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SUMMARY

Some of the most intriguing phenomena in physics arise in strongly interacting many-body
quantum systems. Those systems, however, e.g. solid state devices or astronomical objects,
are hard to access experimentally and their theoretical understanding poses great challenges,
as most theories are exact only in the regime of weak interactions. Now, ultracold gases serve
as a highly controllable quantum system that allows to continuously explore all the range
from weak to strong interactions by means of Feshbach resonances. Hence, ultracold gases are
employed to test advanced many-body theories and to push our understanding of strongly
interacting quantum matter. The present thesis is devoted to pursue this fundamental
approach and discusses experiments on superfluidity in a homonuclear Fermi mixture and
on the behavior of an impurity with a novel heteronuclear Fermi-Fermi mixture.

We study the rotational dynamics and coherence of a superfluid mixture of 6Li atoms
in two different Zeeman states. To prove superfluidity of the gas directly in the regime of
strong interaction, we measure the moment of inertia of the gas. We find the moment of
inertia to stay below the value of a rigid body, as a consequence of the irrotationality of
the superfluid. A further property of a superfluid is the coherence among the particles, as a
macroscopic fraction of the particles occupies the ground state. We probe this coherence by
letting two independently created samples interfere. We observe interference for moderate
repulsive interactions, where the Fermi mixture forms a Bose-Einstein condensate of weakly
bound molecules. In the regime of strong interaction, however, the high scattering rate
hinders the overlap of the two clouds and they collide hydrodynamically.

The heteronuclear Fermi-Fermi mixture is realized with 40K and 6Li atoms. First, we
characterize the elastic and inelastic scattering properties at one of the interspecies Feshbach
resonances. Then we demonstrate strong interactions by observing hydrodynamic expansion.
The signatures are an inversion of the cloud aspect ratio and collective flow of 40K and 6Li
atoms. In the regime of strong interactions, we investigate the behavior of few 40K atoms in a
Fermi sea of 6Li atoms. Following Fermi liquid theory of L. Landau, impurity plus excitations
are described as a quasiparticle, which is coined the “repulsive polaron” in our case. We
show the existence of these repulsive many-body states in the regime of strong interaction by
radio-frequency spectroscopy and measure their quasiparticle properties: interaction energy,
residue, and lifetime. The remarkably long lifetime, at the specific Feshbach resonance
we employ, may open up new possibilities to investigate novel quantum phases in strongly
repulsively interacting Fermi gases.
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ZUSAMMENFASSUNG

Vor einem Jahrhundert wurde die Theorie zur Bose-Einstein Kondensation aufgestellt und
die Suprafluidität in Experimenten entdeckt. Einerseits die Theorie für Systeme mit ver-
nachlässigbarer Wechselwirkung zwischen den Teilchen und andererseits das Experiment an
einem System mit stark wechselwirkenden Teilchen wurden Jahrzehnte später miteinander
in Verbindung gebracht. Eine makroskopisch besetzte Wellenfunktion wie von N. Bose und
A. Einstein beschrieben ist die Grundlage für Suprafluidität, jedoch bleibt die theoretische
Beschreibung stark wechselwirkender Systeme eine Herausforderung. Derzeit eröffnen ultra-
kalte Quantengase die Möglichkeit, den gesamten Bereich von schwach zu stark wechselwir-
kend im Experiment zu untersuchen, und tragen dadurch maßgeblich zum Verständnis der
Vielteilchenphysik bei. Ein besonderes Interesse gilt dabei den fermionischen Quantengasen,
da sie der gleichen Statistik wie z.B. Elektronen unterliegen, deren Vielteilchenverhalten eine
der großen Herausforderungen an die Physik darstellt.

Die vorliegende Arbeit diskutiert Experimente an ultrakalten, fermionischen Quantenga-
sen, wobei wir insbesondere die Einstellbarkeit der Wechselwirkung nutzen, um Verständnis
für den stark wechselwirkenden Bereich ausgehend vom schwach wechselwirkenden Bereich
zu erlangen.

Wir untersuchen die Suprafluidität und Kohärenz einer unpolarisierten Zweikomponen-
tenmischung von 6Li Atomen in zwei verschiedenen Zeemanzuständen. Anders als im Bereich
schwacher Wechselwirkung, wo die Mischung ausschließlich in der superfluiden Phase hydro-
dynamisches Verhalten zeigt, verhält sich die Mischung im Bereich starker Wechselwirkung
auch bei höheren Temperaturen in der normalen Phase, auf Grund der hohen Stoßrate, noch
hydrodynamisch. Um nun direkt im Bereich starker Wechselwirkung zwischen dem klassi-
schen Verhalten und der Superfluidität zu unterscheiden, nutzen wir die Eigenschaft, dass
das Suprafluid nicht in Rotation versetzt werden kann, solange keine Singularitäten (Vor-
tices) angeregt werden. Wir messen das Trägheitsmoment der Wolke und stellen fest, dass
dieses bei sehr niedrigen Temperaturen in der Tat kleiner ist als das eines klassischen Gases.
Eine Messung des Trägheitsmoments als Funktion der Temperatur erlaubt es uns, die kriti-
sche Temperatur für Suprafluidität zu messen. Eine weitere Eigenschaft eines Suprafluids ist,
dass eine makroskopische Anzahl von Teilchen die Grundzustandswellenfunktion besetzt und
damit zueinander kohärent ist. Dies zeigen wir eindrucksvoll durch die Interferenz zweier un-
abhängig erzeugter Suprafluide und realisieren damit erstmals Interferenz von molekularen
Kondensaten.

Des Weiteren dringen wir erstmals auch mit einer heteronuklearen Fermi-Fermi Mischung
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von 40K und 6Li Atomen in den Bereich starker Wechselwirkung vor. Wir zeigen dies durch die
Beobachtung von Effekten hydrodynamischer Expansion in der normalen Phase. Das Mischen
von Fermionen unterschiedlicher Masse bereichert das Studium fermionischer Mischungen
um einen zusäzlichen Freiheitsgrad, was neuartige Tests von Vielteilchentheorien oder auch
neue Quantenphasen ermöglichen wird. Wir untersuchen das Verhalten von wenigen 40K
Atomen in einem Fermisee von 6Li Atomen. Erstmals gelingt es uns, in einem fermionischen
Quantengas einen wohldefinierten Vielteilchenzustand bei stark repulsiver Wechselwirkung
zu realisieren. 40K Atome regen den 6Li Fermisee derart an, dass sich ein Bereich geringerer
6Li Dichte um das 40K Atom ausbildet. Nach L. Landaus Theorie wird nun das System 40K
Atom plus Anregungen des Fermisees zu einem Quasiteilchen zusammengefasst, welches in
unserem Fall “repulsives Polaron” genannt wird. Wir messen eine beachtliche Lebenszeit
dieses repulsiven Polarons in der 40K 6Li Mischung, was Möglichkeiten eröffnet, neuartige
Quantenphasen in stark repulsiv wechselwirkenden Fermi Gasen zu realisieren.
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CHAPTER 1

INTRODUCTION

1.1 From the classical to the quantum world simply by

cooling

The present thesis reports on experimental studies of ultracold gases of fermionic atoms
with tunable interparticle interactions. The investigation of such systems pushes the un-
derstanding of problems in modern quantum physics and gives benchmarks to sophisticated
theoretical models. Such insights into quantum physics become possible because simply by
cooling, the de Broglie wavelength of the particles increases and we pass from the classical
into the quantum world; the behavior of the gas can no longer be described by classical
physics but asks for the fundamental principles of quantum mechanics.

A classical gas at room temperature, like the air around you, is well described in terms
of the following three concepts: the particles (I) are point-like, (II) are distinguishable, and
(III) rarely collide, i.e. the mean free path is larger than the interparticle spacing. Solely
by cooling the gas, all those concepts are turned upside down. At ultralow temperatures,
(I) the particles are so slow that they can no longer be treated as being point-like, but they
are described by wave packets with a characteristic de Broglie wavelength, satisfying the
Heisenberg uncertainty principle. Such quantum particles can directly show wave phenomena
like interference [Est30, Mil05]. (II) The preparation of a gas of identical atoms, i.e. of a
certain isotope in a certain quantum state, yields a gas of indistinguishable particles and
the quantum statistics become crucial. Bosons favor to gather in one motional quantum
state. This can lead to the macroscopic occupation of the ground state, called Bose-Einstein
condensation (BEC), as reported on in Refs. [And95, Dav95, Bra95]. Fermions experience
the Pauli exclusion principle, filling the motional energy levels up to the Fermi energy, which
results in a so-called Fermi sea [DeM99]. (III) Wave nature and quantum statistics also enter
the collisional physics [Wei99]. The collision cross section can be tuned by interferences of
the relative wavefunction in the interatomic potential, in particular by means of Feshbach
resonances [Ino98], very much like the light enhancement inside an optical resonator. The
enhancement of the cross section opens up the interesting regime of strong interactions where
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2 Chapter 1. Introduction

the mean free path is comparable to the interparticle spacing. In this regime, the dynamic
behavior of the ultracold gas resembles that of a classical fluid [O’H02]. Turning the three
concepts upside down, by passing from the classical to the quantum world, triggers the huge
scientific interest in ultracold gases. The first two, the wave nature of particles and the
quantum statistics, are two of the corner stones of quantum mechanics: Standard quantum
theory can well describe the observed phenomena like matter wave interference [Cro09] and
Bose-Einstein condensation [Ket96, Pet02]. A still rewarding challenge is the understanding
of the third concept, the regime of strong interactions: Here, the theoretical models are
highly involved and experimental benchmarks are needed [Blo08a, Gio08, Rad10, Che10].
We enter this regime of strong interactions with a highly controllable model system of an
ultracold mixture of fermionic atoms. One general goal is to provide those benchmarks,
thereby pushing forward the understanding of strongly interacting quantum matter, which
is the basis of a variety of systems like neutron stars, high-temperature superconductors, or
a quark-gluon plasma and this understanding may facilitate new technological applications.

Thesis overview
The intention of this first chapter is to guide the reader to the scientific work presented
in the body of this thesis. In Sec. 1.2, we introduce the field and sketch how the research
on ultracold Fermi gases gives rich contributions to various fields in physics. Then we
lay out some aspects of the research presented in the present thesis. We introduce the
experiments that are done with a homonuclear mixture of fermionic 6Li atoms in Sec. 1.3
and the experiments that are performed on a heteronuclear 40K 6Li Fermi-Fermi mixture in
Sec. 1.4. The goal is to communicate the basic ideas, thus we refer to the cited literature
for rigorous treatments. Section 1.5 drafts ongoing and future research that builds on the
results presented in this thesis. The main results can be viewed at a glance in Sec. 1.6 and
are presented in Chaps. 2-7.

To come back to the three concepts from above, let us relate the most striking manifesta-
tions of those concepts to three respective chapters of the present thesis: (I) The interference
of two molecular BECs directly shows the wave nature, see Chap. 4. (II) The quenched mo-
ment of inertia is a direct consequence of the macroscopically occupied wavefunction, see
Chap. 3. (III) The Fermi polaron is a many-body state, an impurity particle strongly inter-
acting with other particles of a medium, see Chap. 7.

1.2 Myriads of control parameters lead to myriads of

research possibilities

1.2.1 Control parameters

Ultracold Fermi gases represent, for an experimental physicist, a quantum system with an
unprecedented degree of control over many system parameters. The majority of experiments
is carried out with a mixture of two components, denoted by the indices 1 and 2. The
components can either be two different states of one atomic species or two different atomic
species. Here we bypass the underlying technical complexity, which are discussed in detail in
other works [Joc04, Wil09]. In essence, our control panel could look like as shown in Fig. 1.1.
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Figure 1.1: Stylistic control panel for running an experiment with ultracold atoms.
The parameters of the gas, see text, are set (left column), a certain measurement type is
performed and absorption images are taken (center column), the data are analyzed, and
main results are derived (right column). The number of controllable parameters in all these
steps directly reflect the many possibilities for research with ultracold atoms.

We have direct control to set various parameters of the two components such as

• T the temperature,

• P = N2−N1

N2+N1
the polarization, where Ni (i = 1, 2) are the populations of the components,

• 1/(kF a) parameterizing the interatomic interaction strength, as discussed later,

• m1/m2 the mass ratio, where mi is the respective atomic mass,

• component the elements and the states of components 1 and 2,

• ωtrap i the trap frequency parameterizing the confinement, and

• di the dimensionalities.

All those parameters can be varied from one experimental cycle to another, while turn-
ing one of the control dials implies to apply certain sequences and patterns of laser light
or external magnetic field. This high degree of controllability makes it possible to map
out and explore full phase diagrams and to study the transitions among various phases or
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states. Furthermore, we have exceptionally many measurement types for probing the gas,
e.g. exciting collective oscillations, probing transitions between different Zeeman states with
radio-frequency (rf), or letting the gas expand from the trap in time of flight (TOF). All
measures are obtained from absorption images of each component. The atom numbers as
well as information about the atom distribution in real space and momentum space can be
deduced. The three steps together - setting parameters, probing, and analyzing - constitute
one run of the experiment. One or a whole series of such runs are performed to obtain one
of the data points presented in the figures of this thesis.

1.2.2 Research possibilities

The many possibilities to prepare, probe, and analyze ultracold Fermi gases allow the ex-
perimentalists to address many challenges of modern physics. In Fig. 1.2, we illustrate
how different experimental methods (left column), carried out by different groups worldwide
(center column), lead to observations that connect to deeper insights into different branches
of physics (right column). Let us guide you through this figure on the basis of a few ex-
amples, the first rows of Fig. 1.2 (dash dotted lines): The cooling methods, as developed
for bosonic atoms to reach BEC, were adapted to fermionic atoms to reach quantum de-
generacy. At ultralow temperatures, the released energy and the momentum distribution
of a degenerate Fermi gas, as measured in Ref. [DeM99], show a strong deviation from the
classical gas behavior, unveiling the Fermi-Dirac distribution of the fermions over the trap
states. Another corner stone for the progress of the field is the ability to tune the interactions
between atoms by means of Feshbach resonances. Those resonances, where the scattering
state resonantly couples to a bound state, were first studied in bosonic systems [Ino98].
While bosonic atoms suffer strong three-body relaxation close to the resonance, fermionic
atoms turned out to be much more stable close to the center of the resonance [Pet04b].
Hence, Bose-Einstein condensation of weakly bound Feshbach molecules could be observed
[Joc03b, Gre03, Zwi03a]. When tuning the interactions from repulsive across the resonance
center to attractive interactions, the gas was still observed to show properties consistent with
superfluidity [Reg04, Zwi04, Bar04b]. With this, ultracold fermions qualified to be a unique
test bed for investigating the crossover from BEC to a Bardeen-Cooper-Schriefer (BCS)
type superfluid, where the pairing mechanism in the limit of weak attractive interactions is
not molecule formation but Cooper pairing [Bar57]. Resonantly interacting ultracold Fermi
gases show an astonishingly high critical temperature relative to the Fermi temperature
Tc/TF ≈ 0.2: This is why they are believed to hold the key for understanding high-Tc super-
conductivity and future experiments including lattices and/or higher partial wave scattering
resonances may directly mimic the physics underlying high-Tc superconductivity [Che05b].
The list in Fig. 1.2 goes on with many more examples, but shows only a small selection of
works. The intention is not to cover all and not even to cover the most important, but to
show exemplarily how experimental techniques lead to new physical insights and to show
how different works are interconnected and devoted to the same goal; see e.g. that the pair-
ing between fermions was addressed by many different groups with different experimental
techniques (dashed lines). The main intention, however, is to inspire readers independent of
their background. Readers who are not in the field may see what a versatile tool ultracold
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Figure 1.2: Exploring physics with ultracold fermions. The bubbles on the very left
side are the central experimental techniques, which subdivide into more specific techniques.
Those were applied by different groups in various publications. The publications address
specific properties, which converge to insights into physics, the bubbles on the very right.
In the text we refer to the different line styles. Listed publications are the Refs. [DeM99,
Gre03, Zwi03a, Joc03b, Reg04, Zwi04, Bar04b, O’H02, Gre05, Luo07, Nav10, Hor10, Cao11,
Alt07a, Vee08, Zwi05a, Rie11, Chi06, Gae10, Chi04, Sch08, Ott08, Nak11, Par06, Zwi06b,
Sch09b, Nas09a, Koh11]. We use abbreviations for photo emission spectroscopy (PES) and
for Chandrasekhar Clogston (CC), where the CC limit gives an upper limit to the polarization
of the gas beyond that superfluidity is suppressed.
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Fermi gases are. Note the divergence of different experimental techniques to many publica-
tions and the subsequent convergence to central physical problems. Readers who are in the
field are invited to arrange their own work in this network and to find crosslinks and also
to add experimental methods which may then lead to new discoveries. To give an example,
Fig. 1.2 contains two of our publications (dotted lines). In Ref. [Rie11] (Chap. 3), we excite
a rotation of the gas and from the irrotationality of the gas we can infer superfluid behavior.
In Ref. [Koh11] (Chap. 7), we investigate the behavior of few 40K atoms in a cloud of 6Li
atoms and find a new many-body state based on repulsive interactions.

The two latter examples bring us from the wide overview of the research on ultracold
Fermi gases to our contributions. The measurement on the irrotationality was performed
with an unpolarized spin mixture of 6Li; as the polarization is 0 and the mass ratio is one,
we refer to it in the following as balanced. The measurements on this balanced mixture are
introduced in Sec. 1.3. The measurement on the impurity problem is one of the investigations
performed in a Fermi-Fermi mixture of 6Li and 40K, where the spin mixture is polarized and
the mass ratio is unequal to one, as introduced in Sec. 1.4.

1.3 Experiments on a balanced Fermi mixture

In this section we introduce the system employed for the experiments described in Chap. 2-4
and some earlier publications, see Chap. 8. The system is an unpolarized Fermi mixture
of two different Zeeman states of 6Li. For such a balanced mixture, we now introduce step
by step the phase diagram as a function of temperature and of interaction strength. The
diagram gives a comprehensive frame, within which we then arrange and introduce our
contributions to the exploration of this quantum many-body system.

Let us classify the various properties of the mixture in three ways: whether it shows
collisionless or hydrodynamic behavior, whether the components are unpaired or paired, and
whether the gas is in a normal or superfluid phase. These properties are connected, as
illustrated schematically in Fig. 1.3(a). A superfluid implies pairing because its basis is
a condensate of bosonic pairs, composed of fermionic atoms. It also implies hydrodynamic
behavior because the dynamics of a superfluid obey the irrotational hydrodynamic equations.
In the normal phase, i.e. non-superfluid phase, pairs can form and high collision rates can
lead to collisional hydrodynamics. The boundary between normal and superfluid phase is
a sharp phase transition. Within the normal phase, the transitions paired-unpaired and
collisionless-hydrodynamics are smooth crossovers.

Now, we map the schematic classification from Fig. 1.3(a) onto the actual phase dia-
gram spanned by the axes interaction parameter and temperature, shown in Fig. 1.3(b),
see Refs. [Gio08, Ing08b] for details. First, let us consider one species of identical fermionic
atoms in a certain Zeeman state at ultralow temperatures. The atoms are noninteracting
because s-wave scattering is prohibited by the wavefunction symmetry and, because of the
centrifugal barrier, higher partial waves are frozen out at such low temperatures. The atoms
fill up the lowest energy states up to the Fermi energy EF = ~2k2

F /(2mLi), where kF is the
Fermi momentum and ~ is the Planck constant h divided by 2π. Then, we add atoms of
the same species but in a different Zeeman state. The atoms in different Zeeman states now
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Figure 1.3: Properties and phases of an unpolarized Fermi gas. (a) The gas can be
in a normal phase (white area) or in a superfluid phase (red shaded area). The superfluid
phase implies pairing and hydrodynamics. The normal phase can contain pairs and can
also show hydrodynamic behavior. (b) The same properties and phases are mapped onto a
phase diagram versus the interaction parameter 1/(kF a) and the temperature T/TF for the
case of a harmonic trap. The curves for Tc ( ), separating the normal and the superfluid
phase, and T ∗ ( ), marking the crossover from unpaired to paired, are reproduced from
Ref. [Per04]. From a simple calculation, see text, we derive a constant collision rate ( ),
marking the crossover from collisionless to hydrodynamic behavior, which has no meaning
in the superfluid phase. The respective value of the collision rate is chosen such that the line
coincides with the measurements of the maximum damping of the scissors mode oscillation
(•) [Wri07] and of the quadrupole oscillation (¨) [Alt07b]. The critical temperature on
resonance is derived from the measurement of the quenching of the moment of inertia (F),
see Chap. 3. The measured Tc is below the theoretical prediction presented here [Per04] but
is in good agreement with more recent calculations [Gio08, Hau08]. Interference was probed
along the grey line and nonvanishing fringe contrast was observed along the white-marked
part of the grey line, see Chap. 4.
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interact via s-wave scattering. The interaction is parameterized by the scattering length a,
which can be tuned by means of a Feshbach resonance. The interaction strength is parame-
terized by the interaction parameter −1/(kF a). At −1/(kF a) = 0, a molecular state opens
up below threshold and for −1/(kF a) ¿ −1 the binding energy of this molecular state gives
a characteristic temperature for molecule formation. In the many-body system, pairing per-
sists throughout the resonance and the characteristic temperature for pairing is T ∗ [Per04],
marked by the blue line in Fig. 1.3(b). The molecules are bosonic and, for weak repulsive
interactions, they form a BEC below a critical temperature Tc, marked by the red line in
Fig. 1.3(b). Also for weak attractive interaction, −1/(kF a) À 1, the superfluid consists of
pairs, but in this case the building blocks are Cooper pairs which form at the same tem-
perature as they condense, i.e. Tc = T ∗. The connection of these two types of a superfluid
phase throughout the resonance is called the BEC-BCS crossover. The phase diagram is now
divided into the superfluid and the normal phase. The paired sector comprises the superfluid
part and extends to much higher temperatures for decreasing −1/(kF a). To get a qualitative
intuition on the dynamic behavior of the gas, we also plot a line of constant scattering rate,
green line in Fig. 1.3(b), derived from a semiclassical model. Therefor, we simply take the
scattering rate to be proportional to the average relative velocity and the unitarity limited
cross section [Gio08]. The gas is collisionally hydrodynamic in the center of the diagram,
enclosed by the green lines in Fig. 1.3(b). Finally, we have mapped the possible properties
of the quantum gas from Fig. 1.3(a) onto the phase diagram in Fig. 1.3(b).

The understanding of the phase diagram result from the synergetic work of many ex-
perimental and theoretical groups worldwide. Some works are mentioned in Sec. 1.2.2 and
review articles provide further references [Ket08, Ing08b, Rad10, Che10]. For us, the phase
diagram provides an appropriate frame to mark where the research presented in this thesis
contributes to the experimental investigation of the properties and phases of the balanced
mixture [Gri08].

Collective oscillation modes are sensitive to the dynamics of the gas. For example, the
radial quadrupole mode (see Fig. 1.8) or the scissors mode (oscillation of the tilting angle
of an elliptic cloud in an elliptic trap) have different eigenfrequencies in the collisionless and
in the hydrodynamic cases and are strongly damped in the transition region [Dal99]. The
study of the radial quadrupole mode as a function of the interaction strength at the lowest
attainable temperature reveals the transition from hydrodynamic to collisionless behavior
[Alt07b], see diamond in Fig. 1.3(b). The study of the scissors mode as a function of the
temperature for different values of the interaction strength fully maps out the hydrodynamic
regime [Wri07], see solid circles in Fig. 1.3(b). The general trend agrees well with our simple
model. A further study of those two modes plus the compression mode at the center of the
Feshbach resonance as a function of temperature investigates the dynamics in more detail.
The data are compared to theoretical calculations of the collisional behavior [Rie08]. The
calculations take into account Fermi blocking and pairing effects. Fermi blocking reduces the
scattering rate towards lower temperatures whereas pairing increases it because the bosonic
character of the pairs counteracts such Fermi blocking. It turns out that the two effects
combined lead to a scattering rate close to the semiclassical one, explaining why the simple
model used for the green line in Fig. 1.3(b) is in good agreement with the data.

The collective modes mentioned above probe whether the gas is hydrodynamic but do not
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distinguish between collisional and irrotational hydrodynamics. This distinction is needed to
discriminate the normal phase from the superfluid phase in the strongly interacting regime.
To prove superfluidity, one possibility is to detect irrotationality. Unlike a normal gas, which
can accept an arbitrary number of angular momentum quanta, a superfluid can take angular
momentum only in discrete steps, one angular momentum quantum times the number of
particles. This leads either to the formation of vortices or to a reduced moment of inertia,
the so-called quenching of the moment of inertia. Before addressing the proof of superfluidity,
we investigate the rotation dynamics and damping of the rotation in the strongly interacting
regime, see Chap. 2. The observed long lifetime of the angular momentum on resonance
underlines the deeply hydrodynamic behavior even in the normal phase. In a subsequent,
more detailed study of the process of setting the gas into rotation, we find that the angular
momentum saturates below the rigid body value for low temperatures, see Chap. 3. This
results from the quenching of the moment of inertia through the superfluid fraction and
allows us to determine Tc on resonance, see the star in Fig. 1.3(b).

The quenching of the moment of inertia is a manifestation of the continuous phase of
the macroscopic condensate wavefunction. This phase cannot be observed directly but the
relative one with respect to a reference object is detectable. We observe this relative phase in
the interference between two molecular Bose-Einstein condensates, see Chap. 4. Therefore
we prepare two condensates at moderate positive scattering length and let them overlap.
For increasing scattering length the interference pattern vanishes because elastic collisions
during the overlap remove particles from the condensate wavefunction and those particles
do no more contribute to the overall interference pattern. This study is also performed as a
function of temperature. The parameter range where we search for an interference pattern
is marked in grey and the white line on top marks where we indeed observe interference, see
Fig. 1.3(b).

1.4 Experiments on a polarized mixture of Fermions

with unequal masses

The extensive investigations on the balanced (homonuclear and unpolarized) Fermi mixtures
deepen our understanding of Fermi systems in general. Only a few years ago, a new chapter
was opened: The study of polarized Fermi gases [Zwi06b, Par06], which corresponds to
turning the spin population control dial on the control panel in Fig. 1.1. Remarkable results
are the observation of the Chandrasekhar-Clogston limit [Zwi06b] and, in the highly polarized
case, the Fermi polaron [Sch09b]. At about the same time, the possibility to turn the dial
controlling the mass ratio was considered. However, to an experimentalist, this still implies
to build an entirely new apparatus designed to control two different elements. The natural
choice is to combine the two, easily controlable, fermionic alkali isotopes 40K and 6Li, with
the mass ratio mK/mLi = 40/6. Meanwhile, five groups [Tag08, Tie10, Rid11, Wu11, Spi10a]
have control over such a 40K 6Li mixture.

The first experiments on the 40K 6Li Fermi-Fermi mixture were primarily devoted to in-
vestigate the collisional properties. Feshbach spectroscopy was performed [Wil08], molecule
formation was demonstrated [Voi09], the stability of a three-spin mixture was shown [Spi09],
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cross dimensional relaxation was studied [Cos10], and interspecies thermalization was in-
vestigated [Tie10], just to mention a few achievements. For a short summary on the early
experiments with this Fermi-Fermi mixture see Ref. [Tre11a].

We start the investigation of the 40K 6Li mixture with a careful characterization of
the interspecies collisional properties, see Chap. 5. According to theoretical calculations,
which are well approved by experimental results, all interspecies Feshbach resonances are
(I) not very broad, (II) have a considerable closed channel contribution and (III) two- and
three-body loss mechanisms are not negligible, see Ref. [Chi10] for detailed explanations on
those characteristics of Feshbach resonances. Our goal is to investigate strongly correlated
many-body physics in a 40K 6Li mixture. Therefor, we need to tune the interactions up
to the strongly interacting regime. To achieve this the three properties, mentioned above
imply (I) that we need precise control over the magnetic field, (II) that the interaction
is dependent on the specific interatomic potential (it is not universal) and (III) that the
lifetime of the sample is rather short. Considering all these issues, the Feshbach resonance
between 40K in its third-to-lowest Zeeman state with 6Li in its lowest Zeeman state at a
magnetic field of about 155 G appears to be the most promising candidate for investigations
in the strongly interacting regime. A precise experimental characterization of the elastic
and inelastic scattering properties at these resonances is presented in Chap. 5. Close to the
center of this resonance we observe the effects of collisional hydrodynamics on the expansion
of the 40K 6Li mixture, demonstrating that the regime of strong interactions can be accessed
experimentally, see Chap. 6. We thus have a Fermi-Fermi mixture with tunable interaction
up to the strongly interacting regime. This opens the door to a variety of possibilities to
investigate strongly correlated many-body physics and few-body physics [Liu03, Isk07, Nis10,
Lev09, Nis08]. We start with studying 40K impurities in a 6Li Fermi sea. Such a system can
be well described by means of quasiparticles coined Fermi polarons, of which the underlying
concepts are introduced in the following. The characterization of a novel quasiparticle, the
repulsive Fermi polaron, is the main achievement of this thesis, see Chap. 7.

1.4.1 Introducing the concept of a quasiparticle

The impurity problem of few 40K atoms in a 6Li Fermi sea is well described by Fermi
liquid theory, as introduced by L. Landau [Lan57]. Let us review the introduction of the
quasiparticle (QP), the building block of a Fermi liquid, given in Ref. [Lan80]: “Any weakly
excited state of a macroscopic body may be regarded, in quantum mechanics, as an assembly
of separate elementary excitations. These behave like quasiparticles moving in the volume
occupied by the body and possessing definite energies EQP and momenta pQP. The form
of the function EQP(pQP), the dispersion relation for the elementary excitations arises as a
means of quantum-mechanical description of the collective motion of the atoms in a body,
and the quasiparticles cannot be identified with the individual atoms and molecules.”

Because of the fundamental role in various systems, e.g. liquid 3He or electrons in dielec-
tric materials, the quasiparticle deserves to be explained from scratch. Let us consider the
collective behavior of only two individual particles, elaborated in Fig. 1.4. This toy quasi-
particle highlights three basic concepts: (I) The dispersion relation changes. (II) The QP
cannot be identified with one individual particle. (III) QPs like phonons or polarons imply a
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Figure 1.4: Toy quasiparticle constructed from only two particles. (a) A particle
of mass m and velocity v has the standard free particle dispersion relation Ep = p2

p/(2m),
which describes the elementary excitations in a noninteracting system. (b,c) In the inter-
acting case, excitations are the collective motion of more particles in the medium. This
collective excitation is treated as a quasiparticle. The toy quasiparticle here comprises only
one additional particle with mass M and velocity V . (b) Given that the additional par-
ticle moves in opposite direction, the total energy of both particles, which constitute the
quasiparticle, rises while the total momentum decreases. This simple argument explains for
example the steep rise (but not yet the linearity) of the dispersion relation of phonons, as
the motion in opposite direction is typical for such waves. (c) Considering a motion in the
same direction, energy and momentum rise such that the dispersion relation flattens. In case
the dispersion is still quadratic, the quasiparticle is described as a free particle but with an
effective mass. This scenario should serve us as a rudimentary picture of a polaron, where a
particle moves with its dressing cloud.

collective motion of particles. In general, a QP is characterized by its interaction energy, its
effective mass, its QP residue, and its lifetime. The effective mass becomes already clear in
our toy model in Fig. 1.4(c), the interaction energy and the residue are discussed in the fol-
lowing. For a more complete treatment of QPs we refer to Ref. [Mat92] and to the standard
literature [Lan80].

1.4.2 Simple model for the energy of an impurity in a Fermi sea

Here, we discuss a simple model to comprehend the trend of the interaction energy of an
impurity in a Fermi sea throughout the Feshbach resonance, following Ref. [Pri04]. Say we
have an impurity atom (red in Fig. 1.5(a)) fixed at the center and let it interact with one
atom of the Fermi sea (blue). The Pauli blocking of the Fermi sea is modeled by restricting
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Figure 1.5: Model for a strongly interacting Fermi gas. (a) We consider the interac-
tion of an impurity (red) with only one fermion (blue) of the Fermi sea. The Pauli exclusion
principle is modeled as leaving only a sphere of space, with a hard wall around it. (b) The
radial wavefunction u(r) = Φ(r) · r is plotted for no interactions present. (c) The curves are
calculations of the interaction energy relative to the Fermi energy versus interaction param-
eter, reproduced from Ref. [Pri04]. The exponentially decaying wavefunction represents the
bound state.
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the available space for this atom to a sphere with hard walls. The size of this sphere is chosen
such that the ground state energy of the atom equals the mean energy per particle in the
Fermi sea. One simplification in this model is that the impurity is fixed, which corresponds
to taking an infinitely heavy impurity, however, a mass different from infinity is taken into
account by taking the reduced mass for the atom out of the Fermi sea. Another simplification
is that the impurity interacts with only one atom. In Fig. 1.5(b), we plot the radial part
of the wavefunction of the atom for no interactions present. The wavefunction satisfies the
boundary condition to be zero at the edge of the sphere. In Fig. 1.5(c) we sketch the behavior
of the wavefunction for different values of the scattering length to illustrate the evolution of
the weakly interacting states throughout the Feshbach resonance. For weak interactions, the
energy corresponds to the well-known mean field result E = gnLi, where nLi is the density of
the Li Fermi sea and the interaction parameter g is proportional to the scattering length a.
The interatomic interaction shifts the zero crossing of the wavefunction by a. The interaction
energy E can be inferred from the change in kinetic energy. For positive (negative) a the
curvature of the wavefunction is increased (decreased), leading to a positive (negative) E.
For larger a, the shift of the wavefunction must be derived from the scattering phase shift φ.
The exact calculation for any value of the interaction strength is given in Ref. [Pri04] and
the result is displayed in Fig. 1.5(c). One important result is that the states do not connect
on resonance, but the repulsive state evolves to an excited state and the attractive state
connects to the bound state. Both states coexist in the regime of strong interaction with
the distinction being one node in the wavefunction. The simple model already captures all
the essential states: repulsive state and attractive state connected to the molecular state. A
more quantitative treatment must take into account the interactions with all the Fermi sea
and not only one majority atom.

1.4.3 Many-body approach to obtain the polaron properties

Above, we have introduced two basic concepts of the polaron. First, that the collective
behavior of particles is conveniently described in terms of quasiparticles with specific prop-
erties. Second, we have derived the interaction energy of the system impurity in a Fermi
sea throughout a Feshbach resonance, where the impurity interacts with only one major-
ity atom being subject to the Pauli exclusion principle. Now, for a quantitative treatment
of the impurity problem, those two concepts are combined by the ansatz as employed in
Ref. [Che06]. The ansatz is solved for different mass ratios [Mas11], including the case of a
40K impurity in a 6Li Fermi sea, and we extend it to account for finite range effects in the
two-body interaction, see Chap. 7. Note that this approach uses two different wavefunctions
to either treat the unbound impurity or to describe the molecule. This is in contrast to the
simple model in the previous section, where the weakly attractive state directly connects to
the molecular state. The interaction energies of the unbound impurity and of the molecule
versus the interaction parameter are plotted in Fig. 1.6(a). The exact values are specific for
the mass ratio of the 40K 6Li system, our experimental parameters and the employed Fesh-
bach resonance. The attractive polaron branch (green line) and the molecule branch (dashed
line) were experimentally investigated before in the homonuclear case with 6Li [Sch09b]. The
main result of the present thesis is the characterization of the repulsive polaron, the energy
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Figure 1.6: Energetics and illustrations of the polaron and molecule states versus
the interaction parameter at T = 0. (a) The interaction energies of the attractive
polaron ( ), the repulsive polaron ( ) and the dressed molecule ( ) are plotted in units
of EF as a function of the interaction strength. (b) In the noninteracting case, the density in
real space, where x denotes the distance from the impurity, is constant and the occupation of
momentum states drops sharply at p = pF . (c,d) The attractive (repulsive) polaron attracts
(repels) its environment and the Fermi edge is softened. (e) Also the molecule interacts
repulsively.

of which is given by the red line, see Chap. 7.
It is interesting to picture the influence of the 40K impurity on the 6Li Fermi sea in

momentum and in real space. The ansatz from Ref. [Che06] for the polaron wavefunction
|P 〉 consists of the impurity at rest |0〉K in the unperturbed Fermi sea |FS〉Li plus a sum over
all possible scattering events of the impurity with one of the 6Li atoms out of the Fermi sea
leaving a hole behind, where q − p is the momentum change and the particle and the hole
are created by b†p and bq, respectively.

|P 〉 =
√

Z|0〉K|FS〉Li +
∑

p<~kF <q

fqp|q− p〉K b†p bq|FS〉Li (1.1)

The superposition of the free impurity plus the terms capturing the collisions with majority
atoms gives immediate meaning to various features of the polaron. The weight of the free
impurity

√
Z gives the wavefunction overlap with the free particle and Z is the QP residue.

The excitations in the second term with weights fqp make up the so-called dressing of the
impurity. From this ansatz we can directly infer that the dressing of the impurity gives a
softening of the Fermi surface in momentum space. Whereas the momentum state occupation
drops sharply at pF in the noninteracting case, see Fig. 1.6(b), the edge softens in the regime



1.5. Future research topics 15

of strong interaction, see Fig. 1.6 (c-e). As the particle-hole excitations have a specific phase
relation, they translate into a density distortion of the Fermi sea, which is very intuitive.
For attractive (repulsive) interaction, the 6Li density is increased (decreased) around the
40K impurity, see Fig. 1.6(c) (Fig. 1.6(d)). Also the molecule shows this repulsion of the 6Li
atoms, see Fig. 1.6(e).

1.5 Future research topics

1.5.1 Itinerant ferromagnetism

The research on ultracold Fermi gases has mainly focused on the ground state properties,
with the most prominent example being the BEC-BCS crossover connecting from repulsively
interacting molecules to attractively interacting atoms. But also a system of repulsively inter-
acting atoms promises to be an interesting candidate to investigate novel quantum phases.
This route was opened in Refs. [Jo09, Zwe09] by searching for the signatures of itinerant
ferromagnetism, as predicted by the Stoner model. This model is based on a mean field
calculation and was developed to explain ferromagnetism in solid state physics. Translated
to ultracold Fermi gases, the interaction energy in the mixed state is compared to the energy
of the two components being separated in domains. Above a critical interaction strength, the
components are predicted to energetically favor being separated in fully polarized domains,
analogous to ferromagnetic domains. However, since this critical interaction strength is high,
the applicability of the mean field calculation becomes questionable and more elaborate cal-
culations are needed [Pil10, Cha11], asking for experimental benchmarks. Experimental
findings in the ultracold Fermi mixture suggested that the ferromagnetic phase is reached
[Jo09] but further studies revealed that the findings result from the instability of the system
rather than from the phase transition [San11]. The strong repulsive interactions required to
enter the ferromagnetic phase are realized in ultracold Fermi systems by means of a Feshbach
resonance, where the energy of the scattering partners gets close to the energy of a bound
state in the attractive interatomic potential. For repulsive interactions, this bound state rep-
resents an energetically lower state, to which the repulsively interacting atoms may decay. A
many-body treatment reveals that this decay towards pairing extends throughout resonance
towards the BCS-side. This instability is studied in Ref. [Pek11a] with the result that the
pairing instability dominates over the formation of the ferromagnetic phase. However, the
authors present in another work [Pek11b] that the pairing instability is reduced at Feshbach
resonances with a finite effective range. In fact, we employ a resonance with a considerable
effective range comparable to the interparticle spacing, see Methods in Chap. 7. With this
effective range we introduce another parameter for the short-range physics. Hence, we leave
the terrain of universality and embark on the exploration of new states with a more peculiar
system. Such a system already allowed us to investigate a novel quasiparticle, the repulsive
polaron, as we prepared few 40K atoms in a Fermi sea of 6Li atoms close to a narrow in-
terspecies resonance, see Chap. 7. Also in this polarized situation, theoretical calculations
showed a superior stability of the repulsive state, the repulsive polaron, at a narrow resonance
compared to at a wide resonance. With the predicted and experimentally verified increase
of stability of the repulsive states, ultracold atoms are back in the game for investigating
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new quantum phases based on repulsive interactions.

At the time of writing this thesis, we investigate the possible realization of itinerant fer-
romagnetism in a 40K 6Li mixture at a narrow Feshbach resonance. Therefor, we prepare
the mixture similar to when investigating the repulsive polaron (Chap. 7) but with more
40K atoms, leading to comparable densities of the two species in the center of the trap. It
is important to note, as a difference to the previously employed homonuclear mixture, that
our two species feel a different potential depth. In case of separation, the lowest energy is
achieved when one of the two species occupies the center of the trap and is surrounded by
the other. This is in contrast to a homonuclear mixture, where the two components see
the same trapping potential and may minimize the energy by forming rather small domains.
For this reason we expect to observe a macroscopic separation of the two components. Pre-
liminary results indeed show indications of full separation of the two components but the
interpretation is still open. We prepare the 40K 6Li mixture far on the BEC side of the
resonance at −1/(κF a) = −10 without molecules being formed and then ramp to a variable
final magnetic field close to the resonance in about 0.2ms. In the measurements we explicitly
discriminate the free atoms of 40K and 6Li from the atoms bound to 40K -6Li molecules. At
about −1/(κF a) = −0.25 we find that the remaining 40K atoms reside in the trap center
and the cloud size is reduced while the density of the 6Li atoms drops dramatically in the
center and shows an overall increase of the cloud size. Another result is the decay rate of
the 40K atoms, which is expected to increase with higher interaction strength. However, we
find the decay rate to saturate above a certain value of the interaction strength, which is
at the same value of the interaction strength at which the 40K cloud size stops decreasing.
These observations are consistent with the separation of the clouds due to the transition to
a ferromagnetic state. However, the decay to the lower lying molecular state enriches this
scenario and challenges the interpretation of the separation in terms of the transition to a
ferromagnet. Simple mean field repulsion already leads to a slight compression of the 40K
cloud and a pushing of the 6Li cloud away from the trap center. Now, if all the 40K atoms
decay to molecules where the 6Li atom density predominates and vice versa, the resulting
atom distributions might suit to our observations and also the decay of 40K atoms might
level off as observed. The challenge for upcoming measurements is to get a more quantitative
understanding of the involved effects pairing instability and ferromagnetic transition.

1.5.2 Species-selective control

A Fermi-Fermi mixture of two different atomic species opens up a whole new world of pos-
sibilities to study new quantum phases [Liu03, Isk07, Nis10] and to explore novel few-body
states [Lev09, Nis08]. Some of those proposals require to trap the two species such that
their densities are equal throughout the trap. This is not as straightforward as it is for a
homonuclear mixture because the two species experience in general different trapping poten-
tials and cannot be levitated simultaneously with a magnetic field gradient. However, other
proposals take advantage of the possibility that the two species experience different trapping
potentials. In the following we want to present our approach to species selective control by
means of a bichromatic optical dipole trap, which will allow for creating identical traps as
well as explicitly selective traps for both species. Optical dipole traps and optical lattices are
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Figure 1.7: Laser configurations and potentials for two applications of the bichro-
matic trap. The upper panels give the intensities of the IR beam (brown) and the 730 nm
beam (magenta) as a function of the vertical direction z. The lower panels show the poten-
tial energy through gravity (dotted) plus the IR beam (dashed) and plus the 730 nm beam
(solid) for 40K (red) and 6Li (black). (a) For a shallow IR beam potential plus gravitational
potential, the trap minima of the two species are shifted with respect to each other. This
gravitational sag can be compensated through the 730 nm beam, when shifted with respect
to the IR beam. (b) The 730 nm beam may be used to compensate for the trapping potential
of the IR beam.

usually implemented with far-detuned light to avoid spontaneous scattering [Gri00]. Thus
the two states in homonuclear mixtures usually experience nearly identical light shifts. The
different optical transitions of 6Li (≈671 nm) and 40K (≈767 nm), however, let us control the
two species selectively [Ono04, Ler11].

One application is to adjust the trap frequencies of the 6Li and 40K atoms selectively.
Our present optical dipole trap is realized using light with a wavelength of 1064 nm, creating
an attractive potential for both species, which is about 2 times deeper for 40K atoms than
for 6Li atoms. To implement the bichromatic trap, we provide a light source with tunable
wavelength from 720 nm to 800 nm. Let us assume we superimpose the beam at 730 nm
to the present optical dipole trap beam at 1064 nm. The trap depth and trap frequencies
increase for the 6Li atoms but decrease for the 40K atoms. In the following we mention three
possible applications. (1) One is to optimize the conditions for Cooper-type pairing and
superfluidity to occur. This requires a matching of the Fermi surfaces and of the densities of
the two species, which implies equal Fermi momenta and equal Thomas-Fermi radii. Both
requirements can only be fulfilled when the atom numbers are equal and the trap frequencies
have the inverse ratio of the masses, i.e. ωLi/ωK = mK/mLi. We can achieve this condition
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in the two radial directions by shining in the 730 nm beam with 19% of the power of the
1064 nm beam, provided that both beams have the same waist. To match the densities in
the axial direction we plan to use a box with hard walls derived from a 532 nm light source,
which equally confines both species. (2) A second application is to compensate for the
different gravitational sag of the 6Li and 40K atoms, which leads to a relative displacement
of the two species in the optical dipole trap, see Fig. 1.7(a). Commonly, a magnetic gradient
field can be used to compensate for the gravitational force. However, as the 6Li and 40K
atoms have different masses but similar magnetic moment, we cannot levitate both at the
same time. The additional degree of freedom to compensate for the different gravitational
sag is the vertical displacement of the 730 nm beam relative to the 1064 nm beam. Placing
the 730 nm beam below the 1064 nm beam pulls the 6Li atoms down and pushes the 40K
atoms up, as needed to compensate for the larger sag of the heavy 40K atoms. (3) A third
application is to realize a pure atom trap, meaning that the 40K atoms are purely trapped
through the interactions with the 6Li cloud. We can achieve this by shining in the 730 nm
with 21% of the power of the 1064 nm beam, provided that both beams have the same waist,
see Fig. 1.7(b). This toy experiment may take us to more elaborate systems. Imagine one
species interacting with another species that is confined in a lattice and can feature phonons
or that is confined in a random potential and can lead to Anderson localization of the first
species [Bil08, Roa08].

Another possibility is to implement a species-selective lattice. Let us assume we set up
a lattice with light at 730 nm. In terms of recoil energy, the lattice depth is about 18 times
deeper for 40K atoms than for 6Li atoms and the factor can be even larger for a wavelength
closer to 767 nm. With such a lattice in n dimensions we can reduce the dimensionality
of the 40K atoms to 3 − n, while not affecting the dimensionality of the 6Li atoms. This
dramatically affects the two-body interaction leading to confinement induced resonances
[Ols98, Ber03, Mor05, Lam10, Hal10]. Interesting few-body effects can also be addressed,
e.g. a p-wave resonance between 40K -6Li dimers and 40K atoms tuneable by the lattice depth
[Lev09] or the Efimov-effect in mixed dimensions [Nis09b]. In terms of many-body physics,
new quantum phases may be studied, e.g. 6Li can mediate interactions between 40K atoms
in different layers, which may lead to interlayer superfluidity [Nis10].
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1.6 Topics at a glance

The present thesis covers six topics, presented in the following six chapters. Here, we survey
the topics at a glance.

Chapter 2, Lifetime of angular momentum in a rotating strongly interacting Fermi gas:
We set a strongly interacting Fermi gas in rotation and study the lifetime of the angular
momentum as a function of interaction strength and trap ellipticity. The rotation is measured
by tracing the precession of the radial quadrupole mode oscillation, see Fig. 1.8. We find
that the deeply hydrodynamic behavior in the normal phase leads to a very long lifetime.

Figure 1.8: Time series of a precessing quadrupole mode oscillation. The main axes
of the excitation, one of which is shown by the solid line, precesses by the angle Φ. From
this precession we can extract the angular momentum of the gas.

Chapter 3, Quenching of the moment of inertia in a strongly interacting Fermi gas: We
report on the observation of a reduced moment of inertia of the strongly interacting, ultracold
gas as compared to a classical gas. This is a striking consequence of superfluidity. The basic
idea of the measurement is sketched in Fig. 1.9. Investigating the moment of inertia as a
function of temperature reveals the critical temperature for the transition to the superfluid
phase.

Figure 1.9: Illustration of a strongly interacting Fermi gas in a trap, slowly rotating
with Ωtrap. The classical part in the outer trap region rotates with a frequency Ω. The
superfluid core cannot rotate, unless vortices are excited, and does not contribute to the
moment of inertia.



20 Chapter 1. Introduction

Chapter 4, Observation of interference between two molecular Bose-Einstein condensates:
We observe the interference between two independent Bose-Einstein condensates of weakly
bound Feshbach molecules, see Fig. 1.10. The fringe spacing is determined by the de Broglie
wavelength of the molecules. We study the penetration of the two condensates towards the
regime of strong interaction and find that collisions reduce the fringe contrast and that they
eventually collide hydrodynamically.

Figure 1.10: Interference of two molecular Bose-Einstein condensates. The two
clouds expand and overlap in time of flight (TOF) and an interference pattern emerges.

Chapter 5, Feshbach resonances in the 40K 6Li Fermi-Fermi mixture: Elastic versus in-
elastic interactions: This is a detailed study of the Feshbach resonances between fermionic
6Li and 40K atoms, see Fig. 1.11. Experimentally, we study the elastic and inelastic scat-
tering properties at the resonance located at about 155G. The results fully agree with the
theoretical calculations based on a coupled channels calculation. We also present a survey
of resonances in the system.

Figure 1.11: Controlling the scattering length between fermionic 6Li and 40K atoms
The occupation of the low-energy levels in the harmonic trap illustrates the degeneracy of
the sample. The interspecies elastic scattering, parameterized by the scattering length a, is
tuned by the magnetic field B
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Chapter 6, Hydrodynamic Expansion of a Strongly Interacting Fermi-Fermi Mixture: We
show that the strongly interacting regime can be reached in the 40K 6Li Fermi-Fermi mixture,
by observing hydrodynamic expansion. The hydrodynamic behavior leads to two observables:
The inversion of the aspect ratio and the drag between the two species, both sketched in
Fig. 1.12.

Figure 1.12: Hydrodynamic expansion of a strongly interacting mixture of 40K
(red) and 6Li (blue). In general the light 6Li atoms expand much faster. However, where
the two species overlap they drag each other and expand collectively. Also the elliptic shape
of the core indicates the nonballistic, hydrodynamic expansion. (Credit: Ritsch)

Chapter 7, Metastability and coherence of repulsive polarons in a strongly interacting
Fermi mixture: We study the excitation spectrum of 40K impurities in a Fermi sea of 6Li by
means of radio-frequency spectroscopy. We identify a novel quasiparticle state, the repulsive
polaron, being a 40K atom dressed by excitations of the Fermi sea of 6Li, see Fig. 1.13. We
measure the quasiparticle properties like its interaction energy, its lifetime and its quasipar-
ticle residue.

Figure 1.13: A dressed 40K impurity. The impurity (40K atom in red) affects the medium
(6Li atoms in blue) and it becomes dressed by excitations of the medium. The key concept
of Fermi liquid theory by L. Landau is to describe the impurity plus the dressing as a
quasiparticle. We probe the quasiparticle properties by driving radio-frequency spectroscopy,
depicted by the transition in the two-level system.
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Lifetime of angular momentum in a rotating strongly
interacting Fermi gas 1
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We investigate the lifetime of angular momentum in an ultracold strongly interacting
Fermi gas, confined in a trap with controllable ellipticity. To determine the angular
momentum we measure the precession of the radial quadrupole mode. We find that in
the vicinity of a Feshbach resonance, the deeply hydrodynamic behavior in the normal
phase leads to a very long lifetime of the angular momentum. Furthermore, we examine
the dependence of the decay rate of the angular momentum on the ellipticity of the
trapping potential and the interaction strength. The results are in general agreement
with the theoretically expected behavior for a Boltzmann gas.

2.1 Introduction

The dynamics of an ultracold quantum gas is an important source of information on the
physical nature of the system. A particularly interesting situation is an atomic Fermi gas

1The primary contribution of the author of the present thesis to this publication is the setup of a
deflection system for the trapping laser beam [Koh07] to be able to create the special time-averaged optical
dipole potentials. He also contributed to data acquisition.
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in the vicinity of a Feshbach resonance [Ing08a, Gio08]. The Feshbach resonance allows
us to tune the two-body interaction and thus to control the coupling between the atoms.
It connects a molecular Bose-Einstein condensate (BEC) with a Bardeen-Cooper-Schrieffer
(BCS) superfluid. In the crossover region between these two limiting cases, the center of
the Feshbach resonance is of special interest. Here the unitarity-limited interactions lead to
universal behavior of the Fermi gas.

The strong two-body interactions close to the Feshbach resonance lead to very low vis-
cosity and hydrodynamic behavior in the normal phase, similar to the properties of a super-
fluid [Cla07, Wri07]. The coexistence of normal and superfluid hydrodynamic behavior is
a special property of the strongly interacting Fermi gas, which stands in contrast to ultra-
cold Bose gases, where deep hydrodynamic behavior is usually restricted to the superfluid
condensate fraction. The low-viscosity hydrodynamic behavior leads to a long lifetime of
collective motion in the system. Using collective modes the dynamics has been investi-
gated in a broad range of temperatures and interaction strengths in the crossover region
[Cla07, Wri07, Bar04a, Kin04a, Kin04b, Kin05a, Alt07a, Alt07b, Rie08], including the hy-
drodynamic regime in the normal phase. Another important collective motion is the rotation
of the gas, which is of particular interest in relation to superfluidity [Zwi05b].

In this Article, we study the lifetime of the angular momentum of a rotating strongly
interacting Fermi gas. We determine the angular momentum using the precession of the
radial quadrupole mode. This method is well established to study the angular momentum in
experiments with BEC [Che00, Hal01a, Lea02]. We observe that the unique hydrodynamic
behavior of the strongly interacting Fermi gas leads to particularly long lifetimes of the
angular momentum. We perform a quantitative analysis of the dissipation of the angular
momentum caused by the trap anisotropy for a gas in the unitarity limit. The measurements
show general agreement with the expected behavior for a Boltzmann gas [GO00]. As shown
in a previous study comparing experiment and theory [Rie08], a Boltzmann gas describes
the behavior of a gas in the normal state with unitarity-limited interactions reasonably well.
Finally we study the dependence of the lifetime on the interaction strength of the gas in the
crossover region between the BEC and BCS regime.

2.2 Experimental procedure

To realize an ultracold strongly interacting Fermi gas we trap and cool an equal mixture of
6Li atoms in the lowest two atomic states as described in our previous work [Joc03b, Alt07b].
We control the interparticle interaction by changing the external magnetic field in the vicinity
of a broad Feshbach resonance centered at 834 G [Bar05]. The atoms are held by an optical
dipole trap using a red-detuned single focused laser beam and an additional magnetic trap
along the beam; this magnetic confinement dominates over the optical confinement along
the beam under the conditions of the present experiments. The resulting trap provides
weak confinement along the beam (z axis) and stronger transverse confinement (x-y plane),
leading to a cigar-shaped cloud. The trap is well approximated by a harmonic potential with
trap frequencies ωx ≈ ωy ≈ 2π× 800Hz and ωz = 2π× 25Hz. The trap, in general, also has
a small transverse ellipticity, which can be controlled during the experiments. We define an
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Figure 2.1: Oscillation of the cloud after excitation of the radial quadrupole mode. For a
rotating hydrodynamic gas the principal axes of the quadrupole mode oscillation precess
with a frequency determined by the angular momentum of the gas. To follow the precession
we measure the angle of the long axis of the cloud. Note that every half oscillation period
this angle changes by π/2 because of the mode oscillation; see also Fig. 2.2. The oscillation
of the cloud shape is determined by measuring the widths along the short (WS) and the long
axis (WL) of the cloud.

average transverse trap frequency as ωr =
√

ωxωy. The Fermi energy of the noninteracting

gas is given by EF = ~(3Nωxωyωz)
1/3 = ~2k2

F /2M where N = 5 × 105 is the total atom
number, M is the atomic mass, and kF is the Fermi wave number. The corresponding Fermi
temperature is TF = EF /k = 1.3 µK, with k as the Boltzmann constant. The interaction
strength is characterized by the dimensionless parameter 1/kF a, where a is the atomic s-wave
scattering length.

To dynamically control the shape of the trapping potential in the transverse plane, we
use a rapid spatial modulation of the trapping laser beam by two acousto-optical deflectors,
which allows us to create time-averaged trapping potentials [Alt07b]. The control over the
potential shape has two different applications for the measurements. As a first application
we use it to adjust the static ellipticity ε = (ω2

x−ω2
y)/(ω

2
x + ω2

y) of the trap in the x-y plane.
This allows us to compensate for residual ellipticity of the trapping potential, i.e., of the
trapping laser beam, and also to induce a well defined ellipticity. The second application is
the creation of a rotating elliptic potential with a constant ellipticity ε′ 2. This is needed to
spin up the gas. Both the static ellipticity in the x-y plane and the rotating elliptic potential
can be controlled independently. To determine the ellipticity we measure the frequency of the
sloshing mode along the two principal axes of the elliptic potential. This allows controlling
the ellipticity with an accuracy down to typically 0.005.

2ε′ = (ω′2x − ω′2y )/(ω′2x + ω′2y ), where ω′x and ω′y are the trap frequencies in the frame of the rotating
potential.
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Figure 2.2: Evolution of the quadrupole mode in a rotating Fermi gas in the unitarity limit.
The upper panel shows the precession of the principal axes of the mode. The experimental
data are shown by the dots. The solid line represents a fit according to Eq. 2.2. The dashed
lines correspond to the idealized precession of the angle when there is no damping present
in the mode. Whenever the oscillation of the difference in widths ∆W 2/W 2

0 (lower panel)
has a local maximum the observed precession angle coincides with the idealized precession.
The parameter W0 is the average width of the cloud. The finite value of φ at zero wait time
results from the precession of the cloud during expansion. Here Lz = 1.7~ and T/TF ≈ 0.2.

To measure the angular momentum of the cloud, we exploit the fact that collective ex-
citation modes are sensitive to the rotation of the cloud. Here we use the precession of
the radial quadrupole mode to determine the angular momentum of the rotating cloud; see
Fig. 2.1. This method works under the general condition that the gas behaves hydrodynam-
ically [Che03]. In our case of a strongly interacting Fermi gas, this method probes both the
superfluid and the classically hydrodynamic part and does not distinguish between these two
components. For the case of atomic BEC, the precession has been well studied in theory
[Sin97, Dod97, Svi98, Zam98] and used in experiments to determine the angular momentum
of the BEC [Che00, Hal01a, Lea02]. For an atomic BEC the non-condensed part is usually
collisionless and does not contribute to the mode precession.

The radial quadrupole mode consists of two collective excitations with angular quantum
numbers m = +2 and m = −2 and frequencies ω+ and ω−, respectively. These two excita-
tions correspond to an elliptic deformation of the cloud rotating in opposite directions. The
superposition of the excitations results in the radial quadrupole mode. For a gas at rest the
two excitations are degenerate, while for a gas carrying angular momentum the frequencies
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are different, which causes a precession of the mode, see Fig. 2.1. The mode precesses with
a frequency Ωφ = (ω+ − ω−)/4. The angular momentum itself can be calculated from the
precession frequency [Zam98] using

Ωφ = Lz/(2Mr2
rms). (2.1)

Here Lz is the average angular momentum per atom and r2
rms is the mean value of x2 + y2

of the density distribution3.
To excite the quadrupole mode we switch on an elliptic potential for 50 µs; this short

elliptic deformation does not affect the angular momentum of the gas. For the excitation we
make sure that ωr does not change. This ensures that no compression mode is excited and
only an equal superposition of the m = ±2 modes is created [Alt07b].

To follow the quadrupole oscillation we determine the angle of the long axis, φ, and
the difference of the widths along the principle axes of the cloud, ∆W = WL − WS, after
a variable wait time in the trap; see Fig. 2.1. Therefore we fit a zero-temperature two-
dimensional Thomas-Fermi profile to absorption images4. We also keep the angle of the
long axis a free fit parameter. The width of the cloud is defined as twice the Thomas-Fermi
radius.

To resolve the density distribution in the x-y plane, we let the cloud expand for 0.8ms
before taking the image. The expansion does not only increase the width of the cloud but
also leads to an increase in the precession angle as a consequence of the angular momentum.
A quantitative analysis of the small contribution to the total precession angle that results
from the expansion is given in Appendix B.

Figure 2.2 shows the evolution of the precessing quadrupole mode. The upper part shows
the precession angle. The finite value of φ at zero wait time results from the expansion. The
periodic jumps of the precession angle reflect the alternation between the long and the short
axis while the quadrupole mode evolves. As the precession proceeds, these jumps become
more and more smooth. This is caused by stronger damping of the m = −2 excitation
compared to the m = +2 excitation. Similar behavior has been observed in Ref. [Bre03] for
the case of a BEC. There the authors discussed two possible mechanisms where the difference
in damping is due to either a rotating thermal cloud [Wil02] or Kelvin mode excitations
[Che03]. From our measurements we cannot discriminate between these two mechanisms.

To fit the observed precession of the quadrupole mode, we use the function given in
Appendix A. We find very good agreement between the data and the expected behavior.
For the data set shown in Fig. 2.2 the angular momentum is 1.7~. The average damping
rate is (Γ−+Γ+)/2 = (460±30) s−1, while the difference in the damping rate of the m = −2
compared to the m = +2 excitation is Γ− − Γ+ = (80± 40) s−1.

We find that a simplified procedure can be used to determine the angular momentum
from a single measurement, instead of fitting the whole precession curve. If the measurement

3We determine rrms at unitarity from the trap parameters using EF = 2Mω2
rr2

rms

√
1 + β where we used

the universal scaling parameter β = −0.56 [Gio08]. Note that this underestimates rrms by a few percent
because it does not take into account the finite temperature and the rotation of the gas. This does not effect
the measurement of the lifetime of rotation as this depends on the relative change of Lz.

4For the parameters used in the experiment a zero temperature Thomas-Fermi profile fits the density
distribution reasonably well.
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is taken at a time when ∆W 2 has a local maximum, the precession angle φ is independent
of the distortion caused by the difference in the damping rates between the two excitations;
see Fig. 2.2. This allows us to determine the difference ω+ − ω− = 4 φ/∆t and therefore to
determine Lz with a single measurement. The duration ∆t is the sum of the wait time in the
trap and an effective precession time te, which accounts for the precession of the quadrupole
mode during expansion as discussed in Appendix B. Depending on the damping of the mode
oscillation, we measure the precession angle at the first or second maximum5 of ∆W 2.

To determine the temperature of the gas in the unitarity limit, we first adiabatically
change the magnetic field to 1132G 6, where 1/kF a ≈ −1, to reduce the effect of interactions
on the density distribution [Luo07]. Under this condition, for T > 0.2TF , the interaction
effect on the density distribution is sufficiently weak to treat the gas as a noninteracting
one and to determine the temperature from time-of-flight images. We fit the density distri-
bution after 2ms release from the trap to a finite-temperature Thomas-Fermi profile. The
temperature measured at 1132G is converted to the temperature in the unitarity limit un-
der the assumption that the conversion takes place isentropically, following the approach of
Ref. [Che05a].

2.3 Spinning up the gas

To spin up the gas we introduce a rotating anisotropy into the initially round trap in the
x-y plane. More specifically, we suddenly switch to a rotating elliptic trap potential with a
rotation frequency Ωt and ellipticity ε′ = 0.03, rotate for a time trot on the order of 100ms,
and then ramp down the ellipticity in 50ms while the trap is still rotating.

In the case of hydrodynamic behavior of the gas this spinning up method is resonantly
enhanced in a certain range of rotation frequencies; see Fig. 2.3. The reason for this behavior
is the resonant excitation of quadrupolar flow which leads to a dynamic instability when Ωt

is close to half the oscillation frequency of the radial quadrupole mode ωq/2 = 0.71ωr.
This effect was used to nucleate vortices in a BEC [Mad00b] and was further studied in
Refs. [Mad01, Hod02]. A signature of the resonant excitation is a strong elliptic deformation
of the cloud shape which exceeds the ellipticity of the trap ε′ during the spin-up process.
We clearly see this effect when we spin up the gas. We also find that the rotation frequency
where Lz starts to increase strongly depends on ε′ and trot in a similar way as it was observed
in Refs. [Mad01, Hod02]. Note that we cannot draw any conclusion concerning superfluidity
from the resonant behavior of Lz in Fig. 2.3 because it is only a consequence of hydrodynamic
behavior and the strongly interacting gas is hydrodynamic both below and above Tc. In fact,
for temperatures clearly above Tc we a find similar behavior for Lz as a function of Ωt.

For an atomic BEC, Lz was found to first increase abruptly from 0 to 1~ with Ωt, caused
by the appearance of a centered vortex [Che00]. As the formation of pairs is necessary
for superfluidity in the BEC-BCS crossover regime, the angular momentum per atom of a

5Note that the frequency of quadrupole mode oscillation ωq depends on the rotation frequency of the gas
via ω2

q = 2ω2
r − Ω2. This leads to a tiny shift of the maxima of ∆W 2 but does not affect our measurement

of Lz within our experimental uncertainty.
6This is the largest magnetic field where absorption images can be taken with our current experimental

setup.
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Figure 2.3: The angular momentum Lz as a function of the rotation frequency Ωt of the
elliptic trap. Here we spin up the gas for trot = 60 ms. The temperature is T/TF ≈ 0.2. The
gas is in the unitarity limit.

single vortex in the center of the cloud amounts to Lz = ~/2. We do not observe such an
abrupt increase in Lz. Nevertheless this does not exclude that vortices are created during our
spin-up process; the abrupt change in Lz is not a necessary consequence of the creation of
vortices as the angular momentum of a vortex depends on its position in an inhomogeneous
gas [Che00]. Furthermore our measurement of Lz cannot distinguish between the angular
momentum carried by the superfluid and the normal part of the cloud. Also, we cannot
directly observe vortices in our absorption images; we believe that the reason is the very
elongated cloud which strongly decreases the contrast of the vortex core in the absorption
images.

During our spin-up process we observe a significant heating of the gas depending on
the rotation frequency and the rotation time. We keep these two parameters as small as
possible. We find that a rotation frequency of Ωt/ωr = 0.6 and trot = 200ms lead to an
angular momentum of about Lz = 2~. This is sufficient to perform the measurements, and
at the same time does only moderately increase the temperature.

We determine the temperature of the gas after the spin-up process. To avoid complica-
tions in the temperature measurement, we wait until the rotation has completely decayed.
To keep this wait time short, on the order of 100ms, we speed up the decay by increasing
the ellipticity of the trap; see discussion below. Note that the low initial angular momentum
used in the experiments, always staying below 3~, does not lead to a significant increase in
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Figure 2.4: Decay of the angular momentum Lz for a gas in the unitarity limit. The tem-
perature is T/TF = 0.22(3). We fit an exponential decay behavior (solid lines) to the
experimental data points. For low ellipticity ε = 0.009 (open dots) the lifetime is 1.4 s, while
at higher ellipticity ε = 0.1 (filled dots) the lifetime is only 0.14 s. To better see the difference
of the lifetime for the two ellipticities we normalized Lz by its initial value L0. For the lower
ellipticity L0 = 2.2~ and for the higher ellipticity 1.6~.

the temperature when the rotation energy is completely converted into heat7.

2.4 Lifetime of the angular momentum

In an elliptic trap the angular momentum is not a conserved quantity and hence can decay.
The dissipation of Lz is due to the friction of the gas caused by the trap anisotropy. Here we
investigate the dependence of the decay of Lz on the static ellipticity for the case of unitarity-
limited interactions. We compare our experimental results to the predicted behavior for a
rotating Boltzmann gas [GO00]. Finally we study the dependence of the decay rate on the
interaction strength in the BEC-BCS crossover regime.

The fact that the gas consists of two different components, the normal and the superfluid
part, leads in general to a complex behavior for the decay of Lz. For example, in the case
of a BEC an exponential decay is related to the corotation of the thermal cloud with the
condensate [Zhu01, AS02]. When the thermal cloud is not rotating, theoretical [Zhu01] and

7To estimate the increase of the temperature through the decay of the rotation we assume that the
rotation energy is completely converted into heat. In the experiments Lz is well below 3~ which leads to a
relative temperature increase of ∆T/T < 0.02 in the relevant temperature range. This is clearly below the
uncertainty of our temperature measurement.
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Figure 2.5: Normalized decay rate of the angular momentum as a function of the ellipticity
for a gas in the unitarity limit. The temperatures are T/TF = 0.22(3) (filled dots) and
0.35(2) (open dots). The solid lines are fits based on the expected behavior for a Boltzmann
gas [GO00]. The inset shows the low ellipticity region.

experimental [Mad00b] studies show nonexponetial behavior. For a gas completely in the
hydrodynamic regime it is expected that the decrease in Lz has an exponential form [GO00].

To measure the decay rate of the angular momentum, we use the following procedure.
After spinning up the gas as discussed in Sec. 2.3, we slowly increase the static ellipticity
within 10ms, wait for a certain hold time to let the angular momentum partially decay, and
then we remove the ellipticity again within 10ms. Finally we excite the radial quadrupole
mode and observe the precession to determine Lz using the simplified procedure discussed
earlier.

In Fig. 2.4 we show two examples for the decay of Lz. We find that the decay of the
angular momentum perfectly fits an exponential behavior for all the static ellipticities, tem-
peratures, and interaction strengths we used. For the lowest temperatures obtained, the
lifetime for a gas in the unitarity limit goes up to 1.4 s, presumably limited by a residual
anisotropy of the trap. This lifetime is by more than a factor of thousand larger than the
radial trap oscillation period. Furthermore the lifetime of the angular momentum is much
larger than the lifetime of collective excitation modes. For example, the lifetime of the radial
quadrupole mode under the same conditions is only 2ms. A larger ellipticity of the trap
significantly decreases the lifetime of Lz.

In the following we investigate quantitatively the dependence of the decay rate of the
angular momentum, λ, on ellipticity and temperature. The experimental results are shown
in Fig. 2.5 for two different temperatures. The full circles display the data for a temperature
of T/TF = 0.22(3) and the open circles correspond to a temperature of T/TF = 0.35(2). For
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better comparison with theory, we plot the normalized decay rate λ/ωr. A strong increase
in the decay rate with increasing ellipticity shows the important role of the trap anisotropy
on the lifetime of the angular momentum. For both temperatures the qualitative behavior
of the decay rate is the same.

Next we compare the behavior of the decay rate with a theoretical prediction for a
Boltzmann gas [GO00]. As we showed recently in Ref. [Rie08], a Boltzmann gas describes
the behavior of a unitarity-limited gas in the normal state reasonably well. The predicted
behavior of the decay rate is given by λ/ωr = 2ε2ωrτ under the assumption that ε ¿
1/(4ωrτ)8, where τ is the relaxation time or effective collision time [Rie08, Vic00, Hua87].
This condition is well fulfilled in our system because the gas is in the hydrodynamic regime
where ωrτ ¿ 1. We compare this theoretical prediction, with τ as a free parameter, to our
measurements. We find ωrτ = 0.108(5) for the lower temperature and ωrτ = 0.28(1) for the
higher temperature data.

Note that at very low ellipticity, ε < 0.02, the observed decay rate for both temperatures
lies significantly above the expected behavior; see inset of Fig. 2.5. We attribute this to an
additional anisotropy of the trap beyond simple ellipticity. This weak anisotropy becomes
relevant only at very low ε. Furthermore the finite linear heating rate of the trapped gas
of 0.05TF s−1 becomes important when the decay rate is very low, which means that the
lifetime of Lz is on the order of seconds. In this case the temperature cannot be assumed to
be constant during the decay of Lz.

A recent calculation of the relaxation time τ for a Fermi gas in the unitarity limit [Rie08]
allows us to compare the experimental values for ωrτ to theory. For T/TF = 0.35 the obtained
relaxation time of ωrτ = 0.28 is clearly larger than the calculated value of ωrτ = 0.13. This
means that the theory predicts that the gas is somewhat deeper in the hydrodynamic regime
compared to the experimental findings. Similar deviations showed up when the theory was
compared to the temperature dependence of collective oscillations [Rie08]. For the lower
temperature the obtained value for ωrτ cannot be compared to the calculation of Ref. [Rie08]
as the theory is restricted to higher temperatures.

Finally we study the decay of the angular momentum in the crossover region between
the BEC and BCS regimes. We measure the decay rate for different interaction parameters
1/kF a. The experimental sequence is the same as for the decay rate in the unitarity limit
beside ramping the magnetic field to the desired value in 100ms before increasing the ellip-
ticity and ramping back the magnetic field in 100 ms before exciting the quadrupole mode.
Here the magnetic field is changed slowly such that the gas is not collectively excited. The
ellipticity for all magnetic fields is set to be ε = 0.09. This sizeable value of ε ensures that a
small anisotropy beyond ellipticity does not affect the decay rate and makes the measurement
less sensitive to heating while the angular momentum damps out as discussed above.

Figure 2.6 shows the decay rate of the angular momentum as a function of the interaction
strength. The lifetime is largest where the interaction is strongest and accordingly the
relaxation time is short. In addition to the two-body interaction strength, pairing effects
play an important role for the relaxation time [Rie08]. This might explain the higher decay
rates for 1/kF a < 0, where the pairing is weak, compared to the decay rates for 1/kF a > 0,

8For the temperatures used in the measurements 1/(4ωrτ) > 0.9 for a gas in the unitarity limit.
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Figure 2.6: Lifetime of the angular momentum versus interaction parameter 1/kF a for ε =
0.09. The temperature for 1/kF a = 0 is T/TF = 0.22(3).

where the atoms are bound to molecules. Similar behavior has been seen in [Zwi05b] for the
lifetime of a vortex lattice. Note that Ref. [Zwi05b] also reported a decrease in the lifetime
in a narrow region around 1/kF a = 0, which we do not observe for our trap parameters.

In summary the hydrodynamic behavior in the crossover region leads to a very long
lifetime of Lz.

2.5 Conclusion

In this work we have presented measurements on a strongly interacting Fermi gas carrying
angular momentum. The angular momentum of the gas exhibits long lifetimes due to the
deeply hydrodynamic behavior of the normal state in such a system. We investigated the
decay rate of the angular momentum depending on the ellipticity of the trapping potential for
two different temperatures. We find that the experimental results are in good agreement with
the expected behavior for a simple Boltzmann gas. The dependence of the decay rate of the
angular momentum on the interaction strength in the BEC-BCS crossover region confirms
that the collective motion is very stable as long as the interaction strength is sufficiently
large.

The long lifetime of the angular momentum in a rotating strongly interacting Fermi gas
allows us to further investigate rotational properties both in the superfluid and normal phase
in detail and with high precision. Currently we investigate the moment of inertia of the gas
for different temperatures; see Chapter 3.
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2.6 Appendices

Appendix A

To calculate the precession angle and the oscillation of the width we assume that the fre-
quency and damping rate for the m = ±2 excitations are independent. For the damping of
each excitation we assume an exponential behavior. A superposition of the two excitations
results in the fit function for the precession angle [Bre03]

tan (2(φ− φe)) =

e−(Γ+−Γ−)t sin (ω+t + 2φ0)− sin (ω−t + 2φ0)

e−(Γ+−Γ−)t cos (ω+t + 2φ0) + cos (ω−t + 2φ0)
(2.2)

Here ω± are the frequencies, Γ± are the damping rates, φ0 is the initial angle for the two
excitations and φe is the precession angle resulting from the expansion of the cloud. For the
oscillation of the width difference ∆W we get

∆W 2 = 4Ae−(Γ++Γ−)t cos2

(
(ω+ + ω−)

2
t + 2φ0

)

+ A(e−Γ+t − e−Γ−t)2, (2.3)

where A is the amplitude of the oscillation.

Appendix B

Here we calculate the effect of the expansion of the cloud on the precession angle. Assuming
conservation of angular momentum during the expansion, the rotation frequency Ω of the
gas decreases as the size of the cloud is increasing. We introduce an effective precession time
te which accounts for the changing precession angle φ during expansion. The total change
in the precession angle resulting from the expansion is given by

φe =

∫ tTOF

0

φ̇(t)dt = φ̇(0)te, (2.4)

where φ̇(0) is the precession frequency when the gas is still trapped and tTOF is the expansion
time. Assuming that also during the expansion φ̇(t) = Lz/(2Mr2

rms(t)) is still valid and
inserting this into Eq. 2.4 we get

te =

∫ tTOF

0

r2
rms(0)/r2

rms(t)dt. (2.5)

To calculate the relative increase of the cloud size during expansion, r2
rms(t)/r

2
rms(0), we use

the scaling approach; see e.g. [Alt07b]. For our experimental parameters, ωr = 800Hz and
tTOF = 0.8ms, we get an effective precession time of te = 0.26ms. This is shorter than the
typical precession time in the trap of 0.75 ms.
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We report on the observation of a quenched moment of inertia as resulting from superfluid-
ity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic
gas in slow rotation and determining its angular momentum by detecting the precession
of a radial quadrupole excitation. The measurements distinguish between the superfluid
and collisional origins of hydrodynamic behavior, and show the phase transition.

3.1 Introduction

Superfluidity is a striking property of quantum fluids at very low temperatures. For bosonic
systems, important examples are liquids and clusters of 4He and atomic Bose-Einstein con-
densates. In fermionic systems, superfluidity is a more intricate phenomenon as it requires
pairing of particles. Fermionic superfluidity is known to occur in atomic nuclei and 3He
liquids and it is also at the heart of superconductivity, thus being of great technological im-
portance. Recent advances with ultracold Fermi gases have opened up unprecedented possi-

1The author of the present thesis acquired the data together with S.R. and contributed to the analysis
and interpretation of the results.
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bilities to study the properties of strongly interacting fermionic superfluids [Gio08, Ing08a].
Early experiments on ultracold Fermi gases with resonant interparticle interactions compiled
increasing evidence for superfluidity [O’H02, Reg04, Kin04a, Bar04a, Chi04, Kin05b] until
the phenomenon was firmly established by the observation of vortex lattices [Zwi05b].

Here we report on the manifestation of superfluidity in a quenched moment of inertia
(MOI) in a strongly interacting Fermi gas that undergoes slow rotation. The basic idea of a
quenched MOI as a signature of superfluidity dates back to more than 50 years ago in nuclear
physics, where MOIs below the classical, rigid-body value were attributed to superfluidity
[Rin80]. The quenching of the MOI was also shown in liquid 4He [Hes67] and has, more
recently, served for the discovery of a possible supersolid phase [Kim04]. Here we introduce
the observation of the quenched MOI as a new method to study superfluidity in ultracold
Fermi gases.

3.2 Basic idea of the measurement

The basic situation that underlies our experiments is illustrated in Fig. 3.1. At a finite
temperature below the critical temperature Tc, the harmonically trapped cloud consists of a
superfluid core centered in a collisionally hydrodynamic cloud. We assume that the trapping
potential is close to cylindrical symmetry, but with a slight, controllable deformation that
rotates around the corresponding axis with an angular velocity Ωtrap. The nonsuperfluid part
of the cloud is then subject to friction with the trap and follows its rotation with an angular
velocity Ω2, which in a steady state ideally reaches Ω = Ωtrap. The corresponding angular
momentum can be expressed as L = ΘΩ, where Θ denotes the MOI. The superfluid core
cannot carry angular momentum, assuming that vortex nucleation is avoided, and therefore
does not contribute to the MOI of the system. Thus Θ represents the MOI of the whole
system.

The case of a rotating system in a steady state, where the normal part carries the max-
imum possible angular momentum, allows us to distinguish the superfluid quenching of the
MOI from a non-equilibrium quenching effect as studied in Ref. [Cla07]. There the authors
investigated the hydrodynamic expansion of a gas with a known angular momentum. This
situation, where the velocity fields of the normal and superfluid components are not in a
steady state, can also be discussed in terms of a MOI below the rigid-body value. In contrast
to the phenomenon investigated in our present work, the effect of Ref. [Cla07] is related to
irrotational flow and can occur for both the superfluid and the collisionally hydrodynamic
normal phase.

Our measurements rely on the possibility to determine the total angular momentum L of
a rotating hydrodynamic cloud by detecting the precession of a radial quadrupole excitation.
This method is well established and has been extensively used in the context of atomic Bose-
Einstein condensates [Che00, Hal01a, Lea02]. We have recently applied it to a rotating,
strongly interacting Fermi gas to investigate the slow decay of angular momentum [Rie09].

2We assume that the normal cloud performs a rigid rotation with an angular velocity Ω. This can be
justified by the internal friction in the non-superfluid component along with the fact that the rotating trap
deformation is applied to all regions of the cloud simultaneously.
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Figure 3.1: Schematic illustration of a strongly interacting Fermi gas in a slowly rotating
trap. The normal part rotates with a frequency Ω, which in an equilibrium state approaches
the rotation frequency Ωtrap that is imposed by the trap. The superfluid core (sf) does not
carry angular momentum and therefore does not contribute to the MOI.

The method works under the general condition that the gas behaves hydrodynamically. Then
the precession frequency can be written as Ωprec = L/(2Θrig) [Zam98], where Θrig corresponds
to a moment of inertia as calculated from the density distribution under the assumption that
the whole cloud, including the superfluid part, would perform a rigid rotation. Substituting
ΘΩ for L, we obtain Ωprec = Θ/(2Θrig) Ω, with Θ/Θrig = 1 for the full MOI in a normal
system, and Θ/Θrig < 1 for a MOI that is quenched because of the superfluid core.

3.3 Experimental setup and procedures

The starting point of our experiments is an optically trapped, strongly interacting Fermi gas
consisting of an equal mixture of 6Li atoms in the lowest two atomic states [Joc03b, Alt07b].
The broad 834-G Feshbach resonance [Ing08a] allows us to control the s-wave interaction. If
not otherwise stated, the measurements presented here refer to the resonance center. Here
a unitarity-limited Fermi gas [Gio08, Ing08a] is realized, which is known to exhibit deep
hydrodynamic behavior even well above the critical temperature for superfluidity, see e.g.
[Wri07]. The cigar-shaped quantum gas is confined in a far red-detuned, single-beam optical
dipole trap with additional axial magnetic confinement. The trap can be well approximated
by a harmonic potential with radial oscillation frequencies ωx = ωy ≈ 2π × 680Hz and an
axial frequency of ωz = 2π × 24Hz. The Fermi energy of the noninteracting gas is given by
EF = ~(3Nωxωyωz)

1/3, where N = 6×105 is the total atom number. The Fermi temperature
is TF = EF /k = 1.3 µK, with k denoting the Boltzmann constant.

Our scheme to study the rotational properties is described in detail in Ref. [Rie09]. It
is based on a rotating elliptical deformation of the trap, characterized by a small ellipticity
parameter [Rie09] ε′ = 0.1. In contrast to our previous work, we use a lower rotation
frequency of Ωtrap = 2π × 200 Hz ≈ 0.3 ωx. This low value allows us to avoid a resonant
quadrupole mode excitation, which is known as an efficient mechanism for vortex nucleation
[Mad01, Hod02]. To excite the quadrupole mode [Alt07b] we switch on an elliptic trap
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deformation for 50µs. We detect the resulting oscillation by taking absorption images of the
cloud after a variable hold time in the trap and a short free expansion time after release from
the trap. More details on this excitation and detection scheme are given in Ref. [Rie09].

At this point it is important to discuss the consequences of residual trap imperfections,
still present when we attempt to realize a cylindrically symmetric optical potential. As we
showed in previous work [Rie09], we can control the ellipticity down to a level of ∼1%.
Moreover, deviations from perfect cylindrical symmetry may occur because of other residual
effects, such as corrugations of the optical trapping potential. As a consequence, a certain
rotational damping is unavoidable, but damping times can reach typically one second [Rie09].
This has two main effects for our observations. First, our measurements yield precession
frequencies slightly below Ωprec. This is because of a delay time of 20 ms between turning off
the rotating trap ellipticity and applying the quadrupole mode excitation. It is introduced to
make sure that any possible collective excitation resulting from the rotating trap has damped
out when the mode precession is measured. Because of rotational damping during this delay
time, the measured precession frequencies Ω′

prec are somewhat below Ωprec. To compensate
for this effect, we directly measure the reduction of Ωprec that occurs during a 20ms hold
time to determine the corresponding damping parameter κ = Ω′

prec/Ωprec for each set of
measurements, finding day-to-day variations with typical values between 0.85 and 0.9. The
second effect is induced by friction with static (nonrotating) trap imperfections when the
rotating ellipticity is applied. This leads to equilibrium values for Ω typically a few percent
below Ωtrap, depending on the ratio between the time constants for spin up and damping
[GO00]. For this second effect there is no straightforward compensation, and it needs to be
explicitly discussed when interpreting the experimental results.

Thermometry is performed after the whole experimental sequence. We damp out the
rotation by stopping the trap rotation and keeping the ellipticity3. We convert the gas into a
weakly interacting one by a slow magnetic field ramp to 1132G, and we finally measure the
temperature T [Rie09]. Note that the isentropic conversion tends to decrease the tempera-
ture such that T is always somewhat below the temperature T at unitarity [Che05a]. The
relative statistical uncertainty of the temperature measurement is about 5% in the relevant
temperature range.

3.4 Experimental results

To discuss our experimental results we introduce a dimensionless precession parameter P by
normalizing our observable Ωprec to its maximum possible value of Ωtrap/2,

P = 2
Ωprec

Ωtrap

=
Θ

Θrig

× Ω

Ωtrap

. (3.1)

The maximum possible value of P = 1 corresponds to a fully rotating, classically hydro-
dynamic cloud. Values P < 1 show the presence of at least one of the two effects, namely
the incomplete rotation of the normal part (Ω/Ωtrap < 1) or the superfluid quenching of the

3The temperature increase resulting from conversion of rotational energy into heat is negligibly small.
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Figure 3.2: Precession parameter P versus spin-up time tspin for various values of the final
temperature, as characterized by the heating parameter ∆T (see text). The quenching of
the MOI shows up in the temperature-dependent saturation behavior. The applied timing
sequence to facilitate measurements at constant temperature is illustrated above the graph.
For these sets of measurements κ = 0.85.

MOI (Θ/Θrig < 1). It is crucial for the interpretation of our experimental results to distin-
guish between these two effects. Our basic idea to achieve this relies on the fact that Θ/Θrig

represents a temperature-dependent equilibrium property, whereas Ω/Ωtrap depends on the
dynamics of the spin-up before the system has reached an equilibrium. Experimentally, how-
ever, measurements of equilibrium properties at a fixed temperature are not straightforward
because of the presence of residual heating leading to a slow, steady temperature increase.
In the rotating trap we always observe some heating, which under all our experimental
conditions can be well described by a constant rate α = 170 nK/s = 0.13 TF /s4.

4To determine the temparature increase in the rotating trap we measure T after variable rotation times.
We find that, in the relevant temperature range, the behavior of T is well approximated by a linear increase
with time. This justifies the description in terms of a constant heating rate.
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3.4.1 Equilibrium state of rotation

To identify the conditions under which our cloud reaches its equilibrium state of rotation, we
have developed a special procedure based on the timing scheme illustrated on top of Fig. 3.2.
Our procedure takes advantage of the constant heating rate α to control the final temperature
of the gas when P is measured. We apply the trap rotation in two separate stages of duration
theat and tspin. In an intermediate time interval of tdamp = 200ms5 we damp out the rotation
that is induced by the first stage. The angular momentum disappears, but the heating effect
remains6. The second stage spins up the cloud again and induces further heating. When
ttot = theat + tspin is kept constant, we find that the total heating by the two rotation stages
is ∆T = α ttot. As only the second stage leads to a final angular momentum, the equilibrium
state reached at a constant temperature can be identified when P(tspin) reaches a constant
value for increasing tspin and fixed ttot. The temperature can be controlled by a variation of
the parameter ttot and is obtained as T = T0 + ∆T . The temperature offset T0 is set by the
initial cooling and some unavoidable heating during the experimental sequence without trap
rotation. Under our conditions T0 ≈ 0.11 TF .

Our experimental results for P(tspin) are shown in Fig. 3.2 for four different values of the
heating parameter ∆T /TF in a range between 0.026 to 0.104, which corresponds to a range
of T between about 0.14 and 0.21 TF . All four curves show qualitatively the same behavior.
Within a few 100ms, P rises before reaching a final equilibrium value. This time-dependent
increase of P is related to the spin-up dynamics7. We find that the observed increase and
saturation of P(tspin) can be well fit by simple exponential curves (solid lines), and we use
these fits to extract the different equilibrium values Peq.

The equilibrium values Peq exhibit an interesting temperature dependence. The lower
three values show a pronounced increase with temperature, Peq = 0.68, 0.81, and 0.91 for
∆T /TF = 0.026, 0.052, and 0.078, respectively. We interpret this increase as a consequence
of the decreasing superfluid core and thus the decreasing MOI quenching effect. For our
highest temperature (∆T /TF = 0.104) we only observe a marginal further increase to Peq =
0.93. This indicates that the superfluid core is very small or absent leading to a disappearance
of the quenching effect. The fact that the maximum Peq stays a few percent below 1 can be
explained by trap imperfections as discussed in Sec. 3.3.

Let us comment on the possible influence of vortices [Zwi05b]. We cannot exclude their
presence8, as their nucleation can proceed not only via a resonant quadrupole mode excitation
[Mad01, Hod02], but also via a coupling to the thermal cloud [Hal01b]. Vortices would result
in additional angular momentum in the rotating cloud and its collective behavior would be
closer to the normal case. This would tend to increase P at lower temperatures, counteracting
the behavior that we observe.

5The ellipticity is kept at its full level while the rotation is turned off. To speed up the damping we
increase the magnetic field to 920G.

6The temperature increase resulting from conversion of rotational energy into heat is negligibly small.
7The curves do not show the spin-up process directly, as our measurement procedure fixes the temperature

at the time of the measurement of P.
8In our setup we cannot directly observe vortices by absorption imaging. The main reason is the technical

limitation that our coil system does not allow for fast enough magnetic field ramps as required for increasing
the size of vortex cores during expansion [Zwi05b].
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Figure 3.3: The precession parameter P as a function of the rotation time trot (filled symbols);
the upper scale shows the corresponding temperature T . For comparison, the crosses show
the equilibrium values Peq as obtained from Fig. 3.2. The shaded region indicates the
range in which we expect the superfluid phase transition according to previous experiments
[Reg04, Luo07, Ina08, Luo09, Nas10, Hor10]. For this set of measurements κ = 0.90.

3.4.2 Superfluid phase transition

In a second set of experiments, we study the superfluid phase transition in a way which is
experimentally simpler, but which requires information on the equilibrium state as obtained
from the measurements presented before. The trap rotation is applied continuously, and we
observe the increase of P with the rotation time trot. All other parameters and procedures are
essentially the same as in the measurements before. Here the temperature is not constant,
but rises according to T = T0 + αtrot, where the heating rate α = 170 nK/s is the same as
before and T0 = 0.085TF is somewhat lower because of the less complex timing sequence.

Figure 3.3 shows how P increases with the rotation time trot (filled symbols); the upper
scale shows the corresponding temperature T . The observed increase of P generally results
from both factors in Eq.(3.1), corresponding to the rising Ω/Ωtrap (spin-up dynamics) and
the rising Θ/Θrig (decrease of the superfluid MOI quenching). Figure 3.3 also shows the
values Peq as determined from Fig. 3.2 (crosses), for which we know that the spin-up of
the normal component has established an equilibrium with Ω/Ωtrap being close to one. The
comparison shows that already for trot = 0.4 s the data set obtained with the simpler proce-
dure follows essentially the same behavior. The small quantitative difference that the crosses
are slightly below the open symbols can be explained by a somewhat stronger influence of
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trap imperfections in the earlier measurements of Sec. 3.4.19 or by the uncertainty in the
initial temperature T0. For trot ≥ 0.4 s, we can assume that the system is in an equilibrium
state, which follows the slowly increasing temperature, and we can fully attribute the further
increase of P to the quenching of the MOI.

The superfluid phase transition corresponds to the point where the precession parameter
P reaches its saturation value. This is observed for a time trot ≈ 0.95 s, when T /TF ≈ 0.21.
The conversion of this temperature parameter (measured in the weakly interacting regime
after an isentropic change) to the actual temperature in the unitarity-limit regime [Luo09]
yields a value for the critical temperature Tc of about 0.2 TF . This result is consistent
with previous experimental results [Reg04, Luo07, Ina08, Luo09, Hor10, Nas10], the range
of which is indicated by the shaded region in Fig. 3.3. The result is also consistent with
theoretical predictions [Gio08, Hau08].

For a more precise extraction of Tc from experimental MOI quenching data, a theoretical
model would be required that describes the saturation behavior of Θ/Θrig as Tc is approached.
Theoretical predictions are available for the BEC limit [Str96] and the BCS limit [Far00,
Urb03, Urb05]. In the unitarity limit it should, in principle, be possible to extract the
MOI from spatial profiles of the normal and the superfluid fraction [Per04, Sta05]. Clearly,
more work is necessary to quantitatively understand the quenching effect in the strongly
interacting regime.

3.5 Conclusion

We have demonstrated the quenching of the moment of inertia that occurs in a slowly
rotating, strongly interacting Fermi gas as a consequence of superfluidity. This effect provides
us with a novel probe for the system as, in contrast to other common methods such as
expansion measurements and studies of collective modes, it allows us to distinguish between
the two possible origins of hydrodynamic behavior, namely collisions in a normal phase and
superfluidity.

Acknowledgments

We thank L. Sidorenkov and M. K. Tey for discussions. We acknowledge support by the
Austrian Science Fund (FWF) within SFB 15 (project part 21) and SFB 40 (project part
4).

9This explanation is supported by the fact that we measured a slower decay of angular momentum for
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Between the two sets of measurements the optical setup of the trapping beam was readjusted, leading to
reduced imperfections in the later experiments.
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We have observed interference between two Bose-Einstein condensates of weakly bound
Feshbach molecules of fermionic 6Li atoms. Two condensates are prepared in a double-well
trap and, after release from this trap, overlap in expansion. We detect a clear interference
pattern that unambiguously demonstrates the de Broglie wavelength of molecules. We
verify that only the condensate fraction shows interference. For increasing interaction
strength, the pattern vanishes because elastic collisions during overlap remove particles
from the condensate wavefunction. For strong interaction the condensates do not pene-
trate each other as they collide hydrodynamically.

4.1 Introduction

Interference manifests the wave nature of matter. The concept of matter waves was proposed
by de Broglie in 1923 [Bro23] and now represents a cornerstone of quantum physics. Already
in the 1920’s, experiments demonstrated the diffraction of electrons [Dav27] and of atoms and

1The author of the present thesis developed the experimental procedure, performed the measurements,
and analyzed the data supported by S.R., E.S. and L.S.
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molecules [Est30]. These early achievements led to the field of atom optics and interferometry
[Ada94, Bon04, Cro09].

With the realization of Bose-Einstein condensates (BECs) [And95, Dav95, Bra95], sources
of macroscopically coherent matter waves became available. The interference between two
BECs was first observed by Andrews et al. [And97]. This landmark experiment evidenced
interference between two independent sources and revealed the relative phase between them
[Cas97]. Since then, interference measurements have developed into an indispensable tool for
research on BEC. Applications include detection of the phase of a condensate in expansion
[Sim00], investigation of a condensate with vortices [Ino01], and studies of quasi-condensates
[Had06] or Luttinger liquids [Hof07] in reduced dimensions. Another fundamental line of
research in matter-wave optics is to explore the transition from the quantum to the classical
world by detecting the wave nature of progressively larger particles, like clusters [Sch94], C60

[Arn99], and other giant molecules [Ger11].
The creation of molecular Bose-Einstein condensates (mBECs) of paired fermionic atoms

[Joc03b, Gre03, Zwi03b] provides us with macroscopically coherent molecular matter waves.
In this article, we present the interference of two such mBECs and demonstrate interference
as a tool to investigate condensates of atom pairs. This work extends the interference of
condensates towards larger, composite particles.

In a Young-type interference experiment, we release two mBECs from a double-well
trap and, after the condensates have overlapped, we observe an interference pattern by
absorption imaging. In Sec. 4.2, we describe the experimental procedures in detail. In
Sec. 4.3, we present our main experimental results, demonstrating the molecular de Broglie
wavelength and the dependence of the interference contrast on temperature and interaction
strength. Increasing the interaction strength reduces the visibility because of increasing
elastic scattering losses depleting the coherent matter wave. Section 4.4 gives an outlook to
possible extensions and applications of interference of pair condensates.

4.2 Experimental procedures

4.2.1 Preparation of the molecular Bose-Einstein condensate

We create a molecular Bose-Einstein condensate (mBEC), starting from an atomic Fermi gas
consisting of an equal mixture of 6Li in the lowest two spin states. The preparation follows
the procedures described in our previous work [Joc03b, Bar04b, Alt07a, Rie08].

The atoms are trapped in the potential of a focused, far red-detuned laser beam with a
beam waist of 45 µm, derived from a 25 W, 1030 nm single-mode laser source, as illustrated
in Fig. 4.1. We choose the coordinate system such that the laser beam propagates along
the z-axis and gravity acts in −y-direction. A magnetic bias field B can be applied along
the y-axis. A broad Feshbach resonance centered at B = 834 G [Bar05] facilitates precise
tuning of the atomic s-wave scattering length a. Below resonance, a weakly bound molecular
state exists [Joc03a]. Molecules in this state represent halo dimers, since their wavefunction
extends far into the classically forbidden range [Fer08]. Their size is given by a and their
binding energy is ~2/(ma2), where m denotes the atomic mass and ~ is Planck’s constant h
divided by 2π. The intermolecular scattering length is aM = 0.6a [Pet05b].
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Figure 4.1: Illustration of the trapping and splitting of the mBEC in the presence of a
magnetic field B. An acousto-optical modulator (AOM) toggles the laser beam between
two positions, which creates an effective double-well potential for trapping two mBECs. (a)
Along the x- and y-directions, the optical potential is dominant; along the z-axis the magnetic
potential is dominant. (b) The potential shape of the optical dipole trap is Gaussian. The
double-well potential is generated from the superposition of two Gaussian potentials.

To create the mBEC we perform evaporative cooling by reducing the laser beam power
at a constant magnetic field B = 764G. During evaporation, the halo dimers are created
through three-body collisions [Joc03b] and eventually they form a mBEC [Ing08a]. Af-
ter evaporation, we increase the trap depth, thereby compressing the condensate, to avoid
spilling particles in all further steps of the experimental sequence. The beam power is
adiabatically increased by a factor of about 10 to 45mW. The trap center can be closely ap-
proximated by a harmonic potential. The oscillation frequencies of the molecules, which are
the same as the ones of free atoms, are (ωx, ωy, ωz) = 2π × (250, 250, 20.6×

√
B/700 G)Hz.

The axial confinement essentially results from the curvature of the magnetic field. We obtain
a cigar-shaped cloud containing N = 1.8× 105 molecules. The condensate fraction exceeds
90 % [Joc03b].

Most of our measurements are carried out in the regime of weak interaction between
the molecules. We ramp the magnetic field adiabatically down to 700G in 200ms, thereby
decreasing the scattering length to about aM = 1000 a0; at lower fields the molecules become
unstable [Pet05a, Cub03, Joc03a] and limit the lifetime of the mBEC. At 700G, the chemical
potential of the mBEC is kB × 200 nK, with kB denoting the Boltzmann constant, and the
binding energy of the molecules is kB×8 µK. In view of the crossover from BEC to a Bardeen-
Cooper-Schrieffer (BCS) type regime [Gio08, Ing08a], one can also express the interaction
conditions in terms of the commonly used dimensionless parameter 1/(kF a), where kF is
the Fermi wave number of a non-interacting Fermi gas with (~kF )2/(2m) = EF , where
EF = ~(6Nωxωyωz)

1/3 is the Fermi energy. For the condition of our mBEC at 700G we
obtain 1/(kF a) = 3. Strongly interacting conditions are realized for 1/(kF a) < 1, which can
be achieved at fields closer to resonance.

4.2.2 Condensate splitting

The mBEC is split into two equal parts along the y-axis. We transform the Gaussian
shaped optical dipole potential into a double-well potential, as illustrated in Fig. 4.1(b).
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Figure 4.2: Expansion dynamics of the condensates in the magnetic saddle potential. (a) The
solid lines are the calculated center-of-mass motion of the condensates, taking into account
an initial kick towards each other, see text. The trajectories intersect after tTOF = 14ms.
For comparison, the dashed lines represent the trajectories of particles in free expansion
intersecting at the same point. (b) The calculated Thomas-Fermi radii of the condensates
show the expansion along the x- and y-axis and the compression along the z-axis. The
initially cigar-shaped mBEC evolves into a flat disc. (c) The measured visibility of the fringe
pattern shows a clear peak, which coincides with the minimum in Rz. The bars indicate the
statistical uncertainties derived from 10 individual measurements.
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This is accomplished by using time-averaged potentials. An acousto-optical deflection sys-
tem modulates the trapping beam position so fast that the atoms do not follow and feel the
time-averaged beam intensity as their motional potential [Alt07b, Shi04]. The modulation
frequency is 200 kHz and the trapping beam is toggled between two positions, the distance
of which is increased from 0 to 68 µm within 50 ms. The distance between the minima of
the resulting double well is somewhat smaller because the two Gaussian potentials still over-
lap. The measured distance between the centers of the two condensates is s = 56 µm and
the measured oscillation frequencies in each well are (ωx, ωy, ωz) = 2π × (164, 146, 20.6 ×√

B/700 G) Hz. The chemical potential of both condensates is kB × 100 nK and the inter-
action parameter is 1/(kF a) = 4. The barrier height is kB × 160 nK, which leads to a fully
negligible tunneling rate. The number ratio between the two condensates after splitting is
sensitive to imperfections of the optical potential. To control equal number splitting, we
fine-tune the magnetic gradient field that is applied to compensate for the effect of gravity.

4.2.3 Expansion in the magnetic field

The specific expansion dynamics of the released mBECs in our setup is the key to making
interference clearly observable, and the understanding of the expansion is essential for the
interpretation of our results. We identify two effects, which result from the curvature of the
magnetic field, that are favorable for the observation of interference.

The coils generating the magnetic offset field in our set-up are not in Helmholtz configu-
ration, which leads to second-order terms in B(x, y, z). The resulting magnetic potential is
a saddle potential, where the molecules are trapped along the x- and z-directions, but they
are anti-trapped along the y-axis, the symmetry axis of the field. The oscillation frequencies
are (ωx, ωy, ωz) = 2π × (20.5, i × 29, 20.5) ×

√
B/700 GHz, where the imaginary frequency

denotes the anti-trap along the y-axis.
We model the expansion by adopting the scaling approach as applied in Refs. [Men02,

Alt07b]. Figure 4.2(b) shows the predicted evolution of the Thomas-Fermi (TF) radii Rx, Ry

and Rz, which we also verify experimentally. At the beginning, the expansion is driven by
the pressure gradient in the cloud, which leads to a fast acceleration in the radial direction.
This expansion is then further accelerated along y and decelerated along x because of the
magnetic saddle potential. Along the z-axis, the long axis of the trapped cloud, the trap
remains basically unchanged when the cloud is released from the optical potential. As the
mean field pressure of the expanding cloud decreases, the magnetic confinement leads to a
spatial compression of the cloud. We find that after tTOF ≈ 14ms the parameter Rz has a
minimum because of this compression effect.

For high interference contrast, large overlap of the two clouds at the time of detection
is essential. To achieve this, the condensates are kicked towards each other by switching on
the original single-well trap, typically for 0.1ms right after release from the double well. The
solid lines in Fig. 4.2(a) show the calculated center-of-mass motion of the clouds after the
initial kick to assure large overlap at tTOF ≈ 14ms.

The interference pattern is determined by the relative velocity between the two conden-
sates. The relative velocity vrel at y = 0 and tTOF = 14 ms can be directly deduced from
the slopes of the solid lines in Fig. 4.2(a). This velocity is substantially smaller than it
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Figure 4.3: Interference image and analysis. (a) The column density along the z-axis after
tTOF = 14ms shows the interference pattern. The field-of-view is 660 µm×170 µm. The
inner box indicates the region used for analysis. (b) The column density integrated along
x gives the density distribution D along y (dots). The solid curve is the result of the fit in
Fourier space, see text. (c) The density distribution is Fourier transformed (dots) and fitted
(bars).

would be in free expansion without magnetic potential, where particles meeting at y = 0
and tTOF = 14ms would follow the dashed trajectories in Fig. 4.2(a). This deceleration of
vrel can be readily visualized by the condensates climbing up the potential hill resulting from
the anti-trap in y-direction. This anti-trap also accelerates the expansion in y-direction, see
Ry in Fig. 4.2(b). Remarkably, since the velocity field in each of the clouds stays linear, vrel

is independent of the position. More rigorously, we calculate vrel using the scaling approach
and taking into account the center-of-mass motion of the clouds.

Thus expansion dynamics brings about two favorable effects: First, the spatial compres-
sion along the z-axis facilitates clear detection of interference fringes by absorption imaging.
Second, the decreased relative velocity leads to an increased fringe period. This means that
the anti-trap acts as a magnifying glass for the interference fringes.

4.2.4 Detection and analysis of interference fringes

We detect the clouds by absorption imaging. Figure 4.3(a) shows a typical image of in-
terference after 14 ms time of flight. The imaging beam propagates along the z-axis. It is
overlapped with the trapping beam using dichroic mirrors. The imaging light pulse is on for
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10 µs and its intensity is about the saturation intensity of 6Li atoms. We state-selectively
image the atoms in the second-to-lowest Zeeman state. Already the first photon scattering
event is likely to dissociate the weakly bound molecule [Bar04b], followed by about 10 more
photons scattered by the free atom.

From the absorption images, we determine the visibility and fringe period of the interfer-
ence pattern. The column density is integrated along the x-direction over the region depicted
in Fig. 4.3(a) 2 resulting in a one-dimensional density distribution D, shown in Fig. 4.3(b).
The density distribution contains various kinds of noise (e.g. photon or atom shot noise,
or camera readout noise), which may be misinterpreted as interference signal. Therefore
we analyze the density distribution in Fourier space by considering the Fourier transformed
density distribution F(D), see Fig. 4.3(c). Here all those types of noise are approximately
white and show up as a constant offset, whereas, the signal of interference is monochromatic
and shows up as a peak. This gives the possibility to subtract the average contribution
of noise from the signal. We determine the visibility and fringe period by the custom fit
function in Fourier space

f =
√
|F((a + b y + c y2)× (1 + v sin(2π/d y + φ)))|2 + n2, (4.1)

yielding the fringe period d, the visibility v, and the relative phase φ. The term a+b y+c y2

account for the somewhat non-uniform density distribution. The white noise n is the offset in
Fourier space. Since the phase between the signal and the noise is random, the corresponding
contributions are added quadratically. The discrimination of the noise via this fitting routine
is crucial when the visibility is low.

The largest observed visibility is about 30 %. We find that this upper limit can be essen-
tially attributed to the finite resolution of our imaging system. We determine the modulation
transfer function of the imaging system and it gives about 30± 10% visibility for structures
with period d = 20 µm. Also other sources can contribute to a reduction of visibility, like
a blurring because of a limited depth of focus or a tilt of the planes of constructive and
destructive interference. The planes are in general somewhat tilted with respect to the line
of sight, thereby obscuring the fringe pattern on the image. But these effects are suppressed
by the spatial compression along the imaging axis caused by the magnetic saddle potential.
This can be seen by comparing the compression of Rz in Fig. 4.2(b) to the detected visibility
in Fig. 4.2(c). The minimum of Rz after tTOF = 14ms coincides with the peak in visibility.
The peak value of almost 30% agrees with the resolution limit of the imaging system. All
following measurements are performed when the clouds are compressed to about 1 µm along
the imaging axis; in this case, only the limited resolution is relevant. The spatial compression
is an alternative to the slicing imaging technique used in Ref. [And97] and brings along the
advantage that all particles are imaged.

4.3 Experimental results

The observed interference pattern is the standing wave formed by two macroscopically oc-
cupied matter waves, the two molecular BECs. Here we present our main experimental

2The size of the region was chosen to produce the optimal signal to noise.
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Figure 4.4: Fringe period as a function of time of flight. The symbols are the measured
periods with bars, mostly smaller than the symbol size, indicating the statistical uncertainties
resulting from 10 individual measurements at a given time of flight. The solid line is the
calculated period for molecules and the dashed line for atoms. For free expansion without
the magnetic saddle potential, the fringe period of molecules would be much smaller (dotted
line).

results. In Sec. 4.3.1, we investigate the fringe period, which evidences that the interfering
particles are molecules. In Sec. 4.3.2, we study the visibility when heating the cloud to above
the critical temperature for condensation to show that the interference is established by the
condensate fraction. In Sec. 4.3.3, we explore the dependence of the visibility on the inter-
action strength and find that non-forward scattering processes depopulate the momentum
component of the matter wave that is responsible for the interference pattern.

4.3.1 Fringe period

The fringe period is an central observable in interference experiments. Figure 4.4 shows the
measured fringe period at B = 700 G as a function of time of flight. The de Broglie relation
yields the fringe period

d =
h

Mvrel

, (4.2)

which is determined by the mass M of the interfering particles and by the relative velocity
vrel of the two condensates. In our experiment, we calculate vrel from the expansion and
center-of-mass motion of the condensates in the magnetic field curvature, as discussed in
Sec. 4.2.3. The result is in contrast to the simple relation vrel = s/tTOF that holds for the free
expansion usually considered in experiments of this type. The solid line in Fig. 4.4 displays
the calculated fringe period d for molecules, where we set M = 2m. All input parameters
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Figure 4.5: Visibility of interference for increasing temperature. The main figure shows
the measured mean visibility with bars indicating the standard deviation resulting from 11
measurements. Here, we plot the standard deviation and not the statistical uncertainty
to better illustrate the range of measured values. During the hold time in the trap, the
temperature increases from low temperature to above Tc. The hold time after which Tc is
reached is indicated by the grey bar. The inset shows the integrated residuals of a Gaussian
fit, see text. A linear fit to the first six points facilitates a simple extrapolation to zero,
which marks the vanishing of the condensate fraction.

for this calculation are determined independently. Their combined uncertainties result in
typical uncertainty of 3 % for the fringe period, with the main contribution stemming from
the uncertainty in the cloud separation. The data are in remarkable agreement with the
calculation. For comparison, we also plot the fringe period for interfering atoms (M = m),
which is clearly incompatible with the data.

The dotted line in Fig. 4.4 displays the fringe period that would result for freely expanding
mBECs without the magnetic saddle potential. Comparing this curve to the much larger
fringe period that we observe, highlights the effect of the magnetic field curvature to magnify
the fringe period, as discussed in Sec. 4.2.3. The same magnification effect was reported in
Ref. [Zaw10].

Note that the fringe period can be increased by interaction-induced slowing down of
the two overlapping condensates [Sim00]. The mean-field of one condensate represents a
potential hill for the other condensate, which slows down when climbing this hill. Under our
experimental conditions at 700G, the effect is found to be negligible. For stronger interaction,
we see indications of this effect in agreement with a corresponding model calculations.
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4.3.2 Dependence of interference visibility on condensate fraction

To demonstrate that the interference results only from the condensed molecules and not
from the thermal fraction, we perform a controlled heating experiment and show the loss
of visibility with vanishing condensate fraction. Starting from an almost pure condensate
[Joc03b], we hold the gas in the recompressed optical dipole trap for a variable hold time
before splitting. Intensity fluctuations and pointing instabilities of the laser beam as well as
inelastic collisions between the molecules [Pet05a] heat the gas and lead to a monotonous
temperature increase [Sav97, Wri07]. To demonstrate that the interference results from the
condensate, it is sufficient to determine the hold time at which the critical temperature for
condensation Tc is reached. Therefore, we fit a Gaussian profile to the density distribution
of the cloud, which is recorded after expansion for tTOF = 5ms from the single-well trap.
We find that the integrated residual of the fit gives a good measure whether the cloud shape
deviates from a thermal one. The inset in Fig. 4.5 shows that the integrated residual goes
to zero after a hold time slightly below 3 s, which locates the phase transition.

The visibility data in Fig. 4.5 are recorded at B = 700G after tTOF = 14ms 3. The
visibility decreases as the temperature increases and vanishes for a hold time that coincides
with the hold time when Tc is reached. The observed decrease of visibility is continuous be-
cause we image the full column density including the growing thermal fraction, which does
not clearly separate from the condensate in expansion at 700G. Above Tc, the density distri-
bution does no more show any fringes. Still, the fitting routine produces finite mean values
because it can output only positive values. But if the measured visibility is not larger than
the standard deviation, its distinction from zero is not significant. The vanishing visibility
above the critical temperature confirms that, as expected, the interference is established by
the condensate fraction.

Further intriguing evidence that the interference is caused by the condensate is the ob-
servation of interference between independent ultracold clouds. An independent production
rules out that the interference can be caused by self interference of particles [Mil05]. To
investigate interference between independent clouds, we split them already at a temperature
far above the critical temperature to a large distance of 180 µm and then create two mBECs
independently. Shortly before release, we reduce the distance to obtain the identical geom-
etry as in all the other measurements and proceed as usual. We observe the same kind of
interference pattern with a visibility of about 15 %. The lower visibility can be explained by
a less efficient evaporation and less control over the equal number preparation in the double
well.

4.3.3 Dependence of interference visibility on interaction strength

In a further set of measurements, we investigate how the fringe visibility depends on the in-
teraction strength. Therefore we perform the interference experiment for different magnetic
field values, thereby changing the molecular scattering length aM according to the upper

3We verify on images after tTOF = 0.4 ms that the clouds are still separated in the double-well potential
despite the higher thermal energies.
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Figure 4.6: Visibility of interference from weak to strong interaction. The upper panel shows
how the molecular scattering length aM increases towards the Feshbach resonance at 834G,
marked by the dashed line. The onset of the strongly interacting regime is marked by the
dotted line. In the lower panel, the dots represent the mean visibility with bars indicating
the standard deviation resulting from 20 individual measurements. The solid line is the
predicted visibility from the simple calculation modeling the non-forward scattering events.

panel of Fig. 4.6 4. The observed visibility as a function of the magnetic field is shown in
the lower panel in Fig. 4.6. The highest visibility is found at about 700G. For lower fields,
the visibility is decreased, which we attribute to inelastic decay. The inelastic collisions of
molecules lead to heating of the gas and loss of particles. The heating reduces the conden-
sate fraction, which decreases the visibility as observed in the previous section. The loss
also reduces the signal on the images. This leads to a higher statistical uncertainty in the
determination of the visibility, showing up in the larger standard deviations below 700G.

Towards larger interaction strength, our data show a pronounced decrease of visibility,
and the visibility vanishes at about 780 G. This coincides with the onset of strong interaction
in the trap, where 1/kF a ≈ 1. We find that the main effect causing the decrease is elastic
non-forward scattering. It is known from experimental and theoretical work on colliding
condensates [Chi00, Ban00] that elastic non-forward scattering of particles removes them

4We verify on images after tTOF = 0.4 ms that the clouds are still separated in the double-well potential
despite the higher chemical potential at higher interaction strength.
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B = 660 G tTOF = 1ms

Figure 4.7: Absorption image 1 ms after the collision of two BECs. A spherical shell of
scattered particles clearly separates from the two BECs. The field of view is 180× 180 µm.

from the condensate wavefunction. In contrast to the forward scattering accounted for within
the usual mean-field approach, this non-forward scattering transfers particles into momentum
states of random direction, which therefore do no more contribute to the observed interference
pattern. Non-forward scattering is a particle-like excitation, which requires vrel to exceed
the speed of sound vs. The process is suppressed for smaller vrel [Chi00, Ban01]. To estimate
the decrease of visibility through this process, we perform a simple model calculation. The
velocity dependence of non-forward scattering is included by the following approximation:
no suppression for vrel ≥ vs and full suppression otherwise. We calculate the mean number
of non-forward scattering events Ne for a representative molecule with molecules of the other
condensate until the moment of detection. This representative molecule travels along the
center-of-mass path of the condensate; see Fig. 4.2(a). We take the bosonically enhanced,
unitarity limited scattering cross section σ = 8πa2

M/(1+(kaM)2), with k = mvrel/~. From Ne,
we derive the probability for a molecule to still be part of the condensate. This probability is
e−Ne and directly corresponds to the expected visibility, which we fit to the data, excluding
the three data points below 700G. We obtain the solid line in Fig. 4.6. The only fit parameter
is a normalization factor, which allows us to account for the reduced detected visibility
because of the limited imaging resolution. The fit yields a factor of 0.32, which is consistent
with the imaging resolution discussed in Sec. 4.2.4. We find that our simple model for non-
forward scattering can very well explain the decrease of visibility towards high interaction
strength.

There are also other effects that decrease the visibility for increasing interaction strength,
but they turn out to be minor for our experimental conditions: Strong interaction lead to
a depletion of the condensate [Dal99]. Only the condensate contributes to the interference
pattern and not the depleted fraction.The depleted fraction amounts to about 10 % at 780G.
As we expect the reduction of visibility to be proportional to the depletion, the reduction
is negligible (at 780 G from 2.6% to 2.3%). Another effect reducing the visibility is the
collisional dissociation of molecules during overlap. However, this effect can only occur
above 800 G, where the collision energy exceeds the binding energy.

To directly demonstrate the effect of non-forward scattering, we study the collision of two
condensates when their relative velocity vrel is much faster than the their expansion velocity.
This allows us to observe the non-forward scattered particles in an s-wave shell [Bug04],
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Figure 4.8: The hindered overlap on resonance. The series shows the first few millisec-
onds of expansion. The two clouds do not penetrate each other, but splash according to
hydrodynamics. The field of view is 180× 180 µm.

well separated from the condensates, see Figure 4.7. This separation was not present in the
interference experiments reported before because vrel was similar to the expansion velocity.
We apply our simple model to calculate the fraction of non-forward scattered particles and
find good agreement, confirming our model in an independent and direct way.

Close to the Feshbach resonance, we enter a regime where the number of collisions be-
comes large. This leads to hydrodynamic behavior also above Tc [O’H02, Wri07]. The time
of flight series in Fig. 4.8, taken on resonance, shows that the clouds do not penetrate each
other in this regime. Instead, the flow of the particles is redirected into the the x-z-plane
leading to the observed high column density in the center. Unlike at low magnetic fields, the
clouds do not superimpose. This directly excludes interference of two independent conden-
sates in the strongly interacting regime. The scenario is similar to the one in Ref. [Jos11]
and may be described by the analysis therein.

The hindered overlap could be overcome by a magnetic field ramp to weak interaction
after release and before overlapping, as done for the detection of vortices in Ref. [Zwi05b].
Like the observation of vortices, the observation of interference would evidence the coherence
of the strongly interacting superfluids.

In further measurements, performed above the Feshbach resonance towards the BCS
regime, we did not observe interference. To discuss possible reasons for the absence of
interference fringes, let us first consider the effect of non-forward scattering on the visibility.
As on the BEC side, this effect may hinder overlap and interference for 1/kF a < −1, i.e. below
910G. However, we also have to consider that the pairs on the BCS side may not persist
in expansion [Sch07], unlike on resonance or on the BEC side. For the lowest achievable
temperature in our experiment and at 910G, the pairs would be already unstable after a
very short expansion time according to Ref. [Sch07].

4.4 Conclusion and outlook

In conclusion, we have observed the interference between two molecular BECs. The interfer-
ence pattern visualizes the standing matter wave of the weakly bound Feshbach molecules
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and shows coherence over the spatial extension of the cloud. The contrast of interference
vanishes above the critical temperature of condensation, demonstrating that the interference
is established by the condensed molecules only. We find that non-forward elastic scattering
processes can lead to a depletion of the condensate wavefunction while the clouds overlap.
This effect increases towards higher interaction strength and prevents us from observing in-
terference in the strongly interacting regime. On resonance we observe that the two clouds
do not overlap but rather collide and deform as a result of deep hydrodynamic behavior.

Interference between condensates of paired fermionic atoms can serve as a powerful tool
to investigate many exciting aspects of those systems. A future application will be given, for
example, if p-wave condensates become available. Here, interference is predicted to reveal
the vector nature of the order parameter [Zha07]. A conceptually interesting regime will
be entered when the size of the pairs becomes comparable to the fringe period. Then the
detected distribution of atoms may not reveal the interference pattern of the pair distribution.
Besides investigating condensates of paired fermions themselves, the system could be used
to study the fundamental processes of interference. The wide tunability of the interaction
strength could be used to assist self-interference [Ced07] or to investigate to which extent
interaction build up the observable relative phase [Xio06].

Suppressing the effect of non-forward scattering during overlap could extend the range
of applications of condensate interference. Such a suppression may be achieved by reducing
the interaction strength before overlap using fast magnetic field ramping techniques [Gre03,
Zwi05b]. This technique would allow for investigating the interference in the regime of strong
interaction or even on the BCS side of the resonance, where the interference of Cooper-type
pairs is an intriguing question in itself.
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We present a detailed theoretical and experimental study of Feshbach resonances in the
6Li-40K mixture. Particular attention is given to the inelastic scattering properties, which
have not been considered before. As an important example, we thoroughly investigate
both elastic and inelastic scattering properties of a resonance that occurs near 155 G. Our
theoretical predictions based on a coupled channels calculation are found in excellent
agreement with the experimental results. We also present theoretical results on the
molecular state that underlies the 155G resonance, in particular concerning its lifetime
against spontaneous dissociation. We then present a survey of resonances in the system,
fully characterizing the corresponding elastic and inelastic scattering properties. This
provides the essential information to identify optimum resonances for applications relying
on interaction control in this Fermi-Fermi mixture.

1The author of the present thesis contributed to the data analysis. T.M.H. and P.S.J. provided the
theoretical calculations.
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5.1 Introduction

A new frontier in the research field of strongly interacting Fermi gases [Ing08b, Gio08] has
been approached by the recent realizations of ultracold Fermi-Fermi mixtures of 6Li and
40K [Tag08, Wil08, Voi09, Spi09, Tie10, Spi10b, Cos10]. Degenerate Fermi-Fermi mixtures
represent a starting point to experimentally explore a rich variety of intriguing phenomena,
such as many-body quantum phases of fermionic mixtures [Liu03, For05, Paa06, Isk06, Isk07,
Pet07, Isk08, Bar08, Bau09, Nis09a, Wan09, Mor09, Gez09, Die10, Baa10] and few-body
quantum states [Pet05a, Nis09b, Lev09, Nis10].

The possibility to precisely tune the interspecies interaction via Feshbach resonances
[Chi10] is an important prerequisite for many experiments. This has motivated theoretical
and experimental work on Feshbach resonances in the 6Li-40K mixture [Wil08, Tie09, Tie10].
It turned out that all resonances for s-wave scattering in this system are quite narrow, the
broadest ones exhibiting a width of . 2G1, and their character is closed-channel dominated
[Chi10]. This causes both practical and fundamental limitations for experimental applica-
tions. Interaction control is practically limited by magnetic field uncertainties and, on more
fundamental grounds, the universal range [Chi10] near the center of the resonance is quite
narrow.

Our work is motivated by identifying the Feshbach resonances in the 6Li-40K system that
are best suited for realizing Fermi-Fermi mixtures in the strongly interacting regime. In a
previous study [Tie10], Tiecke et al. approached this question by calculating the widths of
the different resonances2, and they studied elastic scattering for one of the widest resonances
in the system. Another important criterion is stability against inelastic two-body decay. For
the 6Li-40K mixture, inelastic spin-exchange collisions do not occur when at least one of the
species is in its lowest spin state [Wil08]. When one of the species is in a higher state, decay is
energetically possible, but rather weak as it requires spin-dipole coupling to outgoing higher
partial waves. The wider resonances in the 6Li-40K system are found in higher spin channels.
This raises the important issue of possible inelastic two-body losses. The question of which
is the optimum resonance for a particular application can only be answered if both width
and decay are considered.

In this Article, we present a detailed study of Feshbach resonances in the 6Li-40K system,
characterizing their influence on both elastic and inelastic scattering properties. In Sec.
5.2 we briefly review a general formalism to describe decaying resonances. In Sec. 5.3 we
present a case study of a particularly interesting resonance. In theory and experiment, we
investigate its elastic and inelastic scattering properties and the properties of the underlying
molecular state. In Sec. 5.4 we present a survey of all resonances, summarizing their essential
properties. In Sec. 5.5 we conclude by discussing the consequences of our insights for ongoing
experiments towards strongly interacting Fermi-Fermi mixtures.

1Here, G = 0.1mT.
2Resonance positions and widths have also been calculated by E. Tiemann using a coupled channels

approach similar to our theoretical work, private communication.
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5.2 Feshbach resonances with decay

A Feshbach resonance results from the coupling of a colliding atom pair to a near-degenerate
bound state. If this molecular state can decay into open channels other than that in which the
colliding pair is initially prepared, the situation is referred to as a decaying resonance [Chi10].
A formalism for describing such resonances has been developed for optical coupling [Fed96,
Boh99], and has also been applied to the magnetically tunable case [Hut07]. A well known
example of a decaying resonance exists in the collision of two 85Rb atoms [Rob98], for which
molecular lifetimes have been studied [Tho05, Köh05].

The scattering properties in the zero-energy limit can be expressed through a complex
s-wave scattering length, ã = a − ib, where a and b are real. The relation of these two
parameters to the two experimentally relevant quantities, the elastic scattering cross section
σ and the loss rate coefficient K2 for inelastic decay, is for non-identical particles given by

σ = 4π(a2 + b2) (5.1)

and

K2 =
2h

µ
b . (5.2)

Here, h is Planck’s constant and µ is the reduced mass.
The complex scattering length can be parametrized by

a(B) = abg − ares
γB(B −B0)

(B −B0)2 + (γB/2)2
, (5.3)

b(B) = 2ares
(γB/2)2

(B −B0)2 + (γB/2)2
. (5.4)

Here, B is the magnetic field strength, the resonance occurs at B = B0, and abg is
the background scattering length. The decay of the “bare” molecular state that causes the
resonance is characterized by a rate γ [Köh05], which we conveniently express in magnetic
field units, γB = ~γ/δµ, where δµ is the difference in magnetic moment between the entrance
channel and the bare molecular state. The resonance length parameter ares is related to the
resonance width ∆ by

ares =
abg∆

γB

, (5.5)

and gives the range abg±ares within which the real part of the scattering length can vary, thus
providing an indication of the possible control. A common figure of merit for the coherent
control of an ultracold gas is the ratio a/b. For |B − B0| À γB, and a change in scattering
length much larger than abg, this can be shown from Eqs. (5.3) and (5.4) to be

a

b
≈ −2

(B −B0)

γB

≈ 2
ares

a
. (5.6)

A larger ares therefore gives better coherent control and lower losses for a given change in
scattering length. Combining Eqs. (5.2) and (5.6) gives a simple expression for the loss rate
coefficient

K2 ≈ h

µ

a2

ares

, (5.7)
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Figure 5.1: Zeeman sub-levels in the electronic ground state of 6Li and 40K, giving the total
angular momentum f and its projection mf along the quantization axis. We label Zeeman
states alphabetically in order of increasing energy, as shown.

which shows a general a2-scaling of two-body loss near a decaying Feshbach resonance.

5.3 Case study of the 155 G resonance

In this Section, we present a thorough study of the 155G Feshbach resonance, which serves
as our main tool for interaction tuning in strongly interacting Fermi-Fermi mixtures. It was
first observed in Ref. [Wil08] and used for molecule formation in Ref. [Voi09]. We first (Sec.
5.3.1) present theoretical predictions for the elastic and inelastic scattering properties near
this resonance based on coupled channels calculations. We then (Sec. 5.3.2) present our
corresponding experimental results, providing a full confirmation of the expected resonance
properties. We finally (Sec. 5.3.3) discuss the properties of the molecular state that causes
the resonance.

Figure 5.1 shows different magnetic and hyperfine sub-levels of the electronic ground
states of 6Li and 40K. Here we follow the notation of Ref. [Chi10] and label the sub-states
alphabetically in increasing order of energy. The 155G resonance occurs in the ac channel,
i.e. for a 6Li atom in state a colliding with a 40K atom in state c.

5.3.1 Scattering properties: Theory

We have carried out coupled channels studies [Mie96] of the scattering properties in the ac
s−wave channel. The potentials used were taken from Ref. [Tie09] and, to make this paper
self-contained, we have summarized the important parameters in Table 5.1.

The resonance is created by spin-exchange coupling [Chi10] of the colliding pair to a
bound state of the same MF = m1 + m2. Here m1,2 are the projections along the magnetic
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singlet scattering length as 52.61 a0

triplet scattering length at 64.41 a0

vdW coefficient C6 2322Eh

vdW length RvdW = 1
2
(2µC6/~2)1/4 40.8 a0

vdW energy EvdW = ~2/(2µR2
vdW) h× 207.6MHz

Table 5.1: Important parameters of the interaction potentials of 6Li–40K, taken from the
potentials of Ref. [Tie09]. The van der Waals (vdW) parameters describe the long range part
of the potential, −C6/r

6, where r is the interparticle distance. Here, a0 = 0.529177×10−10 m
is the Bohr radius and Eh = 4.359744× 10−18 J represents a hartree.

field quantization axis of the total angular momenta of atoms 1 and 2, ~f1,2, and MF is that

of the total spin angular momentum, ~F = ~f1 + ~f2. We note that f and F are only good
quantum numbers at zero magnetic field.

For a pair of atoms in an excited Zeeman channel, there are two processes that can cause
two-body collisional loss. Spin-exchange coupling can lead to inelastic spin relaxation (ISR),
in which the colliding pair is coupled into an energetically lower channel of the same MF and
the same partial wave `. Since each resonance considered in this work is in the energetically
lowest s−wave channel of the relevant MF , ISR does not occur. Spin dipole coupling [Chi10],
however, can couple a colliding pair to channels of a different MF or `, under the constraints
that Mtot = MF + m` is conserved, and the change in partial wave is given by ∆` = ±2.
Here, m` is the projection of ~̀ along the magnetic field quantization axis. For the resonances
considered here, spin dipole coupling links s- and d-waves, d- and g-waves, etc., with odd
partial waves excluded by symmetry requirements. For the ac channel, the two main decay
pathways are the aa and ab d−wave channels. Consequently, a basis including all s− and
d−wave channels with Mtot = −2 is sufficient.

Scattering properties in the vicinity of the 155G resonance are shown in Fig. 5.2, along
with the fit from Eqs. (5.2)-(5.4). The calculation used a collision energy of kB × 1 pK,
while the fit assumes zero temperature. The fit gives excellent agreement, with only small
deviations visible outside the core of the resonance, and at the very center, where effects
related to finite collision energies become important. The background scattering length near
the resonance is 63.0 a0, a suitable value for evaporative cooling, while the resonance width
of 0.88G makes it easily accessible experimentally. The calculation places the center of the
resonance at B0 = 154.75G, with an uncertainty on the order of 100mG resulting from the
limited knowledge of the spectroscopically derived potentials.

Suppression of collisional losses is provided by the kB × 14mK height of the d-wave
barrier being greater than the Zeeman splitting (kB × 1.8mK for ab, kB × 3.6mK for aa)
between the entrance and exit channels. Consequently, decaying pairs must tunnel through
the centrifugal barrier. The resulting resonance length is 4.0× 106 a0. This is comparable to
results we have found for much broader, entrance-channel dominated resonances, such as the
ee resonance of 85Rb at B0 = 155 G, which has ares = 2.5× 106a0. We note that three-body
effects, not included in our calculations, are also of significance for experiments.
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Figure 5.2: s-wave scattering properties of the ac channel, as a function of magnetic field.
A coupled channels calculation (CC, solid line) is compared to a fit using Eqs. (5.2)–(5.4)
(dashed line). The top panel shows the real part of the scattering length, while the two-body
loss rate coefficient is shown in the lower panel.

5.3.2 Scattering properties: Experiment

Experimental conditions

The basic procedures to prepare the Fermi-Fermi mixture near the 155G Feshbach resonance
are described in Ref. [Spi10b]. Here we briefly summarize the main experimental parameters,
and mention some issues of particular relevance for the present experiments.

Our optical dipole trapping scheme employs two stages. In the first stage, we use a high-
power laser source (200W fiber laser) to load and evaporatively cool the mixture [Spi09,
Spi10b]. As the quality of this high-power beam suffers from thermally induced effects such
as spatial shifts and thermal lensing effects, we transfer the mixture into a second trapping
beam that uses less laser power and is optimized for beam quality. This beam serves as the
trapping beam in the second stage where all the measurements are performed. As the laser
source we either use a broadband 5W fiber laser (IPG YLD-5-1064-LP, central wavelength
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1065 nm) or a 25W single-mode laser (ELS VersaDisk 1030-50, central wavelength 1030 nm)3.
In both cases the trapping potential (Gaussian beam waist 41 µm) is essentially the same, but
we found that the broadband fiber laser can induce inelastic losses4. For our measurements
on elastic interactions (Sec. 5.3.2) we used the broadband laser, and we later switched to the
single-mode laser for the measurements of inelastic decay (Sec. 5.3.2). At a laser power of
70mW the trapping frequencies for Li (K) are 13Hz (4.5Hz) axially5 and 365Hz (210Hz)
radially, and the trap depth is 1.6 µK (3.6µK).

The mixture contains about 105 Li atoms at a temperature T Li ≈ 140 nK together with
about 2 × 104 K atoms at a temperature TK ≈ 160 nK; the temperatures are measured by
time-of-flight imaging. Note that the two species are not fully thermalized at this point,
such that TK > T Li. In terms of the corresponding Fermi temperatures T Li

F = 490 nK and
TK

F = 140 nK, the temperatures can be expressed as T Li/T Li
F ≈ 0.3 and TK/TK

F ≈ 1.1.

The magnetic field was calibrated by driving RF transitions between the b and the c state
of K and using the Breit-Rabi formula6. In our set of measurements on the elastic scattering
properties (Sec. 5.3.2) the magnetic-field uncertainty was about 20mG, with a substantial
contribution from magnetic field ripples connected with the 50-Hz power line. In the later
experiments on inelastic decay (Sec. 5.3.2) we could reduce this uncertainty down to about
5mG.

Elastic Scattering

Our measurements on elastic scattering are based on the observation of sloshing motion,
serving as a simple and sensitive probe for interspecies interactions [Gen01, Mad00a, Fer02,
Fer03]. Without interaction both components would oscillate independently with their dif-
ferent sloshing frequencies. The interaction induces friction between the two components
and thus leads to damping. In the regime of weak interactions with up to a few scattering
events per oscillation period, the damping rate can be assumed to be proportional to the elas-
tic scattering cross section. Note that an alternative approach, based on cross-dimensional
relaxation, was followed in Ref. [Cos10].

Here we restrict our attention to the slow axial sloshing motion. We excite this motion by
an additional infrared beam intersecting our trapping beam7. The magnetic field is quickly

3Specific product citations are for the purpose of clarification only, and are not an endorsement by the
authors, JQI or NIST.

4When using the fiber laser (bandwidth 0.5 nm) we found inelastic loss near the 155G Feshbach resonance
to be enhanced by roughly a factor of four. We attribute this effect to light-induced collisional decay [Chi10],
which we confirmed by measuring its dependence on the intensity of the trapping light. When using the
single-mode laser this loss contribution was absent. Consequently, all measurements on inelastic decay were
performed with the single-mode laser.

5The axial confinement predominantly results from the curvature of the magnetic field.
6In the vicinity of the resonance the transition frequency between the b and the c state of 40K can be

expressed as νRF = 38.5756MHz + 195.5 kHz/G × (B − 154.707 G).
7The displacement beam is derived from the same laser source as the trapping beam. It has a power of

25mW and a waist of 60 µm, and it intersects the trapping beam at an angle of 17.5◦ about 120 µm away
from the focus of the trapping beam. By adiabatically turning on the displacement beam we shift the centers
of the two trapped species in the axial direction. Then, by suddenly extinguishing the displacement beam,
the clouds are released into the unperturbed trap potential and they start their oscillations.
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Figure 5.3: Samples of the damped sloshing motion of 40K for three different settings of
the magnetic field (upper panel 154.60G, middle panel 154.96G, lower panel 155.66G). The
solid circles represent the experimental data, with uncertainties smaller than the size of
the symbols. The solid lines are fits under the assumption of a simple damped harmonic
oscillation.

ramped to the final setting that is applied in the measurements. After a variable hold time
in the trap, we image both clouds to record their damped oscillatory motions. Our data
analysis is based on the position of the K cloud, which is completely immersed in the much
larger Li cloud. Its motion is analyzed by fitting a simple damped harmonic oscillation,

z(t) = Ae−ζt sin (ωt + φ) + z0 , (5.8)

to the observed axial center-of-mass position. Here A is the oscillation amplitude, ζ repre-
sents the damping rate, ω is the oscillation frequency, and z0 the equilibrium position.

Near the Feshbach resonance, the observed damping strongly depends on the magnetic
field, as demonstrated by the three sample oscillations displayed in Fig. 5.3. The measured
damping rate as a function of the magnetic field, shown in Fig. 5.4, reflects the characteristic
Fano profile of the elastic scattering cross section. The measured rates vary over three orders
of magnitude, prominently showing both the pole of the resonance and its zero crossing.

We analyze the observed magnetic-field dependence of the damping under the basic
assumption that the rate ζ is proportional to the elastic scattering cross section, which itself
is proportional to a2. Moreover, we take a background damping8 into account which is
independent of the interspecies interaction and express the total magnetic-field dependent
damping rate as

ζ(B) = Aa(B)2 + ζ0 . (5.9)

8Weak damping of K sloshing with a rate of ∼0.04 s−1 is also observed when the Li component is absent.
We attribute this residual damping to imperfections of the trapping potential such as corrugations and
anharmonicities.
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Figure 5.4: Elastic scattering near the 155G interspecies Feshbach resonance. The measured
rates for the 40K sloshing motion are shown (filled red circles) together with a fit based on a
coupled-channels calculation of the scattering length (solid black line). For comparison we
also plot damping rates measured for the non-resonant ab channel (solid blue squares) to-
gether with a theoretical line derived from the corresponding non-resonant scattering length
(dashed blue line). The error bars shown for the experimental data indicate the fit errors of
the damping rate.

For the scattering length a(B) we use the result of the coupled-channels calculation as
presented in Sec. 5.3.1. The theory has an uncertainty in the resonance position of the order
of 100mG, limited by the accuracy of the spectroscopically derived potentials. We therefore
allow for a magnetic-field offset by setting

a(B) = acc(B + δ) , (5.10)

where acc(B) refers to the scattering length resulting from the coupled-channels calculation
(Sec. 5.3.1) and δ is used as a free parameter. Based on Eqs. (5.9) and (5.10) we fit the
experimental damping data with the three free parameters A, ζ0, and δ.

The fit result, shown by the solid line in Fig. 5.4, shows excellent agreement with the
experimental data. For the background damping of the non-interacting mixture, the fit
yields ζ0 = 0.0053(3) s−1, which is consistent with independent measurements on K without
Li8. For the magnetic field offset parameter, the fit yields δ = +69(3)mG. Based on the
theoretical results of Sec. 5.3.1 and this shift, we obtain a resonance position of 154.69(2)G
with the 20mG calibration uncertainty being the dominant error source.
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Figure 5.5: Decay of K immersed in the Li cloud for different magnetic fields, far away from
resonance at 154.770G (triangles), very close to resonance at 154.716G (circles), and for a
setting in between at 154.731G (squares). The scatter of the data indicates the shot-to-shot
variations of the measurements. As the lifetimes are plotted on a logarithmic scale, the good
linear fits indicate pure exponential decay.

The experimental data can also be analyzed independently of the coupled-channels calcu-
lations by using the standard Feshbach resonance expression (Eq. (5.3) in the limit γB → 0)
for a fit in which the width ∆ is kept as a free parameter. Our corresponding result
∆ = 920(50) mG is consistent with the prediction ∆ = 880mG resulting from the coupled-
channels calculation.

For comparison, we have also investigated elastic scattering in a Li-K mixture in the ab
channel (solid squares in Fig. 5.4), which near 155G is weakly interacting. Our measurements
show a damping of the sloshing motion that is consistent with the predicted non-resonant
scattering length of 68 a0 for this channel (solid line).

Inelastic Scattering

To probe inelastic decay, we first prepare a weakly interacting, long-lived Li-K mixture in
the ab channel at a variable magnetic field near 155 G. We then apply a short RF π-pulse
(duration 90µs) to quickly transfer the mixture into the ac channel. This transfer method
avoids fast magnetic field ramps and thus any waiting time for the magnetic field to be
settled to a constant value before measurements can be taken.

Figure 5.5 shows example decay curves. The K loss is essentially exponential, which
results from the fact that the K cloud is immersed in a much larger Li sample [Spi09]. In
this regime, the Li cloud serves as a large bath with essentially constant density. Here the loss
curves do not allow us to distinguish between two-body losses where one K atom interacts
with one Li atom and such three-body losses, where one K atom interacts with two Li atoms.
Three-body losses resulting from two K atoms interacting with one Li atom would not lead
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Figure 5.6: Inelastic loss near the 155G interspecies Feshbach resonance. The measured
values for the two-body loss rate coefficient K2 (solid circles) are compared with theory. The
three theoretical curves (solid lines) represent three different collision energies E/kB (1 pK,
labelled 0 to indicate the zero energy limit, 100 nK, and 300 nK), showing the limiting effect
of finite collision energy. The error bars represent the statistical errors from fitting the loss
curves.

to exponential loss.
We analyze the decay under the hypothesis of dominant two-body loss, which is motivated

by the decaying character of the Feshbach resonance as discussed in Sec. 5.3.1. The total
K decay rate can be approximated by Γ = K2〈nLi〉 + Γbg, where Γbg is a small background
loss rate9. The mean Li number density is given by 〈nLi〉, where the angle brackets denote
averages weighted by the K density distribution. For our experimental parameters we obtain
〈nLi〉 = 5.9×1011 cm−3, which is about 75% of the peak density in the center of the Li cloud.

Figure 5.6 shows the measured values for the loss rate coefficient K2. The data show the
expected resonance behavior (Sec. 5.3.1). The values peak at the center of the Feshbach res-
onance and strongly decrease within a few 10 mG away from the center. For large scattering
lengths, the data follow the scaling K2 ∝ a2 according to Eq. (5.7). The observed resonance
behavior thus confirms our assumption of the dominant two-body nature of loss. Three-

9The background loss results mainly from rest gas collisions. We use Γbg = 0.009 s−1, which we obtained
by analyzing the decay of a pure K sample [Spi09]. Regardless, the influence of this weak loss contribution
on our data analysis remains very small.
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body losses in a two-component Fermi mixture would show a much stronger dependence on
a [D’I05], not consistent with this observed behavior. However, significant three-body loss
contributions may be present very near to the resonance center.

The figure also shows three theoretical curves, calculated for three different values of the
collision energy (kB×1 pK, representing the zero energy limit, kB×100 nK, and kB×300 nK)
in a range relevant for our experiments. As a typical value for the collision energy, we can
consider an estimate of 200 nK10. Very close to the resonance the theory curves illustrate
how K2 increases in the zero temperature limit up to a value corresponding to b = 2ares. In
the case of non-zero collision energies it is limited to lower values. For magnetic detunings
exceeding about 20 mG, the effect of the finite collision energies can be neglected in the
interpretation of the experimental data, which makes the comparison between theory and
experiment straightforward. Here we find excellent quantitative agreement, confirming two-
body decay as the dominant loss mechanism. Very close to the center of the resonance
the situation is more complicated. If one completely attributes loss to two-body decay, the
100 nK curve provides an excellent fit to the experimental data. This, however, is somewhat
below our estimate of 200 nK for an effective collision energy, which may point to additional
three-body losses at the very center of the resonance.

To extract the precise resonance position we proceed in an analogous way as for analyzing
the elastic scattering data, allowing for a small magnetic field shift δ between theory and
experiment. We write the actual loss coefficient as K2(B) = K2, cc(B + δ), where K2, cc

refers to the coupled-channels result for K2 as discussed in Sec. 5.3.1. In the fit, we exclude
the three experimental data points that exceed 3 × 10−11 cm3/s to avoid the region where
finite collision energies become important. This also makes sure that the loss data are
dominated by two-body decay. The shift δ is the only free parameter, and we obtain a
small value of δ = +38(1) mG, well in the range of the theoretical uncertainty. We finally
obtain a resonance position of B0 = 154.707(5) G, where the main uncertainty results from
the magnetic field calibration. Within the experimental uncertainties this value is consistent
with the less precise resonance position obtained from elastic scattering measurements.

5.3.3 Bound state properties

In the context of Feshbach molecules, universality refers to the range of magnetic fields
sufficiently close to resonance within which the molecular and scattering properties can be
described solely by the atomic masses and the scattering length a(B). Within this region,
the molecule has the form of a halo state, in which a significant part of the wavefunction
lies beyond the classically allowed outer turning point of the potential. This results in a
strong enhancement of the lifetime of a decaying bound state [Tho05, Köh05]. The universal
binding energy is given by

EB =
~2

2µa(B)2
. (5.11)

10The main contribution to the mean collision energy in our trapped sample stems from the kinetic energy
of the degenerate Li component. In the trap center, where the K cloud overlaps with the Li, the mean kinetic
energy of the Li atoms is given by (3/10)TLi

F ≈ 200 nK.
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Figure 5.7: Molecular binding energy as a function of magnetic field. MQDT (blue line) refers
to the three-parameter model of Ref. [Han09], while CC (green points) indicates a coupled
channels calculation. Sufficiently close to the resonance the binding energy converges to the
universal result of Eq. (5.11) (red dashed line).

Calculations of the relevant bound state energy using the coupled channels method and the
simplified three-parameter model of Ref. [Han09] are shown in Fig. 5.7. We note that the
three-parameter model, while useful for bound state and resonance characterisation, does not
couple partial waves and so can not be used for calculating decay properties in the present
case. The energy variation is linear for binding energies greater than a few tens of kHz,
having a relative magnetic moment of δµ/h = 2.3MHz/G with respect to the ac threshold.
The universal region, as can be seen from the inset of Fig. 5.7, covers a magnetic field range
of order mG. This makes it hard to access experimentally. The universal region is wider for
broad, entrance channel dominated resonances [Chi10]. However, in the present case, the
suppression of decay by the centrifugal barrier allows the molecules to have a long lifetime
in the nonuniversal regime.

We now consider the lifetime of 6Li-40K molecules close to the ac resonance at 155 G. Out-
side the very narrow universal region, the analytic approach of Ref. [Köh05] does not apply.
We therefore derive the molecular lifetime from a coupled channels scattering calculation
including the two open d-wave channels into which it decays. The spin-dipole induced decay
discussed in the previous section is mediated by the bound state causing the resonance. For
collisions at an energy E near the energy Eb of this bound state, the off-diagonal |T12(E)|2
matrix element for the transition probability from one decay channel to the other follows
the standard form [Mot65]

|T12(E)|2 =
~2γ1γ2

(E − Eb)2 + ~2
4
Γ2

. (5.12)
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Figure 5.8: Calculated molecular lifetime as a function of magnetic field. The molecular
lifetime varies at lower field according to its tunnelling rate through the d-wave centrifugal
barrier into the exit channels. The arrows indicate the sharp increase in lifetime as the
universal regime is entered, and the region away from resonance where the molecular lifetime
converges to that of the bare resonance state.

Here, γ1 and γ2 are the decay rate of the molecule into the ab and aa channels, respectively.
The total decay rate is given by Γ = (γ1+γ2), and the molecular lifetime by τ = 1/Γ. Fitting
our calculated |T12(E)|2 to the form of Eq. (5.12) determines the magnitude of Γ for a given
B. This calculation includes the entrance channel component and so reproduces the increase
in lifetime as the Feshbach molecule takes on a halo form. This should be distinguished from
the decay rate of the bare resonance state which appears in Eqs. (5.3) and (5.4).

Our calculated lifetimes are shown in Fig. 5.8. As discussed above, a sharp increase in
lifetime occurs as the universal region near B0 is approached. Above the maximum lifetime
shown in the Fig. 5.8, the decay peak described by Eq. (5.12) narrows to the point where
we can no longer resolve it in our calculations. The slower increase as B is moved away
from B0 occurs because the bound state moves further behind the centrifugal barrier. Decay
from tunnelling through the barrier is then further suppressed. The lifetime of molecules
in the vicinity of the 155 G resonance was measured by Voigt et al. [Voi09]. They observed
a sharp increase in lifetime near the resonance, with which our results qualitatively agree.
Their measured background lifetime of ∼ 3ms away from resonance is lower than our cal-
culated minimum of 6 ms. However, our calculations do not include relevant atom-dimer
and dimer-dimer collisions, and so may be considered as an upper bound to experimentally
observable lifetimes. A lifetime of several ms will permit measurements and manipulation of
the Feshbach molecules.
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Figure 5.9: Energies of the bound states underlying the resonances studied in this paper, as
a function of magnetic field. Collision thresholds of relevant channels are shown as dotted
lines, labelled at the right of the figure. The resonances arise from three zero-field bound
states of F = 4, 5 and 6 (labelled at the left of the figure), which are projected into channels
of |Mtot| ≤ F at non-zero field. Deeper bound states are not shown for reasons of clarity.
Avoided crossings between bound states of the same Mtot give rise to three identifiable groups
of resonances, indicated by the same symbols used in Fig. 5.10 and Table 5.2. Within each
group, resonance parameters vary smoothly (see Fig. 5.10 and text).

5.4 Survey of resonances

In this section we discuss resonances occurring in various channels of the 6Li-40K mixture. We
focus on channels with 6Li in the a state and 40K in the lower (f = 9/2) manifold, for which
inelastic spin-exchange collisions do not occur. At zero magnetic field, there are three bound
states of F = 4, 5 and 6 in the range 200MHz to 300MHz below these thresholds, as shown in
Fig. 5.9. At nonzero magnetic field, these states are projected into their Zeeman sublevels,
which give rise to Feshbach resonances when degenerate with the collision threshold of a
channel of the same Mtot. Consequently, three proximate resonances are found in channels
of −3 ≤ Mtot ≤ 4. The bound state underlying each resonance adiabatically correlates with
one of the zero field F states. We note that the bound state energies shown in Fig. 5.9 were
produced with the three-parameter model of Ref. [Han09], which produces slightly different
resonance locations to the coupled channels calculations that follow.

We have performed a coupled channels analysis of each resonance, analogous to that
performed with the asymptotic bound state model in Ref. [Tie10]. With our more rigorous
approach2, we obtain good agreement with all experimental data, including the new set
of measurements on the 155G resonance presented in Sec. 5.3.2. The simplified approach
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Figure 5.10: Theoretical survey of 6Li–40K s-wave resonances. Each panel shows a resonance
parameter as a function of Mtot: the width ∆ (top), strength sres (middle), and length ares

(bottom). The 6Li atom is in the a state, except for Mtot = −5 for which it is in b. The 40K
atom is in the lowest Zeeman state producing the relevant Mtot. The symbols, also used in
Fig. 5.9 and Table 5.2, correspond to the resonance groups discussed in the text.
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Experiment Coupled channels

Channel Mtot Group B0 ∆ Ref. B0 ∆ abg/a0 δµ/h ares sres γB

(G) (G) (G) (G) (MHz/G) (106 a0) (µG)

ba -5 4 215.6 [Wil08] 215.52 0.27 64.3 2.4 160 0.0048 0.11

aa -4 © 157.6 [Wil08] 157.50 0.14 65.0 2.3 0.0023 0
♦ 168.170(10) [Spi10b] 168.04 0.13 63.4 2.5 0.0023 0

ab -3 © 149.2 [Wil08] 149.18 0.23 67.0 2.1 14 0.0037 1.1
¤ 159.5 [Wil08] 159.60 0.51 62.5 2.4 5.3 0.0086 6.1
♦ 165.9 [Wil08] 165.928 2× 10−4 58 2.5 0.3 3.3× 10−6 0.04

ac -2 © 141.7 [Wil08] 141.46 0.25 67.6 2.1 7.5 0.0040 2.3
¤ 154.707(5) 0.92(5) this work 154.75 0.88 63.0 2.3 4.0 0.014 14
♦ 162.7 [Wil08] 162.89 0.09 56.4 2.5 0.89 0.0014 5.7

ad -1 © 134.08 0.24 68.7 2.0 4.5 0.0038 3.7
¤ 149.40 1.06 63.8 2.2 3.3 0.017 20
♦ 159.20 0.33 55.8 2.45 1.4 0.0051 13

ae 0 © 127.01 0.22 68.5 2.05 2.8 0.0035 5.4
¤ 143.55 1.20 65.7 2.2 2.8 0.020 29
♦ 154.81 0.69 55.1 2.4 1.6 0.010 24

af 1 © 120.33 0.20 66.8 2.1 1.7 0.0031 7.9
¤ 137.23 1.19 65.3 2.2 2.2 0.019 35
♦ 149.59 1.14 53.6 2.4 1.6 0.016 37

ag 2 © 114.18 0.14 67.4 2.1 0.97 0.0023 9.7
¤ 130.49 1.07 66.4 2.2 1.8 0.018 40
♦ 143.39 1.57 54.4 2.4 1.6 0.023 53

ah 3 © 108.67 0.098 66.6 2.2 0.48 0.0016 14
¤ 123.45 0.86 68.4 2.3 1.3 0.015 44
♦ 135.90 1.87 55.9 2.45 1.5 0.029 72

ai 4 © 104.08 0.06 65.9 2.25 0.19 0.0010 21
¤ 116.38 0.54 68.6 2.4 0.98 0.010 38
♦ 126.62 1.97 54.7 2.6 1.3 0.032 83

aj 5 © 100.90 0.02 64.3 2.3 0.03 3.2× 10−4 43
♦ 114.47(5) 1.5(5) [Tie10] 114.78 1.81 57.3 2.3 1.08 0.027 96

Table 5.2: Survey of s-wave resonances in 6Li-40K. The first two columns give the channel αβ
and total angular momentum projection Mtot, with α and β representing the Zeeman state
of Li and K, respectively. The third column gives the symbol for the corresponding group of
resonances that is used in Figs. 5.9 and 5.10. The next three columns give experimental values
of the resonance location B0 and width ∆, where available, with references. The remaining
columns give the results of the coupled channels calculations performed for the current work
- B0 and ∆, as well as the background scattering length abg, relative magnetic moment δµ,
resonance length ares, resonance strength sres, and decay rate in magnetic field units, γB.
Note that ares is not defined for the stable aa channel. Note also that the experimental
values for B0 from Ref. [Wil08] are subject to typical uncertainties of about 0.5G.



74 Chapter 5. Feshbach resonances in the 6Li-40K Fermi-Fermi mixture

of Ref. [Tie10] seems to underestimate the widths of the resonances by almost a factor of
two. With the coupled channels approach, we can also study the decay properties of the
resonances. The resonance parameters are shown in Fig. 5.10, and tabulated in Table 5.2.
We group the resonances of each channel that are lowest (©), middle (¤) and highest (♦)
in B0, using the indicated symbols to distinguish the resonance groups in Figs. 5.9 and
5.10, and Table 5.2. Within each of these groups, resonance properties vary smoothly as a
function of Mtot. The resonances with Mtot = −4 and 5 have properties consistent with the
lowest and highest group, while the ba resonance with Mtot = −5 has substantially different
properties. This is due to F being a good quantum number only at zero magnetic field, and
several bound states having avoided crossings in the relevant range of magnetic field. There
are several resonances with ∆ & 1 G, offering good opportunities for control of collisional
properties. However, several other factors are also useful for deciding the suitability of a
resonance for a given application.

One parameter used for quantifying the extent to which a resonance is entrance-channel
dominated is the resonance strength parameter [Chi10], defined by

sres =
abg

ā

δµ∆

Ē
. (5.13)

Here, ā = [4π/Γ(1/4)2]Rvdw ≈ 0.956RvdW is the mean scattering length [Gri93], and Ē =
~2/(2µā2) ≈ 1.094EvdW is the associated energy. If sres ≥ 1, the bound state and near-
threshold scattering states are concentrated in the entrance channel over a magnetic field
range comparable to ∆. In the present case, all resonances are closed-channel dominated, as
shown in the middle panel of Fig. 5.10. The background scattering lengths of the resonances
are all in the range 55 a0 to 70 a0, and the relative magnetic moments are in the range
2MHz/G to 2.6MHz/G. Consequently, the resonance strength follows trends similar to the
resonance widths. For the ac 155G resonance we have sres = 0.014. This is reflected in the
universal region being only a few mG wide, as discussed above.

Calculated resonance lengths are shown in the lower panel of Fig. 5.10. The range in ares

is approximately 3 orders of magnitude, with better stability in channels of lower Mtot. This
occurs because the energy gaps between higher channels are larger, reducing the height of
the centrifugal barrier through which the decaying atoms tunnel. However, all the resonance
lengths are sufficiently high that we expect each resonance with ∆ & 1G to be very useful.

In view of interaction control in a strongly interacting gas, we now discuss three selected
resonances that have received particular attention in experiments: the 168G resonance in
the aa channel [Spi10b], the 155 G resonance in the ac channel [Voi09] (see Sec. 5.3), and
the 114G resonance in the aj channel [Tie10]. In practice, the possible degree of control is
limited by uncertainties (drifts and fluctuations) of the magnetic field. A corresponding figure
of merit is the maximum controllable scattering length actrl = abg∆/δB, where δB stands
for the magnetic field uncertainty. Assuming a realistic value of δB = 5mG one obtains
actrl ≈ 1600 a0, 11 000 a0, and 21 000 a0 for the three resonances considered (168G, 155G,
and 114G, respectively). On one hand, this can be compared with the typical requirement
of |a| & 5000 a0 for attaining strongly interacting conditions. On the other hand, it can be
compared with the condition for universal behavior |a| À ā/sres

11, which requires actrl À
11 ā/sres = R∗ with R∗ being defined in reference [Pet04a].
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17 000 a0, 2800 a0, and 1450 a0. This shows that the resonance at 168G is too narrow for
controlling a strongly interacting Fermi-Fermi mixture, but the other resonances at 155 G and
114G are broad enough. Although the 114G resonance is wider than the 155 G resonance
by a factor of 2.1, inelastic loss is 3.7 times faster. The higher collisional stability is an
important advantage of the 155G resonance.

5.5 Conclusions

We have characterized elastic and inelastic scattering near Feshbach resonances in the 6Li-
40K mixtures. The presence of open decay channels for all broader resonances has two
important consequences. Atomic two-body collisions acquire a resonantly enhanced inelastic
component, which unavoidably limits the stability of an atomic Fermi-Fermi mixture with
resonantly tuned interactions. When Feshbach molecules are created via these decaying
resonances, they will undergo spontaneous dissociation.

The intrinsic decay has important consequences for present experiments towards strongly
interacting Fermi-Fermi mixtures. Under typical experimental conditions, the lifetime of
a Fermi-Fermi mixture with resonantly tuned interactions (a → ±∞) will be limited to
∼10ms. This in general means a limitation of possible experiments to short time scales,
such as the observation of the expansion of the mixture after trap release [O’H02, Bou03]
or measurements of fast collective oscillation modes [Kin04a, Bar04a, Alt07a]. Experiments
that require long time scales, such as precise studies of equilibrium states [Zwi06a, Nas10],
may be problematic in this decaying mixture.

The short lifetime of the Feshbach molecules, also being of the order of 10 ms, excludes
the production of a long-lived molecular Bose-Einstein condensate (mBEC) such as formed in
6Li [Joc03b, Zwi03b]. Transient ways to form mBECs, as demonstrated for 40K [Gre03], will
still be possible. The detection of fermionic condensates by rapid conversion of many-body
pairs into molecules [Reg04] also seems to be a realistic possibility. Moreover, the predicted
increase of the molecular lifetime for larger binding energies can be of general interest for
the coherent manipulation of Feshbach molecules [Fer09] and in particular for optimizing the
starting conditions for a transfer to the ro-vibrational ground state [Ni08, Lan08, Dan10].

Finally, the question of which Feshbach resonance provides optimum conditions for inter-
action tuning in 6Li-40K has no straightforward answer. All the broad resonances occurring
in the channels ac - aj (widths 0.88G - 1.97G) seem to be well suited for controlled interac-
tion tuning. Because of the tradeoff between width and stability, the best choice will depend
on the particular application.

We thank Bo Gao for stimulating discussions. We acknowledge support by the Aus-
trian Science Fund (FWF) and the European Science Foundation (ESF) within the Euro-
QUAM/FerMix project and support by the FWF through the SFB FoQuS. T.M.H. and
P.S.J. acknowledge support from an AFOSR MURI on Ultracold Molecules.
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Note

Note that the value given for B0 refers to the particular optical trap used in the experiments.
It includes a small shift induced by the trapping light, as the molecules have slightly different
polarizabilities than the free atoms, leading to a difference in the Stark shift. In free space,
without the light shift, the resonance center is located at 154.698(5)G, see also Methods in
Chap.7.
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We report on the expansion of an ultracold Fermi-Fermi mixture of 6Li and 40K under
conditions of strong interactions controlled via an interspecies Feshbach resonance. We
study the expansion of the mixture after release from the trap and, in a narrow magnetic
field range, we observe two phenomena related to hydrodynamic behavior. The common
inversion of the aspect ratio is found to be accompanied by a collective effect where both
species stick together and expand jointly despite of their widely different masses. Our
work constitutes a major experimental step for a controlled investigation of the many-
body physics of this novel strongly interacting quantum system.

Since the first observations of strongly interacting Fermi gases [O’H02, Bou03] the field
has produced many exciting results and provided important new insights into the many-
body behavior of strongly interacting quantum matter [Ing08b, Blo08b, Gio08]. The general

1The author of the present thesis acquired the data together with A.T., performed the data analysis for
the last three figures, and contributed to the interpretation of the results.
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Figure 6.1: Illustration of the optically trapped Fermi-Fermi mixture. A small, moderately
degenerate 40K cloud resides in the center of the larger Fermi sea of 6Li. The optical
trapping potential of 40K is about 2.1 times deeper than the one for 6Li (solid lines). The
Thomas-Fermi radii RLi

TF and RK
TF of both species differ by a factor of about two.

interest cuts across different branches of physics, ranging from strongly correlated condensed-
matter systems to neutron stars and the quark-gluon plasma.

Experimental realizations of strongly interacting Fermi gases rely on ultracold mixtures
of two components with magnetically tunable s-wave interaction. First experiments focused
on spin mixtures of a single fermionic species with equal populations in two different Zeeman
states [Ing08b]. The introduction of population imbalance [Zwi06b, Par06] then paved the
way to the rich physics of polarized Fermi gases [Rad10, Che10]. The recent experimental
efforts to create ultracold mixtures of two different fermionic species [Tag08, Wil08, Voi09,
Spi09, Spi10b, Tie10, Cos10, Nai11] have brought the field close to a new research frontier
with intriguing new possibilities, e.g., related to novel types of superfluids and quantum
phases [Liu03, Isk07] and to new few-body states [Lev09, Nis08].

In this Letter, we report on the creation of an ultracold Fermi-Fermi mixture of 6Li and
40K atoms, featuring the high degree of interaction control that is necessary to explore
the strongly interacting regime. As a first experimental benchmark, we demonstrate the
hydrodynamic expansion after release from the trap. Near the center of an interspecies
Feshbach resonance, we observe two different hydrodynamic phenomena with a pronounced
dependence on the interactions strength. The first one is the well-known inversion of the
aspect ratio [O’H02]. The second one is a hydrodynamic drag between both species, causing
their flow velocities to be equal.

We point out that both hydrodynamic phenomena find close analogies in experiments
aiming at the creation of a quark-gluon plasma [Bra07, Jac10]. Experiments of this kind
study the high-energy collisions of heavy nuclei and detect the expanding collision products.
In this context “elliptic flow” refers to an anisotropy of the expansion, which is understood as
a consequence of the hydrodynamic interaction between the various collision products. The
second analogy becomes evident in the transverse energy spectra of the collision products.
Here it is found that heavier particles carry larger energies than the lighter ones [Bea97].
Such a mass-dependence is interpreted as a result of “collective flow” (see, e.g., [Yag05]),
which provides another signature of the hydrodynamic nature of the expansion. The analogy
between elliptic flow and the expansion of a strongly interacting Fermi gas has been pointed
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out already in context with early experiments on ultracold Fermi gases [O’H02, Tho10,
Sch09a]. The collective flow analogy is another striking example for the fascinating relation
between two fields of physics at energies differing by more than 20 orders of magnitude.

The starting point of our experiments is a weakly interacting mixture of 7.5 × 104 6Li
atoms and 2.0 × 104 40K atoms in an optical dipole trap2; see the illustration in Fig. 6.1.
The anisotropy of the trapping potential leads to a cigar-shaped sample with an aspect ratio
of about 6.5. The preparation procedures are described in detail in Ref. [Spi10b]. At a tem-
perature T ≈ 300 nK the Li component forms a degenerate Fermi sea with T/T Li

F ≈ 0.3 and
the K component is moderately degenerate with T/TK

F ≈ 0.7; here the Fermi temperatures
of both species are given by T Li

F = 1.1 µK and TK
F = 500 nK. The K cloud is concentrated in

the center of the bigger Li cloud, with approximately equal peak densities.

Interaction control is achieved by the 155 G interspecies Feshbach resonance, which occurs
for Li in its lowest internal state (mLi

f = +1/2) and K in its third to lowest state (mK
f = −5/2)

[Wil08, Voi09, Nai11]. The s-wave scattering length a can be tuned according to the standard
resonance expression a = abg(1 − ∆/(B − B0)) with abg = 63.0 a0 (a0 is Bohr’s radius),
∆ = 880 mG, and B0 = 154.707(5) G [Nai11].

The Li Fermi energy ELi
F = kBT Li

F represents the leading energy scale in our system.
Therefore, a natural condition for strong interactions of the K minority component in the
degenerate Fermi sea of Li is given by kLi

F |a| > 1, where kLi
F = (2mLiE

Li
F )1/2/~ = 1/(3600 a0).

In terms of magnetic detuning, this condition translates to |B−B0| < 15 mG. The character
of the Feshbach resonance is closed-channel dominated [Chi10], but near-universal behavior
can be expected throughout the strongly interacting regime [Nai11].

We create the strongly interacting mixture in a transient scheme, which minimizes the
time spent near resonance and thus avoids the detrimental effect of inelastic losses [Nai11].
We start with a weakly interacting combination of spin states with mLi

f = +1/2 and mK
f =

−7/2. The magnetic field is set to the target field near B0 with an estimated uncertainty
as low as 3mG. Then we quickly convert the mixture into a strongly interacting one by
flipping the spins of the K atoms to mK

f = −5/2 using a 60 µs radio-frequency π-pulse. We
immediately turn off the optical trap, releasing the sample into free space. This procedure
provides well-defined initial conditions for the expansion, with the density distributions being
the ones of the noninteracting system.

In a first set of experiments, we study the expansion dynamics for a magnetic field very
close to resonance (B = 154.709G). After a variable time of flight tTOF, absorption images
are taken for both species and analyzed by simple two-dimensional Gaussian fits to determine
their radial and axial widths, σr and σz. In Fig. 6.2 we present the resulting data in terms
of the aspect ratios Ai = σi

r/σ
i
z and volume parameters Vi = (σi

r)
2σi

z, where i = Li, K. For
comparison, we also show corresponding measurements performed on a noninteracting sam-
ple, where the expansion proceeds ballistically and the aspect ratios asymptotically approach
unity3. For resonant interactions, the aspect ratios of both species, ALi and AK, undergo an
inversion, thus showing the expected hallmark of hydrodynamic behavior. Also, the volume

2The trap is realized with two crossed beams derived from a 1030 nm single-mode laser source. The
measured trap frequencies for Li (K) are 560 Hz (390Hz) radially and 90 Hz (57 Hz) axially.

3We compared the expansion of a weakly interacting mixture (a ≈ abg) with the noninteracting case
realized near the zero crossing of the scattering length (a = 0), and found no significant difference.
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Figure 6.2: Expansion dynamics of the strongly interacting 6Li-40K mixture. The upper
two panels show the aspect ratios ALi and AK, while the lower two panels display the volume
parameters VLi and VK. The closed symbols refer to the resonant case (154.709 G), while
the open symbols refer to noninteracting conditions (155.508G). The error bars show the
statistical uncertainties of the measurements.
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Figure 6.3: Magnetic-field dependence of the hydrodynamic expansion observed at tTOF =
4ms. The upper panels show the aspect ratios ALi and AK. The lower panels show the volume
parameters VLi and VK, normalized to their values measured for the noninteracting case. The
dashed vertical lines indicate the resonance position B0. The statistical uncertainties are on
the order of the size of the symbols.

parameters VLi and VK reveal striking interaction effects. While VLi is substantially reduced
by the interaction, VK shows a small but significant increase. This observation fits to the
expectation of collective flow as resulting from the hydrodynamic drag effect.

In a second set of experiments, we observe the expansion at a fixed tTOF = 4ms for vari-
able interaction strength. Figure 6.3 shows the experimental data obtained for the aspect
ratios and volume parameters of both species as a function of the magnetic field. Interaction
effects are observed in a range with a total width of the order of 100mG. Deep hydrody-
namic behavior, however, shows up only in a narrow range within the 30 mG wide regime of
strong interactions where kLi

F |a| > 1. The observed magnetic-field dependence also points to
interaction effects beyond elastic scattering. In the mean-field regime, the interaction is re-
pulsive below resonance and attractive above resonance, which leads to a respective increase
or decrease of the cloud size. The corresponding dispersive behavior indeed shows up in our
measurements of VLi. As another interaction effect, the maximum of the volume parameter
VK displays a shift towards lower magnetic fields with respect to both the resonance position
and the maximum observed for the aspect ratio. We speculate that this shift may be related
to the magnetic-field dependence of the interaction energy in the strongly interacting regime.

Let us now turn our attention to another striking manifestation of the hydrodynamic drag
effect, a bimodality in the spatial distribution of the expanding Li cloud. In the trap center,
the Li atoms spatially overlap with the K cloud (see Fig. 6.1). This inner part can, together
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Figure 6.4: Images of the hydrodynamic core of the cloud (tTOF = 4 ms) in the regime of
resonantly tuned interactions (154.706 G), where 6Li and 40K expand collectively. The
image on the left-hand side is a differential image of the Li atoms, where we subtracted a
reference image of the noninteracting cloud. The corresponding greyscale refers to the optical
density as normalized to the maximum in the noninteracting distribution. The image on the
right-hand side shows the K atoms in the strongly interacting cloud. Here the greyscale
gives the optical density. The field of view of both images is 500 µm× 500 µm. The images
are averaged over seven individual shots.

with the K atoms, form a hydrodynamic core, which is surrounded by a large noninteracting
cloud of excess Li atoms. In this core, multiple elastic collisions prevent the two species from
separating. This leads to a slow collective expansion of the light Li atoms sticking together
with the much heavier K atoms. In contrast, the expansion of the outer part of the cloud is
fast and proceeds in an essentially ballistic way4.

Figure 6.4 shows images of the hydrodynamic core. To increase its visibility on the
background of the ballistically expanding particles we show a differential Li image, where a
reference image taken under noninteracting conditions is subtracted from the image of the
strongly interacting cloud. This Li image is compared with a standard absorption image
of the K cloud, as all K atoms are expected to contribute to the hydrodynamic core. The
inner distribution detected for the Li component closely resembles the shape and size of the
K cloud, supporting our interpretation of a jointly expanding Li-K cloud. The formation of
this hydrodynamic core implies that particles are missing in the outer part, which undergoes
a near-ballistic expansion4. Consequently, the differential Li image shows a negative signal
in the outer region.

We analyze the bimodal distribution of the Li cloud by two-dimensional double-Gaussian
fits. Two examples for the corresponding spatial profiles are shown in the upper panels of
Fig. 6.5. The lower panel displays the fraction of Li atoms in the hydrodynamic core that
we find from such fits as a function of the magnetic field. The maximum core fraction near
20% contains about 1.5× 104 Li atoms, which corresponds to essentially all Li atoms in the
overlap region. The maximum in the core fraction of Li near 154.7G may be interpreted in

4During the expansion some atoms in the outer cloud can interact with the hydrodynamic core, which
also makes their distribution anisotropic.
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Figure 6.5: Bimodal distributions of 6Li observed at tTOF = 4ms. The upper panels
show two example profiles representing axial cuts through the two-dimensional distribution,
obtained from a narrow strip of 15 µm width in radial direction. The solid lines show double-
Gaussian fits. The lower panel shows the corresponding fraction of atoms in the hydrody-
namic core as a function of the magnetic field. The central five points (open squares) are
based on fits where the widths of the core were kept as free parameters. Further away from
resonance (open circles) the bimodality is much less pronounced and such a multiparameter
fit is not applicable. Here the widths were fixed to corresponding widths of the K distri-
bution. The error bars indicate the statistical uncertainties resulting form seven individual
measurements at a given magnetic field. The grey shaded area indicates the uncertainty
range for the resonance center according to Ref. [Nai11].



84 Chapter 6. Hydrodynamic Expansion

terms of a maximum collision cross section, thus marking the exact resonance position B0,
but it may also point to interaction phenomena beyond elastic scattering.

The physics of interactions in the strongly interacting regime can be very rich, and more
detailed investigations on the hydrodynamic core will unravel the complex many-body in-
teractions of the system. Besides mean-field shifts, for which we have already observed
indications, strong polaronic interactions [Sch09b] or a substantial influence of pairing may
be expected at sufficiently low temperatures. On the a > 0 side, weakly bound dimers
[Voi09, Spi10b] may be formed either directly by radio-frequency association or indirectly by
three-body recombination. We may speculate that on resonance, already at the moderate
degeneracies realized in our present experiments, many-body pairs may contribute. Super-
fluidity may be expected at lower temperatures. All these phenomena need further detailed
investigations and represent exciting future research topics.

In conclusion, we have explored a strongly interacting Fermi-Fermi mixture by studying
its expansion dynamics. Our results show pronounced effects of hydrodynamic behavior,
manifested in both an anisotropic expansion and in collective flow as resulting from inter-
species drag. Our near-future work will be dedicated to a better understanding of the role
of interaction effects, in particular, to the equation of state at unitarity [Gez09], and to the
equilibrium and dynamics in the trap [Ors08]. The novel system offers many more intriguing
possibilities to explore its quantum many-body physics. Already the experiments on strongly
interacting spin mixtures [Ing08b, Gio08] suggest a rich tool box of different experimental
methods, such as measurements on in situ spatial profiles, studies of collective modes, the
application of radio-frequency or Bragg spectroscopy, and detection of molecular condensates
and fermionic pair condensates. Moreover, the Fermi-Fermi mixture offers conceptually new
possibilities through the application of species-selective optical potentials, which will allow
for independent control of both components, e.g., for an independent manipulation of the
Fermi surfaces in optical lattices [Fei09] or for the creation of mixed-dimensional fermionic
systems [Nis08].

We thank A. Recati, S. Giorgini, and S. Stringari for stimulating discussions and G. Hendl
for technical assistance. We acknowledge support by the Austrian Science Fund (FWF) and
the European Science Foundation (ESF) within the EuroQUAM/FerMix project and support
by the FWF through the SFB FoQuS.

Note

Note that the value given for B0 refers to the particular optical trap used in the experiments.
It includes a small shift induced by the trapping light, as the molecules have slightly different
polarizabilities than the free atoms, leading to a difference in the Stark shift. In free space,
without the light shift, the resonance center is located at 154.698(5)G, see also Methods in
Chap.7.
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Ultracold Fermi gases with tuneable interactions represent a unique test bed to explore
the many-body physics of strongly interacting quantum systems [Blo08b, Gio08, Rad10,
Che10]. In the past decade, experiments have investigated a wealth of intriguing phenom-
ena, and precise measurements of ground-state properties have provided exquisite bench-
marks for the development of elaborate theoretical descriptions. Metastable states in
Fermi gases with strong repulsive interactions [Dui05, LeB09, Con09, Jo09, Pil10, Cha11,
San11] represent an exciting new frontier in the field. The realization of such systems con-
stitutes a major challenge since a strong repulsive interaction in an atomic quantum gas
implies the existence of a weakly bound molecular state, which makes the system intrin-
sically unstable against decay. Here, we exploit radio-frequency spectroscopy to measure
the complete excitation spectrum of fermionic 40K impurities resonantly interacting with
a Fermi sea of 6Li atoms. In particular, we show that a well-defined quasiparticle exists
for strongly repulsive interactions. For this “repulsive polaron” [Pil10, Mas11, Sch11] we
measure its energy and its lifetime against decay. We also probe its coherence properties
by measuring the quasiparticle residue. The results are well described by a theoretical
approach that takes into account the finite effective range of the interaction in our sys-
tem. We find that a non-zero range of the order of the interparticle spacing results in a
substantial lifetime increase. This major benefit for the stability of the repulsive branch
opens up new perspectives for investigating novel phenomena in metastable, repulsively
interacting fermion systems.

7.1 Main results

Landau’s theory of a Fermi liquid [Lan57] and the underlying concept of quasiparticles lay
at the heart of our understanding of interacting Fermi systems over a wide range of energy
scales, including liquid 3He, electrons in metals, atomic nuclei, and the quark-gluon plasma.
In the field of ultracold Fermi gases, the normal (non-superfluid) phase of a strongly inter-
acting system can be interpreted in terms of a Fermi liquid [Lob06, Sch09b, Nav10, Nas11].
In the population-imbalanced case, quasiparticles coined Fermi polarons are the essential
building blocks and have been studied in detail experimentally [Sch09b] for attractive inter-
actions. Recent theoretical work [Pil10, Mas11, Sch11] has suggested a novel quasiparticle
associated with repulsive interactions. The properties of this repulsive polaron are of fun-
damental importance for the prospects of repulsive many-body states. A crucial question
for the feasibility of future experiments is the stability against decay into molecular excita-
tions [Pek11a, Mas11, San11]. Indeed, whenever a strongly repulsive interaction is realized
by means of a Feshbach resonance [Chi10], a weakly bound molecular state is present into
which the system may rapidly decay.

Our system consists of impurities of fermionic 40K atoms immersed in a large Fermi sea
of 6Li atoms, which is characterised by a Fermi energy εF = h× 37 kHz and a temperature
T = 0.16 εF /kB (see Methods), with h and kB denoting Planck’s and Boltzmann’s constants.
In a particular combination of spin states [Nai11], the 6Li -40K mixture features a Feshbach
resonance centered at B0 = 154.719(2) G. The resonance allows to widely tune the s-wave
interaction, parametrised by the scattering length a, via a magnetic field B. The interaction
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Figure 7.1: Energy spectrum of the impurity in the Fermi sea. For the two polaronic
branches, the energies E+ (red line) and E− (green line) are plotted as a function of the
interaction parameter −1/(κF a). The shaded area between the dashed lines representing
Em and Em− εF (see text) shows the continuum of molecular excitations. The vertical lines
at 1/(κF a) = ±1 indicate the width of the strongly interacting regime. The inset illustrates
our rf spectroscopic scheme where the impurity is transferred from a noninteracting spin
state |0〉 to the interacting state |1〉.

strength is described by the dimensionless parameter −1/(κF a), where κF = ~−1
√

2mLiεF =
1/(2850 a0) is the Fermi wave number; here ~ = h/2π, a0 is Bohr’s radius, and mLi is
the mass of a 6Li atom. Near the resonance center, the linear approximation −1/(κF a) =
(B − B0)/20 mG holds. The momentum dependence of the interaction is characterised by
the effective range, which we express in terms of the parameter [Pet04a] R∗ = 2700 a0 (see
Supplementary Information).

Figure 7.1 illustrates the basic physics of our impurity problem in the T = 0 limit,
showing the energies of different states as a function of the interaction parameter. The
situation is generic for any impurity in a Fermi sea, but quantitative details depend on both
the mass ratio and the particular width of the Feshbach resonance. The theoretical curves
are based on an extension of an approach presented in Refs. [Pun09, Mas11] to our case of
a relatively narrow Feshbach resonance with κF R∗ = 0.95 and thus a considerable effective
range of the interaction (see Supplementary Information).

The spectrum exhibits two quasiparticle branches, which do not adiabatically connect
when the resonance is crossed, and a molecule-hole continuum (MHC). The interaction-
induced energy shifts of the two branches (E+ > 0 and E− < 0) are generally described
in a many-body picture by dressing the impurities with particle-hole excitations. Far away
from resonance this simplifies to a mean-field shift proportional to a. The lower branch E−
of the system (green line) corresponds to the attractive polaron, which has recently received
a great deal of attention theoretically [Che10, Lob06, Com07, Pun09, Sad11] as well as
experimentally [Nas09b, Sch09b, Nav10]. This polaronic branch remains the ground state
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of the system until a critical interaction strength is reached, where the system energetically
prefers to form a bosonic molecule by binding the impurity to an atom taken from the Fermi
sea [Pro08, Pun09, Sad11]. The continuum arises from the fact that a majority atom with
an energy between 0 and εF can be removed from the Fermi sea to form the molecule. The
MHC thus exists in an energy range between Em and Em − εF (dashed lines in Fig. 7.1),
where Em represents the energy of a dressed molecule including the binding energy of a bare
molecule in vacuum and a positive interaction shift. The attractive polaron can decay into
a molecular excitation if this channel opens up energetically (E− ≥ Em − εF ).

The upper branch (red line in Fig. 7.1) corresponds to the repulsive polaron [Pil10,
Mas11, Sch11] with an energy E+ > 0. Approaching the resonance from the a > 0 side,
E+ gradually increases and reaches a sizeable fraction of εF . However, the polaronic state
becomes increasingly unstable as it decays to the lower lying states (attractive polaron and
MHC). Close to the resonance center, the polaronic state becomes ill-defined as the decay
rate approaches E+/~.

To investigate the excitation spectrum of the impurities, we employ radio-frequency (rf)
spectroscopy [Chi04, Shi07, Ste08]. We initially prepare the 40K atoms in a non-interacting
spin state |0〉 and then, with a variable frequency νrf , drive rf transitions into the resonantly
interacting state |1〉. Our signal is the fraction of atoms transferred, measured as a function
of the rf detuning νrf − ν0 with respect to the unperturbed transition frequency ν0 between
the two spin states. This excitation scheme provides access to the full energy spectrum of
the system. In particular, it allows us to probe the metastable repulsive polaron as well as
all states in the MHC. We furthermore take advantage of the coherence of the excitation
process by driving Rabi oscillations. As an important practical advantage, this enables very
fast and efficient transfer of population into a short-lived quasiparticle state by application
of π-pulses. Moreover, we will show that measurements of the Rabi frequency directly reveal
quasiparticle properties.

In Fig. 7.2 we show false-colour plots of our signal, detected for different values of the
detuning parameter ∆ = h(νrf − ν0) and for variable interaction strength −1/(κF a). Figure
7.2a displays a set of measurements that was optimised for signal and spectral resolution
of the polaronic excitations by using moderate rf power (see Methods). The spectrum in
Fig. 7.2b was optimised for detection of the molecular excitations. Here a much higher rf
power had to be employed because of the reduced Franck-Condon wavefunction overlap. For
the polaronic branches the high rf power leads to a highly nonlinear saturation behaviour.

Our data clearly show both polaronic branches, with their measured energies being in
excellent agreement with theory. The attractive polaron is found to disappear in the strongly
interacting regime. This behaviour, which is different from the one observed for 6Li spin
mixtures [Sch09b], is consistent with the crossing of E− and Em − εF at −1/(κF a) ≈ +0.6
predicted for our system. In contrast, the repulsive polaron extends far into the strongly
interacting regime. A sharp peak is observed in the spectrum with decreasing signal strength
until it finally fades out very close to resonance at −1/(κF a) ' −0.3 (see Supplementary
Information). The low rf power only produces a weak signal for the MHC, whereas the high rf
power clearly unveils the presence of the MHC. Further on the a > 0 side of the resonance,
the molecular signal gets weaker because of the decreasing Franck-Condon overlap, and
outside of the strongly interacting regime the situation corresponds to the rf association of
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Figure 7.2: Spectral response of 40K impurities in a 6Li Fermi sea. The false-colour
plots show the fraction of 40K atoms transferred from the non-interacting spin state |0〉 into
the interacting state |1〉 for different values of the rf detuning parameter ∆ = h(νrf − ν0)
and for variable interaction strength −1/(κF a). The panels a and b refer to low and high rf
power. For comparison, the lines correspond to the theoretical predictions for E+, E−, Em,
and Em − εF as shown in Fig. 1.
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Figure 7.3: Decay rate of the repulsive polaron. The data points display the measured
decay rates Γ as extracted by exponential fits from decay curves; the error bars indicate
the fit uncertainties. Sample decay curves are shown in the inset. The solid lines represent
theoretical calculations of the two-body decay (blue line) and the three-body decay (red line)
into the attractive polaron or the MHC, respectively.

bare molecules (see Supplementary Information).
To investigate the decay of the repulsive branch, we apply an rf pulse sequence to selec-

tively convert repulsive polarons back into non-interacting impurities after a variable hold
time (see Methods). The back conversion sensitively depends on the rf resonance condition
and thus allows us to discriminate 40K atoms in the polaronic state against those ones form-
ing molecules. Figure 7.3 presents the experimental results. The inset shows three sample
curves, taken for different values of the interaction parameter. The main panel displays
the values extracted for the decay rate Γ from the decay curves by simple exponential fits.
The data reveal a pronounced increase of decay as the resonance is approached, which is
in good agreement with theoretical model calculations [Mas11] (see Supplementary Infor-
mation). The decay populates the MHC and may happen in a two-step process where the
repulsive polaron first decays via a two-body process into an attractive polaron (blue line)
and then decays into a molecular excitation. Alternatively, a three-body process may di-
rectly lead into the MHC (red line). Very close to the resonance, for −1/(κF a) = −0.25, we
find ~Γ/εF ≈ 0.01, which corresponds to a 1/e lifetime of about 400 µs. Relating this decay
rate to the corresponding energy shift E+ = 0.30 εF , we obtain ~Γ/E+ ≈ 0.03 ¿ 1, which
demonstrates that the repulsive polaron exists as a well resolved, metastable quasiparticle
even deep in the strongly interacting regime.

The lifetime observed for the repulsive branch appears to be remarkably long, when
compared to recent experiments on 6Li spin mixtures [San11]. The latter system is a mass-
balanced one and it features a broad Feshbach resonance with a negligible effective range.
Our theoretical approach allows to answer in a general way the question how mass imbal-
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Figure 7.4: Rabi oscillations and the quasiparticle residue. a, Sample Rabi oscilla-
tions (magenta and green data points for −1/(κF a) = −1.25 and −0.5, respectively) with
harmonic oscillator fits (solid lines) demonstrate the two effects of the interaction with the
Fermi sea: damping and a reduction of the Rabi frequency. The black curve is a reference
curve recorded without 6Li . In b and c, the data points show the damping rates γ and the
normalized Rabi frequencies Ω/Ω0 as measured for two different values of the rf power; the
blue squares and red dots refer to Ω0 = 2π × 6.5 kHz and 12.6 kHz, respectively. The error
bars indicate the fit uncertainties. The solid lines represent the theoretical behavior of

√
Z

for the repulsive and the attractive polaron.
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ance and the width of the resonance influence the lifetime. We find that, while the mass
imbalance does only play a minor role [Mas11], the dominant effect results from the finite
effective range, which is associated with the narrow character of the Feshbach resonance that
we exploit. Comparing our situation with a hypothetical system with a broad Feshbach reso-
nance, and thus with a zero-range interaction, we find that in the strongly interacting regime
the same amount of energy can be obtained with an almost ten times increased lifetime (see
Supplementary Information).

Besides energy and lifetime, the polaron is characterized by its effective mass m∗ and its
quasiparticle residue Z. The difference between effective and bare mass [Mas11] does not
produce any significant features in our rf spectra. The residue Z (0 ≤ Z ≤ 1) quantifies
how much of the non-interacting particle is contained in the polaron’s wavefunction, which
can be written as

√
Z |1〉 plus terms describing excitations in the Fermi sea. The pre-factor√

Z directly manifests itself in the Rabi frequency Ω that describes the coherent rf coupling
between the noninteracting and the polaronic state (see Supplementary Information).

Figure 7.4 presents the experimental data on Rabi oscillations for variable interaction
strength. The sample curves in Fig. 7.4a demonstrate both the interaction-induced change in
the frequency and a damping effect. We apply a simple harmonic oscillator model (including
a small increasing background) to analyse the curves, which yields the damping rate γ and
the frequency Ω. The damping strongly increases close to the resonance center, but does
not show any significant dependence on Ω0, see Fig. 7.4b. It is interesting to note that the
population decay rates Γ measured for the repulsive branch (Fig. 7.3) stay well below the
values of γ, which points to collision-induced decoherence as the main damping mechanism.

Figure 7.4c displays the measured values for the Rabi frequency Ω, normalized to the
unperturbed value Ω0. The interaction-induced reduction of Ω/Ω0 is found to be independent
of the particular value of Ω0 (comparison of blue squares and red dots; see also Supplementary
Information). The solid lines show

√
Z as calculated within our theoretical approach for

both the repulsive and the attractive polaron. The comparison with the experimental data
demonstrates a remarkable agreement with the relation

√
Z = Ω/Ω0. Our results therefore

suggest measurements of the Rabi frequency as a precise and robust method to determine
the quasiparticle residue Z, and thus provides a powerful alternative to methods based on
the detection of the narrow quasiparticle peak in the spectral response [Sch09b, Pun09].

In conclusion, we have realized an ultracold model system of 40K and 6Li atoms to
investigate the quasiparticle behavior of heavy impurities resonantly interacting with a Fermi
sea of light particles. Our spectroscopic approach has confirmed the existence of the predicted
repulsive branch [Pil10, Mas11, Sch11] and has demonstrated that the repulsive polaron can
exist as a well-defined quasiparticle even deep in the strongly interacting regime. The long
lifetime of the repulsive polaron in our system, which we ascribe to the finite effective range
of the interparticle interaction, may be a key factor to overcome the problem of decay into
molecular excitations [Pek11a, San11] in the experimental investigation of metastable many-
body states that rely on repulsive interactions. In particular, the creation of states with two
fermionic components phase-separating on microscopic or macroscopic scales [Dui05, LeB09,
Con09, Jo09, Cha11, San11] appears to be an intriguing near-future prospect.

Acknowledgements. We thank A. Sidorov for contributions in the early stage of the ex-
periments, and T. Enss, S. Giorgini, W. Ketterle, J. Levinsen, C. Lobo, D. Petrov, A. Recati,



7.2. Methods 93

R. Schmidt, J. Song, C. Trefzger, P. Zoller, W. Zwerger, M. Zwierlein, and in particular M.
Baranov for many stimulating discussions. We acknowledge support by the Austrian Science
Fund FWF through the SFB FoQuS. M.Z. is supported within the Lise Meitner program of
the FWF. P.M. is indebted to M. Lewenstein for support through the ERC Advanced Grant
QUAGATUA.

7.2 Methods

Experimental conditions. Our system consists of 2 × 104 40K atoms and 3.5 × 105 6Li
atoms confined in an optical dipole trap. The trap is realized with two crossed beams derived
from a 1064 nm single-mode laser source. The measured trap frequencies for Li (K) are νr =
690Hz (425Hz) radially and νz = 86 Hz (52Hz) axially; this corresponds to a cigar-shaped
sample with an aspect ratio of about 8. The preparation procedure is described in detail in
Ref. [Spi10a]. The Fermi energies, according to the common definition EF = h 3

√
6Nν2

r νz for
harmonic traps, are ELi

F = h× 44 kHz = kB × 2.1 µK and EK
F = h× 10.4 kHz = kB × 500 nK.

At a temperature T ≈ 290 nK the 6Li component forms a deeply degenerate Fermi sea
(kBT/ELi

F ≈ 0.14) while the 40K component is moderately degenerate (kBT/EK
F ≈ 0.6).

Effective Fermi energy. The 40K atoms experience a nearly homogeneous 6Li envi-
ronment. This is because the optical trapping potential for 40K is about 2 times deeper
than for 6Li and the 40K cloud is confined in the center of the much larger 6Li Fermi sea
[Tre11b]. This allows us to describe the system in terms of the effective Fermi energy εF ,
defined as the mean Fermi energy experienced by the 40K atoms. We find εF = h× 37 kHz,
with two effects contributing to the fact that this value is about 15% below ELi

F . The finite
temperature reduces the Li density in the trap center, leading to a peak local Fermi energy
of h×40 kHz. Moreover, the 40K atoms sample a small region around the trap center, where
the density and local Fermi energy are somewhat lower. The distribution of Fermi energies
experienced by the 40K cloud, i.e. the residual inhomogeneity of our system, can be quantified
by a standard deviation of h× 1.9 kHz.

Concentration. The mean impurity concentration (mean density ratio nK/nLi) is about
0.4, if one considers the population of K atoms in both spin states. This may be a priori
too large to justify the interpretation of our data in terms of the low-concentration limit.
We find that this interpretation is nevertheless valid, as we take advantage of several facts.
Under strongly interacting conditions only a fraction of the K atoms is transferred into spin
state |1〉 (see Fig. 7.2), which reduces the concentration of interacting impurities. A recent
quantum Monte Carlo calculation of the equation of state of a zero-temperature 6Li -40K
Fermi-Fermi mixture [Gez09] further supports our interpretation in the low-concentration
limit: The strongest interaction in the mass-imbalanced system is expected when one has
about 4 times more 40K atoms than 6Li atoms, and for concentrations up to a value of 1
the interaction energy per 40K atom is expected to remain essentially constant. To support
our basic assumption with experimental data, we also took rf spectra for variable numbers
of 40K atoms, confirming that in the relevant parameter range finite concentration effects
remained negligibly small.

Interaction control via Feshbach resonance. The Feshbach resonance used for
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interaction tuning is discussed in detail in Refs. [Nai11, Tre11b]. It is present for 6Li in
the lowest spin state and 40K in the third-to-lowest spin state. The latter represents our
interacting state |1〉; the corresponding quantum numbers are F = 9/2 for the hyperfine
and mF = −5/2 for the magnetic sub-state. The neighboring state with mF = −7/2 serves
as state |0〉; here the interspecies scattering length (about +65 a0 with a0 being Bohr’s
radius) is so small that it can be neglected to a good approximation. The tunable scattering
length for state |1〉 in the Fermi sea is well described by the standard formula a = abg(1 −
∆B/(B − B0)) with abg = 63.0 a0, ∆B = 880 mG, and B0 = 154.719(2) G. Note that the
value given for B0 refers to the particular optical trap used in the experiments, as it includes
a small shift induced by the trapping light. The value therefore somewhat deviates from
the one given in Refs. [Nai11, Tre11b]. In free space, without the light shift, the resonance
center is located at 154.698(5)G. The character of the resonance is closed-channel dominated
[Chi10]. Following the definition [Pet04a] of a range parameter R∗ = ~2/(2mrabg δµ ∆B),
with mr = mLimK/(mLi + mK) being the reduced mass and δµ the differential magnetic
moment, the resonance is characterized by R∗ = 2700 a0. This value accidentally lies very
close to 1/κF = 2850 a0, which also means that the strongly interacting regime roughly
corresponds to the universal range of the resonance. Our system therefore represents an
intermediate case (κF R∗ = 0.95), where the behavior is near universal, but with significant
effects arising from closed-channel contributions.

Details on Rf pulses. For taking the data of Fig. 7.2 we used Blackman pulses [Kas92]
to avoid side lobes in the spectrum. For the upper panel, the pulses were 1 ms long (spectral
width 0.7 kHz ' 0.02 εF /h) and the rf power was adjusted such that π-pulses would be
realized in the absence of interactions with the Fermi sea. For the data in the lower panel,
the rf power was increased by a factor of 100 and the pulse duration was set to 0.5ms. This
resulted in pulses with an area of 5π without the Fermi sea. For the lifetime measurements in
Fig. 7.3, we used a sequence of 3 Blackman pulses. The first pulse (duration between 150 µs
and 500 µs) was set to drive the non-interacting impurity from spin state |0〉 (mF = −7/2)
into state |1〉 (mF = −5/2); here the frequency was carefully set to resonantly create repulsive
polarons and the pulse area was set to fulfill the π-pulse condition. The second pulse was a
short (60 µs) cleaning pulse, which removed the population remaining in |0〉 by transfer to
another, empty spin state (mF = −9/2). The third pulse had the same parameters as the
first one and resonantly back-transferred the population from the polaronic state in |1〉 to the
non-interacting state |0〉, where it was finally measured by spin-state selective absorption
imaging. The measurements of Rabi oscillations in Fig. 7.4 were performed with simple
square pulses.

7.3 Supplementary information

7.3.1 Theoretical framework

The theoretical results presented in the main text and in this Supplementary Information
are obtained from a model that describes the behaviour of a single impurity embedded
in a Fermi sea with tuneable s-wave interaction near a Feshbach resonance with arbitrary
effective range. Two different wavefunctions are needed, depending on whether one is inter-
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ested in the polaron [Che06, Com07] or molecule [Mor09, Pun09, Com09] properties. The
quasiparticle parameters for the polaron (energy E+ and E−, residue Z, effective mass) and
the molecule properties can be found either variationally, or diagrammatically using the
ladder approximation. Both approaches yield identical results, which closely match inde-
pendent Monte-Carlo calculations [Pro08]. The properties of the repulsive polaron, which is
intrinsically unstable due to the presence of the molecule-hole continuum (MHC) and of the
attractive polaron, are obtained from the self energy. In particular, the interaction induced
energy shift and the decay rate are given by the real part and twice the imaginary part of
the self energy, respectively [Mas11].

Previous treatments [Che06, Com07, Mor09, Pun09, Com09, Pro08, Mas11] were based
on a universal scattering amplitude, describing broad Feshbach resonances. To include effects
of the finite effective range we employ a many-body T-matrix given by [Bru05, Mas08b]

T (K, ω) =

[
mr

2π~2ã(K, ω)
− Π(K, ω)

]−1

. (7.1)

Here ~K = pK + pLi is the total momentum with pLi and pK the momenta of 6Li and 40K,
mr = mLimK/(mLi + mK) the reduced mass, Π(K, ω) the 6Li -40K pair propagator in the

presence of the Fermi sea, and ã(K, ω) ≡ abg

(
1− ∆B

B−B0−ECM/δµ

)
an energy-dependent length

parameter, with abg, ∆B, B0, and δµ being the background scattering length, the width,
the center, and the relative magnetic moment of the Feshbach resonance. ECM(K, ω) =
~ω − ~2K2/(2M) + εF , with M = mLi + mK, is the energy in the center of mass reference
frame of the colliding pair. In vacuum and close to resonance, the scattering amplitude of
our model has the usual low energy expansion

− f−1
k = a−1 + ik − rek

2/2 + . . . , (7.2)

with the relative momentum ~k = (mLipK−mKpLi)/M . The effective range is approximated
by re ≈ −2R∗(1−abg/a)2, where we introduce the range parameter R∗ = ~2/(2mrabg∆Bδµ),
see Ref. [Pet04a]. A detailed theoretical analysis of this model will be given elsewhere [Mas].

7.3.2 Polaron peak in the spectral response

The spectra in Fig. 7.2a of the main text show a narrow, coherent peak on top of a spectrally
broad, incoherent background. Here, we investigate these two spectral parts in more detail.
Note that the background is actually better visible in Fig. 7.2b, but these spectra do not
allow for a quantitative comparison of the two parts because of the strong saturation of the
narrow polaron peaks.

The narrow peak stems from the attractive or repulsive polarons, which correspond to
well defined energy levels, provided that the lifetime of the quasiparticle exceeds the pulse
duration. As a consequence, the lineshape is expected to be Fourier limited except for the
rapidly decaying repulsive polarons very close to resonance. In contrast, the background is
spectrally wide, on the order of εF . The main contribution to the background stems from the
MHC. Another contribution may arise from the excitation of additional particle-hole pairs
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Figure 7.5: See figure caption below.

in the Fermi sea when transferring to a quasiparticle with a momentum that is different from
the momentum of the impurity in the initial state.

We distinguish between the narrow peak and the wide background by means of a double
Gauss fit. Vertical cuts through Fig. 7.2a are presented in Fig. 7.5a together with the fit
curves. The width σp of the Gauss function fitting the narrow peak is fixed to the one
associated with the Gaussian fit of the Blackman pulse line shape used in the experiment,
σp = 0.7 kHz= 0.019 εF /h. We constrain the width σb of the Gauss function reproducing the
background to 3×0.019 εF /h < σb < 0.5 εF /h. The lower bound avoids the misinterpretation
of the narrow peak as background and the upper bound, corresponding to the maximal width
of the continuum as obtained from the spectra in Fig. 7.2b, avoids unphysically large values
of σb when the background signal is weak. We find that the narrow peak dominates for
weak positive and negative interaction strength while the wide background dominates in
the strongly interacting regime. This trend is shown in Fig. 7.5b and Fig. 7.5c, where we
present the maximum signal of the narrow peak and the area of the background, respectively.
Note that the signal in Fig. 7.5b is proportional to the area of the narrow peak since σp is
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Figure 7.5: Double Gauss analysis of the low-power spectra. The data are the same as
presented in Fig. 2a plus additional data in an extended range of 1/(κF a). (a) The Gauss
function fitting the wide background is shaded grey. The Fourier-limited Gauss function, fit-
ting the narrow peak, is coloured red (green) along the repulsive (attractive) polaron branch.
We identify the narrow peak with one of the polaron branches only if its maximum signal
exceeds a threshold value of 0.085, corresponding to two times the standard deviation of the
noise in our data. Any smaller peak may be caused by fitting to a noise component. The
lower panels show (b) the maximum signal of the narrow peak with the dashed line indicat-
ing the threshold, (c) the area under the wide Gauss function normalized to its maximum
value, and (d) the detuning at the center of the narrow peak, provided that the peak signal
exceeds the threshold, compared to the theoretical calculation of E+ and E− (red and green
line). The error bars indicate the fit uncertainties.

kept constant. Figure 7.5d shows the detuning at the center of the narrow peak, which
corresponds to the energy of the quasiparticles. The measured energies agree remarkably
well with the calculation. The slight mismatch between theory and experiment may be
attributed to systematic errors in the determination of εF and B0.

The area of the wide background exhibits a maximum close to −1/(κF a) = 0, but it
shows an asymmetry as it falls off significantly slower on the attractive (a < 0) side, see
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Fig. 7.5c. We attribute this asymmetry to the narrow character of the Feshbach resonance.
The interaction becomes resonant when the real part of the inverse scattering amplitude,
given in Eq. 7.2, is zero. This leads to the resonance condition a−1

res = rek
2/2, where ares is

the value of the scattering length at which the interaction becomes resonant. In the limit
of a broad resonance with re = 0, this condition is fulfilled for any k at the center of the
resonance, where the scattering length diverges. However, at a narrow resonance with re < 0
the condition requires a negative ares for k > 0. The mean square momentum in the Fermi
sea is 3/5× κ2

F , leading to a mean square relative momentum of 3/5× (40/46× κF )2. Using
this value for k2, and inserting re ≈ −2R∗ in the above resonance condition, we obtain
−1/(κF a) = 0.43. This represents an effective shift of the Feshbach resonance center, as we
average over all momenta of the Fermi sea [Ho11]. The magnitude of this shift agrees well
with the observed asymmetry. Moreover, we find that many features at our narrow resonance
appear to be shifted, e.g. the polaron-to-molecule crossing. However, the narrowness has
many more implications and cannot simply be reduced to this shift. We will come back to
this point in the context of the lifetime of the repulsive polaron, see Sec. 4.

The repulsive polaron peak is clearly visible up to −1/(κF a) ≈ −0.3 while the attractive
polaron peak vanishes already at −1/(κF a) ≈ 0.9, see Fig. 7.5b. The fading out of the
quasiparticle peak towards the strongly interacting regime approximately coincides with the
position where the quasiparticle branches merge into the MHC. This shows that the polaron
state is hardly observable as soon as it becomes degenerate with molecule-hole excitations.
The MHC is not strictly limited to the range from Em to Em − εF , as discussed in more
detail in Sec. 3. It extends below Em − εF because of finite temperature effects. It also
extends slightly above Em because of additional excitations in the spectral function of the
molecules [Sch11]. As a consequence, for finite temperature, the attractive polaron can
become degenerate with molecule-hole excitations for values of the interaction parameter
above the calculated polaron-to-molecule crossing. This explains that the observed sharp
peak is observed to disappear already at −1/(κF a) ≈ 0.9, which lies somewhat above the
zero-temperature polaron-to-molecule crossing predicted at 0.6.

It is interesting to consider the data analysis presented in Fig. 7.5b and c in relation to
the common method of extracting the quasiparticle residue Z from the spectral weight of the
narrow peak [Din01]. Close to resonance, we are in the linear response regime and our data
can be interpreted in terms of this method. Our data suggests that this method leads to a
significant underestimation of Z. For example at −1/(κF a) ≈ 0.9, where the narrow peak of
the attractive polaron vanishes, our theory still predicts Z ≈ 0.7. This underestimation is
consistent with the one reported in Ref. [Sch09b], see also related discussion in Ref. [Pun09].
A plausible explanation may be that such a method does not probe the polaron states alone,
but also the molecule-hole excitations, which are degenerate with the polaron state. Our
alternative method of measuring the residue via the Rabi frequency, as presented in the main
paper, offers the advantage of being much less affected by the molecule-hole contribution.
In fact, only the coherent part of the quasiparticle is expected to produce Rabi oscillations,
see Sec. 6.
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7.3.3 Molecule-hole continuum

The spectra presented in Fig. 7.2b of the main text reveal the MHC. This continuum arises
from processes where the rf field associates a 40K impurity and a 6Li atom out of the Fermi
sea to a molecule. Here we present a simple model for the spectral line shape, which allows
us to interpret the data up to −1/(κF a) ≈ −1, see Fig. 7.6.
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Figure 7.6: Molecule association spectra for different values of the interaction parameter.
The signal is the fraction of transferred atoms as a function of the rf detuning. The data
correspond to vertical cuts through Fig. 7.2b. The dashed line is the line shape model for zero
temperature and the solid line for finite temperature. The upper threshold of the theoretical
spectra corresponds to Em.

For modeling the line shape, we consider two-body processes in which the rf field asso-
ciates one 40K and one 6Li atom to a molecule. Higher-order processes, involving more than
two particles, are neglected in this model but are briefly discussed at the end of this section.
Let us first consider the association of 6Li and 40K with momenta pLi = pK = 0. This results
in a molecule at rest plus a Fermi sea with a hole in the center. The energy of this state
is determined by the binding energy of the molecule and by the interaction of the molecule
with the Fermi sea. It is given by Em and sets the onset of the MHC from the right (the
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top) in Fig. 7.6 (Fig. 7.2b). In general, 6Li and 40K have finite initial relative momentum
~k, leading to an initial relative kinetic energy in the center of mass frame Er = ~2k2/2mr.
The energy conservation of the association process is expressed in the Dirac δ function in
Eq. 7.3. As a consequence, the molecule spectrum extends downwards to energies below Em.
We now consider an ensemble of 40K and 6Li atoms. Our experimental conditions are well
approximated by a thermal cloud of 40K in a homogeneous Fermi sea of 6Li (see Methods).
The momentum distribution of 6Li is given by the Fermi-Dirac distribution fFD

Li (ELi), with
ELi = p2

Li/2mLi. The one of 40K is approximated by the Maxwell-Boltzmann distribution
fMB

K (EK), with EK = p2
K/2mK. The latter distribution does not change its momentum de-

pendence with position, thus, no integration over space is needed to obtain the spectral
response

S(∆) ∝
∫ ∫

d3pLi d3pK fFD
Li (ELi) fMB

K (EK) F(k) δ(−Em + Er + ∆), (7.3)

where F(k) is the Franck Condon overlap of the initial wavefunction with the molecule
wavefunction. In our case the interaction in the initial state is negligible and F(k), as
given in Ref. [Chi05], reduces to F(k) ∝ (Er/E

3
b )

1/2(1 + Er/Eb)
−2. The parameter Eb is

the binding energy of a molecule in vacuum at a resonance with finite effective range and
reads Eb = ~2/(2mra

∗2) with the parameter [Pet04a] a∗ = −re/(
√

1− 2re/a − 1). In the
calculation of F(k), we do not account for interactions with the Fermi sea. Because of this
approximation, we apply the model only for −1/(κF a) < −1. For fitting the model line
shapes to the experimental data, adjustable parameters are the individual heights of the
spectra and the center of the Feshbach resonance. The latter parameter is required to be the
same for all data sets in Fig. 7.6. Independently determined parameters are kBT/εF = 0.16
and εF = h × 37 kHz. The model (solid lines) reproduces our data remarkably well. It
allows us to pinpoint the resonance position to B0 = 154.719(2) G. This determination of
B0 relies on our theoretical model to calculate Em. To test this model dependence, we
replace Em simply by the binding energy of the molecule in vacuum plus the mean field
energy, considering the corresponding atom-dimer scattering length [Lev11]. Using this
simple model, the fit yields a resonance position that is 1mG higher, which shows that the
model dependence causes only a small systematic uncertainty. Moreover, the statistical fit
uncertainty and the field calibration uncertainty are about 1mG each.

For T = 0 and all other parameters unchanged, the model provides the dashed lines in
Fig. 7.6. The spectra show a sharp drop at ∆ = Em − (40/46) εF , which corresponds to the
association of an impurity at rest and a majority atom at the Fermi edge. In an equal-mass
mixture this process would occur at ∆ = Em − (1/2) εF . Thus, the width of the MHC in
the two-body approximation is much larger for a heavy impurity than it is for an equal-mass
impurity and it is even narrower for a light impurity.

The true zero temperature ground state is actually at the energy Em− εF , a molecule at
rest formed from a 40K atom at rest and a 6Li atom at the Fermi edge. However, to reach
this state, momentum conservation requires a higher-order process, i.e. the scattering of at
least one additional 6Li atom from and to the Fermi surface. Such processes are not included
in the model presented here, which only considers the direct association of two atoms by an
rf photon.
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In the strongly interacting regime the spectral function of the molecule shows additional
excitations above the molecular ground state [Sch11]. This leads to an extension of the MHC
spectral response above Em, of which we find clear indications in our data. The lower panel
in Fig. 7.6 shows finite signal above Em and the extension above Em is very evident in the
strongly interacting regime, see Fig. 7.2b.

7.3.4 Decay rate of the repulsive polarons

We analyse the decay of the repulsive polarons by assuming that they decay into well defined
attractive polarons or well-defined molecules. In this quasiparticle picture, the decay is
associated with the formation of a particle-hole pair in the Fermi sea to take up the released
energy. In this sense, the decay into the attractive polaron is a 2-body process and the decay
into the molecule is a 3-body process. We calculate the decay rate for these two channels
by including them into the polaron self energy using a pole expansion of the 40K propagator
writing G(k, ω) ' Z+/(~ω − E+ − ~2k2/(2mK)) + Z−/(~ω − E− − ~2k2/(2mK)) and a pole
expansion of the T-matrix writing T (k, ω) ' Zmg2/(~ω − (Em − εF ) − ~2k2/(2M)). Here,
Z± is the quasiparticle residue of the repulsive and attractive polaron respectively and Zm

the quasiparticle residue of the molecule. The factor g2 = 2π~4/(m2
ra
∗√1− 2re/a) is the

residue of the vacuum T-matrix for a general resonance. The details of this approach are
given in Refs. [Mas11, Bru10], the only difference being that here we include the effects
of the finite effective range. The imaginary part of the self energy gives the decay rate of
the wavefunction and we thus take twice the imaginary part to calculate the population
decay. The 2-body decay into the attractive polaron and an additional particle-hole pair is
calculated numerically to all orders in the T-matrix by inserting the pole expansion for the
40K propagator in the self energy in the ladder approximation. For the 3-body decay into a
molecule and an additional particle-hole pair, we include terms containing two 6Li holes in
the 40K self energy [Bru10], and an expansion to second order in the T-matrix relevant for
−1/(κF a) ¿ −1 yields

ΓPM ' 64κF a

45π3

Z3
+

m2
K

√
mLi

(
1 +

mLi

M

)3/2
(

~κF√
2(E+ − Em + εF )

)5
a

a∗
√

1− 2re/a∗
εF

~
. (7.4)

For simplicity, we have taken Zm = 1, which is an appropriate assumption for −1/(κF a) ¿
−1. The effect of the narrow resonance on the decay rate enters through the quasiparticle
residue Z+, the energies E+, E−, Em and directly through the effective range re. This decay
rate has the same a6 dependence as the three-body decay in vacuum in the limit of a broad
resonance derived in Ref. [Pet03]. The numerical prefactor however differs since we have
included the effects of the Fermi sea in a perturbative calculation.

The results for the decay rates of repulsive polarons are shown in Fig. 7.7. The ex-
perimental data agree well with the theoretical results obtained for our narrow resonance
(continuous lines) as already shown in Fig. 7.3 in the main text. For comparison, we also
show the decay rates one would obtain in the limit of a broad resonance (dashed lines).
We find that as magnitude of the effective range increases with respect to the interparticle
spacing, the dominant two-body decay is strongly suppressed. This suppression is mainly
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Figure 7.7: Decay rates of repulsive 40K polarons in a Fermi sea of 6Li atoms, shown as
a function of interaction strength (left) and of the energy of the repulsive polaron (right).
Blue and red lines represent the two- and three-body contributions, respectively, while data
points are the experimental findings as also shown in Fig. 3 of the main text. The results
for the moderately narrow resonance under study here (solid lines) is compared with the
theoretical results obtained for the universal limit of a very broad resonance (dashed lines).
The experimental values of E+ are obtained by interpolation of the narrow peak position
data ∆peak, see Fig. 7.5d.

due to a large reduction of the attractive polaron residue Z−. Instead, the weaker three-body
decay increases, which we attribute to the reduction of the polaron-molecule energy differ-
ence E+ −Em + εF . Taking both decay rates together, the decay rate is at least an order of
magnitude smaller at our narrow resonance as compared to the case of a broad resonance.
It is important to note that this strong suppression of the decay at a given −1/(κF a) cannot
be simply attributed to the effective resonance shift at our narrow Feshbach resonance as
discussed in Sec. 2. When taking this shift into account, a suppression factor of five to
ten remains. To highlight this point, we choose a representation that is independent of the
interaction parameter and that gives the dependence on the polaron energy, a direct mani-
festation of strong interactions. The right panel shows the same data and calculations as a
function of E+. Also for a given E+, the repulsive polaron at our narrow resonance turns
out to be much more stable than the repulsive polaron at a broad resonance.

7.3.5 Decay of repulsive polarons to molecules

The decay of the repulsive polarons, shown in Fig. 7.3 of the main text, is measured by
applying a special three-pulse scheme (see Methods). In this section we exploit the flexibility
of this scheme to study the decay to lower-lying energy states in more detail. At a given
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interaction strength −1/(κF a) = −0.9, we demonstrate that the repulsive polarons decay to
molecules by showing that an rf spectrum taken after decay perfectly matches a reference
spectrum of molecules.
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Figure 7.8: Decay of repulsive polarons to molecules at −1/(κF a) = −0.9. (a) The black
squares (red dots) show the spectrum right after (2 ms after) the repulsive polaron has been
populated. The blue diamonds show the dissociation spectrum of molecules for reference.
The signal is the fraction of atoms transferred from the interacting spin state |1〉 to the
noninteracting spin state |0〉. Note that the polaron peak at positive detuning is highly
saturated and thus its signal is not proportional to the number of polarons. (b) The rf energy
detuning is fixed to ∆ = −1.3 εF and the signal is recorded versus hold time. The error bars
indicate the statistical uncertainties derived from at least three individual measurements.

To populate the repulsive polaron branch, as done for the measurements of the decay rate,
we tune the energy of the first pulse to E+, corresponding to ∆ = 0.16 εF at −1/(κF a) =
−0.9. The pulse duration (tp = 0.06 ms) and the intensity are set to correspond to a π-pulse
in the noninteracting system. The second pulse removes the remaining non-transferred atoms
by transferring them to a third spin state. In contrast to the decay measurement presented
in the main text, we here use much more rf power for the third pulse to be able to efficiently
dissociate molecules. For this purpose, we set tp = 0.3 ms and the pulse area corresponds to
a 3π-pulse in the noninteracting system. By varying the rf detuning, we record spectra for
zero hold time (black squares) and for a hold time of 2 ms (red dots), see Fig. 7.8a. The peak
at small positive detuning shows the back-transfer of repulsive polarons. The corresponding
signal decreases with hold time, signalling the decay of the repulsive polaron. In addition,
a wide continuum in a range of negative detunings rises with increasing hold time. Such
a wide continuum involves coupling to high momentum states, signaling a short distance
between 40K and 6Li. To confirm that this continuum stems from molecules, we compare it
to a reference spectrum of the dissociation of molecules (blue diamonds). We find a perfect
match. To take such a reference spectrum, only the detuning of the first rf pulse is changed to
directly associate molecules in the MHC instead of populating the repulsive polaron branch.
We achieve a good association efficiency with ∆ = −0.54 εF and tp = 0.5 ms.
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To study the evolution of the molecule population, which is fed by the decay of the
repulsive polarons, we set the detuning of the third pulse to the peak of the molecule signal
at ∆ = −1.3 εF and record the signal as a function of the hold time, see Fig. 7.8b. A simple
exponential fit yields a rate of about 1ms−1=0.0043 εF /~, which is in good agreement with
the measured decay rate of the repulsive polaron at −1/(κF a) = −0.9. The finite signal at
zero hold time may have two origins. One contribution is some decay during the finite pulse
durations of the three pulses, which are not included in the hold time. Another contribution
may be the high momentum tail of the repulsive polarons as discussed in Ref. [Sch09b].

Note that we do not find any second sharp peak at negative detuning, which would
indicate the population of the attractive polaron branch. In case the repulsive polaron
decays to the attractive polaron, the absence of the attractive polaron peak implies a very
rapid subsequent decay of the attractive polaron to the MHC. Such a fast decay of the
attractive polaron to the MHC is consistent with the very small signal of the attractive
polaron peak throughout the regime of strong interaction as discussed in Sec. 2.

Let us briefly discuss the possible role of inelastic two-body relaxation in the 6Li -40K
mixture, which is energetically possible as 40K is not in the lowest spin state. This process
was identified in Ref. [Nai11] as a source of losses. However, this relaxation is about an order
of magnitude slower than the measured decay rate of the repulsive polaron and thus does
not affect our measurements.

7.3.6 Rabi oscillations and polaron quasiparticle residue

For high rf power, the signal is well beyond linear response and the 40K atoms exhibit coherent
Rabi oscillations between the spin states |0〉 and |1〉. In this regime the oscillations are so
fast, that the polaron decay plays a minor role and can be ignored to a first approximation.
The Rabi frequency depends on the matrix element of the rf probe between the initial state
|0〉 and the final state |1〉. Since the probe is homogenous in space, it does not change the
spatial part of the atomic wavefunction and it can be described by the operator [Mas08a]
R̂ ∝ Ω0

∑
q(â

†
1qâ0q + h.c.) where â†iq (âiq) creates (annihilates) a 40K atom with momentum

q in spin state i and Ω0 is the unperturbed Rabi frequency of the |0〉 to |1〉 transition in
the non-interacting case. Considering for simplicity an impurity at rest, the initial non-
interacting state is given by |I〉 = â†0q=0|FS〉 where |FS〉 is the 6Li Fermi sea. The final
polaronic state at zero momentum can be written as [Che06]

|F 〉 =
√

Zâ†1q=0|FS〉+
∑

q<~κF <p

φp,qâ
†
1q−pb̂†p b̂q|FS〉+ . . . (7.5)

where b̂†q (b̂q) creates (annihilates) a 6Li atom with momentum q. The second term contains a
Fermi sea with at least one particle-hole excitation and thus is orthogonal to an unperturbed
Fermi sea. Therefore the matrix element reduces to 〈F |R̂|I〉 =

√
Z Ω0 and we obtain the

Rabi frequency
Ω =

√
Z Ω0. (7.6)

We neglect the momentum dependence of the quasiparticle residue and do not perform a
thermal average over the initial states, which we expect to be a good approximation since
T ¿ εF /kB.
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Figure 7.9: Linear increase of the Rabi frequency Ω with the unperturbed Rabi frequency
Ω0. The left (right) panel shows the driving to the repulsive (attractive) polaron. The solid
lines are linear fits without offset and demonstrate the proportionality Ω ∝ Ω0.

In Fig. 7.9 we plot the observed Rabi frequency Ω as a function of the unperturbed Rabi
frequency Ω0. We find that the proportionality Ω ∝ Ω0 holds over a wide range of rf power.
The measurements presented in the main text, taken at Ω0 = 2π×6.5 kHz and 12.6 kHz, are
safely within this range.
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CHAPTER 8

ADDITIONAL PUBLICATIONS

Precision Measurements of Collective Oscillations in the BEC-BCS Crossover
A. Altmeyer, S. Riedl, C. Kohstall, M. J. Wright, R. Geursen, M. Bartenstein, C. Chin,
J. Hecker Denschlag, and R. Grimm
Phys. Rev. Lett. 98, 040401 (2007).

We report on precision measurements of the frequency of the radial compression mode in
a strongly interacting, optically trapped Fermi gas of 6Li atoms. Our results allow for a test
of theoretical predictions for the equation of state in the BEC-BCS crossover. We confirm
recent quantum Monte Carlo results and rule out simple mean-field BCS theory. Our results
show the long-sought beyond-mean-field effects in the strongly interacting Bose-Einstein
condensation (BEC) regime.

Dynamics of a strongly interacting Fermi gas: The radial quadrupole mode
A. Altmeyer, S. Riedl, M. J. Wright, C. Kohstall, J. Hecker Denschlag, and R. Grimm
Phys. Rev. A 76, 033610 (2007).

We report on measurements of an elementary surface mode in an ultracold, strongly inter-
acting Fermi gas of 6Li atoms. The radial quadrupole mode allows us to probe hydrodynamic
behavior in the crossover from Bose-Einstein condensation (BEC) to the Bardeen-Cooper-
Schrieffer (BCS) regime without being influenced by changes in the equation of state. We
examine the frequency and damping of this mode, along with its expansion dynamics. In
the unitarity limit and on the BEC side of the resonance, the observed frequencies agree
with standard hydrodynamic theory. However, on the BCS side of the crossover, a striking
downshift of the oscillation frequency is observed in the hydrodynamic regime as a precursor
to an abrupt transition to collisionless behavior; this indicates coupling of the oscillation to
fermionic pairs.
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Finite-temperature collective dynamics of a Fermi gas in the BEC-BCS crossover
M. J. Wright, S. Riedl, A. Altmeyer, C. Kohstall, E. R. Sánchez Guajardo, J. Hecker Den-
schlag, and R. Grimm
Phys. Rev. Lett. 99, 150403 (2007).

We report on experimental studies on the collective behavior of a strongly interacting
Fermi gas with tunable interactions and variable temperature. A scissors mode excitation in
an elliptical trap is used to characterize the dynamics of the quantum gas in terms of hydro-
dynamic or near-collisionless behavior. We obtain a crossover phase diagram for collisional
properties, showing a large region where a nonsuperfluid strongly interacting gas shows hy-
drodynamic behavior. In a narrow interaction regime on the BCS side of the crossover, we
find a novel temperature-dependent damping peak, suggesting a relation to the superfluid
phase transition.

Collective oscillations of a Fermi gas in the unitarity limit: Temperature effects
and the role of pair correlations
S. Riedl, E. R. Sánchez Guajardo, C. Kohstall, A. Altmeyer, M. J. Wright, J. Hecker Den-
schlag, R. Grimm, G. M. Bruun, and H. Smith
Phys. Rev. A 78, 053609 (2008).

We present detailed measurements of the frequency and damping of three different collec-
tive modes in an ultracold trapped Fermi gas of 6Li atoms with resonantly tuned interactions.
The measurements are carried out over a wide range of temperatures. We focus on the uni-
tarity limit, where the scattering length is much greater than all other relevant length scales.
The results are compared to theoretical calculations that take into account Pauli blocking
and pair correlations in the normal state above the critical temperature for superfluidity.
We show that these two effects nearly compensate each other and the behavior of the gas is
close to that of a classical gas.

Pairing-gap, pseudogap, and no-gap phases in the radio-frequency spectra of a
trapped unitary 6Li gas
P. Pieri, A. Perali, G. C. Strinati, S. Riedl, M. J. Wright, A. Altmeyer, C. Kohstall, E. R.
Sánchez Guajardo, J. Hecker Denschlag, and R. Grimm
Phys. Rev. A 84, 011608 (2011).

Radio frequency spectra of a trapped unitary 6Li gas are reported and analyzed in terms of
a theoretical approach that includes both final-state and trap effects. The different strength
of the final-state interaction across the trap is crucial for evidencing two main peaks asso-
ciated with two distinct phases residing in different trap regions. These are the pairing-gap
and pseudo-gap phases below the critical temperature Tc, which evolve into the pseudo-gap
and no-gap phases above Tc. In this way, a long standing puzzle about the interpretation of
rf spectra for 6Li in a trap is solved.
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