.98(2) -848(20) 819.18(2) 342(20)
820.00(2) -777(20) 819.12(2) 488(20)
819.98(2) -774(20) 818.92(5) 620(30)
819.89(2) -642(20) 818.75(5) 878(40)
819.90(2) -625(20)
819.76(2) -502(20)
819.69(2) -492(20)
819.77(2) -476(20)
819.62(2) -452(20)

Table F.7.: Binding energies Eb(B) of the “M” state (6d6), which causes the
Feshbach resonance at B0 = 820.37 G.
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s-wave state (6s6)
B(G) Eb/h(kHz) B(G) Eb/h(kHz)

28.13(1) 178(1) 29.37(1) 146(1)
28.26(1) 175(1) 29.43(1) 145(1)
28.38(1) 171(1) 29.49(1) 144(1)
28.56(1) 166(1) 29.55(1) 142(1)
28.69(1) 163(1) 29.55(1) 141(1)
28.75(1) 161(1) 29.61(1) 141(1)
28.81(1) 160(1) 29.67(1) 140(1)
28.87(1) 158(1) 29.98(1) 134(1)
28.93(1) 157(1) 30.36(1) 127(1)
29.00(1) 155(1) 30.48(1) 125(1)
29.06(1) 154(1) 30.79(1) 120(1)
29.12(1) 152(1) 31.34(1) 112(1)
29.18(1) 151(1) 31.40(1) 111(1)
29.24(1) 150(1) 32.08(1) 103(1)
29.30(1) 148(1)

Table F.8.: Binding energies Eb(B) of the s-wave state (6s6) in the low-field
region around 30 G.

assignment pole (G) width (G) zero-crossing (G)
fℓmf (F1, F2)ν theory theory theory experiment
6s6(4,4) -7 -12.34 29.48 17.14 17.13(1)
7s6(3,4) -6 548.79 7.40 556.19 556.26(10)
6s6(3,4) -6 786.84 93.82 880.66 880.9(3)

Table F.9.: Feshbach resonance parameters of the low-field and high-field s-wave
Feshbach resonances, obtained by a coupled-channel calculation [Hut11]. The
experimental value for the low-field zero-crossing is taken from Ref. [Gus08a],
while for the high-field resonances, they are derived from the collapse of a Bose-
Einstein condensate [Zen11].
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Figure F.12.: Results of the coupled-channel calculation for the s-wave scatter-
ing length a for various magnetic field regions [Hut11]. The conversion a(B)
is based on experimental data derived by Feshbach spectroscopy and binding
energy measurements. The calculation for these plots includes only states with
ℓ ≤ 4. (a) In the magnetic low-field region, a is governed by the low-field s-wave
Feshbach resonance. The 4d4 state causes a Feshbach resonance at 47.79 G.
Several g-wave resonances are not indicated in this plot; see Fig. F.2. (b) The
region around 500 G is dominated by multiple d-wave resonances, of which the
7d6 (with ∆ = 4.5 G) has the strongest effect. (c) In the region of the 550 G
s-wave Feshbach resonance, the 6g3 state induces an overlapping Feshbach reso-
nance. The inset magnifies the region of the g-wave zero-crossing. (d) The large
800 G s-wave Feshbach resonance is overlapped by the 6d6 Feshbach resonance.
The inset magnifies the zero-crossing of the d-wave resonance. The states labeled
with “H”and“N”do not appear in the calculation, which strongly indicates that
these resonances stem from states with ℓ > 4.
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assignment pole (G) width (G) loss max. (G) loss min. (G)
fℓmf theory theory experiment experiment
4d4 47.79 0.18 47.78(1) 47.94(1)
7d4 492.68 0.63 492.45(3) 492.63(3)
7d6 495.04 4.48 - 499.4(1)
7d7 501.44 0.68 501.24(3) -
7d5 505.37 0.10 505.07(3) -
6g3 554.07 -0.32 554.06(2) 553.73(2)
6d6 820.33 -0.97 820.37(22) 819.41(2)

Table F.10.: Parameters of the d- and g-wave Feshbach resonances that are
shown in Fig. F.12 derived by a coupled-channel calculation [Hut11] in com-
parison to the experimental values obtained by Feshbach spectroscopy. The
experimental high-field data are taken from Table F.1, whereas the ones for the
low-field d-wave resonance at 47.78 G are taken from Ref. [Lan09b]. A horizon-
tal line indicates that no data is available. Note that the theoretical values for
the d-wave resonances in the 500 G region feature a larger uncertainty, as no
binding energy measurements are yet available in this region.
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losses and induces correlations in cold molecular gases, Science 320,
1329 (2008).

[Tan88] C. E. Tanner and C. Wieman, Precision measurement of the hyperfine
structure of the 133Cs 6P3/2 state, Phys. Rev. A 38, 1616 (1988).

[Tha01] G. Thalhammer, Frequenzstabilisierung von Diodenlasern bei 850, 854
und 866 nm mit Linienbreiten im Kilohertz-Bereich, Diploma thesis,
University of Innsbruck (2001).

[Tha06] G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm,
and J. Hecker Denschlag, Long-lived Feshbach molecules in a three-
dimensional optical lattice, Phys. Rev. Lett. 96 (2006).

[Tha09] G. Thalhammer, G. Barontini, J. Catani, F. Rabatti, C. Weber, A. Si-
moni, F. Minardi, and M. Inguscio, Collisional and molecular spec-
troscopy in an ultracold Bose-Bose mixture, New J. Phys. 11, 055044
(2009).

[The04] M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff,
R. Grimm, and J. H. Denschlag, Tuning the Scattering Length with an
Optically Induced Feshbach Resonance, Phys. Rev. Lett. 93, 123001
(2004).

[Tho35] L. H. Thomas, The interaction between a neutron and a proton and
the structure of H3, Phys. Rev. 47, 903 (1935).

[Tho05a] S. T. Thompson, E. Hodby, and C. E. Wieman, Spontaneous dissoci-
ation of 85Rb Feshbach molecules, Phys. Rev. Lett. 94, 020401 (2005).

[Tho05b] S. T. Thompson, E. Hodby, and C. E. Wieman, Ultracold molecule
production via a resonant oscillating magnetic field, Physical Review
Letters 95, 190404 (2005).

[Thø08a] M. Thøgersen, D. V. Fedorov, and A. S. Jensen, N-body Efimov states
of trapped bosons, Europhys. Lett. 83, 30012 (2008).



BIBLIOGRAPHY 191

[Thø08b] M. Thøgersen, D. V. Fedorov, and A. S. Jensen, Universal proper-
ties of Efimov physics beyond the scattering length, Phys. Rev. A 78,
020501(R) (2008).

[Tjo75] J. A. Tjon, Bound states of 4He with local interactions, Phys. Lett. B
56, 217 (1975).

[Tre01] P. Treutlein, K. Y. Chung, and S. Chu, High-brightness atom source
for atomic fountains, Phys. Rev. A 63, 051401(R) (2001).

[Tsc10] T. V. Tscherbul, T. Calarco, I. Lesanovsky, R. V. Krems, A. Dal-
garno, , and J. Schmiedmayer, rf-field-induced Feshbach resonances,
Phys. Rev. A 81, 050701(R) (2010).

[Ude99] T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Absolute
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tical frequency measurement of the cesium D2 line, Phys. Rev. A 62,
031801(R) (2000).

[Wan09] Y. Wang and B. D. Esry, Efimov trimer formation via ultracold four-
body recombination, Phys. Rev. Lett. 102, 133201 (2009).

[Wan11a] Y. Wang, J. P. D’Incao, and B. D. Esry, Ultracold three-body collisions
near narrow Feshbach resonances, Phys. Rev. A 83, 042710 (2011).

[Wan11b] Y. Wang, J. P. D’Incao, and C. H. Greene, Efimov Effect for Three
Interacting Bosonic Dipoles, Phys. Rev. Lett. 106 (2011).

[Web03a] T. Weber, Bose-Einstein condensation of optically trapped cesium,
Ph.D. thesis, University of Innsbruck (2003).

[Web03b] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Bose-
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