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Summary

In this thesis we present our experimental study of the dynamics of an ultracold Fermi gas at
finite temperature in the presence of unitarity limited interactions. We trap fermionic 6Li in a single
focused laser beam and tune the interactions using a Feshbach resonance. At finite temperature the
cloud is made up of a superfluid component coexisting with a noncondensed part. In the presence
of unitarity limited interactions both obey the Euler equations describing hydrodynamic behavior.
However, whereas the superfluid is hydrodynamic due to its long range order, the noncondensed
state is hydrodynamic due to the very short collision times in comparison to the trap frequency.
Thus, the former is quantum hydrodynamic and the latter collisional hydrodynamic. Moreover,
on resonance the crossover from collisional hydrodynamic to near-collisionless is at a temperature
much higher than the condensation critical temperature. Distinguishing experimentally between
the two regimes is difficult. It is the purpose of this thesis to study the finite temperature dynamics
of the cloud and the effect of the coexisting hydrodynamic fluids primarily in the unitarity limit.

In a first set of experiments we used collective modes to study the finite temperature dynamics of
the cloud. Using the scissors mode excitation we are able to map the temperature versus interaction
strength phase diagram and identify the crossover from hydrodynamic to near-collisionless dynam-
ics. We find a large temperature region above the critical temperature where the noncondensed
state shows collisional hydrodynamic behavior. To further study the temperature dependence of
the collisional hydrodynamic state above the critical temperature on resonance we compare dif-
ferent collective modes. The experimental data showing the transition from hydrodynamic to
near-collisionless behavior as a function of temperature is compared to a theoretical model that
can include both pairing correlations and Pauli blocking. We find that both elements are necessary
to properly describe the observed change of dynamics.

In subsequent experiments we study rotational properties of the cloud. By means of a rotating
ellipse we introduce angular momentum into the noncondensed component. The measurement of the
precession angle of the quadrupole mode excitation allows us to determine the precession frequency
of the cloud, which relates to its angular momentum. The dissipation of the angular momentum
can be fitted to a model, which gives the collision time that one uses to quantify how hydrodynamic
the cloud is. We find that on resonance the noncondensed state is most hydrodynamic and shows
very long lifetimes of the angular momentum. Next we measure the total angular momentum of
the cloud to obtain the moment of inertia (MOI). The presence of the superfluid quenches the MOI
of the noncondensed component. Hence, by measuring the temperature dependence of the MOI on
resonance we are able to estimate a critical temperature

In the context of interference experiments of two molecular BECs also the deep hydrodynamic
state of the cloud is observed. In these set of experiments we observe that close to the unitarity
limit the two colliding clouds do not penetrate each other, but rather collide hydrodynamically.

As a first step to study the effect of the two hydrodynamic fluids in the context of second sound,
we develop the experimental and analytical tools to excite and analyze adiabatic higher order
collective modes. It has been theoretically suggested that they may offer a route to measuring
entropy waves, that is to say, second sound. Introducing a repulsive laser beam perpendicular to
the axial direction of the cigar shape cloud and a camera to image the axial density profile, we
observe collective modes up to third order in the zero temperature limit. We recover the wave form
and oscillation frequency of each mode.





Thanks!

First of all I would like to thank my advisor Rudi Grimm for giving me the opportunity of
joining the group and working in the experiment. I would like to thank him for very valuable
suggestions and advice. I also want to thank Florian Schreck and Johannes Hecker Denschlag for
their suggestions.

I had the opportunity to work with two different postdocs, from whom I learned quite a bit.
When I first joined the lab in January of 2007 Matthew Wright was postodc. During those first
months of my PhD he advised me on my first projects and introduced me to the most basic concepts
of strongly interacting Fermi gases. Even though we overlapped in the lab for only half a year, it
was for me very fruitful. In addition to Matt, I would also like to thank Meng Khoon Tey, who
joined the lab in summer of 2010. It was nice working with him in the lab and I learned quite a
few technical things from him. We also shared seeing the higher order collective modes for the first
time.

I would also like to thank the PhD students with whom I worked at some point: Alexander
Altmeyer, Stefan Riedl, Christoph Kohstall, and Leonid Sidorenkov. In particular, Stefan was
always available for discussions and taught me the basic things around the lab. I had a very good
time working with him. Leonid gave me a hand building electronic devices - not to mention dealing
with the water leaks!

I also have to thank PhD students that were not in the lab but with whom I worked. In particular
I want to thank Andreas Trenkwalder: I had some very useful physics discussions with him and
he gave me valuable comments on the thesis. He was also always ready to discuss some technical
problem. I also want to mention Manfred Mark for developing so many electronic devices for the
group - eventually finding them in the electronics workshop was great help in implementing large
changes.

Not directly in the lab but also very important for its success are the staff in the mechanical
workshop, electronics workshop, and the secretaries. I would like to thank the guys in the mechani-
cal workshop for being always so forthcoming in building things for us. In the electronics workshop
I want to thank Arthur Wander for discussing the circuit diagrams with me and introducing me to
some electronic components. Gerhard Hendl always had time to discuss electronics specific to our
lab and was always available to help us check something in more detail. The secretaries Christine
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1. Introduction

1.1. Overview

In this thesis we report on experimental research done with a degenerate cloud of fermionic 6Li in
the presence of a Feshbach resonance. The experimental studies address questions regarding the
dynamic properties of the gas. Hence, we first give an overview of the field of ultracold Fermi gases.
This includes a brief historical review, the basic ideas behind strongly interacting ultracold atom
clouds and tunable interactions, and finally a review of the current status of the field. Then the
dynamic properties of the gas are considered. In addition to reviewing experimental work on the
topic, we give a concise framework of collective modes before introducing the content of this thesis.

1.1.1. History

The field of atomic physics underwent a revolution when in 1995 a gas of bosonic particles was
condensed into a Bose-Einstein condensate (BEC) [And95, Dav95]. As the temperature of a gas is
lowered the interparticle spacing decreases up to the point where it is comparable to the thermal de
Broglie wavelength, λdB =

√
2π~/mkBT , where m is the mass of the particle and T the temperature

of the gas. At this temperature (T = TBEC) the particles become indistinguishable and, in the
case of bosons, a phase transition takes place to the state where all the atoms are in the ground
state. This is the BEC.

The BEC is a quantum fluid. Below the aforementioned degeneracy temperature the statistics
do not correspond anymore to a Maxwell-Boltzmann distribution of a normal thermal gas, but are
governed by the Bose distribution function

fBose(ε) =
1

exp
(
ε−µ
kBT

)
− 1

, (1.1)

where ε is the energy per particle and µ is the chemical potential. In the presence of weak repulsive
interactions a superfluid is formed. The superfluid state has zero entropy and zero viscosity. It
is conveniently described in the framework of a mean-field approximation by the Gross-Pitaevskii
equation,

i~∂tψ(x, t) =

(
− ~2

2m
∇2 + U(x) + g|ψ(x, t)|2

)
ψ(x, t), (1.2)

where U is the external trapping potential, g is the coupling constant and the nonlinear term
describes the contact interactions. The single macroscopic wave function, ψ(x, t), describes the
macroscopic quantum state. Because the condensate velocity field is proportional to the gradient
of the phase of this wave function, vc(r, t) ∝ ∇θ(r, t), the superfluid flow is irrotational, ∇× vc = 0
[Gri09]. Angular momentum can only be introduced in the form of quantized vortices.

Unlike the bosonic particles identical fermions cannot occupy the same quantum state as the
temperature is lowered into quantum degeneracy. For temperatures below the Fermi temperature,
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1. Introduction

TF = EF /kB, fermions follow Fermi-Dirac statistics,

fFD(ε) =
1

exp
(
ε−µ
kBT

)
+ 1

. (1.3)

In this case one fills the energy levels up to the Fermi surface forming a Fermi sea. Hence, identical
fermions cannot form a BEC.

However, excitations at the surface of a filled Fermi sea may lead to pairing of atoms. This
pairing mechanism was first described by L. Cooper [Coo56]. In his seminal work he realized that
fermions lying on the Fermi surface and with opposite momentum could be excited to form a
pair in the presence of weakly attractive interactions. In real space the size of the paired atoms,
known as Cooper pair, is much larger than the interparticle spacing. Thus, Cooper pairs overlap
in space resulting in a many-body state. Later Bardeen, Cooper, and Schrieffer (BCS) developed a
theory with the Cooper pair as a stable ground state [Bar57]. Their theory properly describes the
superconductor in which the Cooper pairs are in a superfluid state.

The BCS superfluid state is connected to the BEC of tightly bound pairs. In other words, the
many-body Cooper pair can evolve into a pair with size smaller than the interparticle spacing that
follows Bose statistics [Eag69]. It was then shown that the tightly bound molecules and Cooper
pairs connect smoothly through a crossover [Leg80]. Finally, Nozières and Schmitt-Rink found that
also the critical temperature can be joined smoothly[Noz85].

Fermions were first cooled down to a degenerate state in [DeM99b] using two spin states of 40K
in a magnetic trap and cooled evaporatively. It was followed by other groups also using magnetic
traps [Tru01, Sch01, Had02, Roa02] but with a Bose-Fermi mixture to sympathetically cool the
Fermi component to degeneracy. All-optical production schemes were later used [Gra02, Joc03a]
to cool the gas using forced evaporative cooling, ie, without the need of a boson to do sympathetic
cooling.

1.1.2. Feshbach resonances

The Feshbach (FB) resonance allows the tuning of the interaction strength with an external mag-
netic field [Fes58, Fan61, Fes62, Chi10]. Effectively what happens is that the energy difference
between two molecular potentials is being changed. One potential is called the entrance channel
(or open channel): it holds two free atoms at large interatomic distance and a scattering state when
the atomic separation is small. The second potential is referred to as the closed channel since it is
normally energetically inaccessible to the atoms in the entrance channel. However, it can support
a bound state if its energy is near the threshold of the entrance channel. Hence, by means of an
external magnetic field the energy difference can be adjusted such that two scattering atoms in
the entrance channel couple to the bound state in the closed channel. In [Moe95] a function was
introduced to describe the change of the scattering length with the magnetic field, namely,

a(B) = abg

(
1− ∆B

B −B0

)
, (1.4)

where abg is the background scattering length, B0 is the center of the resonance, and ∆B the width
of the resonance (for 6Li in the lowest two hyperfine states abg = −1405a0, B0 = 834.15 G, and
∆B = 300 G). Near B0 we find the universal regime in which the binding energy of the pairs is

2



1.1. Overview

given by Eb = ~2/2µa2, where µ is the reduced mass, and the molecular state is a halo dimer, that
is to say, its size is in the order of a.

In the universal regime the energy scale of the system is set by the Fermi energy of the trapped
noninteracting gas, EF = ~ω̄(3N)1/3, where ω̄ = (ωxωyωz)

1/3 is the geometric mean trap frequency,
and N is the total number of atoms in both spin states. The relevant length scale is defined by the
Fermi wave number, kF, and relates to the Fermi energy as ~kF =

√
2mEF. Also the temperature

scale is given by the Fermi temperature, TF = EF/kB, below which the gas is degenerate.

Within the universal regime the experimental interest is primarily to sit on resonance, where
the interactions are the strongest. On resonance the scattering cross section has its largest allowed
value by quantum mechanics. This is known as the unitarity limit. It offers a laboratory to study
effects beyond mean-field in a strongly correlated many-body system. In this limit one can use a
universal parameter, β, to write the mean-field potential as UMF = βEF [Ho04].

In the case of fermions, the tunability of the scattering length allows the experimental realization
of the crossover from the BEC to the BCS. This is characterized by the dimensionless parameter
1/kFa. As a function of this parameter the BEC limit corresponds to those values 1/kFa� 1, and
the BCS limit to 1/kFa� −1.

In the case of a Bose gas the first studies on FB resonances were done in [Ino98, Cou98]. For
fermions it followed the experimental realization of the degenerate Fermi gas. The first observation
of hydrodynamic expansion, namely, the effect of strong interactions, was reported in [O’H02a] for
an unpaired ultracold cloud. The initial studies reported in [Die02, Joc02, OH02b, O’H02a] for 6Li
and for 40K focused on characterizing the tunability of the scattering length and characterization of
the resonant region. However, whereas some studies focused on the atom loss associated to inelastic
decay [Die02], others studied the atom decay in relation to the elastic scattering associated to the
resonance [Joc02]. Unexpectedly, for fermions, as opposed to bosons, losses are heavily suppressed.
This was later understood to be the result of Pauli blocking. Other experiments mapped the elastic
cross section for 40K [DeM99a, Lof02] by extracting the thermalization constant of the gas from
the time evolution of the aspect ratio of the widths. Finally, the measurement of the interaction
energy in the crossover region was reported in [Bou03].

The Feshbach resonance was used to form diatomic molecules, both in a Bose gas [Her03, Xu03,
Dür04] as in a Fermi gas [Reg03, Cub03, Str03, Joc03b, Reg04a]. The first realization of diatomic
molecules in Fermi gases was in [Reg03], where the 40K2 molecules were detected using radio-
frequency spectroscopy at different magnetic field values. The long-lifetime of the molecules gave
rise to expectation that cooling towards a BEC could be possible. Experiments with 6Li focused
on the atom-dimer collisional properties and its prospects for evaporative cooling [Joc03b].

The Feshbach molecules were Bose condensed (mBEC) [Joc03a, Gre03, Zwi03]. The experiments
in [Joc03a, Gre03] relied on forced evaporative cooling of two spin states to reach the necessary low
temperature. In the former case, a mBEC of 6Li2 was directly produced during the evaporation. It
was then indirectly observed through two measurements: firstly, the large number of atoms in the
trap for the low trap frequency in which no unpaired atoms could exist. The temperature of this
very shallow trap was well below the critical temperature for condensation. Secondly, by exciting
the axial quadrupole mode they were able to confirm that the oscillation frequency corresponds
to that of a mBEC. In the latter case, the mBEC was created after cooling below degeneracy
by adiabatically sweeping the magnetic field across the FB resonance from attractive to repulsive
interactions. The bimodal distribution of a mBEC of 40K2 was directly observed using state selective
high field absorption imaging after dissociating the dimers with an RF pulse. In the experiment of

3



1. Introduction

[Zwi03] the 6Li was in the stretched low-field seeking state and was sympathetically cooled using
Na to a temperature just above the critical temperature. The 6Li atoms were then transferred to
the lowest spin state. After setting the desired magnetic field in the vicinity of the FB resonance
a RF pulse was applied to get the desired two spin states mixture. Finally the atoms were further
cooled down with forced evaporative cooling. The onset of the BEC was further studied by the
observation of the bimodal distribution for different laser power. What is fascinating is that the
almost simultaneous publications successfully produced the mBEC in rather different ways, maybe
heralding the rich and vast experiments that were to come.

1.1.3. Exploring the BEC-BCS crossover

Next the BEC-BCS crossover was explored with a broad range of experiments. It was showed that
one could adiabatically change the interaction strength across the FB resonance [Bar04b] resulting
in a smooth crossover as seen on the study of the axial cloud size throughout the crossover. Fast
magnetic field ramps were introduced to project the fermionic many-body state on the BCS side
of the resonance into a molecular BEC state [Reg04b]. It was used to study the condensation in
the crossover and found the striking result that also on the BCS side there is a BEC, which implies
pair correlations. This same technique was later used by [Zwi04] for 6Li instead of 40K. They found
a much larger condensate fraction on the BCS side, and suggested that it may be an indication
of short-range correlations rather than long-range ones. The nature of the atom pairs through the
resonance has been one of the most enigmatic properties of the resonant superfluid.

The measurement of the two-body, K2, and three-body, K3, inelastic coefficients that describe
the atom number decay as modeled by [Rob00]

dN

dt
= −ΓN −

∫
K2n

2dx−
∫
K3n

3dx, (1.5)

was done much later in [Du09b]. Here Γ is the background collision rate, which does not depend
on the density, and n is the total atomic density. The density corresponds to that of the 2D trap
geometry used in the experiment. What was found is that for higher temperatures the K3 alone
describes the decay in the number of atoms; it decreases by two orders of magnitude when changing
the interaction parameter from the mBEC side of the resonance to the collisionless regime. For lower
temperatures it is a combination of K2 and K3 which accurately describes the decay. However, K2

disappears on the BCS side of the resonance. Relating K2 to the presence of pairs, this behavior
of K2 is taken as an indication that no pairing takes place on this side of the resonance.

1.1.4. Experiments in ultracold Fermi gases

Tan universal relations

Novel experiments related to the universality of the resonant superfluid measure what is known as
the Tan relations [Ste10]. These relations were presented in a series of articles [Tan08c, Tan08b,
Tan08a] and depend only on a quantity introduced therein called the contact. It is defined as the
amplitude of the high-momentum tail of the momentum distribution and contains all the many-
body physics of the system. Hence, the aforementioned experiment measured the contact for an
ultracold gas of 40K. It verified that, even though the contact depends on parameters like temper-
ature, interaction strength, and density, the universal relations remain independent of them. More
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1.1. Overview

specifically they measure the radial momentum distribution for the fermions during ballistic expan-
sion, from which they reconstruct with an inverse Abel transformation the spherically symmetric
momentum distribution for the fermion, n(k). This in turn is used to calculate the contact,

C = lim
k→∞

k4n(k), (1.6)

where k is the wave number in units of kF, and n(k) satisfies the normalization
∫∞

0 dkn(k)/(2π)3 =
0.5. Interestingly, they were also able to measure C using RF spectroscopy. In this case, the
high-frequency tail of the transferred atoms distribution has an amplitude of C/23/2π2 [Pie09]. It
is also predicted that the transferred number of atoms scales with the frequency ν like ν−3/2 for
large frequencies. Experimentally one has to minimize the final-state effects for the measurement
to work. The outcome of their work is the behavior of C throughout the crossover: it goes to zero
as (kFa)−1 goes far into the BCS side and increases as one approaches the resonance, in accordance
with the theory. Moreover, they verify the universal Tan relations with it.

Spectroscopic methods

Radio-frequency (RF) spectroscopy, in which atoms are transfered to an unoccupied state chang-
ing the projection of the nuclear spin, is another tool for studying the unitarity limited Fermi
gas [Chi04b]. It was used to observe fermionic pairing at different temperatures and interactions
strengths; it allowed the measurement of the pairing gap. Also optical molecular spectroscopy was
used to explore the wave function of the pair correlations in the crossover [Par05]. It was theoreti-
cally suggested that, for atoms such as 6Li, the wave function of the pairs, ψp, is the superposition
of the atoms in the incoming channel, φa, and the molecules in the closed channel, ψm [Dui04].
Namely,

|ψp〉 = Z1/2 |ψm〉+ (1− Z)1/2 |φa〉 , (1.7)

where Z is the fraction of pairs in the closed channel. By measuring the loss in the closed channel
in the presence of the molecular probe beam they were able to measure Z. The changing nature of
the pair correlations is seen as it decreases from about 1 for the mBEC-limit to close to 0 towards
the BCS limit. Later another set of RF spectroscopy experiments were done in which the size of
the fermion pair is determined after minimizing final state effects [Sch08c]. To achieve this different
initial spin states were chosen: instead of creating a superfluid with the commonly used two lowest
hyperfine states of 6Li, |1〉 and |2〉, the states |1〉 and |3〉 where employed. The pair size, ξ, can be
determined from the spectral linewidth of the dissociation spectrum, Ew, given by ξ2 ≈ ~2/mEw.
Experimentally Ew is taken as the width of the peak. On resonance the resulting pair size is smaller
than the interparticle spacing and the smallest found so far for a fermionic superfluid. In general,
the size in the BEC-BCS crossover is found to increase from the two-particle correlation length,
ξpair, in the mBEC-limit to about 2, 5ξpair on the BCS side of the resonance.

A particular case of RF spectroscopy was used to investigate the single-particle excitation spec-
trum of the many-body system [Ste08]. Momentum-resolved RF spectroscopy, also known as pho-
toemission spectroscopy, likewise couples one of the two spin states to an unoccupied third state.
Yet, it must fulfill two additional conditions: the interaction energy has to be small enough such
that the ideal Fermi gas dispersion, εk = ~2k2/2m, holds and final-state effects are negligible; and
the collision rate has to be low as not to wash away the momentum information. The results show
the energy dispersion of the system. It was clearly shown that the molecular branch appearing and
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separating from the free atom dispersion as the interactions are increased from a weakly interacting
Fermi gas to a mBEC.

Some recent studies have focused on the pseudogap region of the unitarity limited gas [Gae10,
Per11]. The pseudogap corresponds to a temperature region above Tc in which pair-correlation are
present, but the cloud is not superfluids. In this region the gas still has a BCS-like dispersion,
Es = µ±

√
(εk − µ)2 + ∆2, where εk = ~2k2/2m is the kinetic term, k is the fermion wave vector,

and ∆ is the pair-correlations order parameter. In the weakly interacting gas, where Cooper
pair formation and their condensation is simultaneous, ∆ becomes the superfluid order parameter.
Hence, the fact that ∆ 6= 0 in the absence of superfluidity in the pseudogap regime is what
differentiates it from the normal BCS state. It leads to a change of behavior in the dispersion for
temperatures above Tc: whereas the conventional BCS case would lead to a free particle dispersion,
for the strongly interacting gas the lower branch of Es changes slope from positive to negative
at kF. By use of momentum-resolved RF spectroscopy the dispersion was measured for different
temperatures [Gae10]. The signature of ∆ 6= 0 for temperatures both below and above Tc was
measured and, for T > Tc, taken to pertain to the incoherent pairing correlations of the pseudogap.
In following work it was established that the backbending of the dispersion actually happens at
a Luttinger wave vector kL 6= kF , elucidating the existence of a remnant Fermi surface for the
strongly interacting gas [Per11]. The study for different temperatures and interaction strengths
evidence the deviations from the normal Fermi liquid theory, and showed the evolution of the
pseudogap. Also, new RF spectroscopy data is analyzed including final-state and trap effects in
[Pie11]. The evolution of the spectra as a function of temperature is explained with this new
model. It emphasizes that both final-states and trap effects are needed to properly describe the
results. Moreover, it makes it possible to explain the evolution of the gas from a phase where the
pairing-gap and pseudo-gap are present at T < Tc to a phase where the pseudo-gap and no-gap
exist at T > Tc.

Bragg spectroscopy is a widely used tool [Vee08, Ina08b, Kuh10, Zou10, Kuh11b, Kuh11a]. Bragg
spectroscopy, as opposed to RF spectroscopy, does not change the internal state of the atom, so
there are no final-state effects to be considered. The property of Bragg spectroscopy, rather, is to
transfer momentum into the system, even larger than ~kF. Interestingly, the first time that atoms
were out coupled from a cloud using a Bragg pulse was used to look at the critical temperature
and condensate fraction for different magnetic fields deep into the mBEC side and in the crossover
region [Ina08b]. The first report of using a Bragg pulse with spectroscopic purposes in the BEC-
BCS crossover was done in [Vee08]. The measured center of mass displacement was related to the
momentum transferred to the cloud by the Bragg pulse, which in turn is related to the dynamic
structure factor. The transition from atomic to molecular excitations was observed in the spectra.

Moreover, the two-body correlation between states |1〉 and |2〉, g(2)
↑↓ (r), was studied by looking at

its Fourier transform through the static structure factor,

S↑↓(q) = n

∫
dr[g

(2)
↑↓ (r)− 1]eiqr, (1.8)

where q is the wave vector of the Bragg pulse. It was seen that the value of the static structure
factor dropped by half when going from the BEC to the BCS limit of the crossover as a result of

a drop of g
(2)
↑↓ . A continuation of this work by [Kuh10, Kuh11b] used the measurement of the g

(2)
↑↓

to test universal relations in the crossover region. It has been shown that the two-body correlation
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function depends on C contained in the Tan relations,

g
(2)
↑↓ (r) =

C

16π2NkF

(
1

r2
− 2

ar

)
. (1.9)

By measuring the static structure factor throughout the resonance region they were able to show
that it follows a universal law that is a direct result of Tan’s relations. Indeed, as predicted by Tan,
the contact decreases and eventually disappears as we go from the BEC limit to the BCS side. Later
theoretical work using a random phase approximation (RPA) calculation came up with a model for
the dynamic and static structure factors that properly describes the experimental results [Zou10].
Finally, an extension of this research used the temperature dependence of the static structure factor
to measure the change of C as a function of T/TF [Kuh11a]. What is found is that C → 0 for
T/TF > 1.

Thermodynamic studies

First thermodynamic studies exploring the crossover region were done in [Bou04, Kin05b]. The
experiment of [Bou04] was the first to introduce a cross-dipole trap in the study of the mBEC-BCS
crossover. The purpose was to reduce the anisotropy of the cloud, ie, the elongated cigar-like shape
of the gas, due to a single focused laser beam. The tight confinement and strong interactions led to a
large condensate mean-field. This leads to a modification of the thermodynamics resulting in a large
shift of TBEC. Also, the partially condensed cloud’s expansion is modified due to interactions, which
affect the thermal cloud. Further, by measuring the anisotropy of the cloud, η = σy/σx, where σi is
the rms width of the cloud along the i direction, they were able to study the expansion of the cloud
across the resonance region. They found deviations from the expected hydrodynamic behavior, in
particular on resonance, where the gas expanded nonhydrodynamically. In the experiment [Kin05b]
the heat capacity was measured and thermometry in the crossover region was done.

However, a new generation of experimental studies revealing new thermodynamic properties of
the unitarity limited Fermi gas have taken place [Luo09, Hor10, Nas10b], including the study of the
equation of state [Nas10b, Nas10a, Nav10]. The entropy and the energy were presented in [Luo09],
the internal energy in [Hor10], the equation of state for a uniform gas on resonance for different
spin-imbalance mixtures in [Nas10b], and finally across the resonance in [Nav10]. The equation of
state for a uniform gas in the unitarity limit is given by [Ho04],

P (µ1, µ2, T ) = P1(µ1, T )h

(
η =

µ2

µ1
, ζ = exp

(
−µ1

kBT

))
, (1.10)

where P1(µ1, T ) = −kBTλ
−3
dB(T )f5/2(−ζ−1) is the pressure of a noninteracting Fermi gas for one of

the spin components, and f5/2(z) =
∑∞

n=1 z
n/n5/2. The function h(η, ζ) is universal and contains

all the thermodynamic information. To circumvent the density profile inhomogeneity introduced
by the trapping potential one measures the pressure locally [Ho10],

P (µ1z, µ2z, T ) =
mω2

r

2π
(ñ1(z) + ñ2(z)), (1.11)

where the doubly-integrated density profiles ñi(z) =
∫
dxdyni(x, y, z) are for each spin state i.

This results in the following two advantages: one measures the equation of state directly, and each
pixel along the axial direction z gives a measurement for the now discretized h(η(zi), ζ(zi)). The
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experiment finally showed that the unitary gas is a strongly correlated system that obeys Fermi
liquid theory. Interestingly, the equation of state at which they arrive is similar to the one calculated
from the internal energy measurement done by [Hor10].

Spin degree of freedom

In addition to 1/(kFa) and T , also the spin degree of freedom of the gas has been experimentally
controlled and studied [Par06a, Zwi06, Shi06, Par06b, Li07, Par07, Shi08, Sch08a, Nas09]. In
general one defines the local spin polarization, σ = (n↑ − n↓)/(n↑ + n↓), to describe the local spin
imbalance. The first observation was reported in [Par06a]. What was found is that after reaching a
critical polarization the minority spin population is paired at the center of the trap, while the excess
majority atoms are segregated around the paired core; the segregation as function of polarization
was studied. Later vortices were studied as a function of degree of population imbalance [Zwi06]. It
showed the decrease in the number of vortices in the paired cored as the polarization is increased,
and confirmed the phase segregation between the two spin states, for different interaction strengths.
The superfluid proved to be rather robust against population imbalance. The phase separation was
further studied in [Shi06], where the effect of the phase separation on the density profiles was
reported. The measurement was performed with a new imaging technique, that consisted in taking
phase-contrast images and then doing a 3D image reconstruction of the density distributions. The
results showed that the phase separation occurs for smaller spin imbalances as the interaction
strength increases. In addition, the central paired core shows a “flattop” distribution of the total
density. Sharp phase boundaries between the segregated phases were observed and discussed in
the context of a first-order phase transition in [Par06b, Li07]. The temperature dependence of the
deformation exposed that for higher temperatures, but still T < Tc, the sharp boundary becomes a
partially polarized domain wall joining a uniformly paired core and a fully polarized outer region.
The spin imbalanced mixture was studied in the crossover in [Par07]. The pair correlations were
found to be continuous throughout. Moreover, the data seemed to have the same magnetic field
dependence as the order parameter, suggesting that a single-channel model properly describes the
system. The superfluid gap order parameter was measured in [Sch08a]. By combining tomographic
RF spectroscopy [Shi07] and in situ phase contrast imaging with 3D reconstruction of the density
profiles they were able to study the pair correlations in the domain wall uniting the superfluid to the
polarized normal state. The comparison of the spectra for the majority and minority components
exposed a smooth crossover in which the majority component shows a double-peak spectrum from
which the superfluid gap can be determined. This study was followed by the mapping of the
phase diagram (σ, T ). The measured spatial density profile of the minority component showed a
discontinuity; this striking result is a signature of a first-order superfluid-to-normal phase transition.
A second-order phase transition, at which the density profile and condensate fraction vary smoothly,
has also been characterized. In addition, the tricritical point, at which the first- and second-order
phase transition lines meet, was determined. Finally, the dynamics of the polarized Fermi gas has
been studied using collective modes [Nas09]. The excitation of the compression mode for different
spin imbalances established a region of low polarization for which the gas behaves hydrodynamically.
For intermediate polarizations, where a superfluid is still present, both spin components oscillate
in phase. For large polarization the two spins oscillate independently, giving rise to a polaron
breathing mode and allowing the study of a Fermi polaron. A polaron is an impurity surrounded
by a Fermi sea, ie, an atom of one species surrounded by a cloud made up of atoms of another
species in the ideal case. However, in practice on finds a minority component surrounded by the
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phase segregated majority atoms. The effective mass of the polaron was inferred.
Interestingly, likewise for spin balanced mixtures spin segregation has been observed [Du08],

and subsequently spin currents [Du09a]. For a spin balanced mixture near the zero crossing of
the scattering length the spatial densities segregate markedly if the two states are prepared in a
coherent superposition [Du08]. The segregation was found to be temperature independent. Its time
evolution was observed, finding that the buildup takes a couple hundred ms and the decay several
seconds. The study concluded that the experimental data could not be explained by the current
available theories, namely, spin-wave theory. However, a later experiment focused on spin currents
in this system [Du09a]. By introducing the notion that the spin vector of each atom is correlated
to its energy, resulting in a nearly undamped spin wave, the observed spin segregation is explained.
Further, the spin current associated with this segregation can also be understood in these terms.
The cause of the observed spin dynamics lies in the fact that the magnetic moment of the two spin
species is not identical. Hence, the finite curvature of the bias magnetic field introduces slightly
different axial trapping frequencies for both of them. This small difference correlates the precession
of an atomic spin in the horizontal axial plane with the energy of the atom, giving rise to a spin
wave. Moreover, the spin current can be reversed by changing the sign of the interactions and
applying a π pulse to the spin vector perpendicular to the horizontal axial plane. In this case the
spatial density distributions go back to their initial unsegregated profiles.

Lower dimensions

The trapping potential has been modified to study low dimensions [Lia10], and recently complicated
potentials have been engineered together with high-resolution imaging [Zim11]. A spin polarized
Fermi gas in a 1D tube has been studied in [Lia10]. The interest in these systems lies in the
theoretical prediction by Fulde and Ferrel [Ful64] and Larkin and Ovchinnikov [Lar65] of an exotic
state in which pairs with finite momentum lead to magnetism (FFLO state). For the 1D case it is
anticipated that the phase diagram is dominated by this FFLO state. Experimentally, the desired
spin imbalance is first created and then loaded into a 2D optical lattice. The bias magnetic field
is tuned to the BCS side of the FB resonance, where the 1D interactions are strongly attractive.
The results reveal that, whereas for the 3D case the center of the trap remains fully paired as
polarization is increased, for the 1D tube a partially polarized region at the center of the trap is
formed for low polarization. This region extends outwards as the polarization increases until it
covers the whole cloud. If the polarization is further increased then the edge of the cloud becomes
fully polarized after which point it starts growing inwards. This first study may pave the way for
further research on FFLO physics.

Other aspects of low dimensions in Fermi gases have also been studied. Investigating a weakly
interacting Fermi gas the transition from 3D to 2D at low temperatures has been studied in [Dyk11].
Taking advantage of the fact that EF,2D =

√
2N~ωr the number of atoms was carefully controlled

to ensure that all the atoms are in the lowest transversal vibrational state in the low temperature
limit. In this case EF � ~ωz and the gas is 2D. An experimentally accessible value of the critical
atom number below which the gas becomes 2D is given by

N2D =
λ

2
(λ+ 1), (1.12)

where λ = ωz/ωr is the aspect ratio of the trap frequencies. To prove the crossover from 3D to 2D
the aspect ratio between the axial and radial radii was recorded for different atom number. At low
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enough atom number shell structures are observed, caused by the filling of individual transverse
oscillator states in the quasi-2D regime.

Beyond two states

Beyond two-spin mixtures also systems of three components have been researched [Ott08, Wen09,
Huc09, Lom10b]. As opposed to the two spin mixture in which Pauli blocking greatly suppresses
three-body processes, the three component mixture was expected to show Efimov physics and, per-
haps more interesting, relate to the color superconductivity of quantum chromodynamics (QCD).
The first report on a balanced mixture of the three lowest hyperfine states of 6Li in a degenerate
Fermi gas was done in [Ott08]. The collisional stability of the mixture was studied as a function of
magnetic field by looking at loss features from 0 up to 750 G. However, above 600 G a two-body
Feshbach resonance between states |1〉 and |3〉 increases the inelastic processes. Hence, the loss
features seen are explained in terms of two- and three-body inelastic processes, by looking at the
decay rate and extracting the K3 coefficient up to 600 G. Most interesting was a broad resonance
caused by all three spin states. Soon after the stability of the system was studied up to 950 G,
namely, including the three broad two-body Feshbach resonances [Huc09]. It corroborated the pre-
vious measurement of K3 and confirmed the remarkable stability of the system against two-body
loss processes. It was soon after proposed that some of the loss features could be explained in terms
of Efimov trimers [Nai09], followed by a reinterpretation of the data in [Wen09], albeit using the
theory by [Bra06] modified for three distinguishable fermions.

Efimov’s theory, [Efi70, Efi71, Efi79], found a universal regime in which an infinite number of
trimers are formed when the two-body interactions become resonant. The binding energy of these
three-body bound states scale with the factor e−2π/s0 , where s0 = 1.00624 for nonidentical fermions
with same mass. By dropping the assumption that the lifetime of the trimer is independent of the
magnetic field, the three-body recombination with a magnetic field dependent lifetime of the trimer
was used in [Wen09] to explain their results. Assuming that a trimer will decay into a deeply bound
dimer and a free atom they used the three-body coefficient

K3,deep(a) =
c sinh(2η∗)

sin2[s0 ln(a/a∗)] + sinh2 η∗

~a4

m
. (1.13)

Here c is a universal constant, and a∗ and η∗ are parameters that completely characterize the
three-body recombination. More precisely, η∗ describes the width of the resonance and hence the
lifetime of the Efimov state. The parameter a∗ = a(eπ/s0)−n, where n ∈ Z≥0, fixes the position of
the loss resonance by relating the short-range interaction potential to the three-body bound state.
In the case of three distinguishable fermions one replaces a by an effective interaction parameter

a4
m =

1

3

(
a2

12a
2
13 + a2

12a
2
23 + a2

13a
2
23

)
. (1.14)

The data is fitted to Eq.(1.13) using c, a∗, and η∗ as free parameters. The model properly reproduces
the behavior of the data, in particular for the lower magnetic field resonance, confirming the
existence of an Efimov trimer.

Other aspects of the Efimov trimers were later studied. For instance, by using an RF pulse an
excited trimer state was created [Wil09]. By looking at the recombination rate K3 at magnetic
fields around 900 G a loss feature was observed. At this magnetic field the trimer crosses the
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three-atom scattering threshold associated with the first excited state of the Efimov spectrum. In
another experiment an RF pulse was also implemented for the creation of trimers [Lom10a]. In it,
the RF pulse was used with spectroscopic purposes: the binding energy was measured using the
RF pulse to form the trimers, instead of using it to dissociate the molecules as in the usual RF
spectroscopy method. The reason for this approach is that the trimers are expected to have very
short lifetimes, which makes the preparation of macroscopic samples unfeasible. The measurement
of the binding energy was in agreement with theories including up to nonuniversal corrections.

Also nonuniversal trimers have been reported [Nak10]. Two loss features were observed: one
at the position where the energy of a ground state Efimov trimer equals that of an atom-dimer
threshold; and the other at the position where the energy of the first excited state of an Efimov
timer crosses the same atom-dimer threshold. The position of these loss features deviates from the
universal predictions. This deviation was further studied in the context of the experimental study
of the trimer binding energy [Nak11]. Precision RF spectroscopy of the binding energy showed its
temperature dependence at different magnetic fields. For the low-temperature limit, where the shift
of the spectra is minimized, the results deviated from the previous measurements and theoretical
predictions.

Moving on beyond trimers new experimental research has focused on few-body physics [Ser11].
States with 1 to 10 particles are prepared and their interactions tuned by means of a FB resonance.
To generate the required small-volume optical dipole trap with large level spacing a laser beam is
tightly focused to a waist a couple of microns large. The desired number of atoms is then regulated
by controlled spilling using a magnetic field gradient. The precise control of atom number opens
up the possibility to study properties and applications of few-body physics.

p-wave pairing

Other experiments have focus on the creation of p-wave molecules [Gae07, Fuc08, Ina08a]. The
lifetime and binding energy of p-wave molecules in 40K was reported in [Gae07]. The lifetime was
found to be 1 to 2 milliseconds, which makes it hard to pursue the production of condensates. In
the case of 6Li, the three possible p-wave molecules of the lowest two hyperfine states were studied
in [Fuc08]. Only the ones involving state |2〉 were seen; their binding energy and lifetime reported.
The lifetime found was in the order of tens of milliseconds, apparently due to vibrational quenching
collisions with unpaired atoms, which are not removed. Regarding the 〈1| − 〈1| p-wave molecule,
it was observed in [Ina08a]. This work reported the dimer-dimer inelastic loss coefficients, the
one-body decay coefficients, and the atom-dimer inelastic collisions coefficients, which are zero in
some cases. The longest lifetime was found for the 〈1| − 〈1| molecules, and it was about 20 ms. It
became clear from this work that conventional forced evaporative cooling would not work for the
direct formation these molecules.

Heteronuclear mixtures

Later also mixtures with different fermions [Tag08, Wil08, Voi09, Voi10, Spi09, Spi10, Tie10, Cos10,
Nai11, Tre11] were created and studied. Unequal masses and different response to external fields
increase the parameter space available for experiments. The first realization was presented in
[Tag08], where 6Li and 40K were sympathetically cooled by evaporative cooling of 87Rb. The
cooling process was analyzed and it showed that a catalytic cooling of 6Li by 87Rb in the presence
of 40K enhances the cooling process. The quantum degenerate heteronuclear Fermi-Fermi mixture
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and the degenerate Fermi-Fermi-Bose mixture were shown to be stable and good candidates for
further studies. The first characterization of the Feshbach resonances between 6Li and 40K was
reported in [Wil08]. As explained in this publication and references therein the mixture can rapidly
decay via spin relaxation if exoergic two-body processes exist that preserve the total projection
quantum number MF = mLi + mK where the projection quantum numbers for energy level Li|i〉
and K|j〉 are given by mLi = −i+ 3/2 and mK = j − 11/2. However, if one of the two species is in
the absolute ground state and the other in a low-lying state, spin relaxation is strongly suppressed.
The resonances observed were both s- and p-wave. They are quite narrow, indicating that they are
closed-channel dominated.

Later bosonic molecules resulting from pairing two fermionic atoms were reported in [Voi09].
By means of an s-wave Feshbach resonance an heteronuclear pair was created and studied in the
resonance region. The lifetime of the molecules close to resonance was found to be sufficiently long
to allow the further study of this state. Subsequently the collisional stability of the mixture was
further studied [Spi09], though in a slightly different configuration: one of the atomic species was
prepared in a spin mixture with tunable interactions, in this case 6Li in the vicinity of the broad
FB resonance at 834 G; the other atom, in this case 40K, weakly interacts with Li. At the end of
the evaporation process one had a ratio NLi/NK ≈ 102 between the two species. What was found
is that for this setup there exists a wide region in which elastic collisions dominate over inelastic
ones. This stability allows the use of the large Li cloud as a bath that takes away the heat from the
K atoms as the two thermalize by simply holding both in the trap, ie, sympathetic cooling between
the interspecies particles down to a doubly-degenerate sample. The potential of using the weakly
interacting cloud as a probe of the many-body regime was put forward. The report of the long
sought interspecies broad FB resonance appeared in [Tie10]. Together with a model to predict the
position of the broad resonances the observation of one with a width ∆B = 1.5 G was presented.
The dependence of the relaxation rates on the mass was studied in [Cos10] for a s-wave resonance
and was heralded as paving the way for the study of crossover physics in heteronuclear mixtures.
Yet, the detailed experimental and theoretical study of the elastic and inelastic processes in this
mixtures led to the crude conclusion that the lifetimes of the FB molecules are in the order of 10
ms, which may be too short for direct formation of a BEC. Moreover, it was found that in general
atomic two-body collisions have a resonantly enhanced inelastic component that limits the lifetime
of Fermi-Fermi mixtures with resonantly tunable interactions also to about 10 ms [Nai11].

Be that as it may, experiments have been performed in which interspieces strong interactions
were created to study the hydrodynamic expansion of the mixture [Tre11]. In addition to the
expected inversion of the aspect ratio of the expanding cloud, an effect in which the two clouds
seemed to stick together was observed. One would have thought that, due to the different mass
and confinement between the two species, the expansion would have happened at different rates.
Nevertheless, there is an interspecies drag effect that leads to collective flow during expansion.
Further understanding of the hydrodynamic expansion is still required.

Optical lattices

Besides the Feshbach resonance, optical lattices are also used to create strong correlations. First
reported experimentally for degenerate fermions in [Mod03a], their work consisted of loading the
atoms into a 1D lattice and studying basic properties of the resulting quasi-2D confinement. Later
in the experimental studies of [Köh05] noninteracting fermions were loaded into a simple cubic 3D
optical lattice, which gives rise to a band insulator. Such a system presents a model of electrons
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in a solid, where the crystal lattice has a fundamental role, and is supposed to be an almost
ideal realization of the Hubbard model [Jak98]. The Hubbard Hamiltonian [Hub63], including the
harmonic potential of the dipole trap, has the form [Sch08b]

Ĥ = −J
∑
〈i,j〉σ

ĉ†i,σ ĉj,σ + U
∑
i

n̂i,↓n̂i,↑ + Vt
∑
i

(
i2x + i2y + γ2i2z

)
(n̂i,↓ + n̂i,↑) . (1.15)

Here i, j are the different lattice sites; σ refers to the two possible spin states; ĉ†i,σ, ĉj,σ refer to
the creation and annihilation operators of a fermion; γ = ωz/ω⊥ is the aspect ratio of the trap;
and n̂i,σ is the atom number. The relevant energy scales are the hopping matrix element, J ,
the onsite interaction, U , and the harmonic confinement, Vt = mω2

⊥d
2/2, where d is the lattice

constant. Usually the energy parameters are given in terms of the recoil energy, Er = ~2k2/2m,
where k = 2π/λ. Depending on the ratio between these energy scales one finds one of the following
three states: a metallic phase, for which J > 0 and U � Et � 12J ; a Mott-insulator with localized
atoms in single occupied sites and U � Et > 12J ; and a Band-insulator that has fully doubly
occupied sites and Et � 12J . In view of these phases the outcome of the experiment [Köh05] was
the measurement of the Fermi surface as a function of density, which clearly showed the filling of the
Brillouin zone, ie, the band insulator state. This agreed with theoretical predictions. However, also
the delocalization of the fermions for incommensurate filling was studied, and even the interactions
by use of a bias magnetic field. This latter part was not in full agreement with the theoretical
model.

A further study of the insulating phase was reported in [Sch08b]. By determining the global
compressibility of the repulsive interacting gas from the cloud size measurement, they were able
to study all the different phases of the Hubbard model. For the attractively interacting gas an
anomalous expansion was measured in [Hac10]. The cloud expanded instead of contracting as
the repulsive interaction was increased. The reason for this effect turned out to be the difference
between pair formation within the first band of the optical lattice and in its absence. Finally, also
excitations have been studied [Sen10]. The nonequilibrium dynamics and decay of an artificially
created double occupancy in the presence of strong repulsive interactions were analyzed. The
excitations are found to be surprisingly long lived, which is interpreted as a limitation for the rate
at which lattice parameters can be changed while maintaining equilibrium.

Subsequently fermionic dimers were created by means of a Feshbach resonance and loaded into
an optical lattice. First reported in [Stö06] the control over the occupancy of the lattice and the
methodology to perform thermometry were established. Soon after evidence of superfluidity of
the condensed dimers in the optical lattice was presented in [Chi06]. By means of high-contrast
interference measurements the presence of a superfluid, namely, long-range phase coherence, was
studied for both sides of the Feshbach resonance and as a function of lattice depth. In the experi-
mental work of [Wel09] a novel technique to measure the temperature of the gas was developed and
successfully used to measure temperatures as low as 1 nK. The method consists of introducing a
magnetic field gradient that segregates the two spin states. Relaying on the fact that at the inter-
face of the two spin domains temperature dependent spin excitations will occur, the measurement
of the excitation width gives the temperature of the system. The mean spin, 〈s〉, as a function of
position obeys

〈s〉 = tanh (−β∆µB(x)/2) , (1.16)

where β = 1/kBT , B(x) is a position dependent magnetic field, and ∆µ is the difference between
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the magnetic moments of the two spin states. A fit to the measured spin distribution directly gives
the temperature.

Recently nearest-neighbors spin correlations in an optical lattice have been studied for repulsive
interactions [Gre11]. Using the modulation of the lattice to create double occupancy of a lattice
site, the neighboring spin order can be probed. In other words, only neighboring sites with opposite
spins could lead to a doubly occupied site. The nearest neighbor correlations are probed for different
temperatures by looking at the evolution of the double occupancy as a function of modulation time
to get the production rate. From this the correlator is obtained, which decreases as the temperature
increases.

Antibunching

Another feature of the ultracold Fermi gas that has been studied is antibunching. For a weakly in-
teracting trapped gas (without a lattice) the study of local density fluctuations was done by looking
at the cloud in situ [Mül10]. This probes the position dependence of the density fluctuations, which
reaches a maximum at the center of the trap where the density is largest. However, antibunching
has also been observed in optical lattices.

In an optical lattice fermion antibunching was studied in [Rom06]. Spatial antibunching here
reflects the fact that Pauli blocking prevents two atoms occupying the same Bloch state. Hence,
bearing in mind that the Bloch state is a superposition of plane waves, if an atom is detected at
a given position, no other atom will be detected at a position l = 2~kt/m from it, where t is the
time-of-flight after release from the optical lattice, and k the wave vector of the laser light. By
looking at the shot-noise after time of flight it was possible to study the correlation amplitude as
a function of temperature. Fermion antibunching was also reported in [Ian06], where the distance
between two detectors was actually varied.

1.2. Dynamics

One of the most interesting aspects of the quantum fluid is its dynamics. One distinguishes between
the hydrodynamic and the near-collisionless regimes. The relevant time scales to consider to differ-
entiate between them are the trap frequency, ω, and collision time, τR. Thus, if a particle undergoes
many collisions during one oscillation period of the trap, the fluid is hydrodynamic: ωτR � 1. From
this criterion it is easy to introduce the near-collisionless regime: in such a system a particle hardly
undergoes a collision in the timescale of the inverse trap frequency, ωτR � 1. Moreover, in the
case of a superfluid, the fluid is always hydrodynamic due to the long range order of the system.
For a nonsuperfluid in the hydrodynamic regime the collisions ensure the long range interactions.
Hence, in the resonant region one finds quantum hydrodynamic behavior due to the superfluid and
collisional hydrodynamic behavior of the nonsuperfluid state [Mad27, Str04]. One way to fulfill
the hydrodynamic condition is by changing the trap geometry: in the elongated cigar-shape trap
geometry the low axial trap frequency facilitates being in the hydrodynamic regime. For fermions,
one may also use a FB resonance to have unitarity limited interactions, at which point τR is very
small.

It should be emphasized that measurements showing hydrodynamic behavior do not suffice to
show superfluidity: as mentioned above there are two possible reasons for hydrodynamic behavior.
Bearing this in mind collective modes probe different aspects of the strongly interacting cloud, but
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1.2. Dynamics

not superfluidity unequivocally. Thus, the presence of quantized vortices has been the standard to
show the presence of superfluidty. Collective modes are also a tool that allows the study of other
dynamics, namely, one can use the quadrupole mode to study rotational dynamics of the gas. For
instance, the quenching of the moment of inertia by the superfluid, have tried to offer alternative
methods to test for superfluidity. Understandably many studies have focused on characterizing
the superfluid, eg, the speed of sound and viscosity. Yet other experiments have focused on the
rotational properties of the normal state to study the collisional hydrodynamic regime. In what
follows we present experimental studies of the dynamic properties of the degenerate Fermi gas.

1.2.1. Experimental studies

Collective modes

Collective modes can be used as a tool to study the dynamics of the gas in the crossover: the
frequency and damping are in general interaction strength dependent, in particular when the gas
changes from the collisional regime to the near-collisionless. The trapped cloud oscillates with a
certain frequency defined by the confining potential. Depending on the collective mode excited are
the properties of the cloud that can be studied: for the dipole mode, the center of mass oscillates
periodically with the trap frequency, allowing the measurement of the trapping potential; for the
compression mode [Alt07a], the density of the cloud changes, giving insight into the equation of
state; and in the case of the quadrupole mode [Alt07b], in which the density is constant, the change
in frequency of the oscillation allows to identify the position at which the collisional regime changes.

The temperature dependence of the collective modes has also been used to study the properties of
the cloud. For instance, the scissors mode serves to study the finite-temperature dynamics [Wri07],
which show hydrodynamic behavior well above Tc. Another study with collective modes showed the
effect of pair correlations with unitarity limited interactions[Rie08], and showed that the theoretical
model including both Pauli blocking and pairing correlations best describes the measured behavior.

Theoretical work specific to collective modes in Fermi gases can be found in [Str04, Hei04,
Hu04, Kim04b, Bul05]. First experimental studies using collective modes were done in the low-
temperature limit to avoid the possibility of the normal state being collisional hydrodynamic, ie,
there is almost no normal state. Temperature and magnetic field dependence of the breathing
mode was studied in [Kin04a]. This measurement showed the decrease of the damping rate as a
function of temperature and the measurement of an oscillation frequency corresponding to that of
the hydrodynamic regime. They argued that since the observed behavior could not be explained
by collisional hydrodynamic theory nor by the collisionless model the gas had to be a superfluid.
Another experiment further studied the magnetic field dependence of the compression mode both
in the axial and in the radial directions of a cigar-shape trap [Bar04a]. Both the mode frequency
and the damping rate showed some unexpected behavior when joining the BEC- to the BCS-
limit. In particular the radial compression mode showed a sharp increase of the damping at the
same magnetic field position where the frequency changed abruptly. This was interpreted as a
signature of the transition from hydrodynamic to near-collisionless regimes. Other observed effects
where a downshift of the frequency where the opposite was expected, and the shift on resonance
being larger than predicted. These first revealing yet inconclusive studies on collective modes, in
particular pertaining superfluidity, fueled further studies on dynamics and collective modes.
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1. Introduction

Vortices

Superfluidity was finally directly proven when a lattice of vortices was created and studied through-
out the crossover [Zwi05]. This extensive study of vortices in the strongly interacting Fermi gas
consisted of generating a vortex lattice at different magnetic fields. In addition, the vortex lattices
had a regular number and charge of the vortices, which was a further indication of the quantization
of the vortices expected for a superfluid. Last, also the decay rate of the vortices was measured.

Rotational dynamics at finite temperature

Some studies have further focused on the properties of the rotational dynamics of the resonant
superfluid at finite temperatures [Cla07, Rie09, Rie11]. First research in [Cla07] studied the hy-
drodynamic expansion of a rotating strongly interacting Fermi gas. What was observed is that
the known inversion of the aspect ratio of an elongated cloud during hydrodynamic expansion is
suppressed as a function of the angular momentum transferred to the thermal component of the
trapped cloud. More specifically, the cloud does not reach an aspect ratio of one. This nonequi-
librium situation is related to the irrotational flow in the cloud, and can be present in both the
superfluid and the collisional hydrodynamic normal phase. In other work the angular momentum
of the cloud was inferred from the precession of the quadrupole mode [Rie09]. The decay rate of the
angular momentum throughout the resonant region showed a minimum around the FB resonance.
Further, by comparing the measured decay rate to the theoretical prediction for a Boltzmann gas,
the relaxation time of the gas could be extracted. This, in turn, allowed for a characterization
of the hydrodynamic degree of the gas, finding indeed ωτR � 1. Using these tools to measure
the angular momentum of the cloud, the equilibrium situation in which the normal state slowly
rotates in presence of a superfluid fraction in the trap was studied in [Rie11]. The purpose was to
study the quenching of the moment of inertia due to the presence of a superfluid fraction, which is
irrotational. Using a controlled heating scheme, the measurement of the angular momentum of the
gas allowed the inference of the quenching of the moment of inertia as a function of temperature.
It gives a temperature range over which the phase transition may occur.

Speed of sound

Other experiments related to the dynamics of the gas have looked at the speed of sound [Jos07],
together with the critical velocity [Mil07]. The normalized sound velocity, c0/vF, where vF =
~kF/ma is the Fermi velocity, was measured throughout the crossover and deep into the mBEC
side. It was found that it decreases as the interactions are tuned from the BCS to the BEC side
of the resonance, and seemed to saturate as one went deeper into the mBEC side. In addition,
the universal property that the speed of sound should be independent of the density of the gas
on resonance was confirmed. The critical velocity in the crossover was measured in [Mil07]. In
this interaction regime two effects may limit superfluid flow: pair breaking, and sound waves.
The superfluid velocity was predicted to show a peak in the transition regime from a state where
one effect dominates to another where the other does. This is indeed what was measured by
varying the velocity of a moving lattice and registering the value at which dissipation sets in for
different interaction strengths. A pronounced maximum was found on resonance, indicating that
superfluidity is most robust around this point.
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1.2. Dynamics

Viscosity

Interest was quickly directed towards the viscosity of the resonant superfluid [Kov05, Sch07a, Tur08,
Cao11]. In the theoretical work [Kov05] the shear viscosity of a fluid is used to characterize how
close it is to being a perfect fluid. By using String theory methods a lower bound for the ratio
between shear viscosity, η, and entropy per unit volume, s, is derived

η

s
≥ ~

4πkB
. (1.17)

It was proposed that strongly interacting Fermi gases may be a tool to test this bound since they
have a finite shear viscosity at nonzero temperature. Moreover, since this bound also applies,
for instance, to quark-gluon plasmas (QGP), the ultracold Fermi gas offered a laboratory to test
completely different systems. In the work of [Sch07a] the measured damping of the radial breathing
mode in [Kin05a] was used to extract the ratio η/s on resonance as a function of temperature. It was
found that the value near the critical temperature is the closest that is known to the proposed lower
bound, except, probably, for QGP. The radial breathing mode was again studied experimentally,
but now with an emphasis on this quantum viscosity [Tur08]. They wrote the ratio as

η

s
' ~
kB

〈α〉
S/kB

, (1.18)

where 〈α〉 is the trap average of a universal function determining the shear viscosity, and S =
STot/N is the entropy per particle. The former can be extracted from the measured damping rate
of the mode, 1/τ , and the latter has been measured as a function of energy [Luo07]. Their results
place the ratio η/s of the strongly interacting Fermi gas just above that of the QGP and very
close to the quantum limit set by String theory, and well within the quantum viscosity regime.
Finally, improved precision in the experimental determination of η allowed the investigation of two
universal regimes for the viscosity. On the one hand, at T < TF one finds the universal quantum
scale for the viscosity η ∝ ~n, where n is the density. On the other hand, for T > TF the scale is
set by η ∝ T 3/2/~2. The two regimes were verified and the T 3/2 clearly shown.

1.2.2. Collective modes

With respect to the collective modes in the hydrodynamic regime we elaborate on the discussion.
In the case of a quantum gas in the zero-temperature limit one starts the theoretical description
from the continuity equation and classical Euler equation,

∂n

∂t
= −∇ (vn) and (1.19)

∂v

∂t
= −∇

(
v2

2
+
Vext(r)

m
+
µ(n)

m

)
(1.20)

respectively. These are a set of coupled differential equations for the density, n, and the velocity
field, v. The Euler equation further depends on the confining potential, Vext(r), and the chemical
potential, µ(n). The density dependence of the chemical potential in the crossover region can be
conveniently described by a power law, µ(n) ∝ nγ , where the polytropic index γ depends on the
interaction strength [Hei04]. For instance, for γ = 1 one recovers the weakly interacting BEC
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equation of state derived from the Bogoliubov theory, where as for γ = 2/3 one finds the ideal
Fermi gas relation. The task is then to solve the coupled differential equations.

The interest in higher order collective modes began when they were proposed as a tool to investi-
gate second sound in the context of a fermionic superfluid with resonant interactions [Tay09]. The
first attempt to observe second sound was in a cloud of ultracold bosonic atoms [Sta98]. It recorded
a frequency shift in the dipole mode frequency, presumably as a result of an out of phase oscillation
between the thermal and superfluid components. Later experiments showed the superfluid and
normal components of the boson cloud oscillating out of phase, albeit in nonequilibrium. By the
time that the system reached equilibrium the two components were oscillating in phase [Mep09b].
A description of sound propagation in terms of the two-fluid model was done in [Mep09a]. Yet,
second sound in ultracold degenerate gases has remained elusive.

1.2.3. Work presented in this thesis

This thesis mainly concerns itself with the direct study of the dynamics of an ultracold Fermi gas
with unitarity limited interactions at finite temperature. The hydrodynamic behavior of the gas
is studied using low-lying collective modes and the rotational properties of the degenerate gas,
and as of late using higher order collective modes. The purpose has been to characterize the
resonant superfluid and distinguish between quantum and collisional hydrodynamic. The ultimate
goal would be to use higher order collective modes as a tool to prove second sound, which is the
property that, unlike quantized vortices, distinguishes resonant from weakly interacting superfluids.

The structure of the thesis is as follows: in chapter 2 we discuss the Finite-temperature collective
dynamics of a Fermi gas in the BEC-BCS crossover. Particularly relevant to this work is the exis-
tence of a temperature domain above the critical temperature where the noncondensed state is also
hydrodynamic. In chapter 3 we focus on the Collective oscillations of a Fermi gas in the unitarity
limit: Temperature effects and the role of pair correlations. Different collective mode oscillations
are measured for temperatures up to about the degeneracy transition temperature. We find that to
properly describe the behavior of the gas and its transition from hydrodynamic to near-collisionless
one has to include both pair correlation and Pauli blocking. In chapter 4 we move on to the rota-
tional study of Lifetime of angular momentum in a rotating strongly interacting Fermi gas. In this
case the decay of the angular momentum of the hydrodynamic noncondensed state is used to calcu-
late the relaxation time of the gas, revealing collisional hydrodynamic behavior below theoretically
expected temperatures. The know-how to introduce angular momentum into the cloud is used
in chapter 5 to study the Superfluid quenching of the moment of inertia in a strongly interacting
Fermi gas. In this experiment the different nature of the two coexisting hydrodynamic fluids is
seen in the effect of the reduced moment of inertia caused by the irrotational nature of the super-
fluid component. In an experiment not directly related to the study of the dynamics of the cloud,
further observation of hydrodynamic behavior on resonance is seen in chapter 6 in the Observation
of interference between two molecular Bose-Einstein condensates. The hydrodynamic nature of the
clouds prevents their overlap, resulting in no interference fringes, but rather in a hydrodynamic
collision. Finally, we present our experimental investigation of the higher order collective modes on
resonance in the low-temperature limit in chapter 7. We established the experimental technique to
excite them and the methodology to analyze the resulting density oscillation. The robustness of the
excitation suggests that indeed they may be a useful tool to further study two-fluid hydrodynamics
on resonance at finite temperature.
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We report on experimental studies on the collective behavior of a strongly interacting Fermi gas
with tunable interactions and variable temperature. A scissors mode excitation in an elliptical
trap is used to characterize the dynamics of the quantum gas in terms of hydrodynamic or near-
collisionless behavior. We obtain a crossover phase diagram for collisional properties, showing a
large region where a non-superfluid strongly interacting gas shows hydrodynamic behavior. In a
narrow interaction regime on the BCS side of the crossover, we find a novel temperature-dependent
damping peak, suggesting a relation to the superfluid phase transition.

Ultracold Fermi gases with tunable interactions have opened up intriguing possibilities to study
the crossover from bosonic to fermionic behavior in strongly interacting many-body quantum sys-
tems [Ing08]. In the zero-temperature limit, a Bose-Einstein condensate (BEC) of molecules is
smoothly connected with a superfluid of paired fermions in the Bardeen-Cooper-Schrieffer (BCS)
regime. In recent years, great progress has been achieved in the theoretical description of the
ground state at zero temperature, and fundamental properties have been experimentally tested
with considerable accuracy [Gio08]. Finite-temperature phenomena in the BEC-BCS crossover,
however, pose great challenges for their theoretical description. Experimental observations of finite-
temperature behavior in the crossover have focussed on the measurement of condensate fractions
[Reg04b, Zwi04], on the spectroscopic investigation of pairing phenomena [Chi04a], or on the special
case of unitarity-limited interactions [Kin05a, Ste06, Cla07].

To understand the collective dynamics of an ultracold quantum gas, it is crucial to study the
conditions for hydrodynamic behavior. Collective mode experiments have probed the dynamics of
strongly interacting Fermi gases for variable interaction strength near zero temperature [Bar04a,
Kin04b, Alt07a, Alt07b]. The results show the existence of both a hydrodynamic regime of collective

∗The contribution of the author of this thesis to this work is to the interpretation of results and to the discussion
during the writing of the publication
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motion and a near-collisionless regime with independent motion of the trapped particles. The role
of temperature, however, remained essentially unexplored.

In this Letter, we explore the collective behavior of a finite-temperature, strongly interacting
Fermi gas of 6Li atoms throughout the BEC-BCS crossover. In order to characterize the transition
from hydrodynamic to collisionless behavior, we analyze scissors mode oscillations at different
temperatures. With varying temperature, the oscillations show a smooth transition between the two
collisional regimes along with a broad maximum in the damping rate. We discover an unexpected
second peak in the damping rate at lower temperatures in a narrow region on the BCS side of
the crossover, where the gas remains hydrodynamic. This suggests the lower-temperature damping
peak to be connected to the transition from a superfluid to a normal hydrodynamic gas.

The scissors mode in ultracold quantum gas experiments [GO99a, Mar00] is an angular oscilla-
tion of the cloud about a principle axis of an elliptical trap, see Fig. 2.1(a). In our experiments, we
confine the atoms in a harmonic, triaxial optical dipole trap. We choose the geometry of the trap
to produce an elliptically shaped gas in the x-y plane with very weak confinement along the z axis.
The scissors mode experiments are done in the x-y plane. In terms of trap frequencies, the standard
configuration is ωx > ωy � ωz, where these trap frequencies are defined along the principle axes
of the trap. If the gas is hydrodynamic, the angle of the gas oscillates collectively with a single
frequency of (ω2

x + ω2
y)

1/2. If the gas is collisionless, the trapped atoms oscillate independently,
resulting in a two-frequency oscillation. The larger frequency is given by ωx + ωy. When the colli-
sional regime is changed this frequency is adiabatically connected to the hydrodynamic frequency.
The smaller frequency is given by ωx − ωy and is absent in the hydrodynamic limit [GO99a].

The preparation of a strongly interacting Fermi gas of 6Li proceeds in the same way as described
in our previous work [Joc03a, Alt07b]. The result is a deeply degenerate, balanced two-component
spin mixture of typically N = 4×105 atoms with tunable s-wave interactions near a broad Feshbach
resonance, which is centered at a magnetic field B = 834 G. Rapid spatial modulation of the
trapping beam by two acousto-optical deflectors is used to create a time-averaged elliptical trapping
potential for the scissors mode [Alt07b]. The aspect ratio is set to ωx/ωy ≈ 2.0. We employ a trap
with frequencies ωx = 2π×830 Hz and ωy = 2π×415 Hz (ωz = 2π×22 Hz), if not indicated otherwise.
This results in a Fermi temperature TF = (~ω̄/kB) (3N)1/3 = 0.94µK, where ω̄ = (ωxωyωz)

1/3. The
trap depth corresponds to about 12TF . To excite the scissors mode, we suddenly rotate the angle
of the trap by ∼ 5 degrees, see Fig. 1(a).

The angle of the oscillating cloud is determined by processing absorption images, taken after
a short expansion time of 400µs. A two-dimensional Thomas-Fermi profile is fit to the images,
where the tilt of the principle axes of the cloud is a free parameter, see Fig. 2.1(a). Note that the
short expansion somewhat decreases the ellipticity of the cloud, but increases the amplitude of the
scissors mode oscillation [Mod03b]. In the hydrodynamic regime, we fit a damped cosine function
to the experimental data. In the collisionless regime, we fit the oscillation to a sum of two damped
cosine functions each with their own free parameters. In the region between these two limits, we
find that a single damped cosine function fits the data reasonably well, as the lower-frequency
component damps out very quickly [GO99a].

First, we examine the collective behavior of the gas at our lowest obtainable temperatures. We
compare scissors mode oscillations at different settings of the magnetic field, i.e. different values
of 1/kFa. Typical scissors mode oscillations are shown in Fig. 2.1(b). At B = 661 G, far on
the BEC side of resonance, the gas exhibits nearly collisionless behavior. Here inelastic collisions
result in heating the gas above the critical temperature for BEC. In the regime where the gas is
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strongly interacting, B = 750 G, 834 G, and 900 G, the gas oscillates collectively. High precision
measurements taken at B = 834 G show the scissors mode oscillation yields a frequency that
agrees with theory within one percent. Far on the BCS side, at B = 970 G and 1132 G, the gas
exhibits behavior that is nearly collisionless. The abrupt transition between the hydrodynamic and
collisionless regimes at low temperature occurs at essentially the same magnetic field, B ≈ 950 G,
as in other collective mode experiments [Bar04a, Kin04b, Alt07b].

To explore finite-temperature collisional behavior, we extend the scissors mode measurements.
To set the temperature, we use a controlled heating scheme. Here, we suddenly compress the trap
and allow for subsequent equilibration 1. We control the temperature of the gas by adjusting the
amount of compression.

The determination of the temperature T in an ultracold, strongly interacting Fermi gas is in
general difficult [Kin05b]. We can measure an effective temperature (or entropy) parameter T̃ at
the center of the Feshbach resonance, B = 834 G. We determine T̃ by fitting integrated, one-
dimensional, density profiles in the manner described in [Kin05b, Kin06, Sta05]. At B = 834 G,
for T/TF > 0.3, the parameter T̃ is proportional to the real temperature with T/TF ≈ T̃ /1.5. For
lower temperatures, an empirical conversion has been determined 2[Kin05b, Kin06, Sta05]. The
parameter T̃ , measured in the unitarity limit at 834 G, can be used also as a temperature scale for
other interaction regimes under the condition that entropy is conserved in adiabatic sweeps of the
magnetic field [Che05].

In Figure 2.2, we show the frequency and damping rate as a function of T̃ for two cases, in
the unitarity limit (1/kFa = 0.00) and at the BCS side of the crossover (1/kFa = −0.45). The
frequency behavior in Fig. 2.2(a) is qualitatively the same for both cases. At low temperatures, the
gas shows the hydrodynamic frequency and, at the highest temperatures, we observe the behavior
characteristic for the collisionless gas. With varying temperature, the changing frequency smoothly
connects the hydrodynamic with the collisionless regime. Quantitatively, the transition occurs at
somewhat higher T̃ in the unitarity limit. In the transition region, the damping rate shows a
maximum that accompanies the change in frequency, see Fig. 2.2(b). We introduce the temperature
parameter T̃H for this damping maximum, marking the transition between hydrodynamic and
collisionless behavior.

The temperature dependence of the damping rate in Fig. 2.2(b) reveals a qualitatively different
behavior between the two interaction regimes. An additional peak shows up at lower temperatures
for the BCS side of the crossover, while this peak is absent in the unitarity limit. Remarkably, this
novel feature is not associated with a change in the frequency.

We could detect the low-temperature damping peak only in a very narrow range at the BCS side
of the crossover. This feature was found between magnetic fields of 890 G and 920 G, corresponding
to interaction parameters 1/kFa between −0.6 and −0.4. In Fig. 2.3, we show the low-temperature
damping peak as it changes in this narrow region. Closer to resonance, the peak becomes very
narrow, shifts toward higher temperatures, and finally seems to disappear. To mark the location
of this peak, we introduce the temperature parameter T̃S .

We now discuss our observations in terms of a crossover phase diagram for the scissors mode

1Sudden compression of the trap excites the axial mode which is long lived. Since the frequency is much smaller
than the scissors mode frequency, it can be neglected. Nonetheless, we carried out a direct comparison without
the axial mode present and found the same behavior.

2T̃ ≈ 1.2(T/TF )1.49 for (T/TF ) < 0.3.
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excitation 3. In Fig. 2.4(a), we plot T̃H (closed circles) and T̃S (open squares) as a function of the
interaction parameter. The data points for T̃H show a pronounced maximum at the center of the
resonance. To facilitate an interpretation of the experimental data, we convert T̃H and T̃S into real
temperatures TH and TS , following the theory of Ref. [Che05]. Fig. 2.4(b) shows the resulting phase
diagram, including a theoretical prediction [Per04] of the temperature TC for the phase transition
to a superfluid state.

Near the center of the Feshbach resonance, hydrodynamic behavior is observed far above the
superfluid transition temperature. The large difference between TH and TC confirms the existence
of a non-superfluid hydrodynamic region above TC [Min01, Kin05a, Cla07]. Our measurements
show that this normal-gas hydrodynamic regime is restricted to the narrow, strongly interacting
region near resonance where 1/kFa stays well below unity. On the BEC side, TH is close to the
expected value for TC . Here one can assume that hydrodynamic behavior essentially results from
the formation of a molecular BEC. A surrounding non-condensed molecular gas would exhibit near-
collisionless properties, similar to what has been measured in atomic BEC experiments [Mar01].
On the BCS side of resonance, TH falls off very rapidly. In this region, collective modes may couple
to the weakly bound fermion pairs [Bar04a, Alt07b]. We did not observe hydrodynamic behavior
beyond that point.

For the low-temperature damping peak found at the BCS side of the crossover near 1/kFa ≈ −0.5,
our phase diagram in Fig. 2.4(b) suggests a close relation to the superfluid phase transition. The
peak occurs at roughly 0.6TC , and it follows the general behavior of the superfluid transition to
move toward higher temperature as it approaches the resonance. This points to a scenario where
a substantial superfluid core in the center of the trap is surrounded by a non-superfluid, but still
hydrodynamic fraction in the outer region of the trap. Whether damping results from the coupling
of these two components or whether other mechanisms are responsible for this phenomenon remains
an open question. We note that the low-temperature damping peak is not specific to the scissors
mode. We have also found a corresponding, but less pronounced peak in measurements of the radial
breathing mode. Further investigations and better theoretical understanding will be required to
answer the intriguing question whether the novel damping peak does indeed mark the transition
from the normal hydrodynamic to the superfluid state.

In conclusion, we have investigated hydrodynamic behavior at finite temperatures in the BEC-
BCS crossover using scissors mode excitations. Our measurements highlight the existence of a
region of non-superfluid hydrodynamics in the strongly interacting regime where |kFa| & 1. In the
unitarity limit, predominant hydrodynamic behavior is found up to ∼0.6TF , which substantially
exceeds the superfluid transition temperature of ∼0.3TF . With increasing temperature, the transi-
tion from hydrodynamic to collisionless behavior proceeds in general smoothly and is accompanied
by a local maximum of damping. In addition, we have discovered a novel low-temperature damping
peak at the BCS side of the crossover, which suggests a relation to the superfluid phase transition.
With this observation, experiments on collective oscillation modes of Fermi gases in the BEC-BCS
crossover continue to produce puzzling observations [Bar04a, Kin05a, Alt07b] with the potential to
stimulate deeper theoretical understanding of the physics of strongly interacting Fermi gases.

We thank S. Stringari for stimulating discussions. We also thank Q. Chen, K. Levin, and J. E.

3In a comparative study of different collective modes [Rie08] we found the scissors mode to behave very similar to
the radial quadrupole mode [Alt07b], which is also a surface mode. The radial compression mode behaves quite
differently [Kin05a, Rie08]. The axial mode [Bar04a] shows in general hydrodynamic behavior in a much wider
parameter range because of its much lower frequency.
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Figure 2.1.: (a) Schematic showing the excitation of the scissors mode. (1)
The gas (shaded region) is at rest, in equilibrium with the trap (heavy solid
line). (2) The trap is suddenly rotated. (3) The gas oscillates around the new
equilibrium position. (b) Scissors mode oscillations observed at the lowest
obtainable temperature (T ≈ 0.1TF at 834 G) for various magnetic fields. On
the left side, where B = 750 G, 834 G, and 900 G (1/kFa = 1.4, 0.0, and
−0.6), the gas is hydrodynamic. On the right side, where B = 661 G, 970 G,
and 1132 G (1/kFa = 5.0, −1.0, and −1.44), the gas is nearly collisionless and
exhibits the characteristic two-frequency oscillation. Here ωx = 2π × 580 Hz,
ωy = 2π × 270 Hz, and TF = 0.69µK.
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Figure 2.2.: Frequency and damping rate for the scissors mode oscillation for
B = 895 G (1/kFa = −0.45, solid squares) and at B = 834 G (1/kFa =
0, open circles). The frequency limits in the hydrodynamic and collisionless
regimes are shown by the horizontal lines in (a), including small corrections
for the anharmonicity of the trap [Rie08]. The lines in (b) are introduced as
guides to the eye. For T̃ greater than 1.14, the scissors mode oscillations are
fit by a two-frequency cosine function (for details see text).
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field region at the BCS side of the resonance (1/kFa ≈ −0.5). The solid lines
are introduced as guides to the eye.
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Figure 2.4.: Phase diagram for the hydrodynamic behavior of the scissors mode
in terms of (a) the temperature parameter T̃ and (b) the real temperature T .
The smooth transition from hydrodynamic to collisionless is characterized by
the temperature parameter T̃H (temperature TH). The second damping peak
near 1/kFa ≈ −0.5 is marked by T̃S (TS). In (a) the hatched region indicates
the region (T̃ < 0.1) where our thermometry does not produce reliable results.
In (b) the solid line shows a theoretical curve for the phase transition to
superfluidity [Per04].
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3. Collective oscillations of a Fermi gas in the
unitarity limit: Temperature effects and the
role of pair correlations
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We present detailed measurements of the frequency and damping of three different collective
modes in an ultracold trapped Fermi gas of 6Li atoms with resonantly tuned interactions. The
measurements are carried out over a wide range of temperatures. We focus on the unitarity limit,
where the scattering length is much greater than all other relevant length scales. The results are
compared to theoretical calculations that take into account Pauli blocking and pair correlations in
the normal state above the critical temperature for superfluidity. We show that these two effects
nearly compensate each other and the behavior of the gas is close to that of a classical gas.

3.1. Introduction

The study of collective oscillations in quantum liquids and gases has yielded a wealth of insights
into the properties of strongly correlated systems. An early example concerning strongly correlated
Fermions is the observed transition from ordinary first sound to zero sound in the normal state of
liquid 3He as the temperature is lowered [Abe66]. In this Article we explore related phenomena
in an ultracold quantum gas of fermions in the unitarity limit [Ing08] by measuring three different
collective modes under similar conditions. The frequency and damping of the modes exhibit the

∗The contribution of the author of this thesis to this work is to the interpretation of results and to the discussion
during the writing of the publication. G.M. Bruun and H. Smith provided us with the theoretical curves, and
provided the theoretical section.
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3. Publication: Collective oscillations of a Fermi gas in the unitarity limit

characteristic transition from hydrodynamic behavior at low temperature to collisionless behavior at
higher temperature. The experimental observations are compared to theoretical model calculations
that apply to the normal state of the gas above the critical temperature Tc for superfluidity. In
the unitarity limit, the strongly correlated normal state between Tc and the Fermi temperature TF
is arguably not as well understood as the T = 0 superfluid phase [Gio08]. It is shown that the
combined effects of temperature and pair correlations account for most of the observed features in
this interesting temperature regime.

Our measurements of the collective modes are carried out for an elongated trap geometry, which
has previously been shown to be well suited for studying the dynamical behavior of a strongly
interacting Fermi gas [Bar04a, Kin04a, Kin04b, Kin05a, Alt07a, Alt07b, Wri07]. We focus on two
collective excitations of a cylindrically symmetric cigar-shaped cloud, namely the radial compression
mode and the radial quadrupole mode. In addition we study the scissors mode under conditions
where the cloud exhibits pronounced ellipticity in the plane perpendicular to the direction of the
cigar-shaped cloud. In all three modes, the cloud oscillates mainly in the plane normal to the
direction of the cigar-shaped cloud. For a sketch of the modes see Figure 3.1.

Previous experiments on collective modes in a strongly interacting Fermi gas studied the effect of
the interaction strength in the zero temperature limit. [Bar04a, Kin04a, Kin04b, Alt07a, Alt07b].
Systematic investigations were performed studying the radial compression mode [Bar04a, Kin04a,
Alt07a] and the radial quadrupole mode [Alt07b]. Measurements on the compression mode served
as a sensitive probe for the equation of state of the gas in the zero temperature limit throughout
the BEC-BCS crossover regime. In contrast to the compression mode, the frequency of the ra-
dial quadrupole mode allows one to test the hydrodynamic behavior without being influenced by
the equation of state. This made it possible to investigate the transition from hydrodynamic to
collisionless behavior with decreasing coupling strength of the atom pairs on the BCS side of the
crossover.

While the hydrodynamic behavior in the zero-temperature limit is now well understood as a result
of superfluidity, an understanding of the effects of temperature on the collective modes has remained
a challenge. Only few experiments have so far addressed this problem [Alt07a, Kin05a, Wri07,
Kin04a]. Previously, the temperature dependence of the radial compression mode [Kin05a] and the
scissors mode was studied [Wri07]. Our present experiments aim at addressing the open questions
raised by the different results obtained in these experiments: The frequency and damping of the
radial compression mode was studied as function of the temperature in an experiment performed at
Duke University [Kin05a]. There the mode frequency appeared to stay close to the hydrodynamic
value even for temperatures exceeding the Fermi temperature. This surprising finding stands in
contrast to scissors mode measurements, performed later at Innsbruck University [Wri07], which
clearly showed a transition to collisionless behavior in the same temperature range. Furthermore
the Duke data on the damping of the compression mode did not show a maximum as it was seen
in the Innsbruck data on the scissors mode measurement. These apparent discrepancies are a
particular motivation for our present study of different collective modes under similar experimental
conditions.

3.2. Experimental Procedure

The apparatus and the basic preparation methods for experiments with a strongly interacting Fermi
gas of 6Li atoms have been described in our previous work [Joc03a, Bar04b]. As a starting point,
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Figure 3.1.: Sketch of the three collective modes investigated in this work:
the compression mode, the quadrupole mode and the scissors mode (from
left to right). The oscillations take place in the plane of tight confinement,
perpendicular to the direction of the elongated, cigar-shaped cloud. While the
compression mode represents an oscillation of the overall cloud volume, the
other two modes only involve surface deformations. Exciting the quadrupole
mode leads to an oscillating elliptic shape. The scissors mode appears as an
angular oscillation of an elliptic cloud about a principal axis of an elliptic trap
geometry.

we produce a molecular BEC of 6Li2. By changing an external magnetic field, we can control the
interparticle interactions in the vicinity of a Feshbach resonance, which is centered at 834 G [Bar05].
The measurements of the collective modes are performed at the center of the Feshbach resonance,
where the interactions are unitarity limited.

The atoms are confined in an elongated, nearly harmonic trapping potential, where the trap
frequencies ωx and ωy in the transverse direction are much larger then the axial trap frequency ωz.
The confinement in the transverse direction is created by an optical dipole trap using a focused
1030 nm laser beam with a waist of 47µm. Note that the Gaussian shape of the laser beam leads to
significant anharmonicities in the trapping potential. The potential in the axial direction consists of
a combination of optical and magnetic confinement; the magnetic confinement is dominant under
the conditions of the present experiments. The trap parameters, given in Table 3.1, represent
a compromise between trap stability and anharmonic effects 1. The Fermi temperature is given
by TF = EF /k, where the Fermi energy EF = ~(3Nωxωyωz)

1/3 = ~2k2
F /2m, kF is the Fermi

wavenumber and k is the Boltzmann constant. The parameter V0 is the trap depth, and N is
the total number of atoms, given by N = 6 × 105. The interactions are characterized by the
dimensionless parameter 1/kFa, where a is the s-wave scattering length.

To control the aspect ratio ωx/ωy, we use rapid spatial modulation of the trapping beam by two
acousto-optical deflectors, resulting in the creation of time-averaged trapping potentials [Alt07b].

1Anharmonic effects depend on the ratio between the Fermi energy and trap depth EF /V0 [Str]. Reducing this
ratio decreases the anharmonic effects. This can be done by increasing the power of the trapping beam since EF

increases more slowly than V0. On the other hand technical reasons cause heating rates and larger drifts in the
trap depth with increasing power.
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Table 3.1.: Trap parameters for the differentmodes.

compression quadrupole scissors

ωx/2π (Hz) 1100 1800 1600
ωy/2π (Hz) 1100 1800 700
ωz/2π (Hz) 26 32 30
TF (µK) 1.8 2.7 1.9
V0/k (µK) 19 50 40

This on one hand allows us to compensate for residual ellipticity of the trapping potential on the
percent level and thus to realize a cylindrical symmetric trap (ωx = ωy). On the other hand it
allows for the excitation of surface modes by deliberately introducing elliptic trapping potentials
(ωx 6= ωy). The procedures used to excite the modes are outlined in Appendix A. To change the
temperature we apply a controlled heating scheme via sudden compression of the gas as described
in [Wri07]. Detection of the cloud is done by absorption imaging which displays the shape of
the cloud in the x-y plane after expansion. For each mode under investigation we determine the
frequency and damping following the procedures of our previous work [Alt07b, Wri07, Alt07a]; see
also Appendix A.

Because of the Gaussian shape of the trapping potential, corrections are needed for a precise
comparison of the experimental observation to the idealized case of perfect harmonic trapping.
Especially for higher temperatures, when the size of the cloud is larger, anharmonic corrections be-
come important. This is demonstrated by measurements of the transverse sloshing mode frequency
ωs (Fig. 3.2), which clearly show a substantial decrease with increasing temperature. To reduce the
anharmonic effects on the frequencies of the collective modes under investigation, we normalize the
frequencies to the sloshing mode frequency in the transverse direction. This normalization reduces
the anharmonic effects to a large extent since the decrease of the sloshing mode frequency with
increasing cloud size is of the same order as the corresponding decrease of the frequency of the
transverse modes [Str]. To normalize the scissors mode frequency we take the geometric average of
the two different sloshing mode frequencies in the transverse direction.

For each of the trap parameters of the different modes we determine the sloshing mode frequency
as a function of the temperature. As an example we show ωs for the trap parameters used for the
compression mode measurement; see Fig. 3.2. We compare ωs/ωx (dots) to a theoretical model
which allows to calculate the sloshing frequency as a function of the cloud size; see Appendix B.
Assuming a harmonic potential to derive the mean squared size 〈x2〉 2 Our calculation of 〈x2〉 is
based on density profiles derived by Q. Chen, J. Stajic, and K. Levin, Phys. Rev. Lett. 95, 260405
(2005) underestimates the anharmonic effects (solid line) in particular for higher temperatures.
Taking into account a Gaussian potential to determine 〈x2〉 (dashed line) agrees much better with
the measured sloshing frequency.

Since the purpose of this article is the comparative study of different collective modes and not
the precision measurement of a single mode as in previous work [Alt07a], we follow a faster yet
simpler procedure to normalize the frequencies. We measure the sloshing mode frequency only on
particular temperatures of interest. From these points we determine the temperature dependence
of the sloshing frequency by interpolation. Even though the normalization takes into account the
temperature dependence of the anharmonicity, it does not reduce effects due to drifts in the power
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Figure 3.2.: Sloshing mode frequency ωs normalized by the trap frequency ωx
as a function of temperature. The measured frequency shows a decrease with
increasing temperature, (dots) which is due to the increase in the size of the
cloud. The lines show the expected frequency from a first-order anharmonic
correction; see Appendix B. To determine the cloud size for different temper-
atures we assume a harmonic potential (solid line) and a Gaussian potential
(dashed line), respectively 2

of the trapping beam. We believe this to be the main source for the scatter of the data in Fig. 3.4.

To determine the temperature of the gas we first adiabatically change the magnetic field to 1132 G
3, where 1/kFa ≈ −1, to reduce the effect of interactions on the density distribution [Luo07]. Under
this condition, for T > 0.2TF , the interaction effect on the density distribution is sufficiently weak
to treat the gas as a non-interacting one to determine the temperature from time-of-flight images.
We fit the density distribution after 2 ms release from the trap to a finite-temperature Thomas–
Fermi profile. The temperature measured at 1132 G is converted to the temperature in the unitarity
regime under the assumption that the conversion takes place isentropically, following the approach
of Ref. [Che05]. Statistical uncertainties for the temperature stay well below 0.05TF .

3This is the largest magnetic field for which we can take absorption images in our present set-up.
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3.3. Theory

We shall compare our experimental findings to the results of model calculations that apply to the
normal state of the gas, i.e. at temperatures above Tc. In this Section, we outline our theoretical
approach to the calculation of mode frequencies for T > Tc. A more detailed description can be
found in Refs. [Mas05] and [Bru05]. We assume that single-particle excitations are reasonably
well defined in the sense that most of the spectral weight of the single-particle spectral function
is located at a peak corresponding to that of non-interacting particles. The low-energy dynamics
of the gas can then be described by a semiclassical distribution function f(r,p, t) which satisfies
the Boltzmann equation. A collective mode corresponds to a deviation δf = f − f0 away from the
equilibrium distribution f0(r,p). Writing δf(r,p, t) = f0(r,p)[1−f0(r,p)]Φ(r,p, t) and linearizing
the Boltzmann equation in δf(r,p, t) yields

f0(1− f0)

(
∂Φ

∂t
+ ṙ · ∂Φ

∂r
+ ṗ · ∂Φ

∂p

)
= −I[Φ], (3.1)

where ṙ = v = p/m, ṗ = −∂V/∂r and I is the collision integral. We take the potential V (r) to be
harmonic and given by V (r) = m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2.

To describe the collective modes we expand the deviation function in a set of basis functions φi
according to

Φ(r,p, t) = e−iωt
∑
i

ciφi(r,p), (3.2)

where ω is the mode frequency. For the compression mode with a velocity field v ∝ (x, y, z), we
use the functions

φ1 = x2 + y2, φ2 = xpx + ypy, φ3 = p2
x + p2

y, φ4 = p2
z. (3.3)

For the quadrupole mode with a velocity field v ∝ (y, x, 0) (ignoring the small velocity along the
axial direction), we use

φ1 = x2 − y2, φ2 = xpx − ypy, φ3 = p2
x − p2

y, (3.4)

whereas the basis functions for the scissors mode are given in Ref. [Bru07]. Our choice of basis func-
tions is physically motivated by the characteristic features of the three different modes illustrated
in Fig. 3.1. Since we limit ourselves to a few simple functions, the basis sets are not complete, but
we do not expect qualitative changes to occur as a result of including more basis functions in our
calculation.

We now insert the expansion (3.2) into (3.1) and take moments by multiplying with the functions
φi and integrating over both r and p. This yields a set of linear equations for the coefficients ci for
each of the collective modes. The corresponding determinants give the mode frequencies. For the
compression mode, we obtain

iω(ω2 − 4ω2
⊥) +

1

τ

(
10

3
ω2
⊥ − ω2

)
= 0, (3.5)

and for the quadrupole mode, we get

iω(ω2 − 4ω2
⊥) +

1

τ

(
2ω2
⊥ − ω2

)
= 0. (3.6)
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The equation for the scissors mode is given in Ref. [Bru07].
The effective collision rate 1/τ in (3.5) and (3.6) is given by

1

τ
=

∫
d3rd3ppxpyI[pxpy]∫

d3rd3pp2
xp

2
yf

0(1− f0)
. (3.7)

Note that this expression for 1/τ involves a spatial average over the cloud. In the collisionless
limit, ωτ � 1, the two equations (3.5) and (3.6) both yield ω = 2ω⊥, where ω⊥ = ωx = ωy, while
in the hydrodynamic limit, ωτ � 1, they result in ω =

√
10/3ω⊥ for the compression mode and

ω =
√

2ω⊥ for the quadrupole mode.
The dependence on temperature T and scattering length a enters through τ . In particular, Pauli

blocking and pair correlations strongly depend on T and a, and we now examine their role on
the effective collision rate. In Fig. 3.3, we plot 1/τ as a function of temperature for a gas in the
unitarity limit |a| → ∞ using three different approximations for the collision integral. First, the
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Figure 3.3.: (Color online) The effective collision rate for a gas in the unitar-
ity limit. The dashed curve is the classical result, the dash-dotted includes
Pauli blocking, and the solid line includes pairing correlations in the scattering
matrix. The superfluid region for T < Tc is indicated.

dashed curve gives the effective collision rate in the classical regime using the vacuum expression
Tvac = T0/(1 + iqa) for the scattering matrix with T0 = 4π~2a/m. The s-wave differential cross
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section dσ/dΩ which enters in the collision integral I is related to the scattering T matrix by
dσ/dΩ = m2|T |2/(4π~2)2. In the classical regime, we then get from (3.7)

1

τclass
=

4

45π

kTF
~

T 2
F

T 2
(3.8)

for a gas in the unitarity limit [Bru07]. The small prefactor 4/(45π) ≈ 0.028 in (3.8) implies that
the effective collision rate is significantly smaller than what one would expect from simple estimates
or dimensional analysis at unitarity. Second, the dash-dotted curve gives the effective collision rate
when Pauli blocking effects are included as in [Mas05], while we still use the vacuum expression
Tvac for the scattering matrix. Pauli blocking effects reduce the available phase space for scattering
thereby reducing the scattering rate. For T � TF Pauli blocking in a normal Fermi system gives
1/τ ∝ T 2. Finally, we plot as a solid curve in Fig. 3.3 the effective collision rate taking into account
both Pauli blocking and many-body effects for T in the ladder approximation which includes the
Cooper (pairing) instability. This gives T = T0/(1 − T0Π) where Π is the pair propagator. Since
our treatment of the pair correlations only apply to the normal state of the gas, we plot this curve
for temperatures greater than the critical temperature Tc, which within the ladder approximation
used here is given by Tc ≈ 0.3TF for a trap [Bru05].

We see that 1/τ is increased by the pairing correlations for the T -matrix. The pairing correlations
significantly increase the effective collision rate for temperatures (T − Tc)/Tc . 1 [Bru05]. One
often refers to this temperature range as the pseudogap regime. In fact, pairing correlations almost
cancel the Pauli blocking effect in the collision integral above Tc and 1/τ is fairly accurately given
by the classical value as can be seen from Fig. 3.3. At high temperatures, this cancelation can be
demonstrated analytically by carrying out a high-temperature expansion of (3.7). We obtain after
some algebra the simple expression

1

τ
=

1

τclass

[
1 +

1

32

(
TF
T

)3
]
. (3.9)

The presence of the small prefactor 1/32 in (3.9) shows that the leading correction to the classical
limit is less than 3% at temperatures above the Fermi temperature TF .

3.4. Results and Discussion

The theoretical results of the previous section were all obtained for a purely harmonic potential.
Since anharmonicity plays an important role in our experiments, as discussed in Sec. 3.2, we
normalize the measured frequencies and damping rates for the collective modes to the measured
temperature-dependent sloshing frequencies, for which an example is shown in Fig. 3.2. In the
following we compare our observations to the theoretical results. It should be emphasized that the
theoretical expressions for the frequency and damping contain no free parameters to fit theory and
experiment.

First we discuss the frequency for the three modes under investigation as a function of the
temperature, as plotted in Fig. 3.4. In all three cases the theoretical expression for the frequency
(the full lines in Fig. 3.4) smoothly changes from the hydrodynamic value at the lowest temperature
considered to the collisionless value at high temperatures. The normalized frequencies in the
hydrodynamic limit for the quadrupole mode and compression mode are

√
2 ≈ 1.41 and

√
10/3 ≈
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1.83, respectively. The normalized frequency in the collisionless limit for both these modes is
2. Using the geometric average of the trap frequencies to normalize the scissors mode frequency,

one gets, using the ratio ωx/ωy = 16/7 from Table I, that
√

(ω2
x + ω2

y)/(ωxωy) ≈ 1.64 in the

hydrodynamic limit and (ωx + ωy)/
√
ωxωy ≈ 2.17 in the collisionless limit. Note that the scissors

mode consists of a two-frequency oscillation in the collisionless limit. Here we only consider the
larger frequency component. The lower frequency component exhibits increasing damping towards
lower temperatures and disappears in the hydrodynamic limit [GO99a].

Figure 3.4 illustrates that there is a reasonable overall agreement between experiment and the-
ory, although some differences exist. The agreement is best for the scissors mode, while for the
quadrupole mode the changeover from hydrodynamic to collisionless behavior happens at a lower
temperature than the one found theoretically. The measured compression mode frequency, which
shows considerable scatter, increases with increasing temperature and is close to the collisionless
value at the highest temperature measured.

The observed change from the hydrodynamic to the collisionless frequency for the compression
mode is in contrast to Ref. [Kin05a], where the frequency remains at the hydrodynamic value for
the same temperature range. We attribute this discrepancy to different treatments of anharmonic
effects, which are particularly important for this mode since the difference between the hydrody-
namic and collisionless frequency is of the same order as the frequency shift due to anharmonic
effects. In Ref. [Kin05a] the data are corrected by including anharmonic effects to first order,
while we adopt the point of view that the main anharmonic effects can be taken into account by
normalizing the measured oscillation frequencies to the measured temperature-dependent sloshing
frequencies. Fig. 3.2 illustrates that a simple first-order treatment of anharmonic effects on the
sloshing frequency does not account quantitatively for the observed variation with temperature.

At very low temperatures the measured frequencies are close to the hydrodynamic values because
the gas is in the superfluid phase [Alt07a, Alt07b]. Without pair correlations, but with Pauli block-
ing, at these low temperatures the frequencies would assume their collisionless values as illustrated
by the dashed-dotted lines in Fig. 3.4.

We now proceed to consider the damping of the oscillations. The experimental values for the
normalized damping rate are shown in Fig. 3.5. Theoretically, one expects the damping to vanish
in the hydrodynamic and collisionless limits and exhibit a maximum in between, as brought out by
the calculations in Sec. 3.3. Experimentally, both the quadrupole and the scissors mode exhibit the
expected maximum in damping in the transition region. For the compression mode, however, the
damping does not decrease at higher temperatures. This surprising behavior for the compression
mode has already been found in [Kin05a]. A possible reason for the increasing damping is dephasing-
induced damping due to anharmonicity. Anharmonic effects are more important for the compression
mode as the intrinsic damping is relatively small due to the small difference between the frequencies
in the collisionless and hydrodynamic limits [GO99b]. In contrast to the case of frequency discussed
above, we cannot expect to take into account the main effects of anharmonicity by normalizing the
measured damping rate to the temperature-dependent sloshing mode frequencies. This makes it
delicate to compare our experimental results to those of a theory based on a purely harmonic
potential. The damping of the quadrupole mode shows the expected qualitative behavior, although
the maximum in damping happens at a lower temperature compared to theory. This is consistent
with the frequency data for this mode, since the transition there also happens at lower temperature.
For the scissors mode the experimental data agree fairly well with theory, although some discrepancy
exists at the lowest temperatures.
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We can relate the frequency and damping of the quadrupole mode directly to each other by
eliminating the collision rate 1/τ in (3.6). Writing ω = ωQ − iΓQ for the solution of (3.6) with ωQ
and ΓQ being the quadrupole frequency and damping, we obtain

ΓQ =

√
−ω2
⊥ − ω2

Q +
√

8ω2
Q − 7ω2

⊥. (3.10)

A similar relation holds for the two other modes. This allows us to compare theory and experi-
ment independently of any approximations involved in the evaluation of 1/τ . Figure 3.6 shows the
normalized damping rate versus the normalized frequency of the quadrupole and the scissors mode;
we do not show the data for the compression mode because of the apparent problems discussed
before. We find that the maximum damping of the quadrupole mode is larger than expected. For
the scissors mode the damping is larger only at low frequencies. This suggests that the difference
between theory and experiment is not a consequence of the approximations entering the calculation
of the relaxation rate but could be due to anharmonic effects or the need for larger basis sets to
describe the modes [see (3.3) and (3.4)].

3.5. Conclusion

In this work we have presented measurements of the frequency and damping of three different
collective modes under similar conditions for an ultracold Fermi gas of 6Li atoms in the unitarity
limit. The experimental results obtained in the normal state of the gas are in reasonable agreement
with our theoretical calculations, which take into account Pauli blocking and pair correlations. The
remaining discrepancies may originate in a variety of sources such as our treatment of anharmonic
effects, the temperature calibration, and the use of a restricted basis for solving the Boltzmann
equation. Also they may reflect the need to incorporate further interaction effects in the kinetic
equation, which forms the starting point for the theoretical calculations. For instance, there are
self-energy shifts on the left-hand side of the kinetic equation which could be important. The study
of collective modes is a sensitive probe of the properties of strongly interacting particles such as
the gas of 6Li atoms under investigation, and further work on temperature-dependent phenomena
will undoubtedly shed more light on these interesting many-body systems.

We acknowledge support by the Austrian Science Fund (FWF) within SFB 15 (project part
21). M.J.W. was supported by a Marie Curie Incoming International Fellowship within the 6th
European Community Framework Program. Fruitful discussions with S. Stringari are appreciated.
We thank Q. Chen and K. Levin for providing us with density profiles and temperature calibration
curves.

3.6. Appendix A

Here we present more details on the experimental procedures to excite the three collective modes.

To excite the radial quadrupole mode we adiabatically deform the radially symmetric trap to an
elliptic shape while keeping the average trap frequency constant before turning off the deformation
suddenly [Alt07b]. The deformation is chosen such that the amplitude of the mode oscillation
relative to the cloud size is below 10%. A two-dimensional Thomas-Fermi profile is fitted to the
images, taken after a short expansion time of 0.5 ms. The difference in the width of the main axes is
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determined for different hold times and fitted to a damped sine function, from which we determine
the frequency and damping of the mode.

The excitation of the radial compression mode is done by a sudden compression of the cloud. To
determine the frequency and damping of the compression mode we follow the same procedure as
for the quadrupole mode but fitting to the sum of the widths. Here we use an expansion time of
2 ms before taking the image.

The scissors mode appears as an angular oscillation of an elliptic cloud about a principal axis of
an elliptic trap. To excite this oscillation we create an elliptic trap in the x-y plain and suddenly
rotate the angle of the principal axes by 5 degrees [Wri07]. The tilt of the principal axes of
the cloud is determined 0.8 ms after releasing the cloud from the trap for different hold time. If
the gas is hydrodynamic, we fit a single damped sine function to the oscillation of the angle.
However, for a collisionless gas, the oscillation exhibits two frequencies. Thus we fit a sum of two
damped sine functions each with their own free parameters. When the behavior changes from
hydrodynamic to collisionless the single damped sine function fits the data reasonably well, as
discussed in [Wri07]. Since the larger of the two frequencies in the collisionless regime smoothly
connects to the hydrodynamic frequency at low temperatures we only consider this frequency in
the paper.

3.7. Appendix B

Here we briefly discuss the calculation of the transverse sloshing modes including anharmonic
corrections to lowest order. The transverse trapping potential is

V (x, y) = V0(1− e−x2/a2−y2/b2) '

V0

(
x2

a2
+
y2

b2
− x4

2a4
− y4

2b4
− x2y2

a2b2

)
. (3.11)

Concentrating without loss of generality on the sloshing mode in the x-direction, we choose the
function Φ = c1x+ c2px. Putting this into the linearized Boltzmann equation (3.1), eliminating c2,
and taking the moment

∫
dxdyn(x, y) with n(x, y) the density (we ignore the axial direction), we

obtain for the sloshing frequency

ω2
s = ω2

x

(
1−

mω2
x〈x2〉+mω2

y〈y2〉
2V0

)
. (3.12)

Here 〈x2〉 =
∫
n(x, y)x2dxdy/

∫
n(x, y)dxdy and we have used ω2

x = 2V0/ma
2 together with ω2

y =
2V0/mb

2.
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Figure 3.4.: The three panels show the observed normalized mode frequen-
cies versus temperature for the quadrupole mode, the scissors mode and the
compression mode. The error bars indicate the statistical error of a single fre-
quency measurement. The full lines are the result of the theory for the normal
state described in the section 3.3, which includes the combined effects of Pauli
blocking and pair correlations; note that these curves start at T = 0.3TF ,
which in the ladder approximation used here is the transition temperature to
the superfluid state. For illustrative purposes we also show the theoretical
results when only Pauli blocking is taken into account (dash-dotted lines) and
those for a classical gas (dashed lines).
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Figure 3.5.: Normalized mode damping versus temperature for the quadrupole
mode, the scissors mode and the compression mode. The points are experi-
mental values, while the full lines represent our calculated values, taking into
account both Pauli blocking and pairing effects. The dash-dotted line only
takes Pauli blocking into account, while the dashed line is the classical (high-
temperature) result.
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Figure 3.6.: Normalized mode damping versus normalized frequency for the
quadrupole and scissors mode. The solid line shows the expected behavior
for a harmonic trap. The arrows point toward the direction of increasing
temperature.
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4. Publication: Lifetime of angular momentum in
a rotating strongly interacting Fermi gas
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We investigate the lifetime of angular momentum in an ultracold strongly interacting Fermi gas,
confined in a trap with controllable ellipticity. To determine the angular momentum we measure
the precession of the radial quadrupole mode. We find that in the vicinity of a Feshbach resonance,
the deeply hydrodynamic behavior in the normal phase leads to a very long lifetime of the angular
momentum. Furthermore, we examine the dependence of the decay rate of the angular momentum
on the ellipticity of the trapping potential and the interaction strength. The results are in general
agreement with the theoretically expected behavior for a Boltzmann gas.

4.1. Introduction

The dynamics of an ultracold quantum gas is an important source of information on the physical
nature of the system. A particularly interesting situation is an atomic Fermi gas in the vicinity
of a Feshbach resonance [Ing08, Gio08]. The Feshbach resonance allows us to tune the two-body
interaction and thus to control the coupling between the atoms. It connects a molecular Bose-
Einstein condensate (BEC) with a Bardeen-Cooper-Schrieffer (BCS) superfluid. In the crossover
region between these two limiting cases the center of the Feshbach resonance is of special interest.
Here the unitarity-limited interactions lead to universal behavior of the Fermi gas.

The strong two-body interactions close to the Feshbach resonance lead to very low viscosity and
hydrodynamic behavior in the normal phase, similar to properties of a superfluid [Cla07, Wri07].
The coexistence of normal and superfluid hydrodynamic behavior is a special property of the
strongly interacting Fermi gas, which stands in contrast to ultracold Bose gases, where deep hy-
drodynamic behavior is usually restricted to the superfluid condensate fraction. The low-viscosity
hydrodynamic behavior leads to a long lifetime of collective motion in the system. Using collec-
tive modes the dynamics has been investigated in a broad range of temperatures and interaction
strengths in the crossover region [Cla07, Wri07, Bar04a, Kin04a, Kin04b, Kin05a, Alt07a, Alt07b,

∗The contribution of the author of this thesis to this work consisted in taking data, fitting the data, and participating
in the data analysis.
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Rie08], including the hydrodynamic regime in the normal phase. Another important collective
motion is the rotation of the gas, which is of particular interest in relation to superfluidity [Zwi05].

In this Article, we study the lifetime of the angular momentum of a rotating strongly interacting
Fermi gas. We determine the angular momentum using the precession of the radial quadrupole
mode. This method is well established to study the angular momentum in experiments with
BEC [Che00, Hal01a, Lea02]. We observe that the unique hydrodynamic behavior of the strongly
interacting Fermi gas leads to particularly long lifetimes of the angular momentum. We perform a
quantitative analysis of the dissipation of the angular momentum caused by the trap anisotropy for
a gas in the unitarity limit. The measurements show general agreement with the expected behavior
for a Boltzmann gas [GO00]. As shown in a previous study comparing experiment and theory
[Rie08], a Boltzmann gas describes the behavior of a gas in the normal state with unitarity-limited
interactions reasonably well. Finally we study the dependence of the lifetime on the interaction
strength of the gas in the crossover region between the BEC and BCS regime.

4.2. Experimental procedure

To realize an ultracold strongly interacting Fermi gas we trap and cool an equal mixture of 6Li
atoms in the lowest two atomic states as described in our previous work [Joc03a, Alt07b]. We
control the interparticle interaction by changing the external magnetic field in the vicinity of a
broad Feshbach resonance centered at 834 G [Bar05]. The atoms are held by an optical dipole
trap using a red-detuned, single focused laser beam and an additional magnetic trap along the
beam; this magnetic confinement dominates over the optical confinement along the beam under
the conditions of the present experiments. The resulting trap provides weak confinement along the
beam (z axis) and stronger transverse confinement (x-y plane), leading to a cigar-shaped cloud. The
trap is well approximated by a harmonic potential with trap frequencies ωx ≈ ωy ≈ 2π × 800 Hz
and ωz = 2π × 25 Hz. The trap in general also has a small transverse ellipticity, which can be
controlled during the experiments. We define an average transverse trap frequency as ωr =

√
ωxωy.

The Fermi energy of the noninteracting gas is given by EF = ~(3Nωxωyωz)
1/3 = ~2k2

F /2M where
N = 5 × 105 is the total atom number, M is the atomic mass and kF is the Fermi wave number.
The corresponding Fermi temperature is TF = EF /k = 1.3µK, with k the Boltzmann constant.
The interaction strength is characterized by the dimensionless parameter 1/kFa, where a is the
atomic s-wave scattering length.

To dynamically control the shape of the trapping potential in the transverse plane we use a rapid
spatial modulation of the trapping laser beam by two acousto-optical deflectors, which allows us
to create time-averaged trapping potentials [Alt07b]. The control over the potential shape has two
different applications for the measurements. As a first application we use it to adjust the static
ellipticity ε = (ω2

x − ω2
y)/(ω

2
x + ω2

y) of the trap in the x-y plane. This allows us to compensate for
residual ellipticity of the trapping potential, i.e. of the trapping laser beam, and also to induce a
well defined ellipticity. The second application is the creation of a rotating elliptic potential with a
constant ellipticity ε′ 1. This is needed to spin up the gas. Both the static ellipticity in the x-y plane
and the rotating elliptic potential can be controlled independently. To determine the ellipticity we
measure the frequency of the sloshing mode along the two principal axes of the elliptic potential.
This allows controlling the ellipticity with an accuracy down to typically 0.005.

1ε′ = (ω′2x − ω′2y )/(ω′2x + ω′2y ), where ω′x and ω′y are the trap frequencies in the frame of the rotating potential.
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Figure 4.1.: Oscillation of the cloud after excitation of the radial quadrupole
mode. For a rotating hydrodynamic gas the principal axes of the quadrupole
mode oscillation precess with a frequency determined by the angular momen-
tum of the gas. To follow the precession we measure the angle of the long axis
of the cloud. Note that every half oscillation period this angle changes by π/2
because of the mode oscillation; see also Fig. 4.2. The oscillation of the cloud
shape is determined by measuring the widths along the short (WS) and the
long axis (WL) of the cloud.

To measure the angular momentum of the cloud we exploit the fact that collective excitation
modes are sensitive to the rotation of the cloud. Here we use the precession of the radial quadrupole
mode to determine the angular momentum of the rotating cloud; see Fig. 4.1. This method works
under the general condition that the gas behaves hydrodynamically [Che03]. In our case of a
strongly interacting Fermi gas, this method probes both the superfluid and the classically hydro-
dynamic part and does not distinguish between these two components. For the case of atomic
BEC, the precession has been well studied in theory [Sin97, Dod97, Svi98, Zam98] and used in
experiments to determine the angular momentum of the BEC [Che00, Hal01a, Lea02]. For an
atomic BEC the non-condensed part is usually collisionless and does not contribute to the mode
precession.

The radial quadrupole mode consists of two collective excitations with angular quantum numbers
m = +2 and m = −2 and frequencies ω+ and ω−, respectively. These two excitations correspond
to an elliptic deformation of the cloud rotating in opposite directions. The superposition of the
excitations results in the radial quadrupole mode. For a gas at rest the two excitations are de-
generate, while for a gas carrying angular momentum the frequencies are different, which causes a
precession of the mode, see Fig. 4.1. The mode precesses with a frequency Ωφ = (ω+−ω−)/4. The
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angular momentum itself can be calculated from the precession frequency [Zam98] using

Ωφ = Lz/(2Mr2
rms). (4.1)

Here Lz is the average angular momentum per atom and r2
rms is the mean value of x2 + y2 of the

density distribution 2.

To excite the quadrupole mode we switch on an elliptic potential for 50µs; this short elliptic
deformation does not affect the angular momentum of the gas. For the excitation we make sure
that ωr does not change. This ensures that no compression mode is excited and only an equal
superposition of the m = ±2 modes is created [Alt07b].

To follow the quadrupole oscillation we determine the angle of the long axis, φ, and the difference
of the widths along the principle axes of the cloud, ∆W = WL −WS , after a variable wait time in
the trap; see Fig. 4.1. Therefore we fit a zero temperature, two-dimensional Thomas-Fermi profile
to absorption images 3. We also keep the angle of the long axis a free fit parameter. The width of
the cloud is defined as twice the Thomas-Fermi radius.

To resolve the density distribution in the x-y plane we let the cloud expand for 0.8 ms before
taking the image. The expansion does not only increase the width of the cloud but also leads to
an increase of the precession angle as a consequence of the angular momentum. A quantitative
analysis of the small contribution to the total precession angle that results from the expansion is
given in Appendix B.

Figure 4.2 shows the evolution of the precessing quadrupole mode. The upper part shows the
precession angle. The finite value of φ at zero wait time results from the expansion. The periodic
jumps of the precession angle reflect the alternation between the long and the short axis while the
quadrupole mode evolves. As the precession proceeds, these jumps become more and more smooth.
This is caused by stronger damping of the m = −2 excitation compared to the m = +2 excitation.
Similar behavior has been observed in Ref. [Bre03] for the case of a BEC. There the authors discuss
two possible mechanisms where the difference in damping is either due to a rotating thermal
cloud [Wil02] or Kelvin mode excitations [Che03]. From our measurements we cannot discriminate
between these two mechanisms.

To fit the observed precession of the quadrupole mode we use the function given in Appendix A.
We find very good agreement between the data and the expected behavior. For the data set shown in
Fig. 4.2 the angular momentum is 1.7~. The average damping rate is (Γ−+Γ+)/2 = (460±30) s−1,
while the difference in the damping rate of the m = −2 compared to the m = +2 excitation is
Γ− − Γ+ = (80± 40) s−1.

We find that a simplified procedure can be used to determine the angular momentum from a
single measurement, instead of fitting the whole precession curve. If the measurement is taken at
a time when ∆W 2 has a local maximum, the precession angle φ is independent of the distortion
caused by the difference in the damping rates between the two excitations; see Fig. 4.2. This allows
us to determine the difference ω+ − ω− = 4φ/∆t and therefore to determine Lz with a single
measurement. The duration ∆t is the sum of the wait time in the trap and an effective precession

2We determine rrms at unitarity from the trap parameters using EF = 2Mω2
rr

2
rms

√
1 + β where we used the universal

scaling parameter β = −0.56 [Gio08]. Note that this underestimates rrms by a few percent because it does not
take into account the finite temperature and the rotation of the gas. This does not affect the measurement of the
lifetime of rotation as this depends on the relative change of Lz.

3For the parameters used in the experiment a zero temperature Thomas-Fermi profile fits the density distribution
reasonably well.
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time te, which accounts for the precession of the quadrupole mode during expansion as discussed in
Appendix B. Depending on the damping of the mode oscillation we measure the precession angle
at the first or second maximum of ∆W 2 4.

To determine the temperature of the gas in the unitarity limit we first adiabatically change
the magnetic field to 1132 G 5, where 1/kFa ≈ −1, to reduce the effect of interactions on the
density distribution [Luo07]. Under this condition, for T > 0.2TF , the interaction effect on the
density distribution is sufficiently weak to treat the gas as a noninteracting one and to determine
the temperature from time-of-flight images. We fit the density distribution after 2 ms release from
the trap to a finite-temperature Thomas–Fermi profile. The temperature measured at 1132 G is
converted to the temperature in the unitarity limit under the assumption that the conversion takes
place isentropically, following the approach of Ref. [Che05].

4.3. Spinning up the gas

To spin up the gas we introduce a rotating anisotropy into the initially round trap in the x-y plane.
More specifically, we suddenly switch to a rotating elliptic trap potential with a rotation frequency
Ωt and ellipticity ε′ = 0.03, rotate for a time trot on the order of 100 ms, and then ramp down the
ellipticity in 50 ms while the trap is still rotating.

In the case of hydrodynamic behavior of the gas this spinning up method is resonantly enhanced
in a certain range of rotation frequencies; see Fig. 5.3. The reason for this behavior is the resonant
excitation of quadrupolar flow which leads to a dynamic instability when Ωt is close to half the
oscillation frequency of the radial quadrupole mode ωq/2 = 0.71ωr. This effect was used to nucleate
vortices in a BEC [Mad00] and was further studied in Refs. [Mad01, Hod02]. A signature of the
resonant excitation is a strong elliptic deformation of the cloud shape which exceeds the ellipticity
of the trap ε′ during the spin-up process. We clearly see this effect when we spin up the gas.
We also find that the rotation frequency where Lz starts to increase strongly depends on ε′ and
trot in a similar way as it was observed in Refs. [Mad01, Hod02]. Note that we cannot draw any
conclusion concerning superfluidity from the resonant behavior of Lz in Fig. 5.3 because it is only
a consequence of hydrodynamic behavior and the strongly interacting gas is hydrodynamic both
below and above Tc. In fact, for temperatures clearly above Tc we find similar behavior for Lz as
a function of Ωt.

For an atomic BEC, Lz was found to first increase abruptly from 0 to 1~ with Ωt, caused by the
appearance of a centered vortex [Che00]. As the formation of pairs is necessary for superfluidity in
the BEC-BCS crossover regime, the angular momentum per atom of a single vortex in the center
of the cloud amounts to Lz = ~/2. We do not observe such an abrupt increase of Lz. Nevertheless
this does not exclude that vortices are created during our spin-up process; the abrupt change of
Lz is not a necessary consequence of the creation of vortices as the angular momentum of a vortex
depends on its position in an inhomogeneous gas [Che00]. Furthermore our measurement of Lz
cannot distinguish between the angular momentum carried by the superfluid and the normal part
of the cloud. Also we cannot directly observe vortices in our absorption images; we believe that
the reason is the very elongated cloud which strongly decreases the contrast of the vortex core in

4Note that the frequency of quadrupole mode oscillation ωq depends on the rotation frequency of the gas via
ω2
q = 2ω2

r − Ω2. This leads to a tiny shift of the maxima of ∆W 2 but does not affect our measurement of Lz

within our experimental uncertainty.
5This is the largest magnetic field where absorption images can be taken with our current experimental setup.
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the absorption images.

During our spin-up process we observe a significant heating of the gas depending on the rotation
frequency and the rotation time. We keep these two parameters as small as possible. We find
that a rotation frequency of Ωt/ωr = 0.6 and trot = 200 ms lead to an angular momentum of
about Lz = 2~. This is sufficient to perform the measurements, and at the same time does only
moderately increase the temperature.

We determine the temperature of the gas after the spin-up process. To avoid complications in
the temperature measurement we wait until the rotation has completely decayed. To keep this wait
time short, on the order of 100 ms, we speed up the decay by increasing the ellipticity of the trap;
see discussion below. Note that the low initial angular momentum used in the experiments, always
staying below 3~, does not lead to a significant increase in the temperature when the rotation
energy is completely converted into heat 6.

4.4. Lifetime of the angular momentum

In an elliptic trap the angular momentum is not a conserved quantity and hence can decay. The
dissipation of Lz is due to friction of the gas caused by the trap anisotropy. Here we investigate the
dependence of the decay of Lz on the static ellipticity for the case of unitarity-limited interactions.
We compare our experimental results to the predicted behavior for a rotating Boltzmann gas
[GO00]. Finally we study the dependence of the decay rate on the interaction strength in the
BEC-BCS crossover regime.

The fact that the gas consists of two different components, the normal and the superfluid part,
leads in general to a complex behavior for the decay of Lz. For example, in the case of a BEC an
exponential decay is related to the co-rotation of the thermal cloud with the condensate [Zhu01,
Abo02]. When the thermal cloud is not rotating, theoretical [Zhu01] and experimental [Mad00]
studies show nonexponetial behavior. For a gas completely in the hydrodynamic regime it is
expected that the decrease in Lz has an exponential form [GO00].

To measure the decay rate of the angular momentum we use the following procedure. After
spinning up the gas as discussed in Sec. 4.3, we slowly increase the static ellipticity within 10 ms,
wait for a certain hold time to let the angular momentum partially decay and then we remove
the ellipticity again within 10 ms. Finally we excite the radial quadrupole mode and observe the
precession to determine Lz using the simplified procedure discussed earlier.

In Figure 4.4 we show two examples for the decay of Lz. We find that the decay of the angular
momentum perfectly fits an exponential behavior for all the static ellipticities, temperatures, and
interaction strengths we used. For the lowest temperatures obtained the lifetime for a gas in the
unitarity limit goes up to 1.4 s, presumably limited by a residual anisotropy of the trap. This lifetime
is by more than a factor of thousand larger then the radial trap oscillation period. Furthermore the
lifetime of the angular momentum is much larger than the lifetime of collective excitation modes.
For example the lifetime of the radial quadrupole mode under the same conditions is only 2 ms. A
larger ellipticity of the trap significantly decreases the lifetime of Lz.

6To estimate the increase of the temperature through the decay of the rotation we assume that the rotation energy
is completely converted into heat. In the experiments Lz is well below 3~ which leads to a relative tempera-
ture increase of ∆T/T < 0.02 in the relevant temperature range. This is clearly below the uncertainty of our
temperature measurement.
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In the following we investigate quantitatively the dependence of the decay rate of the angular
momentum, λ, on ellipticity and temperature. The experimental results are shown in Fig. 4.5 for
two different temperatures. The full circles display the data for a temperature of T/TF = 0.22(3)
and the open circles correspond to a temperature of T/TF = 0.35(2). For better comparison with
theory we plot the normalized decay rate λ/ωr. A strong increase of the decay rate with increasing
ellipticity shows the important role of the trap anisotropy on the lifetime of the angular momentum.
For both temperatures the qualitative behavior of the decay rate is the same.

Next we compare the behavior of the decay rate with a theoretical prediction for a Boltzmann
gas [GO00]. As we showed recently in Ref. [Rie08], a Boltzmann gas describes the behavior of a
unitarity-limited gas in the normal state reasonably well. The predicted behavior of the decay rate
is given by λ/ωr = 2ε2ωrτ under the assumption that ε � 1/(4ωrτ) 7, where τ is the relaxation
time or effective collision time [Rie08, Vic00, Hua87]. This condition is well fulfilled in our system
because the gas is in the hydrodynamic regime where ωrτ � 1. We compare this theoretical
prediction, with τ as a free parameter, to our measurements. We find ωrτ = 0.108(5) for the lower
temperature and ωrτ = 0.28(1) for the higher temperature data.

Note that at very low ellipticity, ε < 0.02, the observed decay rate for both temperatures lies
significantly above the expected behavior; see inset of Fig. 4.5. We attribute this to an additional
anisotropy of the trap beyond simple ellipticity. This weak anisotropy becomes relevant only at
very low ε. Furthermore the finite linear heating rate of the trapped gas of 0.05TF s−1 becomes
important when the decay rate is very low, which means that the lifetime of Lz is on the order of
seconds. In this case the temperature cannot be assumed to be constant during the decay of Lz.

A recent calculation of the relaxation time τ for a Fermi gas in the unitarity limit [Rie08] allows
us to compare the experimental values for ωrτ to theory. For T/TF = 0.35 the obtained relaxation
time of ωrτ = 0.28 is clearly larger than the calculated value of ωrτ = 0.13. This means that
the theory predicts that the gas is somewhat deeper in the hydrodynamic regime compared to
the experimental findings. Similar deviations showed up when the theory was compared to the
temperature dependence of collective oscillations [Rie08]. For the lower temperature the obtained
value for ωrτ cannot be compared to the calculation of Ref. [Rie08] as the theory is restricted to
higher temperatures.

Finally we study the decay of the angular momentum in the crossover region between the BEC
and BCS regimes. We measure the decay rate for different interaction parameters 1/kFa. The
experimental sequence is the same as for the decay rate in the unitarity limit beside ramping the
magnetic field to the desired value in 100 ms before increasing the ellipticity and ramping back the
magnetic field in 100 ms before exciting the quadrupole mode. Here the magnetic field is changed
slowly such that the gas is not collectively excited. The ellipticity for all magnetic fields is set to be
ε = 0.09. This sizeable value of ε ensures that a small anisotropy beyond ellipticity does not affect
the decay rate and makes the measurement less sensitive to heating while the angular momentum
damps out as discussed above.

Figure 4.6 shows the decay rate of the angular momentum as a function of the interaction
strength. The lifetime is largest where the interaction is strongest and accordingly the relaxation
time is short. In addition to the two-body interaction strength, pairing effects play an important
role for the relaxation time [Rie08]. This might explain the higher decay rates for 1/kFa < 0, where
the pairing is weak, compared to the decay rates for 1/kFa > 0, where the atoms are bound to
molecules. Similar behavior has been seen in [Zwi05] for the lifetime of a vortex lattice. Note that

7For the temperatures used in the measurements 1/(4ωrτ) > 0.9 for a gas in the unitarity limit.
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Ref. [Zwi05] also reports a decrease of the lifetime in a narrow region around 1/kFa = 0, which we
do not observe for our trap parameters.

In summary the hydrodynamic behavior in the crossover region leads to a very long lifetime of
Lz.

4.5. Conclusion

In this work we have presented measurements on a strongly interacting Fermi gas carrying angular
momentum. The angular momentum of the gas exhibits long lifetimes due to the deeply hydrody-
namic behavior of the normal state in such a system. We investigated the decay rate of the angular
momentum depending on the ellipticity of the trapping potential for two different temperatures.
We find that the experimental results are in good agreement with the expected behavior for a sim-
ple Boltzmann gas. The dependence of the decay rate of the angular momentum on the interaction
strength in the BEC-BCS crossover region confirms that collective motion is very stable as long as
the interaction strength is sufficiently large.

The long lifetime of the angular momentum in a rotating strongly interacting Fermi gas allows
us to further investigate rotational properties both in the superfluid and normal phase in detail
and with high precision. Currently we investigate the moment of inertia of the gas for different
temperatures [Rie11].

We acknowledge support by the Austrian Science Fund (FWF) within SFB 15 (project part 21)
and SFB 40 (project part 4).

4.6. Appendix A

To calculate the precession angle and the oscillation of the width we assume that the frequency and
damping rate for the m = ±2 excitations are independent. For the damping of each excitation we
assume a exponential behavior. A superposition of the two excitations results in the fit function
for the precession angle [Bre03]

tan (2(φ− φe)) =

e−(Γ+−Γ−)t sin (ω+t+ 2φ0)− sin (ω−t+ 2φ0)

e−(Γ+−Γ−)t cos (ω+t+ 2φ0) + cos (ω−t+ 2φ0)
(4.2)

Here ω± are the frequencies, Γ± are the damping rates, φ0 is the initial angle for the two excitations
and φe is the precession angle resulting from the expansion of the cloud. For the oscillation of the
width difference ∆W we get

∆W 2 = 4Ae−(Γ++Γ−)t cos2

(
(ω+ + ω−)

2
t+ 2φ0

)
+ A(e−Γ+t − e−Γ−t)2, (4.3)

where A is the amplitude of the oscillation.
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4.7. Appendix B

Here we calculate the effect of the expansion of the cloud on the precession angle. Assuming
conservation of angular momentum during the expansion, the rotation frequency Ω of the gas
decreases as the size of the cloud is increasing. We introduce an effective precession time te which
accounts for the changing precession angle φ during expansion. The total change of the precession
angle resulting from the expansion is given by

φe =

∫ tTOF

0
φ̇(t)dt = φ̇(0)te, (4.4)

where φ̇(0) is the precession frequency when the gas is still trapped and tTOF is the expansion time.
Assuming that also during the expansion φ̇(t) = Lz/(2Mr2

rms(t)) is still valid and inserting this
into Eq. 4.4 we get

te =

∫ tTOF

0
r2

rms(0)/r2
rms(t)dt. (4.5)

To calculate the relative increase of the cloud size during expansion, r2
rms(t)/r

2
rms(0), we use the

scaling approach; see e.g. [Alt07b]. For our experimental parameters, ωr = 800 Hz and tTOF =
0.8 ms, we get an effective precession time of te = 0.26 ms. This is shorter than the typical precession
time in the trap of 0.75 ms.
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Figure 4.2.: Evolution of the quadrupole mode in a rotating Fermi gas in the
unitarity limit. The upper panel shows the precession of the principal axes
of the mode. The experimental data are shown by the dots. The solid line
represents a fit according to Eq. 4.2. The dashed lines correspond to the
idealized precession of the angle when there is no damping present in the
mode. Whenever the oscillation of the difference in widths ∆W 2/W 2

0 (lower
panel) has a local maximum the observed precession angle coincides with the
idealized precession. The parameter W0 is the average width of the cloud.
The finite value of φ at zero wait time results from the precession of the cloud
during expansion. Here Lz = 1.7~ and T/TF ≈ 0.2.
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Figure 4.3.: The angular momentum Lz as a function of the rotation frequency
Ωt of the elliptic trap. Here we spin up the gas for trot = 60 ms. The temper-
ature is T/TF ≈ 0.2. The gas is in the unitarity limit.
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Figure 4.4.: Decay of the angular momentum Lz for a gas in the unitarity limit.
The temperature is T/TF = 0.22(3). We fit an exponential decay behavior
(solid lines) to the experimental data points. For low ellipticity ε = 0.009
(open dots) the lifetime is 1.4 s, while at higher ellipticity ε = 0.1 (filled dots)
the lifetime is only 0.14 s. To better see the difference of the lifetime for the two
ellipticities we normalized Lz by its initial value L0. For the lower ellipticity
L0 = 2.2~ and for the higher ellipticity 1.6~.
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Figure 4.5.: Normalized decay rate of the angular momentum as a function of
the ellipticity for a gas in the unitarity limit. The temperatures are T/TF =
0.22(3) (filled dots) and 0.35(2) (open dots). The solid lines are fits based on
the expected behavior for a Boltzmann gas [GO00]. The inset shows the low
ellipticity region.
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Figure 4.6.: Lifetime of the angular momentum versus interaction parameter
1/kFa for ε = 0.09. The temperature for 1/kFa = 0 is T/TF = 0.22(3).
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We report on the observation of a quenched moment of inertia as resulting from superfluidity in a
strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow ro-
tation and determining its angular momentum by detecting the precession of a radial quadrupole
excitation. The measurements distinguish between the superfluid and collisional origins of hydro-
dynamic behavior, and show the phase transition.

5.1. Introduction

Superfluidity is a striking property of quantum fluids at very low temperatures. For bosonic systems,
important examples are liquids and clusters of 4He and atomic Bose-Einstein condensates. In
fermionic systems, superfluidity is a more intricate phenomenon as it requires pairing of particles.
Fermionic superfluidity is known to occur in atomic nuclei and 3He liquids and it is also at the
heart of superconductivity, thus being of great technological importance. Recent advances with
ultracold Fermi gases have opened up unprecedented possibilities to study the properties of strongly
interacting fermionic superfluids [Gio08, Ing08]. Early experiments on ultracold Fermi gases with
resonant interparticle interactions compiled increasing evidence for superfluidity [O’H02a, Reg04b,
Kin04a, Bar04a, Chi04a, Kin05b] until the phenomenon was firmly established by the observation
of vortex lattices [Zwi05].

Here we report on the manifestation of superfluidity in a quenched moment of inertia (MOI) in a
strongly interacting Fermi gas that undergoes slow rotation. The basic idea of a quenched MOI as
a signature of superfluidity dates back to more than 50 years ago in nuclear physics, where MOIs
below the classical, rigid-body value were attributed to superfluidity [Rin80]. The quenching of the

∗The contribution of the author of this thesis to this work consisted in taking data, and participating in the
interpretation and discussion of the results.
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MOI was also shown in liquid 4He [Hes67] and has, more recently, served for the discovery of a
possible supersolid phase [Kim04a]. Here we introduce the observation of the quenched MOI as a
new method to study superfluidity in ultracold Fermi gases.

5.2. Basic idea of the measurement

The basic situation that underlies our experiments is illustrated in Fig. 5.1. At a finite temper-
ature below the critical temperature Tc, the harmonically trapped cloud consists of a superfluid
core centered in a collisionally hydrodynamic cloud. We assume that the trapping potential is close
to cylindrical symmetry, but with a slight, controllable deformation that rotates around the corre-
sponding axis with an angular velocity Ωtrap. The nonsuperfluid part of the cloud is then subject to
friction with the trap and follows its rotation with an angular velocity Ω 1, which in a steady state
ideally reaches Ω = Ωtrap. The corresponding angular momentum can be expressed as L = ΘΩ,
where Θ denotes the MOI. The superfluid core cannot carry angular momentum, assuming that
vortex nucleation is avoided, and therefore does not contribute to the MOI of the system. Thus Θ
represents the MOI of the whole system.

The case of a rotating system in a steady state, where the normal part carries the maximum
possible angular momentum, allows us to distinguish the superfluid quenching of the MOI from
a non-equilibrium quenching effect as studied in Ref. [Cla07]. There the authors investigated
the hydrodynamic expansion of a gas with a known angular momentum. This situation, where
the velocity fields of the normal and superfluid components are not in a steady state, can also be
discussed in terms of a MOI below the rigid-body value. In contrast to the phenomenon investigated
in our present work, the effect of Ref. [Cla07] is related to irrotational flow and can occur for both
the superfluid and the collisionally hydrodynamic normal phase.

Our measurements rely on the possibility to determine the total angular momentum L of a
rotating hydrodynamic cloud by detecting the precession of a radial quadrupole excitation. This
method is well established and has been extensively used in the context of atomic Bose-Einstein
condensates [Che00, Hal01a, Lea02]. We have recently applied it to a rotating, strongly interacting
Fermi gas to investigate the slow decay of angular momentum [Rie09]. The method works under
the general condition that the gas behaves hydrodynamically. Then the precession frequency can be
written as Ωprec = L/(2Θrig) [Zam98], where Θrig corresponds to a moment of inertia as calculated
from the density distribution under the assumption that the whole cloud, including the superfluid
part, would perform a rigid rotation. Substituting ΘΩ for L, we obtain Ωprec = Θ/(2Θrig) Ω, with
Θ/Θrig = 1 for the full MOI in a normal system, and Θ/Θrig < 1 for a MOI that is quenched
because of the superfluid core.

5.3. Experimental setup and procedures

The starting point of our experiments is an optically trapped, strongly interacting Fermi gas con-
sisting of an equal mixture of 6Li atoms in the lowest two atomic states [Joc03a, Alt07b]. The
broad 834-G Feshbach resonance [Ing08] allows us to control the s-wave interaction. If not other-
wise stated, the measurements presented here refer to the resonance center. Here a unitarity-limited

1We assume that the normal cloud performs a rigid rotation with an angular velocity Ω. This can be justified by
the internal friction in the non-superfluid component along with the fact that the rotating trap deformation is
applied to all regions of the cloud simultaneously.
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Figure 5.1.: Schematic illustration of a strongly interacting Fermi gas in a
slowly rotating trap. The normal part rotates with a frequency Ω, which in
an equilibrium state approaches the rotation frequency Ωtrap that is imposed
by the trap. The superfluid core (sf) does not carry angular momentum and
therefore does not contribute to the MOI.

Fermi gas [Gio08, Ing08] is realized, which is known to exhibit deep hydrodynamic behavior even
well above the critical temperature for superfluidity, see e.g. [Wri07]. The cigar-shaped quantum
gas is confined in a far red-detuned, single-beam optical dipole trap with additional axial magnetic
confinement. The trap can be well approximated by a harmonic potential with radial oscillation
frequencies ωx = ωy ≈ 2π × 680 Hz and an axial frequency of ωz = 2π × 24 Hz. The Fermi energy
of the noninteracting gas is given by EF = ~(3Nωxωyωz)

1/3, where N = 6× 105 is the total atom
number. The Fermi temperature is TF = EF /k = 1.3µK, with k denoting the Boltzmann constant.

Our scheme to study the rotational properties is described in detail in Ref. [Rie09]. It is based on
a rotating elliptical deformation of the trap, characterized by a small ellipticity parameter [Rie09]
ε′ = 0.1. In contrast to our previous work, we use a lower rotation frequency of Ωtrap = 2π×200 Hz
≈ 0.3ωx. This low value allows us to avoid a resonant quadrupole mode excitation, which is known
as an efficient mechanism for vortex nucleation [Mad01, Hod02]. To excite the quadrupole mode
[Alt07b] we switch on an elliptic trap deformation for 50µs. We detect the resulting oscillation
by taking absorption images of the cloud after a variable hold time in the trap and a short free
expansion time after release from the trap. More details on this excitation and detection scheme
are given in Ref. [Rie09].

At this point it is important to discuss the consequences of residual trap imperfections, still
present when we attempt to realize a cylindrically symmetric optical potential. As we showed in
previous work [Rie09], we can control the ellipticity down to a level of ∼1%. Moreover, deviations
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from perfect cylindrical symmetry may occur because of other residual effects, such as corrugations
of the optical trapping potential. As a consequence, a certain rotational damping is unavoidable,
but damping times can reach typically one second [Rie09]. This has two main effects for our
observations. First, our measurements yield precession frequencies slightly below Ωprec. This is
because of a delay time of 20 ms between turning off the rotating trap ellipticity and applying the
quadrupole mode excitation. It is introduced to make sure that any possible collective excitation
resulting from the rotating trap has damped out when the mode precession is measured. Because of
rotational damping during this delay time, the measured precession frequencies Ω′prec are somewhat
below Ωprec. To compensate for this effect, we directly measure the reduction of Ωprec that occurs
during a 20 ms hold time to determine the corresponding damping parameter κ = Ω′prec/Ωprec

for each set of measurements, finding day-to-day variations with typical values between 0.85 and
0.9. The second effect is induced by friction with static (nonrotating) trap imperfections when the
rotating ellipticity is applied. This leads to equilibrium values for Ω typically a few percent below
Ωtrap, depending on the ratio between the time constants for spin up and damping [GO00]. For
this second effect there is no straightforward compensation, and it needs to be explicitly discussed
when interpreting the experimental results.

Thermometry is performed after the whole experimental sequence. We damp out the rotation
by stopping the trap rotation and keeping the ellipticity 2. We convert the gas into a weakly
interacting one by a slow magnetic field ramp to 1132 G, and we finally measure the temperature
T [Rie09]. Note that the isentropic conversion tends to decrease the temperature such that T is
always somewhat below the temperature T at unitarity [Che05]. The relative statistical uncertainty
of the temperature measurement is about 5% in the relevant temperature range.

5.4. Experimental results

To discuss our experimental results we introduce a dimensionless precession parameter P by nor-
malizing our observable Ωprec to its maximum possible value of Ωtrap/2,

P = 2
Ωprec

Ωtrap
=

Θ

Θrig
× Ω

Ωtrap
. (5.1)

The maximum possible value of P = 1 corresponds to a fully rotating, classically hydrodynamic
cloud. Values P < 1 show the presence of at least one of the two effects, namely the incomplete
rotation of the normal part (Ω/Ωtrap < 1) or the superfluid quenching of the MOI (Θ/Θrig < 1). It
is crucial for the interpretation of our experimental results to distinguish between these two effects.
Our basic idea to achieve this relies on the fact that Θ/Θrig represents a temperature-dependent
equilibrium property, whereas Ω/Ωtrap depends on the dynamics of the spin-up before the system
has reached an equilibrium. Experimentally, however, measurements of equilibrium properties at
a fixed temperature are not straightforward because of the presence of residual heating leading to
a slow, steady temperature increase. In the rotating trap we always observe some heating, which
under all our experimental conditions can be well described by a constant rate α = 170 nK/s =
0.13TF /s 3.

2The temperature increase resulting from conversion of rotational energy into heat is neglibly small.
3To determine the temparature increase in the rotating trap we measure T after variable rotation times. We find

that, in the relevant temperature range, the behavior of T is well approximated by a linear increase with time.
This justifies the description in terms of a constant heating rate.
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5.4.1. Equilibrium state of rotation

To identify the conditions under which our cloud reaches its equilibrium state of rotation, we have
developed a special procedure based on the timing scheme illustrated on top of Fig. 5.2. Our
procedure takes advantage of the constant heating rate α to control the final temperature of the
gas when P is measured. We apply the trap rotation in two separate stages of duration theat

and tspin. In an intermediate time interval of tdamp = 200 ms 4 we damp out the rotation that is
induced by the first stage. The angular momentum disappears, but the heating effect remains 5.
The second stage spins up the cloud again and induces further heating. When ttot = theat + tspin

is kept constant, we find that the total heating by the two rotation stages is ∆T = α ttot. As only
the second stage leads to a final angular momentum, the equilibrium state reached at a constant
temperature can be identified when P(tspin) reaches a constant value for increasing tspin and fixed
ttot. The temperature can be controlled by a variation of the parameter ttot and is obtained as
T = T0 + ∆T . The temperature offset T0 is set by the initial cooling and some unavoidable heating
during the experimental sequence without trap rotation. Under our conditions T0 ≈ 0.11TF .

Our experimental results for P(tspin) are shown in Fig. 5.2 for four different values of the heating
parameter ∆T /TF in a range between 0.026 to 0.104, which corresponds to a range of T between
about 0.14 and 0.21TF . All four curves show qualitatively the same behavior. Within a few 100 ms,
P rises before reaching a final equilibrium value. This time-dependent increase of P is related to
the spin-up dynamics 6. We find that the observed increase and saturation of P(tspin) can be well fit
by simple exponential curves (solid lines), and we use these fits to extract the different equilibrium
values Peq.

The equilibrium values Peq exhibit an interesting temperature dependence. The lower three val-
ues show a pronounced increase with temperature, Peq = 0.68, 0.81, and 0.91 for ∆T /TF = 0.026,
0.052, and 0.078, respectively. We interpret this increase as a consequence of the decreasing
superfluid core and thus the decreasing MOI quenching effect. For our highest temperature
(∆T /TF = 0.104) we only observe a marginal further increase to Peq = 0.93. This indicates
that the superfluid core is very small or absent leading to a disappearance of the quenching effect.
The fact that the maximum Peq stays a few percent below 1 can be explained by trap imperfections
as discussed in Sec. 5.3.

Let us comment on the possible influence of vortices [Zwi05]. We cannot exclude their presence 7,
as their nucleation can proceed not only via a resonant quadrupole mode excitation [Mad01, Hod02],
but also via a coupling to the thermal cloud [Hal01b]. Vortices would result in additional angular
momentum in the rotating cloud and its collective behavior would be closer to the normal case.
This would tend to increase P at lower temperatures, counteracting the behavior that we observe.

4The ellipticity is kept at its full level while the rotation is turned off. To speed up the damping we increase the
magnetic field to 920G.

5The temperature increase resulting from conversion of rotational energy into heat is neglibly small.
6The curves do not show the spin-up process directly, as our measurement procedure fixes the temperature at the

time of the measurement of P.
7In our setup we cannot directly observe vortices by absorption imaging. The main reason is the technical limitation

that our coil system does not allow for fast enough magnetic field ramps as required for increasing the size of
vortex cores during expansion [Zwi05].
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5.4.2. Superfluid phase transition

In a second set of experiments, we study the superfluid phase transition in a way which is exper-
imentally simpler, but which requires information on the equilibrium state as obtained from the
measurements presented before. The trap rotation is applied continuously, and we observe the
increase of P with the rotation time trot. All other parameters and procedures are essentially the
same as in the measurements before. Here the temperature is not constant, but rises according to
T = T0 + αtrot, where the heating rate α = 170 nK/s is the same as before and T0 = 0.085TF is
somewhat lower because of the less complex timing sequence.

Figure 5.3 shows how P increases with the rotation time trot (filled symbols); the upper scale
shows the corresponding temperature T . The observed increase of P generally results from both
factors in Eq.(5.1), corresponding to the rising Ω/Ωtrap (spin-up dynamics) and the rising Θ/Θrig

(decrease of the superfluid MOI quenching). Figure 5.3 also shows the values Peq as determined
from Fig. 5.2 (crosses), for which we know that the spin-up of the normal component has established
an equilibrium with Ω/Ωtrap being close to one. The comparison shows that already for trot = 0.4 s
the data set obtained with the simpler procedure follows essentially the same behavior. The small
quantitative difference that the crosses are slightly below the open symbols can be explained by a
somewhat stronger influence of trap imperfections in the earlier measurements of Sec. 5.4.1 8 or by
the uncertainty in the initial temperature T0. For trot ≥ 0.4 s, we can assume that the system is in
an equilibrium state, which follows the slowly increasing temperature, and we can fully attribute
the further increase of P to the quenching of the MOI.

The superfluid phase transition corresponds to the point where the precession parameter P
reaches its saturation value. This is observed for a time trot ≈ 0.95 s, when T /TF ≈ 0.21. The
conversion of this temperature parameter (measured in the weakly interacting regime after an
isentropic change) to the actual temperature in the unitarity-limit regime [Luo09] yields a value for
the critical temperature Tc of about 0.2TF . This result is consistent with previous experimental
results [Reg04b, Luo07, Ina08b, Luo09, Hor10, Nas10b], the range of which is indicated by the
shaded region in Fig. 5.3. The result is also consistent with theoretical predictions [Gio08, Hau08].

For a more precise extraction of Tc from experimental MOI quenching data, a theoretical model
would be required that describes the saturation behavior of Θ/Θrig as Tc is approached. Theoretical
predictions are available for the BEC limit [Str96] and the BCS limit [Far00, Urb03, Urb05]. In the
unitarity limit it should, in principle, be possible to extract the MOI from spatial profiles of the
normal and the superfluid fraction [Per04, Sta05]. Clearly, more work is necessary to quantitatively
understand the quenching effect in the strongly interacting regime.

5.5. Conclusion

We have demonstrated the quenching of the moment of inertia that occurs in a slowly rotating,
strongly interacting Fermi gas as a consequence of superfluidity. This effect provides us with a novel
probe for the system as, in contrast to other common methods such as expansion measurements
and studies of collective modes, it allows us to distinguish between the two possible origins of
hydrodynamic behavior, namely collisions in a normal phase and superfluidity.

8This explanation is supported by the fact that we measured a slower decay of angular momentum for the later
experiments of Fig. 5.3 (κ = 0.90) than we did for the earlier measurements of Fig. 5.2 (κ = 0.85). Between the
two sets of measurements the optical setup of the trapping beam was readjusted, leading to reduced imperfections
in the later experiments.
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Figure 5.2.: Precession parameter P versus spin-up time tspin for various values
of the final temperature, as characterized by the heating parameter ∆T (see
text). The quenching of the MOI shows up in the temperature-dependent
saturation behavior. The applied timing sequence to facilitate measurements
at constant temperature is illustrated above the graph. For these sets of
measurements κ = 0.85.
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Figure 5.3.: The precession parameter P as a function of the rotation time trot

(filled symbols); the upper scale shows the corresponding temperature T . For
comparison, the crosses show the equilibrium values Peq as obtained from Fig.
5.2. The shaded region indicates the range in which we expect the superfluid
phase transition according to previous experiments [Reg04b, Luo07, Ina08b,
Luo09, Nas10b, Hor10]. For this set of measurements κ = 0.90.
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We have observed interference between two Bose-Einstein condensates of weakly bound Feshbach
molecules of fermionic 6Li atoms. Two condensates are prepared in a double-well trap and,
after release from this trap, overlap in expansion. We detect a clear interference pattern that
unambiguously demonstrates the de Broglie wavelength of molecules. We verify that only the
condensate fraction shows interference. For increasing interaction strength, the pattern vanishes
because elastic collisions during overlap remove particles from the condensate wave function. For
strong interaction the condensates do not penetrate each other as they collide hydrodynamically.

6.1. Introduction

Interference manifests the wave nature of matter. The concept of matter waves was proposed
by de Broglie in 1923 [de 23] and now represents a cornerstone of quantum physics. Already
in the 1920’s, experiments demonstrated the diffraction of electrons [Dav27] and of atoms and
molecules [Est30]. These early achievements led to the field of atom optics and interferometry
[Ada94, Bon04, Cro09].

With the realization of Bose-Einstein condensates (BECs) [And95, Dav95, Bra95], sources of
macroscopically coherent matter waves became available. The interference between two BECs
was first observed by Andrews et al. [And97b]. This landmark experiment evidenced interference
between two independent sources and revealed the relative phase between them [Cas97]. Since
then, interference measurements have developed into an indispensable tool for research on BEC.
Applications include detection of the phase of a condensate in expansion [Sim00], investigation of
a condensate with vortices [Ino01], and studies of quasi-condensates [Had06] or Luttinger liquids
[Hof07] in reduced dimensions. Another fundamental line of research in matter-wave optics is to
explore the transition from the quantum to the classical world by detecting the wave nature of
progressively larger particles, like clusters [Sch94], C60 [Arn99], and other giant molecules [Ger11].

∗The contribution of the author of this thesis to this work was to take data and discuss the results for publication.

67



6. Publication: Observation of interference between two molecular Bose-Einstein condensates

The creation of molecular Bose-Einstein condensates (mBECs) of paired fermionic atoms [Joc03a,
Gre03, Zwi03] provides us with macroscopically coherent molecular matter waves. In this article, we
present the interference of two such mBECs and demonstrate interference as a tool to investigate
condensates of atom pairs. This work extends the interference of condensates towards larger,
composite particles.

In a Young-type interference experiment, we release two mBECs from a double-well trap and,
after the condensates have overlapped, we observe an interference pattern by absorption imaging.
In Sec. 6.2, we describe the experimental procedures in detail. In Sec. 6.3, we present our main
experimental results, demonstrating the molecular de Broglie wavelength and the dependence of the
interference contrast on temperature and interaction strength. Increasing the interaction strength
reduces the visibility because of increasing elastic scattering losses depleting the coherent matter
wave. Section 6.4 gives an outlook to possible extensions and applications of interference of pair
condensates.

6.2. Experimental procedures

6.2.1. Preparation of the molecular Bose-Einstein condensate

(b)(a)

y

x

y

z
B

Figure 6.1.: Illustration of the trapping and splitting of the mBEC in the pres-
ence of a magnetic field B. An acousto-optical modulator (AOM) toggles the
laser beam between two positions, which creates an effective double-well po-
tential for trapping two mBECs. (a) Along the x- and y-directions, the optical
potential is dominant; along the z-axis the magnetic potential is dominant.
(b) The potential shape of the optical dipole trap is Gaussian. The double-well
potential is generated from the superposition of two Gaussian potentials.

We create a molecular Bose-Einstein condensate (mBEC), starting from an atomic Fermi gas
consisting of an equal mixture of 6Li in the lowest two spin states. The preparation follows the
procedures described in our previous work [Joc03a, Bar04b, Alt07a, Rie08].

The atoms are trapped in the potential of a focused, far red-detuned laser beam with a beam
waist of 45µm, derived from a 25 W, 1030 nm single-mode laser source, as illustrated in Fig. 6.1.
We choose the coordinate system such that the laser beam propagates along the z-axis and gravity
acts in −y-direction. A magnetic bias field B can be applied along the y-axis. A broad Feshbach
resonance centered at B = 834 G [Bar05] facilitates precise tuning of the atomic s-wave scattering
length a. Below resonance, a weakly bound molecular state exists [Joc03b]. Molecules in this state
represent halo dimers, since their wave function extends far into the classically forbidden range
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[Fer08]. Their size is given by a and their binding energy is ~2/(ma2), where m denotes the atomic
mass and ~ is Planck’s constant h divided by 2π. The intermolecular scattering length is aM = 0.6a
[Pet05b].

To create the mBEC we perform evaporative cooling by reducing the laser beam power at a
constant magnetic field B = 764 G. During evaporation, the halo dimers are created through
three-body collisions [Joc03a] and eventually they form a mBEC [Ing08]. After evaporation, we
increase the trap depth, thereby compressing the condensate, to avoid spilling particles in all
further stpdf of the experimental sequence. The beam power is adiabatically increased by a factor
of about 10 to 45 mW. The trap center can be closely approximated by a harmonic potential.
The oscillation frequencies of the molecules, which are the same as the ones of free atoms, are
(ωx, ωy, ωz) = 2π× (250, 250, 20.6×

√
B/700 G) Hz. The axial confinement essentially results from

the curvature of the magnetic field. We obtain a cigar-shaped cloud containing N = 1.8 × 105

molecules. The condensate fraction exceeds 90 % [Joc03a].

Most of our measurements are carried out in the regime of weak interaction between the molecules.
We ramp the magnetic field adiabatically down to 700 G in 200 ms, thereby decreasing the scatter-
ing length to about aM = 1000 a0; at lower fields the molecules become unstable [Pet05a, Cub03,
Joc03b] and limit the lifetime of the mBEC. At 700 G, the chemical potential of the mBEC is
kB×200 nK, with kB denoting the Boltzmann constant, and the binding energy of the molecules is
kB × 8µK. In view of the crossover from BEC to a Bardeen-Cooper-Schrieffer (BCS) type regime
[Gio08, Ing08], one can also express the interaction conditions in terms of the commonly used di-
mensionless parameter 1/(kFa), where kF is the Fermi wave number of a non-interacting Fermi
gas with (~kF )2/(2m) = EF , where EF = ~(6Nωxωyωz)

1/3 is the Fermi energy. For the condition
of our mBEC at 700 G we obtain 1/(kFa) = 3. Strongly interacting conditions are realized for
1/(kFa) < 1, which can be achieved at fields closer to resonance.

6.2.2. Condensate splitting

The mBEC is split into two equal parts along the y-axis. We transform the Gaussian shaped optical
dipole potential into a double-well potential, as illustrated in Fig. 6.1(b). This is accomplished
by using time-averaged potentials. An acousto-optical deflection system modulates the trapping
beam position so fast that the atoms do not follow and feel the time-averaged beam intensity as
their motional potential [Alt07b, Shi04]. The modulation frequency is 200 kHz and the trapping
beam is toggled between two positions, the distance of which is increased from 0 to 68µm within
50 ms. The distance between the minima of the resulting double well is somewhat smaller because
the two Gaussian potentials still overlap. The measured distance between the centers of the two
condensates is s = 56µm and the measured oscillation frequencies in each well are (ωx, ωy, ωz) =
2π × (164, 146, 20.6 ×

√
B/700 G) Hz. The chemical potential of both condensates is kB × 100 nK

and the interaction parameter is 1/(kFa) = 4. The barrier height is kB × 160 nK, which leads to
a fully negligible tunneling rate. The number ratio between the two condensates after splitting is
sensitive to imperfections of the optical potential. To control equal number splitting, we fine-tune
the magnetic gradient field that is applied to compensate for the effect of gravity.

6.2.3. Expansion in the magnetic field

The specific expansion dynamics of the released mBECs in our setup is the key to making interfer-
ence clearly observable, and the understanding of the expansion is essential for the interpretation
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6. Publication: Observation of interference between two molecular Bose-Einstein condensates

of our results. We identify two effects, which result from the curvature of the magnetic field, that
are favorable for the observation of interference.

The coils generating the magnetic offset field in our set-up are not in Helmholtz configuration,
which leads to second-order terms in B(x, y, z). The resulting magnetic potential is a saddle
potential, where the molecules are trapped along the x- and z-directions, but they are anti-trapped
along the y-axis, the symmetry axis of the field. The oscillation frequencies are (ωx, ωy, ωz) =
2π× (20.5, i×29, 20.5)×

√
B/700 G Hz, where the imaginary frequency denotes the anti-trap along

the y-axis.

We model the expansion by adopting the scaling approach as applied in Refs. [Men02, Alt07b].
Figure 6.2(b) shows the predicted evolution of the Thomas-Fermi (TF) radii Rx, Ry and Rz, which
we also verify experimentally. At the beginning, the expansion is driven by the pressure gradient in
the cloud, which leads to a fast acceleration in the radial direction. This expansion is then further
accelerated along y and decelerated along x because of the magnetic saddle potential. Along the
z-axis, the long axis of the trapped cloud, the trap remains basically unchanged when the cloud is
released from the optical potential. As the mean field pressure of the expanding cloud decreases, the
magnetic confinement leads to a spatial compression of the cloud. We find that after tTOF ≈ 14 ms
the parameter Rz has a minimum because of this compression effect.

For high interference contrast, large overlap of the two clouds at the time of detection is essential.
To achieve this, the condensates are kicked towards each other by switching on the original single-
well trap, typically for 0.1 ms right after release from the double well. The solid lines in Fig. 6.2(a)
show the calculated center-of-mass motion of the clouds after the initial kick to assure large overlap
at tTOF ≈ 14 ms.

The interference pattern is determined by the relative velocity between the two condensates.
The relative velocity vrel at y = 0 and tTOF = 14 ms can be directly deduced from the slopes
of the solid lines in Fig. 6.2(a). This velocity is substantially smaller than it would be in free
expansion without magnetic potential, where particles meeting at y = 0 and tTOF = 14 ms would
follow the dashed trajectories in Fig. 6.2(a). This deceleration of vrel can be readily visualized by
the condensates climbing up the potential hill resulting from the anti-trap in y-direction. This
anti-trap also accelerates the expansion in y-direction, see Ry in Fig. 6.2(b). Remarkably, since the
velocity field in each of the clouds stays linear, vrel is independent of the position. More rigorously,
we calculate vrel using the scaling approach and taking into account the center-of-mass motion of
the clouds.

Thus expansion dynamics brings about two favorable effects: First, the spatial compression
along the z-axis facilitates clear detection of interference fringes by absorption imaging. Second,
the decreased relative velocity leads to an increased fringe period. This means that the anti-trap
acts as a magnifying glass for the interference fringes.

6.2.4. Detection and analysis of interference fringes

We detect the clouds by absorption imaging. Figure 6.3(a) shows a typical image of interference
after 14 ms time of flight. The imaging beam propagates along the z-axis. It is overlapped with
the trapping beam using dichroic mirrors. The imaging light pulse is on for 10µs and its intensity
is about the saturation intensity of 6Li atoms. We state-selectively image the atoms in the second-
to-lowest Zeeman state. Already the first photon scattering event is likely to dissociate the weakly
bound molecule [Bar04b], followed by about 10 more photons scattered by the free atom.
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From the absorption images, we determine the visibility and fringe period of the interference pat-
tern. The column density is integrated along the x-direction over the region depicted in Fig. 6.3(a)
1 resulting in a one-dimensional density distribution D, shown in Fig. 6.3(b). The density distri-
bution contains various kinds of noise (e.g. photon or atom shot noise, or camera readout noise),
which may be misinterpreted as interference signal. Therefore we analyze the density distribution
in Fourier space by considering the Fourier transformed density distribution F(D), see Fig. 6.3(c).
Here all those types of noise are approximately white and show up as a constant offset, whereas,
the signal of interference is monochromatic and shows up as a peak. This gives the possibility to
subtract the average contribution of noise from the signal. We determine the visibility and fringe
period by the custom fit function in Fourier space

f =
√
|F((a+ b y + c y2)× (1 + v sin(2π/d y + φ)))|2 + n2, (6.1)

yielding the fringe period d, the visibility v, and the relative phase φ. The term a+b y+c y2 account
for the somewhat non-uniform density distribution. The white noise n is the offset in Fourier space.
Since the phase between the signal and the noise is random, the corresponding contributions are
added quadratically. The discrimination of the noise via this fitting routine is crucial when the
visibility is low.

The largest observed visibility is about 30 %. We find that this upper limit can be essentially
attributed to the finite resolution of our imaging system. We determine the modulation transfer
function of the imaging system and it gives about 30 ± 10 % visibility for structures with period
d = 20µm. Also other sources can contribute to a reduction of visibility, like a blurring because
of a limited depth of focus or a tilt of the planes of constructive and destructive interference. The
planes are in general somewhat tilted with respect to the line of sight, thereby obscuring the fringe
pattern on the image. But these effects are suppressed by the spatial compression along the imaging
axis caused by the magnetic saddle potential. This can be seen by comparing the compression of
Rz in Fig. 6.2(b) to the detected visibility in Fig. 6.2(c). The minimum of Rz after tTOF = 14 ms
coincides with the peak in visibility. The peak value of almost 30 % agrees with the resolution limit
of the imaging system. All following measurements are performed when the clouds are compressed
to about 1µm along the imaging axis; in this case, only the limited resolution is relevant. The
spatial compression is an alternative to the slicing imaging technique used in Ref. [And97b] and
brings along the advantage that all particles are imaged.

6.3. Experimental results

The observed interference pattern is the standing wave formed by two macroscopically occu-
pied matter waves, the two molecular BECs. Here we present our main experimental results.
In Sec. 6.3.1, we investigate the fringe period, which evidences that the interfering particles are
molecules. In Sec. 6.3.2, we study the visibility when heating the cloud to above the critical tem-
perature for condensation to show that the interference is established by the condensate fraction.
In Sec. 6.3.3, we explore the dependence of the visibility on the interaction strength and find that
non-forward scattering processes depopulate the momentum component of the matter wave that is
responsible for the interference pattern.

1The size of the region was chosen to produce the optimal signal to noise.
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6.3.1. Fringe period

The fringe period is an central observable in interference experiments. Figure 6.4 shows the mea-
sured fringe period at B = 700 G as a function of time of flight. The de Broglie relation yields the
fringe period

d =
h

Mvrel
, (6.2)

which is determined by the mass M of the interfering particles and by the relative velocity vrel of
the two condensates. In our experiment, we calculate vrel from the expansion and center-of-mass
motion of the condensates in the magnetic field curvature, as discussed in Sec. 6.2.3. The result is
in contrast to the simple relation vrel = s/tTOF that holds for the free expansion usually considered
in experiments of this type. The solid line in Fig. 6.4 displays the calculated fringe period d
for molecules, where we set M = 2m. All input parameters for this calculation are determined
independently. Their combined uncertainties result in typical uncertainty of 3 % for the fringe
period, with the main contribution stemming from the uncertainty in the cloud separation. The
data are in remarkable agreement with the calculation. For comparison, we also plot the fringe
period for interfering atoms (M = m), which is clearly incompatible with the data.

The dotted line in Fig. 6.4 displays the fringe period that would result for freely expanding
mBECs without the magnetic saddle potential. Comparing this curve to the much larger fringe
period that we observe, highlights the effect of the magnetic field curvature to magnify the fringe
period, as discussed in Sec. 6.2.3. The same magnification effect was reported in Ref. [Zaw10].

Note that the fringe period can be increased by interaction-induced slowing down of the two
overlapping condensates [Sim00]. The mean-field of one condensate represents a potential hill for
the other condensate, which slows down when climbing this hill. Under our experimental conditions
at 700 G, the effect is found to be negligible. For stronger interaction, we see indications of this
effect in agreement with a corresponding model calculations.

6.3.2. Dependence of interference visibility on condensate fraction

To demonstrate that the interference results only from the condensed molecules and not from the
thermal fraction, we perform a controlled heating experiment and show the loss of visibility with
vanishing condensate fraction. Starting from an almost pure condensate [Joc03a], we hold the
gas in the recompressed optical dipole trap for a variable hold time before splitting. Intensity
fluctuations and pointing instabilities of the laser beam as well as inelastic collisions between the
molecules [Pet05a] heat the gas and lead to a monotonous temperature increase [Sav97, Wri07].
To demonstrate that the interference results from the condensate, it is sufficient to determine the
hold time at which the critical temperature for condensation Tc is reached. Therefore, we fit a
Gaussian profile to the density distribution of the cloud, which is recorded after expansion for
tTOF = 5 ms from the single-well trap. We find that the integrated residual of the fit gives a good
measure whether the cloud shape deviates from a thermal one. The inset in Fig. 6.5 shows that
the integrated residual goes to zero after a hold time slightly below 3 s, which locates the phase
transition.

The visibility data in Fig. 6.5 are recorded at B = 700 G after tTOF = 14 ms 2. The visibility
decreases as the temperature increases and vanishes for a hold time that coincides with the hold

2We verify on images after tTOF = 0.4 ms that the clouds are still separated in the double-well potential despite the
higher thermal energies.
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time when Tc is reached. The observed decrease of visibility is continuous because we image the
full column density including the growing thermal fraction, which does not clearly separate from
the condensate in expansion at 700 G. Above Tc, the density distribution does no more show any
fringes. Still, the fitting routine produces finite mean values because it can output only positive
values. But if the measured visibility is not larger than the standard deviation, its distinction from
zero is not significant. The vanishing visibility above the critical temperature confirms that, as
expected, the interference is established by the condensate fraction.

Further intriguing evidence that the interference is caused by the condensate is the observation
of interference between independent ultracold clouds. An independent production rules out that
the interference can be caused by self interference of particles [Mil05]. To investigate interference
between independent clouds, we split them already at a temperature far above the critical tem-
perature to a large distance of 180µm and then create two mBECs independently. Shortly before
release, we reduce the distance to obtain the identical geometry as in all the other measurements
and proceed as usual. We observe the same kind of interference pattern with a visibility of about
15 %. The lower visibility can be explained by a less efficient evaporation and less control over the
equal number preparation in the double well.

6.3.3. Dependence of interference visibility on interaction strength

In a further set of measurements, we investigate how the fringe visibility depends on the interaction
strength. Therefore we perform the interference experiment for different magnetic field values,
thereby changing the molecular scattering length aM according to the upper panel of Fig. 6.6 3.
The observed visibility as a function of the magnetic field is shown in the lower panel in Fig. 6.6.
The highest visibility is found at about 700 G. For lower fields, the visibility is decreased, which
we attribute to inelastic decay. The inelastic collisions of molecules lead to heating of the gas
and loss of particles. The heating reduces the condensate fraction, which decreases the visibility
as observed in the previous section. The loss also reduces the signal on the images. This leads
to a higher statistical uncertainty in the determination of the visibility, showing up in the larger
standard deviations below 700 G.

Towards larger interaction strength, our data show a pronounced decrease of visibility, and
the visibility vanishes at about 780 G. This coincides with the onset of strong interaction in the
trap, where 1/kFa ≈ 1. We find that the main effect causing the decrease is elastic non-forward
scattering. It is known from experimental and theoretical work on colliding condensates [Chi00,
Ban00] that elastic non-forward scattering of particles removes them from the condensate wave
function. In contrast to the forward scattering accounted for within the usual mean-field approach,
this non-forward scattering transfers particles into momentum states of random direction, which
therefore do no more contribute to the observed interference pattern. Non-forward scattering
is a particle-like excitation, which requires vrel to exceed the speed of sound vs. The process
is suppressed for smaller vrel [Chi00, Ban01]. To estimate the decrease of visibility through this
process, we perform a simple model calculation. The velocity dependence of non-forward scattering
is included by the following approximation: no suppression for vrel ≥ vs and full suppression
otherwise. We calculate the mean number of non-forward scattering events Ne for a representative
molecule with molecules of the other condensate until the moment of detection. This representative

3We verify on images after tTOF = 0.4 ms that the clouds are still separated in the double-well potential despite the
higher chemical potential at higher interaction strength.
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molecule travels along the center-of-mass path of the condensate; see Fig. 6.2(a). We take the
bosonically enhanced, unitarity limited scattering cross section σ = 8πa2

M/(1 + (kaM )2), with
k = mvrel/~. From Ne, we derive the probability for a molecule to still be part of the condensate.
This probability is e−Ne and directly corresponds to the expected visibility, which we fit to the
data, excluding the three data points below 700 G. We obtain the solid line in Fig. 6.6. The only fit
parameter is a normalization factor, which allows us to account for the reduced detected visibility
because of the limited imaging resolution. The fit yields a factor of 0.32, which is consistent with
the imaging resolution discussed in Sec. 6.2.4. We find that our simple model for non-forward
scattering can very well explain the decrease of visibility towards high interaction strength.

There are also other effects that decrease the visibility for increasing interaction strength, but
they turn out to be minor for our experimental conditions: Strong interaction lead to a depletion
of the condensate [Dal99]. Only the condensate contributes to the interference pattern and not
the depleted fraction.The depleted fraction amounts to about 10 % at 780 G. As we expect the
reduction of visibility to be proportional to the depletion, the reduction is negligible (at 780 G from
2.6 % to 2.3 %). Another effect reducing the visibility is the collisional dissociation of molecules
during overlap. However, this effect can only occur above 800 G, where the collision energy exceeds
the binding energy.

To directly demonstrate the effect of non-forward scattering, we study the collision of two conden-
sates when their relative velocity vrel is much faster than the their expansion velocity. This allows
us to observe the non-forward scattered particles in an s-wave shell [Bug04], well separated from
the condensates, see Figure 6.7. This separation was not present in the interference experiments
reported before because vrel was similar to the expansion velocity. We apply our simple model to
calculate the fraction of non-forward scattered particles and find good agreement, confirming our
model in an independent and direct way.

Close to the Feshbach resonance, we enter a regime where the number of collisions becomes large.
This leads to hydrodynamic behavior also above Tc [O’H02a, Wri07]. The time of flight series in
Fig. 6.8, taken on resonance, shows that the clouds do not penetrate each other in this regime.
Instead, the flow of the particles is redirected into the the x-z-plane leading to the observed high
column density in the center. Unlike at low magnetic fields, the clouds do not superimpose. This
directly excludes interference of two independent condensates in the strongly interacting regime.
The scenario is similar to the one in Ref. [Jos04] and may be described by the analysis therein.

The hindered overlap could be overcome by a magnetic field ramp to weak interaction after release
and before overlapping, as done for the detection of vortices in Ref. [Zwi05]. Like the observation
of vortices, the observation of interference would evidence the coherence of the strongly interacting
superfluids.

In further measurements, performed above the Feshbach resonance towards the BCS regime, we
did not observe interference. To discuss possible reasons for the absence of interference fringes, let
us first consider the effect of non-forward scattering on the visibility. As on the BEC side, this effect
may hinder overlap and interference for 1/kFa < −1, i.e. below 910 G. However, we also have to
consider that the pairs on the BCS side may not persist in expansion [Sch07b], unlike on resonance
or on the BEC side. For the lowest achievable temperature in our experiment and at 910 G, the
pairs would be already unstable after a very short expansion time according to Ref. [Sch07b].
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6.4. Conclusion and outlook

In conclusion, we have observed the interference between two molecular BECs. The interference
pattern visualizes the standing matter wave of the weakly bound Feshbach molecules and shows
coherence over the spatial extension of the cloud. The contrast of interference vanishes above
the critical temperature of condensation, demonstrating that the interference is established by the
condensed molecules only. We find that non-forward elastic scattering processes can lead to a
depletion of the condensate wave function while the clouds overlap. This effect increases towards
higher interaction strength and prevents us from observing interference in the strongly interacting
regime. On resonance we observe that the two clouds do not overlap but rather collide and deform
as a result of deep hydrodynamic behavior.

Interference between condensates of paired fermionic atoms can serve as a powerful tool to
investigate many exciting aspects of those systems. A future application will be given, for example,
if p-wave condensates become available. Here, interference is predicted to reveal the vector nature of
the order parameter [Zha07]. A conceptually interesting regime will be entered when the size of the
pairs becomes comparable to the fringe period. Then the detected distribution of atoms may not
reveal the interference pattern of the pair distribution. Besides investigating condensates of paired
fermions themselves, the system could be used to study the fundamental processes of interference.
The wide tunability of the interaction strength could be used to assist self-interference [Ced07] or
to investigate to which extent interaction build up the observable relative phase [Xio06].

Suppressing the effect of non-forward scattering during overlap could extend the range of appli-
cations of condensate interference. Such a suppression may be achieved by reducing the interaction
strength before overlap using fast magnetic field ramping techniques [Gre03, Zwi05]. This technique
would allow for investigating the interference in the regime of strong interaction or even on the
BCS side of the resonance, where the interference of Cooper-type pairs is an intriguing question in
itself.

We thank Christopher Gaul for stimulating discussions. We acknowledge support by the Austrian
Science Fund (FWF) within SFB 15 (project part 21) and SFB 40 (project part 4).
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Figure 6.2.: Expansion dynamics of the condensates in the magnetic saddle
potential. (a) The solid lines are the calculated center-of-mass motion of the
condensates, taking into account an initial kick towards each other, see text.
The trajectories intersect after tTOF = 14 ms. For comparison, the dashed
lines represent the trajectories of particles in free expansion intersecting at the
same point. (b) The calculated Thomas-Fermi radii of the condensates show
the expansion along the x- and y-axis and the compression along the z-axis.
The initially cigar-shaped mBEC evolves into a flat disc. (c) The measured
visibility of the fringe pattern shows a clear peak, which coincides with the
minimum in Rz. The bars indicate the statistical uncertainties derived from
10 individual measurements.
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Figure 6.3.: Interference image and analysis. (a) The column density along the
z-axis after tTOF = 14 ms shows the interference pattern. The field-of-view
is 660µm×170µm. The inner box indicates the region used for analysis. (b)
The column density integrated along x gives the density distribution D along
y (dots). The solid curve is the result of the fit in Fourier space, see text. (c)
The density distribution is Fourier transformed (dots) and fitted (bars).
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Figure 6.4.: Fringe period as a function of time of flight. The symbols are the
measured periods with bars, mostly smaller than the symbol size, indicating
the statistical uncertainties resulting from 10 individual measurements at a
given time of flight. The solid line is the calculated period for molecules and
the dashed line for atoms. For free expansion without the magnetic saddle
potential, the fringe period of molecules would be much smaller (dotted line).
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Figure 6.5.: Visibility of interference for increasing temperature. The main
figure shows the measured mean visibility with bars indicating the standard
deviation resulting from 11 measurements. Here, we plot the standard de-
viation and not the statistical uncertainty to better illustrate the range of
measured values. During the hold time in the trap, the temperature increases
from low temperature to above Tc. The hold time after which Tc is reached
is indicated by the grey bar. The inset shows the integrated residuals of a
Gaussian fit, see text. A linear fit to the first six points facilitates a simple
extrapolation to zero, which marks the vanishing of the condensate fraction.
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Figure 6.6.: Visibility of interference from weak to strong interaction. The
upper panel shows how the molecular scattering length aM increases towards
the Feshbach resonance at 834 G, marked by the dashed line. The onset of
the strongly interacting regime is marked by the dotted line. In the lower
panel, the dots represent the mean visibility with bars indicating the stan-
dard deviation resulting from 20 individual measurements. The solid line is
the predicted visibility from the simple calculation modeling the non-forward
scattering events.
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Figure 6.7.: Absorption image 1 ms after the collision of two BECs. A spherical
shell of scattered particles clearly separates from the two BECs. The field of
view is 180× 180µm.
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Figure 6.8.: The hindered overlap on resonance. The series shows the first few
milliseconds of expansion. The two clouds do not penetrate each other, but
splash according to hydrodynamics. The field of view is 180× 180µm.
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7. Higher order collective modes

In this chapter we investigate higher order collective modes in a Fermi gas composed of the two
lowest hyperfine states of 6Li with unitarity limited interactions∗. The experiments are done in
the zero-temperature limit. Higher order modes, besides being interesting in their own right, have
been proposed as a tool to study second sound in ultracold trapped atoms.

Second sound takes place in a system where two coexisting and coupled fluids, one of them a
superfluid, oscillate with respect to each other. The oscillation can be in-phase, known as first
sound, or out-of-phase, referred to as second sound. One key point is that both fluids have to be
hydrodynamic in order to ensure local thermal equilibrium. Thus, the normal fluid is collisional
hydrodynamic, while the superfluid quantum hydrodynamic. Note that the fact that the equilib-
rium is local implies that the thermodynamic variables depend on both position and time. Another
basic feature is the superfluid: it introduces a degree of freedom, the entropy, that reflects the fact
that the quantum fluid has no entropy. Hence, the entropy fluctuations are a local depletion of the
superfluid that indeed adds up to an out-of-phase oscillation of the densities.

The unitarity limited degenerate Fermi gas is produced in a single focused laser beam dipole trap.
This results in an elongated cigar-shape trap geometry. In order to experimentally study higher
order modes we modify our set up in two ways (see App. A): we introduce a far blue-detuned laser
beam (532 nm) perpendicular to our single focused-laser dipole trap, and we implement a camera
to image the axial distribution of the cloud. We excite the axial modes by modulating the height
of the repulsive potential created by the blue-detuned beam. Along this direction both normal and
superfluid components are deeply hydrodynamic. In addition, the larger size of the cloud makes it
experimentally easier to engineer the perturbing potential and excite the cloud.

We first give a brief historical review of two-fluid hydrodynamics in section 7.1; in section 7.2
we discuss the general theoretical framework; the experiment is presented in section 7.3; then we
discuss the analytical methodology in section 7.4; finally we discuss the results in section 7.5 before
arriving at the conclusions in section 7.6.

7.1. Brief historical recollection

Two-fluid hydrodynamics was first discussed in 1938 in the context of superfluid helium [Tis38,
Tis40a, Tis40b]. The theory was put forth shortly after in [Lan41]. Experimentally, the prediction
that an entropy wave should arise in the system was confirmed using liquid helium II in [Pes44],
which is also when the term “second sound” was coined. The speed of an entropy wave was
measured soon after [Lan47].

∗The author of the present thesis developed the experimental procedure, performed the measurements and made
the data analysis. He was supported by M.K. Tey and L. Sidorenkov. F. Schreck and R. Grimm contributed ideas
and suggestions. Theoretical support was given by Sandro Stringari.
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The first studies in ultracold atoms were focused on weakly interacting Bose gases. From the
theoretical side, the first calculations of first and second sound oscillations were done by Zaremba,
Griffin, and Nikuni (ZGN) [Zar98] and by Shenon and Ho [She98]. Experimentally, the hydrody-
namic condition introduced in Ch. 1, ωτR � 1, is generally difficult to fulfill in a BEC: either the
gas is too dilute or the scattering length too small in order to avoided losses. The first attempt
to see traces of the entropy wave dates back to 1997 [And97a, And98], followed by a direct study
the year after [Sta98]. This last experiment was eventually proven to have been carried out under
conditions where the the two-fluid model holds [Nik01]. The experiment consisted in heating up
the cloud locally with near-resonant light. A decade later it has been tried to see the effect in a
BEC of Na were the hydrodynamic condition was achieved due to a very large number of atoms,
and large axial trap frequency [Mep09a]. In this experiment sound propagation was studied using a
repulsive barrier to excite the cloud. However, the required accuracy was not achieved to measure
the expected behavior.

In a Fermi gas, where the Pauli exclusion principle suppresses losses, the hydrodynamic condition
is fulfilled by adjusting the tunable interaction strength in the vicinity of a Feshbach resonance to
result in a very small τR. This is a huge advantage from the experimental point of view. In
the case of a trapped Fermi gas research on collective modes has been done extensively for the
zero-temperature limit [Str04, Hei04, Kim04b, Kim04c, Hu04, Bul05, Man05, Ast05], and for the
nondegenerate case [Bru99, Ped03, Mas05]. In the former limiting case one is dealing with a pure
condensate described by quantum hydrodynamics [Pit98], and in the latter with a normal Fermi
liquid described by collisional hydrodynamics.

The temperature region in between, where two-fluids hydrodynamics takes place, has also been
studied for Fermi systems. It has been shown theoretically that the normal state of the unitarity
limited gas is properly described by collisional hydrodynamics throughout the experimentally ac-
cessible temperatures [Mas05]. An initial study of first and second sound in these systems is found
in [Ho04]. One recent model in particular uses a variational approach similar to that of ZGN to
study the collective modes in an isotropic trap. The theoretical framework developed in [Tay05] cir-
cumvents the difficulty of solving the Landau equations for the normal modes. This is achieved by
introducing displacement fields for the velocities instead of using Lagrange multipliers to minimize
the action: the linearized conservation equations are rewritten as constraints for the fluctuations
of the total density and the entropy, and expressed in terms of these displacement fields. Now one
incorporates these constraints into the Taylor-expanded action and drops the Lagrange multipliers.
The result is that the original action, which depended on the velocity and density fields of the
normal and superfluid states, the entropy, and the Lagrange multipliers, is now a function of the
displacement fields for the normal and superfluid state only. The task becomes to minimize the
simplified action with respect to these new fields in order to find the linearized Landau two-fluid
equations. One ends up with two coupled harmonic oscillators. Using the appropriate Ansätze for
the displacement fields leads to the collective mode frequency.

This methodology was later used to calculate the temperature dependence of the low-lying col-
lective modes [Tay08]. Together with numerical results for the dipole and breathing modes it was
also suggested that Bragg spectroscopy could be a possible route to experimentally measure sec-
ond sound. In subsequent research the hybridization of the higher order adiabatic waves with the
entropy waves, which had already been predicted in [He07], was derived. This led to the conclusion
that the coupling between adiabatic and entropy waves gives rise to a signature of the latter in the
experimentally accessible absorption imaging of the former [Tay09]. The comparison between both
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approaches is discussed in [Hu10].

On a separate research, the propagation of first and second sound pulses at finite temperature
has been studied for the uniform case [Ara09], and predicted that second sound should have a
sizable amplitude in the density response function which is separated from that of first sound.
Just recently first studies on density and entropy waves propagating in the experimentally feasible
elongated trap geometry were done [Ber10]. In it the conditions for hydrodynamic behavior in the
1D case were discussed.

Experimentally, neither higher order modes nor second sound have been studied in ultracold
degenerate two-component Fermi gases. Yet it is exactly the Landau two-fluid equations and its
ramifications which are appropriate to describe this region. In other words, the predictions of two-
fluid hydrodynamics at unitarity are what distinguishes it from the weakly interacting superfluid,
and pertain exclusively to strongly correlated quantum fluids. This is the motivation for our present
line of work.

7.2. Concise theoretical background

The experimental results presented in this chapter relate to the zero-temperature limit of the
theory. In this case exact solutions to the two-fluid hydrodynamic equations for the collective
modes on resonance can be found. Be that as it may, for completeness and bearing in mind
the larger scope and outlook of the project, we give a description of the variational method that
generally describes the zero-temperature limit, the nondegenerate case, and the temperature region
in between. However, it would be futile to attempt to explain in its full breadth the theoretical
framework. Hence, we refer the reader to the references below, and content ourself here with
a general sketch of the theory. All the models start from the dissipationless Landau two-fluid
equations in a trap [Lan41, Tay05, Gri09, Tay09]:

∂ρ

∂t
+∇ · j = 0,

∂s

∂t
+∇ · (svn) = 0, (7.1)

and

m
∂vs
∂t

= −∇ (µ+ Vext) ,

∂j

∂t
= −∇P − n∇Vext. (7.2)

Eqs. (7.1) are the conservation of mass and of entropy correspondingly; j = ρsvs+ρnvn is the total
mass current, vs and vn the superfluid and normal fluid velocities, ρs and ρn the superfluid and
normal fluid densities, and ρ = ρs + ρn the total mass density. The second set of equations, Eqs.
(7.2), are Euler’s equations for irrotational flow; s is the entropy density, P is the local pressure of
the gas, µ is the local chemical potential, and Vext is the external trapping potential.

In addition, one needs to define an action, S[s, ρ, ρn,vs,vn]. The phenomenological action pro-
posed in [Zil50] is expanded in powers of the fluctuations (δρ, δs, δvs, δvn) about the equilibrium
values (ρs0, s0,vs0,vn0) up to quadratic order [Tay08] (linear terms drop out during the variation
process and higher order terms are disregarded). This action, S(2), describes the hydrodynamic
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fluctuations, and still contains Lagrange multipliers. The traditional procedure would be to mini-
mize the variation of the action with respect to the fluctuations. What is done instead is linearize
Eqs. (7.1) and (7.2),

∂δρ

∂t
+∇ · (ρs0vs + ρn0vn) = 0

∂δs

∂t
+∇ · (s0vn) = 0, (7.3)

and introduce the displacement fields

vn ≡
∂un(r, t)

dt
, and vs ≡

∂us(r, t)

dt
. (7.4)

The resulting constraint expressions δρ and δs are substituted into S(2),

S(2) =

∫
drdt

{
1

2
ρs0u̇

2
s +

1

2
ρn0u̇

2
n

−1

2

(
∂µ

∂ρ

)
s

[∇ · (ρs0us + ρn0un)]2

−
(
∂T

∂ρ

)
s

[∇ · (s0un)] [∇ · (ρs0us + ρn0un)]

−1

2

(
∂T

∂s

)
ρ

[∇ · (s0un)]2

}
. (7.5)

This results in an action that only depends on the two displacement fields, us(r, t) and un(r, t).
This is the central part of the model.

We would like to find now the variational solutions with respect to these new fields. By choosing
Ansätze of the form

usi(r, t) = asifi(r) cosωt (7.6a)

and
uni(r, t) = anigi(r) cosωt, (7.6b)

where i corresponds to each Cartesian direction, the minimization of the action becomes

∂S(2)

∂asi
= 0 and

∂S(2)

∂ani
= 0. (7.7)

Hence, what remains is to find suitable trial functions fi(r) and gi(r) to produce the appropriate
collective mode frequency or, in the case of a uniform gas, the speed of first and second sound.

At this point it is convenient to substitute Eqs. (7.6) into S(2). Performing the time integration
one finds the following Lagrangian

L(2) = K[us,un]ω2 − U [us,un], (7.8)

where

K[us,un] =
1

2

∫
dr
{
ρs0u

2
s + ρn0u

2
n

}
(7.9)
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and

U [us,un] =

∫
dr

{
−1

2

(
∂µ

∂ρ

)
s

[∇ · (ρs0us + ρn0un)]2

−
(
∂T

∂ρ

)
s

[∇ · (s0un)] [∇ · (ρs0us + ρn0un)]

−1

2

(
∂T

∂s

)
ρ

[∇ · (s0un)]2

}
. (7.10)

Equation (7.8) has exactly the form of a harmonic oscillator, where K is the kinetic energy part,
and U the potential energy one. Now one varies L(2) instead of S(2).

As an example and to further illustrate the theoretical procedure we look at the dipole mode.
This is the center of mass oscillation of the cloud. Choosing the z-axis as the one along which the
oscillation takes place, the corresponding displacement field Ansätze , fi(r) = δi,z and gi(r) = δi,z,
lead to us(r, t) = asẑ and un(r, t) = anẑ. One readily finds from Eq. (7.9)

K[as, an] =
1

2

(
Msa

2
s +Mna

2
n

)
, (7.11)

where the masses are given by

Ms =

∫
drρs0, Mn =

∫
drρn0. (7.12)

For the potential part the result is

U [as, an] =
1

2

(
ksa

2
s + kna

2
n + ksn(as − an)2

)
, (7.13)

where the spring constants ks, kn, and ksn can be found in [Tay05]. These spring constants contain
the thermodynamic information of the system.

To find the mode frequencies we first perform the variation of L(2) with Eqs. (7.11) and (7.13).
The result is best expressed as(

Msω
2 − ks − ksn ksn
ksn Mnω

2 − kn − ksn

)(
as
an

)
= 0. (7.14)

After some simplifications that are described in the aforementioned reference, one solves the eigen-
value problem to find [

MsMn(ω2 − ω2
z)− ksn(Ms +Mn)

]
(ω2 − ω2

z) = 0. (7.15)

The two solutions are the in-phase dipole,

ω = ωz (7.16)

and the out-of-phase dipole,

ω2 = ω2
z +

Ms +Mn

MsMn
ksn. (7.17)
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From Eq. (7.16) it is clear that the frequency is independent of temperature and interactions. On
the contrary, for Eq. (7.17) interactions play an important role. Noteworthy is the fact that on
resonance also the frequency of the in-phase breathing mode is independent of temperature, as
measured in [Kin05a, Tho05].

For the anisotropic 1D geometry, the conditions for hydrodynamic behavior are [Ber10]: as before,
ωτR � 1, or in other words, the mean free path, l, has to be much smaller than the wavelength,
λ, of the sound wave, l � λ. Also, the radial size of the cloud, Rperp, should be much smaller
than λ, Rperp � λ. Finally, the viscous penetration depth, δ =

√
η/ρnω, where η is the shear

viscosity coefficient, should satisfy δ � Rperp. This last condition imposes a low frequency regime,
ω � ω2

perτR.
Moreover, we emphasize that the theory for the elongated trap geometry that is relevant to our

experiments is being developed simultaneously to our work [Str11]. For the adiabatic oscillations
this ongoing work predicts for a 1D geometry a collective mode frequency in the zero-temperature
limit of

ω2
k = (k + 1)

(
k

5
+ 1

)
ω2
z , (7.18)

and for T/TF � 1

ω2
k =

(
7k

5
+ 1

)
ω2
z , (7.19)

where k is the order of the mode. As discussed above, k = 0 and k = 1 are independent of
the temperature. For k > 1, the temperature dependence of the mode, ie, the frequency change
between the two limits, increases together with the order of the mode. The temperature region
in between still has to be theoretically investigated. This will probably result in a model for the
equation of state connecting the zero-temperature limit with the nondegenerate one.

7.3. Experimental technique

The starting point of the experimental sequence is a recompression at the end of the evaporation.
This is done to stop the evaporation, namely, atoms spilling out of the trap, and to make the radial
trapping potential more harmonic. The trap depth is increased from Ua/kB = 250 to 380 nK. The
harmonic axial confinement is dominated by the residual magnetic confinement resulting from the
curvature of the Feshbach field. At the end of the recompression the excitation is started.

To resonantly excite the different modes k we modulate the intensity of the repulsive potential.
This is done with a 532 nm laser (Laser Quantum: Opus 2 W) with a beam waist of ω0 = 22 µm
calculated from the beam size after the glass cell. The modulation is accomplished with a sinusoidal
function with an average power of 110 µW, Fig. 7.1, which leads to a repulsive potential Vrep/kB =
8.9 nK. This excitation of the modes k = 2 and k = 3 also couples to k = 1.

To minimize the excitation of k = 1 we modulate the intensity of the dipole trap. The modulation
of the trapping beam also excites the k = 1 mode. Hence, to compensate for its excitation with the
repulsive potential, the trapping beam is modulated with the same frequency but opposite phase,
Fig. 7.2. The amplitude of the modulation of the trapping potential is experimentally optimized
and corresponds to the minimum required to excite the k = 1 mode this way.

We also control the position of the repulsive barrier along the axial direction of the cloud by
displacing the beam using an AOM. The positioning control allows us to easily change from exciting
even (k = 1 and k = 3) and odd (k = 2) modes. For the even modes the repulsive potential is
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Figure 7.1.: Experimental sequence to excite the k = 1 collective mode. The
red line is the intensity of the dipole trap, and the blue that of the repulsive
potential. After the evaporation we recompress the trap slightly before excit-
ing the mode. In this case, as opposed to the excitation of k = 2 and k = 3,
the intensity of the dipole trap remains unmodulated.

centered with respect to the axial length of the cloud, whereas for the odd mode the beam is
displaced off center by 27 µm. The latter position corresponds to the place where the theoretical
density profile shows the largest density oscillation [Str11]. The control of the position also allows
us to excite some modes by modulating the position of the beam, eg, the dipole mode.

As seen in Figs. 7.1 and 7.2, the modulation of the light intensity is done with a simple
h(ν) = A (1− sin (2πνt+ π/2)) function, where ν is the modulation frequency and A the am-
plitude. However, we also tested switching the modulation on and off smoothly: we implemented
an envelope on the signal, namely, h(ν) sinπνt/n, where n is the number of cycles. This was done to
see if even a clearer mode signal was observed and to try to avoid any heating due to the excitation
scheme. The test was done both with six and ten cycles of the excitation. Since no improvement
was observed, it has not been used.

The modulation time was experimentally chosen to be six cycles of the given excitation frequency:
it is enough to clearly excite a mode and short to consider the damping rates. After the excitation
is finished the cloud is allowed to oscillate in the trap. An in-situ image is done after a variable
hold time. The hold time is changed randomly from one experimental sequence to the next between
zero and twenty times the period of the collective mode being excited. This span is chosen such
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7. Higher order collective modes

Figure 7.2.: Experimental sequence to excite the the k = 2 and 3 collective
modes. The red line is the intensity of the dipole trap, and the blue that of
the repulsive potential. The dipole trap is modulated to avoid exciting the
k = 1 mode.

that the preferred frequency resolution of the Fourier analysis described below is met. Typically
the sampling rate is at least six points per oscillation period, and on average six images are taken
for each hold time.

7.4. Data analysis methodology

In this subsection we illustrate the methodology used to analyze the data using as an example the
k = 1 mode. We begin by correcting for the intensity of the absorption imaging. This is required
due to the fact that the polarization of the imaging light is σ− along the direction perpendicular
to the quantization axis, instead of the desired σ− along the direction parallel to the quantization
axis. The reason is that in our setup the imaging beam goes through the λ/4 waveplate that sets
the polarization of one of the horizontal MOT beams. The s-polarized component of the imaging
light leads to a π-polarized component in the quantization axis that is not absorbed by the atoms
and is simply unscattered; it shows up as an offset in the images captured by the CCD camera.
To quantize how large this second effect is we measure the ratio between p to s polarized light,
which is found to be p/s = 1.5. We take this effect into account when processing the images.
Firstly, we subtract the s-polarized light, and secondly, we rescale the intensity of the scattered
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light on the camera to that of the p-polarized component. The result is a density profile in which
the unscattered light is not present in the form of an intensity offset.

The corrected density profiles are then analyzed. To account for fluctuations, we identifying the
astray images from the successful ones. To do this, we fit all the images to a polylog function.
The resulting fit parameters are then compared to a set of boundary conditions that we impose,
eg, a certain minimum number of particles should be met and interference fringes should not give
an unrealistic position of the cloud. Those images that meet the conditions are kept for further
analysis. The good images per hold time (about six images) are then averaged; the density profile
without excitation is taken to be the average density profile of all the hold times. The difference
between the averaged density profile at a given hold time with respect to the unexcited density
profile, δn(x, t), gives the density excitation at a position x along the axial density profile. This is
shown in Fig. 7.3.

Figure 7.3.: Local density fluctuations, δn(x, t), for the k = 1 collective mode.

We then proceed to carry out a Fourier analysis of the local number of atoms of the cloud to get
the frequency spectrum of the excitation. We perform a fast Fourier transform (FFT) on δn(x, t)
for every fixed x. In order to get the largest amplitude of the fluctuation resulting from each
FFT, the phase is chosen during the analysis such that there is no imaginary component in the
outcome. The resulting frequency spectrum of the density modulation, δn(x, f), shows the local
density change with respect to the equilibrium position. We plot the power spectrum |δn(x, f)|,
Fig. 7.4, so as to emphasize the nodes of the excitation.
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7. Higher order collective modes

Figure 7.4.: Results for the k = 1 collective mode. Above: waveform, ψ(x).
Below: Power spectrum, |δn(x, f)|.

Next we use δn(x, f) to execute a crucial part of the analysis to identify each collective mode:
by fixing the frequency to the one at which the excitation takes place, fmode,fix, we extract its
waveform, ψ(x) = δn(x, fmode,fix). The waveform, shown for k = 1 in Fig. 7.4, clearly shows the
local density deviation from its equilibrium position, ie, the excitation. Moreover, ψ(x) is useful
for obtaining the amplitude of the excitation for a given hold time.

In order to recover the collective mode oscillation frequency we obtain the total excitation am-
plitude of the cloud for each hold time. The process can be divided into three steps: First we apply
a Gaussian filter, g(f), to δn(x, f). The filter is centered around the predicted mode frequency to
start with, Eq. (7.18). Here the theoretical prediction is used as a guideline, as it serves as initial
condition for the iteration described below. The FWHM of the filter should be large enough to
include all the relevant information, but still isolate the desired experimental mode frequency, fk,
from other contributions. In particular, to cut-off the low frequency components of the excitation
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spectrum, which corresponds to atom loss. The one dimensional Gaussian filter has the usual form

g(f) =
1

πζ
exp

(
−2

(f − fc)2

ζ2

)
, (7.20)

where ζ = FWHM/
√

2 ln(2). Then we perform an inverse FFT (IFFT) on the filtered frequency
spectrum δn(x, f)g(f). The result of the IFFT is the filtered profile of the density excitation,
δn′(x, t), shown in Fig. 7.5. Next, we weight each filtered density excitation at each time step by
ψ(x). Finally, we sum the weighted axial density per hold time to get the total density excitation
as a function of time, δnT(t) =

∑
x δn

′(x, t)ψ(x), shown in Fig. 7.6.

Figure 7.5.: Resulting δn′(x, t) after an inverse FFT of δn(x, f) using a Gaus-
sian filter with FWHM of 50 Hz. A noteworthy difference to the unfiltered
case, Fig. 7.3, is the constant offset around which the density oscillates.

Since the frequency resolution of δn(x, f) does not allow the precise determination of the fre-
quency of the excitation, the next step in the analysis is to determine fk and Γk, the damping rate, of
the collective oscillation. To this end we fit δnT (t) to a function z(t) = z0+Az exp (−Γkt) sin (2πfkt+ φ),
as shown in Fig. 7.6.

To ensure that our IFFT is optimized, we apply at this point a consistency criteria: 2πfk/ωc <
10−4. If the criteria is unfulfilled, the above procedure to find δnT is iterated using g(fc = fk)
each time. This procedure ensures that the Gaussian filter is properly centered around the mode
frequency. Moreover, for the k = 1 mode we can compare the final value of the fit parameter fk
to the frequency obtained by fitting the oscillation of the axial width, shown in Fig. 7.7. The fact
that both frequencies coincide reassures us of the validity of our Fourier analysis.
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Figure 7.6.: Fit to the total density excitation δnT for the collective oscillation
k = 1.

This methodology is repeated for the different modes. The results are discussed and summarized
in what follows.

7.5. Results and discussion

Performing the same analysis for the different higher order modes we obtain δnT, Fig. 7.8, and
summarize the fitted fk and Γk in table 7.1. Pertaining fk, the statistical error of the fit parameter
is negligible: in the order of tens of mHz. In so far as the damping is concerned, it clearly increases
as the order of the mode increases. In contrast to fk, the fit parameter Γk has a larger error; this
is probably due to the fact that the oscillations do not decay enough after 20 cycles to give an
accurate fit of the exponential decay.

Table 7.1.: Fitted fk and Γk for k = 1, 2, and 3.

k fk (Hz) Error 10−3 (Hz) Γk (s−1) Error 10−3 (s−1)

1 33.826 11 0.91 74
2 44.499 22 1.66 146
3 54.652 20 3.17 133

We then compare our experimental results with the theoretical model. As seen in table 7.2 and
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Figure 7.7.: Fit to the axial width of the cloud for the k = 1 mode before the
Fourier analysis. We take this as a test to our methodology to analyze the
collective modes: the fitted frequency of the reconstructed δnT coincides with
that of the axial width.

Fig. 7.9, we clearly see a deviation from the theoretical value, which increases linearly with the mode
order. At least for the frequency of the k=1 mode, which, as mentioned before, it has been shown to
coincide with the theoretical prediction, we believe that the deviation is due to anharmonic effects
caused by a shallow trap depth in the radial direction. For the orders k > 1 we hypothesize whether
nonlinear effect of the order (ωz/ωr) also contribute to the measured frequency deviation. Another
plausible reason for the higher order modes is that they depend on the temperature; the actual
finite temperature of the experiment may also lead to frequency shifts from the zero-temperature
limit.

Comparing now |δn(x, fk)|, Fig. 7.10, it is easy to discern the increasing number of nodes with
each increasing order. One should stress here that the signal present at very low frequencies is well
understood. It has to do with the loss of particles in the trap during the hold time. Hence, it is the
result of the FFT of the linear slope. The decay of the number of particles is also seen in Figs. 7.3
and 7.7. In the former it is present in the color scale of the oscillations, which is above the average
at the beginning of the hold time and below the average towards the end. In the latter as a time
dependent offset. Furthermore, it is exactly the purpose of g(f) to filter this drift in the particle
number, as seen in the resulting oscillation Fig. 7.5. The same loss of particles was observed for
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Figure 7.8.: Fit to the total density excitation, δnT , for k = 1, 2, and 3.
In every case the oscillation consists of 20 periods. The increase in Γk as k
increases is easily perceived.

the unperturbed cloud, suggesting that it is simply the lifetime of the particles in the dipole trap.
If it is due to heating as a result of anharmonic effects, a further recompression of the trap should
improve the lifetime.

The different ψk(x) are shown in Fig. 7.11. It is clearly discernible how the density oscillation
changes from positive to negative, and to differentiate even from odd modes. It immediately
reminds the reader of a fixed boundary standing wave, and its higher harmonics.

7.6. Conclusion and outlook

We have developed both the experimental technique and the analytical methodology to study higher
order collective modes on resonance for the low temperature limit. Regarding the deviation of the
frequencies from the theoretical prediction, ongoing work is being done to test whether anharmonic
effects are the cause. Also the finite temperature at which the experiment actually takes place
may contribute to the deviation. Be that as it may, with the easiness of the excitation scheme, the
robustness of the oscillation, and the richness of the analysis, higher order modes seem set to offer
a rich field of study of the resonant superfluid.

We expect both the technique and the methodology to extend to higher temperatures. Con-
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Table 7.2.: Comparison between measured collective mode frequencies and the
theoretical prediction.

k ωk/ω0|exp ωk/ω0|theo ratio (%)

1 1.5175 1.549 97.96
2 1.9963 2.049 97.41
3 2.4519 2.530 96.91

cerning adiabatic higher order modes the nondegenerate limit should be straight forward to study;
preferable with the highest possible order of the mode that one can reliable excite to have a better
signal to noise ratio when comparing the high and low temperature limits. Moreover, it would
be very interesting to connect the frequency evolution from one limiting case to the other, as this
would further probe the equation of state. On the same note, since the spring constants in the
theoretical model contain all the thermodynamic information of the system, its change may also
shed some light into the evolution of the system.

Beyond density higher order collective modes, it should be assessed whether indeed these modes
present a tool to study second sound. For the isotropic case the coupling between adiabatic and
entropy modes is small, which has raised the issue of whether it is experimentally realizable. One
can only hope for a larger coupling in the 1D case. Yet, bearing in mind the long lifetime of the
excitations presented in this work and the ability to obtain the spectrum of the excitation, there
seems to be room for pursuing new parameters of the excitation scheme that may lead to the
coupling of the density and entropy oscillations. Also, there is the option of trying to measure the
entropy wave directly, ie, try to heat up the gas locally and measure the local temperature change.
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Figure 7.9.: Frequency and damping for k = 1, 2, and 3. Both quantities
normalized to the axial trap frequency. The deviation of the measured fre-
quency from the theoretical value increases together with k. The damping is
also larger for the higher k.
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Figure 7.10.: Power spectrum for k = 1, 2, and 3. The increasing number of
nodes of the modes is clearly seen. For f < 10 Hz the signal corresponds to
atom loss.

Figure 7.11.: Waveform for k=1, 2, and 3. The symmetry of the odd mode is
clearly distinct from the even ones.
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As far as the immediate future is concerned, one should probe the higher order collective modes
in the high temperature limit. Also the evolution of the frequency connecting the high and low
temperature limits, that is to say, study their temperature dependence.

Beyond that, one should bear in mind that with the recent experimental characterization of
the thermodynamic properties of a spin-balanced resonant superfluid, and the measurement of the
contact pertaining to the Tan relations, the degenerate Fermi gas with unitarity limited interactions
is quite well understood. The additional experiments concerning the pairing correlations, eg, size of
the pairs and pseudogap regime, also present a quite complete picture of this aspect of the system,
albeit a better understanding, both experimental and theoretical, of the many-body physics that it
entails may be wanted. Even the dynamics seem to be quite complete with the measurements of
the speed of sound, vortices, and different low-lying collective modes.

However, the study of the two-fluid model, which distinguishes strongly interacting quantum
gases from the weakly interacting superfluid, is still pending. For all the studies of the gas on
resonance, some of them exploiting the fact that the normal state is collisional hydrodynamic, the
study of entropy waves is still awaiting. Whether a direct measurement by local thermometry, or
indirectly by its predicted coupling with the adiabatic higher order collective modes such as the
ones presented in this thesis, the measurement of entropy waves would finally differentiate the two
fluid hydrodynamic system at hand.

Regarding the direct measurement, the challenge is the local thermal excitation that would result
in an entropy wave, and the consequent measurement of the local temperature fluctuations. For
the former one may try to pulse a repulsive barrier, and for the latter follow the same analysis as
that of the thermodynamic studies already done. As for the direct measurement, one would have
to carefully excite the cloud resonantly and look for signatures of the entropy wave in the Fourier
analysis of the density oscillations.

Being past the characterization of the homonuclear resonant superfluid and given the techniques
acquired during the last years to control and manipulate the ultracold degenerate Fermi gas, it
is now an instrument to model and study ever more complicated atomic mixtures, internal state
combinations, trap geometries, and certainly few-body and many-body effects.
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A.1. Repulsive potential and axial imaging setup

We present the schematic setup of the repulsive potential and the newly setup axial imaging system
in Fig. A.1. The specified components are described in table A.1 below.

Figure A.1.: Schematic setup of the repulsive potential and the axial imaging
system. The dipole trap beam is shown as a reference.
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Table A.1.: Description of specified components

Name Description

A1 Acoustic-optic modulator (AOM), 3200-125, Crystal Technology.
F1 Fiber collimator, 60FC-4M12-33, Schäfter + Kirchhoff.
L1 f = -75 mm �= 25.4 mm
L2 f = 300 mm �= 25.4 mm
L3 f = 100 mm �= 50 mm, GRADIUM lens GPX-50-100-BB2,

LightPath Technologies, Inc.
L4 f = 300 mm �= 50.8 mm
L5 f = 75 mm �= 25.4 mm
L6 f = -35 mm �= 25.4 mm
L7 f = 40 mm �= 25.4 mm
M1 �= 50.8 mm, Wedge = 1 deg.

Coating:
Surface 1: AR R<1%@532 nm 45 deg.
Surface 2: R>99%@671 nm and 1030 nm, T>95%@532 nm 45 deg.

M2 �= 50.8 mm, Wedge = 1 deg.
Coating:
Surface 1: AR R<1%@1030 nm 45 deg.
Surface 2:R>99%@671 nm, T>95%@1030 nm 45 deg.

M3 MOT mirror, it is displaced with a servo motor after the MOT is switched off.
P1 Intensity stabilization detector, DET36A/M, Thorlabs.

A.2. General changes to the apparatus

In this section we briefly introduce changes in the experimental setup that somehow represent a
change in paradigm. For instance, a major change in the experimental setup was the substitution
of the VersaDisk ELS (λ = 1030 nm) laser that we used as dipole trap for an IPG 50 W multimode
Ytterbium fiber laser (λ = 1070 nm). This improved the reliability of the experiment greatly.
Previously the ELS suffered from thermal drifts that resulted in the power dropping when it lased
in between a mode hop. In addition, each time that it had to be serviced (every couple of months)
to optimize the power and the beam profile by adjusting the etalon and Lyot filter, the pointing
direction changed. This meant the rest of the components along the beam path leading up to the
glass cell had to be adjusted.

Another significant change was the substitution of most voltage controlled oscillators (VCO) for
direct digital synthesizers (DDS), which are digitally controlled frequency generators. The DDS, as
opposed to the VCO, does not show frequency drifts. It can also be controlled exactly with the bus
system, hence, it is not affected by noise in the control signal, eg, ground loops. Since we have not
yet implemented the bus system, the VCOs that remain to be changed are those which frequency
is changed during the experimental sequence. Specifically, the VCO of the two laser frequency
beat-locks. The DDSs increased the stability of the experiment.

The substitution of the mechanical relays for a set of MOSFETs and PowerMOSFETs mounted
on a water cooled copper block improved the stability of the MOT. We replaced the switching of
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the Zeeman slower coils, the MOT coils, and other compensation coils for MOSFETs. MOSFETs
are faster and more reliable than mechanical relays. In addition, since the MOT is loaded for
several seconds, they are less susceptible to external factors, in particular since the temperature of
the MOSFETs is regulated with the cooling block.
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[Bug04] C. Buggle, J. Léonard, W. von Klitzing, and J. T. M. Walraven, Interferometric De-
termination of the s and d-Wave Scattering Amplitudes in 87Rb, Phys. Rev. Lett. 93,
173202 (2004).

[Bul05] A. Bulgac and G. F. Bertsch, Collective Oscillations of a Trapped Fermi Gas near the
Unitary Limit, Phys. Rev. Lett. 94, 070401 (2005).

[Cao11] C. Cao, E. Elliott, J. Joseph, H. Wu, J. Petricka, T. Schfer, and J. Thomas, Universal
Quantum Viscosity in a Unitary Fermi Gas, Science 331, 58 (2011).

[Cas97] Y. Castin and J. Dalibard, Relative phase of two Bose-Einstein condensates, Phys. Rev.
A 55, 4330 (1997).

[Ced07] L. S. Cederbaum, A. I. Streltsov, Y. B. Band, and O. E. Alon, Interferences in the
Density of Two Bose-Einstein Condensates Consisting of Identical or Different Atoms,
Phys. Rev. Lett. 98, 110405 (2007).

[Che00] F. Chevy, K. M. Madison, and J. Dalibard, Measurement of the Angular Momentum of
a Rotating Bose-Einstein Condensate, Phys. Rev. Lett. 85, 2223 (2000).

[Che03] F. Chevy and S. Stringari, Kelvin modes of a fast rotating Bose-Einstein condensate,
Phys. Rev. A 68, 053601 (2003).

[Che05] Q. Chen, J. Stajic, and K. Levin, Thermodynamics of Interacting Fermions in Atomic
Traps, Phys. Rev. Lett. 95 (2005).

[Chi00] A. P. Chikkatur, A. Görlitz, D. M. Stamper-Kurn, S. Inouye, S. Gupta, and W. Ketterle,
Suppression and Enhancement of Impurity Scattering in a Bose-Einstein Condensate,
Phys. Rev. Lett. 85, 483 (2000).

[Chi04a] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, and
R. Grimm, Observation of the Pairing Gap in a Strongly Interacting Fermi Gas, Science
305, 1128 (2004).

[Chi04b] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. Hecker Denschlag, and
R. Grimm, Observation of the Pairing Riedl2008coo in a Strongly Interacting Fermi Gas,
Science 305, 1128 (2004).

[Chi06] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C. Sanner, K. Xu, and W. Ket-
terle, Evidence for superfluidity of ultracold fermions in an optical lattice, Nature 443,
961 (2006).

[Chi10] C. Chin, R. Grimm, P. S. Julienne, and E. Tiesinga, Feshbach resonances in ultracold
gases, Rev. Mod. Phys. 82, 1225 (2010).

109



Bibliography

[Cla07] B. Clancy, L. Luo, and J. E. Thomas, Observation of Nearly Perfect Irrotational Flow in
Normal and Superfluid Strongly Interacting Fermi Gases, Phys. Rev. Lett. 99, 140401
(2007).

[Coo56] L. N. Cooper, Bound Electron Pairs in a Degenerate Fermi Gas, Phys. Rev. 104, 1189
(1956).

[Cos10] L. Costa, J. Brachmann, A.-C. Voigt, C. Hahn, M. Taglieber, T. W. Hänsch, and
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[GO99b] D. Guéry-Odelin, F. Zambelli, J. Dalibard, and S. Stringari, Collective oscillations of a
classical gas confined in harmonic traps, Phys. Rev. A 60, 4851 (1999).
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