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Abstract

Ultracold quantum gases, once prepared and trapped, give a wealth of possibilities for
exploring various kinds of many-body systems. Selecting just two alkali metals, as in
this thesis, already opens up the possibility to study mixtures where the elements differ
in mass and in quantum statistics. Additionally, the presence of heteronuclear Fesh-
bach resonances provides tunability of the interspecies interactions and gives access
to the strongly interacting regime. Moreover, by realizing a population imbalance be-
tween the two species, the physics of quasiparticles in a Fermi sea, i.e. polaron physics,
can be studied.

This thesis describes experiments with tunable Bose-Fermi and Fermi-Fermi mix-
tures of lithium and potassium, with a special focus on phase separation, polarons,
and molecules. As a first insight, it shows how a 41K Bose-Einstein condensate can
be used to measure the temperature of a 6Li deeply degenerate Fermi gas. Then, the
thesis demonstrates the spatial phase separation that occurs for strong repulsion in
this double-degenerate Bose-Fermi mixture and quantifies the residual spatial overlap
between the two components by measuring three-body recombination losses. In a sec-
ond series of experiments, a 40K impurity interacting with a Li Fermi sea is studied
with frequency- and time-domain spectroscopy. The lifetime and formation dynam-
ics of polarons are measured for both attractive and repulsive interactions, as well as
for varying interaction strengths. Finally, the thesis describes experiments with an in-
teracting atom-dimer mixture. It shows that the mass imbalance between K and Li
influences the interactions between the K atoms and Li-K Feshbach molecules up to
the point where repulsion is turned into attraction. Furthermore, the lifetime of the
atom-dimer mixture close to the Feshbach resonance is characterized.

All experiments are compared to theoretical models and excellent agreement is
found. This illustrates how experimental studies of interacting ultracold quantum gases
provide benchmarks for theoretical models on quantum matter. Increasing our knowl-
edge of these many-body systems and their peculiar properties is important as similar
systems exist in a multitude of physics domains, and scientific insights lead to new
discoveries and can contribute to future technologies.
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Kurzfassung

Sobald Quantengase gekühlt und gefangen sind, bieten sie eine Vielzahl an Möglich-
keiten zur Erforschung verschiedener Arten vonVielteilchensystemen. Allein dieWahl
zweier verschiedener Sorten von Alkaliatomen, wie in dieser Arbeit beschrieben, er-
möglicht die Untersuchung vonMischungen, bestehend aus Elementenmit verschiede-
nerMasse oder unterschiedlicher Quantenstatistik. Darüber hinaus erlaubt die Existenz
heteronuklearer Feshbach-Resonanzen die Variation der Interspezies-Wechselwirkung
und den Zugang zum stark wechselwirkenden Regime. Außerdem ermöglicht die Rea-
lisierung eines Populationsungleichgewichts die Untersuchung von Quasiteilchen im
Fermisee, d.h. Polaronphysik.

DieseDissertation beschreibt Experimente an Fermi-Bose und Fermi-Fermi-Misch-
ungen, bestehend aus Lithium und Kalium mit durchstimmbarer Wechselwirkung. Im
Fokus der Arbeit stehen Phasenseparation, Polaronen und Moleküle. Der erste Teil
dieser Arbeit beschreibt wie ein Bose-Einstein-Kondensat aus 41K Atomen verwen-
det werden kann, um die Temperatur eines entarteten Fermigases bestehend aus 6Li
zu messen. Anschließend wird gezeigt, dass in Anwesenheit einer starken repulsiven
Wechselwirkung zwischen dieser doppelt entarteten Fermi-Bose-Mischung eine räum-
liche Phasenseparation auftritt und wie der verbleibende räumliche Überlapp zwischen
den beiden Komponenten durch Messung von Drei-Körper-Rekombinationsverlusten
beschrieben werden kann. In einer zweiten Gruppe von Experimenten werden 40K-
Minoritätsteilchen, welche mit einem Li-Fermisee wechselwirken, mittels Spektro-
skopie im Frequenzraum und in der Zeitdomäne untersucht. Damit werden sowohl
die Lebensdauer als auch die Dynamik der Bildung von Polaronen für starke und
schwache, sowie anziehende und abstoßende Wechselwirkungen gemessen. Abschlie-
ßend beschreibt diese Dissertation Experimente mit wechselwirkenden Atom-Dimer-
Mischungen. Es wird gezeigt, dass die ungleichen Massen von K und Li die Wech-
selwirkung zwischen den K-Atomen und Li-K-Feshbachmolekülen stark beeinflussen.
Die Folgen reichen so weit, dass aus einer ursprünglich abstoßenden Wechselwirkung
eine anziehende wird. Außerdem wird die Lebensdauer der Atom-Dimer-Mischungen
in der Nähe der Feshbach-Resonanz charakterisiert.

Der Vergleich aller unserer Experimente mit theoretischen Modellen liefert eine
vortreffliche Übereinstimmung. Dies zeigt, wie experimentelle Studien mit wechsel-
wirkenden ultrakalten Quantengasen nützliche Vergleiche mit theoretischen Modelle
der Quantenmaterie ermöglichen. Unser Wissen über diese Vielteilchensysteme und
ihre besonderen Eigenschaften zu erweitern, ist insofern wichtig, als dass ähnliche
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Systeme in einer Vielzahl von physikalischen Bereichen existieren und die neugewon-
nenen Erkenntnisse nicht nur zum Forstschritt in der Wissenschaft, sondern auch zur
Entwicklung zukünftiger Technologien beitragen können.

- x -



Contents

1 Introduction 1

2 Ultracold Mixtures and Research Topics 5
2.1 Degenerate Bose and Fermi gases . . . . . . . . . . . . . . . . . . . 5
2.2 Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Ultracold Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Bose-Bose Mixtures . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Fermi-Fermi Mixtures . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Bose-Fermi Mixtures . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Impurity Physics with Ultracold Atoms . . . . . . . . . . . . . . . . 19
2.5 Thesis Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3 Introduction to the Experiments 27

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Feshbach Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Publication: Thermometry of a Deeply Degenerate Fermi Gas with a
Bose-Einstein Condensate 35
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Bosons as a Fermi Gas Thermometer . . . . . . . . . . . . . . . . . . 38

4.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Case of the 6Li-41K Mixture . . . . . . . . . . . . . . . . . . 39

4.3 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Preparation of the 6Li-41K Mixture . . . . . . . . . . . . . . 40
4.3.2 Trap for Deep Evaporative Cooling . . . . . . . . . . . . . . 41
4.3.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Cooling and Thermometry Results . . . . . . . . . . . . . . . . . . . 45
4.4.1 Crossover from Evaporation to Spilling . . . . . . . . . . . . 45
4.4.2 Condensate Fraction and Equilibrium Temperatures . . . . . . 47
4.4.3 Thermalization and Heating Dynamics . . . . . . . . . . . . 51
4.4.4 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

- xi -



Contents

4.6 Appendix: ‘Magic’ Levitation Trap . . . . . . . . . . . . . . . . . . 56
5 Publication: Probing the Interface of a Phase-Separated State in a Re-

pulsive Bose-Fermi Mixture 59
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 General Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Experimental Preparation and Results . . . . . . . . . . . . . . . . . 64
5.4 Numerical Calculation . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6.1 Preparation of the 6Li-41K Mixture . . . . . . . . . . . . . . 69
5.6.2 Feshbach Resonance Parameters . . . . . . . . . . . . . . . . 71
5.6.3 Measurement Procedures and Data Analysis . . . . . . . . . . 79
5.6.4 Theoretical Model and Numerical Solution . . . . . . . . . . 87
5.6.5 Systematic Errors in Theory and Experiment . . . . . . . . . 91

6 Publication: Decoherence of Impurities in a Fermi Sea of Ultracold Atoms 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Experimental Method and Results . . . . . . . . . . . . . . . . . . . 97
6.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4 Temperature Dependence . . . . . . . . . . . . . . . . . . . . . . . . 103
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6.1 Optical Trap Setup . . . . . . . . . . . . . . . . . . . . . . . 104
6.6.2 Parameters of the 154.7G Feshbach Resonance . . . . . . . . 106
6.6.3 Light Shift of the Feshbach Resonance . . . . . . . . . . . . 109
6.6.4 Determination of the Li Atom Number . . . . . . . . . . . . 113
6.6.5 Absorption Imaging Near 154.7G . . . . . . . . . . . . . . . 121
6.6.6 Heating Due to Molecule Formation . . . . . . . . . . . . . . 121

7 Publication: Ultrafast Many-body Interferometry of Impurities Cou-
pled to a Fermi Sea 125

8 Publication: Observation of a StrongAtom-DimerAttraction in aMass-
Imbalanced Fermi-Fermi Mixture 127
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3 Experimental Preparation and Method . . . . . . . . . . . . . . . . . 131
8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 132

- xii -



Contents

8.5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.1 Light Shift of the Feshbach Resonance . . . . . . . . . . . . 136
8.6.2 Preparation of the Atom-Dimer Mixture . . . . . . . . . . . . 138
8.6.3 Determination of the Temperatures and the Densities . . . . . 140
8.6.4 Importance of Higher Partial Wave Scattering and Compari-

son to the Equal-Mass Case . . . . . . . . . . . . . . . . . . 143
9 Publication: Lifetime of Feshbach dimers in a Fermi-Fermi mixture of

6Li and 40K 147
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.2 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . 149

9.2.1 Feshbach resonances . . . . . . . . . . . . . . . . . . . . . . 149
9.2.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 150
9.2.3 Dimer detection and dimer-temperature determination . . . . 152

9.3 Measurements of Dimer Decay . . . . . . . . . . . . . . . . . . . . . 153
9.3.1 Spontaneous dissociation . . . . . . . . . . . . . . . . . . . . 153
9.3.2 Dimer-dimer collisions . . . . . . . . . . . . . . . . . . . . . 155
9.3.3 Atom-dimer collisions . . . . . . . . . . . . . . . . . . . . . 158
9.3.4 Summary of experimental results and comparison with previ-

ous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
9.4 Theoretical Analysis of Relaxation Rates . . . . . . . . . . . . . . . . 161

9.4.1 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . 162
9.4.2 Comparison with experimental data . . . . . . . . . . . . . . 165

9.5 Other potential Fermi-Fermi systems . . . . . . . . . . . . . . . . . . 168
9.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 171
9.7 Appendix: Theoretical approach to collisional decay . . . . . . . . . 172

A Appendix: Cooling and Trapping of 41K 177
A.1 Optical Transitions and Spin States . . . . . . . . . . . . . . . . . . . 177
A.2 MOT and CMOT Properties . . . . . . . . . . . . . . . . . . . . . . 179
A.3 Spin Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.4 Laser Setup and Frequencies . . . . . . . . . . . . . . . . . . . . . . 185

B Appendix: Feshbach Resonances in Ultracold Mixtures of 41K and 6Li 189

Bibliography 201

Acknowledgements 225

- xiii -



- xiv -



1
CHAPTER1

Introduction

Understanding complex states of matter and their properties is of essential importance
for the science of today and the technologies of tomorrow. It led us from the first
computer, which barely fitted into a single room, to the powerful pocket-size versions
we carry around each day. Facilitated by a better fundamental understanding of semi-
conductor materials and their functionality, this strong minimization of the electronics
was accompanied by an increase in computational power and decrease in manufactur-
ing costs. With the electrical circuits down to the scale of a few atoms (10−9m), the
laws of quantum mechanics come more and more into play. Shifting from the classical
to the quantum world there is a lot to explore and learn about matter whose peculiar
properties can only be explained by quantum physics, so-called quantum matter. Just
as with the first computer, it is hard to envision where studying quantum matter will
lead us, but the potential is remarkable. Not only in the field of electronics, but also
in the fields of metrology, sensors, computers, cryptography, and networks, quantum
technologies and corresponding applications are emerging, using to their benefit the
effects of quantum physics and the insights gained from fundamental research. This
thesis is about a particular type of quantum matter, namely mixtures of ultracold quan-
tum gases of neutral atoms. It describes the experiments performed with two different
mixtures and the insights on interacting quantum matter derived from these studies.

To understand quantummatter, it is important to look into the interactions between
particles and the laws of quantummechanics that govern them. One interesting concept
is the description of matter as both particles and waves — the wave-particle duality.
The wavelength in relation to the phenomenon observed indicates which interpreta-
tion is easier to grasp. For instance, a gas of atoms is described as a gas of particles
when the distance between the atoms is relatively large. However, when this distance
is comparable to the length of the waves that describe the atoms, the physics is better
understood by representing the atoms as waves. In that case the gas of atoms can be
seen as a gas of overlapping waves and quantum statistics comes into play. The gas is
said to be degenerate and the atoms will form either a degenerate Fermi gas (DFG) or
a Bose-Einstein condensate (BEC). A BEC is formed when the atoms are bosons and
a DFG when they are fermions. Bosons and fermions are the two classes of particles
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that Nature knows. Fermions are the building blocks of matter, e.g. electrons, protons
and neutrons, while bosons are mostly associated with the force-carrying particles, e.g.
photons, gluons and Higgs bosons. Combining an even (uneven) number of fermions
results in a bosonic (fermionic) composite particle and atoms can therefore be either
one of the two classes. A degenerate atomic gas is a prime example of a many-body
system that shows quantum behavior. It is interesting to study, since quantum phe-
nomena closely related to a BEC lie at the basis of the operation of a laser and the
explanation of frictionless flow, i.e. superfluidity.

The most commonly known fermionic many-body systems are electrons in a metal
or semiconductor. The interactions between the electrons, especially the pair forma-
tion, are important for understanding superconductivity, one of the intriguing quantum
phenomena visible in materials. Magnetic resonance imaging (MRI) in hospitals and
superconducting power lines are examples of applications already available today be-
cause of the discovery of this feature. In a superconductor, below a certain temperature,
the electrons flow without resistance and, in contrast to normal conductors, no energy
is lost when a current is applied. Explaining why superconductivity is possible in only
a few materials and why it is limited to temperatures typically below -200◦C, is one of
the major theoretical challenges for condensed matter physicists nowadays. Ideally, a
better understanding of this phenomenon would create materials that show supercon-
ductivity at room temperature, which enables a wealth of applications. For instance, it
would speed-up the development of high-speed "levitating" trains and a superconduct-
ing power grid, which could save us a lot of energy. By studying mixtures of fermionic
quantum gases, more insight into the superconducting phenomenon and into quantum
matter in general can be obtained [Cal18].

A variety of other systemswould benefit from increasing our knowledge of interact-
ing quantummatter. Quantummany-body systems exist everywhere in Nature and can
be found in a multitude of physics domains, ranging from high-energy to condensed-
matter and nuclear physics. Besides electrons in semiconductors, other examples are
neutron stars, white dwarfs, atomic nuclei, and quark-gluon plasmas. The latter is a
state of matter in quantum chromodynamics. Studying these quantum many-body sys-
tems by themselves is experimentally and theoretically challenging. Neutron stars and
white dwarfs are at astronomical distances, while the quantum phenomena of electrons
in semiconductors happen on femto second time scales (10−15 s), which is at the limit
of what one can observe with current methods. Moreover, an exact numerical sim-
ulation of these many-particle systems is difficult. The computational power needed
to give a microscopic theoretical description including quantum mechanics increases
exponentially with the number of particles involved. This large amount of degrees of
freedom, which is exploited in quantum computation, limits the possibilities of theo-
rists as quantum computers are not yet available for them. Furthermore, it is hard to
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test the validity of theoretical models that describe strongly interacting matter. This is
because in the limit of strong interactions, most theories are no longer exact and rely
on numerical approximations that need to be benchmarked by experiments.

Fortunately, as long as the underlying equations are the same, the quantum physics
of these complex systems can be experimentally simulated by studying another well-
controlled system that is accessible in a laboratory [Fey82]. This so-called quantum
simulation is one of the major drives behind the research with ultracold quantum
gases [Blo12]. For example, although the overall behavior and the forces involved
are different, a core element in the above mentioned systems is the interacting many-
body ensemble of fermions. A cloud of electrons in a metal can be described as a
gas of charged fermionic particles (electrons) that interact via Coulomb interaction
in the presence of a periodic lattice. The interior of a neutron star has a relatively
low density region of neutron matter (fermions) which is expected to be similar to a
strongly interacting two-component Fermi gas [Gez08, Sed18]. In white dwarfs, the
star is prevented from collapsing under its own gravity by the Fermi pressure, a prop-
erty associated with a many-body system of fermions. Furthermore, a nucleus can
be described as a system of fermions held together by nuclear forces [Cal18], while
the theoretical description of a quark-gluon plasma is based on interacting fermions
with the interactions given by the color force [Ada12]. The universality of the physics
involved is remarkable as the common factor in all of these systems is an interacting
fermionic many-body system [Gio08]. Therefore, creating, probing, and studying a
quantum gas of interacting fermionic neutral atoms provides a test bed to simulate the
universal physics present in these systems [Blo08]. Some of the insights obtained can
also be extended to cosmology [Hun13] or when considering pair formation to the
chemistry of cold molecules [Boh17].

Quantum matter and its properties can be simulated and studied with ultracold
quantum gases [Blo08, Tör14, Zwe12]. These well-controlled many-body ensembles
of neutral atoms are created in an ultra-high vacuum setup. The gas has a temperature
of a few hundreds of nanokelvin, which is one billionth of a degree above absolute zero
(-273,15 ◦C). At these ultracold temperatures, the effects of quantum mechanics can
be probed and the gas forms a BEC or DFG. The atoms are trapped using laser light
and magnetic fields which also control the external and internal degrees of freedom of
the gas. Moreover the interactions between the atoms can be tuned by changing the
magnetic field thanks to the occurrence of Feshbach resonances [Chi10]. By exploit-
ing this phenomenon, strongly interacting gases can be created and pair formation can
be studied both for repulsive and attractive interactions. Both fermionic and bosonic
ensembles as well as mixtures thereof can be studied. Mixtures are especially impor-
tant when trying to study interactions in a fermionic many-body system. At ultracold
temperatures, single component Fermi gases can not interact because of Pauli’s exclu-
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sion principle, which states that identical fermions can not occupy the same quantum
state. Therefore, only a mixture of different fermions will show tunable interactions.
The high degree of experimental control and the possibility to tune the interactions
between the atoms are the core reasons why ultracold quantum gases can be used as
quantum simulators. Experiments on ultracold quantum gases are a test bed for find-
ing new states of quantum matter and for improving our understanding and theoretical
description of complex many-body systems.

This thesis describes the experimental research with mixtures of ultracold quantum
gases performed in theFermionicLithium (Bosonic)Kalium1 lab, in short FeLi(Bo)Kx,
at the Institute of Quantum Optics and Quantum Information in Innsbruck. The mix-
tures consist of fermionic lithium (6Li) and either bosonic potassium (41K) or fermionic
potassium (40K), which results in either a Bose-Fermi or a Fermi-Fermi mixture. The
interaction between the two species can be tuned and this gives access to the strongly
interacting regime. The research resulted in six publications, which can be found in
Chap. 4-9. Among the research highlights are the observation of a spatial phase sep-
aration between a BEC and the DFG, when tuning the repulsive interaction between
them. This observation is similar to what one observes when trying to mix water and
oil; they won’t mix. However, in our case the separation is a quantum effect. An-
other highlight are the measurements with a DFG of lithium that is interacting with
a small amount of K, an impurity. It is known that the impurity dresses itself with
the environment and forms a so-called polaron, a quasiparticle which can be described
as an entity of its own and we studied the lifetime and formation of this polaron. The
third highlight is the observation that the mass-imbalance between K and Li influences
the interactions between atoms and Li-K molecules up to the point where repulsion is
turned into attraction. Phase separation, polarons, and molecules are the main themes
of this thesis. A more in depth overview of the research topics can found in the next
chapter (Sec. 2.5), together with an overview of the field of ultracold quantum mix-
tures. This is followed by a brief account of to the FeLi(Bo)Kx experimental details,
before presenting the publications.

The research presented in this thesis shows the large versatility of two-species ul-
tracold quantum gas experiments and how these type of experiments contribute to our
understanding of various kinds of strongly interacting quantum matter. Many-body
systems are ubiquitous in Nature, yet the universality in their building blocks enables
us to simulate and study them with ultracold quantum gases. It is a beauty of Na-
ture that such universality exists and an ingenuity of human kind that the technologies
are available to create, control and manipulate quantum simulators such as ultracold
quantum gases.

1Kalium is the German name for potassium
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CHAPTER2

Ultracold Mixtures and
Research Topics

The field of ultracold quantum gases is an important and active subfield of Atomic,
Molecular and Optical (AMO) physics. It researches quantum many-body physics and
the many-body systems of interest are dilute gases of neutral atoms, in contrast to the
dense liquids or solids in solid-state and condensedmatter physics. However, analogies
between both fields allow for quantum simulation of condensed matter with ultracold
quantum gases [Blo12] and this is one of the major drives behind the research field.

In this thesis experiments with tunable Bose-Fermi and Fermi-Fermi mixtures are
presented and the aim of this Chapter is to give an overview of the research field and
discuss the research topics addressed in this thesis. After introducing degenerate Bose
and Fermi gases (Sec. 2.1), I will give a brief account of the history of the field, focus-
ing on experimental achievements (Sec. 2.2). In Sec. 2.3, I will highlight the research
performed with ultracold mixtures followed by a discussion of impurity physics in
the context of ultracold atoms (Sec. 2.4). The Chapter is concluded by describing the
research topics of this thesis (Sec. 2.5).

2.1 Degenerate Bose and Fermi gases

Interacting atomic gases show interesting quantum behavior, which is explored in the
field of ultracold quantum gases. In this Section I will discuss the distinction be-
tween Fermi and Bose gases and what the requirements for such gases are to reach
the quantum-degenerate regime. For an introduction into the making of an ultracold
gas, Ref. [Jer14] is a good starting point. For more details on the properties of ul-
tracold quantum gases, especially in harmonic traps, the excellent reviews on Fermi
gases [Ing08, Gio08, Zwe12, Tur12] and Bose gases [Ket99] can be consulted.

Ultracold quantum gases can be divided into two types based on the Fermi or Bose
quantum statistics that describes their constituents. This division is unambiguous in
nature and every elementary or composite particle is either a fermion or a boson. Ex-
amples of bosons are photons and phonons, where as commonly known fermions are
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electrons, protons and neutrons. The distinction between the two classes is made by
a property called spin. When this quantized intrinsic angular momentum is an inte-
ger value, the particle is a boson and follows Bose-Einstein statistics. For half-integer
values the particle is a fermion and follows Fermi-Dirac statistics. Combining two
fermions into a pair creates a composite bosonic particle and therefore, atoms are ei-
ther fermions or bosons. Due to the neutral charge of an atom the number of protons
and the number of electrons is equal, leaving the number of neutrons to dictate whether
the atom is bosonic (even number) or fermionic (odd number). Different isotopes of
the same element can thus have different quantum statistics.

The distinction of whether a quantum gas consists of bosons or fermions is impor-
tant when the quantum-degenerate regime is probed. In classical gases, each particle
is distinct and interchanging two particles leads to a different system. In the quantum-
degenerate regime, the particles are identical and indistinguishable; the individuality
of the particles is lost. The gas has reached quantum degeneracy and the macroscopic
behavior of this many-body system is governed by its particle statistics. The wavefunc-
tion of a many-body system of bosons is symmetric under the exchange of particles,
while that of fermions is antisymmetric. For fermions, this results in Pauli’s exclusion
principle, where no two identical fermions can occupy the same quantum state. Thus a
system ofN identical fermions will occupyN different quantum states. For tempera-
tures close to zero, these fermions fill the energy levels up from the lowest level to the
Fermi energy and form a degenerate Fermi gas (DFG). The energy of the highest filled
quantum state, the Fermi energy, depends on the number of fermions in the system.
Associated with the Fermi energy is the Fermi pressure and this pressure prevents the
Fermi gas inside of neutron stars and white dwarfs from collapsing under its own grav-
ity. On the contrary, all atoms in a system ofN identical bosons can occupy the same
quantum state. Moreover, the occupation of the same state is actually favored. When
N bosons occupy the same state, the probability to get an additional boson in that state
is enhanced by a factor of (N+1). Thus, for temperatures close to zero, a macroscopic
occupation of a single quantum state takes place, the so-called Bose-Einstein conden-
sate (BEC) is formed. This macroscopic behavior relies on the microscopic properties
of the particles and lies at the foundation of phenomena such as lasers, superfluidity
and superconductivity.

To reach quantum degeneracy with atomic gases and observe a DFG or a BEC, it
is important to compare the length scales involved. Two length scales should be con-
sidered when discussing a non-interacting gas and a third one if interactions come into
play. First, there is the mean distance between particles d = n−1∕3, which depends
on the spatial density n. An ultracold gas typically has densities of about 1019m−3,
which corresponds to a spacing of a few hundreds of nanometers between the particles.
Second, there is the temperature of the gas, or better said the de Broglie wavelength
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of the particles. This wavelength characterizes the wave nature of particles in context
of the wave-particle duality. This length scale changes with temperature T according
to its definition �T =

√

2�ℏ2∕mkBT , where ℏ is the reduced Planck constant, m the
mass of the particle and kB the Boltzmann constant. A non-interacting quantum gas
becomes degenerate when the interparticle spacing between atoms is smaller then the
thermal de Broglie wavelength (d ≤ �T ), which is equivalent to a phase-space den-
sity d−3�3T > 1. At these temperatures the waves that describe each particle overlap,
interfere, and the distinction between individual waves is lost. At the typical densities
of an ultracold gas, the temperatures required to obtain degeneracy are around a few
hundred of nanokelvins. Of course increasing the density of the gas would give less
constrains on the temperature, but this shortens the lifetime of the gas and thus the
measurement time of an experiment.

The quantum gas discussed so far is a metastable state of matter. It can be created
by confining a gas in a wall-free trap such that nucleation on surfaces, which triggers
the phase transition into a solid, is prevented. In these traps the lifetime of the gas is
determined by two- and three-body loss processes. Through collisions the particles
can gain enough kinetic energy to leave the trap and this gives an upper bound on the
densities that quantum gases can have. The rate of three-body recombination, where
three atoms collide and form a bound molecule and a free atom that carries away the
binding energy, scales as the density cubed. It is this inelastic loss process that drives
the transition towards chemical equilibrium. A second constraint on the density comes
from the elastic scattering between the particles, which enables them to rethermalize
and reach a kinetic equilibrium. If the density is too low, collisions between particles
take a long time to occur and thermalization might not happen within the lifetime of the
gas. These density constrains leads us back to the typical densities of about 1019m−3

most commonly seen in experiments with ultracold gases.
For an interacting gas a third length scale comes into play, the range of the atom-

atom interaction r0. The particles are in the gas phase (d ≫ r0) and only interact
pairwise during collisions. The interactions between particles stems from an induced
electric dipole moment and this second order electric dipole-dipole interaction, more
often called van der Waals interaction, is short-ranged and isotropic. Additionally,
many ground-state atoms have a permanent magnetic dipolar moment, which leads to
a long-range anisotropic dipole-dipole interaction. However, for alkali atoms this type
of interaction is roughly two orders of magnitude weaker than the induced van der
Waals interaction. Elements like erbium, dysprosium and chromium, for instance, do
have a strong magnetic dipolar moment and these systems, along with polar molecules
or Rydberg atoms, are used to study long-range dipolar physics. Here, we focus on
alkali atoms where, for low temperatures, r0 is given by the s-wave scattering length
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parameter a.
In an interacting ultracold quantum gas, the effects of quantum mechanics can be

seen once the temperature is cold enough that the thermal fluctuations no longer mask
the quantum effects. Quantum mechanics comes into play when r0 or d is smaller than
�T . For high temperatures, in the regime of �T ≪ r0 ≪ d, the system is described as
a classical gas. For colder temperatures, when the s-wave scattering picture applies,
the collisions between particles are affected by quantum mechanics once a ≪ �T ≪ d
and collisions require explicit quantum mechanical treatment. Quantum degeneracy is
obtained for a ≪ d < �T and the system can be described as a weakly interacting BEC
or DFG within the mean-field approximation. By tuning the interaction in an ultracold
quantum gas, one can also reach the strongly interacting regime where d < a < �T .Here, the description of the degenerate many-body system as a single macroscopic
wavefunction fails and rich physics and complex quantum phases are expected.

2.2 Historical Review

The history of the field of ultracold quantum gases is marked by the year 1995. At that
time, almost 70 years after their initial prediction, the first degenerate gases, namely
Bose-Einstein condensates, were observed [And95, Dav95]. The concept of a BEC
dates back to the 1920’s, when Bose postulated his Bose statistics for photons [Bos24]
and Einstein extended this to non-interacting atoms [Ein24, Ein25]. This Bose-Einstein
statistics predicts that for low temperatures a large fraction of atoms would occupy the
lowest energy state. London and Tisza [Lon38, Tis38] pointed out that the concept
of condensation is actually quantum behavior on a macroscopic size-scale and could
be an underlying mechanism of superfluidity in liquid helium. Shared between laser
light1, superconductivity2, and superfluidity3, the remarkable behavior of a macro-
scopic occupation of one single quantum state motivated the pursuit of realizing a
BEC in a gas [Cor02]. Although spin-polarized hydrogen, which remains a gas down
to zero temperature [Stw76], seemed the prime candidate, it were gases of rubidium
and sodium that showed this new state of matter. Both the characteristic signatures of
a bimodal density distribution and an anisotropic expansion were observed. In 2001,
E. A. Cornell, W. Ketterle and C. E. Wieman received the Nobel Prize for their obser-
vations of a BEC [Cor02, Ket02].

It is not straightforward to create a gas of atoms cold enough to see BEC formation
and many studies preceded the discovery of the BEC. Creating a trap without walls is

1The Nobel Prize in Physics 1964
2The Nobel Prize in Physics 1913, 1962, 1972, 1973, 1987, 2003
3The Nobel Prize in Physics 1996, 2003
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essential for creating a degenerate gas, as nucleation on material surfaces causes the
gases to condense into a liquid and/or freeze into a solid when cooled down. The de-
velopment of the laser in the late 1960s and the studies of atom-light interaction that
followed, led to the idea that laser light could be used for cooling down as well as trap-
ping atoms in ultra-high vacuum environments. Techniques such as Magneto-Optical
Traps (MOTs) and Zeeman slowers were invented, most of which are still at the basis of
any ultracold quantum gas experiment today4. In 1997, S. Chu, C. Cohen-Tannoudji
and W. D. Phillips received the Nobel Prize for the development of these powerful
methods [Chu98, CT98, Phi98]. Realizing that these techniques made it possible to
keep a gas of atoms long enough in the gas phase to allow for condensation, was an
important step for BEC creation. To make the first quantum gas, the technologies of
laser cooling and trapping were used as a first cooling step to reach the mircokelvin
temperature range. This was followed by evaporative cooling [Ket96] and degeneracy
was reached.

With a cold BEC at hand, the properties of this macroscopic matter wave could
be studied [Ing99]. Some key experiments were, e.g. collective excitations [Jin96,
Mew96], the interference between two BECs [And97], the demonstration of an atom
laser [Blo99], and the creation of vortices as a direct evidence for superfluidity [Mat99,
Mad00, AS01]. Over the years, the cooling techniques developed further and BECs
have now been demonstrated in thirteen chemical elements, i.e. H [Fri98], metastable
He [Rob01, PDS01], Na [Dav95], Li [Bra95, Bra97], K [Mod01], Rb [And95],
Cs [Web03a], Ca [Kra09], Sr [Ste09,Mar09, Ste10], Cr [Gri05], Dy [Lu11], Er [Aik12],
and Yb [Tak03, Fuk07a, Fuk09]. This led to an incredible amount of experiments on
single-component BECs as well as on multicomponent BECs. A special case of the
latter are the so-called called spinor condensates, where multiple spin states coexist
and in which both superfluidity and magnetic order can be investigated [SK13].

With the field of ultracold bosonic quantum gases growing, the eyes turned to-
wards fermions, the other type of particles. The Fermi-Dirac statistics, as derived by
Fermi and Dirac separately [Fer26, Dir26], describes how fermions at low tempera-
tures form a degenerate Fermi gas. Because of the Pauli exclusion principle5 [Pau46],
fermions can not occupy the same quantum state, in contrast to bosons. As a conse-
quence identical fermions must collide in odd partial waves and thus at low temper-
atures, where collisions are described by s-waves only, no collisions happen between
identical fermions6. Therefore either a mixture of different internal spin states or of

4An introduction into laser cooling and trapping is given in Ref. [Met99]
5The Nobel Prize in Physics 1945
6This is the case for alkali atoms. However, for dipolar gases like Cr, Dy, and Er, where the dipole-

dipole interaction plays an important, single-component Fermi gases can be evaporatively cooled as the
collisions are not restricted to the s-wave regime for ultracold temperatures [Aik14].
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different atoms was needed to cool a Fermi gas to quantum degeneracy.
A couple of years after the first BEC, Fermi degeneracy was achieved by cool-

ing a spin mixture of fermionic potassium in 1999 [DeM99] and in 2001 through
sympathetic cooling fermionic lithium in a mixture with its bosonic isotope [Sch01a,
Tru01]. The latter experiments also showed the first simultaneous quantum degeneracy
of bosonic and fermionic gases. Most of the early work on Fermi gases was done with
6Li and 40K, but gradually more fermions were cooled. To date, Fermi degeneracy
has been demonstrated for isotopes of eight chemical elements, i.e. He [McN06], Li
[Tru01, Sch01a], K [DeM99], Cr [Nay15], Sr [DeS10, Tey10], Dy [Lu12], Er [Aik14],
and Yb [Fuk07b]. Certain phenomena are still obscured by temperature and consider-
able effort is made to decrease the degeneracy of Fermi gases. For example, for lithium
and potassium, gray-molasses cooling on the D1 line is now realized [Fer12, Gri13,
Bur14a, Sie15], improving the starting conditions before evaporative cooling of the
gas.

Especially once Feshbach resonances were discovered [Cou98, Ino98], the pos-
sibilities of studies with bosonic and fermionic quantum gases and mixtures thereof
became numerous. A Feshbach resonance (FR) occurs when a molecular bound state
of almost no energy couples resonantly to the free state of two colliding atoms. The
difference in the magnetic moment between those two states, can be used to tune the
states in and out of resonance by changing the magnetic field. On the repulsive side
of a FR, a weakly bound state exists and this allows the creation of weakly bound
pairs [Köh06]. Feshbach resonances can occur between atoms in the same spin state,
in different spin states and between spin states of different elements. Due to a FR, the
interaction between atoms can be tuned from weak to strong and from attractive to
repulsive. The lifetime of a gas with strong interactions is limited by three-body re-
combination, and often atom loss measurements are used to characterize FRs. These
FRs were first observed in a BEC of sodium [Ino98] through atom loss measurements
and in a rubidium gas [Cou98] by photoassociation spectroscopy. For fermionic gases
the first FRs were seen in 40K [Lof02] and 6Li [O’H02], while the first heteronuclear
FR, was observed in 7Li-23Na [Sta04], followed by the Fermi-Bose mixture of 40K-
87Rb [Ino04].

Feshbach resonances are an incredibly useful phenomenon and soon became a
workhorse in the field [Chi10]. They allow experimentalists to control the two-body
interactions between particles by tuning a magnetic field. Feshbach resonances were
used to enhance evaporative cooling and many elements reached degeneracy through
their use. With FRs, strongly interacting many-body systems can be studied and uni-
versal physics can be explored. A prime example is the observation of the Efimov ef-
fect [Kra06] and the subsequent study of this universal few-body physics phenomenon
in many gases trough measurements of three-body recombination [Gre10, Fer11].
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Another example of key experiments with FRs in bose gases, is the demonstration
of beyond mean-field effects in a BEC. When the scattering length is smaller than the
interparticle spacing, a BEC can be described by the Gross-Pitaevskii equation, which
takes interactions into account via a mean-field potential [Dal99]. To go beyond this
description, a FR can be used to increase the interactions between the bosons. How-
ever, the limitations due to the fast inelastic decay of a Bose gas close to a FR [Cor00]
have to be overcome and in 2008 beyond-mean-field behavior in an interacting atomic
Bose gas was finally seen [Pap08a]7. Furthermore, FRs in Bose gases enable the study
of non-interacting condensates by tuning the scattering length to zero, the study of
phase separation for strong attractive interactions [Chi10] and the study of strongly
correlated Bose gases [Che16].

Fermi gases are remarkably stable near s-wave FRs due to a Pauli suppression
effect [Cub03, Joc03b, Reg04a, Pet04b, Pet05b, Pet05a]. For low temperatures, only
s-wave collisions take place and these only happen between different spin states. p-
wave FRs in the same fermionic spin state have also been observed and they show
significantly more loss than their s-wave counterparts [Reg03, Zha04, Sch05]. The
exploration of ultracold Fermi gases [Ing08, Tur12] is mostly done with mixtures and a
more detailed discussion of the research directions can be found in Sec. 2.3.2. Research
highlights were, e.g. the observation of molecular condensates [Joc03a, Gre03, Zwi03,
Bou04] and the study of the BEC-BCS crossover [Zwe12, Cal18].

Optical potentials offer another remarkable possibility for controlling ultracold
quantum gases. They can be used to change the dimensionality of the system, cre-
ate homogeneous potentials [Gau13, Sch14, Nav15, Cho15, Muk17] and make pe-
riodic potential arrays, i.e. optical lattices [Blo08]. With optical lattices, the gas of
atoms can be confined to a periodic structure, which mimics the crystal lattice of a
solid. Moreover, strong correlations between particles can be created by strong con-
finement. Examples are the superfluid to Mott-insulator transition [Gre02], which
can be crossed by tuning the depth of the lattice [Jak98], and the realization of the
Fermi-Hubbard model [Ess10]. Furthermore, new phases such as, e.g. the Tonks-
Girardeau Bose gas in 1D [Pet00, Kin04b, Par04], and the Kosterlitz-Thouless cross-
over in 2D [Had06], can emerge when controlling confinement and dimensionality.
Additionally, with the development of the quantum gas microscope [Bak09, She10,
Che15, Hal15, Par15b, Omr15, Edg15], the observation and control of individual
atoms became available. The research performed with atoms in optical lattices fo-
cuses on the engineering of lattice-based many-body systems for quantum simulation
and quantum information [Lew12, Gro17] and complements the research in the bulk.

In recent years, systems with strong dipole-dipole interactions have also become
7Previously, beyond-mean-field effects were observed in a molecular BEC [Alt07].
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available. In contrast to the contact interaction mostly studied with alkali atoms, the
dipole-dipole interaction is long-range and anisotropic. Gases of atoms with a large
permanent magnetic moment like Cr, Dy and Er, show this type of interaction and these
dipolar gase have now been cooled to degeneracy [Gri05, Lu11, Aik12]. An example
of the competition between contact and dipolar interactions that can be studied with
those systems, are the quantum droplets recently seen [Kad16, FB16b, Cho16, Sch16,
FB16a, Wen17]. Similar features have also been observed in a mixture of potassium
BECs [Cab18]. Here, although only contact interaction is present, the droplets stabi-
lize due to quantum fluctuations. Other systems that show long-range interactions are
heteronuclear polar ground-state molecules [Car09, Mos17], Rydberg atoms [Saf10],
and coldmolecules [Boh17]. Molecules have an electric dipole, which leads to a strong
interaction with other molecules due to dipole forces. Efforts are under way to cool
molecules, such as CaF, SrF, YO directly from the gas phase and magneto-optical traps
have been created. However, the manifold of electronic, vibrational, and rotational de-
grees of freedom on top of the hyperfine and Zeeman splittings, makes it much less
straightforward to apply the standard laser and cooling techniques developed for atoms.
All these systems offer the possibility to study dipolar many-body physics, which is of
special interests due to its analogies with condensed-matter systems [Bar12].

Now, a few decades after the realization of the first quantum gas, the research
field of ultracold quantum gases has spread out into many exciting research directions.
Topics range from few- to many-body physics and from getting even colder to precisely
mimicking condensed matter systems and beyond. Quantum gases are explored all
over the world and provide valuable fundamental insights into complex many-body
phenomena. Throughout the years, new directions have opened up, e.g. dipolar gases,
nevertheless intriguing questions remain with regards to bulk mixtures of fermions
and bosons, especially on topics such as strong interactions and mixture with mass or
population imbalance.

This year will mark the beginning of the study of ultracold quantum gases in the
microgravity environment of space. In may 2018 the cold atom laboratory (CAL)
arrived at the International Space Station. On board are rubidium and potassium iso-
topes as well as lasers and magnetic field coils to cool, trap and manipulate the species
by themselves or mixtures thereof. This is but one example of the future of the field
of ultracold quantum gases. Other prospects are the quantum simulation of systems
beyond what can be theoretically modeled [Gro17] and the extension of our knowl-
edge on topics such as quantum magnetism, itinerant ferromagnetism [Val17, Mas14],
dipolar physics [Bar12], and controlled cold chemistry [Boh17].
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2.3 Ultracold Mixtures

Once single-component quantum gases can be well controlled, mixtures are the next
logical step. One can mix different spin states, different isotopes of the same element
or different elements. Mixtures give the opportunity to study the interplay between two
different gases as well as the effect of unequal populations. Additionally, heteronuclear
mixtures allow the study of mass imbalanced many-body systems and combinations of
mixed quantum statistics. Moreover the response to external fields for each component
can be different andmixed-dimensional systems can be created, e.g. by using a species-
selective optical lattice [LeB07]. Another advantage is the possibility to use one of
the components as a sensitive probe of the properties of the other component in the
gas. For example, a second species can be used to measure the temperature of an
ultracold gas withwhich it is in thermal equilibrium (Chap. 4, [Lou17b]) and an atomic
gas with known polarizibility can be used as a probe for the polarizibility of another
element [Rav18].

A first choice for combining different atoms is the creation of bialkali mixtures
due to the extensive knowledge available to cool and trap alkali atoms. Here, in Inns-
bruck, two alkali atoms, lithium and potassium, were chosen to create one of the first
heteronuclear Fermi-Fermi mixtures. Every new element which reaches degeneracy
gives another possibility for mixing and mixtures beyond alkali atoms are becoming
available, e.g. Dy-Er [Ilz18], Sr-Rb [Bar18], and Dy-K [Rav18]. Additionally mix-
tures with metastable noble gases [Vas12] and with extreme mass ratios [Pir14, Tun14,
Roy17, Kon16] are being created. Reaching degeneracy with two species is not an easy
task and quite often the scattering properties of a mixture are not previously known.
Nevertheless it is worth the effort, because of the fascinating research opportunities
they provide. In this Subsection, I give a brief overview of the different types of ultra-
cold mixtures and the research directions that are being pursued with them.

2.3.1 Bose-Bose Mixtures
The first mixture created was a Bose-Bose mixture between two hyperfine states of
87Rb [Mya97]. Soon a mixture of sodium spin states followed [Ste98] and with it the
discovery of two major topics that can be studied with Bose-Bose mixtures: spinor
condensates [SK13] and miscibility. A spinor condensate is a condensate in which the
spin state of the atoms is left as a degree of freedom. In contrast to scalar BECs, where
often the trap dictates which hyperfine state is stable, in spinor BECs spin changing
collisions can occur. Studying the dynamics and equilibrium properties of these mix-
tures leads to a wealth of phases and the study of topological defects as well as spin
textures [SK13].
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In these spinor condensate, for the first time, miscible and immiscible condensates
were observed [Ste98]. Following Ref. [Lee16], the miscibility of Bose-Bose mix-
tures, for a homogeneous system, is characterized by the miscibility parameter Δ and
depends on the ratio of the intra- and interspecies scattering lengths as,

Δ =
(

g11g22∕g221
)

− 1, (2.1)

where gij = 2�ℏaij∕�ij is the effective interaction strength, �ij =
(

m−1i + m−1j
)−1 is

the reduced mass and aij is the scattering length between components i and j. If the
miscibility parameter is positive, the two components can spatially overlap, while for
negative values they phase separate. With the aid of FRs, themiscible-immiscible tran-
sition has been studied in several mixtures of, e.g. 87Rb [Toj10], 87Rb- 85Rb [Pap08b],
87Rb-133Cs [McC11], 87Rb-23Na [Wan16], and
87Rb-39K [Wac15].

Another research direction for Bose-Bose mixtures is the production of ultracold
polar molecules. These systems are used to study dipolar physics and controlled quan-
tum chemistry [Car09, Mos17]. Heteronuclear ground state molecules have an electric
dipole moment, which makes it an interesting system to study long-range interactions.
The molecules can be created by transferring Feshbach dimers to the ground-state via
two-photon stimulated Raman adiabatic passage [Ber98]. Feshbach dimers are formed
by ramping over a Feshbach resonance and associating the atoms into weakly bound
dimers. However, if the mixture is immiscible, the creation of Feshbach dimers be-
comes difficult. Therefore, most often the atoms are loaded into optical lattices be-
fore Feshbach association takes place, e.g. [Rei17]. Furthermore, by creating these
molecules in a lattice, one can simulate how this many-body system of dipoles re-
acts to the periodic structure formed by the atom cores inside a semiconductor. The
physics described here is the Bose-Hubbard model when the molecules are bosonic or
the Fermi-Hubbard model when the molecules are fermionic. The latter is the case for
molecules created from a Bose-Fermi mixture and comes closer to the analogy of elec-
trons in a semiconductor. To date, ground state molecules from Bose-Bose mixtures
have been demonstrated in the singlet state in Cs2 [Dan10], RbCs [Tak14, Mol14] and
NaRb [Guo16] and in the triplet state in Rb2 [Lan08b]. By creating the dimers in the
triplet groundstate, the dimers additionally have a magnetic moment, which leads to
another interesting system to study.

2.3.2 Fermi-Fermi Mixtures
From the beginning of the research on ultracold Fermi gases Fermi-Fermi mixtures
have been explored. The Pauli effect makes Fermi gases stable near FRs, but also
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prevents collisions between particles in the same quantum states. Thus, exploring in-
teracting Fermi gases and their phase diagrams with ultracold alkali gases required
ultracold mixtures. This suppression of atom loss, called the Pauli suppression ef-
fect [Pet04b, Pet05b, Pet05a], was observed in strongly interacting spin mixtures of
6Li [Cub03, Joc03b] and 40K [Reg04a]. The special interest in fermionic pairing and
Fermi superfluidity comes from the important role fermionic many-body systems play
in matter, e.g. high Tc superconductors or neutron stars [Cal18]. Studying fermionic
ultracold gases can give a quantitative comparison between theoretical models and ex-
periments [Blo08]. Here, I will highlight three of the research directions of interacting
Fermi gases: the BEC-BCS crossover, the unitary Fermi gas and strongly interacting
heteronuclear mixtures.

The BEC-BCS crossover [Zwe12] is an important universal phenomenon in in-
teracting Fermi gases and shows how pairing changes due to many-body effects. It
describes the transition of a many-body system from a BEC of composite bosons to a
superfluid of Cooper pairs, when the two-body interaction is tuned from repulsion to
attraction across a FR. In the limit of weak interactions the system can be described
with either BCS theory (attractive interactions) or BEC theory (repulsive interactions).
On the repulsive side of the FR, the atoms are associated into weakly bound Feshbach
dimers and the size of the dimer is smaller than the interparticle distance. The sys-
tem of weakly bound pairs of fermions can be seen as a gas of composite bosons and
below a critical temperature Tc shows Bose-Einstein condensation [Gre03, Joc03a,
Zwi03, Bou04]. Above the critical temperature the bosons act as normal Bose gas of
molecules and only for a temperature higher than their binding energy these pairs will
break up.

On the attractive side the story is vastly different. Above Tc , the system is de-
scribed by Landau’s Fermi liquid theory. This interacting Fermi gas can be understood
in terms of a non-interacting gas of quasiparticles, where the quasiparticles are atoms
dressed by excitations of the Fermi sea. When the system is cooled, pair formation
happens almost simultaneously with the condensation of these pairs. The tempera-
tures for pair formation and for condensation are close. The pairing is described by
the BCS theory and happens between particles with opposite momentum such that a
bound pair of zero center-of-mass momentum is created, a Cooper pair. The size of the
Cooper pairs is much larger than the interparticle distance and the bound pair can not
be described as a composite bosonic particle. The fermionic nature of its constituents
matters. Nevertheless, below Tc these pairs condense [Reg04b, Zwi04] and the systemshows superfluidity [Zwi05].

The described phase diagram is universal for all Fermi gases, when expressed in
the dimensionless parameters of interaction (kFa)−1 and temperature T ∕TF. Here, kFis the Fermi wave vector, a the scattering length and TF is the Fermi temperature. In
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a homogenous gas, the critical temperature for condensation evolves from Tc ≪ TFfor very weak attraction, to Tc ≃ 0.167(13) TF [Ku12] for |a| → ∞ and then settles
at Tc ≃ 0.218 TF on the BEC side [Hau07]. A wealth of studies have been made
on the crossover between the BCS and BEC limit [Gri08, Zwe12], showing the pow-
erful techniques which can be used to probe this many-body system, e.g. including
collective excitations [Kin04a, Bar04], radio-frequency spectroscopy [Chi04, Sch08,
Ste08b] and photoassociation [Par05]. The superfluidity along the crossover was con-
firmed by the observation of vortices [Zwi05] and its two-component nature by the
observation of second sound [Sid13].

A region of special interest for the Fermi mixture is unitarity, where |a| → ∞.
Here, the thermodynamics of the Fermi gas follows universal behavior [Ho04]. For
zero temperature the only relevant energy scale is the Fermi energy and the interparticle
distance the only relevant length scale. The scattering length drops out of the descrip-
tion of the gas. Any Fermi gas at unitarity and at zero temperature can be described as
a non-interacting Fermi gas with a simple scaling factor, called the Bertsch parameter
�. This universality has led to a great interest in these unitary Fermi gases [Zwe12].
Several experiments have measured the equation of state and the Bertsch parameter,
e.g. [Nas10, Nav10], with the latest result indicating � = 0.376(4) [Ku12]. For an
overview of the theoretical predictions and numerical models, see Ref. [Zwe12].

Away from unitary but at strong interactions (for (kF|a|)−1 < 1) the behavior
of Fermi-Fermi mixtures is not yet fully understood and experiments accessing this
regime can provide useful insights and tests for theoretical models. Tuning the in-
teraction with FRs enables the study of these strongly interacting Fermi gases, which
were first observed in 2002 [O’H02, Bou03]. Especially in the case of population im-
balanced mixtures [Mas14] (see Sec. 2.4) or in the case of mass imbalance, strongly
interacting Fermi gases are interesting to study. Population imbalance can easily be
obtain by selectively varying the atom number of the two spin states involved, while
mass imbalance comes from having a heteronuclear mixture of fermions.

The first double-degenerate heteronuclear Fermi-Fermi mixture created was with
Li and K and this mixture has been studied both by our group [Wil08] as well as inMu-
nich/Singapore [Tag08], Amsterdam [Tie10], Paris [Rid11] and Cambridge [Wu11].
To study strong interactions in heteronuclear mixtures, it is beneficial to find an s-wave
Feshbach resonance whose character is entrance-channel dominated [Chi10, Köh06].
For these type of FRs, the mixture is more stable against elastic and inelastic atom
losses even for strong interactions. Several resonances in the Li-K mixture were in-
vestigated [Wil09, Tie09b, Tie10, Cos10, Nai11] and the Feshbach resonances turned
out to be relatively narrow, i.e. closed-channel dominated. Nevertheless, the proper-
ties of the FR at 155G were favorable enough to study the strongly interacting regime.
We studied the expansion dynamics of the mixture for tunable interactions and found
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pronounced effects of hydrodynamic behavior, associated with this strong interaction
between the two species [Tre11]. On the repulsive side of this FR, we additionally stud-
ied the effects of mass-imbalance in an atom-dimer mixture as is discussed in Chap.
8 [Jag14]. The stability of the mixture close to the FR and the suppression of losses
due to the Pauli effect is studied in Chap. 9.

With the achievement of Fermi degeneracy in many more elements beyond Li and
K, there is a wealth of possible Fermi-Fermi mixtures that can be realized, e.g. Dy-
K [Rav18] and Li-Cr. These new systems can extend the research on heteronuclear
Fermi-Fermi mixtures, e.g. [Liu03, Bar08, Nis09a, Ors10, Key11, Sot12, Dai12,
Cui13, Bra15, Wan17] as well as explore the wide variety of many-body physics that
can be probed in fermionic mixtures, e.g. [Pet07, Isk08, Bau09c, Gez09, Gub09].

2.3.3 Bose-Fermi Mixtures
The two components in a mixture do not have to follow the same quantum statis-
tics. By selecting different isotopes or elements, Bose-Fermi mixtures can be created.
These mixtures can have a small difference in mass when isotopes of the same element
are combined or additionally feature mass imbalance when two different elements are
used. A prominent example is the mixture of bosonic 4He and fermionic 3He [Ebn71],
which is now commonly used in dilution refrigerators [Das65, Pob07] and shows the
intriguing phenomenon of phase separation. Bose-Fermi mixtures become especially
interesting when degeneracy is reached and both a degenerate Fermi gas (DFG) and
Bose-Einstein condensate (BEC) are present at the same time. Here, I will discuss
the three most common research directions with Bose-Fermi mixtures: the BEC-DFG
phase diagram, ground-state polar molecules and double superfluidity.

The phase diagram of a BEC-DFG mixture is very interesting because phenomena
like collapse and phase separation occur [Mar08b]. A lot of theory effort is devoted to
the study of this phase diagram and in this brief review I will focus on the experimental
observations and the instability criteria as introduced by Ref. [Mø98, Viv00, Rot02].
Within the mean-field approximation, a degenerate Bose-Fermi system is unstable for
densities of [Viv00]

n1∕3f ≤
(

6�2
)2∕3

3�
mfmb

(

mf + mb
)2

abb
a2bf

, (2.2)

where nf is the fermionic density, mf (b) the fermionic (bosonic) mass, abb the boson-boson scattering length and abf the interspecies scattering length. In the case of pos-
itive interspecies scattering length, the system finds a new equilibrium by phase sep-
arating the BEC and DFG. However, for strong negative scattering lengths no such
equilibrium exists and the system collapses. In the case of trapped quantum gases,
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both components are strongly attracted to each other and pull themselves toward the
center of the harmonic trap, where their density is increased. This can be interpreted as
if the components feel an additional mean-field confinement. Below a critical negative
scattering length, the Bose-Fermi mixture becomes unstable and the increase in den-
sity leads to enhanced three-body recombination processes which lead to a sudden loss
of atoms. Afters this collapse, a new equilibrium is created with less particles. The
collapse can be seen by either varying abf or preparing a too high fermionic density
and watch the system collapse. A similar kind of collapse was observed in mixtures of
two BECs either by tuning the interactions [Don01] or preparing mixtures with large
particle numbers [Sac99].

The first double-degenerate Bose-Fermi mixtures were created when trying to cool
fermionic lithium either with its bosonic isotope 7 Li [Tru01, Sch01a] or with another
element like 23Na [Had02]. The primary focus of these experiments was the physics of
degenerate Fermi gases. The 87Rb-40K mixture followed [Roa02, Gol04] and strong
losses were seen when preparing mixtures of large particle numbers [Mod02, Osp06a],
which were associated with the predicted mean-field collapse. Another way to study
this phenomenon became available with the discovery of Feshbach resonances between
Rb and K [Ino04]. While tuning the interspecies interaction, the mean-field collapse
was observed as well as strong indications of a phase separation occurring on the re-
pulsive side of the FR [Osp06c, Zac06]. A closer look into the phase separated regime
with the Rb-K mixture is difficult because of the large background scattering length
and the strong losses on the repulsive side of the FR. Chap. 5 demonstrates phase sep-
aration in our 41K-6Li mixture by probing the three-body loss at the interface of the
phase-separated state [Lou18].

Besides studying the phase diagram, ground-state polar molecules are another re-
search direction of Bose-Fermi mixtures. Bose-Fermi mixtures are a favorable starting
point for creating Feshbach dimers that can be seen as composite fermions. Due to
the Pauli exclusion principle, the fermionic dimers have an increased stability against
three-body recombination [Zir08]. The Feshbach dimers can be transferred to their
ground-state via two-photon stimulated Raman adiabatic passage and thus offer the
possibility to create ground-state polar molecules and study long range interaction and,
when loaded into a lattice, the Fermi-Hubbard model [Car09, Mos17]. After the cre-
ation of a double-degenerate mixture of 87Rb-40K, further studies in optical lattices
followed [Lew04, Osp06b] and led to the creation of the first high phase-space density
of ground-state polar molecules [Ni08]. Fermionic ground-state molecules have been
demonstrated in the singlet state for RbK [Ni08, Mos15] and NaK [Par15a] and in the
triplet state for 23Na-6Li [Rva17].

A third research direction of Bose-Fermimixtures is the study of double superfluid-
ity and the interaction between two superfluids. When apart from a bosonic spin state,
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two spin states of the fermionic component are present in the mixture, the fermions can
pair with each other. If the temperatures are low enough with respect to the critical
temperature for forming a BEC and a Fermi condensate a double superfluid mixture
can be created. Double superfluidity was shown for the isotope mixture of lithium,7Li-
6Li, [FB14] and themass imbalanced cases of 41K-6Li [Yao16] and 174Yb-6Li [Roy17].
In Ref. [FB14] and [Roy17] they demonstrated the double superfluidity by observing
a coupling between the center-of-mass oscillations of the Fermi and Bose superflu-
ids, while in Ref. [Yao16] they rotated the superfluid mixture and observed vortices.
Fermionic lithium offers a very interesting FR at 832G, with which the fermionic in-
traspecies interactions can be easily tuned. Thus the Bose-Fermi superfluid mixture
can be studied over the whole BEC-BCS crossover, as was shown in the 7Li-6Li mix-
ture [Del15]. These systems offer the possibility to study the phase diagram of Bose-
Fermi superfluids and observe new and exotic states, e.g. dark-bright solitons [Tyl16]
and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [Oza14]. Also other phe-
nomena, e.g. phase separation [Ram11] and second sound in a double superfluid mix-
ture [Vol75], could be observed.

Many more Bose-Fermi mixtures than those mentioned are created or being cre-
ated, consisting of either the default fermionic alkali atoms of K and Li or more exotic
ones such as Sr, Yb, Er, or Dy. Examples of the wealth of Bose-Fermi mixtures avail-
able are 41K-40K [Wu11], 133Cs-40K [Grö16], 23Na-6Li [Rva17], 87Rb-6Li [Mar09],
85Rb-6Li [Deh10], 133Cs-6Li [DeS17], 84Sr-87Sr [Tey10], 87Rb-87Sr [Bar18], 87Rb-
171Yb [Vai15], 133Cs-171Yb [Kem16], Er-Dy [Ilz18], and K-Dy [Rav18]. Studies of
these systems will enrich the research on Bose-Fermi mixtures and could give in-
sight into, e.g. boson-mediated Cooper pairing [Bij00, Efr02] or new phases of mat-
ter [Pow05, Suz08, Mar08b, Lud11, Ber13, Kin15].

2.4 Impurity Physics with Ultracold Atoms

In all the above mentioned mixtures, the ratio between the number of atoms of each
species can be readily controlled. This creates a population imbalancedmixture, which
is typically characterized by the polarization P = (N1−N2)∕(N1+N2), withN1(N2)the number of atoms of species 1 (2). In the limit of P → ±1, we enter the realm of
impurity physics. Here, a few particles are immersed in and interact with a many-
body environment. These population imbalanced systems can be used to study impu-
rity many-body related phenomena, e.g. polaron physics, the Anderson’s orthogonal-
ity catastrophe (OC) [And67, Kna12] or the Kondo effect [Kon64, Nis13]. Although
impurity physics is also studied in 1D chains, e.g. [Cat12], I will here focus on the
experiments in 3D.
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For weak to moderate interactions with the environment, the impurities can be
described as polarons [Mas14]. A polaron is a quasiparticle, representing an impurity
that dresses itself with excitations of the surrounding environment. A polaron acts
as an entity of its own with an effective mass and energy different from the impurity
particle itself. If the many-body environment is a single-component Fermi gas, the
term Fermi polaron is used, while an impurity immersed in a BEC is called a Bose
polaron. Quasiparticles are most commonly known from solid-state physics, where
they describe the conduction of electrons in a dielectric medium. The gas of interacting
electrons can be as best described by Landau’s Fermi liquid theory [Bay91], which
shows how an interacting Fermi gas can be understood in terms of a non-interacting
gas of quasiparticles. In the dielectric medium the electrons dress themselves with the
excitations in the electron cloud, i.e. they are coupled to a bath of phonons. Polarons
are widely used to describe interacting Fermi systems, yet not easy to explore in the
limit of strong interactions. This sparked the interest of studying them in population
imbalanced ultracold mixtures.

The first studies on population-imbalanced Fermi gases [Zwi06b, Par06] focused
on how pairing and superfluidity are affected if not all atoms can find a partner. The
system was shown to separate into a phase with a superfluid core surrounded by a shell
of normal unpaired fermions, confirming the Clogston-Chandrasekhar theory [Clo62,
Cha62]. For strong interactions, another phase was observed [Zwi06b], which could
be explained as an ideal gas of Fermi polarons immersed in a Fermi sea [Lob06]. The
close relation between the Fermi polaron and the phase diagram of imbalanced Fermi
mixtures, triggered the measurements of the properties of this quasiparticle.

In 2009, the attractive Fermi polaron [Sch09, Nas09] was observed in a fermionic
spin mixture of lithium with negative scattering lengths. The energy of the quasipar-
ticle as well as the quasiparticle residue was measured with radio-frequency (rf) spec-
troscopy [Sch09] and the effective mass by studying the collective excitations [Nas09].
Later, the existence of a repulsive polaron was predicted [Mas11]. However, its detec-
tion is hindered by the presence of a weakly bound state on the repulsive side of a FR
into which the atoms rapidly decay. In 2012, the repulsive polaron was observed with
our Li-K mixture and its properties were characterized by rf spectroscopy [Koh12].
The energy, lifetime, effective mass, and quasiparticle residue of both attractive and
repulsive polarons were measured and good agreement with theory predictions based
on Landau’s theory of Fermi liquids was found. The lifetime of the polaron was long
enough for our measurements and this was attributed to the relative narrowness of
the FR involved. Simultaneously, the repulsive Fermi polaron was also observed in a
two-dimensional gas of 40K by the Bonn group [Kos12], where the reduced dimen-
sionality stabilized the repulsive polaron, but their lifetime was a tenfold shorter. Only
recently, the repulsive polaron in a Li spin mixture at a broad Feshbach resonance
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was observed [Sca17]. In Chap. 6 a further study of the lifetime of the K polarons in
the Li Fermi sea is presented and the strongly interacting regime is addressed [Cet15,
Chr15, Sch18]. Here, the quasiparticle scattering rate is measured using time-domain
spectroscopy [Goo11, Kna12]. In Chap. 7 this method is used to reveal the real-time
formation dynamics of the polaron and to probe the quantum many-body dynamics of
the strongly interacting regime [Cet16, Par16, Sch18, Liu18]

A topic closely related to the repulsive Fermi polaron is itinerant ferromagnetism,
a form of magnetism found in transition metals. In transition metals, some of the elec-
trons are delocalized and their mobile magnetic moment can be arrange to have either
a zero or non zero total magnetic moment. There is a competition between the Fermi
pressure, which favors pairing, and the repulsive interactions between electrons with
opposite spin. The latter, favors domain formation with one single spin component per
domain. In ultracold atoms, this phase transition from pairing to domain formation
could be studied since the atom-atom interaction can be varied [Mas14]. The ground
state of a two component Fermi gas is characterized by pair formation between the two
components, which minimizes the Fermi energy of the system. However, for strong
repulsive interactions, pairing might be too costly and the competition between the
atom-atom interaction energy and the Fermi pressure could favor a metastable state
where the two components are phase-separated into stable domains. Recently, evi-
dence for the existence of such a ferromagnetic instability was shown [Val17].

Switching the environment from a Fermi sea to a BEC, gives access to the Bose
polaron. Here the role of the environment is more complicated as one-component Bose
gases allow for interactions within the environment and not just with the impurity.
Thus three-body recombination becomes a limitation on the lifetime of polarons. The
existence of the Bose polaron was shown in 2016 with rf spectroscopy [Hu16, Jør16].
For weak to moderate interactions the observations closely follow themodel developed
by Frölich in the 1950s [Frö50], but for strong interactions the three-body correlations
become important and further studies in this regime would be highly interesting.

The interactions of an impurity with its environment can also be used to probe and
learn about the environment itself. For example, an impurity can be used to probe
the BEC-BCS crossover in a resonant Fermi gas [Lau17]. In Chap. 4, we show how
a BEC impurity can be used for measuring the temperature of an interacting Fermi
gas [Lou17b].
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Figure 2.1: Illustration of the three tunable mixtures and topics presented in this thesis. (a) A
small BEC of 41K (magenta) that is immersed in a 6Li Fermi sea (blue), enables the study of
an interacting Bose-Fermi mixture. (b) Studying a 40K impurity which is in a superposition of
a spin state that interacts (red) with the Fermi sea and one that does not (yellow), gives insight
into impurity physics. (c) An atom-dimer mixture of 40K (red) -6Li (blue) reveals the effect of
mass imbalance on atom-dimer scattering.

2.5 Thesis Research Topics

This dissertation demonstrates the versatile physics that can be explored with ultra-
cold two-species mixtures and the various measurement techniques which are avail-
able to probe their properties. It describes the experiments performed with three types
of ultracold heteronuclear quantum mixtures: a Bose-Fermi mixture of 41K and 6Li,
a fermionic impurity of 40K in a 6Li Fermi sea, and an atom-dimer mixture of 40K
and 6Li. In essence, all these experiments address a cold cloud of two atomic species
trapped and cooled by laser light, observed by absorption imaging and controlled in
inter- and intra-species interaction strength by magnetically-tunable Feshbach reso-
nances. A short introduction to the experimental details can be found in the next chap-
ter. The tunability of the atom-atom interaction is essential for studying the behavior
of Bose-Fermi mixtures, the decoherence of impurities coupled to a Fermi sea, and the
effects of mass imbalance in an atom-dimer mixture.

Figure 2.1 illustrates the tunable mixtures and the three research topics explored
with them. The research was done in the FeLi(Bo)Kx lab in Innsbruck from 2012-
2018. The following chapters, Chap. 4-9, contain the articles to which the author ac-
tively contributed during her thesis work. At the beginning of each chapter a statement
about the author’s contribution can be found. These articles are clustered according to
themixture addressed and a short summary of each chapter is given below. All chapters
are published in peer-review journals [Lou17b, Lou18, Cet16, Cet15, Jag16, Jag14].
For editorial and style reasons, the reprints might slightly differ from the referenced
published versions.
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Bose-Fermi mixtures

• Chapter 4 presents a thermometry approach which provides a conceptually sim-
ple, accurate, and general way to measure the temperature of deeply degener-
ate Fermi gases. It also discusses our evaporation route to obtain a double-
degenerate, mass imbalanced Bose-Fermi mixture of 41K and 6Li and shows
the formation of a 41K Bose-Einstein Condensate (BEC) through sympathetic
cooling with lithium. The condensate, or more specifically the BEC-fraction
obtained from bimodal fitting, acts as probe of the Fermi degeneracy of the
Fermi sea. For a small number of potassium atoms and after thermalization,
this mesoscopic impurity accurately measures the temperature of the mixture.
Insight into the lowest achievable temperatures and Fermi degeneracies bench-
marks the phenomena that can be observed experimentally.

• Chapter 5 explores the repulsive side of the heteronuclear Feshbach resonance
between the lowest Zeeman spin states of 41K BEC and 6Li Fermi sea at 335G.
Here, the two components phase separate for strong repulsive interaction and
when K is a degenerate gas. This work shows that the region where the two
components mix can be selectively probed by measuring a mechanism that only
occurs in the overlap region at the interface between the two species. Therefore,
we measure the three-body recombination rate of both a condensate and a ther-
mal cloud of K in a Fermi sea. The measurements give information about the
overlap between the two degenerate species and the results are compared with
a numerical mean-field model. This comparison shows that the kinetic energy
term of the bosons plays an essential role in maintaining the overlap well into the
phase-separated regime. Selectively probing the overlap region offers intriguing
possibility to further explore interface physics with ultracold atoms.

Impurity in a Fermi sea

• Chapter 6 studies the decoherence of a fermionic 40K impurity that arises from
collisions with a 6Li Fermi sea, extending the earlier studies on the repulsive
polaron [Koh12]. For weak to moderate interactions, the measurements, per-
formed using a spin-echo interferometry method, show a good agreement with
theory calculations in the Fermi liquid picture [Chr15]. In this regime the de-
coherence of the impurity is dominated by quasiparticle scattering. For strong
interactions we show that the decoherence can not be solely explained within
the quasiparticle picture. To access the strongly interacting regime, this work
introduces a fast-switching technique based on the AC stark shift given by the
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optical dipole trap, which influences the position of the Feshbach resonance cen-
ter. This method opens the way to study the dynamics of a strongly interacting
population imbalanced Fermi mixture.

• Chapter 7 addresses the dynamics of the impurity in the Fermi sea for moderate
to strong interactions. The quantum evolution of a fermionic many-body system
after the sudden switch on of the interactions with the impurity is shown in
real time. The Anderson’s orthogonality catastrophe remains elusive because of
temperature effects and the mobility of the impurity. However, the formation
dynamics of polarons and the quantum interference between the attractive and
repulsive polaron branch is revealed. Both radio-frequency spectroscopy and
time-domain spectroscopy measurements are presented and compared to two
complementary theoretical methods: the truncated basis method [Par16] and
the functional determinant approach [Sch18]. The methods and results of this
work show that many-body interferometry is a powerful tool to study ultrafast
processes in strongly interacting Fermi gases.

Atom-dimer mixture

• Chapter 8 discusses the interaction between atoms and dimers, where the 6Li-
40K Feshbach dimers are created by ramping across the interspecies Feshbach
resonance. Radio-frequency spectroscopy shows that for strong repulsive atom-
atom interactions, the repulsive atom-dimer interaction is turned into a strong
attraction. Anologous to the H+2 cation, the light Li atom mediates an attraction
between the fermionic K atoms. This three-body effect is a prime example of
how mass imbalance in fermionic systems changes the character of interactions
and how these systems address a much more complicated many-body problem
than the mass-balanced case.

• Chapter 9 presents lifetime measurements of the atom-dimer mixture close to
two narrow interspecies Feshbach resonances. Both the dimer-dimer processes
and atom-dimer processes that lead to collisional losses are investigated and
compared to theoretical predictions [Lev11]. Similar as for mass imbalanced
Fermi-Fermi mixtures near broad Feshbach resonances, the Pauli suppression of
collisional losses is observed. The losses described set the timescale on which
experiments can be performed. This joint experimental and theoretical work
gives an estimate for the minimum required suppression of the losses in other
strongly-interacting Fermi-Fermi systems, which enables the selection of suit-
able Feshbach resonances for future experiments.
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Appendices
Since the FeLi(Bo)Kx experimental apparatus was designed for a 6Li -40K Fermi-
Fermi mixture, an essential ingredient of this thesis is the changes I made to cool and
trap the bosonic isotope of potassium 41K. The experiment can now easily switch be-
tween the two potassium isotopes and between a Fermi-Fermi and a double-degenerate
Bose-Fermi mixture. This new mixture enables the studies presented in Chap. 4 and
Chap. 5 and further studies on the phase diagram of Bose-Fermi mixtures, bosonic
impurities in a Fermi sea and mixtures of fermionic atoms and fermionic Feshbach
dimers.

• Appendix A covers the changes made to the experimental setup to obtain the
Bose-Fermi mixture and the details of the cooling and trapping of 41K.

• Appendix B summarizes the atom loss measurements, which study the inter-
and intraspecies Feshbach resonances between the two lowest Zeeman spin states
of lithium and the three lowest Zeeman spin states of potassium. Avoiding these
Feshbach resonances along the evaporation route is essential for preparing the
double-degenerate, mass imbalanced Fermi-Bose mixture of 6Li and 41K close
to their interspecies Feshbach resonance at 335G, the starting point of the mea-
surements in Chap. 5.

2.5.1 Outlook
The field of ultracold atoms and the FeLi(Bo)Kx experiment have some exciting times
still to come. With the multitude of (exotic) species, lattice configurations and other
tools to control and manipulate quantum gases at hand, a wealth of possibilities is
available for further studies on these quantum simulators of condensed matter and
many-body systems in general.

More specific to the research in this thesis, it would be interesting to continue the
studies of impurities in a Fermi sea, either with a fermionic or bosonic impurity. For
example, the BEC of 41K could be seen as a mesoscopic impurity and one could study
spin transport [Som11] in a spin mixture of lithium in the presence of this impurity.
Spin transport is especially interesting in analogy to solid state physics [Chi15], where
the transport of electrons is influenced by defects in the metal structure. Furthermore if
the impurity could be pinned down by, for instance, a species-specific lattice [LeB07],
phenomena like Anderson’s orthogonality catastrophe [And67, Kna12] or the Kondo
effect [Kon64, Nis13] might become observable. With the potassium atoms pinned
into a lattice, it would be also possible to study fermion-mediated boson-boson interac-
tions between lattice sites and a system of mixed dimensions. Furthermore, impurity-
impurity interactions can be probed by allowing or disabling tunneling between lattice
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sites. Since the quantum statistics can be changed by loading a different isotope of
potassium, this can be studied for both fermionic and bosonic impurities. Additionally,
focusing more on the few-body aspect, confinement of potassium in an optical lattice
is predicted to lead to the formation of stable trimer states [Pet07, Nis09b, Lev09].

The Bose-Fermi mixture with tunable interactions also offers interesting physics.
A natural extension of our measurements with the Bose-Fermi mixture would be to
study the dynamics of the phase-separated system and to explore the Bose-Fermi phase
diagram further. More technically, improving the resolution of our imaging system
would enable in-situ imaging and a 3D reconstruction of the interface, with which the
extend of the interface can be verified. Adding one spin component for lithium, which
is already present for the evaporation, we could study a mixture of two mass imbal-
anced superfluids [Yao16, Roy17]. Moreover, the Bose-Fermi mixture can be used as
the starting point to create a Fermi-Fermi atom-dimer mixture. Here, the dimer-dimer
decay is expected to be less strong and this might give favorable timescales to study
the equilibrium properties of a mass-imbalanced atom-dimer mixture, in particular for
studying itinerant ferromagnetism, as pointed out in Ref. [Mas14]. It will be interest-
ing to see were the exploration of these topics will lead the FeLi(Bo)Kx experiment in
the near future.
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Introduction to the Experiments

The Fermionic Lithium (Bosonic) Kalium1 lab, in short FeLi(Bo)Kx, created one of
the first heteronuclear Fermi-Fermi mixtures. At the time of its design, homonuclear
spin mixtures of potassium and lithium were widely used for exploring strongly inter-
acting Fermi gases [Ing08] and Feshbach resonances were already found in heteronu-
clear Bose-Fermi mixtures [Sta04, Ino04]. This motivated the pursuit of an apparatus
that combined the two alkali [Wil09] and would make it possible to study strongly
interacting mass-imbalanced heteronuclear Fermi-Fermi systems.

In this Chapter, I will briefly discuss the experimental setup, Feshbach resonances,
and the previous research done with the FeLi(Bo)Kx experiment [Wil08, Spi09, Spi10,
Nai11, Tre11, Koh12]. This Chapter is not meant as an eleborate review of the experi-
mental setup, which can be found elsewhere [Wil09]. However, it is the chapter’s aim
to provide the reader with the main concepts necessary to understand the experimental
apparatus used and the measurements carried out in this thesis. The supplemental ma-
terials of the published articles are included in the following chapters and provide the
chapter-specific experimental details. For more in-depth reviews of the experimen-
tal techniques involved I would like to refer to the well-documented literature about
e.g., introduction into experimental methods [SK12, Tör14], preparation of quantum
gases [Jer14], cooling and trapping [Met99], optical dipole traps [Gri00], Feshbach res-
onances [Chi10], collective modes [Gri08], and the properties of Fermi gases [Ing08,
Zwe12, Tur12] and Bose gases [Ket99] in harmonic traps.

3.1 Experimental Setup

A simplified version of the core of the ultra-high vacuum setup of our experiment is
shown in Fig. 3.1. It emphasizes the four main elements of a typical ultracold quan-
tum gas setup; optical beams for cooling and trapping [Met99, Gri00]; magnetic field
coils for cooling, trapping, and interaction tuning [Met99, Chi10]; radio-frequency
(rf) antennae for spectroscopy [Tör16] and cameras for absorption imaging. Each

1Kalium is the German name for potassium
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Figure 3.1: Schematics of a typical ultracold mixture experiment. The four main components
are shown; magnetic field coils for trapping and tuning the interactions, laser light for optical
trapping, a radio frequency (RF) antenna to switch between spin states and a CCD camera to
take absorption images of the (trapped) clouds.

measurement begins with the creation of the gas by cooling and trapping the atoms
from an atomic beam and ends with the destructive imaging of the cloud of atoms.
The techniques behind this make-probe-discard cycle are well-established as are the
requirements for the experimental setup [SK12, Tör14, Jer14]. The atomic isotopes
selected determine the details of the optical and magnetic fields needed as well as the
cooling and trapping cycle required to prepare the mixture at a specific temperature
and density.

In our case, the source of the Li and K atomic beams is a multi-species oven in
which solid potassium and lithium is heated up. The atomic beams are cooled using a
Zeeman slower, before being collected in a dual-species magneto-optical trap (MOT)
in the center part of the experimental setup [Wil09]. The two species are consecutively
loaded into a single-beam optical dipole trap (ODT). Next, we evaporate a Li spin mix-
ture close to an intraspecies Feshbach resonance and thereby sympathetically cool the
K atoms without collisional loss. In most measurements we evaporate at 1180G with
a Li spin mixture of Li|1⟩-Li|2⟩, the lowest and second to lowest spin states. How-
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ever, for our latest measurements (Chap. 5) we used an alternative evaporative cooling
approach in which we evaporate at 483G with a Li|1⟩-Li|3⟩ mixture, the lowest and
third to lowest spin states. During the evaporation procedure, the atoms are transferred
into a crossed cigar-shaped optical dipole trap and we employ a spin relaxation stage
and pulses of resonant laser light to create pure spin mixtures of Li and K. The de-
tails of the procedure for the 6Li and 40K mixture can be found in Ref. [Spi10], while
the preparation procedure for the Fermi-Bose mixture using the Li|1⟩-Li|3⟩mixture is
described in Sec. 5.6.1.

The starting point of most of our measurements is a mixture in a crossed optical
dipole trap of about 105 Li atoms in one spin state and several 104 K atoms, also in a
single spin state. The lithium atoms are degenerate and have a relative temperature of
about 10-20% of the lithium Fermi temperature. The mixture is in thermal equilibrium
and the temperature of the sample is extracted by either looking at the expansion of a
thermal K cloud or by measuring the BEC-fraction of 41K, as discussed in Chap. 4.
The trap frequencies, which characterizes the trapping potential, are measured by ad-
dressing the collective excitations of the cloud of atoms. By briefly displacing the trap
center of the ODT, sloshing modes can be excited which correspond to oscillations
of the center-of-mass of the atoms. Measuring the size of the cloud for different wait
times after this excitation is a convenient way to determine the species-specific trap fre-
quency. Another mode, called the radial compression mode, can be excited by briefly
compressing the cloud by increasing the trap depth of the ODT, followed by a release
into the original trap. The oscillation that follows has a two times higher frequency
than the trap frequency if the interactions within the mixture are negligible. The study
of these and other collective modes provides, information about the interactions in the
mixture and is a powerful tool to probe the properties of quantum gases [Gri08].

To transfer the Li and K atoms between different spin states, we have different rf
antennae and we use rf pulses with a typical frequency of a few tenths of megahertz
to change the population in the different spin states. With the rf antennae we can
perform radio-frequency spectroscopy [Tör16], which measures the energy needed to
transfer the atoms between two states. We use this technique to measure the binding
energy of Feshbach dimers (Sec. 5.6.2), to measure the shift in interaction energy in an
atom-dimer mixture (Chap. 8) and to obtain the rf spectrum of an impurity interacting
with a Fermi sea (Chap. 7). By transferring the K atoms from a spin state which is
interacting with Li to one that is non-interacting, the interactions between Li and K
can be switched. Applying a �∕2 pulse creates a superposition state of two spin states
which are coupled by the rf and this facilitates time-domain spectroscopy, e.g. spin
echo or ramsey sequences. This technique is discussed in more detail in Chap. 6 and 7,
where we look at the time evolution of K impurity that is in a superposition of a spin
state that interacts with lithium and one that is non-interacting. Besides spectroscopic
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methods, measuring the atom loss as discussed in Chap. 5 and 9 is another way to gain
insight into the properties of the system.

The final information on our mixture is obtained through species-selective absorp-
tion imaging after time of flight. We can simultaneously image one spin state of Li and
one of K, by using two overlapping laser beams. The magnetic fields at which we op-
erate allow us to selectively address the different spin states. The optical density of the
atoms is too high to image them in situ and we create more dilute samples by switching
off the optical dipole trap and letting the cloud expand for a certain time of flight. If
the interactions between the atoms are negligible, the expansion after switching of the
trapping potential is ballistic and the density profile imaged reflects the momentum
distribution of the gas.

An absorption image is taken by shining light resonant to an optical transition on
the atoms for a fixed duration. The atoms absorb the light and this leads to a depletion
of the intensity of the probe beam depending on the optical density OD of the cloud
at each specific spatial position. Subtracting images of the recorded light intensities
with and without the atoms present gives the absorption image and information on the
optical density of the cloud. For low intensities, resonant light, and a closed optical
transition the optical density is related to the column density n(x, y) by the resonance
cross section �, i.e. OD = n(x, y) �. The absorption images are then directly related
to the column density of the atomic cloud and by integrating along one direction a
1D density distribution is obtained. This density profile can then be fitted with the
appropriate distribution function [Ing08, Ket99]. The 1D density profile of a pure K
BEC follows a parabola, while a thermal cloud is fitted with a Gaussian distribution
function. For a partial BEC a bimodal distribution function is used and the 1D density
profile of a degenerate Lithium gas follows a polylogarithmic function, which can be
approximated with a Gaussian fit. By fitting the 1D density profile, the atom number,
size of the cloud, and the BEC-fraction in the case of a partial BEC, are extracted.
These are the main observables of the experiment.

In reality the relation between column density and optical density is more com-
plex, as most optical transitions are not a closed two-level system and the imaging
beam might not be low enough in intensity or exactly resonant with the optical tran-
sition. This leads to a miscounting of the atom number. Especially in the case of
lithium the effect of the radiation pressure exerted by the photons during the imaging
pulse is important and Sec. 6.6.4.1 describes in detail how the lithium atom number is
calibrated.

With the making of an absorption image, the experimental cycle ends. The atoms
are heated up by the resonant laser pulse and are discarded. The experimental sequence
starts again from the beginning by loading the Li and K atoms into the MOT. For the
next data point, a new sample is prepared, manipulated, and imaged.
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3.2 Feshbach Resonances

The inter-and intra- species interactions in the mixture can be tuned with the aid of
Feshbach resonances [Chi10]. At a FR, in a two channel picture, a closed channel that
supports a bound state and an entrance channel that corresponds to two free atoms in
the long distance limit, couple resonantly. The difference in the magnetic moment be-
tween those channels can be used to tune the states in and out of resonance by changing
the magnetic field B. The scattering length a diverges and is given by

a(B) = abg

(

1 − Δ
B − B0

)

. (3.1)

Here, abg is the background scattering length, Δ is the width of the FR, and B0 is theFR position at which a diverges. The scattering length equals zero whenever
B = B0+Δ and resonance width therefore indicates the range between the FR pole and
the zero-crossing. On the repulsive side of the FR, a bound state exists and Feshbach
dimers can be associated. A common way to create those dimers is to ramp from
the attractive side of the FR to the repulsive side, as described in Chap 8 and 9. By
measuring the binding energy of these Feshbach dimer for various magnetic fields, the
FR position can be experimentally determined, while abg and Δ are usually obtained
from theory.

In this thesis we exploit three interspecies Feshbach resonances between lithium
and potassium, to tune the interspecies interaction. The Li-K FRs have two pecu-
liarities. They are relatively narrow and their position depends slightly on the trap
depth. Both aspects influence our determination of B0 from binding energy mea-
surements. For broad resonances, i.e. entrance-channel dominated FRs, the univer-
sal formula for the binding energy Eb ≈ ℏ2∕

(

2mra2
) applies. However, for narrow

resonances, i.e. closed-channel dominated, the momentum dependence of the inter-
action should be taken into account. Thus, to fully characterize our FRs, a fourth
parameter is needed. We use the range parameter R∗ as defined in Ref. [Pet04a],
R∗ = ℏ2∕

(

2mr �� abgΔ
), where mr is the reduced mass and �� the differential mag-

netic moment between the closed and open channel. For a → ±∞, R∗ is related to the
effective range reff = −2R∗. The universal formula for the binding energy only holds
when a ≫ R∗, which usually corresponds to a small magnetic field range. Outside of
this range, the binding energy Eb not only depends on B0, abg and Δ but also on R∗
and can be accurately described as [Pet04a]

Eb(B) =
ℏ2

8 (R∗)2 mr

(√

1 −
4R∗ (B − B0)

abg Δ
− 1

)2

. (3.2)
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We measure the binding energy by either magnetic modulation spectroscopy or radio-
frequency spectroscopy and fit the results with the above formula to determine B0 and
R∗, as described in Sec. 5.6.2.

The second special feature of our FRs is the dependence of B0 on the trap depth ofthe optical dipole trap, as was pointed out in Ref. [Koh12]. The trap light of 1064 nm
causes a differential light shift between the atom pair state and the molecular state that
resonantly couple at the FR. Thus, for every trap we use, we need to measure the trap-
specific B0. In Chap. 6 and 7, this light-induced shift is used to quickly change the
interaction of the sample by turning on an additional trap. This changes the position
of the FR and therefore the scattering properties of the mixture. For more details on
the the light-induced shift of B0, see Sec. 5.6.2 and 6.6.

3.3 Previous Research

The previous research with FeLi(Bo)Kx focused on realizing a strongly interacting
Fermi-Fermi mixture and observing the repulsive polaron in a population imbalanced
gas. In 2008, the first measurements on the 6Li-40K mixture were carried out and to-
gether with the Amsterdam group we observed both s-wave and p-wave Feshbach reso-
nances for different spin mixtures of the two elements [Wil08]. Around the same time,
the Munich group created a double-degenerate mixture of Li and K in a magnetic trap
by sympathetic cooling the fermionic gases with bosonic Rubidium [Tag08]. In con-
trast, we rely an all-optical production of this degenerate mixture and use the magnetic
field for interaction tuning. Since we evaporate a lithium spin mixture close to an in-
traspecies FR, we first investigated the collisional stability of K across this FR [Spi09]
before demonstrating the all-optical production scheme, where K is sympathetically
cooled [Spi10].

Once the cooling scheme was characterized, we looked into the interaction prop-
erties and investigated several Feshbach resonances within the mixture [Wil09, Spi10,
Nai11], before focusing on the FR at 155G FR. The FR at 155G occurs between Li
in the lowest Zeeman spin state and K in the third to lowest spin state. At this FR, we
observed the expansion dynamics of the mixture across the whole FR [Tre11] and saw
hydrodynamic behavior at particular magnetic fields. This showed that the strongly in-
teracting regime was accessible with this mixture and that the lifetime of the mixture
close to the FR was long enough for performing measurements. The next step, was the
observation of the repulsive polaron by measuring the excitation spectrum of a 40K
impurity in a Li Fermi sea with rf spectroscopy [Koh12]. The energy and lifetime of
the polaron was measured, as well as its coherence properties and the measurements
were compared to theory which took into account the narrowness of the FR used. This
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was the start of our impurity studies, which are continued in Chap. 6 and 7.
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CHAPTER 4. 4.1. Introduction

We measure the temperature of a deeply degenerate Fermi gas, by using
a weakly interacting sample of heavier bosonic atoms as a probe. This
thermometry method relies on the thermalization between the two species
and on the determination of the condensate fraction of the bosons. In
our experimental implementation, a small sample of 41K atoms serves
as the thermometer for a 6Li Fermi sea. We investigate the evaporative
cooling of a 6Li spin mixture in a single-beam optical dipole trap and
observe how the condensate fraction of the thermometry atoms depends
on the final trap depth. From the condensate fraction, the temperature
can be readily extracted. We show that the lowest temperature of 5.9(5)%
of the Fermi temperature is obtained, when the decreasing trap depth
closely approaches the Fermi energy. To understand the systematic ef-
fects that may influence the results, we carefully investigate the role of
the number of bosons and the thermalization dynamics between the two
species. Our thermometry approach provides a conceptually simple, ac-
curate, and general way to measure the temperature of deeply degenerate
Fermi gases. Since the method is independent of the specific interaction
conditions within the Fermi gas, it applies to both weakly and strongly
interacting Fermi gases.

4.1 Introduction

Since the first demonstration of Fermi degeneracy in an ultracold gas [DeM99], exper-
imental progress has provided unprecedented access to a great wealth of exciting phe-
nomena, as highlighted by the prominent example of a crossover superfluid [Zwe12].
The great interest in fermionic quantum gases results from the fact that fermions consti-
tute the elementary building blocks of matter and provide the possibility to investigate
various phenomena of strong interactions. The experimental availability of degenerate
Fermi gases has led to new insights into intriguing few- and many-body behavior, the
many facets of which are studied in a great variety of current experiments.

The lowest achievable temperature is crucial for the experimental observation of
many phenomena. While fermionic superfluidity [Pit16] is now routinely achieved in
many experiments worldwide, other phenomena like antiferromagnetic ordering [Har15]
require much lower temperatures, which are still very hard to obtain experimentally.
In the range of very low temperatures, well below one tenth of the Fermi tempera-
ture TF, thermometry becomes increasingly difficult. In deeply degenerate Fermi sys-
tems, one faces the general problem that only a small fraction of atoms near the Fermi
surface carry the temperature information, which reduces the detection sensitivity for
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common imaging methods. For strongly interacting systems, the interpretation of den-
sity profiles is not straightforward and requires detailed knowledge of the equation of
state [Luo07, Nas10, Ku12] to extract temperature information from thermodynamic
observables. For the specific case of a unitary Fermi gas with resonant interactions,
where thermodynamics follows universal behavior [Ho04], thermometry is now well
established, but not for the general situation of Fermi gases in strongly interacting
regimes.

The conceptually most simple way of thermometry is to use a probe in thermal
equilibrium with the object under investigation and to rely on a phenomenon with an
easily detectable and well-understood temperature dependence. This is the working
principle of thermometers in our daily life, where the underlying phenomenon is ther-
mal expansion or temperature-dependent resistivity. We apply the same basic idea to
a deeply degenerate Fermi sea, using a small sample of weakly interacting bosonic
atoms as a probe, and we rely on the sensitive detection of the condensate fraction.

Our Fermi gas is a spin mixture of deeply degenerate 6Li atoms with resonantly
tuned interactions, as it is used in many current experiments worldwide. For such a
system, temperatures around 10% of the Fermi temperature TF or even below have been
reported by various groups (see [Yef13, Lin14, Bur14b, Del15, Rev16] for a few recent
examples). Our thermometer is a small sample of bosonic 41K atoms immersed in the
Fermi sea. In addition to the condensate formation serving as the main observable,
our system takes advantage of the large mass ratio and the much smaller number of
bosons as compared to the fermions. Related thermometry approaches that rely on
coupling to a weakly interacting probe component, have been implemented in other
Bose-Fermi systems [Roa02, FB14, Del15, Ono16], in population-imbalanced spin
mixtures [Zwi06a], and in a Fermi-Fermi mixture [Spi09], but without combining all
these three advantages. For our system, the critical temperature for Bose-Einstein
condensation (BEC) corresponds to about 0.1 TF, which makes the condensate fraction
a sensitive and accurate probe right in the temperature range of main interest for deep
cooling.

In this paper, we present a thorough experimental investigation of Fermi gas ther-
mometry using a bosonic species. In Sec. 4.2, we discuss the basic principle of ther-
mometry for a Fermi-Bose system in general and for the particular case of our mixture
of 6Li and 41K. We then, in Sec. 4.3, describe the experimental procedures of prepa-
ration, cooling, trapping, and detection. In Sec. 4.4, we present the main experimental
results on deep cooling of the 6Li spin mixture, as probed by the 41K BEC.
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F

B

Figure 4.1: Basic idea of the thermometry. A small sample of bosonic atoms (B) is immersed
in a large, deeply degenerate sea of fermions (F) under thermal equilibrium conditions. The har-
monic trapping potentials (solid lines) are different for both species, depending on the particular
trapping configurations used. The temperature is derived from the condensate fraction.

4.2 Bosons as a Fermi Gas Thermometer

Here, we first discuss the basic idea of our thermometry approach in general terms,
before we turn our attention to the specific case of 41K bosons in a 6Li Fermi sea.

4.2.1 Basic Idea
The basic idea of our thermometry approach is illustrated in Fig. 4.1. We assume that
both harmonically trapped species are in sufficient thermal contact with each other to
establish a thermal equilibrium with a common temperature T . The main observable
is the condensate fraction � of the bosonic cloud, from which T can be derived.

To obtain the temperature T of the two-component system in relation to the Fermi
temperature TF, we start with the identity T ∕TF = (T ∕Tc) × (Tc∕TF), where Tc is thecritical temperature for BEC. The first factor, T ∕Tc, can readily be obtained from the
condensate fraction of the bosonic component through the well-known relation

T
Tc
= (1 − �)1∕3 . (4.1)

For calculating Tc∕TF we use the textbook formulas

kBTc = 0.940ℏ!BN
1∕3
B , (4.2)

kBTF = 1.817ℏ!FN
1∕3
F , (4.3)

where NB and NF represent the number of trapped bosons and fermions, and !B and
!F are the respective geometrically averaged trap frequencies. Note that Eqs. (4.1) and
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(4.2) are strictly valid only for non-interacting systems in the thermodynamic limit. In
practice, the finite sample size and interaction effects may lead to corrections [Gio96].

By combining Eqs. (4.1)-(4.3) we arrive at the central equation that underlies our
thermometry approach,

T
TF

= 0.518 (1 − �)1∕3
!B
!F

(

NB
NF

)1∕3
. (4.4)

In an experiment, the ratio of the trap frequencies, !B∕!F, will be determined by the
specific properties of the two different components and the particular trap configuration
used for the experimental realization.

Equation (4.4) highlights the conditions for optimized thermometry in the deeply
degenerate regime. A small ratio of the trap frequencies, !B∕!F, is highly desir-
able. This favors heavy bosons in combination with light fermions. The number ratio
NB∕NF enters with its third root, which shows that a very large number imbalance
(NB ≪ NF) is required to take real advantage of this factor. In this case, the bosons
can be considered as impurities in the large Fermi sea.

4.2.2 Case of the 6Li-41KMixture
We now turn our attention to the specific situation of bosonic 41K atoms in a Fermi
sea of 6Li atoms. The mixture [Wu11, Yao16] exhibits favorable properties for our
purpose. The interspecies interaction is moderate, with a background scattering length
of about +60 a0 [Han10], where a0 is Bohr’s radius. This is large enough to provide
a sufficient cross section for thermalization on a realistic experimental time scale, but
weak enough to avoid effects of strong interactions, such as a mutual repulsion or
attraction or fast three-body decay.

We consider a hybrid trapping scheme, as realized in our experiment, where the
atoms are confined radially by an infrared laser beam and axially by a curved magnetic
field (see Sec. 4.3.2), under conditions ensuring that the trap frequency ratio for the
two species is not changed by the gravitational sag (see Appendix 4.6). For such a trap,
in a harmonic approximation, the frequency ratio in Eq. (4.4) can be expressed as

!B
!F

=
(

mK
mLi

)−1∕2( �K
�Li

)1∕3( �K
�Li

)1∕6
, (4.5)

For our experimental situation (Sec. 4.3.2), the mass ratio ismK∕mLi = 6.810, the ratioof optical polarizabilities is �K∕�Li = 2.209 [Tan10, Saf13], and the ratio of magnetic
moments is �K∕�Li = 0.999. With these accurately known numbers, Eqs. (4.4) and
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(4.5) yield
T
TF

= 0.258 (1 − �)1∕3
(

NB
NF

)1∕3
, (4.6)

which we will use for extracting T ∕TF from our experimental data, as described in the
following Sections.

The dynamical range of our thermometry approach as applied to the 41K-6Li mix-
ture can now be illustrated by a numerical example, based on typical experimental
conditions. We assume NB∕NF = 1∕30 and possible measurements of the conden-
sate fraction in the range 0 ≤ � ≲ 0.95. According to Eq. (4.6), this corresponds
to a temperature range of 0.03 ≲ T ∕TF ≲ 0.08, right in the interesting regime for
state-of-the art experiments in the deeply degenerate Fermi gases.

4.3 Experimental Procedures

In this Section, we present our general experimental procedures applied to a Fermi-
Bosemixture of 6Li and 41K. In Sec. 4.3.1, we give an overview of themain preparation
steps. In Sec. 4.3.2, we present in detail the optical dipole trap used in the final stage
of deep evaporative cooling. In Sec. 4.3.3, we discuss the main detection schemes.

4.3.1 Preparation of the 6Li-41KMixture
The mixture is prepared in an all-optical cooling and hybrid trapping approach, very
similar to the one described in detail in Ref. [Spi10] and applied in various previ-
ous experiments on the mixture of 6Li and 40K atoms (see, e.g., Refs. [Spi09, Tre11,
Koh12, Jag14, Cet16]). A spin mixture of 6Li atoms in the lowest two sublevels of the
electronic ground state is evaporatively cooled close to a Feshbach resonance [O’H02,
Bou03, Joc03a] and serves as the agent to sympathetically cool a K minority compo-
nent. For the whole cooling process, we found that it makes no difference whether the
fermionic 40K or the bosonic 41K isotope is present, if we avoid any interspecies scat-
tering resonances and rely on the background interaction with the 6Li cooling agent,
being about the same for both K isotopes.

The preparation process involves a spin relaxation stage, which we employ to pre-
pare a single K spin state. Here, the parameters differ from our previous work on 40K
[Spi10]. For 41K, the initial laser cooling stage provides an unpolarized sample in the
three magnetic sublevels (mF = −1, 0, 1) of the lowest hyperfine level (F = 1). We
found that spin-exchange collisions with 6Li atoms in the second-lowest sublevel can
efficiently produce a polarized 41K sample in the mF = −1 state, which is the third-
lowest Zeeman sublevel (see Appendix A). The spin relaxation is performed near a
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magnetic field of 200G, where the process appears to be resonantly enhanced. This
stage has a duration of about 500ms and is implemented right after loading the optical
dipole trap, when the temperature is still rather high (few 100�K). To remove a resid-
ual population of K in themF = 0 state (typically 15%), we apply a resonant laser pulseright before the final evaporation stage to push those atoms out of the trap. It is interest-
ing to note that, without applying the spin cleaning, the evaporation process leads to a
spinor condensate [SK13] with clear signatures of immiscibility [Liu16]. The s-wave
background interaction between the bosons is relatively weak (intraspecies scattering
length of +60 a0 [D’E07, Pat14]), which makes the condensate very stable against
three-body decay.

4.3.2 Trap for Deep Evaporative Cooling
The whole evaporation process takes place in several stages [Spi10] within a total
time of 12 s. Here, we focus on the final stage, where the power of a single laser beam
is ramped down exponentially within 5 s, from an initial value of 440mW to a final
value in the range between 110 and 45mW. Then, a hold time of 10 s is introduced to
ensure full thermalization, before the two species are finally detected; see Sec. 4.3.3.
As in our previous work [Spi09, Tre11, Koh12, Jag14, Cet16], the magnetic bias field
of 1180G is applied for standard Feshbach tuning of the interaction between the two
6Li spin components. This leads to a large negative s-wave scattering length of a =
−2900 a0 [Zür13], and thus facilitates highly efficient evaporative cooling with very
low inelastic losses. We note that, because of the absence of any significant losses, the
number of K atoms stays essentially the same during the whole evaporative cooling
process.

We hold the spin mixture of 6Li together with the single spin state of 41K in a
hybrid trap [Joc03a] as illustrated in Fig. 4.2(a). Here, the radial confinement (y, z
directions) is provided by a single 1064-nm laser beam and the axial confinement (x
direction) results from the curvature of the applied magnetic field. In the vertical direc-
tion, gravity also comes into play and decreases the trap depth, which influences both
species differently. We apply an additional magnetic levitation field to compensate for
the latter effect. The levitation potential is given by

Ulev(z) = −�BB′z , (4.7)
where �B is Bohr’s magneton and B′ represents the vertical gradient of the magnetic
field. Note that for our high bias magnetic field of 1180G the levitation potential is
essentially the same for both species, since the magnetic moments of both species
are within 0.1% close to �B. We use a gradient of 2.5(2)G/cm, for which we obtain
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(a)

x

z

y

(b) (c)

Figure 4.2: Trapping scheme in the final stage of evaporative cooling. (a) A single infrared
laser beam for radial trapping (y, z directions) is used in combination with a magnetic field (coil
setup schematically shown). The magnetic field serves multiple purposes, providing the bias
field for Feshbach tuning, a curvature for axial trapping (x direction), and a vertical levitation
gradient. (b) The vertical potentials U i

tot(z) resulting from Eq. (4.8) for both Li (blue) and K
(magenta) are shown for a typical laser power of P = 75mW. For illustrative purposes, we have
introduced species-dependent offsets to shift the potential minima to zero. (c) The trap depths
U i

trap depend on the laser power P , with the K trap being always deeper than the Li trap.

�BB′∕mKg = 0.34(3), i.e., we realize a partial levitation of the K atoms by compensat-
ing one-third of the effect of gravity (gravitational acceleration g). For Li, we obtain
�BB′∕mLig = 2.36(20), which means a strong overlevitation. These conditions are
close to a “magic” levitation condition, where the combined tilt effect of gravity and
levitation on the trap depth is the same for both species; see Appendix 4.6 for a detailed
description.

For both species (i =Li, K), the total potential along the vertical direction in the
trap center can be written as

U i
tot(z) = −U i

opt exp(−2z
2∕w2)

+(mig − �BB′)z −
1
2
�BB

′′z2 , (4.8)
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where U iopt is the optical potential depth and w is the waist of the single optical beam.
The combined effect of gravity and magnetic levitation is represented by the term lin-
ear in z. The quadratic term describes a weak magnetic antitrapping effect, resulting
from the negative curvature of the magnetic field. In the saddle-potential of our config-
uration [Fig. 4.2(a)], the curvature along the z axis is two times larger and of opposite
sign as compared to the curvature along the x axis, the latter determining the axial
magnetic confinement. Therefore, the curvature B′′ is related to the axial trapping
frequency !ix by the formula �BB′′ = 2mi(!ix)2.The vertical trap potentials are shown in Fig. 4.2(b) for both Li and K atoms under
typical conditions of our experiment (P = 75mW). This clearly illustrates the different
optical potentials and the effect of the opposite tilt on both Li and K. The tilt and the
curvature substantially reduces the total trap depthsU itrap to values below the respective
depths of the optical potentials (U itrap < U iopt).

Figure 4.2(c) illustrates the dependence of the trap depths U itrap on the laser powerin the range relevant for our final evaporative cooling stage. It is important to note
that UKtrap > ULitrap is always fulfilled. The effect of the magnetic levitation ensures
that evaporative cooling removes Li atoms, but leaves all K atoms in the trap. This
is essential for our interpretation of the cooling process, where Li acts as the cooling
agent and K is cooled sympathetically via collisions with Li and not directly.

We characterize the trap by measuring the frequencies of radial and axial sloshing
oscillations of both the confined species. For the radial trap frequencies of Li and K,
we find

!Li
r = 2� × 37.6(5)Hz ×√

P∕mW , (4.9a)
!K
r = 2� × 21.0(6)Hz ×√

P∕mW , (4.9b)
where P is the power of the trapping beam. The measured frequency ratio !Li

r ∕!
K
r =

1.79(6) is consistent with the more accurate value of 1.756 as calculated from the dy-
namic polarizabilities [Tan10, Saf13] and the mass ratio. For the single-beam optical
dipole trap, assuming a Gaussian laser beam profile, we then obtain [Gri00] the waist
w = 44.3�m and the optical potential depths

ULi
opt∕(kB × nK) = 19.8(3)P∕mW , (4.10a)
UK
opt∕(kB × nK) = 43.7(6)P∕mW . (4.10b)

For the axial frequencies, characterizing the magnetic confinement, we obtain
!Li
x = 2.61!K

x = 2� × 25.6(1)Hz . (4.11)
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We note that, for the trap frequencies, the optical contribution to the axial trapping and
magnetic effects on the radial confinement remain negligibly small. Furthermore, the
levitation field that counteracts gravity leaves the oscillation frequencies at the bottom
of the trap essentially the same [Hun08], in spite of its substantial effect on the trap
depths. This ensures that the frequencies according to Eqs. (4.9a) and (4.9b) remain a
very good approximation for all our experimental conditions.

4.3.3 Detection
For detection of the two species we apply standard time-of-flight absorption imaging,
realized with probe beams propagating along the z axis. From images of the 6Li cloud,
we selectively determine the numberNF of fermionic atoms in each of the two lowest
spin states with relative uncertainties of about 15% [Cet15]. For 41K, we detect the
numberNB of bosonic atoms in the third-to-lowest spin state with an estimated relative
uncertainty of 15%. From the images of the bosons, we also extract the condensate
fraction �, which is the quantity of main interest for our thermometry approach.

Time-of-flight absorption imaging of the expanding 41K component can, in princi-
ple, be implemented by turning off the trapping laser beam and letting the cloud expand
in the samemagnetic field configuration as it is used for evaporative cooling. However,
in such a simple scheme, the magnetic field curvature causes a focusing effect [Don01]
in the x, y plane (oscillation frequency∼10Hz), which occurs right in the time interval
of main interest for the imaging. For analyzing the ballistic expansion of the thermal
cloud, it is rather straightforward to take the focusing effect into account [Ket07], so
that the temperature can be readily extracted. For the condensed part, however, the
focusing effect leads to an increase of the density and the optical depth of the cloud,
which makes a determination of the condensate fraction problematic.

We employ a modified scheme for time-of-flight absorption imaging, where we
adiabatically transform our hybrid trap into a purely optical one, before the cloud is
released into free space. To prevent any effect of interspecies interaction in the trans-
fer stage, we remove the Li atoms before the transfer into the crossed-beam trap by
smoothly applying a short stage with a magnetic gradient of about 8G/cm, which lev-
itates the K cloud and spills all Li atoms out of trap. Then we slowly ramp up a second
trapping beam, which has a fixed final power of P ′ = 70mW, and a waist of ∼50�m
and crosses the first beam under an angle of 16◦ [Cet15]. The magnetic field is si-
multaneously changed to a homogenous configuration without curvature, but with the
same bias field. The potential of the resulting crossed-beam dipole trap is similar to
the hybrid trap of the evaporation stage and the transfer is realized over a rather long
time of 4 s, which ensures adiabaticity of the process. The transfer into the detection
trap, being somewhat tighter than the cooling trap, implies a moderate adiabatic com-
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pression. This increases the temperature by a factor of roughly 1.5, as easily obtained
from the ratio of the trap frequencies1. This factor is taken into account when we deter-
mine the temperature of the thermal component from the temperature of the expanding
cloud. To image the expanding cloud after time of flight, we apply a levitation field
that counteracts gravity and facilitates long observation times up to 45ms.

We have performed several tests on the performance of our detection scheme. We
have carefully checked that the adiabatic transfer stage does not lead to any detectable
loss of K atoms and that its influence on the condensate fraction remains negligibly
small.

4.4 Cooling and Thermometry Results

In this Section, we present our experimental results. We focus on the final stage of
the deep evaporative cooling process, where the lowest temperatures are achieved.
In Sec. 4.4.1, we consider the fermionic 6Li component only and identify the condi-
tions where cooling crosses over into spilling of the Fermi sea. In Sec. 4.4.2, we turn
our attention to the bosonic 41K component and present measurements of the conden-
sate fraction and the temperature, which allows us to determine T ∕TF for the Fermi
gas. In Sec. 4.4.3, we investigate the interspecies thermalization process, justifying
the assumption of interspecies thermalization. In Sec. 4.4.4, we finally discuss the
performance of our thermometry scheme in terms of measurement uncertainties and
systematical effects.

4.4.1 Crossover from Evaporation to Spilling
In the final stage of evaporative cooling, when the laser power is reduced to very low
values, a crossover between two regimes takes place [Joc03a]. Above a certain thresh-
old, the continuous reduction of the trap power removes thermal atoms with some
excess energy above the Fermi energy level, which efficiently cools down the sample.
Then a threshold is reached where the Fermi energy level in the shallow trap reaches
the trap depth. Below that threshold, the atoms are spilled out of the trap. We iden-
tify this crossover by measuring the number of 6Li atoms remaining in the trap as a
function of the final trap power at the end of the evaporation ramp.

Figure 4.3 shows our observations for a final trap powerP between 45 and 110mW.
The crossover between the two different regimes can be clearly seen in the behavior

1At an intermediate power of P = 75mW, the geometrically averaged trap frequency increases from
69 to 109Hz. The frequency ratio depends on the value of P , but quite weakly. We have carried out
measurements on the trap frequencies in the crossed-beam detection trap, from which we determine the
change in trap frequencies with an accuracy of about a few percent.
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Figure 4.3: Crossover from the cooling to the spilling regime in deep evaporative cooling of 6Li.
In (a), we show the measured dependence of the atom number in both spin states as a function of
the laser power P , which decreases during the evaporation ramp. Here the labels Li 1 and Li 2
refer to the lowest and second-to-lowest spin state of Li, respectively. The systematic calibration
uncertainty in the number determination (±15%) is indicated by the shaded error band. In (b), we
plot the corresponding behavior of the Fermi energy EF and compare it with the decreasing trap
depth ULi

trap (solid line). The shaded region indicates a systematic uncertainty in the trap depth
resulting from the determination of the levitation gradient, which we consider as the dominant
error source for EF.
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of both the atom numbers (a) and the resulting Fermi energies (b). The results reveal
a change between 70 and 80mW, which marks the crossover into the spilling regime.
This interpretation is further confirmed by the behavior of the trap depth, as calculated
from Eq. (4.8). Below a power of about 70mW, the corresponding solid line in (b) gets
very close to the data points and shows essentially the same slope2. It is also interesting
to note that the spilling effect removes a small initial imbalance in the population of
both spin states.

As we will see in Sec. 4.4.2, the deepest cooling takes place in the discussed
crossover regime. We therefore summarize the relevant experimental parameters at
P = 75mW, where we haveNF = 2.0 × 105 atoms per spin state in a trap with an av-
erage frequency!F = 2�×140Hz. This results in a Fermi energy ofEF = kB×710 nK,corresponding to a peak number density of nF = 1.3 × 1012 cm−3 per spin state and a
Fermi wave number of kF = 1∕(4500 a0).

The interaction in the spin mixture [Zwe12] is characterized by the parameter
1∕(kFa) ≈ −1.6, which shows that our gas is not in the strongly interacting regime
as defined by |1∕(kFa)| < 1, but also not far away from it. The attraction in the gas can
be estimated [Nav10] to have ∼10% effect on the chemical potential and the number
density as compared to the interaction-free values. We point out that this does not play
any role for our thermometry approach, because we probe the temperature with another
species. This is in contrast to temperature measurements that are based on the size and
shape of the trapped cloud. The latter require knowledge of the temperature-dependent
equation of state [Ku12] for the particular interaction conditions.

4.4.2 Condensate Fraction and Equilibrium Temperatures

Here, we first present our measurements of the condensate fraction, from which we
derive the relative temperature T ∕TF. Then we compare these results with direct tem-
perature measurements of the thermal fraction of the bosons, and we finally investigate
how the number of bosonic atoms affects our results.

Figure 4.4(a) shows the BEC fraction �, measured as a function of the final power
P of the evaporation ramp. Each data point is the mean derived from images taken at
seven different times of flight (12 to 24ms), with the corresponding standard error of
the mean. The total number of bosonic 41K atoms isNB ≈ 1.3×104, independent of P .We locate the condensation threshold somewhere near 125mW and, with decreasing
power, we observe a steady increase of the condensate fraction until a maximum of

2The Fermi energy is calculated in the harmonic approximation. We estimate that the anharmonicity
of the trap leads to an error on the order of 5%.
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Figure 4.4: Fermi gas thermometry based on partially condensed bosons. (a) The measured
condensate fraction � is shown as a function of the final power P of the evaporation ramp. Here
the small error bars (most of them smaller than the symbol size) reflect the uncertainties of
bimodal fits to time-of-flight images. In (b), we show the corresponding results for the relative
temperature T ∕TF. Here the error bars reflect the total statistical uncertainties from fitting the
condensate fraction and the atom numbers, but not the calibration uncertainties in the atom
numbers. The latter result in an additional systematic scaling uncertainty of ±7%.
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Figure 4.5: Comparison of two methods to obtain the temperature from time-of-flight images.
The filled symbols represent the temperatures determined from the condensate fraction (see
data in Fig. 4.4(a)) together with the total number of bosons and the separately measured trap
frequency. The open symbols represent the temperatures that result from the expansion of the
thermal component of the bosonic cloud. For the closed symbols, most of the errors derived are
smaller than the symbol size. These errors represent the statistical uncertainties as derived from
measurements at seven different expansion times. For the open symbols, the error bars are the
uncertainties from fits to the expansion dynamics.

� ≈ 0.8 is reached near 75mW. The conditions of the Fermi sea of 6Li atoms are
exactly the ones already described in the preceding Section.

Using Eq. (4.6) and applying small finite-size and interaction corrections to the
critical temperature [Gio96], we derive the relative temperature T ∕TF for the degen-
erate Fermi gas3. The results are shown in Fig. 4.4(b). We observe lowest values of
T ∕TF ≈ 0.07 for P between 70 and 85mW. This power range corresponds to what
we have identified before as the crossover regime between evaporative cooling and
spilling. In the spilling regime, we see an increase in the relative temperature, due to
a fast spilling of the Li atoms. We conclude that the deepest degeneracy of the Fermi
gas is achieved when the evaporation is stopped just before the onset of spilling.

Figure 4.5 displays the absolute temperature T derived according to
Eqs. (4.1) and (4.2) from the BEC fraction data already presented in Fig. 4.4(a). We
compare these results with the temperature of the thermal component, which we ex-

3Finite-size effects and interaction effects lead to small downshifts of Tc. To derive the temperature from
the condensate fraction, for the sake of simplicity, we use Eq. (4.1) with corrections to Tc from [Gio96]. Even
at our smallest atom numbers, the temperature corrections stay well below 10%. Interaction corrections in
our largest clouds stay below 2%.
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Figure 4.6: Influence of the number of bosons on (a) the condensate fraction � and (b) the
resulting relative temperature T ∕TF. Four different data sets are shown, with different numbers
of bosonic K atoms: black squares,NB = 1.5(1) × 104; red circles, 1.2(1) × 104; blue triangles,
0.9(1)×104; green diamonds, 0.76(6)×104. The error bars represent the statistical uncertainties
as derived from the fit errors of the condensate fraction.

tract from the same time-of-flight images by fitting the expansion dynamics. The com-
parison shows that both methods provide consistent results, but it also reveals much
smaller statistical uncertainties (see error bars) for the first method. This observa-
tion highlights an important advantage for accurate thermometry of our method that is
based on the determination of the condensate fraction.

In an additional set of experiments, we have addressed the question of whether the
presence of the 41K bosons has an influence on the cooling of the Fermi gas. We there-
fore reduced the number of K atoms from about 15,000 (similar to Fig. 4.4) down to
about 7500. Here, for the sake of shorter data acquisition time, we applied a simpler,
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but somewhat less accurate detection scheme than before4. In Fig. 4.6, we show the
results for four different values of the K atom number. The BEC fraction in (a) de-
creases for a reduced number of bosons, but this can be fully attributed to the reduced
critical temperature. The relative temperature in (b) shows a significant decrease for
the lowest number of bosons.

Our results show that a reduction of the number of K atoms slightly improves the
cooling performance of the Li Fermi gas. We interpret this observation as a conse-
quence of the weak additional heat load associated with the bosons, which has to be
removed by the evaporative cooling process. However, we do not observe any sig-
nificant effect on the temperature of the Fermi sea if the number of K atoms stays
below 12 000, which corresponds to about 3.0% of the total number of 6Li atoms.
The lowest temperature that we have observed in these measurements corresponds to
T ∕TF ≈ 0.06.

4.4.3 Thermalization and Heating Dynamics

A central assumption underlying our paper is thermal equilibrium between the boson
”thermometer" and the Fermi sea. In order to test the validity of this assumption we
have investigated the thermalization dynamics and residual heating effects that may
affect our results. In all experiments discussed before, a hold time of 10 s was intro-
duced between the end of the evaporation ramp and the temperature measurement.
We now present measurements on the temperature evolution during this hold time at
a constant trap power of P = 75mW, again based on the detection of the condensate
fraction. Figure 4.7(a) shows how the temperature drops from about 78 nK right after
the evaporation ramp to its equilibrium value of 53 nK. An exponential fit yields a ther-
malization time scale of 2.5(5) s, which is short compared with the total hold time of
10 s. This ensures that the K cloud reaches its equilibrium temperature with negligible
deviations well below 1 nK.

The thermalization time can be estimated from our experimental parameters, using
the approximation

1
�
= 2 × 3T

2TF
×
�
3
× nF�vF , (4.12)

which is a product of four factors. The prefactor of 2 accounts for the two different spin
states in the Fermi sea. The factor 3T ∕(2TF) ≈ 0.1 results from the Pauli blocking of

4In Fig. 4.6, we have used a single time of flight of 22ms to reduce the total measurement time.
This method may be somewhat less accurate, but produces results fully consistent with the method used
in Fig. 4.4.
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Figure 4.7: Thermalization and heating dynamics with and without the Fermi sea. (a) The data
points show the measured temperature evolution of the bosonic 41K cloud (NB = 1.6(2) × 104)after evaporative cooling of the 6Li Fermi sea. The solid curve is an exponential fit, yielding
a relaxation-time constant of 2.5(5) s. (b) The data points display the measured temperature
increase of the 41K cloud after full removal of the 6Li coolant. The linear fit (solid line) yields a
heating rate of 0.49(4) nK/s. The error bars represent the temperature uncertainties as derived
from the fit errors of the condensate fraction.

collisions5. The third factor 3∕� estimates the number of elastic collisions needed for
thermalization, with � = 4mKmLi∕(mK + mLi)2 ≈ 0.45 for the specific mass ratio of
our mixture [Mud02]. The last factor represents the elastic collision rate in the limit
of relative velocities dominated by the light atoms at the top of the Fermi sea, with the
corresponding Fermi velocity vF =

√

2EF∕m ≈ 44mm/s. The cross section for elastic
collisions between 6Li and 41K atoms is � ≈ 1.3 × 10−16m2 [Han10]. This results in
a relaxation time of � ≈ 4.5 s, which is larger than the observed value, but still within

5We approximate this effect by assuming that only the fraction of Li atoms with energies in an interval
between kB(TF − T ∕2) and kB(TF + T ∕2) is thermally active. The factor 3/2 results from the number of
states, which increases ∝ E3∕2 for the approximately homogeneous environment sampled by the bosons in
the trap center.
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the errors of the simple estimation used.
We have also checked the influence of a possible effect of residual heating of the

K cloud, which may be induced by trap light fluctuations. This heat would have to
be removed by thermal contact with the coolant, i.e. the Fermi sea of 6Li atoms, and
the corresponding heat flow would require a temperature difference between the two
components. We have experimentally investigated the heating of the K cloud after re-
moving the Li atoms from the trap, by application of a magnetic gradient, and observed
the temperature evolution over 30 s. Figure 4.7(b) reveals a very weak temperature in-
crease, with a slope corresponding to a heating rate of heat ≈ 0.5 nK/s. Here, for
simplicity, we assume a linear heating model. With the relaxation time � ≈ 2.5 s
discussed before, we obtain a temperature difference of heat� ≈ 1.2 nK, which is neg-ligibly small. In additional experiments, we have investigated heating in our detection
trap, see Sec. 4.3.3, and found an effect of less than 2 nK/s within the 4 s when the
atoms are kept in this trap.

4.4.4 Uncertainties
Our thermometry approach is based on Eq. (4.6) to determine the relative temperature
T ∕TF. The underlying model relies on the harmonic approximation of the trap poten-
tial, and we estimate that anharmonicity effects on TF do not exceed a few percent.

The model also assumes the bosonic probe to be a weakly interacting gas, which
is well fulfilled. We have checked that we are not near any intraspecies or interspecies
Feshbach resonances. Furthermore, the intraspecies background scattering length of
41K is about +60 a0 [D’E07, Pat14] and the background scattering length between
6Li and 41K is also about +60 a0 [Han10]. This means that for the reference power
(P = 75mW) and NB ≈ 1.2 × 104, the chemical potential of the bosons corresponds
to∼ 16 nK. The peak number density of the fermions is about 26 times smaller than the
one of the bosons. The mean field of the fermions as seen by the bosons is very small,
only ∼ 2.3 nK. The correction to the boson trap frequencies caused by the fermion
mean field, is on the order of 10−3 , which is negligibly small. The mean field of the
bosons on the fermions corresponds to ∼ 64 nK, which is much smaller than the Fermi
energy of about 710 nK.

In addition to these model assumptions, the experimental determination of the tem-
perature is subject to four main error sources. First of all, there are the statistical mea-
surement uncertainties. These come from the analysis of the time-of-flight images and
give uncertainties of a few percent in both the atom number and the determination of
the condensate fraction.

A second source that influences themeasured values of T ∕TF are calibration errors.For the atom number determination, we estimate calibration uncertainties of 15% for
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both species. This results in a systematic scaling uncertainty in T ∕TF of±7%. Anothersystematic error source is the trap frequency ratio, which slightly changes if the trap
does not exactly fulfill the magic levitation condition. However, the effect on T ∕TF forthe range of powers used in our experiments is negligibly small.

Thirdly, the thermalization between the two species may be imperfect, owing to
heating in combination with weak thermal coupling. We estimate that the correspond-
ing temperature difference stays below 2 nK, which results in an effect below 3% on
the relative temperature.

Furthermore, as a fourth error source, we observed a slight heating effect during the
transfer into the detection trap, which may also affect the temperature by a few percent
at most. We are confident that other heating sources are very weak and can be safely
neglected. All these residual heating effects may somewhat increase the temperature
of the bosonic probe atoms, and may thus lead to an overestimation of the temperature,
but not by more than 10%.

Taking all statistical and systematic uncertainties into account, we can report a low-
est observed temperature of T ∕TF = 0.059(5)6. The true temperature of the Fermi gas
may even be slightly below this value (about 5%) because of residual heating directly
affecting the thermometry atoms.

4.5 Conclusion

We have thoroughly investigated a conceptually simple and accurate method for de-
termining the temperature of a deeply degenerate Fermi gas. Our method essentially
relies on detecting the condensate fraction of a second, weakly interacting bosonic
species that is thermalized with the Fermi sea. High accuracy of the temperature mea-
surements can be achieved, since the relevant trap frequency ratio can be very well
determined and uncertainties in the atom number only weakly influence the results.

We have employed the method in experiments on a spin mixture of 6Li, where
we have used a small sample of 41K bosons as the probe. The large mass ratio and a
large number ratio have enabled us to measure the temperature in the range of 0.03 to
0.1 TF, which is right in the regime of state-of-the art cooling experiments. We have
investigated the final stage of deep evaporative cooling and we have observed that the
deepest degeneracy of the Fermi gas, with T ∕TF = 0.059(5), is achieved when the
evaporation is stopped just before the onset of spilling. We found the temperature not
to be affected by the presence of the probe atoms if the number of K atoms stays below

6The reported temperature is the mean value of the red circles, blue triangles, and green diamonds in
Fig. 4.6, in the range of 68 − 80mW.
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3.0% of the number of Li atoms. The K atoms then represent impurities in a Fermi
sea.

Our thermometry method provides us with a powerful tool to further optimize the
cooling. For optimization, we can improve the starting conditions for evaporation by
implementing a sub-Doppler cooling stage [Bur14b, Sie15] and we can optimize the
evaporation sequence by variation of the magnetic field, the trap configuration and the
details of the ramp. With sensitive and accurate thermometry, it will be very interesting
to investigate the practical and fundamental limitations of the cooling process. Under
our present conditions, we may be limited by residual trap light fluctuations [Sav97]
or other sources of noise in the experiment or by inelastic losses in combination with
the hole heating effect [Tim01].

For the interaction parameter of 1∕(kFa) ≈ −1.6, as chosen in our experiments,
the predicted critical temperature for superfluidity is ∼ 0.03 TF [Blo08, Hau07]. Thus,even for our lowest temperatures, the Li spin mixture is not superfluid. However, the
system is stable enough at resonant interaction conditions [Spi09], so that the realiza-
tion of a mass-imbalanced Bose-Fermi double superfluid, as already demonstrated in
Ref. [Yao16], would be straightforward. Thermometry on the bosons could be per-
formed in a wide range of the BEC-BCS crossover, as long as the thermalization time
stays much shorter than the timescale of inelastic losses7. While the BEC side may be
problematic [Spi09], the method would work well in the unitary case and on the BCS
side.

The implementation of the presented thermometry method should be
straightforward for other Bose-Fermi mixtures. Extreme mass ratios [Pir14, Tun14,
Roy17, Kon16] are of particular interest for pushing the accessible regime further
down to temperatures on the order of 0.01 TF. However, at such ultralow tempera-
tures, the larger number of collisions required for thermalization and the increasing
Pauli blocking effect will increase the thermalization time, which will make it more
difficult to reach thermal equilibrium on a realistic experimental time scale. This may
be compensated for by larger interspecies collision cross sections or higher number
densities. Our paper shows how the conditions can be optimized for specific mixtures,
including the role of optical polarizabilities, magnetic moments, magnetic levitiation
for trapping, and the effect of interspecies collisions.

In our future work, we are particularly interested in the deep cooling of the Fermi
sea. This reduces thermal decoherence effects as observed in studies of impurities
coupled to the Fermi sea [Cet15] and opens up the possibility of observing new phe-
nomena [Cet16], such as multiple particle-hole excitations and the onset of the or-

7Inelastic decay of 41K is observed predominantly on the BEC side of the 6Li Feshbach resonance,
similar to what was observed on a strongly interacting 40K-6Li mixture [Spi09]
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thogonality catastrophe [Kna12]. Moreover, we are interested in the collective zero-
temperature dynamics of bosonic impurities in the Fermi sea close to an interspecies
Feshbach resonance [Lou17a].
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4.6 Appendix: ‘Magic’ Levitation Trap

We refer to a ‘magic’ levitation trap as an optical dipole trap for two different species,
in which the corresponding potential depths and trap frequencies maintain a constant
ratio at any optical power applied. In optical dipole trapping experiments, one often
has to deal with the effect of gravity. Two species in the same trap are in general
affected differently, in particular in the case of largely different masses or different
optical polarizabilities. The tilted potentials usually give a different reduction of the
effective trap depth as compared to the depth of the optical potentials. During evap-
orative cooling this often leads to a much faster reduction of the potential depth for
the heavier species than for the lighter one, which may pose a severe limitation to the
whole cooling process. Magnetic levitation [And95, Han01, Web03a] offers a solu-
tion to this problem and allows one to realize conditions, where the combined effect
of gravity and levitation results in the same effect on the total shape of the potential.

The magic gradient can be derived from the condition that the combined magnetic
and gravitational force is the same for both traps, if considered relative to the optical
potential, the depth of which in turn is proportional to the optical polarizabilities. The
condition reads

�1B′± − m1g
�1

= ±
�2B′± − m2g

�2
, (4.13)

where mi, �i, and �i represent the different masses, magnetic moments, and optical
polarizabilities of the two species, respectively. The lower sign refers to the situation
illustrated in Fig. 4.8(a), where the trapping potentials are tilted in the opposite direc-
tion. The upper sign corresponds to the situation, where both potentials are tilted in the
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same direction. Solving Eq. (4.13) yields the two corresponding magnetic gradients

B′± =
�2m1 ∓ �1m2
�2�1 ∓ �1�2

g . (4.14)

The solutionB′−means partial levitation for one species and overlevitation for the other
one, so that the tilts have opposite signs. The other solution (B′+) corresponds to the
same direction of the tilt for both species. The application ofB′− causes a separation of
the trap centers, similar to the gravitational sag effect. In contrast, B′+ does not cause
such a spatial shift, but it may imply much stronger tilts. The optimum solution for an
experiment depends on the specific situation.

For our situation of optically trapped 6Li and 41K at high magnetic bias fields
(�1 = �2 ≈ �B), we obtain a magic levitation gradient of B′− = 2.97G/cm, corre-
sponding to a partial levitation of 41.3% for K and an overlevitation of 281% for Li.
The small spatial separation of the trap centers is irrelevant for our application. For the
experimental power range we use, the separation between the trapcenters of the two
species lies between 12 and 28 % of the optical beam waist. Note that the other solu-
tion (B′+ = −4.02G/cm) does not correspond to levitation, but to an effective increase
of the gravitational effect for both species. As described in Sec. 4.3.2, we realize a
situation close to the magic levitation gradient B′−.
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Figure 4.8: Illustration of magic levitation for 6Li and 41K. All potentials are normalized to
the optical potential depth of K, and zero potential refers to the trapping potential minima. The
combined magnetic and gravitational forces cause a trap depth reduction, as indicated by the
horizontal dotted lines. For two distinct values of the magnetic gradient, see Eq. (4.14), the
ratio of the resulting trap depths for K and Li remains constant and corresponds to the ratio of
optical polarizabilities (�K∕�Li ≈ 2.2). (a) With the magnetic gradient set to B′−, K is partially
levitated, while Li is overlevitated. The relative tilt has the same magnitude, but opposite sign.
(b) With the gradient set to B′+, the magnetic force effectively increases the effect of gravity for
both species, resulting in a tilt in the same direction.
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CHAPTER 5. 5.1. Introduction

We probe the interface between a phase-separated Bose-Fermi mixture
consisting of a small Bose-Einstein condensate of 41K residing in a large
Fermi sea of 6Li. We quantify the residual spatial overlap between the two
components by measuring three-body recombination losses for variable
strength of the interspecies repulsion. A comparison with a numerical
mean-field model highlights the importance of the kinetic energy term for
the condensed bosons in maintaining the thin interface far into the phase-
separated regime. Our results demonstrate a corresponding smoothing of
the phase transition in a system of finite size.

5.1 Introduction

Multicomponent systems and materials are ubiquitous in nature and technology. The
interactions between the different constituents and the ways in which they coexist are
essential for understanding the general properties of such systems. Repulsive interac-
tions between different components can induce phase transitions to spatially separated
states. The effects of phase separation appear in a wide range of different systems such
as alloys, combinations of different liquids, colloids, polymers, glasses and biological
systems. In a phase-separated state, the interaction between the components no longer
takes place in the bulk but is restricted to the thin interface where the constituents still
maintain some residual overlap. The physics of this interface has therefore attracted
a great deal of attention in many different fields, e.g. in liquid-liquid systems [Dav96,
Han13]. However, since the interaction takes place in a very small volume, it is gen-
erally much more difficult to obtain experimental information from these systems as
compared to systems in which the components are mixed.

Quantum fluids exhibit a great wealth of phenomena related to phase separation.
Early experiments with cryogenically cooled liquid helium have shown phase separa-
tion in
mixtures of the bosonic isotope 4He and the fermionic 3He [Ebn71]. This effect has
found an important technological application in the working principle of dilution re-
frigerators [Das65, Pob07]. Ultracold gases, in particular, mixed-species systems have
opened up many intriguing experimental possibilities to study phases of multicompo-
nent quantum matter [Blo08]. The large experimental toolbox includes a variety of
available bosonic and fermionic constituents, a superb level of control of confinement,
and a wide tunability of interactions [Chi10]. Phase separation has been studied ex-
tensively in degenerate Bose-Bose mixtures [Pap08b, Toj10, McC11, SK13, Wac15,
Wan16, Lee16], where interactions are dominated by mean-field potential energies.
The situation becomes more complicated when fermionic constituents are involved, as
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strong repulsion on the scale of the Fermi energy is required to observe phase separa-
tion. Superfluid fermionic mixtures [Shi08] and repulsive atomic Fermi gases [Val17]
are examples of intriguing phase-separation effects. In a broad sense, mixtures involv-
ing fermionic constituents are promising candidates for realizing new phases, e.g., in
Fermi-Fermi systems [Liu03, Isk06, Par07, Bar08, Baa10, Wan17] and in Bose-Fermi
systems [Pow05, Suz08, Mar08b, Lud11, Ber13, Kin15].

In this Letter, we consider a Bose-Fermi model system that undergoes phase sep-
aration and study the interface between the constituents. We produce a Bose-Einstein
condensate (BEC) of 41K atoms in a large Fermi sea of 6Li, and we use an interspecies
Feshbach resonance for controlling the repulsive interaction. We characterize the over-
lap between the species by measuring three-body recombination losses and thus probe
the thin interface between both components. By comparing the experimental results
with theoretical model calculations, we demonstrate the importance of the kinetic en-
ergy of the condensed bosons at the thin interface.

5.2 General Idea

Figure 5.1(a) illustrates the onset of phase separation with an increasing interspecies
repulsion, showing the density profiles of a small-sized BEC coexisting with a large
Fermi sea in a harmonic trap. The main conditions and criteria for phase separation in
such Bose-Fermi mixtures have been theoretically introduced in Refs. [Mø98, Viv00,
Rot02]. For a vanishing interspecies interaction, the independent spatial profiles of
the clouds show maximum overlap [I in Fig. 5.1(a)]. With an increasing repulsion,
the density of the lithium atoms in the center of the trap decreases, the BEC is com-
pressed, and the spatial overlap between the clouds is reduced (II). For strong repulsive
interactions, the two clouds undergo phase separation (III), and the bosons reside at
the center of the trap, forming a hole in the Fermi sea.

We can observe the depletion in the center of the Fermi sea by imaging the 6Li
cloud. As Fig. 5.1(b) shows, we observe a small dip in the radial column density pro-
file taken from a thin slice of the fermion cloud. These data were taken under similar
conditions as our main data presented later 1. The hole in the fermion density be-
comes more visible when reconstructing the fermionic radial density profile using the
inverse Abel transformation [Fig. 5.1(b)]. We see an essentially complete depletion of
the fermionic density in the center, which indicates a significant reduction of the over-
lap with the BEC. A quantitative analysis of the physics at the interface is obstructed
by the limited signal-to-noise ratio of the image, the small size of the overlap region

1The thin slice is taken from a typical absorption image of the Li cloud with a time of flight of 2ms and
at abf ≈ 1480a0
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Figure 5.1: Emergence of phase separation. (a) Schematic density profiles for bosons (magenta)
and fermions (blue) for an increasing repulsive interaction. The densities are normalized to the
corresponding peak value without an interaction. Note that in reality the boson peak density
is a factor of 40 larger than the fermion peak density. (b) Experimentally observed normal-
ized column density of a cut through the fermionic cloud and normalized reconstruction of the
corresponding radial density profile using the inverse Abel transformation.

compared to our imaging resolution, and the high optical density of the trapped cloud.
Note that strong indications of phase separation in a Bose-Fermi mixture have been
observed in earlier experiments on mixtures of 87Rb and 40K [Osp06c, Zac06], but
these experiments did not provide quantitative information on the overlap reduction.

Here, we introduce an alternative approach to study the spatial overlap between
the two species. Our observable is the boson-boson-fermion three-body recombina-
tion loss from the trap. We assume that all losses can be attributed to three-body pro-
cesses, since two-body losses are energetically suppressed when both atomic species
are in their lowest internal substates. In our system, decay processes of three 41K
atoms (three identical bosons) occur at a very low rate, since the intraspecies scatter-
ing length abb = 60.9a0 [Tie17], with a0 being the Bohr radius, is small compared
with the interspecies scattering length abf in the range of interest. On the other hand,
recombination processes involving one 41K atom and two 6Li atoms (one boson and
two identical fermions) are Pauli suppressed [Esr01]. At a large interspecies scattering
length, this leaves the recombination events of two 41K atoms with one 6Li atom as
the dominant three-body decay mechanism.

A favorable property of our system is the fact that the BEC is much smaller than
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the fermion cloud and occupies a very small volume within the Fermi sea. Thus, the
BEC can cause only a local perturbation of the Fermi sea with a negligible effect on
the global scale. This scenario enables a description in terms of a fermionic reservoir
approximation (FRA), which assumes a homogeneous environment characterized by
a constant Fermi energy EF and considerably simplifies our study of the overlap.

In the zero-temperature limit, where a pure BEC is formed, the bosonic atom loss
can be related to the overlap integral as

Ṅ = −1
2
L3
ˆ
nf n

2
b dV , (5.1)

whereN is the total number of bosons and nb and nf represent the position-dependentnumber densities of the bosons and fermions, respectively. The parameter L3 is thethree-body loss coefficient, and the symmetry factor 1∕2 results from the suppression
of thermal bunching in a BEC [Kag85, Bur97, Söd99, Hal11] for a process involving
two identical bosons. The L3 coefficient can be determined as a function of abf in a
standard way [Web03b, Ulm16] using a noncondensed cloud instead of a BEC. In this
case, the interspecies repulsion can be neglected, and the density profiles of the bosons
and the fermions are well known.

In order to characterize the effect of the boson-fermion interaction on the spatial
overlap between the BEC and the Fermi sea, we define the overlap factor

Ω ≡

´
nf n2b dV´
ñf ñ2b dV

(5.2)

as the three-body density integral normalized to the case of vanishing interspecies
interaction (abf = 0), where ñf (ñb) is the fermionic (bosonic) noninteracting density.

The overlap integral for the case of a vanishing interspecies interaction, ´ ñf ñ2b dV ,
can be calculated analytically based on two approximations. First, we apply the FRA
and replace ñf by its peak value n̂f , which as a constant factor can be taken out of the
integral. Second, for a not too small BEC, we can apply the Thomas-Fermi approx-
imation and solve ´ ñ2b dV as 4

7 Nb n̂b, with n̂b the peak density of the BEC. Finally,
with the overlap integral for the interacting case given by Eq. (5.1), the overlap factor
can be experimentally obtained as

Ω = 7
2 n̂f n̂b


L3
, (5.3)

where we introduce the normalized loss rate  = −Ṅ∕N as the experimental observ-
able extracted from measuring the atom loss in a BEC.
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5.3 Experimental Preparation and Results

For our experiments, we prepare an ultracold Bose-Fermi mixture of typically 104
K and 105 Li atoms in a cigar-shaped, crossed-beam optical dipole trap with a wave-
length of 1064 nm and an aspect ratio of 1:7. The preparation procedures are similar to
those described in Ref. [Lou17b] and earlier work on 6Li-40Kmixtures [Spi09, Tre11,
Koh12, Jag14, Cet16]. In addition, we employ a laser cooling scheme for lithium us-
ing the D1 line [Gri13, Bur14a, Fri15], which provides improved starting conditions,
and we take advantage of an alternative evaporative cooling approach [Bur14a] (see
Sec. 5.6.1).

A key ingredient of our experiment is the Feshbach resonance (FR) near 335G [Han17,
Tie17, Wu11] (see Sec. 5.6.2 and Appendix B), between the lowest spin states of the
two species. The scattering length can be varied by magnetic field tuning accord-
ing to abf = abg

[

1 − Δ∕(B − B0)
] [Chi10], where Δ = 0.949G, abg = 60.9a0 and

B0 = 335.057(1)G. The FR center B0 somewhat depends on the optical trap intensity
because of a light shift effect (see Sec. 5.6.2.3) and can be experimentally determined
by radio-frequency spectroscopy. The other parameters are obtained from scattering
models [Han17, Tie17] (see Sec. 5.6.2.1).

To obtain the critical interspecies scattering length for the onset of phase separa-
tion, we employ the FRA together with the results of Ref. [Viv00]. This yields the
condition

abf > 1.15
√

abb∕kF, (5.4)
where kF = (6�2n̂f )1∕3 is the Fermi wave number, corresponding toEF = ℏ2k2F∕(2mf )with mf the mass of the fermions. For our typical experimental conditions (n̂f ≈ 1.2×
1012 cm−3), it gives a moderate value for the critical scattering length of about 600a0.This is well within our tuning range and allows us to explore the entire scenario from
weak to strong repulsion, reaching far into the phase-separated regime.

We first present our measurements ofL3, which were obtained with noncondensedsamples of 41K in a degenerate Fermi sea of 6Li at about 0.2 TF, with TF the Fermi tem-
perature. From the measured decay curves we obtain the L3 values that are shown in
Fig. 5.2(a). The K samples are prepared close to degeneracy at two different tem-
peratures with a typical fermion peak density of n̂f ≈ 4.5 × 1012 cm−3. In one set
of measurements (set A1, see Sec. 5.6.3.1), we have T = 440 nK, corresponding to
T ∕Tc = 1.7with Tc the critical temperature for condensation. In the other set (A2), we
have T = 240 nK, corresponding to T ∕Tc ≈ 1. By applying a smoothing method (see
Sec. 5.6.3.2), we interpolate between the data points and obtainL3 for any abf between80 and 2100a0. Our results on L3 show the expected strong increase with abf , whilethe broad dent around 600a0 may point to an Efimov-related feature [Kra06, Joh17].

- 64 -



5

CHAPTER 5. Phys. Rev. Lett. 120, 243403 (2018)

100 1000
0.01

0.1

1

10
0.01

0.1

1

10

100 (a)
 

L 3 (
10

-2
5  c

m
6 /s

)

(b)
 

 (s
-1
)

abf /a0

Figure 5.2: Loss measurements on noncondensed and condensed bosonic 41K clouds in a 6Li
Fermi sea. The error bars represent 1� fit uncertainties. (a) Three-body loss coefficient L3 for
T = 440 (set A1: squares) and 240 nK (set A2: triangles). The solid curve is an interpolation
from applying a smoothing method (see Sec. 5.6.3.2), with the gray-shaded area representing
the corresponding 95% confidence band. (b) Normalized loss rate  of the total atom number
of a partially condensed bosonic cloud for data sets B1-B3 (inverse triangles, diamonds, and
circles, respectively).
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Second, we present the boson loss rate  in a degenerate Bose-Fermimixture at var-
ious interaction strengths. Typically, we have 2.9×104 K atoms with a 50% condensate
fraction in a Fermi sea of 1.4×105 Li atomswith a peak density of n̂f = 1.2×1012 cm−3

and a temperature of ∼ 0.13TF. The sample is first prepared at 200mG below B0, andthen the magnetic field is changed in a near-adiabatic ramp of 2ms to the specific field
on the repulsive side of the FR, where we observe the loss of the K atoms for various
hold times. We fit the initial decay of the total atom number with a linear curve and
determine the normalized loss rate  (see Sec. 5.6.3.3). Figure 5.2(b) shows the corre-
sponding data points, which were recorded in three sets (B1-B3, see Sec. 5.6.3.1) with
slightly varying parameters.

With the normalized loss rate  and the three-body recombination coefficient L3,we can now quantify the spatial overlap. In a real experiment, two complications arise
that require an extension of our model beyond Eq. (5.3). First, at a finite temperature,
we have only a partial BEC and the presence of the thermal component plays a signif-
icant role in the observed loss. Second, there is the possibility of observing secondary
loss, where a short-lived LiK dimer, produced in a first recombination, recollides with
another K atom, and therefore this leads to additional loss (see Sec. 5.6.3.5). This pro-
cess is likely to happen for the dense BEC but negligible for the thermal K cloud. To
take both effects into account, we extend Eq. (5.1) and include all loss contributions;

Ṅ = −L3
ˆ
nf

(1
2
� n2b + � nb nt + n

2
t

)

dV , (5.5)

where nt represents the thermal bosonic density and � is a factor that takes into account
secondary loss. In our case, we assume � = 3∕2 (see Sec. 5.6.3.5). The density integral
consists of three terms, which describe the loss caused by one fermion and two bosons.
The bosons can either be two atoms from the BEC, one from the BEC and one from
the non-condensed component, or two from the noncondensed bosonic cloud. Within
the FRA and the Thomas-Fermi approximation, these integrals can be calculated, and
an effective overlap factor results from an extension of Eq. (5.3) as

Ωeff =
1

n̂f

[

2
7 � n̂b � + � n̂t� +

1
√

8
n̂t(1 − �)

]


L3
, (5.6)

where � is the BEC fraction and n̂t the peak density of a thermal Bose gas, as given
by n̂t =

[

mb !̄2b∕(2�kBT )
]3∕2 (1 − �)N , with !̄b being the geometrically averaged trap

frequency of the bosons,mb theirmass, and T = Tc(1−�)1∕3 [Lou17b] (see Sec. 5.6.3.1).Figure 5.3 shows the values of Ωeff that result from the data in Fig. 5.2. We quali-
tatively distinguish three regions. Below abf ≈ 250a0, the values are close to one, and
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Figure 5.3: Effective overlap factor versus Bose-Fermi scattering length for data sets B1-B3
(inverse triangles, diamonds, and circles, respectively). The error bars reflect the statistical
uncertainties of  . The vertical dotted line shows the phase-separation point as predicted by
Eq. (5.4). The solid line shows the results of our full numerical calculation (see the text) and the
dashed line our results obtained within the Thomas-Fermi approximation.

there seems to be a downward trend for Ωeff with increasing abf . Then, as abf furtherincreases to about 1000a0, the spatial overlap drastically decreases to a small value of
about 0.04. For larger scattering lengths, Ωeff tends to remain at this small value. Ac-
cording to Eq. (5.4), phase separation is expected to happen at∼ 600a0 (vertical dottedline). In contrast, we observe that beyond this point a considerable spatial overlap re-
mains, which then smoothly decreases with a further increasing scattering length. The
observed behavior does not reveal any discontinuity related to a phase transition.

5.4 Numerical Calculation

To interpret the observed behavior ofΩeff , we construct a numericalmean-fieldmodel2
(see Sec. 5.6.4) which allows us to calculate the density distributions for an interacting

2B. Huang et al., in preparation (2018)
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Bose-Fermi mixture at a zero temperature for our typical experimental parameters3.
Our model starts from the energy functional of the mixture as given by Refs. [Ima06,
Tra16], and we use imaginary time evolution to vary the BEC and the fermionic den-
sities and to minimize the energy functional. At the end, the evolution gives the static
solution of nf and nb at a zero temperature. Since we have a partial BEC, we addition-
ally take into account the thermal bosonic density nt including bosonic enhancement
effects (see Sec. 5.6.4). With these density distributions, we numerically calculate the
overlap integrals and the effective overlap factor Ωeff .The results of our numerical model are represented in Fig. 5.3 by the dashed and
solid curves. For the dashed curve, the densities are obtained within the Thomas-
Fermi approximation. The results indeed show a rapid decrease ofΩeff until the onsetof phase separation at about 600a0, as given by Eq. (5.4). Then, in a fully phase-
separated regime, a plateau is reached where only the thermal bosonic component can
lead to loss. Evidently, this theoretical behavior is not consistent with the experimental
data points. A notably smoother decrease of Ωeff results from our numerical model
(solid line in Fig. 5.3), when we consider the full energy functional which includes
the kinetic energy of the BEC as well as the much weaker density gradient correction
from the Fermi gas [Ima06]. Within the residual uncertainties of our method (see
Sec. 5.6.5), this model reproduces the observed behavior very well.

5.5 Conclusion and Outlook

Our results show that the kinetic energy term prevents the BEC density from changing
abruptly. This plays an essential role in smoothing the density profiles of the separated
components near the interface and, thus, in maintaining the residual spatial overlap.
Accordingly, the relevant length scale that determines the thickness of the interface
layer corresponds to the BEC healing length [Dal99], which for our present conditions
can be estimated to � = (

8� n̂b abb
)−1∕2 ≈ 0.50�m. This length scale can be com-

pared with the shortest macroscopic length scale of the system, which in our case is
the radial size of the BEC of a few micrometers. The measured overlap factor can
be understood as the volume ratio of the interface layer and the whole BEC, and the
smoothing of the phase transition can thus be interpreted as a consequence of the finite
size of the system [Bin84, Bré85].

The basic idea of our method to probe the interface between spatially separated
components may be generalized to many other situations of interest. The working
principle just relies on a mechanism that selectively addresses the region where the

3In our model, we consider an atom-atom mixture, neglecting any molecular component as the LiK
Feshbach molecules are short-lived and decay rapidly.
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different components mix. While in our case three-body recombination served this
purpose, one may also apply photoassociative or radio-frequency-induced processes
to stimulate loss or state-transfer processes.

The interface between two quantum fluids is a topic of broad interest yet largely
unexplored in quantum gases. We speculate that future studies could focus on the role
of quantum fluctuations, the two-dimensional character of the thin interface layer, and
testing the validity of the mean-field approach. Unwinding the microscopic nature
underlying the interface may give access to new phenomena such as Andreev bound
states [Löf01, Sat17], familiar in superconductor physics. Concerning the phase-sepa-
rated Bose-Fermi mixture, it would be natural to go beyond the static properties and to
investigate the dynamics of the mixture. We expect a strong impact of phase separation
on collective oscillation modes [VS09, Mar13] and on the behavior of the system after
a quench [Wil15].
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5.6 Supplemental Material

5.6.1 Preparation of the 6Li-41KMixture

In this Section, we describe the procedure applied for preparing an optically trapped
mixture of K and Li atoms in their lowest Zeeman states near 335G, where an inter-
species Feshbach resonance (FR) is located [Han17, Tie17, Wu11] (See Appendix B).

Initially, the 6Li and 41K atoms are collected in a dual-species magneto-optical trap
(MOT) and loaded consecutively into a single-beam optical dipole trap (ODT) with a
wavelength of 1070 nm, power of 150W and waist of 38�m. The loading scheme of
the ODT is optimized for a large number of Li atoms, since we evaporate with a Li spin
mixture and cool K sympathetically. First, the K atoms are loaded by ramping up the
magnetic field gradient and thus compressing the KMOT, while decompressing the Li
MOT by increasing its detuning. With the K atoms transferred to the ODT, the K light
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is turned off and the Li MOT is recompressed to facilitate loading into the ODT. Up
to this point, the details of the procedure are similar to those described in our earlier
work on the 6Li and 40K mixture [Spi10].

Next, we apply a gray-molasses cooling on the D1 line of lithium [Fri15, Gri13,
Bur14a], to further improve the starting conditions for the evaporative cooling with
Li. This gives an increase of the phase-space density of the lithium cloud by a factor
of fifteen and a factor of five decrease in the initial temperature, while capturing the
same amount of lithium as before in the ODT [Fri15]. With these improved starting
conditions, after evaporative cooling, we reach a significant lower T ∕TF and higher
lithium atom number.

After the D1 cooling stage, we remove the hottest atoms, by linearly ramping down
the ODT to 50% of its initial power and we create a Li spin mixture for evaporative
cooling. Nearly all the lithium atoms captured in the ODT are found in the lowest
Zeeman state Li|1⟩ (F = 1∕2, mF = 1∕2). To obtain a 50/50 Li spin mixture in
the lowest |1⟩ and second-lowest |2⟩ spin state (F = 1∕2, mF = −1∕2), we ramp
the magnetic field, turned off during the D1 cooling stage, to 90G and apply a radio-
frequency (rf) �∕2-pulse. This creates a superposition state which has enough time to
decohere during the following stages and forms a incoherent Li spin mixture.

Then we exploit a spin relaxation stage to create a polarized sample of K. The K
atoms in the ODT are a mixture of the three lowest Zeeman states. Thus, we ramp
to a magnetic field of 200G, where we previously observed the occurrence of spin
relaxation [Lou17b], and wait for 500ms. We end up with an almost fully polarized
41K sample in the third-lowest Zeeman state K|3⟩ (F = 1, mF = −1) and a very small
amount of K|2⟩, the second-lowest spin state (F = 1, mF = 0). After ramping to 335G
we observe complete polarization of the K sample and we speculate that the small
amount of K|2⟩ is lost by recombination with lithium during the magnetic field ramps
we apply to reach 335G.We note that the presence of the K|2⟩ during evaporation does
not lead to any observable immiscibility phenomena [Liu16], in contrast to what we
observed with another evaporation scheme in Ref. [Lou17b]. After the spin relaxation
stage, we further decrease the power of the ODT linearly to 15W in 3 s. Besides
the single beam ODT, the atoms also experience a trapping force from the magnetic
curvature.

Subsequently we prepare a Li|1⟩-Li|3⟩ spin mixture to evaporatively cool at low
magnetic fields [Bur14a], where Li|3⟩ is the third-lowest Zeeman state (F = 3∕2, mF =
3∕2). After the spin relaxation stage, we ramp to 580G, where we use a rf �-pulse to
transfer all Li|2⟩ atoms to Li|3⟩. At this magnetic field the interaction with Li|1⟩ has
the same strength for both Li|2⟩ and |3⟩ [Zür13]. Additionally the scattering length
between Li|2⟩ and |3⟩ is negligible. The Li|1⟩-Li|3⟩ spin mixture is then used for
evaporative cooling at about 483G, where the scattering length is about −635a0. This
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magnetic field is chosen to avoid the region between 350-450G where multiple Fesh-
bach resonances occur and ramping over this with the Li|2⟩, Li|3⟩ and K|3⟩ mixture
leads to significant loss.

The evaporation sequence at 483G contains several stages. First, we evaporate
in the single beam ODT by exponentially ramping down its power and simultaneously
load the atoms into another single beamODT (1064 nm, 2.4W, 44�m). Then, we con-
tinue evaporation in this new trap and ramp up the power of a second beam (1064 nm,
0.22W, 60�m) to form a cigar-shaped (1:7) crossed-beam optical dipole trap (CDT).
The two beams intersect at an angle of 17 ◦. In a third cooling step, we further expo-
nentially ramp down the power of the CDT to the desired final trap depth. Depending
on the final trap depth, we end up with a condensed or noncondensed bosonic cloud in
a Fermi sea of lithium. Note that K|3⟩ is sympathetically cooled along the evaporation
route and we do not observe any evaporative loss of K. The fact that the trap depth for
potassium is about twice as deep as that of lithium and the thermalization rate is high
enough, enables the sympathetic cooling.

In the final stage of the sequence, we ramp to a magnetic field slightly below 335G
avoiding inter- and intraspecies resonances. However, we first switch to a different
set of magnetic field coils, which removes the magnetic curvature and allows a high-
precision control of the magnetic field. Then we ramp to 565G, where we remove the
Li|3⟩ component by a resonant light pulse. At this magnetic field the zero crossing
between Li|1⟩ and Li|3⟩ can be found and removing the Li|3⟩ does not significantly
heat up the remaining Li|1⟩ atoms. Then we transfer K|3⟩ to K|2⟩ with a rf �-pulse.
This is followed by a series of magnetic field ramps, where the final field of 335G is
reached with a pure mixture of Li|1⟩ and K|2⟩. Using a rf �-pulse we transfer K|2⟩ to
K|1⟩ (F = 1, mF = 1) and we can start with our measurements.

For the loss measurements we use the following sequence. At a magnetic field
detuning (�B = B − B0) of −200mG, we transfer K|2⟩ to K|1⟩ with a rf �-pulse of
0.056ms and directly afterwards ramp adiabatically in 2ms to a given �B. Since westay on the repulsive side of the FR, no Feshbach molecules are associated and they
can only be formed in three-body recombination processes. For various hold times at
the given �B, we take spin-specific absorption images of Li and K after respectively, 2
and 8ms time of flight.

5.6.2 Feshbach Resonance Parameters
The scattering length between the lowest Zeeman spin states of 6Li and 41K is tuned by
a FR near 335G [Han17, Tie17,Wu11] (seeAppendix B).We first discuss the available
theoretical predictions (Sec. 5.6.2.1) for the background scattering length abg and the
resonance width Δ. Then, in Sec. 5.6.2.2, we show how we experimentally determine
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the differential magnetic moment �� and the resonance position B0. In Sec. 5.6.2.3,
we discuss how B0 changes for different trap settings as a result of a light shift, and inSec. 5.6.2.4 we discuss the measurements which verify the theoretical value for Δ.

5.6.2.1 Theory Predictions

Coupled-channel calculations by T. Hanna, E. Tiesinga and P. Julienne [Han17] and
independently by E. Tiemann [Tie17] predict the magnetic-field dependent scattering
length between Li|1⟩ and K|1⟩ around 335G. These calculations are based on the
potentials from Ref. [Tie09b]. Two FRs show up, a broader one around 335G and a
narrower one at 341G. Experimentally, the 335G FR was observed in Ref [Wu11] by
detecting the loss of K atoms. The loss maximum, corresponding to B0, was found at
B=335.8G and the width determined by a Gaussian curve fit gave a value of ΔBexp =
1.1G. For the FR center B0, the experimental value (335.8G [Wu11]) and the two
theoretical values (335.1G [Han17] and 335.9G [Tie17]) are only consistent within a
Gauss. For a more accurate determination of B0, we measure the binding energy of
the dimers on the repulsive side of the FR (see Sec. 5.6.2.2).

We find that both coupled-channel calculations agree very well on the value of the
scattering length if compared as a function of the magnetic detuning �B = B − B0,and we use these calculations to extract theoretical values for abg andΔ. The predictedscattering length can be fitted with the simple formula

abf (�B) = abg

(

1 − Δ
�B
−

Δ1
�B − �1

)

, (5.7)

where abg = 60.865a0, with a0 being the Bohr radius, and Δ = 0.9487G is the width
of the FR at 335G. The width of the narrow FR is Δ1 = 0.0566G and the detuning of
this resonance with respect to the 335G FR center is �1=6.1577G. The free parameters
are obtained by fitting the scattering length calculations for a detuning of −5 to +7G
and the expression is plotted in Fig. 5.4. The agreement between the calculations and
the fit is excellent, with deviations of about 1 permille. Note that because of the narrow
FR at 341G the position of the zero crossing no longer corresponds to the width of the
335G FR but instead is shifted down by 10mG.

In our analysis of the data, we neglect the influence of the FR at 341G and apply
the common formula abf = abg

(

1 − Δ∕�B
) to describe the scattering length. Here,

we use the values of abg = 60.865a0 and Δ = 0.9487G from the fit to the theoretical
predictions. The Feshbach resonance center B0 is determined experimentally. On the
repulsive side of the FR, the difference between this approach and Eq. 5.7 is very small.
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Figure 5.4: Scattering length between Li|1⟩ and K|1⟩ around 335G versus magnetic field de-
tuning as described by Eq. (5.7).

5.6.2.2 Obtaining the Feshbach Resonance Center B0 by Binding Energy
Measurements

To experimentally determine B0, we measure the binding energy of the Li-K dimer
by magnetic modulation (“wiggle") spectroscopy and/or radio-frequency spectroscopy
[Chi10]. Fig. 5.5 shows the result of measuring the binding energy by applying both
methods for a CDT with a power of 92mW and 127mW in the two beams. Magnetic
modulation spectroscopy enables us to measure binding energies in the range of 0-
2MHz, while rf spectroscopy is typically performed up to a 100 kHz. This provides
us with a wide range of binding energies which we can measure and fit with a known
binding energy formula.

The magnetic modulation spectroscopy data is obtained by modulating the mag-
netic field and measuring which frequency is required to drive the transition between
the free atom state and the molecular state at a various magnetic fields. At each mag-
netic field the duration and amplitude of the modulation are adjusted such that the
transfer is measurable, without driving the transition too strongly. We observe the loss
of K|1⟩ atoms as a function of the modulation frequency. The center between the low-
frequency onset of the loss of K atoms and the maximum loss is used as the modulation
frequency that corresponds to the binding energy. We estimate the error as half of this
range. The measurements are shown by the filled symbols in Fig. 5.5.
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Figure 5.5: Binding energy versus magnetic field. The binding energy is determined either
by magnetic modulation (filled diamonds) or rf (open diamonds) spectroscopy. The solid line
represents the fit of Eq. (5.12) to the data, with B0 = 335.0795(9)G and R∗ = 2241(7)a0.

To measure the binding energy with rf spectroscopy we prepare a non-interacting
mixture of Li|1⟩ andK|2⟩ at several tens of mG below the expectedB0 andmeasure the
frequency needed for a strong 800-�s rf-pulse to associate Li|1⟩-K|1⟩ dimers [Jag14].
After the rf pulse, we ramp in 50�s to roughly 100mG above the resonance position.
This dissociates the created dimers into Li|1⟩ and K|1⟩ atoms. By plotting the atom
number in the K|1⟩ state as a function of the rf frequency, we get the molecule asso-
ciation spectrum. From the spectrum we determine the lowest frequency �, where the
atom number is at roughly 20% of its peak height. We found that for a typical maxi-
mum transfer of 4000 K atoms, this gives a good estimate of the onset frequency for
association. We estimate the error in � as half of the range between � and the peak
frequency, which is 2 to 5 kHz. We obtain the rf detuning � − �0 by subtracting the
unperturbed K|2⟩ →K|1⟩ transition frequency �0, which corresponds to the Zeeman
splitting of the two states as calculated from the Breit-Rabi formula. The rf detuning
gives a direct measurement of the binding energy and the results are shown by the open
symbols in Fig. 5.5.

To fit the data we use the binding energy formula derived in Refs. [Pet04a, Lev11]
for a weakly bound molecule near a narrow resonance. Near the dissociation treshold,
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Eb can be written as
Eb =

ℏ2�2

2mr
, (5.8)

where mr is the reduced mass
mr =

mf mb
mf + mb

, (5.9)
with mf (b) the mass of Li (K). The wavenumber � can be expressed in a second-order
Taylor expansion as

− � = −1
a
+ R∗�2, (5.10)

where a = −abgΔ∕�B and the usual background scattering term is neglected. The
length parameter R∗ is related to the narrowness of the resonance [Pet04a]

R∗ = ℏ2

2mr �� abgΔ
, (5.11)

with �� the differential magnetic moment of the closed and open channel. All together
this gives the formula

Eb =
ℏ2

8 (R∗)2 mr

(√

1 −
4R∗ �B
abg Δ

− 1

)2

. (5.12)

We fit the measured binding energies with Eq. (5.12), leaving both B0 and R∗ as freeparameters, as depicted in Fig. 5.5. For abg andΔ the values from the fit to the coupled-
channel calculations of Sec. 5.6.2.1 are used and assumed to be free of any relevant
uncertainties. The fit results give B0 = 335.0795(9)G, R∗ = 2241(7)a0 and thus
�� = ℎ × 2.660(8)MHz/G.

5.6.2.3 Light Shift of the Feshbach Resonance Center B0
As already pointed out in Refs. [Koh12, Jag14, Cet16], for a similar FR in the 6Li-40K
mixture, the trap light of 1064 nm causes a differential light shift between the atom pair
state and the molecular state. This leads to a light-induced shift of the Feshbach reso-
nance position B0. Thus, for every trap we use, we need to measure the trap-specific
B0. We do this by performing rf spectroscopy of the Feshbach molecules. For the trap
of Sec. 5.6.2.2 we have checked that the fit to rf spectroscopy data only, with fixed
��, agrees with the B0 obtain from the two-parameter fit to both modulation and rf
spectroscopy data. For each trap and at various magnetic fields we thus determine the
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Figure 5.6: Binding energy versus magnetic field for the three trap settings of the main text.
The solid lines are the fits of Eq. (5.12), with B0 as the only free parameter. The blue circles
show the rf spectroscopy measurements with the trap settings of data set B1-B3, red triangles
those of data set A2 and the black squares those of data set A1. The error bars represent the
estimated error (see text) in determining the onset frequency.

rf detuning � − �0 via rf spectroscopy. This is a direct measurement of the binding
energy Eb and Fig. 5.6 shows the measurements for the three trap settings discussed
in the main text. The resulting values for B0 are given in Table 5.1 and plotted de-
pending on the optical trap depth Uopt for potassium in Fig. 5.7. The trap depth of
the crossed dipole trap is calculated from the power and widths of the two intersecting
laser beams, under the assumption that the beams are Gaussian. Here, we do not con-
sider the reduction of the trap depth by gravity. Extrapolating a linear fit to the B0 dataas a function of trap depth, shows that the Feshbach resonance center in the absence
of a trap is 335.057(1)G, where the error represents the fit uncertainty.

5.6.2.4 Verification of the Feshbach Resonance Width Δ

The width of the FR is given by the theoretical predictions to be 0.949G. We verified
this value by measuring the damping of the axial center-of-mass (COM) oscillations
at different magnetic field detunings �B for the trap settings of data set A2 (see Ta-
ble 5.1). We excite both the COM oscillations of K and Li, which oscillate at a differ-
ent frequency, but measure only the oscillations in K. The interaction between Li and
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Figure 5.7: Feshbach resonance position as a function of the trap depth for potassium. The
symbols correspond to the same trap settings as in Fig. 5.6 and the additional diamond cor-
responds to those of Fig. 5.5. Error bars represent fit errors in the determination of B0. The
solid line represents a weighted linear fit of B0 = A + DUopt , with A=335.057(1)G and
D = 3.2(1) × 10−3 G∕�K. The dashed line shows the extrapolation of the linear fit to zero
trap depth.

K leads to friction and this damps the COM oscillations. At the point where the inter-
species scattering length is zero, the least amount of damping is expected. Note that
other types of damping will still be present. This method, as presented in Ref. [Nai11],
enables us to determine the zero crossing of the Feshbach Resonance.

To excite the COM oscillations of the clouds (both Li and K) we use the following
scheme. At a fixed magnetic field detuning we excite a non-interacting Li|1⟩-K|2⟩
sample by ramping up a strong additional trapping beam in 100ms. This beam is
slightly misaligned with one of the beams of the CDT and thus displaces the COM of
the clouds. We hold the sample in this trap configuration for 100ms and then release
it in 1ms into the original trap configuration by switching off the additional beam.
With a rf �-pulse we transfer K|2⟩ to K|1⟩ in 56�s and obtain a mixture of Li|1⟩-
K|1⟩. Then we quickly ramp in 2ms to the final �B. The final detuning determines
the strength of the interaction between Li|1⟩ and K|1⟩. For different hold times, we
observe the center position of the K cloud and obtain the K COM oscillations. We fit
these oscillations with a damped sinusoidal curve to extract the damping rate Γ. This
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Figure 5.8: Damping rate of the axial COM mode versus magnetic field detuning. The solid
line represents a fit by Eq. (5.13) with B = 3.8(2) s−1, A = 2.6(5) s−1 and C = 0.86(5)G.

is repeated for several positive values of �B around the expected zero crossing of the
scattering length, as is shown in Fig. 5.8.

The damping rate around the zero crossing can be fitted with

Γ = B + A
(

1 − C
�B

)2
(5.13)

where A,B and C are free parameters. Here, B represents the background damping,
which is not caused by the interspecies scattering length, and A is a constant which
is proportional to (abg)2. The fit gives C =0.86(5)G for the zero crossing and this
is equivalent to the width of the Feshbach resonance if no other Feshbach resonances
were close by. In our case the zero crossing is influenced by the close presence of the
other rather narrower FR at 341G and Eq. (5.7) shows that this shifts the zero crossing
by about 10mG. The width of the FR should therefore be 0.87(5)G.

From our measurements we obtain a value of 0.87(5)G forΔ, which deviates from
the theoretical value by less than 2 �. This deviation may be of statistical nature or
may be explained by an oversimplification of the model [Eq.(5.13)] we use to fit to our
data. The result can be considered to be consistent with the theoretical value for Δ,
the latter being used in our calculations and analysis. Note that using the experimental
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value for Δ would not significantly affect the B0 determination, however it would give
an about 10% lower scattering length abf near resonance, where abg can be neglected.

5.6.3 Measurement Procedures and Data Analysis
In this Section, we discuss the measurements and analysis behind the data points dis-
played in the figures of the main text. We summarize the experimental parameters for
the data sets A1, A2 and B1-B3 in Sec. 5.6.3.1. The measurements and analysis of
the three-body loss coefficient L3 and the normalized loss rate  are then described in
Sec. 5.6.3.2 and Sec. 5.6.3.3. In Sec. 5.6.3.4 we show the experimental determination
of the effective overlap factor Ωeff , and in Sec. 5.6.3.5 we explain how we take into
account secondary loss.

5.6.3.1 Experimental Parameters

Table 5.1 shows the experimental parameters for the data sets A1, A2 and B1-B3. We
first show the parameters that are independent of the atom number for lithiumNf andpotassiumN in the given data set and the quantities derived thereof. The errors in the
atom number represent the statistical errors due to fluctuations in the data points of the
data sets. Additionally there is a systematic calibration error of about 10% for both Li
and K. As described in Sec. 5.6.2.3, we measure B0 for each trap by rf spectroscopy.

For each trap setting we measured the radial and axial trap frequencies for the
bosons (!rb, !zb) by exciting the COM modes in axial and radial direction. The trap
frequencies for the fermions can be calculated accurately by !if = 1.756!ib, wherethe factor is derived from the ratio of the masses and the dynamical polarizabilities of
the two species [Lou17b]. The estimated effective trap depth Ub(Uf ) for the bosons
(fermions) in the z-direction is also shown. This trap depth is calculated from the
power and waist of the CDT beams under the assumption that the beams are Gaussian
and we took into account the effect of gravity, which lowers the trap depth. For a non-
condensed K cloud (data set A1, A2), the temperature is determined from the time of
flight expansion of the K atoms. For the BEC cloud (B1-B3 data sets), the temper-
ature is derived from the measured BEC fraction � [Lou17b]. When comparing the
temperature with the trap depth of the bosons, we can see that the potassium atoms are
trapped in a deep trap and loss can only happen due to recombination with lithium.

The peak density of lithium n̂f and the Fermi temperature TF are derived from the
atom number by the textbook equation (for T = 0)

n̂f =
(

2
kB TF mf
ℏ2

)3∕2 1
6�2

=
2
√

Nf
√

3�2

(

!̄f mf
ℏ

)3∕2
, (5.14)
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Table
5.1:Summaryofthedatasetsandtheirexperimentalparameters.

dataset
A1

A2
B1

B2
B3

symbol
blacksquares

redtriangles
orange

greendiamonds
bluecircles

inv.triangles
B
0 (G)

335.1175(5)
335.0922(4)

335.0693(4)
!
rb ∕2�(Hz)

376(1)
300(1)

171.1(6)
!
zb ∕2�(Hz)

54.8(4)
42.2(1)

23.58(6)
!
rf ∕2�(Hz)

660(2)
527(2)

300(1)
!
zf ∕2�(Hz)

96.2(7)
74.1(2)

41.4(1)
U
b (�K)

14.5
7.60

0.856
U
f (�K)

7.68
4.46

1.10
T(nK)

438(18)
238(7)

88(2)
93(2)

97(5)
N
f

1.8(2)×
10
5

3.3(4)×
10
5

1.33(8)×
10
5

1.5(1)×
10
5

1.1(1)×
10
5

n̂
f (cm

−
3)

4.7(2)×
10
12

4.4(3)×
10
12

1.20(4)×
10
12

1.27(4)×
10
12

1.11(6)×
10
12

T
F (nK)

1.72(6)×
10
3

1.64(7)×
10
3

690(13)
718(16)

656(24)
T
∕T

F
0.25(1)

0.145(7)
0.128(4)

0.130(4)
0.148(9)

N
2.6(6)×

10
4

4.3(2)×
10
4

2.60(7)×
10
4

2.96(5)×
10
4

3.0(3)×
10
4

�
-

-
0.54(3)

0.50(2)
0.46(5)

n̂
b (cm

−
3)

-
-

4.8(2)×
10
13

5.0(1)×
10
13

4.9(3)×
10
13

n̂
t (cm

−
3)

0.38(8)×
10
13

0.77(5)×
10
13

0.18(2)×
10
13

0.20(1)×
10
13

0.21(3)×
10
13

T
∕T

c
1.7(1)

1.01(3)
0.78(2)

0.79(1)
0.82(5)
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where kB is the Boltzmann constant and ℏ is the Planck constant. The geometri-
cal average of the trap frequency as seen by lithium, !̄f , can be calculated as !̄f =
(!rf!

r
f!

z
f )
1∕3. When we compare TF to the effective trap depth Uf , we see that the finaltrap settings are deep enough for lithium. We also give the relative temperature T ∕TF,which shows that we are indeed very cold and justifies the use of Eq. (5.14), which is

valid for T=0.
The BEC fraction is obtained from a bimodal fit to the absorption images after time

of flight and we quote the average BEC fraction and its standard error for the given data
sets. The peak density of the BEC n̂b and the thermal peak density n̂t are given by

n̂b =
152∕5
8�

(

!̄b mb
ℏ
√

abb

)6∕5

(� N)2∕5,

n̂t =

(

!̄2b mb
2� kB T

)3∕2

(1 − �)N,

(5.15)

where abb = 60.9a0 [Tie17], and we assume the thermal density to follow the Boltz-
mann distribution. When calculating the critical temperature Tc we correct for finite-size and interaction effects [Gio96], which leads to a down shift of the critical tempera-
ture of less then 10%, when compared to the common expression kB Tc = 0.940ℏ !̄bN1∕3.

5.6.3.2 Measurements of the Three-body Loss Coefficient L3
For the two data sets (A1, A2) with noncondensed K atoms, we measure the loss of K
atoms for various hold times t at different repulsive Bose-Fermi scattering lengths abfin order to determine L3. The atom loss can be quantified as

Ṅ = −L3
ˆ
nf n

2
t dV = −L3 n̂f

n̂t
√

8
N. (5.16)

Within the fermionic reservoir approximation (FRA), we can assume that the fermion
density as seen by the potassium atoms is constant and replace ñf by the peak density
n̂f at zero temperature and take it out of the integral. The remaining integral is solved,
assuming that the thermal density of the bosons follows the Boltzmann distribution.

The measured evolution of the atom number follows an effective two-body loss
equation with Ṅ ∝ −N2 and we fit the data with

N(t) = N0
(

1 +N0 C t
)−1 , (5.17)
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where the free parametersN0 and C represent the initial atom number and the constant
we extract. An example curve is displayed in Fig. 5.9(a) for abf ≈ 850a0. The L3coefficient is then calculated as

L3 = C

√

8
n̂f !̄3b

(

2� kB T
mb

)3∕2
. (5.18)

The error in L3 is propagated from the fit error in C . Additionally, there is about a
12% systematic error in the conversion from C to L3, coming from the Li and K atom
number calibration, the temperature, and the trap frequency determination.

There are two additional corrections to Eq. (5.18), both taken into account for the
data points displayed in Fig. 5.2(a) of the main text. First of all, for temperatures
close to the critical temperature for condensation, the bosonic system deviates from
the classical Boltzmann distribution and Eq. (5.18) overestimates the value of L3. TheBose enhancement of the density gives a correction factor to Eq. (5.18) of 0.97 for set
A1 and 0.78 for set A2.

Second, for abf below 150a0, the three-boson loss becomes significant. This adds
a second term to the equation for the atom loss

Ṅ = −L3n̂f
ˆ
n2t dV −K3

ˆ
n3t dV . (5.19)

We use this equation instead of Eq. (5.16) to correct for the influence of the additional
loss term. Measurement of K3 in the trap of A1, with a pure bosonic sample and
T = 536(20) nK, gives a rate constant of K3 = 0.012(3) × 10−25 cm6/s. Here, we
fitted the atom loss data with the solution to the differential equation Ṅ∕N3 = −A,
with A the free parameter. Solving the integral for the three-boson loss, K3 can then
be extracted as

K3 =
A
√

27
(

mb
2� kB T

)3
!̄6b

(5.20)

This leads to a 4-12% correction of L3 for the three points with the lowest abf . For theother L3 data the effect of the three-boson loss compared to the boson-boson-fermion
three-body recombination loss is two orders of magnitude smaller.

The value of L3 for any abf between 80 and 2100 a0 is approximated by apply-
ing the LOESS smoothing method [NIS12] to the data. LOESS is a locally weighted
polynomial least squares regression method, based on the idea that any function can be
well approximated in a small local region by a low-order polynomial. More weight is
given to the data points close to the local region than to those farther away. The great

- 82 -



5

CHAPTER 5. Phys. Rev. Lett. 120, 243403 (2018)

0 100 200
0

10000

20000

0 100 200
0

10000

20000

30000 (b)

 

 

 
N

(a)

 

 

N

time (ms)

Figure 5.9: Decay curves of a thermal (a) and partial BEC (b) cloud of 41K for abf of about
850a0. The red curves are the fitting curves used in the analysis and the vertical dashed line in (b)shows the cut-off criterion for the linear fit. The error bars represent the statistical uncertainties
corresponding to the fit errors of the atom number obtained from the absorption images.

advantage of this method is the fact that it does not require a specific model to fit the
data. We use a LOESS smoothing with a degree of 2 and q = 0.5 to fit the data of L3,using the fitting program R [Ven17] and calculate the 2� confidence interval of the
smoothing as displayed in Fig. 5.2(a) of the main text. The degree of 2 means that we
locally fit with a simple parabola. The smoothness parameter q determines how much
of the data is being used for each local fit. The typical 1� uncertainity in the smoothed
data is about 10%.

5.6.3.3 Measurements of the Normalized Loss Rate 

We observe the loss of the atom number of a partial BEC for various hold times and
for different values of the scattering length. A typical loss measurement is shown
in Fig. 5.9(b) for abf ≈ 850a0. To fit the data, we approximate the initial loss as a
linear decay given by Ṅ∕N = −C . In practice this means that we fit the data with
N(t) = N0 − C t, where N0 and C are free parameters. We limit the fit to 30% of
the initial atom number. Fig. 5.9(b) shows a typical fit and the cut-off criterion. We
obtain the normalized loss rate as  = C∕(0.85N0). The thus obtained values of  aredisplayed in Fig. 5.2(b) of the main text, where the error represents the fit error in C .
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Three data sets (B1-B3) are taken in this way and Table 5.1 shows their parameters,
whereN = 0.85N0. During the time in which the K atom number decreases by 30%,
we observe that the BEC fraction only changes within 10% and heating due to the loss
of K atoms does not lead to a substantial change in �. We assume this is because of
sympathetic evaporation of lithium [Mos01].

Additional three-boson loss mostly affects the two data points taken below 150a0.For the other points the measured loss rate is an order of magnitude higher then the
measured decay of a K partial BEC without lithium. We measured the decay of a
pure K sample with a 39(4)% BEC fraction and NK = 2.7(2) × 104 and we found
a normalized loss rate of the total atom number of 3b = 0.01(1)∕s. We correct for
this additional form of loss by subtracting 3b from the measured  . This significantly
affects only the two points below 150a0 in Fig. 2(b) of themain text and the uncertainity
in the measured three-boson decay is reflected in the error bar for  . Moreover, these
two data points show a very slow decay and therefore we fit their loss curves only up
to 3 s instead of 30% of the initial atom number.

5.6.3.4 Experimental Determination of the Effective Overlap Factor Ωeff
As an extension of Eq. (2) in the main text, we define the effective overlap factor Ωefffor a partial BEC as

Ωeff ≡

´ ( 1
2� nf n

2
b + � nf nb nt + nf n

2
t

)

dV
´ ( 1

2� ñf ñ
2
b + � ñf ñb ñt + ñf ñ

2
t

)

dV
, (5.21)

which is the total three-body density integral including all loss contributions normal-
ized to the corresponding non-interacting (abf = 0) integral. It takes into account the
additional loss because of the thermal bosonic density and the effect of secondary loss
through the factor � (see Sec. 5.6.3.5).

With this definition, the atom loss equation [Eq. (5) in the main text] can be rewrit-
ten

Ṅ = −L3Ωeff
ˆ
ñf

(1
2
� ñ2b + � ñb ñt + ñ

2
t

)

dV = −L3Ωeff I0, (5.22)

where we have introduced I0 as the overlap integral for the non-interacting mixture.
This integral can be simplified by replacing ñf with the peak density n̂f at zero tem-
perature and taking n̂f out of the integral, as justified by the FRA. The three integrals
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left to solve are then ˆ
ñ2bdV = 4

7
n̂b�N, (5.23)

ˆ
ñbñtdV = n̂t�N, (5.24)
ˆ
ñ2t dV = 1

√

8
n̂t(1 − �)N. (5.25)

Here we treat the BEC within the Thomas-Fermi approximation and we use the Boltz-
mann distribution to describe the thermal bosonic density. For solving the second
integral we assume that the BEC samples the peak density of the thermal cloud. With
these three solutions, I0 becomes

I0 = n̂f

(

2
7
� n̂b � N + � n̂t � N + 1

√

8
n̂t (1 − �)N

)

. (5.26)

We finally arrive at the central equation for our data analysis [Eq. (6) in the main
text], which allows us to calculate Ωeff from the measured values of  and L3 and theexperimental parameters,

Ωeff =
1

n̂f

(

2
7� n̂b � + � n̂t � +

1
√

8
n̂t (1 − �)

)


L3

. (5.27)

For the atom number of lithium and potassium, and the BEC fraction we take the
average value in the time frame set by the cut-off criterion of 30% K atom loss. The
average values of the peak densities, atom numbers and the BEC fraction for each data
set are listed in Table 5.1.

5.6.3.5 Secondary Loss

In our definition of Ωeff in Eq. (5.21) we implemented a factor �, which gives an
estimate on the importance of secondary loss. When � = 1, there is no secondary
loss and a three-body loss event leads to the loss of two K atoms and one Li atom.
However, in a dense sample it may happen that further atoms are lost by collisions
with the products of a previous recombination [Sch01b, Zac09].

A possible scenario for secondary loss is the following. In a first collision event of
two bosons (b) and one fermion (f), a weakly bound dimer (bf*) is formed according

- 85 -



5

CHAPTER 5. 5.6. Supplemental Material

to b + b + f → bf∗ + b + Eb. In this recombination event the binding energy (Eb)of the dimer is released and distributed almost evenly into the motion of the K atom
and Li-K dimer, where the K atom takes 47/88 and the dimer 41/88. The K atom
and the Li-K dimer may quickly escape from the trap if their obtained kinetic energy
is higher than the trap depth. The Li-K dimer can recollide with another K atom as
bf∗ + b → bf + b + Ekin, whereby the dimer relaxes to a energetically lower internal
state (bf) and releases the energyEkin. SinceEkin is very large as compared to the trap
depth, all products will be lost immediately. This inelastic atom-dimer decay is more
likely to take place when the K sample is dense enough such that the Li-K dimer can
find a collision partner in a reasonable amount of time.

Important in the discussion of secondary loss is also the comparison between the
binding energy of the formed dimer and the trap depth. If there is not enough energy
released for the dimer to leave the trap, there will be enough time for it to recollide
with the other K atoms in the trap. The effective trap depth for K for the data sets B1-
B3 is 0.856�K, where the effect of gravity is taken into account. Thus, for scattering
lengths below about 1500 a0 (almost our entiremeasurement range), the recombination
products will obtain enough energy to escape the trap. For higher scattering lengths,
we expect the collisional products to remain trapped and the released energy will be
redistributed among the other atoms in the trap, leading to additional heating and loss.

A typical rate constant for inelastic atom-dimer decay is �AD ≈ 1.4 × 10−10 cm3/s
[Jag16]. Together with the peak density of our BEC of 5 × 1013 cm−3, this gives a
time scale for inelastic collisions of � ≈ (�AD n̂)−1 ≈ 140�s, which is about one orderof magnitude shorter than the oscillation period of the particles in the trap. After the
three-body recombination event the dimer has an estimated kinetic energy of ∼ 5�K,
which gives a typical velocity for the dimer of vAD = 42mm/s and thus it can travel
a distance of ∼ 6�m before undergoing an inelastic collision event. Given the size
of the BEC (see Fig. 5.11) there is a high probability that the dimer encounters a K
atom from the BEC before leaving the trap, and undergoes a transition to a deeply
boundmolecular level with a large release of kinetic energy. For the thermal potassium
density, the time scale for the inelastic collision is more than an order of magnitude
higher and it is therefore less likely that the Li-K dimer will recollide with a thermal
K atom. Thus, the secondary collisions mostly happens with K atoms from the BEC
and we add the factor alpha only to the overlap integrals in Eq. (5.21) which contains
the BEC density.

Since the inelastic rate coefficient is not exactly known, the influence of secondary
loss on Ωeff cannot be a priori calculated, but we rather rely on estimates. We know
that the factor � should be at least 1 (two K atoms lost per recombination event) and
it is reasonable to assume that � does not exceed 3/2 (one additional K atom lost). In
Fig. 5.10 we show a plot of Ωeff versus abf for � = 3∕2 (same as in Fig. 5.3 of the
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Figure 5.10: Effective overlap factor as a function of the Bose-Fermi scattering length for (a)
� = 3∕2 (Fig. 5.3 in the main text) and (b) � = 1.

main text) in comparison with the corresponding result for � = 1. Note that � has
also been adjusted for the theory curves. As is clearly visible, the plot with � = 3∕2
gives a better agreement between the data and the calculations. This indicates that the
presence of secondary loss processes is very likely.

Additionally K atoms can be lost because of a boson-boson secondary collision.
The typical mean free path for the identical bosons is l ≈ (8� a2bb n)−1 and this gives
for our typical peak densities a mean free path of about 78�m (BEC) and 1.4mm
(thermal). Thus, it is reasonable to assume that the K atom does not recollide and we
can rule out that elastic collisions between the condensate atoms lead to an avalanche
effect [Sch01b].

5.6.4 Theoretical Model and Numerical Solution

In this Section, we start with a zero temperature mean-field model for the boson-
fermion mixture, and then extend it by introducing a thermal cloud to include finite
temperature effects of the bosons. Finally, we calculate the effective overlap factor
Ωeff from the density of the different components.

5.6.4.1 Zero-temperature Approach

In order to study quantitatively our observations on the overlap factorΩeff, we constructa numerical mean-field model to calculate the density distributions of the BEC (nb)and the fermions (nf) for an interacting Bose-Fermi mixture at zero temperature. Our
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model starts from the energy functional of the mixture as [Ima06, Tra16]

E =
ˆ
d3r

[

ℏ2

2mb
(∇

√

nb)2 + Ubnb +
1
2
gbbn

2
b

+ 1
9
ℏ2

2mf
(∇

√

nf )2 + Ufnf +
ℏ2

2mf
3
5
(6�2)2∕3n5∕3f

+ gbfnb nf

]

,

(5.28)

whereUb(r⃗) andUf(r⃗) are the bosonic and fermionic harmonic trapping potentials, and
gbb = 4�ℏ2abb∕mb and gbf = 2�ℏ2abf∕mr are the boson-boson and boson-fermion
coupling constants.

To obtain the densities within the Thomas-Fermi approximation, the term (∇√nb)2,
which arises from the kinetic energy of the BEC, is ignored. Additionally the (∇√nf )2term of the fermions is ignored as well. This term is the leading term for the density-
gradient correction [Kir57], which is much smaller than the other terms under our
typical experimental conditions.

To solve Eq. (5.28) numerically, we set up a numerical grid of 1024×1024 points
in real space for nb and nf as our system has cylindrical symmetry. Then for each value
of abf weminimize this energy functional by varying the densities with imaginary time
evolution (also known as the steepest descent method [Ima06]), which is constrained
by a fixed total atom number for each species (Nb andNf) and finally gives the static
solution for nb and nf .

Our typical experimental system has a total boson number ofN = 2.9×104, a BEC
fraction of � = 50% and consequentlyNb = 1.45×104, and a total fermion number of
Nf = 1.4×105 (see sets B1-B2 in Table 5.1). Our elongated optical dipole trap has anaspect ratio of 7.3 and the radial trap frequency is 171.1Hz for the bosons and 300.3Hz
for the fermions. The scattering length for the bosons is abb = 60.9a0 [Tie17]. With
these parameters, we obtain the zero-T densities and the results of the full calculation,
including both ∇ terms, are plotted in the upper four panels of Fig. 5.11. Panel (a) and
(b) show nb in the radial and the axial direction, and panel (c) and (d) show nf. Differentcolors correspond to different values of abf (black for 0a0, red for 300a0 and green for
600a0). Note that the effect of the kinetic energy terms, which tends to smooth out the
density distributions especially when nb is near zero, is more visible in the radial plots
(panels (a) and (c)) because of the different scales (aspect ratio) between the radial and
axial direction.
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Figure 5.11: Number density profiles of the different components of the Bose-Fermi mixture
at various values of the boson-fermion scattering length, i.e. abf is 0a0 for the curves in solid
black, 300a0 for dashed red, and 600a0 for dotted green. Panel (a) and (b) show the radial and
the axial density of the BEC. Panel (c) and (d) show the fermion densities and (e) and (f) the
thermal boson densities. Note that different density scales are used for the three components.
The densities are calculated by considering all terms in Eq. (5.28).
.
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5.6.4.2 BEC at a Finite Temperature: Thermal Boson Cloud

Because of the finite temperature of the experiment, we only obtain a partial BEC and
we have to take the non-degenerate component (∼ 50% of N) into account. Thus
we calculate the thermal boson density nt , which is about two orders of magnitude
smaller than nb. It gives a small extra overlap between the bosons and fermions. In the
main text and as outlined in Sec. 5.6.3.4, we approximate the thermal boson density
nt with a Boltzmann distribution and we obtain an analytical formula for the overlap
integrals. For the theoretical model, we include boson statistics, which enhances the
boson density in the trap center, as well as the mean-field interaction between the BEC
and the thermal cloud, and we calculate nt and the corresponding overlap integrals
numerically.

We assume nt to be the density of a trapped saturated thermal Bose gas influenced
by the mean-field potential formed by the BEC. Other mean-field effects, e.g. the in-
teraction between fermions and thermal bosons and the influence of the thermal gas on
the BEC, are considered to be weaker and ignored. Finally, different from the Boltz-
mann distribution, the thermal boson density for the numerical model is given by the
polylogarithm function g as

nt = �−3g3∕2
(

e
− �−Ut
kBT

)

, (5.29)

where the thermal de Broglie wavelength is � = √

2�ℏ2∕(mkBT ), the total potentialfor thermal bosons is Ut = Uopt + 2gbbnb, the chemical potential � for bosons is taken
to be the minimum of Ut(r, z) so that the thermal gas is saturated in phase space, and
T is the temperature which is obtained as a normalization factor for the total thermal
boson number, i.e. Nt =

´
nt(T ) d3r. Using the zero-T densities of the BEC and the

fermions, obtained in the previous Section, we calculate the thermal bosonic density
with Eq. (5.29) and we get the radial and axial density profiles displayed in panel (e)
and (f) of Fig. 5.11.

It is interesting to note that the bosonic enhancement effect in the thermal cloud
substantially increases the peak density by a factory of ∼ 2.4. However, the repulsion
by the BEC has the opposite effect, and for the overlap with the Fermi gas, both effects
approximately cancel each other. Therefore, we find that the approximation used for
the thermal gas in our analysis and the derivation of Eq. (5.27) turns out to be a good
one.
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5.6.4.3 Effective Overlap Factor Ωeff

With the numerically calculated densities the effective overlap factorΩeff at finite tem-
perature can be calculated by numerically solving the overlap integrals in the interact-
ing and non-interacting cases and using Eq. (5.21), where � = 3∕2 (see Sec. 5.6.3.5).
The results are plotted in Fig. 5.3 of the main text (here Fig. 5.10a). In Fig 5.10b, the
results for � = 1 are shown.

We emphasize that this numerical model does not use the Boltzmann distribution
for thermal bosons, and it does not rely on the peak density approximations used in
Sec. 5.6.3.5, and it includes effects beyond the Thomas-Fermi limit. The value of
the denominator in Eq. (5.21) from the analytical model is only about 9% higher than
the numerical result in the non-interacting case and the remaining difference mostly
comes from the TF approximation in the analytical model [Eq. (5.27)]. This agreement
indicates the validity of the analytical model for the thermal bosons and Ωeff.

5.6.5 Systematic Errors in Theory and Experiment

As Fig. 5.3 of the main text shows, the measured overlap is slightly higher than the
calculated values and there can be several reasons for this discrepancy. In this Section,
we discuss the possible systematic effects we have in the theoretical calculations as
well as in the experimental procedures and data analysis .

5.6.5.1 The Fermion Density: Finite Temperature Effects and the FRA

In our analysis of the experimental data we use the FRA and the peak density at zero
temperature. Both assumptions lead to a systematic error. When using the FRA, we
assume the bosons to sample a fixed local fermion density. This assumption leads to an
underestimation of the overlap between the fermions and the thermal bosons by about
two percent. However, for the overlap with the BEC atoms the deviation from the FRA
is negligible because of their small spatial extend.

Furthermore, we assume that the fixed fermion density as sampled by the bosons is
given by the fermion peak density at zero temperature (See Eq. (5.18) and Eq. (5.18)).
However, finite temperature effects and the gravitational sag on the bosonic cloud chal-
lenge this assumption. For the L3 measurements, ignoring the finite temperature leads
to an underestimation of L3 of about 20% for the highest temperatures (data set A1).
For the peak density used in Eq. (5.27), the finite-T effect is about 7% percent.

The gravitational sag on the bosonic cloud leads to a shift of the center of the cloud
by about 8�m, which, as can be seen in Fig. 5.11, leads to the bosons sampling a 20%
lower fermion density than the peak density. Thus, using the lithium peak density in
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Eq. (5.27) leads to an underestimation of Ωeff by 20%. The effect for the L3 measure-
ments is less drastic because of the spatial extend of the thermal cloud.

For the final values of Ωeff the effects of finite-temperature on the L3 measure-
ments and the gravitational sag on the lithium peak density in Eq. (5.27) cancel each
other out. We estimate that when taking all the above mentioned corrections into ac-
count, we have an underestimation of Ωeff by about 5%.

5.6.5.2 Systematic Errors in the Effective Overlap Factor Ωeff

In Fig. 5.3 of the main text (see Fig. 5.10a), the uncertainty in the Ωeff data points
reflects the statistical uncertainties of  . Additionally, there are systematic errors in
determining Ωeff via Eq. (5.27), which come from the determination of the atom num-
ber, BEC fraction, temperature and trap frequencies. The systematic calibration error
in the determination of the Li and K atom number is about 8%, and we estimate the
BEC fraction determination from the bimodal fit to have a 10% error. The systematic
error in  is therefore 11% and for the fermion and BEC peak density it is about 10%.
The thermal peak density is estimated to have an error of 17%. The systematic error
in L3 is about 15% and has two main sources. First, the typical 1� uncertainty in the
smoothing of L3 is about 10% and second there is a systematic error in all L3 datapoints of about 12% which comes from the uncertainty in the atom numbers, temper-
ature and trap frequencies. All together this leads to a systematic uncertainty in Ωeffof about 26%.

5.6.5.3 Other Processes

When we prepare the samples, we assume that we ramp adiabatically to the final field,
since we did not observe any noticeable excitation. However an unnoticeable yet weak
excitation of the mixture can lead to additional overlap and losses. This would both
affect the  and L3 measurements, and thus only have a weak influence on Ωeff .

Moreover, we speculate that recombination in a degenerate sample may not be
exclusively attributed to three-body recombination. Higher-order processes such as
four-body rebombination may contribute. If at all important, such processes may be
present at the high phase-space densitities of a BEC, but they will be suppressed for
thermal clouds. Such processes would lead to increased values for Ωeff .

The high density of the boson cloud may lead to another effect causing a spatial
separation between the two species, as observed in Ref. [Bau11]. If the mean free path
of a Li atom in the dense cloud of K is much smaller than the spatial extend of the
boson cloud, then the motion is diffusive and it takes a long time for a Li atom to reach
the center of the K cloud. If three-body processes happen at a shorter time scale than

- 92 -



5

CHAPTER 5. Phys. Rev. Lett. 120, 243403 (2018)

this diffusive motion, the result will be an effective reduction of the spatial overlap of
both species. The mean free path for a Li atommoving in a thermal cloud of K is about
20�m (abf ≈ 600a0), so for our L3 measurements, the motion of the Li atom stays
essentially ballistic and the effect described in Ref. [Bau11] can be safely neglected.
In the case of the K-BEC, the mean free path of the Li atom is an order of magnitude
lower and the collision time is on the order of 20�s. Comparing this to the typical time
for three-body loss � = 2(L3 n2)−1 ≈ 1.5ms, shows that also for our  measurements
the effect observed in Ref. [Bau11] cannot play a significant role.
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CHAPTER 6. 6.1. Introduction

We investigate the decoherence of 40K impurities interacting with a three-
dimensional Fermi sea of 6Li across an interspecies Feshbach resonance.
The decoherence is measured as a function of the interaction strength and
temperature using a spin-echo atom interferometry method. For weak to
moderate interaction strengths, we interpret our measurements in terms of
scattering of K quasiparticles by the Fermi sea and find very good agree-
ment with a Fermi liquid calculation. For strong interactions, we observe
significant enhancement of the decoherence rate, which is largely inde-
pendent of temperature, pointing to behavior that is beyond the scattering
of quasiparticles in the Fermi liquid picture.

6.1 Introduction

Many-body fermionic systemswith strong interactions play a central role in condensed-
matter, nuclear, and high-energy physics. The intricate quantum correlations between
fermions challenge our understanding of these systems. Mixtures of ultracold fermi-
onic gases offer outstanding opportunities to study strongly interacting fermions ex-
perimentally. Since the turn of the century, the excellent control over the strength of
the interaction and the composition of these mixtures has allowed investigations ad-
dressing the broad spectrum from few-body to many-body phenomena [Blo08, Gio08].
Tuning of the interaction is achieved using Feshbach resonances [Chi10]. The compo-
sition is varied by selecting internal states or by mixing different atomic species. This
development has led to many exciting results concerning the quantum phases of fermi-
onic mixtures, their excitations, superfluid behavior, and the equation of state [Zwi15].

In two-component fermionic systems with a large population imbalance, the mi-
nority atoms have been shown to form quasiparticles termed Fermi polarons, even
for surprisingly large coupling strengths [Sch09, Koh12, Kos12, Mas14]. These are
long-lived states described by Fermi liquid theory [Bay91]. Their lifetime is limited by
scattering against themajority atoms, which is suppressed by Pauli blocking as the tem-
perature approaches zero [Lan57, Lan56]. Although the quasiparticle scattering rate
has been determined in two-dimensional electron gases [Ber95, Mur95, Slu96], mea-
surements in well-defined three-dimensional (3D) fermionic systems have remained
an experimental challenge.

Intriguing questions are related to the behavior of impurities and, more generally,
Fermi mixtures in the strongly interacting regime [Mas14, Nas11, Sag15]. For inves-
tigating an impurity in a Fermi sea, Refs. [Goo11, Kna12] suggested a time-domain
method that is applicable for a wide range of interaction strengths. This approach can
be regarded as a measurement of the coherence of a superposition of internal states of
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the impurity atoms using interferometry [Cro09]. Atom coherence has previously been
used to probe many-body demagnetization in fermionic systems [Bar14] and impurity
scattering in bosonic systems [Sce13].

In this Letter, we report on measurements of decoherence of K atoms immersed in
a Fermi sea of Li using the method proposed in Ref. [Kna12], in the regime of strong
population imbalance. We tune the interaction between the Li and K atoms using an
interspecies Feshbach resonance (FR). For weak to moderately strong interactions, we
interpret the measured decoherence in terms of the scattering of K quasiparticles by
the Li Fermi sea. We find very good agreement with a Fermi liquid calculation. This
provides a determination of the quasiparticle scattering rate in a clean 3D fermionic
system. We extend our measurements to strong Li-K interactions and find decoherence
rates that are comparable to the fastest dynamics available in our system. These rates
do not increase with temperature, which is an indication of zero-temperature quantum
dynamics in a fermionic many-body system.

6.2 Experimental Method and Results

The starting point of our experiments is an evaporatively cooled, thermally equilibrated
mixture of typically, 3×105 6Li atoms and 1.5×104 40K atoms, trapped in a crossed-
beam 1064-nm optical dipole trap under conditions similar to those in Ref. [Koh12].
The Li cloud is degenerate, with kBT /�F as low as 0.15, where T is the temperature
and �F ≈ ℎ×35 kHz is the average Li Fermi energy sampled by the K atoms. Because
of the Li Fermi pressure and the more than two times stronger optical potential for K,
the K cloud is much smaller than the Li cloud [Tre11], and, therefore, samples a nearly
homogenous Li environment, with a standard deviation in the local Li Fermi energy of
less than 0.1 �F. In spite of the smaller size of the K cloud, the concentration of K in
the Li sea remains low, with n̄K∕n̄Li≈0.3, where n̄K (n̄Li) is the average K (Li) number
density sampled by the K atoms. The K ensemble is correspondingly nondegenerate,
with kBT ∕EKF > 0.9, where EKF is the peak K Fermi energy.

We tune the interaction between the K and Li atoms using an interspecies FR be-
tween the Li atoms in the lowest Zeeman sublevel Li|1⟩ andK atoms in the third-lowest
sublevel K|3⟩ [Nai11]. We quantify the interactions between Li and K by the dimen-
sionless interaction parameter −1∕�Fa, where �F=ℏ−1

√

2mLi�F is the Li Fermi wave
number with mLi the Li mass, and a is the s-wave interspecies scattering length. The
latter can be tuned as a=abg[1−Δ∕(B−B0)] by applying a magnetic field B, where
B0≈154.7G is the resonance center, abg=63.0 a0 (a0 is Bohr’s radius) and Δ=880
mG [Nai11]. The relatively narrow nature of our FR causes significant momentum
dependence of the interspecies interaction. We characterize this effect by the length
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Figure 6.1: Interferometric method for measuring the decoherence of K in a Li Fermi sea.
The upper illustration shows a schematic of the rf pulse sequence. The atoms in the K|3⟩ state
interact with a Fermi sea of Li|1⟩ atoms, as indicated by the shaded region. The graph shows
the fraction of the K atoms transferred to the K|3⟩ state as a function of the relative phase of the
final �∕2 rf pulse for various interaction times � and for −1∕�Fa=2.1, T=0.16 �F∕kB.

parameter R∗ [Pet04a, Koh12]. In our experiments �FR∗ is approximately 0.9, corre-
sponding to an intermediate regime where the interaction is near universal with sub-
stantial effective-range effects.

We probe the decoherence of the K atoms using a radio-frequency (rf) interfer-
ometric technique, as illustrated in Fig. 6.1. The K atoms are initially prepared in
the second-lowest Zeeman sublevel K|2⟩ while the Li atoms remain in the Li|1⟩ state
throughout the experiment. On the time scale of our measurements, the interactions
between these atoms, characterized by the s-wave scattering length a12≈abg, can be
neglected. We apply a �∕2 rf pulse (typically 10 �s long) to prepare the K atoms in an
equal superposition of the K|3⟩ and K|2⟩ states. After a variable interaction time �,
we apply a second �∕2 rf pulse before determining the numbers N2 and N3 of atoms
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Figure 6.2: Contrast C as a function of interaction time �. In (a), we show results for mod-
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probe the system in the strongly interacting regime (−1∕�Fa=0.15) for T=0.20 �F∕kB by rapidlyshifting the interaction parameter from 2.2 to 0.15 during the interaction time. The solid lines
are exponential fits to the points with � > 7�s. The dotted line is an extrapolation to �=0.

in the K|2⟩ and K|3⟩ states using absorption imaging (see Sec. 6.6.5). To decrease the
sensitivity to the magnetic field noise and to the inhomogeneities in the atom densities,
we perform a spin echo by splitting the interaction time into two equal halves separated
by a � rf pulse.

Shifting the phase of the rf oscillator by� between the � and the second �∕2 pulses
causes a sinusoidal variation in the fraction f=N3/(N2+N3) of theK atoms transferred
to K|3⟩, as shown in Fig. 6.1. We quantify the coherence of the state of the K atoms
by the contrast C=(fmax−fmin)/(fmax+fmin) of these oscillations. The interaction of
the K atoms with the Li cloud causes an exponential decrease in the observed contrast
with increasing interaction time �, as shown in Fig. 6.2(a). The interaction also shifts
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the rf transition frequency and decreases the rf coupling between the K|2⟩ and K|3⟩
states [Koh12], which we account for by adjusting the rf frequency and the duration of
our rf pulses. In this way, we measure the decoherence of K atoms for −1∕�Fa < −0.8and −1∕�Fa > 1.4. Near the center of the resonance, the fast loss of contrast during
the rf pulses limits the applicability of this method.

To measure the decoherence of K in the strongly interacting regime, we use laser
light to rapidly displace our magnetic FR [Bau09a, Bau09b, Cla15]. Optical control
of our FR allows us to apply the rf pulses away from the FR and then rapidly bring
the atoms into resonance for the duration of the interaction time �1. This method
circumvents the loss of contrast during the rf pulses and allows us to probe the K
decoherence across the full range of interaction parameters. The displacement of our
FR arises from the laser-induced differential ac Stark shift between the free-atom level
and the molecular state involved in the FR. The ac Stark shift is induced by the 1064-
nm trapping light, as we investigated in Ref. [Jag14]. Although the differential shift
here amounts to only 10% of the total trapping potential, using a high-intensity beam
with up to 65 kW/cm2, we can displace B0 by up to 40mG in less than 200 ns – all
while preserving the harmonic trapping potential (see Sec. 6.6.1). This displacement
corresponds to a change in the interaction parameter of up to ±2.1 on a time scale of
0.05 �F, where �F=ℏ∕�F≈4.5 �s is the Fermi time.

In Fig. 6.2(b), we show the dependence of the contrast C on the interaction time �
near the center of our FR. The contrast starts to decay after an initial delay of approx-
imately �F. This delay can be explained in terms of quantum evolution of the system
with an interaction energy bounded from above by �F [Kna12]. For � > 1.6 × �F ≈7
�s, the decrease in contrast is well described by an exponential decay. The fitted rate
coh=0.28(2) �−1F is comparable to the inverse Fermi time, indicating that our experi-
ment cannot be fully described by the scattering of quasiparticles in the Fermi liquid
picture, which assumes long-lived quasiparticles [Bay91].

In Fig. 6.3, we show the dependence of the fitted rate coh on the interaction param-
eter. We present data with two decades of dynamic range and demonstrate a dramatic
resonant enhancement of the decoherence rate, reaching values up to 0.4 �−1F . The data
do not exhibit any clear dependence on n̄K∕n̄Li across the full range 0.17≤n̄K∕n̄Li≤0.43.In addition to the statistical errors indicated by the error bars, the data are subject to
variations of kBT ∕�F, �FR∗, and n̄K∕n̄Li with standard deviations of 0.01, 0.02 and
0.07 about their mean values of 0.16, 0.93 and 0.27, respectively. The calibration of
the Li atom number introduces a 6% systematic uncertainty in �F and �F, as well asa corresponding 3% uncertainty in �F. Further, our total error budget includes 3%

1For measurements on the attractive (repulsive) side of the FR, we shift B0 upwards (downwards). Formeasurements near the resonance, we verify that the direction of the shift of B0 does not affect the result.
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Figure 6.3: Decoherence rate of K in a Li Fermi sea as a function of the interaction parameter
for an average temperature T=0.16 �F∕kB (see text). The measurements with (without) rapid
shifting of the FR are shown as the red circles (black squares). The measurements from Fig. 6.2
are indicated by open symbols. The solid upper (blue) and lower (black) lines correspond to
the prediction of the Fermi liquid theory with and without medium corrections, respectively.
The dashed lines incorporate corrections due to decay to Feshbach molecules. The shaded areas
show the 1� effect of the experimental uncertainties on the theoretical predictions.

systematic errors in a and R∗ arising from the uncertainty in ΔB, and a ±0.05 er-
ror in 1∕�Fa resulting from an uncertainty in the determination of B0 of ±1mG (see
Sec. 6.6.3).

For weak to moderate interactions, there are well-defined K quasiparticles, and we
now show that the evolution of the contrast C on time scales much longer than �F canbe related to the mean quasiparticle scattering rate s. Each scattering event provides
which-way information that distinguishes between the two paths in the interferometer
in Fig. 6.1 and, thus, erases the interference effect. At any given time, the interaction
affects only one of the two paths, decreasing the probability for the system to stay in
this path at the rate s. Since our signal arises from the interference of the amplitudes
in the two interferometer paths, we expect the interaction to lead to a decrease of the
observed contrast at the rate s∕2.
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6.3 Theory

From Fermi liquid theory, the scattering rate p1 of a K quasiparticle with momentum
p1 is given by [Bay91]

p1 =
¨

dp̌2dΩ
mrpr
4�2

| |2[fLi
p2
(1 − fK

p3
− fLi

p4
) + fK

p3
fLi
p4
]. (6.1)

Here,  is the scattering matrix for the scattering of K atoms with Li atoms with mo-
menta p1 and p2, respectively, tomomenta p3 and p4. We have defined dp̌2=d3p2∕(2�)3,and Ω is the solid angle for the direction of the outgoing relative momentum. The
distribution functions are fLi/K

p = [e�(E
Li/K
p −�Li/K) + 1]−1 with the chemical potentials

�Li/K for the Li /K atoms respectively. The dominant medium effects can be shown to
enter in the scattering matrix  via ladder diagrams, whereas the quasiparticles can
be assumed to have the ideal gas energy dispersion EK/Li

p =p2∕2mK/Li [Bru05, Ens12].The details of the calculation of p1 are described in [Chr15]. In addition, we account
for the reduced quasiparticles residue Z by multiplying the collision rate by Z calcu-
lated from the ladder approximation [Mas14]. To obtain the mean scattering rate s,we calculate the thermal average s=

´
dp̌fK

p p. To include the effects of the trap, we
use effective Fermi energies, which are obtained by averaging the local Fermi energy
over the density of the K atoms in the trap. This approach is justified since the K atoms
only probe a small region of the Li gas, and because the momentum distribution of the
K atoms is nearly classical.

On the repulsive side of the FR, we need to consider additional effects arising from
the decay of the atoms into the molecular state that underlies our FR. The rate Γ of
this process was calculated and confirmed by measurements in Ref. [Koh12], reaching
values as high as 0.02 �−1F close to resonance. Since the decay to molecules provides
which-way information, it will contribute at least Γ∕2 to the measured decoherence
rate. The decay also releases energy and creates holes in the Li Fermi sea, increasing
the value of kBT ∕�F during our measurement to 0.20 (1) (see Sec. 6.6.6).

In Fig. 6.3, we plot the calculated decoherence rate s∕2 as a function of the interac-tion parameter. The lower solid line is obtained by using the vacuum scattering matrix
vac [Chr15] in Eq. (6.1), whereas the upper solid line is obtained by using a  ma-
trix which includes medium effects using the ladder approximation. The dashed lines
include the effects of decay into the molecular state. The calculated decoherence rate
agrees with the experimental values very well for −1∕kFa≳1.5 and for −1∕kFa≲−1.This gives strong evidence that the observed decoherence is, indeed, due to quasipar-
ticle collisions. The significant asymmetry of the decoherence rate around 1∕kFa = 0arises from the narrow nature of the FR [Chr15]. The calculated decoherence rate
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Figure 6.4: Decoherence rate of K in a fermionic Li cloud as a function of temperature. The
data for −1∕�Fa=0.2, �FR∗=0.94, n̄K∕n̄Li=0.2 (−1∕�Fa=2.4, �FR∗=0.89, n̄K∕n̄Li=0.3) mea-
sured with (without) rapid shifting of the FR is shown as red circles (black squares). The solid
blue and black lines correspond to the predictions of the Fermi liquid theory for −1∕�Fa=2.4with and without medium corrections, respectively. The shaded areas show the 1� effect of the
experimental uncertainties on the theoretical predictions.

is larger when medium effects are included in the  matrix. This is due to pair cor-
relations, which can increase the collisional cross section significantly [Chr15]. We
see that the inclusion of these medium effects on the scattering matrix improves the
agreement with the experimental data. For stronger interactions, the calculation does
not fit the experiment, which is expected since there are no well-defined quasiparti-
cles in the unitarity regime [Koh12]. Our model agrees with the observed absence
of a dependence of coh on n̄K∕n̄Li since the K cloud is close to the classical regime
where fKp3≪1 and the momentum distribution of the K atoms is solely determined by
the temperature.

6.4 Temperature Dependence

Further insight into the nature of the observed decoherence can be gained by varying
the temperature of our atom mixture, which we accomplish by changing the endpoint
of our evaporative cooling. We show the dependence of the measured decoherence rate
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on temperature in Fig. 6.4. In addition to the statistical errors shown by the error bars,
the data are subject to small variations of −1∕�Fa, �FR∗, and n̄K∕n̄Li with standard
deviations of 0.05, 0.03, and 0.1, respectively. Our total error budget also includes the
above-mentioned systematic uncertainties in �F, �F, a, and R∗.Away from the FR, the measured decoherence rates are in very good agreement
with the predictions of the Fermi liquid theory. The linear dependence of coh on
temperature in this regime arises from the high relative mass of the K atoms, caus-
ing the Li-K scattering to resemble scattering by fixed impurities. This is similar to
the situation in metals where the scattering of electrons by fixed nuclei gives rise to
the well-known linear dependence of the nuclear decoherence rates on temperature
[Kor50]. The red circles in Fig. 6.4 represent the measurements for resonant interac-
tions. The rates obtained in this regime are more than an order of magnitude higher
than the off-resonant rates and do not increase with temperature.

6.5 Conclusion

In conclusion, we established that, for weak to moderate interaction strengths, the de-
coherence of K in a Li Fermi sea is dominated by quasiparticle scattering. Our obser-
vations for strong interactions cannot be explained solely by quasiparticle scattering
and indicate decoherence processes which persist at zero temperature. This offers an
exciting opportunity to explore the many-body quantum dynamics of an impurity sub-
merged in a Fermi sea.
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6.6 Supplemental Material

6.6.1 Optical Trap Setup
We perform our measurements in dipole traps formed by two single-frequency, 1064-
nm laser beams produced by a solid-state laser system (Innolight Mephisto 42NE
MOPA). The beams intersect at an angle of 16◦. To avoid standing wave effects, the
beams are offset in frequency by 5 to 10 MHz. To shift the Feshbach resonance (FR),
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Figure 6.5: Illustration of the optical setup for producing and switching optical dipole traps of
different sizes with highly stable relative position.

we keep one of the two beams (“D”) static and use acousto-optic modulators (AOMs)
to rapidly change the other beam. Changing only the intensity of this latter beam
would excite strong oscillations of the atomic cloud. We counter this by switching
from a beam with a low peak intensity and small size (“S”) to a beam with a large
intensity and large size (“V ”) propagating in the same direction. The waists, positions
and intensities of the “S” and “V ” beams are adjusted so as to match the centers and
curvatures of the resulting optical potentials, preventing collective excitations of the
atomic cloud.

This method for shifting the FR poses two technical challenges. First, the overlap
between the optical axes of the “S” and “V ” beams needs to be maintained with an
accuracy that is much better than the smallest extent of the atomic clouds (about 5 �m).
Second, to maximize the shift of the resonance, the curvature of the optical potential
due to the larger beam needs to be minimized relative to its intensity. We address both
of these challenges using the optical system shown in Fig. 6.5.

To ensure beam pointing stability, we couple the laser light into Panda polarization-
maintaining fiber patchcords (Thorlabs P3-980PM-FC) with 6 �m core diameter. For
the “S” and “D” beams, we use 5-m long fibers. When using a 5-m long fiber for the
“V ”-beam, we observed a saturation of the fiber output power at 1.1 W, together with
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a sharp increase of the reflected power from the fiber. These effects were not observed
with up to 10 W of output power from the fiber when a 2-m long fiber was used. We
interpret these observations in terms of stimulated Brillouin scattering [Ruf04], whose
threshold power is inversely proportional to the fiber length.

To prevent the degradation of the fiber ends, the “V ” beam is operated with brief (<
0.3 ms) and infrequent (< 1/min) pulses. Although, in the P3-980PM-FC patchcords,
the fiber is attached to the ferrule using an epoxy adhesive, we did not observe any
degradation of the fiber transmission after one year of operation with peak powers up
to 10 W.

To maintain relative pointing stability of the “S” and “V ” beams, the outputs of
the “S” and “V ” fibers (e−2 divergence half-angle = 74(3) mrad) are combined on
a polarizing beamsplitter. At this location, the “S” and “V ” beams have waists of
0.31(1) mm and 0.75(1) mm, respectively. In the same plane, “S” and “V ” beams
are converging with radii of curvature of 370(20) mm and 390(20) mm, respectively.
The output of the beamsplitter is projected with 7.6× demagnification onto the atoms
using a telescope composed of the lenses labelled as L1, L2, L3 and L4 in Fig. 6.5. The
distance between the lenses L2 and L3 is adjusted so as to obtain a nearly collimated
“S” beam after the lens L3 with a 1.2(1)-mm waist.

Higher spatial frequency components in the beams (arising e.g. from stray reflec-
tions) increase the curvature of the optical potential relative to its depth. To mitigate
this problem, we spatially filter the “S” and “V ” beams by passing them through a
5.3-mm diameter graphite aperture in a plane that is Fourier-conjugate to the location
of the atoms (Fig. 6.5).

We measured the sizes of the “S” and “V ” beams at the location of the atoms by
deflecting the beams using an auxiliary mirror and then focusing them onto a CCD
beam profiler, as shown in Fig. 6.5. The 1/e2 radii of the “S” and “V ” beams were
determined to be 38(2) �m, and 91(3) �m, respectively. The size of the “D” beam at
the location of the atoms was determined to be 48(2) �m.

6.6.2 Parameters of the 154.7G Feshbach Resonance

The FR that we employ for tuning the interactions in our system occurs between 6Li
atoms in their lowest internal state, denoted Li|1⟩ (F = 1∕2, mF = +1∕2), and 40K
atoms in their third-to-lowest state K|3⟩ (F = 9∕2, mF = −5∕2). We parametrize the
Li|1⟩-K|3⟩ scattering length near the 154.7G FR by the usual expression [Chi10]

a (B) = abg

(

1 − Δ
B − B0

)

. (6.2)
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For the background scattering length abg and the resonance widthΔ, we use the values
abg = 63.0 a0 and Δ = 0.880G from the coupled-channel calculation in [Nai11].

The narrow nature of the Li|1⟩-K|3⟩ FR causes a significant variation of Li-K scat-
tering across the range of the collision energies encountered in our experiment [Chi10].
We obtain quantitative information on this effect from measurements of the molecular
binding energy. We measure the binding energy using two methods: radio-frequency
(rf) association [Jag14] and magnetic field modulation spectroscopy [Lan09]. The
combined results of these measurements are shown in Fig. 6.6.

In order to parametrize the dependence of the molecular binding energy Eb on themagnetic detuning B −B0 near the dissociation threshold, we first introduce the wavenumber �, in terms of which Eb = ℏ2�2∕2mr, where mr = mLimK∕
(

mLi + mK
) is the

reduced mass. We then express the magnetic detuning B − B0 as a function of � by a
Taylor expansion up to second order of the form

B − B0 = −abg Δ � −
ℏ2 �2

2mr ��
. (6.3)

The coefficient abg Δ in front of the linear term is determined by the well-known uni-
versal relation between � and a near the resonance. We fit Eq. (6.3) to the data from
Fig. 6.6 with �� and B0 as free parameters, while fixing abg and Δ to the values
from Ref. [Nai11]. From this fit, we obtain ��∕ℎ = 2.35 (2) MHz/G. Our fitting
model is equivalent to the prediction of the two-channel model from [Pet04a] with
R∗ = ℏ2∕

(

2mr abg ��Δ
). We note that this model neglects the background scatter-

ing term in Eq. (6.2).
Our measurements of the binding energy allow us to determine the momentum

dependence of Li-K collisions near the resonance. For small values of the collision
momentum ℏk, we can use the well-known effective range expansion to write the in-
verse scattering amplitude as

f (k)−1 = −1
a
+ 1
2
reff k

2 − ik .

Since the existence of the bound state implies that the scattering amplitude has a pole
at k = i�, we obtain

0 = 1
a
− 1
2
reff (i�)2 + i (i�) .

Substituting the expression (6.2) for a (B), we can then write

a−1bg

(

1 − Δ
B − B0

)−1
+ 1
2
reff � − � = 0 .
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Figure 6.6: Molecular binding energy near the 154.7G Li|1⟩-K|3⟩ Feshbach resonance mea-
sured using rf association (red points) and magnetic field modulation spectroscopy (blue points).
The lower panel shows the residuals of a fit to the data with the model based on Eq. (6.3) with
�� and B0 as free parameters.
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Then, substituting the expression (6.3) for the detuning B − B0 , we obtain

a−1bg
⎛

⎜

⎜

⎝

1 − Δ

−abg Δ � −
ℏ2 �2
2mr ��

⎞

⎟

⎟

⎠

−1

+ 1
2
reff � − � = 0 .

Taylor-expanding this near � = 0, we get
(

−abg +
reff
2
+ ℏ2

2abg mr ��Δ

)

�2 + O
(

�3
)

= 0 ,

whence we obtain
reff = 2 abg −

ℏ2

abg mr ��Δ
. (6.4)

We can summarize the parameters of the Li|1⟩-K|3⟩ FR with three independent
parameters:

abg = 63.0 a0 ,
Δ = 0.880G ,

��∕ℎ = 2.35 (2) MHz∕G .

From this, we can derive the values
R∗ = 2650 (25) a0 ,
reff = −5175 (50) a0 .

6.6.3 Light Shift of the Feshbach Resonance
As we pointed out in the main text, as well as in Refs. [Koh12, Jag14], the optical
trap induces a differential light shift between the atom pair state and the molecular
state giving rise to the FR near 154.7G. This leads to a light-induced shift of the FR.
To produce these shifts in the experiments presented in the main text, we use a near-
infrared laser as discussed in Sec. 6.6.1 in four different trap settings (see Table 6.1).

To determine the resonance center B0 for a given trap setting, we follow the ex-
perimental procedure outlined in the Supplemental Material of Ref. [Jag14]. For the
data analysis, we use the updated binding energy model presented in the preceeding
Section. For each trap setting, we perform rf association spectroscopy of the Feshbach
molecules. We start by preparing a nonresonant mixture of Li atoms in the state Li|1⟩
and K atoms in their second-to-lowest state K|2⟩ several tens of mG below B0. At this
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Figure 6.7: Data from the molecular rf-association spectroscopy for trap 3. The red points were
taken with a 0.5-ms rf pulse with an intensity set to the value matching the �-pulse condition in
the absence of interactions (no Li|1⟩ present). The green points were recorded with more than
30× increased rf intensity. The dashed lines indicate the binding energy Eb(B) as determined
with the 20% criterion (see text).

field, we apply an rf pulse (duration of a few 100 �s) at a variable frequency �, sev-
eral kHz below the unperturbed K|2⟩→K|3⟩ transition frequency �0. This pulse drivesLi|1⟩-K|2⟩ atom pairs into the Li|1⟩K|3⟩ dimer state. To determine the number of
dimers associated, we subsequently dissociate the dimers into pairs of Li|1⟩ and K|3⟩
atoms by a magnetic field ramp (duration of a few 100 �s) to a magnetic field above
154.8G. By recording absorption images we then determine the populations N2 and
N3 of the K spin states K|2⟩ and K|3⟩, respectively.

Plotting the signal, given byN3∕(N3 +N2), against the rf detuning � − �0, we re-solve the molecule association spectrum. In Fig. 6.7 we show sample spectra recorded
for one of the trap settings used in the experiments. We determine the energy of the
molecules relative to the energy of noninteracting K|3⟩ atoms from the onset frequency
of the molecular association spectra. As the onset frequency, we use the upper rf fre-
quency at which the fraction of atoms transferred is roughly 20% of its peak height.
We have checked that, within the errors of our measurements, this criterion agrees
with the result obtained by fitting the line-shape model of Ref. [Chi05] to the spectra,
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Figure 6.8: Determination of the FR center B0 by rf association of dimers. The points show the
experimentally determined molecular binding energies Eb(B) for four trap settings. The solid
curves are fits of the binding energy according to Eq. 6.3. The gray shaded areas indicate the
typical error range of our fit analysis.

as was done in Ref. [Koh12]. This procedure is applied at various magnetic fields for
each trap setting used in the experiments.

The interaction between the formed LiK molecules and the Li atoms leads to an
energy shift of the molecular state. We use the mean-field model from [Jag14] to pre-
dict the corresponding shift in the onset frequency in the rf association measurements
as +2.0(4) kHz. To determine the molecular binding energy in the absence of the Li
cloud, we subtract this small offset from the onset frequencies determined above.

We fit the binding energy according to Eq. (6.3) to the data, withB0 as the only freeparameter (see Fig. 6.8). The other parameters are fixed to the values from Sec. 6.6.2.
This procedure allows us to determine the resonance center in each trap setting with an
uncertainty of ±1.5mG. The accuracy of our determination of the resonance position
is limited by the uncertainty in the FR parameters in the model for the binding energy.
The FR centers determined for our four trap settings of Fig. 6.8 are given in Table 6.1.

To record the data shown in Figs. 6.3 and 6.4 of the main text we switch between
trap settings 1 and 2b as well as between settings 3 and 4 within less than 200 ns. In
our experiments, switching between trap 1 and 2b (3 and 4) changes the interaction
parameter 1∕�Fa by 1.2 (2.1), without changing the harmonic potential in which the
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Trap B0 �r,K �a,K �r,Li �a,Li PS PD PV
(G) (Hz) (Hz) (Hz) (Hz) (W) (W) (W)

1 154.7195 415 56 650 88 0.175 0.380 0
2b 154.7420 0 0.380 4.40
2a 154.7465 - - - - 0 0.425 4.85
3 154.7405 580 80 945 130 0.380 0.815 0
4 154.7785 0 0.815 7.60

Table 6.1: Typical trap parameters for the various trap settings. In our experiments, we switch
from trap 1 to 2b i.e. from trap 3 to 4 by switching the powers PS and PV of the S and V beams
within less than 200 ns.

atoms are trapped. Whenwe recorded the data for the FR center determination, the data
in trap 2a of Fig. 6.8 was recorded with 11% higher trapping-light powers compared to
trap 2b, in which measurements of the main text were taken. Therefore, the FR center
B0,2 is shifted 11% more relative to the center of the FR in the absence of the 1064-nm
light. We determine the latter to be at 154.699(1)G by extrapolating the FR centers
for various beam intensities to the zero trapping-light intensity. The correct value of
the FR center of trap 2b, as used in the experiments of the main text, is therefore given
by 154.699G + (B0,2 − 154.699G)∕1.11 = 154.7420(15)G.

The determination of the relative shifts of the FR centers of two trap settings can be
done with an even higher accuracy. As an example: We record association spectra at
a magnetic field B3 (B4) in trap 3 (4) with the FR center at B0,3 (B0,4). The magnetic
fields are chosen such that the spectra are taken at roughly the same detuning B3 −
B0,3 ≈ B4 − B0,4. We then compare these spectra from trap 3 and trap 4, and overlap
their association onsets by shifting one of them, say the one in trap 4, with respect to the
other, trap 3, along the frequency axis by ��. This frequency shift �� can be translated
into a magnetic detuning shift �B0 by comparing it to the slope of the binding-energy
at that detuning dEb∕dB. Then �B0 can be extracted from �B0 = ℎ��∕[dEb∕dB].Finally we can derive the relative shift of the FR centers in trap 3 and trap 4 to be
B0,4 − B0,3 = B4 − B3 − �B0. We estimate the accuracy of this relative FR center
determination to be on the order of ±0.5mG.

Table 6.1 shows the typical resonance positions, trap frequencies and laser powers
for the traps used in the measurements in the main text. The trap frequencies are
determined by observing oscillations of the atomic clouds. We observe variations in
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the FR centers of less than 1.5mG and trap frequencies of less than 4% over weeks
of measurement time, which we ascribe to variations of the 1064 nm trapping-laser
power and drifts of the relative beam positions. We account for these variations in the
data analysis.

6.6.4 Determination of the Li Atom Number
An accurate determination of the number NLi of Li atoms in our experiment and the
corresponding Fermi energy is an important, non-trivial task. Here we present four
different methods to determine the number of Li atoms with an error of less than 10%.

6.6.4.1 Absorption Imaging on a Nearly Closed Transition

One method for determining the number of atoms is absorption imaging. In this
method, the spatial dependence of the fraction A of the light absorbed by the atomic
cloud is recorded using a camera and used to obtain a measure of the atom number

NI = −
2�
3�2

( u
M

)2 ∑

X,Y
ln [1 − A (X, Y )] ,

where � is the light wavelength, M is the magnification of the imaging system, u is
the camera pixel size, and A (X, Y ) is the absorbed light fraction as measured by the
camera withX and Y the camera pixel indices. If atoms at rest are imaged using a weak
light pulse that resonantly excites a closed atomic transition, NI will be equal to the
true atom number. In this section, we will present reference experimental conditions
that approximate this situation and use these conditions to obtain a measure Nhigh−B

Ithat is close to the Li atom numberNLi. We will then discuss the remaining systematic
effects and thereby relateNhigh−B

I toNLi.We approximate a closed transition by imaging Li atoms in the second-lowest Zee-
man state (Li|2⟩, mJ = −1∕2, mI = 0) using �− light near � = 671 nm that reso-
nantly excites them to the second-lowest Zeeman state of the 2P3∕2 manifold (Li|

|

2′⟩,
mJ = −3∕2, mI = 0) at the magnetic field of 1150G. The dominant branching from
this transition is due to the spontaneous decay of Li|

|

2′⟩ to the Li|4⟩ (mJ = 1∕2,
mI = −1) state. We calculate the corresponding branching ratio as 0.12% using the
dipole selection rules and the expression of the relevant states in the (

mJ , mI
) ba-

sis. Under our imaging conditions, the other branching ratios are more than 100 times
smaller.

We record the images of the atoms using a back-illuminated CCD camera (Andor
DV-434)with a pixel size of u = 11�m. We determine themagnificationM = 2.93 (5)
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of our imaging system by imaging the interference pattern formed by two 671-nm laser
beams intersecting at an angle of 29.0 (4) mrad at the location of the atoms onto our
camera.

We check the purity of the polarization of the imaging light by imaging an optically
dense Li cloud. We obtain optical depths greater than 3, corresponding to a sum of
the intensities of the unabsorbed �+ and � light components that is less than 5% of the
intensity of the �− imaging light. We minimize the effect of the polarization errors
by ensuring that the maximal optical depth of the imaged cloud is smaller than 0.4,
implying a relative error in the determined atom number of less than 6%.

We minimize saturation effects by using a low light intensity I ≈ 0.05 Is, where
Is = 2.5 mW/cm2 is the saturation intensity of the Li D2 transition.

While mechanical effects exerted by light on atoms form the basis of laser cooling,
the effect of these forces on absorption imaging of atoms is usually neglected. How-
ever, for light atoms, this effect can be significant. For Li, the scattering of a single pho-
ton of the 671-nm imaging light imparts amomentumℏkL = 2� ℏ∕� to the atom, lead-
ing to a Doppler shift of the imaging transition by �rec = ℏk2L∕mLi = 0.025 ΓD2, where
ΓD2 = 36.897 �s−1 is the spontaneous emission rate from the Li 2P3∕2 state [McA96].
For imaging Li atoms, we choose a reference set of conditions. The imaging pulse du-
ration is set to 18 �s, the light intensity to I ≈ 0.05 Is and the detuning �0 is adjustedto obtain the maximal value of NI . Under these conditions, we expect the radiationpressure to lead to a mean laser detuning during the imaging pulse that is smaller than
0.1 ΓD2, corresponding to a small effect on the measured atomic absorption.

We experimentally investigate the mechanical effects of the light on the atoms by
varying the laser detuning � and the duration of the imaging pulse. Fig. 6.9 shows
the number NI as a function of the duration t of the imaging pulse for different laser
detunings. The red, orange, green and cyan points correspond to (

�0 − �
)

∕ (2�) =
9MHz, 7MHz, 5MHz and 3MHz, respectively. The single blue point corresponds to
the reference imaging conditions.

For pulse durations that are significantly longer than our reference pulse duration,
we observe a large effect of the radiation pressure. We model this effect by the follow-
ing set of differential equations:

dN

dt
=

ΓD2
2

s
1 + s + �2∕ (Γ∕2)2

� ,

d�
dt

= − (1 − r)
dN

dt
� , (6.5)

d�
dt

= �rec
dN

dt
,
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Figure 6.9: Li atom number determined by absorption imaging in the presence of a magnetic
field of 1150 G as a function of the duration of the imaging light pulse. The lines show a
multivariate fit to the model of Eq. (6.6). The dashed line indicates the Li atom number that
would be obtained using a weak resonant light pulse.

where s = I∕Is, the parameter r is the branching ratio to the Li|2⟩ state, andN is themean number of photons scattered per atom, and � is the fraction of atoms remaining
in the nearly closed two-level system. The time t = 0 corresponds to the start of the
imaging pulse, with � (0) = 1.

In the limit of r = 1 and small s, these equations can be solved by separation of
variables to yield:

� (t) =
ΓD2
2
g
(

�rec s t
)

,

N (t) =
[

g
(

�rec s t
)

− g (0)
]

∕
(

�rec
ΓD2∕2

)

,

where g (u) satisfies
g (u)2 − g (0)2

2
+
g (u)4 − g (0)4

4
= u

with g (0) = 2� (0) ∕Γ. The number NI is be proportional to the mean number of
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photons scattered per unit timeN∕t. Therefore, we write

NI = N0
I
[

g
(

�recst
)

− g (0)
]

∕
(

�recst
)

, (6.6)

whereN0
I is the value ofNI determined in the limit of a weak, resonant light pulse.

We fit the model of Eq. (6.6) to the data from Fig. 6.9 with �0, N0
I and s as free

parameters and obtain �0 = −2�×1.2 (1)MHz, s = 0.043 (2), andN0
I = 2.02 (4)×10

5.
The fitted value ofN0

I is indicated by the dashed line in the Fig. 6.9.
The above model implies that, under the reference conditions, �0∕2� = −1MHz

andNhigh−B
I ∕N0

I = 0.96 (1), with each atom scattering a mean number of 12 photons
during the imaging pulse. Using Eq. (6.5) to include the effects of saturation and
branching ratio, we obtain a relation between Nhigh−B

I and the true Li atom number
NLi asNhigh−B

I = 0.91 (2)NLi. Including the effects of the imperfect light polarization
and the uncertainty in the magnification, we obtainNhigh−B

I = 0.89 (5) NLi.

6.6.4.2 Fitting of Li Fermi profiles

Another method to determine the Li atom number is to image a degenerate Li atom
cloud after releasing the atoms from a trap. In the zero-temperature limit, the spatial
extent of the imaged cloud is determined by the trap frequencies, the time elapsed after
release from the trap and the atom number.

To account for the finite temperature of the Li atoms in our experiment, we use a
non-degenerate sample of K atoms to measure the temperature of the Li atoms. We
prepare a mixed sample of approximately 2.5×105 Li|2⟩ atoms and 2×104 K|1⟩ atoms
at 1150G in a deep crossed-dipole trap with frequencies fKr = 408 (1)Hz, fLir =
649 (3)Hz, fKz = 56.1 (4)Hz, fLiz = 89.1 (2)Hz. After waiting 0.5 s for the Li and
K to thermalize, we release the atoms from the trap. By imaging the non-degenerate
K cloud after 5.5ms time of flight, we determine the temperature of the atoms to be
T = 370 (15) nK.

We image the Li atoms after tTOF=2.5ms time of flight using the reference imaging
pulse described in Sec. 6.6.4.1. By averaging 45 absorption images, we obtain the
image shown in Fig. 6.10. We fit the obtained absorption data to a function of the
form A + e−�n2D , where

n2D = −
k2B mLi T

2

4�2 ℏ3 fLir
Li2

(

−q exp

(

−
mLi u2

(

X −X0
)2

2�rM2 kB T
−
mLi u2

(

Z −Z0
)2

2�zM2 kB T

))
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Figure 6.10: Fraction of the imaging light absorbed by a Li atomic cloud after release from an
optical trap (a), together with residuals of a fit to the data (b).
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is the 2D Fermi atom density profile with Li the polylogarithm function and
�r,z =

√

1 +
(

2� fLir,z tTOF
)2. The fit parameter A accounts for technical offsets in

the absorption data while X0 and Y0 fit the location of the cloud center on the camera
image. The fit parameters q and � correspond to the atoms’ fugacity and the light ab-
sorption cross-section. The fit residual is shown in Fig. 6.10(b). Taking into accounts
the uncertainties in the magnification, the temperature and the trap frequencies, we
obtain � = 0.82 (9) × 6�∕k2L, corresponding toNhigh−B

I = 0.82 (9) NLi.

6.6.4.3 LiK Molecule Dissociation and K Number Determination

Another method to determine the Li atom number is to associate LiK Feshbach mole-
cules and to compare the number of K and Li atoms after dissociating the molecules.
The advantage of this method is that the K atoms can be imaged on a closed transition
and that, being 6.6 times heavier than the Li atoms, the K atoms are much less affected
by the radiation pressure of the imaging light.

We associate the Li|1⟩K|3⟩ molecules by a magnetic ramp across the FR and then
thoroughly clean our trapped sample from any remaining free Li and K atoms by a
combination of radio-frequency and laser light pulses; see [Jag14] for details. The
obtained molecule samples are essentially pure, consisting of approximately 1.5× 104
molecules and less than 300 remaining free Li and K atoms.

We subsequently dissociate the molecules by an inverse ramp across the FR and
determine the number of free Li|1⟩ and K|3⟩ atoms via absorption imaging at a mag-
netic field near 154.7G. For imaging the Li|1⟩ atoms, we use the parameters from
Sec. 6.6.5. We convert the atom number N low−B

I determined using these parameters
to the number Nhigh−B

I of Li atoms obtained by absorption imaging at 1150G using
the imaging ratios from Sec. 6.6.5.

We relate the number of atoms determined by absorption imaging of K|3⟩ atoms
near 154.7G to the true K atom number in two steps. First, we transfer an independent
sample of K atoms from the state K|1⟩ to the state K|3⟩ using two consecutive resonant
rf pulses. Imaging these atoms before and after the transfer allows us to relate the
number of K|3⟩ atoms determined by absorption imaging after molecule dissociation
to the number N low−B

I,K of K|1⟩ atoms that would be measured by absorption imaging
near 154.7 G. In the second step, using a similar procedure to the one described in
Sec. 6.6.5, we compare N low−B

I,K to the number Nhigh−B
I,K of K|1⟩ atoms determined by

absorption imaging at 1150G using a weak laser-light pulse. We then find for the
relative atom number of K and Li determined at 1150G:Nhigh−B

I = 0.92(5)Nhigh−B
I,K .
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Accounting for the saturation of the K imaging light (s ≈ 0.05) and the errors in
the light polarization and the magnification of the K imaging system, we can relate
Nhigh−B
I,K to the true K atom number asNhigh−B

I,K = 0.92 (5) NK .Finally, assuming the real numbers of K and Li atoms after dissociation to be equal,
we obtainNhigh−B

I = 0.85 (7) NLi.

6.6.4.4 Measurement of rf Shifts

A different method to determine the Li number is to use rf spectroscopy to measure the
interaction energy of the K atoms with the Li cloud. By comparing the measured data
to the predictions of a dressed quasiparticle model [Mas12] with accurately determined
parameters of the FR, one can determine the mean Fermi energy of Li sampled by the
K atoms. From the knowledge of the Li temperature and trap frequencies, one can then
determine the Li atom number.

We prepare a sample of about 2.7×105 Li atoms and 2×104 K atoms at the temper-
ature of T = 290 (15) nK in a crossed-beam optical dipole trap with trap frequencies
fKr = 395 (2)Hz, fLir = 632 (3)Hz, fKz = 50.0 (5)Hz, fLiz = 80 (1)Hz. We use a
Blackman-shaped rf �-pulse to transfer the K atoms from the K|2⟩ to the K|3⟩ state at
various magnetic fields B near the 154.7G Li|1⟩-K|3⟩ Feshbach resonance. We com-
pare the rf frequency at which we obtain maximal transfer of the K atoms when the
Li atoms are in the Li|1⟩ state (f ) to the frequency for maximum transfer with the Li
atoms in the Li|2⟩ state (f0).Fig. 6.11 shows the frequency difference f −f0 as a function of the magnetic field
near 154.7G. We verify that f0 remains unchanged in the absence of the Li atoms.
Therefore, ℎ (f − f0

) corresponds to the difference E3 − E2 of the mean interaction
energies of the K atoms in the K|3⟩ and K|2⟩ states with Li atoms in the Li|1⟩ state.

We assume a uniform distribution of the Li atoms across the K cloud and use the
mean Li Fermi energy �F = ℏ2 �2F∕2mLi sampled by the K atoms as a free parameter.
We calculate the interaction energy E3 between the K|3⟩ atoms and Li|1⟩ atoms from
a two-channel polaron model [Mas12] with the resonance parameters determined in
Sec. 6.6.2: abg = 63.0 a0, reff = −5175 a0, ΔB = 0.880G . Since the interaction
between the K|2⟩ atoms and Li|1⟩ atoms is weak, we may approximate E2 by the
mean-field expressionE2 = 2� abg ℏ2 �3F∕

(

6�2
), where a21 = 63 a0 is the K|2⟩-Li|1⟩scattering length [Nai11]. We use the position B0 of the Feshbach resonance as the

second free parameter. By fitting the abovemodel to our data, we find �F = ℎ×31.8 (4),
B0 = 154.715 (1)G.From the knowledge of the trap frequencies and the Li atom temperature, we can
use �F to determine the Li atom number asNLi = 275 (15) × 103. Simultaneous with
the above measurements, we record the number of Li atomsN low−B

I determined using
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Figure 6.11: The measured shifts of the K|2⟩ →K|3⟩ rf transition frequency due to the presence
of Li|1⟩ atoms as a function of the magnetic field (dots) together with a fit using a quasiparticle
model (see text).

absorption imaging near 154.7G as described in the Sec. 6.6.5. We use the conver-
sion between N low−B

I and Nhigh−B
I described in the same section to find Nhigh−B

I =
0.91 (7) NLi.

6.6.4.5 Determination of Li Atom Number: Summary

We summarize the results of our measurements of the Li atom number by the obtained
ratios N low−B

I ∕NLi. These ratios are subject to errors that are largely uncorrelated
between the different methods, with the notable exception of the error in the determi-
nation of the magnification of the imaging system. To obtain the best estimate for the
ratio Nhigh−B

I ∕NLi, we fix the magnification to a certain value M0 and calculate the
mean � (M0

) and variance V (

M0
) of the four results weighted by their inverse un-

correlated variances. We repeat the same procedure withM0 sampled from a normal
distribution whose mean and variance correspond to our experimental determination
ofM . We add the variance of � due to the variation inM0 to V to obtain:

N low−B
I ∕NLi = 0.86 (5) .

In the main text, we use a more conservative error estimate of 16% for the rela-
tive uncertainty in the Li atom number determination. This corresponds to a relative
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uncertainty in the Fermi energy of 6%.

6.6.5 Absorption Imaging Near 154.7G
We commonly determine the Li atom number near the Li|1⟩-K|3⟩ FR at 154.7G. We
do this by absorption imaging of Li|1⟩ atoms using �− light on the Li|1⟩ (mI = 1,
mJ = −1∕2)→ Li|

|

3′⟩ (mI = 1, mJ = −3∕2) transition. The dominant loss channel
for this imaging transition is the spontaneous decay from the Li|

|

3′⟩ state to the Li|5⟩
(mI = 0, mJ = +1∕2) state. We calculate the corresponding branching ratio as 4%
using the method from Sec. 6.6.4.1. The other loss processes are at least three orders
of magnitude less probable. We use an 8-�s long imaging pulse whose intensity cor-
responds to s = 0.26 and whose frequency is adjusted to obtain the maximal value of
NI .We calibrate this imaging method relative to the imaging of Li atoms in the |2⟩
state at the magnetic field of 1150G as follows. We first prepare a Li|2⟩ sample at the
field of 1150 G and image it as described above. Then, in a separate experiment, we
ramp the magnetic field to 154.7 G, followed by a ramp back to 1150 G. We verify that
these ramps lead to the loss of less than 5% of the atoms. In the third experiment, we
execute only the first field ramp and then use rapid adiabatic passage to transfer the Li
atoms into the Li|1⟩ state with efficiency larger than 98%. We image these atoms as
described above to obtain the atom numberN low−B

I . We use the relationship between
N low−B
I and the average of the atom numbers recorded at the magnetic field of 1150G

with and without the double field ramp to determineNhigh−B
I = 2.4 (1) N low−B

I .

6.6.6 Heating Due to Molecule Formation
As explained in themain text, on the repulsive side of the FR, the K atoms can pair with
Li atoms to form molecules. By removing Li atoms from the Fermi sea and releasing
energy, this pairing process leads to heating with a corresponding increase in kB T ∕�F.To estimate the effects of this decay to molecules, we approximate our system by a
uniform system with Li and K densities n̄Li and n̄K , respectively. Before the impurity
atoms are transferred into the interacting state, the system is in thermal equilibrium
and we may write the number and energy densities of the Li atoms as

n̄Li = −f3∕2
(

−q0
)

∕�3dB (6.7)
and

uLi = −f5∕2
(

−q0
)

× 3
2
kB T0
�3dB

, (6.8)
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where q0 and T0 are the fugacity and the temperature of the Li atoms before the start
of the experiment, �dB =

(

2� ℏ2∕mkB T0
)1∕2 is the thermal de Broglie wavelength

of the Li atoms and f3∕2 i.e. f5∕2 are the polylogarithm functions [Hua87]. The Fermi
energy �F of the Li atoms is related to n̄Li as

�F =
ℏ2

2mLi

(

6�2 n̄Li
)2∕3 (6.9)

and to the fugacity as

kB T
�F

=

[

4
3
√

�
−1

f3∕2
(

−q0
)

]2∕3

. (6.10)

The heating due to molecule formation progresses during the interaction time. To
estimate the effect of this heating on our measurements of the decoherence rate, we
choose a typical interraction time �D = −1coh. We also assume that each decay event
removes a single Li atom from the Fermi sea. We also assume that only 50% of the
K atoms participate in the decay since the other 50% are in the non-interacting state
during the echo sequence. This implies that the fraction l = Γ �D n̄K∕2 n̄Li of the Liatoms will be converted to molecules. As the decay rate Γ, we take the sum of the
two-body and three-body decay rates from [Koh12].

We further assume that each decay to molecules releases energy � EF equal to thedifference between the repulsive polaron energy and the middle of the molecule-hole
continuum from [Koh12]. Since the Li is much lighter than LiK, we assume that the
full energy released to the decay is delivered to the Li sea. Finally, we assume that
remaining Li atoms thermalize with each other.

Under these conditions, we may express the number density n̄′Li, the energy density
u′Li and the Fermi energy �′F of the Li atoms during the experiment as:

n̄′Li = (1 − l) n̄Li ,
u′Li = (1 − l) uLi + l � nLi �F ,0 ,

�′F = �F (1 − l)
2∕3 .

Using Eqns. (6.7-6.10), we obtain

−f3∕2
(

−q1
) (

T1∕T0
)3∕2 = − (1 − l) f3∕2

(

−q0
)

,

−f5∕2
(

−q1
) (

T1∕T0
)5∕2 = − (1 − l) f5∕2

(

−q0
)

+ l
[

−f5∕2
(

−q0
)]5∕3 (�∕6)1∕3 � ,
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Figure 6.12: The predicted degeneracy parameter of the Li atoms during the echo sequence
computed for kB T0∕�F = 0.16, n̄K∕n̄Li = 0.27 and the typical interaction time �D, as a func-
tion of the interaction parameter. The line shows a second-order interpolation between the data
points.

where q1 and T1 are the average fugacity and temperature of the Li atoms during the
experiment. Using Eq. (6.9), we can then obtain the average degeneracy parameter
kB T1∕�′F.Fig. 6.12 shows the predicted typical degeneracy parameter kB T1∕�′F of the Li
atoms in the spin-echo measurements as a function of the interaction parameter, for
the parameters from Fig. 6.3 of the main text.
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CHAPTER 8. 8.1. Introduction

We investigate a mixture of ultracold fermionic 40K atoms and weakly
bound 6Li-40K dimers on the repulsive side of a heteronuclear atomic
Feshbach resonance. By radio-frequency spectroscopy we demonstrate
that the normally repulsive atom-dimer interaction is turned into a strong
attraction. The phenomenon can be understood as a three-body effect in
which two heavy 40K fermions exchange the light 6Li atom, leading to at-
traction in odd partial-wave channels (mainly pwave). Our observations
show that mass imbalance in a fermionic system can profoundly change
the character of interactions as compared to the well-established mass-
balanced case.

8.1 Introduction

Ultracold fermions with tunable interactions provide remarkable possibilities to model
the many-body physics of strongly interacting states of quantum matter under well-
controllable conditions [Gio08, Blo08]. Fermionic superfluids, realized by combining
two different spin states of a fermionic atomic species and controlling their s-wave in-
teraction through a Feshbach resonance [Chi10], have led to spectacular achievements.
Beyond these experimentally well-established fermionic systems, mass imbalance of-
fers an additional degree of freedom, with interesting prospects for new many-body
phenomena having no counterpart in the mass-balanced case, such as novel quantum
phases or superfluid states in various trapping environments [Isk06, Bau09c, Gez09,
Key11, Sot12, Cui13, Gub09, Mat11, Qi12, Dai12, Pet07, Bar08, SC91, Ors10, Dal12,
Nis08, Nis09b].

Striking effects of mass imbalance in fermionic systems already emerge at the few-
body level. A resonantly interacting three-body system of one light (↓) and two heavy
(↑) fermions is known to exhibit bound states depending on the mass ratio m↑∕m↓.While Efimov trimer states require large mass ratios (m↑∕m↓ > 13.6), for repulsive
interactions, non-Efimovian trimer states can exist in an intermediate regime (13.6 >
m↑∕m↓ > 8.17) [Kar07]. Below the critical value of 8.17, the last state turns into an
atom-dimer scattering resonance in the p-wave channel [Kar07].

The 40K-6Li mixture serves as the prime system for current experiments on tunable
mass-imbalanced Fermi-Fermi mixtures [Wil08, Cos10, Tre11]. The corresponding
mass ratio of m↑∕m↓ ≈ 6.64 lies well in the regime of near-resonant atom-dimer in-
teractions [Lev09, Lev11]: as the most prominent effect, theory predicts a substantial
attraction resulting from higher partial waves (mainly pwave) in a regime where one
would naively, based on s waves alone, expect a strong repulsion. This also makes
the corresponding many-body problem in a 40K-6Li mixture significantly more com-
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plicated and much richer than in the widely investigated mass-balanced case.
In this Letter, we investigate the interaction between 40K atoms and weakly bound

6Li-40K dimers near an interspecies Feshbach resonance (FR). We employ radio-fre-
quency (rf) spectroscopy by using two different internal states of 40K, one strongly
interacting with the dimers and the other one practically noninteracting [Koh12]. We
observe line shifts and collisional broadening and interpret these in terms of the real
and imaginary part of the forward-scattering amplitude f (0) for atom-dimer collisions,
calculated on the basis of the theoretical approach of Ref. [Lev11]. The comparison
between theory and experiment shows excellent agreement and, in particular, demon-
strates the predicted atom-dimer attraction on the repulsive side of the interspecies
FR.

The interaction of a heavy atom with a heavy-light dimer can be understood in the
Born-Oppenheimer approximation, where the atom-dimer potentials are taken to be
the eigenenergies of the light atom for a given separation R between the heavy ones.
As in the usual double-well problem with tunneling, the state localized near one heavy
atom is mixed with the state localized near the other; the symmetric and antisymmetric
superpositions lead to the attractive U+(R) < 0 and repulsive U−(R) > 0 potentials,
respectively. Note the analogy to the well-known H+2 cation, where the exchange of the
electron leads to a symmetric bound state and an antisymmetric unbound state [Pau28].
In our experiment, the heavy particles are identical fermions, making the atom-dimer
interaction channel dependent. The symmetric (antisymmetric) state corresponds to
odd (even) values of the total angular momentum l [Lev11]. In Fig. 8.1(a) we plot
the total effective potentials U± + Ucb (solid lines) and the bare centrifugal barriers
Ucb = l(l + 1)ℏ2∕m↑R2 (dashed lines) for l = 0, 1, and 2 (i.e., s-, p-, and d-wave
channels) for typical experimental conditions. At distances on the order of typical de
Broglie wavelength,U± can be comparable toUcb and we expect significant interactioneffects in nonzero partial waves.

8.2 Theory

The relevant quantity that characterizes the net effect of all partial waves is the atom-
dimer forward scattering amplitude [Sob72, Bar58b, Bar58a],

f (0) =
∞
∑

l=0
(2l + 1)

[

sin 2�l(kcoll)
2kcoll

+ i
sin2 �l(kcoll)

kcoll

]

, (8.1)

where kcoll =
√

2�3Ecoll∕ℏ is the wave number associated with the relative atom-
dimer motion and �3 is the reduced atom-dimer mass. The phase shifts �l for the three
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Figure 8.1: Interaction between 40K atoms and 6Li-40K dimers near the 155G interspecies FR.
(a) Total interaction potentials as a function of the distance R between the two K atoms for the
s, p, and d channels (dashed curves with labels s′, p′, d′ refer to the unmodified centrifugal
barriers). Here we have chosen a magnetic detuning of B − B0 = −16mG, corresponding to
an s-wave scattering length of a = 3528 a0 and to a dimer binding energy of Eb∕kB = 600 nK.(b) Real part of the forward-scattering amplitude f (0) as a function of the collision energy Ecoll(solid line) in comparison with the s-wave contribution (dashed line). (c) Same as in (b), but as
a function of the magnetic detuning B −B0 for a fixed collision energy Ecoll∕kB = 350 nK. Thedotted line indicates the dimer breakup threshold, Ecoll = Eb.
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lowest partial waves have been computed in Ref. [Lev11], and here, we extend the re-
sult to higher ones since they give significant contributions (see Sec. 8.6). In Fig. 8.1(b)
we show the resulting −Re f (0) as a function of the collision energyEcoll for the same
conditions as in Fig. 8.1(a). In the limit of Ecoll → 0, the quantity −Re f (0) corre-
sponds to the atom-dimer s-wave scattering length. At Ecoll ≪ 0.1Eb, with Eb beingthe dimer binding energy, s-wave scattering (dashed line) dominates and the net inter-
action is repulsive, −Re f (0) > 0.

For Ecoll ≳ 0.1Eb, higher partial-wave contributions lead to a sign reversal of
Re f (0), changing the character of the interaction from repulsive into attractive. This
sign reversal also appears if, at a fixed collision energy, the magnetic detuning from
the FR center is varied, see Fig. 8.1(c). In the realistic example of Fig. 8.1(c) the sign
reversal takes place at a magnetic detuning of B − B0 = −53mG, where the binding
energy is Eb∕kB ≈ 3.1�K, corresponding to roughly ten times the collision energy
Ecoll∕kB = 350 nK. The theory lines in Fig. 8.1(c) stop close to the FR center at the
magnetic field detuning where |Eb| = Ecoll (dotted line), beyond which the inelastic
channel of collisional dimer dissociation opens up.

8.3 Experimental Preparation and Method

The starting point of our experiments is an optically trapped, near-degenerate Fermi-
Fermi mixture of typically 4 × 104 40K atoms and 1 × 105 6Li atoms. The prepa-
ration procedures are described in our previous work [Spi10, Tre11]. We choose
a particular FR that occurs between Li atoms in the lowest Zeeman sublevel Li|1⟩
(f = 1∕2, mf = +1∕2) and K atoms in the third-to-lowest sublevel K|3⟩ (f =
9∕2, mf = −5∕2) [Nai11]. The s-wave interspecies scattering length a can be magnet-
ically tuned as a = abg[1 − Δ∕(B − B0)] with abg = 63.0 a0 (a0 is Bohr’s radius) and
Δ = 880mG [Nai11]. The resonance is rather narrow, as characterized by the length
parameter R∗ = 2700 a0 [Pet04a]. The position of the FR center near B ≈ 154.7G
depends on the trap setting, as it includes small shifts induced by the trapping light.
For each trap setting we have calibrated the FR center B0 with ≤ 2mG accuracy (see
Sec. 8.6).

We create an atom-dimer mixture by a Feshbach ramp across the resonance and
by subsequent purification and spin-manipulation techniques (see Sec. 8.6). While
the dimers are formed in the Li|1⟩-K|3⟩ spin channel, we initially prepare the free
atoms in the second-to-lowest spin state K|2⟩ (f = 9∕2, mf = −7∕2), for which
the interaction with the dimers is negligible. The total number of dimers and atoms is
1.5×104 and 7×103, respectively. The interspecies attraction during the Feshbach ramp
results in a collective oscillation of the dimer cloud, which we can take into account
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by introducing an effective temperature Teff (see Sec. 8.6). We use three different
trap settings, for which Teff = 165 nK, 232 nK, and 370 nK. This corresponds to mean
dimer densities as experienced by the atoms of n̄D = 5.2×1011 cm−3, 8.2×1011 cm−3,
and 1.4 × 1012 cm−3, respectively.

To investigate the interaction between theK|3⟩ atoms and the Li|1⟩K|3⟩ dimers, we
carry out rf spectroscopy. This can be done in two different ways, either by driving the
K atoms from the noninteracting state |2⟩ into the interacting state |3⟩ (method A) or
vice versa (method B).With our K atoms initially prepared in the state |2⟩, we carry out
method A by applying a 1-ms rf pulse. For method B, we rapidly transfer the full K|2⟩
population into K|3⟩ using a short 90-�s preparation pulse without spectral resolution,
and then drive the spectrally resolving transition with a 1-ms pulse. Our signal in both
cases is the fraction of transferred atoms as a function of the rf detuning � − �0 withrespect to the unperturbed transition frequency �0, the latter being determined by the
rf spectroscopy in the absence of dimers.

Sample spectra, at a magnetic detuning ofB−B0 = −20mG, are shown in Fig. 8.2.
The spectra recorded by methods A and B (circles and diamonds in Fig. 8.2) show both
a broadening and a peak shift, as compared to the spectra recorded in the absence of
dimers (triangles). Although the spectra very close to the FR center reveal asymmetries
in their wings, which depend on the method applied, their peak shifts and broadenings
are consistent for both methods. In the range of detuningsB−B0 studied in the presentwork the molecular dissociation signal is always well separated from the atomic line
(inset of Fig. 8.2), and thus does not affect the line shape of the atomic signal.

8.4 Results and Discussion

Figure 8.3 shows the widths and peak shifts1 of the rf spectroscopic signal, recorded
by method A, as a function of B −B0 for our three values of Teff. When the FR center
is approached, the spectrum broadens and its peak shifts from a positive to a negative
rf detuning. With increasing temperature, the corresponding zero crossing shows a
trend to move towards larger detunings.

We interpret the obtained results in the framework of the impact theory of pressure-
induced effects on spectral lines, which assumes the collisions to be effectively instan-
taneous. This theory predicts Lorentzian profiles centered near the unperturbed fre-
quency �0 whose line shifts and broadenings are proportional to the real and imaginary
parts of the thermally averaged atom-dimer forward scattering amplitude f (0) [Sob72,
Bar58b, Bar58a], respectively. The real part of f (0) shifts the energy of the K atoms,

1To determine the peak shift and the width, we apply a double-Gaussian fit to the spectra. From the fit,
we identify the rf detuning of maximum signal and the width.
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Figure 8.2: Sample rf spectra taken at B − B0 = −20mG at Teff = 232 nK. The red diamonds
(blue circles) show data recorded usingmethodA (B). For reference, the gray triangles show data
recorded in the absence of dimers together with a Gaussian fit (gray line). Inset: Spectrum at
−17mG over an extended frequency range. The molecular dissociation signal (open symbols),
recorded with 30× increased rf power, is clearly separated from the atomic peak (filled symbols).

causing an average shift in the frequency of their peak rf response of �� = −ℏn̄DRe⟨f (0)⟩∕�3,where ⟨f (0)⟩ denotes the thermal average of f (0) over all atom-dimer collision en-
ergies Ecoll. The red solid lines in Fig. 8.3 show the theoretical results for �� for the
respective molecule densities and collision energies. The optical theorem relates the
imaginary part of f (0) to the average elastic scattering rate �−1 as �−1 = 4� ℏ n̄D Im⟨f (0)⟩∕�3.The resulting finite lifetime � of the atoms’ wave packets causes Lorentzian broadening
with a full width at half maximum (FWHM) 1∕(2� �). The blue solid lines in Fig. 8.3
show the predicted FWHM, including additional broadening due to the finite duration
of our rf pulse2.

The collisional broadening yields information on the elastic scattering rate. At
typical detunings ofB−B0 ≈ −20mG, our data show an elastic atom-dimer scattering

2The finite duration of our rf pulse causes an additional Gaussian broadening of typically 1.2 kHz
(FWHM).
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Figure 8.3: Widths (blue triangles) and peak shifts (red circles) extracted from the rf spectra as
a function of the magnetic field detuning B − B0 for the three different values of Teff. The linesare the corresponding theoretical predictions. To account for fluctuations in the dimer number
of different spectra, the widths and peak shifts are scaled to a dimer number of 15 000, which is
typical for all spectra.

rate on the order of 1∕(100�s). A comparison with the observed dimer decay rate
of about 1∕(5ms) gives a lower limit for the ratio of elastic to inelastic atom-dimer
collisions of 50. We note that in our system the dimers spontaneously dissociate on a
time scale of about 10ms [Nai11].

The comparison between the experimentally observed and the theoretically cal-
culated line shifts and broadenings shows remarkable agreement over the whole pa-
rameter range investigated. The somewhat asymmetric spectral wings are beyond the
impact theory [Szu96] and, thus, cannot be reproduced. Indeed, a substantial contri-
bution to the wings comes from the photon emission or absorption events for which K
atoms find themselves inside the atom-dimer interaction range, i.e., during atom-dimer
collisions, which are assumed instantaneous in the impact theory. It is, then, under-
stood that, for example, the left “attractive” wing of the B spectrum is larger than that
of the A spectrum. Since, in the former case potassium atoms are initially attracted by
dimers, the probability to find them near dimers is enhanced. Effects that are beyond
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Figure 8.4: Real part of the atom-dimer forward-scattering amplitude as a function of the atom-
atom scattering length a for the three different values of Teff. The symbols and the lines show
the data and the theoretical predictions from Fig. 8.3. For comparison, the dashed lines indicate
the respective s-wave contributions. The theoretical lines stop at kBTeff = Eb/2.

the impact theory become more pronounced as we approach the FR because of the
increased atom-dimer collision time.

Finally, we discuss the interaction strength in our mixture in terms of −Re⟨f (0)⟩,
which characterizes the interactions in a way that is analogous to a in the s-wave
mean-field picture. We use the experimental peak-shift data from Fig. 8.3 to extract
−Re⟨f (0)⟩ and plot it together with the corresponding theoretical results in Fig. 8.4.
The sign reversal shows up for values of a being somewhat below 2000 a0, with the
expected temperature dependence of the zero crossing. For a ≈ 4000 a0, the attractiveinteraction already corresponds to about −2000 a0. For even larger values of a, we
would enter the more complicated regime of collisional dimer dissociation, which is
beyond the scope of the present investigations. We note, however, that rf spectra ac-
quired more deeply in the strongly interacting regime show strongly asymmetric line
shapes and have peaks shifted to even larger negative detunings.
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8.5 Conclusion and Outlook

In conclusion, we have demonstrated a three-body phenomenon in a mixture of heavy
and light fermions, which leads to a sign reversal of the atom-dimer interaction near a
FR, turning repulsion into a strong attraction. The effect is due to higher partial-wave
(mainly pwave) contributions, which are present even at very low collision energies in
the nanokelvin regime. Remarkably, this few-body effect changes the character of the
interaction without introducing detrimental losses. In contrast to few-body phenom-
ena of the Efimov type [Fer11], the centrifugal barrier still protects the atoms from
approaching each other too closely. The resulting collisional stability is a promising
feature for many-body physics in Fermi-Fermi mixtures.

Our work lays the ground for a wealth of future studies on mass-imbalanced fermi-
onic mixtures in the strongly interacting regime. Asymmetric phases with coexist-
ing dimers and heavy atoms are energetically favored in a way not present in mass-
balanced systems [Qi12]. Related mechanisms in quantum-degenerate situations may
lead to exotic new many-body effects, including the emergence of imbalanced super-
fluids [Qi12], the condensation into nonzero momentum states [Mat11], and the ap-
pearance of p-wave superfluidity of heavy atomsmediated by light atoms [Nis09a]. On
the few-body side, a direct prospect for our K-Li system is to confine the K atoms in an
optical lattice, which is predicted to lead to the formation of stable trimer states [Pet07,
Nis09b, Lev09].
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8.6 Supplemental Material

8.6.1 Light Shift of the Feshbach Resonance

The Feshbach resonance (FR) that we employ for tuning the interactions in our system
occurs between 6Li atoms in their lowest internal state, denoted Li|1⟩ (f = 1∕2, mf =
+1∕2), and 40K atoms in their third-to-lowest state K|3⟩ (f = 9∕2, mf = −5∕2). Thisresonance has been investigated in detail in Ref. [Nai11]. Themagnetic field dependent
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Li-K s-wave scattering length is given by
a(B) = abg

(

1 − Δ
B − B0

)

(8.2)
where abg = 63.0 a0 is the background scattering length, Δ = 0.88G is the width, and
B0 is the center of the resonance near 154.7G.As we already pointed out in Ref. [Koh12], the optical trap induces a differential
light shift between the atom pair state and the molecular state. This leads to a light-
induced shift of the FR center. For the experiments presented in the main text, we use
a near-infrared laser with a wavelength of 1064 nm (single-mode operation) in three
different trap settings. Therefore, the center of the FR needs to be determined for each
trap setting.

To determine B0 we perform radio-frequency (rf) spectroscopy of the Feshbach
molecules. For each trap setting, this is done in the following way: We prepare a
nonresonant mixture of Li atoms in state Li|1⟩ and K atoms in their second-to-lowest
state K|2⟩ several tens of mG below the approximate position of the resonance center.
Here, we apply a strong 500-�s rf pulse at a variable frequency �, several kHz below
the unperturbed K|2⟩→K|3⟩ transition frequency �0. This pulse drives Li|1⟩-K|2⟩
atom pairs into the Li|1⟩K|3⟩ dimer state. To determine the number of dimers associ-
ated, we subsequently dissociate the dimers into a Li|1⟩ and a K|3⟩ atom by a 300-�s
magnetic field ramp to 154.8G. By recording absorption images we then determine
the populationsN2 andN3 of the K spin states K|2⟩ and K|3⟩, respectively.

By plotting the signal, given byN3∕(N3 +N2), against the rf detuning � − �0, weresolve the molecule association spectrum; see Fig. 8.5. The unperturbed transition
frequency �0, corresponding to the Zeeman splitting of the two states, is determined
by rf spectroscopy in the absence of Li|1⟩ (red points). We determine the binding
energy of the molecules from the onset frequency of the molecular association spectra.
As the onset frequency, we use the upper rf frequency at which the fraction of atoms
transferred is roughly 10% of its peak height. We have checked that, within the errors
of our measurements, this criterion agrees with the result obtained by fitting the line-
shape model [Chi05] to the spectra, as was done in Ref. [Koh12]. This procedure is
repeated for each trap power at various magnetic fields.

We then fit a model [Koh12] for the molecular binding energy near our FR to the
data with B0 as the only free parameter; see Fig. 8.6. This procedure allows us to
determine the resonance center in each trap setting with an uncertainty of ±2mG. The
accuracy of our determination of the resonance position is limited by the uncertainty in
the FR parameters [Nai11] used in the model for the binding energy. We determine the
center of the FR of trap 1, 2, and 3 to be at the magnetic field of 154.704G, 154.708G,
and 154.719G, respectively.
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Figure 8.5: Data from the molecular rf association spectroscopy in trap 2. Red circles were
takenwith a rf power set to the value tomatch the �-pulse condition in the absence of interactions
(no Li|1⟩ present) and is scaled by 0.5. Blue points were taken with a 30× larger rf power. The
dashed lines indicate the binding energy Eb(B).

8.6.2 Preparation of the Atom-Dimer Mixture
To cool our atomic sample, we evaporate a Li|1⟩-Li|2⟩ spin mixture at a magnetic
field near 1150G on the attractive side of the 834-G Li|1⟩-Li|2⟩ Feshbach resonance
in a single-beam optical dipole trap [Spi10]. During evaporation, a few 104 K atoms
are sympathetically cooled by the Li environment. The endpoint of evaporation is
always set to the same final value. After evaporation, we follow the scheme described
in Ref. [Spi10] to transfer the atoms into a crossed-beam optical dipole trap and reach
a magnetic field of 154.8G with typically 106 Li atoms in state Li|1⟩ and 4 × 104
K atoms in state K|1⟩. We finally vary the temperature of our sample by increasing
the power of our crossed beams to adiabatically recompress the trapped sample. This
scheme allows us to maintain a similar population imbalance and degeneracy for the
three trap settings used.

To prepare for dimer association, we first create a weakly interacting Li|1⟩-K|3⟩
mixture atB0+180mG.Afirst rf pulse transfers∼80% of theK|1⟩ population into state
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Figure 8.6: Determination of the FR center B0 by rf association of dimers. The points show the
experimentally determined molecular binding energies Eb(B) for the three trap settings. The
solid curves are fits of a theoretical model (see text) to the experimental data.

K|2⟩ and a second rf pulse then transfers the total K|2⟩ population into the interacting
state K|3⟩. The ∼7 000 K atoms, which remain in the K|1⟩ state, later serve for the
spectroscopy.

We associate dimers using a two-step magnetic field ramp. In a first 20-ms step
we ramp the magnetic field from B0 +180mG to B0 +5mG. This ramp is sufficiently
slow for the Li atoms to be attracted into the regions of high K density, increasing the
density overlap between the two clouds. We then associate the Li|1⟩K|3⟩ dimers via
a 0.5-ms Feshbach ramp to B0 − 17mG. We note that, during these magnetic field
ramps, two-body inelastic losses [Nai11] are negligible.

To obtain a pure sample of about 15 000 Li|1⟩K|3⟩ dimers, we remove all unbound
atoms from the states Li|1⟩ and K|3⟩. The Li|1⟩ atoms are removed by a sequence of
rf and laser pulses. This procedure consists of a first 250-�s rf pulse resonant with the
free Li|1⟩→Li|2⟩ transition, followed by a 10-�s resonant light pulse, which selectively
removes the Li|2⟩ atoms from the trap. This scheme removes about 95% of the excess
Li atomswithout causing any observable loss of K-Li dimers. A second 250-�s rf pulse
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Trap Teff TK T̄D �r,K �a,K �r,Li �a,Li �r,D �a,D �r,K �a,K �̄r,D �a,D
(nK) (nK) (nK) (Hz) (Hz) (Hz) (Hz) (Hz) (Hz) (�m) (�m) (�m) (�m)

1 165(15) 138(5) 195(15) 197(5) 25.5(10) 314(5) 34.0(10) 216(5) 27.0(10) 4.3(1) 33(2) 4.4(1) 36(2)
2 232(15) 225(5) 240(15) 284(5) 36.4(10) 446(5) 54.6(10) 310(5) 39.3(10) 3.8(1) 30(2) 3.4(1) 33(2)
3 370(15) 345(5) 398(15) 415(5) 54.0(10) 671(5) 85.0(10) 457(5) 59.0(10) 3.2(1) 25(2) 2.9(1) 26(2)

Table 8.1: Parameters characterizing the three exploited trap settings. The table shows the
effectice atom-dimer temperature Teff, the temperature of the K atoms, TK, and the average dimer
temperature, T̄D. From the radial (axial) trap frequencies of K and Li, �r(a),K and �r(a),Li, wedetermine the trap frequencies �r(a),D of the dimers. We also show the axial and radial in-situ
Gaussian widths of dimers (K atoms), �a,D(K) and �r,D(K), respectively.

transfers the leftover 5% of Li|1⟩ atoms into the noninteracting Li|2⟩ state, where they
remain without further affecting the experiment.

Simultaneously with this “double-cleaning" of the unbound Li atoms, we remove
the unbound K|3⟩ atoms in a similar way. Using a 90-�s rf pulse resonant with the
K|3⟩→K|2⟩ transition, followed by a second 145-�s rf pulse resonant with the K|3⟩→
K|4⟩ transition, we empty the K|3⟩ state with >99% efficiency. The pulse lengths are
chosen such that they are short, i.e. spectroscopically wide, compared to the frequency
shifts due to atom-dimer and atom-atom interactions but long, i.e spectroscopically
narrow, compared to the binding energy Eb = ℎ × 17 kHz (ℎ is Planck’s constant) of
the dimers, avoiding the dissociation of dimers.

In a final step, the ∼7 000 K atoms which resided in state K|1⟩ during the entire
dimer association process, are transferred in the K|2⟩ state and thus prepared for the
rf spectroscopy. This is accomplished by a rf pulse which flips the K|1⟩ and K|2⟩
populations. We note that these K atoms remain unaffected by the dimer association
since their interactions with the other components are negligible over the timescales
of the experiment.

From here, we reach the specific magnetic field detunings B − B0, at which the
spectroscopy is performed, by a 200-�s magnetic field ramp.

8.6.3 Determination of the Temperatures and the Densities

Here, we describe how we determine the temperatures and the densities of the atom
cloud and the dimer cloud. The resulting experimental parameters are summarized in
Table 8.1.

Atom and dimer temperatures – The temperatures of our atom and dimer clouds are
obtained by Gaussian fits to absorption images of the clouds after a long time-of-flight
of ttof = 6ms. With the measured radial Gaussian width �tof,K(D) the atom (dimer)
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temperature TK(D) is given by
kBTK(D) = mK(D)

(

�tof,K(D)∕ttof
)2 , (8.3)

where mK(D) is the mass of the atom (dimer).
The magnetic field ramps and the removal of the surrounding Li shell, described in

the previous section, excite collective oscillations of the dimer cloud. We trace these
oscillations in momentum space as a function of a wait time twait after the cleaning
procedure to release from the trap. An example of such an oscillation is shown in
Fig. 8.7. In order to characterize the temperature at the time of the experiment, i.e.
during the application of the 1-ms rf pulse (shaded area), we introduce the average
temperature

T̄D =
1
�rf

ˆ

rf
TD dt. (8.4)

Axial and radial sizes – To determine the densities of the atom (K) cloud and the
dimer (D) cloud, we measure their Gaussian radial (r) and axial (a) widths �r,K(D)and �a,K(D), respectively. The axial widths are measured from a Gaussian fit to the
axial profiles of in-situ absorption images. Since the radial widths are on the order of
our imaging resolution, they can not be determined from in-situ images. We instead
determine the radial widths of the K atom cloud as

�r,K =
√

kBTK
mK(2��r,K)2

, (8.5)

where TK and �r,K denote the temperature and the radial trap frequency of the K atoms,
respectively. Accordingly we determine the average radial in-situ width of the dimers,

�̄r,D =
√

kBT̄D
mD(2��r,D)2

, (8.6)

using the averaged dimer temperature T̄D, and the radial dimer trap frequency �r,D.
Trap frequencies of the dimers –We use the measured trap frequencies of the K and

Li atoms to determine the trap frequencies �r(a),D of the Li-K dimers. Since the dimers
are weakly bound over the magnetic field range investigated, their polarizabilities are
approximately given by the sum of the polarizabilities of the Li and the K atoms. We
want to point out that the differential light shift, shifting the FR center (see Sec. 8.6.1),
gives only a < 10% correction to the trap potential and is neglected. Therefore, to a
good aproximation, the dimer trap frequencies are given by

�a(r),D =
√

(mK�2a(r),K + mLi�2a(r),Li)∕mD, (8.7)
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Figure 8.7: Radial oscillation of the dimer cloud after the magnetic field ramp and the removal
of the Li atoms. We plot the dimer temperature TD versus the wait time twait after the first rf
cleaning pulse to release from the trap. The filled circles are the experimental data, the solid
line is a fit of a damped harmonic oscillation to the data. The shaded area indicates the time
at which the spectroscopy rf pulses are applied and the dashed line marks the experimentally
relevant averaged dimer temperature T̄D.

with mLi being the mass of a Li atom.
Mean dimer density – For a given dimer number, ND, the mean dimer density

experienced by the K atoms n̄D is given by

n̄D =
ND

(2�)3∕2(�2r,K + �̄
2
r,D)

√

�2a,K + �
2
a,D
, (8.8)

where we have assumed Gaussian-shaped atom and dimer clouds.
Effective temperature – Due to heating and oscillations caused by our preparation

procedure, the dimer temperature TD in our system is different from the temperature
of the non-interacting K|2⟩ atoms that we use for rf spectroscopy. However, since
our dimer and atom clouds are both non-degenerate, the energies of the atom-dimer
collisions still assume a Boltzmann distribution. Averaging this distribution over the
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oscillations of the dimer cloud results in an effective atom-dimer collision temperature
Teff = �3(TK∕mK + T̄D∕mD), (8.9)

where �3 = mKmD∕(mK + mD) is the atom-dimer reduced mass.

8.6.4 Importance of Higher Partial Wave Scattering and Comparison to
the Equal-Mass Case

In this section, we justify several important statements made in the main text. First,
we have argued that the range of the atom-dimer interaction is comparable with the
typical de Broglie wavelength and, therefore, quite a few partial waves are necessary
to quantitatively characterize the line shift. In Fig. 8.8, we display −Re f (0), the quan-
tity which is thermally averaged in the main text to obtain the line shifts. The method
of calculating the scattering amplitude is described in Ref. [Lev09]. Remarkably, the
real part of the forward-scattering amplitude is seen to change sign at a collision en-
ergy much smaller than the binding energy, even for a relatively large detuning of
21mG. The second change of sign of −Re f (0) seen in Fig. 8.8(a) is attributed to the
fact that �p exceeds �∕2 above Ecoll ≈ 0.1Eb, the point of the p-wave resonance.
The p-wave contribution at larger collision energies then becomes positive (repulsive)
(see Eq. 8.1). However, this peculiar phenomenon takes place only in a very close
vicinity of the wide resonance limit as the p-wave phase shift drops rather abruptly
with R∗∕a [Lev09]. We also note how, as the collision energy is increased, more and
more partial wave channels are needed to accurately describe the forward-scattering
amplitude. The calculation presented here includes the first 16 partial waves, which is
sufficient to obtain an essentially converged scattering amplitude at the dimer breakup
threshold.

As far as the equal mass case is concerned, the competition between the attraction
in odd partial waves and repulsion in even partial waves is also quite significant, yet
much less pronounced compared to the K-Li case. In Fig. 8.9 we display −Re f (0) as
a function of Ecoll for equal masses. Here the broad resonance case in Fig. 8.9(a) is
relevant since it is readily available in current experiments and since there the effect of
higher partial waves is most noticeable. We see that the forward-scattering amplitude
does change sign in this case. However, in contrast to the K-Li case, this happens at
a high collision energy close to the dimer breakup threshold and, in fact, already for
R∗∕a ≳ 0.03 the crossing is no longer on the scale. Thus, in the narrow resonance
case illustrated in Fig. 8.9(b) and (c) the interaction is found to be repulsive below the
dimer breakup threshold. In all cases the thermally averaged quantity −Re ⟨f (0)⟩ is
positive.
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Figure 8.8: Scattering of a 40K atom with a 6Li40K dimer. The quantitiy −Re f (0) is plotted
as a function of atom-dimer collision energy for (a) R∗∕a = 0 [B − B0 = 0], (b) R∗∕a = 1∕2[B − B0 = −10mG], and (c) R∗∕a = 1 [B − B0 = −21mG]. The lines are including s-wave
scattering only (black, dashed), including up to p-wave (blue, dotted), up to d-wave (purple, dot-
dashed), and up to f -wave (gray, double dot-dashed). The solid black line is−Re f (0) including
the first 16 partial waves.
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Figure 8.9: Equal-mass case of atom-dimer scattering. We plot −Re f (0) as a function of
collision energy for the homonuclear case, m↑ = m↓. The conventions used for the lines as wellas the detunings in (a) to (c) are the same as in Fig. 8.8. The solid black line includes the first 9
partial waves.
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Finally, let us also make a remark concerning the thermal averaging of the scat-
tering amplitude which we use in the main text. In principle, the averaging procedure
requires the knowledge of the phase shifts above the atom-dimer breakup threshold.
However, we always restrict ourselves to temperatures kBT ≲ Eb∕2 and we check
that in this case the integration result is insensitive to the exact extrapolation scheme.
In practice we extrapolate the phase shift �l(k) using the log function, which works
very well when we calculate the phase shifts above the breakup threshold in the Born-
Oppenheimer approximation [Lev11].
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CHAPTER 9. 9.1. Introduction

We present a joint experimental and theoretical investigation of the life-
time of weakly bound dimers formed near narrow interspecies Feshbach
resonances inmass-imbalanced Fermi-Fermi systems, considering the spe-
cific example of a mixture of 6Li and 40K atoms. Our work addresses
the central question of the increase in the stability of the dimers result-
ing from Pauli suppression of collisional losses, which is a well-known
effect in mass-balanced fermionic systems near broad resonances. We
present measurements of the spontaneous dissociation of dimers in dilute
samples, and of the collisional losses in dense samples arising from both
dimer-dimer processes and from atom-dimer processes. We find that all
loss processes are suppressed close to the Feshbach resonance. Our gen-
eral theoretical approach for fermionic mixtures near narrow Feshbach
resonances provides predictions for the suppression of collisional decay
as a function of the detuning from resonance, and we find excellent agree-
ment with the experimental benchmarks provided by our 6Li-40K system.
We finally present model calculations for other Feshbach-resonant Fermi-
Fermi systems, which are of interest for experiments in the near future.

9.1 Introduction

The creation of weakly bound dimers near Feshbach resonances has led to major ad-
vances in the field of ultracold quantum gases [Köh06, Fer09, Chi10]. Such Feshbach
dimers have been the key to molecular Bose-Einstein condensation [Joc03a, Gre03,
Zwi03] and to other applications, including the detection of atom pairs in strongly in-
teracting fermionic superfluids [Reg04b, Zwi04] and in optical lattices [Tha06,Win06,
Mei13]. The weakly bound dimers can also serve as an excellent starting point for
accessing the complex level structure of more deeply bound states [Lan08a] and, in
particular, for creating ground-state molecules [Lan08b, Ni08, Dan10, Tak14, Mol14,
Par15a, Guo16].

For many applications, the stability of the dimers is of crucial importance. In
particular, collisional quenching to lower vibrational states can release an amount of
energy that greatly exceeds the depth of the trapping potential, and thus results in
immediate losses from the stored sample. A special situation can arise for bosonic
dimers formed in a two-component sample of fermionic atoms close to a Feshbach
resonance. Here, a Pauli suppression effect [Pet04b, Pet05b, Pet05a] can dramatically
reduce collisional losses to lower vibrational states, rendering such dimers exception-
ally stable and facilitating their highly efficient evaporative cooling. This Pauli sup-
pression effect has been observed and studied in strongly interacting spin mixtures of
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6Li [Cub03, Joc03b] and 40K [Reg04a], which both exhibit broad resonances. This
has paved the way to spectacular achievements, such as molecular Bose-Einstein con-
densation [Joc03a, Gre03, Zwi03], the experimental realization of the crossover to a
Bardeen-Cooper-Schrieffer-type superfluid [Gio08], and the exploration of the univer-
sal properties of resonantly interacting Fermi gases [Zwe12].

A central question for experiments exploring the many-body physics of fermionic
mixtures is how far this suppression extends to mixtures of different species, featuring
mass imbalance and narrow resonances. Theoretical investigations have considered the
important roles of the mass ratio [Pet05a, Mar08a] and of the resonance width [Lev11].
The combination of 6Li and 40K atoms [Tag08,Wil08, Tie10, Nai11, Tre11] is the only
Fermi-Fermimixturewith tunable interactions that has been experimentally realized so
far and thus is the only available heteronuclear system that can provide experimental
benchmarks. Dimers composed of 6Li and 40K atoms have been observed at LMU
Munich in Ref. [Voi09], including preliminary lifetime studies, as well as in various
recent experiments in our group [Koh12, Jag14].

In this article, we present a joint experimental and theoretical investigation of the
lifetime and decay properties of Feshbach dimers formed in a mixture of 6Li and 40K
atoms. In Sec. 9.2, we describe the basic procedures for creating and investigating pure
samples of Feshbach dimers and atom-dimer mixtures near a Feshbach resonance. In
Sec. 9.3, we report on the measurements of spontaneous dissociation and of inelastic
collisions in optically trapped dimer samples and in atom-dimer mixtures. Our results
demonstrate the suppression of losses near the Feshbach resonance, but much weaker
than that reported in Ref. [Voi09]. In Sec. 9.4, we present theoretical calculations based
on the approach of Ref. [Lev11] and find very good agreement with our observations.
Finally, anticipating the creation of new mixtures, we present predictions for other
Fermi-Fermi combinations with different mass ratios.

9.2 Experimental Procedures

9.2.1 Feshbach resonances
We employ two different Li-K interspecies Feshbach resonances (FRs). The first res-
onance has been widely used in our previous work on Fermi-Fermi mixtures, includ-
ing the observation of the hydrodynamic expansion of a strongly interacting mix-
ture [Tre11], the investigation of polarons [Koh12, Cet15, Cet16], and the study of
K-LiK atom-dimer interactions [Jag14]. This resonance occurs near 155G (width
0.88G) with lithium in its lowest Zeeman sub-level Li|1⟩ (f = 1∕2, mf = +1∕2)
and potassium in its third-lowest sub-level K|3⟩ (f = 9∕2, mf = −5∕2). The other
resonance occurs near 158G (width 0.14G) with Li and K in their lowest-energy spin
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Table 9.1: Parameters characterizing the two Feshbach resonances. We summarize the values
from Refs. [Cet15, Nai11] for the position B01, background scattering length abg, and width Δ,
as well as for the differential magnetic moment ��. The values given forB0 include a small shift
(9mG) induced by the trapping-laser light [Cet15].

Channel B0 abg Δ ��∕ℎ R∗

(G) (a0) (G) (MHz/G) (a0)
Li|1⟩K|3⟩ 154.708(2) 63.0 0.88 2.35 2 650
Li|1⟩K|1⟩ 157.530(3) 65.0 0.14 2.3 16 500

states Li|1⟩ and K|1⟩ (f = 9∕2,mf = −9∕2), respectively. We use the latter, narrower
resonance for comparison as it has the advantage of an absence of any Li-K two-body
losses.

The dependence of the Li-K s-wave scattering length a on the magnetic field B
near a FR can be described by the standard expression a(B) = abg

[

1 − Δ∕(B − B0)
]

[Chi10] with the relevant background scattering length abg, the width Δ, and the res-
onance center B0. In Table 9.1 we summarize the values of these parameters for both
resonances. To fully characterize the FRs, we also present the differential magnetic
moments �� between the relevant open and closed channels. From these parameters,
we derive the length parameter R∗ = ℏ2∕(2mrΔabg��) [Pet04a], characterizing the
coupling strength between the open and the closed channel. Heremr represents the Li-K reducedmass. The values for abg andΔ have been obtained from a coupled-channels
calculation [Nai11]. The values for �� as well as B0 for the Li|1⟩-K|3⟩ FR, were ex-perimentally determined, with very high accuracy, as described in Ref. [Cet15]. For
�� near the Li|1⟩-K|1⟩ FR we use the data obtained from a coupled-channels calcula-
tion [Nai11], and for B0, we use the value of an independent experimental determina-
tion1.

9.2.2 Sample preparation
Our procedure to prepare Li|1⟩K|3⟩ dimer samples is essentially the same as the one
described in Ref. [Jag14]. To produce Li|1⟩K|1⟩ dimer samples, we slightly adapt this
procedure to account for the narrower character of the FR. In both cases, the starting
point for our experiments is an optically trapped and thermally equilibrated mixture
of typically 105 Li atoms and approximately 3 × 104 K atoms at a temperature of ∼

1M. Jag, M. Cetina, R. S. Lous, and R. Grimm (unpublished). We determined B0 by measuring
the energy shift of K atoms in a Li cloud and comparing it to the predictions of a dressed quasiparticle
model [Mas12].
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370 nK and at a magnetic field of 156.4G. We reach these conditions by a preparation
procedure described in detail in Ref. [Spi10]. The cigar-shaped optical confinement of
the atommixture, realized by two 1064 nm laser-light beams intersecting at an angle of
about 16◦, is characterized by the radial and axial trap frequencies �r,K = 420(10)Hzand �a,K = 55(2)Hz for the K atoms and �r,Li = 600(10)Hz and �a,Li = 90(3)Hz forthe Li atoms. At this stage, all Li atoms are in their lowest Zeeman sub-level Li|1⟩ and
all K atoms are in their second-lowest sub-level K|2⟩ (f = 9∕2, mf = −7∕2).The subsequent preparation steps differ depending on the Li-K spin-state combi-
nation from which the dimers are created. To prepare for the creation of Li|1⟩K|3⟩
(Li|1⟩K|1⟩) dimers from these mixtures, we slowly ramp the magnetic field over 2 s to
a value of 154.89G (157.565G), approximately 180mG (35mG) above the center of
the FR. Here, we transfer all K atoms into the K|3⟩ (K|1⟩) state by a radio-frequency
rapid adiabatic passage.

We then associate approximately 104 LiK dimers by a Feshbach ramp [Köh06,
Chi10]. To associate dimers from the Li|1⟩-K|3⟩ mixture, we do this in two steps, as
illustrated in Fig. 9.1(a). In a first step, we ramp the magnetic field to B0 + 5mG in
20ms, which is sufficiently slow for the Li atoms to be attracted into the regions of high
K density, increasing the density overlap between the two clouds. This is followed by
the second step, in which we quickly ramp the magnetic field to B0−20mG in 0.5ms.
For the Li|1⟩-K|1⟩ mixture, we associate the dimers by a single 2ms Feshbach ramp
to a magnetic field B = B0 − 16mG, since here, at the much narrower FR, it is very
hard to optimize a two-step ramping procedure. Typical dimer numbers of Li|1⟩K|3⟩
samples are roughly 20% larger than the typical numbers of Li|1⟩K|1⟩ samples.

To obtain pure dimer samples, we apply cleaning sequences to remove unbound
atoms. For the Li|1⟩K|3⟩ samples, this sequence consists of a combination of radio-
frequency (rf) and laser-light pulses; see Fig. 9.1(b). A 100�s rf �-pulse selectively
transfers the free Li atoms from the Li|1⟩ state into the Li|2⟩ state. A subsequent 10-�s
laser pulse selectively removes the Li|2⟩ atoms from the trap. Simultaneous with this
Li-cleaning procedure, we remove the unbound K atoms in a similar way. Applying
two rf �-pulses with durations of 80�s and 40�s, we transfer the free K|3⟩ atoms into
the K|1⟩ state, and successively remove them from the trap by applying a laser-light
pulse resonant to the K|1⟩ atoms. As these cleaning procedures remove about 95% of
the free Li and K atoms, they are repeated one more time to clean the respective states
more thoroughly. For the Li|1⟩K|1⟩ samples, the Li cleaning is identical to the one
explained above and the K cleaning is only slightly adapted. We revert the order of
the 80�s and 40�s rf �-pulses to transfer the free K|1⟩ atoms into the K|3⟩ state and
we then apply a laser pulse resonant to the K|3⟩ atoms to remove them from the trap.
After the cleaning procedure, we quickly, within 200�s, ramp the magnetic field to its
variable final value, at which we then perform the measurements.

- 151 -



9

CHAPTER 9. 9.2. Experimental Procedures

|2〉 |2〉

|1〉|1〉

|1〉
|2〉

|1〉
|2〉

|3〉
|2〉

|3〉
|2〉

|2〉
|1〉

|2〉
|1〉

Li|1〉

K|3〉

(a)

(b)

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5
-40

-20

0

20

B
-B

0
(m
G
)

t (ms)

K

-550 -500 -450 -400 -350 -300 -250 -200 -150

L
i

t (µs)

Figure 9.1: Schematic of the preparation of a pure Li|1⟩K|3⟩ dimer sample. (a) Starting from
the magnetic field B = B0 + 180mG, we approach the resonance by a first 20-ms ramp to
B0 + 5mG (last 1.5ms shown). Then, we associate dimers by a quick (0.5ms) ramp across the
FR to a magnetic field B0 − 20mG. Here, within 0.3ms (gray shaded), we remove unbound
K and Li atoms from the sample. After this cleaning procedure we reach the final magnetic
field B, at which we perform the lifetime measurement, by a 200 -�s ramp (dotted line). (b) The
cleaning procedure for both Li and K consists of radio-frequency pulses (solid black), selectively
transferring unbound atoms into another spin state, and successive removal of these atoms from
the trap by a resonant laser-light pulse (dotted red). This cleaning procedure is repeated one
more time to increase the purity of the dimer sample.

9.2.3 Dimer detection and dimer-temperature determination

We determine the LiK-dimer numbers from absorption images of Li and K atoms after
dissociation of the dimers into Li-K pairs by a reverse Feshbach ramp [Köh06, Chi10].
For both resonances, we ramp the magnetic field B up to a value ≥ B0+50mGwithin
10�s. After an additional wait time of a few 10�s, we simultaneously take absorption
images of the Li and the K cloud, from which we determine the numbers of Li and K
atoms. In some measurements, we detected only the number of Li atoms remaining
after the reverse Feshbach ramp.

The temperature of the dimers is determined from Gaussian fits to absorption im-
ages of the clouds after a time-of-flight expansion duration of tTOF = 4ms. The pro-
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cedure is discussed in detail in Ref. [Jag14]. From the measured radial width �r , weobtain the dimer temperature TD from kBTD = mD(�r∕tTOF)2, where mD = mLi + mKis the mass of a Li-K dimer. Typically, the temperatures of our dimer samples are about
TD = 550 nK. This corresponds to peak phase-space densities of about 0.1 for typical
dimer number densities in our samples. We explain the increased temperature of our
dimer cloud compared to the temperature prior to the dimer association (370 nK) by
heating and collective excitations caused by our preparation procedure [Jag14].

9.3 Measurements of Dimer Decay

In this section, we present measurements characterizing various processes that lead to
losses of LiK dimers. In Sec. 9.3.1, we first discuss spontaneous dissociation, which,
being a one-body process, can also occur in very dilute samples. In Secs. 9.3.2 and
9.3.3, we then present our experimental results on dimer-dimer collisions and atom-
dimer collisions, which, as two-body processes, limit the lifetime of dense samples.

9.3.1 Spontaneous dissociation

A dimer created from an atom pair with at least one atom in an excited Zeeman state
can spontaneously decay via processes mediated by the coupling between the two
spins [Chi10]. Such decay has previously been studied theoretically and experimen-
tally for the case of 85Rb2 molecules [Köh05, Tho05]. Our Li|1⟩K|3⟩ dimers are also
subject to this decay process, in contrast to the Li|1⟩K|1⟩ combination. The spon-
taneous decay of Li|1⟩K|3⟩ dimers has been theoretically investigated in detail in
Ref. [Nai11], where predictions for the lifetimes of the dimers were obtained from
coupled-channels calculations.

We experimentally investigate the lifetime of Li|1⟩K|3⟩ with respect to sponta-
neous decay using dimer samples with a very low number density, so that density-
dependent collisional losses do not play a significant role. We realize such dilute dimer
samples by allowing the optically trapped dimer cloud to expand after switching off
the trap. After a variable expansion time t, we determine the molecule number in the
sample. Note that the 1064-nm light induces a shift of the FR center B0, as describedin Ref. [Cet15]. When the optical trap is off, the FR center B0 of the Li|1⟩-K|3⟩ res-onance is found at 154.699G, i.e., 9mG lower than in the trap (Table 9.1). For the
Li|1⟩-K|1⟩ channel we assume the same small shift.

In Fig. 9.2, we show a typical decay curve of a Li|1⟩K|3⟩ dimer sample, recorded
at a magnetic detuning B − B0 = −296mG (blue squares). For our analysis, we only
consider data obtained for t ≥ 1.5ms, where the mean dimer number density in the
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Figure 9.2: Comparison of the dimer number evolution near the Li|1⟩-K|3⟩ and the Li|1⟩-
K|1⟩ FR. The blue squares show a typical decay curve of a Li|1⟩K|3⟩ dimer sample at B =
B0−296mG. Fitting an exponential decay to the data yields the 1/e lifetime � = 5.8(4)ms. The
fit is represented by the blue solid line. The results from similar measurements with a Li|1⟩K|1⟩
dimer sample at a magnetic detuning of−75mG from the respective resonance center, are shown
as the red triangles. Here, we observe the dimer number to remain essentially constant. A fit
of an exponential decay to the data (red solid line) is consistent with infinite lifetime. The error
bars represent 1� uncertainties; in some cases, they are smaller than the symbol size.

sample is below 5 × 1010∕cm3, low enough for collisional losses to play a negligible
role. To these data we fit a simple exponential decay, N0 exp (−t∕�), with the initial
dimer number N0 and the lifetime � as free parameters. For the specific example of
Fig. 9.2, this procedure yields � = 5.8(4)ms and the fit result is shown as the blue
solid line.

For comparison, we also show the evolution of the number of Li|1⟩K|1⟩ dimers
recorded 75mGbelow the center of the Li|1⟩-K|1⟩ resonance (red triangles). Here, the
spontaneous decay mechanism is absent. Indeed, we observe an essentially constant
number of Li|1⟩K|1⟩ dimers, with the fit yielding the decay rate 1∕� = 0.008(7) s−1.
This result is essentially consistent with an infinite lifetime and, at a 95% confidence
level, provides a lower bound of 50ms.

In Fig. 9.3, the blue circles show the measured lifetimes of the dimers with respect
to spontaneous decay over a wide range of magnetic detunings, B − B0. Comparing
our experimental results to the predictions from Ref. [Nai11] (black solid line), we
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Figure 9.3: Lifetime of dimers against spontaneous decay near the Li|1⟩-K|3⟩ FR. The data
points show the experimental results and the black solid line represents the theoretical prediction
from Ref. [Nai11]. While the filled symbols are obtained from decay curves, where both the
Li and the K component have been imaged after dissociation, the open symbols are based on
detecting K alone. The error bars represent the 1� fit uncertainties.

find an excellent agreement over the whole magnetic-field range investigated. While
for magnetic detunings of around a few hundred mG the lifetime is about 6ms, we in
particular confirm the predicted substantial increase near the FR, where we determine
lifetimes approaching 10ms. This increase can be attributed to the increasing halo
character of the dimer wave function as the FR is approached. This leads to a decreased
probability to find a pair of Li and K atoms within the short range where the spin
coupling occurs [Nai11]. Our measurements of the lifetime of the Li|1⟩K|3⟩ dimers
in dilute samples can be fully understood in terms of spontaneous dissociation.

9.3.2 Dimer-dimer collisions

In a second series of experiments, we investigate the collisional decay of a trapped
dimer cloud. In collisions with other dimers, our shallowly bound dimers can relax into
more deeply bound states. The binding energy that is released in this process is much
larger than the depth of the trapping potential, and thus the relaxation products are
always lost from the trap. This two-body decay occurs at a rate �Dn, which is equal to
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the product of the dimer-dimer two-body loss-rate coefficient �D and the dimer number
density n.

To experimentally determine the rate coefficient �D for these collisional decay pro-
cesses, we investigate the decay of a trapped sample of dimers. The initial number of
typicallyN0 = 1.3 × 104 dimers corresponds to an initial number densityN0∕Veff ofabout 1 × 1012∕cm3, where Veff = [(4�kBTD)∕(mD!̄2D)]3∕2 is the effective volume of
a thermalized sample, and !̄D = 2�(�2r,D�a,D)

1∕3 ≈ 2� × 230Hz is the mean dimer
trapping frequency2. After a hold time t at a magnetic field B we measure the number
of dimers, N(t), remaining in the sample. In Fig. 9.4, we show an example for a de-
cay curve obtained at a magnetic detuning of −710mG from the Li|1⟩-K|3⟩ FR (blue
squares).

We model the decay with the common loss-rate equation
Ṅ∕N = −1∕� − (�D∕Veff )N. (9.1)

Under the assumption that the sample remains in thermal equilibrium at the initial
temperature TD, this differential equation has the solution

N(t) =
N0 exp(−t∕�)

1 + �D
Veff

N0�
[

1 − exp(−t∕�)
]

. (9.2)

We fit Eq. (9.2) to the experimental data to extract the loss-rate coefficient �D. While
�D andN0 are free parameters, we fix � to the corresponding theoretical value, which
was verified in the independentmeasurements presented before. For the data of Fig. 9.4,
the fit result is shown as the blue solid line. For comparison, we also show the decay
curve of a dilute dimer sample, where collisional loss is absent (red triangles), together
with the result of a fit of a simple exponential decay to this data (red line). Our mea-
surements show that, under typical experimental conditions, the collisional relaxation
and the spontaneous dissociation give similar contributions to the total decay of the
trapped dimer sample.

The given values for the loss coefficients �D are subject to a systematic error arising
from an uncertainty in the dimer number density. We estimate a combined systematic
error of about 40%, arising from largely uncorrelated uncertainties of 25%, 7%, and
20% in the dimer number, the dimer trapping frequencies, and the dimer temperature,
respectively. Furthermore, by assuming a constant temperature TD of the decaying

2There is a differential light shift between the closed-channel molecule and a Li-K pair state induced
by the 1064-nm trapping light [Jag14, Cet15, Cet16]. For our experimental conditions, this gives rise to
an upward correction of the stated dimer trapping frequency by < 5%, dependent on the magnetic detuning
from the FR. In our analysis, this small correction is taken into account.
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Figure 9.4: Comparison of the decay of a trapped and an expanding Li|1⟩K|3⟩ dimer sample.
The blue squares show the measured dimer number in a trapped sample vs hold time t in the
trap. The red triangles show the dimer number determined in a dilute, expanding sample, 1.5ms
after release from the trap. The blue and red lines correspond to the fit of our model to the data
without and with two-body decay (see text). To enable a direct comparison, the experimental
data are normalized to the initial dimer numberN0 = 13000 (15300) obtained from the fit to the
data acquired from the trapped (expanding) sample. The error bars represent 1� uncertainties;
in some cases they are smaller than the symbol size.

dimer sample, and thus a constant Veff in Eq. (9.1), we neglect a small effect of anti-
evaporation heating [Web03b]. We have checked that including the latter into our
analysis would lead to slightly larger values for �D. We found this correction to stay
well below 15%.

We determine the values for the loss coefficient �D at various magnetic detunings.
Our experimental results, obtained with Li|1⟩K|3⟩ (Li|1⟩K|1⟩) dimer samples, are
shown in Fig. 9.5 as the blue circles (red squares). For the Li|1⟩K|1⟩ dimer samples
we obtain values for the loss-rate coefficient �D of roughly 3 × 10−10cm3/s without
significant dependence on the magnetic detuning. Also, for the Li|1⟩K|3⟩ dimer sam-
ples we obtain roughly the same value for detunings, B − B0 ≲ −400mG. At these
large magnetic detunings, the Feshbach molecules have a very small admixture of the
entrance channel and are thus strongly closed-channel dominated. As we discuss in
more detail in Sec. 9.4, the decay of such molecules is largely independent of the ex-
act state they are in [Sta06, Zah06, Gao10, Jul11, Qué11], which explains why the
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Figure 9.5: Measured loss-rate coefficient for inelastic dimer-dimer collisions as a function of
magnetic detuning. The blue circles (red squares) correspond to the experimental results ob-
tained with samples of Li|1⟩K|3⟩ (Li|1⟩K|1⟩) dimers. The filled symbols correspond to results
we obtained when determining the molecule number from both Li and K absorption images.
Open circles (squares) represent fit results based on analyzing Li (K) images alone. The error
bars represent the 1� fit uncertainties; in some cases, they are smaller than the symbol size. We
show the light blue and a light red line as guides to the eye.

measurements for both FRs at large detunings result in nearly the same values.
As the Li|1⟩-K|3⟩ resonance is approached, our experimental results (with the ex-

ception of one clear outlier3) show a reduction of collisional losses, which we interpret
in terms of the Pauli suppression effect. For our data points closest to resonance (about
−30mG detuning), this suppression effect amounts to more than a factor of three. Note
that measurements closer to resonance are prevented by the onset of collisional disso-
ciation [Joc03b].

9.3.3 Atom-dimer collisions
In another set of experiments, we study the decay of dimers arising from their collisions
with Li atoms in a mixture of LiK dimers and Li atoms. Such decay occurs at a rate

3The data point at −142mG clearly lies beyond the trend of the other data. Thoroughly re-checking
the settings of our experimental setup for this measurement yielded no hint for what could have caused the
discrepancy.
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�LiDnLi, equal to the product of the Li atom-dimer loss coefficient �LiD and the Li
density nLi. The measurement of atom-dimer collisions is challenging because the
corresponding decay has to be distinguished from both the spontaneous decay and the
dimer-dimer collisional decay.

We realize mixtures of Li atoms and LiK dimers by adapting the preparation pro-
cedure presented in Sec. 9.2.2. Here we start with the lithium component in a nearly
balanced spin mixture of Li|1⟩ and Li|2⟩. The Feshbach ramp then produces a mixture
of Li-K dimers, some remaining Li|1⟩ atoms, and the unaffected Li|2⟩ atoms. Then,
at B = B0 − 20mG, we apply only one radio-frequency � pulse, which exchanges the
populations of the Li|1⟩ and Li|2⟩ states. We subsequently remove the Li|2⟩ atoms
from the trap using a laser-light pulse. All other preparation steps, in particular the K
spin-state cleaning, remain as described in Sec. 9.2.2. After this procedure, the number
density distribution of the Li atoms in the trap, nLi, can be well approximated by the
density of a noninteracting Fermi gas at a temperature equal to the initial Li tempera-
ture. Typically, we obtain samples of ∼ 9×103 dimers and a mildly degenerate Fermi
sea of ∼ 6×104 Li atoms at a temperature that is about 55% of the Fermi temperature.
This corresponds to a mean dimer density of 6 × 1011∕cm3 and a Li density averaged
over the dimer distribution [Cet16], ⟨nLi⟩, of about 1.5 × 1012∕cm3.To experimentally determine the rate coefficient �LiD, we again investigate the de-cay of dimers from our sample. We ramp the magnetic field to a desired value B and,
after a variable hold time t, we measure the number of dimers, N , remaining in the
sample. For each decay curve in the atom-dimer mixture, we record a correspond-
ing reference curve in a pure dimer sample. These reference measurements, which
independently provide the dimer-dimer loss coefficient �D, are the ones that we havepresented in the preceding Section. Tominimize systematic errors resulting from long-
term drifts of the experiment, the measurements in the atom-dimer mixtures and the
pure dimer samples are carried out in alternating order.

We model the decay of dimers with a simple extension of the decay model from
the previous Section. Our Li sample is much larger than the dimer sample, such that
losses from the Li sample can be neglected. In this case, the Li sample represents
a constant-density bath and the loss of dimers arising from Li atom-dimer collisions
appears as a one-body loss, which we include into our model by adding −�LiD⟨nLi⟩ tothe right-hand side of Eq. (9.1). Under these assumptions, the solution of our model is
given by substituting �−1 with �LiD⟨nLi⟩ + �−1 in Eq.(9.2). We fit this solution to our
experimental data to determine the Li atom-dimer loss coefficient �LiD. For the fit, wefix � to the corresponding theoretical value and the decay coefficient �D to the value
we determined in the corresponding reference measurement on a pure dimer sample.

In Fig. 9.6, we show our results for the Li atom-dimer loss coefficient �LiD at var-
ious magnetic detunings. The blue circles (red squares) correspond to data acquired
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Figure 9.6: Measured loss-rate coefficient for inelastic Li atom-dimer collisions as a function
of the magnetic detuning. The blue circles (red squares) correspond to the experimental results
obtained with samples of Li|1⟩K|3⟩ (Li|1⟩K|1⟩) dimers co-trapped with Li|1⟩ atoms. In these
experiments, the dimer number was determined from the K absorption images only. The error
bars include the combined fit uncertainties (see text).

with a Li|1⟩K|3⟩ (Li|1⟩K|1⟩) dimer sample. The error bars reflect the 1� fit uncer-
tainty of �LiD as well as the contribution arising from the uncertainty in our determi-
nation of �D. We obtain atom-dimer loss-rate coefficients of roughly 1.5×10−10cm3∕s
near the Li|1⟩K|1⟩ FR, where the molecules have closed-channel character. The data
obtained with Li|1⟩K|3⟩ dimers show a suppression of atom-dimer collisional losses,
which becomes stronger as we approach the FR and the open-channel fraction of the
dimers increases. The data point at a magnetic detuning of about −40mG already
shows a suppression by a factor of roughly five. From the data point at −24mG, we
determine a negative loss coefficient. We speculate that this unphysical result is due to
the repulsive mean-field interaction between the dimers and the Li atoms, effectively
increasing the cloud sizes and therefore decreasing the mean densities of the dimers
and the Li atoms. Such an effect is beyond the assumptions of the model underlying
our data analysis and can therefore produce unphysical results. We estimate that all
other values, taken at larger detunings, do not suffer from such interaction effects. The
observed suppression of atom-dimer collisional losses appears very similar to the ef-
fect observed in dimer-dimer decay, and can also be attributed to the Pauli suppression
effect.
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9.3.4 Summary of experimental results and comparison with previous
work

Our experimental results characterize three different loss processes of 6Li-40K dimers
close to a Feshbach resonance. Spontaneous dissociation was identified as a density-
independent one-body loss mechanism. This process is possible for Feshbach mole-
cules composed of atoms that are not in the energetically lowest combination of spin
states. For the case of the 155G resonance in the Li|1⟩-K|3⟩ mixture, this limits life-
times to values below 10ms for typical experimental conditions. We have also inves-
tigated losses due to inelastic collisions in pure dimer samples, and obtained loss-rate
coefficients of typically 3 × 10−10 cm3/s. At the typical densities of near-degenerate
molecular samples, the corresponding loss rate is similar to the effect of spontaneous
dissociation. Additional losses occur in atom-dimer mixtures, as we have shown for
the example of free excess Li atoms.

Very close to the resonance center, in a roughly 100-mG wide range, we observe a
suppression of loss in both spontaneous and collisional decays. In the former case, the
suppression is a direct consequence of the halo character of the molecular wavefunc-
tion [Köh05, Tho05, Nai11]. In the latter case, the suppression effect can be attributed
to Pauli blocking [Pet04b, Pet05a], as we will discuss in more detail in Sec. 9.4. For
the specific FR employed in the Li-K mixture, the suppression of loss only leads to an
increase of dimer lifetimes by up to a factor of three.

Weakly bound 6Li40K dimers have been created in previous work by the Munich-
Singapore group [Voi09, Cos10], who investigated lifetime properties without distin-
guishing between different processes. Below the FR center, their observations are
consistent with our results and can be understood as a combination of spontaneous
and collisional losses. Above the FR center, in a 100mG wide range, their work re-
ports on molecules with lifetimes of more than 100ms [Voi09]. These long lifetimes
were later interpreted in terms of a many-body effect [Cos10]. In our present work,
using the same FR, we do not observe any molecules above resonance. In our previous
work [Koh12], with K impurities in a degenerate Li Fermi sea, we indeed observed in-
dications of many-body pairs above resonance, though restricted to a narrow, less than
20mG-wide magnetic-field range. For the 155G FR in the Li-K mixture, we cannot
confirm the existence of long-lived (≈ 100ms) molecules.

9.4 Theoretical Analysis of Relaxation Rates

In this Section, we present a theoretical description of atom-dimer and dimer-dimer
relaxation processes near a narrow resonance. The model has been introduced in
Ref. [Lev11] for characterizing atom-dimer and a subset of the dimer-dimer inelastic
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channels. In Sec. 9.4.1, we extend the discussion to all relevant dimer-dimer relaxation
processes. In Sec. 9.4.2, we then compare the theory with our experimental results and
find a very good agreement.

9.4.1 Theoretical model
The collisional decay requires at least three atoms to approach each other to within
distances comparable to the van der Waals range Re of the interatomic interactions
(we call this the “recombination region”). For the Li-K interaction, the van der Waals
range takes the value Re = 40.8a0 [Nai11]. In relaxation channels involving three
atoms, two atoms form a deeply bound state and the large binding energy is released
as kinetic energy. As the central point of our model, the probability of such a relaxation
event may be calculated within a theory that only describes the few-body kinematics
at length scales greatly exceedingRe, the short-range relaxation physics being charac-terized by the loss-rate constant for collisions of atoms with closed-channel (cc) mol-
ecules. One can show [Lev11] that in the narrow-resonance limit, Re ≪ R∗, a, three
atoms enter the recombination region predominantly as a free atom and a cc molecule
rather than three free (open-channel) atoms. Thus, the recombination process is mi-
croscopically the relaxation in collisions of cc molecules with atoms. We assume that
the corresponding interaction is not resonant and is characterized by a coupling con-
stant −iΔAD ∼ −iℏ2Re∕mAD, where mAD is the atom-molecule reduced mass. The
atom-cc molecule relaxation rate constant equals �(0)AD = 2ΔAD∕ℏ. This relation can
be derived by relating the lifetime of the atom and cc molecule to the imaginary part
of their mean-field interaction energy shift in unit volume. The “bare” relaxation-rate
constant �(0)AD is an external parameter of our theory.

In our approach, the atom-dimer relaxation-rate constant �AD factorizes into the
product

�AD = �
(0)
AD�AD(R

∗∕a), (9.3)
where the dependence on the short-range physics is fully absorbed into �(0)AD and the
long-range kinematics enters as the probability of finding an atom and cc molecule
in the recombination region. This probability can be interpreted as the reduction of
atom-dimer relaxation at finite R∗∕a and we refer to it as the “suppression function,”
�AD(R∗∕a). It depends only on R∗∕a and is proportional to the squared modulus of
the atom-dimer wave function calculated under the assumption ΔAD = 0. The task of
computing the normalization integral for this wave function, which is quite complex
(particularly, in the four-body case discussed below) and contains closed- and open-
channel components, can be avoided by using an equivalent diagrammatic formulation
of the problem; see Ref. [Lev11] where this approach was used for K-(K-Li) collisions.
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Namely, we calculate the atom-dimer scattering length aAD perturbatively to first or-
der in ΔAD and deduce the atom-dimer relaxation rate constant from Im(aAD). The
suppression function �AD(R∗∕a) is shown in Fig. 9.7(a) for the case of a light atom
(A=Li) and for a heavy atom (A=K). It is seen how the relaxation can be substan-
tially reduced for R∗∕a ≲ 1, and that the suppression is stronger in the collision of the
heavy K atom with the dimer.

In molecule-molecule collisions, there are three possible relaxation channels: the
Li-cc molecule, K-cc molecule, and cc molecule-cc molecule relaxation (we call it
four-atom mechanism). The latter originates from inelastic collisions of cc mole-
cules with each other involving no free atoms. This configuration dominates the four-
body wave function when all four atoms are at distances smaller than R∗. We as-
sume that three coupling constants ΔLiD, ΔKD, and ΔDD are proportional to the cor-
responding van der Waals ranges, which are small compared to R∗ and a. This al-
lows us to treat these interactions independently as first-order perturbations on top of
the zero-order solution –the properly normalized four-body wave function calculated
for ΔLiD = ΔKD = ΔDD = 0. The contribution of a relaxation channel, say Li-cc
molecule channel, to the total dimer-dimer relaxation-rate constant �D is the prod-
uct of �(0)LiD = 2ΔLiD∕ℏ and the probability �̃LiD(R∗∕a) to find a Li atom close to a
cc molecule in dimer-dimer collisions. The quantity �̃LiD(R∗∕a), which is not to be
confused with �LiD defined for atom-dimer collisions, can in principle be calculated
from the squared modulus of the zero-order four-body wave function by integrating
it over the coordinates of one K atom (for the Li-cc molecule loss channel) and tak-
ing into account combinatorial factors (choice between two Li atoms). However, as
in the atom-dimer case, we calculate the dimer-dimer scattering length aDD to first or-
der in ΔLiD, ΔKD, and ΔDD and deduce the dimer-dimer relaxation-rate constant from
Im(aDD). The total relaxation-rate constant in dimer-dimer collisions is written in the
form

�D = �
(0)
LiD�̃LiD(R

∗∕a) + �(0)KD�̃KD(R
∗∕a) + �(0)D �DD(R∗∕a). (9.4)

The function �DD(R∗∕a) has been computed in Ref. [Lev11]. Herewe calculate �̃LiD(R∗∕a)and �̃KD(R∗∕a), as described in the Appendix. We show these functions together
in Fig. 9.7(b); again we see how collisional losses can be strongly suppressed for
R∗∕a ≲ 1, and that relaxation losses originating from light atoms and cc molecules
are more important than those from heavy atoms and cc molecules.

Let us now discuss the limiting case of large detuning, R∗ ≫ a. Neglecting the
open-channel population, we obtain �DD(R∗∕a → ∞) = 1 and �̃AD(R∗∕a → ∞) = 0,
where A=Li, K. Note that �̃AD is not equal to �AD, which is defined for atom-molecule
collisions and tends to 1 in the largeR∗∕a limit. As expected, these results mean that
�D(R∗∕a → ∞) = �(0)D and �AD(R∗∕a → ∞) = �(0)AD. For large but finite R∗∕a, we
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Figure 9.7: Suppression functions for relaxation in (a) atom-dimer and (b) dimer-dimer colli-
sions.
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can perturbatively take into account the probability to be in the open channel Popen ≈
√

a∕4R∗ ≪ 1, arriving at �̃AD ≈ 2Popen ≈
√

a∕R∗ and �DD ≈ P 2closed ≈ 1 −
√

a∕R∗.
In the opposite limit of small detuning,R∗∕a ≪ 1, the feature of particular interest

is the suppression of collisional relaxation which arises from the large open-channel
probability combined with Pauli suppression: The inelastic process requires at least
three atoms – of which two are identical fermions – to approach each other. More
precisely, the Pauli suppression mechanism is efficient at distances (hyper-radii)R∗ ≪
r ≪ a, which is called the universal region, where the atoms behave as free (open-
channel) atoms. At shorter distances, the three-atom configuration changes to the atom
plus cc molecule one, which is insensitive to the statistical suppression. This argument
applies to the atom-cc molecule relaxation mechanism in both atom-dimer and dimer-
dimer collisions, thus suppressed by the factor

�AD ∝ �̃AD ∝ (R∗∕a)2�s+1. (9.5)
The exponent �s characterizes the three-body wave function in the universal region anddepends on the masses, quantum statistics of atoms, and the total angular momentum
(the subscript s means l = 0)4. For the relevant cases of Li (K) atoms scattering on
LiK dimers, we have �s ≈ 1.01 (�s ≈ 2.02), respectively [Lev11]. The onset of the
power-law suppression can be seen in Fig. 9.7.

ForR∗∕a ≪ 1, the four-atom loss mechanism is also suppressed. This suppression
has the same origin (Pauli principle) as in the three-atom case: Four atoms consisting
of two pairs of identical fermions have to approach each other to the recombination
region. In this case, we have �DD ∝ (R∗∕a)2�4-body+4. Here the power �4-body char-
acterizes the scaling of the four-atom wave function in the universal region and can
be inferred from the energy of four trapped fermions at unitarity: Ref. [Ste08a] gives
�4-body ≈ 0.0, 0.3, and 0.5 for mass ratios of 1, 4, and 8, respectively. Our calculation
for the LiK mass ratio is consistent with this sequence.

9.4.2 Comparison with experimental data
Here we compare our theoretical predictions for the collisional loss-rate coefficients
to our measured values, which we already presented in Figs. 9.5 and 9.6. In our the-
oretical model, the three bare rate constants �(0)D , �(0)LiD, and �(0)KD are free parameters,

4In dimer-dimer collisions, three atoms can approach each other in different angular momentum
channels. In the narrow resonance case, the p-wave contribution to �D for small R∗∕a scales as
(Re∕R∗)2(R∗∕a)

2�p+1 and should be multiplied by a quantity of order ℏRe∕�. The factor (Re∕R∗)2 comes
from the centrifugal barrier which the cc molecule and atom experience at distances ≲ R∗. In our case this
factor gives a four order of magnitude suppression and we neglect this relaxation channel. However, in the
wide-resonant case this channel is dominant since �p < �s [Pet04b, Pet05b, Pet05a].
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Figure 9.8: Atom-dimer loss-rate coefficient �LiD as a function of R∗∕a. The experimental
data (blue circles and red squares obtained with Li|1⟩K|3⟩ and Li|1⟩K|1⟩ dimers, respectively)
are identical to the ones displayed in Fig. 9.6, with the unphysical negative value excluded.
The black solid line corresponds to a fit of our theoretical model to the data, yielding �(0)LiD =
1.8(2) × 10−10cm3∕s.

and they can in principle be determined by fitting to the experimental data. Alter-
natively, estimates can be obtained from a simple quantum Langevin model [Gao10,
Jul11, Qué11]. This model uses only the van der Waals range of the corresponding
atom-dimer or dimer-dimer interaction potential and assumes total absorption (loss) at
shorter distances.

For collisions of Li atoms with LiK dimers, the comparison is straightforward,
since �(0)LiD is the only free parameter, which enters as a prefactor according to Eq. (9.3).
Accordingly, we fit �LiD(R∗∕a) = �(0)LiD�LiD(R∗∕a) to the experimental data and extract
the value �(0)LiD = 1.8(2)×10−10cm3∕s. The fit curve is shown as the black solid line inFig. 9.8 and shows that the theory matches the experimentally observed behavior very
well. In particular, we can clearly confirm that the observed reduction of losses can be
attributed to the Pauli suppression effect.

The value for �(0)LiD obtained from our fit analysis corresponds to about half of the
value suggested by the quantum Langevin model amounting to 3.5 × 10−10cm3∕s.
Similar deviations have previously been observed in other experiments, in particular
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Figure 9.9: Total dimer-dimer loss-rate coefficient �D as a function of R∗∕a. The experimental
data (blue circles and red squares obtained with Li|1⟩K|3⟩ and Li|1⟩K|1⟩ dimers, respectively)
are the same as those displayed in Fig. 9.5. The solid line corresponds to a fit of our theoretical
prediction for �D = �(0)D �DD+�(0)LiD�̃LiD+�(0)KD�̃KD to the data, with �(0)D being the only free parameter
(see text). The dotted line corresponds to our prediction from an extended, finite-temperature
theory6.

those involving light atoms [Wan13].
For collisions between dimers, the situation is more involved because of the three

different channels—Li-cc molecule, K-cc molecule, and cc molecule-cc molecule—
with the corresponding three free parameters �(0)LiD, �(0)KD, and �(0)D ; see Eq. (9.4). Ac-
cording to our model, the dominant loss contribution is expected from the four-body
channel. In order to extract the corresponding bare rate coefficient �(0)D , we perform a
one-parameter fit after fixing �(0)LiD to the measured value discussed before and fixing
�(0)KD to the value 1.4 × 10−10cm3∕s calculated within the quantum Langevin model5.
We finally obtain �(0)D = 3.2(6)×10−10cm3∕s, which we find to be very close the quan-

5Treating �(0)KD also as a free parameter leads to an unphysically large value for �(0)KD. We attribute this to
strong correlations between the fit parameters and residual finite-temperature effects. For the fit we discard
the three data points below R∗∕a < 2 to make it less sensitive to the finite-temperature effects. We also
discard the outlier point at R∗∕a = 7.1. By trying out different fit strategies we find that the final value
obtained for �(0)D is robust, with variations staying well below 20%.
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tum Langevin value, �(0)D = 3.0×10−10cm3∕s. The resulting total decay rate �D(R∗∕a)is shown as the black solid line in Fig. 9.9. Our theoretical approach reproduces the
observed suppression of collisional relaxation as we approach the Feshbach resonance
for R∗∕a ≳ 3.

Closer to the Feshbach resonance (R∗∕a < 3), we see clear deviations. We as-
cribe this discrepancy to temperature effects, which become more prominent when
kBT is comparable to or larger than the dimer binding energy [Lev11]. In this case,
the identical fermions maymore easily approach each other, thereby reducing the Pauli
suppression factor. A theoretical prediction obtained from a finite-temperature calcu-
lation for T = 550 nK6 is shown as the black dotted line. Including finite temperature
into our theoretical approach improves the match of theory and experiment near the
resonance. From our finite-temperature calculations, we also find that corresponding
effects on the collisions of Li atomswith LiK dimers, as discussed before, remainmuch
smaller6.

The good agreement between our theoretical approach and our experimentally
obtained values for the loss coefficients validates the assumptions of our theoretical
approach to collisional losses developed in Ref. [Lev11]. Furthermore, our results
demonstrate that the bare rate coefficients can be well estimated by the value obtained
from the quantum Langevin model. The agreement with our measurements therefore
suggests a predictive power of our theory applied to other Fermi-Fermi systems.

9.5 Other potential Fermi-Fermi systems

Fermi-Fermi systems that feature mass imbalance, collisional stability and tunable in-
teractions may be created with mixtures other than 6Li-40K. To date, Fermi degeneracy
has been demonstrated for isotopes of eight chemical elements, i.e., He [McN06], Li
[Tru01, Sch01a], K [DeM99], Cr [Nay15], Sr [DeS10, Tey10], Dy [Lu12], Er [Aik14],
and Yb [Fuk07b], providing a wealth of possible combinations. We focus our atten-
tion on mixtures of 161Dy and 40K (mass ratio 4.0) and 53Cr and 6Li (8.8), and we
discuss the corresponding suppression functions for collisional losses. Larger mass
ratios (comparable or larger than 13.6) require an analysis beyond the scope of our
present work. In this case, the Efimov [Efi73] and other few-body effects [Kar07,
Cas10, Blu12] can lead to the appearance of new loss-rate features [Mar08a].

The suppression functions for losses in atom-dimer collisions are shown in the
upper panels of Fig. 9.10 for (a) the mass-balanced system, (b) the 161Dy-40Kmixture,
and (c) the 53Cr-6Li mixture. We observe that mixtures of heavy-species atoms and

6D.S. Petrov and J. Levinsen, unpublished
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dimers (red dotted lines) show a much stronger suppression compared to the mass-
balanced case (blue dashed line in Fig. 9.10(a)), which strengthens with increasing
mass imbalance. For the case of the Dy-K (Cr-Li) mixture, this increase amounts
to almost one (two) orders of magnitude at R∗∕a corresponding to about 1. On the
contrary, the mixtures composed of light-species atoms and dimers [blue dashed lines
in Fig. 9.10(b) and (c)] show only a weak enhancement of losses as compared to the
mass-balanced case, amounting to a factor of about 1.5 for both the Dy-K and the Cr-Li
mixture at R∗∕a = 1.

The suppression functions for losses in collisions between dimers are shown in
Figs. 9.10(d)- 9.10(f) for the equal-mass system, and the systems with a mass imbal-
ance of 4 and 8.8, respectively. All three contributions, i.e., from the light atom-dimer,
heavy atom-dimer, and dimer-dimer part, shown in Figs. 9.10(e) and 9.10(f) as the
blue dashed, red dotted, and black solid lines, respectively, are significantly smaller
than their equal-mass counterparts [blue dashed and black solid lines in Fig. 9.10(d]).

In view of future experiments on strongly interacting Fermi-Fermi systems, we can
now provide estimates for theminimum strength of a suitable Feshbach resonance. The
conditions of the successful experiments with spin mixtures of 40K or 6Li suggest a
minimum required suppression of losses by two orders of magnitudes for all possible
channels. According to our theoretical results (Figs. 9.7 and 9.10), this would corre-
spond to a condition of R∗∕a ≲ 0.3 for all mass-imbalanced mixtures considered. For
the relevant scattering length, we may take a ≈ 3000 a0 as a typical value for dimers
entering the strongly interacting Fermi gas regime. We thus obtain the approximate
condition R∗ ≲ 1000 a0 for a Feshbach resonance to provide sufficient collisional sta-
bility.
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9.6 Summary and Conclusion

In a joint experimental and theoretical effort, we have investigated the stability of
weakly bound dimers formed near narrow interspecies Feshbach resonances in Fermi-
Fermi mixtures. In our laboratory system—the mixture of 6Li and 40K atoms—we
have characterized the dependence of three different decay processes on the magnetic
detuning from the Feshbach-resonance center. In dilute samples, spontaneous disso-
ciation (one-body process) is observed for dimers composed of atoms that are not in
the lowest spin channel, and the measured lifetimes are found to be in a full agreement
with a previous theoretical prediction. In dense samples, we havemeasured the rate co-
efficients for inelastic dimer-dimer collisions as well as collisions of the lighter atomic
species with the dimers. For all decay processes, we find a significant suppression
when the resonance center is approached.

Our theoretical framework for the description of collisional losses near narrow
Feshbach resonances is based on a model that has been developed in Ref. [Lev11]. The
basic idea is a separation of the problem into a long-range description of the three- and
four-body kinematics and a simple relaxation model at short range. The reduction of
collisional decay near the resonance center is described by corresponding suppression
functions. In extension of the previous work [Lev11], we have calculated the suppres-
sion functions for all relevant loss channels in atom-dimer and dimer-dimer collisions.
The comparison of theoretical and experimental results for the mixture of 6Li and 40K
shows excellent agreement, thus validating the assumptions of our theoretical model.

The observed collisional suppression does not exceed a factor of about five, and
thus stays far below what has been observed in homonuclear systems near broad res-
onances. Nevertheless, our present work shows that the 6Li-40K system, in spite of
the narrow nature of interspecies resonances [Wil08, Nai11, Tie10], can potentially
exhibit a strong Pauli suppression of collisional losses, provided the density and res-
onance detunings can be substantially reduced. Under such conditions, spontaneous
dissociation can be expected to become the dominant loss mechanism, with a strong
effect on the system. This loss process could be avoided by choosing resonances in
the lowest spin channel, which are all very narrow. The level of control required to
manipulate the Li-K mixture at very low densities near the narrow resonances is very
challenging, going far beyond typical conditions of the present Fermi gas experiments.

Other Fermi-Fermi mixtures are very promising for new experiments in the near
future, andwe have discussed the 161Dy-40K case (mass ratio 4.0) and the 53Cr-6Li case
(8.8) as two illustrative examples. Efforts to realize these systems are under way in dif-
ferent laboratories, and their yet unknown interaction properties need to be explored.
The suppression functions that we have calculated for the corresponding mass ratios
provide a guide for identifying suitable Feshbach resonances in future experimental
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work. In general, our results suggest that broad Feshbach resonances are not neces-
sarily required to obtain sufficient collisional stability. Instead, moderately narrow
resonances are also promising for realizing new experimental model systems and for
exploring the multifaceted many-body physics of fermionic mixtures [Liu03, Cal05,
Isk06, Lin06, Par07, Isk08, Bar08, Bau09c, Gez09, Baa10, Bra14, Bra15].
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9.7 Appendix: Theoretical approach to collisional decay

Here, we present our calculation of the probability to find an atom close to a closed-
channel molecule in dimer-dimer collisions. As discussed in the main text, this prob-
ability allows us to extract the contribution from the corresponding relaxation channel
to the dimer-dimer relaxation rate constant �D. This extends our previous calcula-
tion of the cc molecule–cc molecule relaxation channel, as presented in Ref. [Lev11].
Throughout this appendix, we set ℏ = 1 and work in a unit volume.

We now briefly recapitulate the theoretical description of our system. We consider
two species of fermions labeled by � =↑, ↓ and employ the two-channel Hamilto-
nian [Tim99],

Ĥ =
∑

k,�=↑,↓
�k,� â

†
k,� âk,� +

∑

p

(

!0 + �p,M
)

b̂†pb̂p

+ g
∑

k,p

(

b̂†pâ p
2+k,↑

â p
2−k,↓

+ b̂pâ
†
p
2−k,↓

â†p
2+k,↑

)

. (9.6)

Here, â†k,� (âk,�) creates (annihilates) a spin � atom of mass m� with momentum k and
single-particle energy �k,� = k2

2m�
. Likewise, b̂†k and b̂k are the creation and annihilation

operators of the cc molecule with massM = m↑ +m↓, kinetic energy �k,M = k2

2M , and
detuning !0 from the ↑↓ scattering threshold. The interaction between the atoms is
mediated by the cc molecule as described by the last term of the Hamiltonian, where
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the strength g of the interconversion term is taken to be constant up to a momentum
cutoff Λ. The bare parameters of the model are related to the physical scales, the
scattering length and length parameter R∗, through (see, e.g., [Gur07])

a =
mrg2

2�
1

g2mrΛ
�2 − !0

, R∗ = �
m2rg2

, (9.7)

with mr = m↑m↓∕M the reduced mass. The propagator of the atoms takes the form

G�(p, p0) =
1

p0 − �p,� + i0
, (9.8)

where the notation +i0 specifies that the pole of p0 is shifted slightly into the lower
half of the complex plane. The propagator of dimers is obtained by dressing the cc
molecule propagator by pairs of free ↑↓ atoms, resulting in

D(p, p0) =
2�∕mr

2mrR∗
(

p0 −
p2
2M + i0

)

+ 1
a −

√

2mr
√

−p0 +
p2
2M −i0

. (9.9)

At zero momentum, this has a pole at the dimer binding energy
�0 =−(

√

1 + 4R∗∕a − 1)2∕(8mrR∗
2).

To extract the relaxation rate for the three-atom process in a dimer-dimer collision,
we introduce a weak short-range interaction potential between the ↑ atom and the bare
molecule in the Hamiltonian (see Ref. [Lev11]):

�Ĥ↑D = −iΔ↑D
∑

Q,k,p
b̂†pâ

†
↑,Q−pb̂kâ↑,Q−k. (9.10)

The coefficientΔ↑D is related to the relaxation coupling constant through g↑D = −iΔ↑D.The probability to find the ↑ atom close to the cc molecule in dimer-dimer scattering
at zero collisional energy is then

�̃↑D(R∗∕a) = −Im[�T (0)]∕(2Δ↑D), (9.11)
where �T (0) is the change in the s-wave dimer-dimer scattering T matrix to linear
order in Δ↑D. The change in the dimer-dimer scattering length to the same order is in
turn �aDD = �T (0)M∕(4�). We calculate this change diagrammatically as illustrated
in Fig. 9.11: First, we consider all diagrams contributing to �T which are two-dimer
irreducible (i.e. do not have two dimers propagating simultaneously). We then include

- 173 -



9

CHAPTER 9. 9.7. Appendix: Theoretical approach to collisional decay

all two-dimer reducible processes by replacing the incoming and/or outgoing dimers
by the full dimer-dimer T matrix.

Consider first the sum of diagrams in Fig. 9.11(a) constituting all two-dimer irre-
ducible contributions to �T (0). Taking the incoming [outgoing] dimers to have four
momenta (±p, p0 + �0) [(±q, q0 + �0)], we denote this sum by �T̃ (p, p0; q, q0). This
does not depend on the angle between p and q as we take the s-wave projection. Inte-
grating over frequencies in the closed loops of the diagrams in Fig. 9.11(a) yields, for
the two-dimer irreducible contribution to �T (0),

�T̃ (p, p0; q, q0) = −2iΔ↑Dg2Z2
ˆ dΩp

4�

ˆ dΩq

4�

×

[

2
∑

Q
G↑(p −Q, �0 + p0 − �Q,↓)G↑(q −Q, �0 + q0 − �Q,↓)

+
∑

p1,p2
�(p, p0;p1,p2)D(p1 + p2, 2�0 − �p1,↑ − �p2,↓)G↑(q − p1, �0 + q0 − �p1,↑)

+
∑

p1,p2
�(q, q0;p1,p2)D(p1 + p2, 2�0 − �p1,↑ − �p2,↓)G↑(p − p1, �0 + p0 − �p1,↑)

+
∑

p1,p2,p′2

�(p, p0;p1,p2)�(q, q0;q1,q2)D(p1 + p2, 2�0 − �p1,↑ − �p2,↓)×

D(p1 + p′2, 2�0 − �p1,↑ − �p′2,↓)
]

, (9.12)

where we integrate over the angles of p and q. Z = 1 − 1∕
√

1 + 4R∗∕a is the dimer
residue at the energy pole. The function �(p, p0;p1,p2) is the sum of all diagrams
with two incoming dimers at four momenta (±p, p0 + �0), an outgoing ↑ [↓] atom with
(p1, �p1,↑) [(p2, �p2,↓)], and an outgoing dimer with (−p1 − p2, 2�0 − �p1,↑ − �p2,↓).The sum is averaged over the angle of p. � satisfies an integral equation derived in
Ref. [Lev11]; for the expression, we refer the reader to Eq. (29) of that paper.

Finally, we relate �T to the two-dimer irreducible diagrams by allowing for any
number of dimer-dimer scattering events on the left and/or right side of �T̃ ; see Fig. 9.11(b).
The relation is

�T (0) =�T̃ (0, 0; 0, 0) + 2
ˆ i dp0

2�
∑

p
F (p, p0)�T̃ (p, p0; 0, 0)

+
ˆ i dp0

2�
i dq0
2�

∑

p,q
F (p, p0)�T̃ (p, p0; q, q0)F (q, q0), (9.13)
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Figure 9.11: Diagrams contributing to the ↑ atom-cc molecule loss process in dimer-dimer col-
lisions. The loss vertex (9.10) is depicted as a black square. Straight lines are atom propagators,
while the dimer propagators are illustrated with wavy lines. All filled boxes represent sums of
diagrams. (a) The two-dimer irreducible diagrams denoted �T̃ contributing to �T can be ob-
tained from the vertex � (see text). (b) All diagrams in �T can be obtained from the two-dimer
irreducible diagrams by the use of the full dimer-dimer T matrix (see text). In both subfigures,
the external dimer lines are for illustration only.

where F (p, p0) ≡ 1
g2Z T (p, p0)D(p, p0 + �0)D(−p,−p0 + �0), with T (p, p0) the dimer-

dimer T matrix in the absence of the perturbation (9.10). To avoid poles and branch
cuts, the p0 and q0 integration contours are rotated to the imaginary axis. The dimer-
dimer T matrix satisfies an integral equation derived in Ref. [Lev11]; see Eq. (28) of
that paper.
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Cooling and Trapping of 41K

Bosonic 41K is one of the three naturally occurring isotopes of potassium. Potas-
sium is an alkali-metal with an atomic number Z = 19 and an electron configuration
of 1s22s12p63s23p64s1. Besides 41K, with an natural abundance of 6.73%, there is
bosonic 39K (93.26%) and fermionic 40K (0.01%) [Ros98]. The latter is a long-lived
radioisotope with a half-life of 1.277 × 109 years. For a thorough review of the prop-
erties of all three potassium isotopes see Ref. [Tie09a]. All three species have been
trapped and cooled to degeneracy [Mod01, Roa07, DeM99] and 40K was the first de-
generate Fermi gas created.

In this Appendix, I will describe the adjustments I made to the FeLi(Bo)Kx ex-
periment for trapping and cooling a pure spin state of 41K instead of the earlier imple-
mented 40K isotope [Wil09]. This includes the changes to the existing laser setup and
to the experimental sequence, where potassium is sympathetically cooled by a lithium
spin mixture [Spi10]. Switching between the two isotopes only involves rotating two
waveplates on the laser table and selecting the different isotope in the control soft-
ware, which automatically changes the loading sequence. Thus, the experiment can
now make ultracold mixtures of 6Li and either 40K or 41K. With some slight changes
the more abundant bosonic isotope of 39K can also be cooled and trapped. However,
the predicted Feshbach resonances between 39K and 6Li are relatively narrow, with a
width below 50mG [Han17], and this makes it experimentally challenging to access
the strongly interacting regime, without being limited by the FR associated losses. For
41K a fairly broad heteronuclear Feshbach resonance exists, as explored in Chap. 5 and
.

A.1 Optical Transitions and Spin States

The energy diagrams of the D-line doublet and the optical transitions used for cooling
and trapping of all three potassium isotopes are shown in figure A.1. For 41K, the
nuclear angular momentum I is 3∕2. The electronic ground state is a 4 2S1∕2 state
and the zero field splitting between the F = 2 and F = 1 state is 254MHz [Tie09a].
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FigureA
.1:Energyleveldiagramsofthethreepotassium

isotopes.Thepurplearrowsshowthecoolingtransitionsandthegreen
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momentum

quantum
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N
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Figure A.2: Magnetic field dependence of the hyperfine structure of the 4 2S1∕2 state of 41K.
Both the low-field quantum numbers F and mF as well as the high-field quantum numbers mIand mJ are indicated for the four spin states accessible in the experiment.

The D2 line between the ground state and the 4 2P3∕2 excited state, is used for the
41K magneto-optical trap (MOT) and Zeeman slower light. The cooling light is red
detuned from the F = 2 → F ′ = 3 transition and the repump light is red detuned
from the F = 1 → F ′ = 2 transition. The excited states F ′ = 3 and F ′ = 2 of
the 4 2P3∕2 level are only 13.4MHz apart and atoms can therefore be pumped into the
F = 1 state. To bring the atoms back into the cycling cooling transition, repump
light is needed. The line widths of the transitions are about 6MHz and the saturation
intensity is Is = 1.75mW/cm2 [Tie09a]. The reference frequency to which we directly
lock the master laser is the F = 2→ F ′ = 3 atomic transition of 39K.

The magnetic field dependence of the hyperfine structure of the 42S1∕2 state of
41K can be calculated with the Breit-Rabi formula [Tie09a]. For the magnetic fields
addressed in the experiment, four low-field seeking hyperfine states of 41K are of in-
terest as is shown in Fig. A.2. These are labeled from lowest-to-highest energy as
K|1, 2, 3, 4⟩. The splitting between these hyperfine states is typically 50-80MHz and
allows for the manipulation of the spin state of the atoms with radio-frequency pulses.

A.2 MOT and CMOT Properties

In our oven, we have solid K metal, which acts as the source for 41K. It is enriched to
have 6% of 40K and contains about 7% of 41K. The K reservoir containing the metal is
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Table A.1: Experimentally optimized parameters for the 41K MOT and CMOT stages. �cool isthe detuning from the cooling (F = 2 → F ′ = 3) transition and �repump is the detuning from the
repump (F = 1→ F ′ = 2) transition.

�cool �repump Icool∕Irepump )B∕)z )B∕)x
(MHz) (MHz) (G/cm) (G/cm)

MOT -22 -25 3 22 12
CMOT -21 -9 9 83 46

heated up to about 200 ◦C and the atomic beam coming out of this oven chamber passes
through two differential pumping sections before entering the Zeeman slower [Wil09].
For the Zeeman slower, the cooling light has a power of about 70mW and a detuning
of about -165MHz from the F = 2 → F ′ = 3 transition. The repump light in the
Zeeman slower is equally detuned and is a factor of 2 lower in power.

Next, the atoms are captured in the glass cell by a MOT composed of 6 beams with
a diameter of about 21mm and a power per beam of typically 10mW. This gives a
peak intensity of 6 mW/cm2, which is about six times the saturation intensity. For 10 s
of initial MOT loading, we have about 105 K atoms. Subsequentially the K MOT is
compressed by increasing themagnetic gradient and decreasing the repump light inten-
sity by a factor of three. In this compressed MOT (CMOT), typically a temperature of
250�K is reached which is above the Doppler temperature of 145�K. The temperature
could be further reduced by implementing sub-Doppler cooling techniques [Lan11] or
a blue MOT [McK11]; however in our current scheme we do not rely on this. During
the CMOT stage about 10% of the atoms are loaded into an optical dipole trap (ODT)
with a wavelength of 1064 nm, a power of 150W andwaist of about 38�m. The typical
trap depth for K at loading is about 6.5mK. The characteristic experimental parame-
ters for the 41KMOT and CMOT stages are listed in table A.1 and were optimized for
loading the highest atom number into the single beam ODT trap in the presence of the
Li MOT.

After the atoms are loaded into the ODT, we rely on sympathetic cooling of Kwhile
evaporating a Li spin mixture (see Chap. 4). The details of the procedure in combi-
nation with lithium are similar to the cooling and loading sequence of 40K [Spi10].
The trap depth for potassium is roughly twice the trap depth for lithium, ensuring
that potassium remains trapped during the evaporation. The s-wave background in-
teraction between the 41K atoms is about 60 a0, which is similar to the background
scattering length between K and Li, which is also about 60 a0 [Tie17, D’E07, Pat14](see Sec. 5.6.2). Therefore, away from inter- and intra-species Feshbach resonances,
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the interactions between Li and K and among K atoms are relatively weak. Both the
evaporation scheme at 1180G with a Li|1⟩-Li|2⟩ spin mixture (see Chap. 4) and at
483G with a Li|1⟩-Li|3⟩ spin mixture (see Sec. 5.6.1) work and create a BEC of 41K.
Here, Li|1, 2, 3⟩ indicates the first, second and third lowest Zeeman spin states. In the
final stage of the evaporation sequence, we reach a temperature of about 100 nK and
typical atom numbers of 3 × 104 K atoms and 105 Li atoms in a crossed ODT.

A.3 Spin Relaxation

After loading into the ODT, we have a mixture of Li|1⟩ , |2⟩ and K|1⟩ , |2⟩ , |3⟩. The
ratio between the different K states is about 1:1:2, where most atoms are in the K|3⟩
state. Cooling down this sample with multiple K spin states can lead to atom losses or
a spinor condensate [SK13] with miscible/immiscibile features [Liu16]. Therefore it
is important to create a polarized sample of K, and we exploit a spin relaxation stage
at the beginning of the evaporation sequence to do this. Already for 40K we showed
that spin exchange collisions can be used to populate a single spin state [Spi10]. The
inverted hyperfine structure of 40K favors spin relaxation into the lowest Zeeman spin
state and by holding the Li-40K sample at 40G or at 207G a spin pure 40K sample
could be obtained. For 41K, we found a similar feature at about 200G.

When a Li|2⟩ atom collides with a 41K|1, 2, 3⟩ atom it can change its spin state to
Li|1⟩. Due to preservation of total mF the K atom will end up in the |2, 3, 4⟩ state,
respectively. This inelastic collision is accompanied by a release of energy when the
energy difference between the Li|2⟩ and Li|1⟩ states is higher than the energy differ-
ence between the initial and final K spin state. Vice versa a K atom in the |2, 3, 4⟩
can collide with a Li|1⟩ atom and change its spin state to K|1, 2, 3⟩, whereby the Li
atom will end up in Li|2⟩. Also here depending on the energy difference between the
spin states energy is released. Figure A.3 shows the difference between the subsequent
spin states of potassium and the two lowest spin states of lithium for varying magnetic
fields. This figure shows that in our mixture energy is released when spin exchange col-
lisions between Li|2⟩ and K|1, 2⟩ happen and this will be on the order of a few tens of
MHz. Furthermore above 400G K|3⟩ can spin flip into the K|4⟩ state and at 400G the
energy difference between the K|3⟩ and K|4⟩ states matches that of the lithium spin
states. The energy released Er is distributed among the two colliding atoms, where
most of the energy is carried away by lithium. Assuming the initial kinetic energy to
be zero and fulfilling energy and momentum conservation, the kinetic energies of the
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Figure A.3: Energy difference between hyperfine states for potassium and lithium as a function
of magnetic field. The dashed line shows the magnetic field at which the spin relaxation stage
takes place.

atoms after a Li-K spin exchange collision are

Ekin,Li =
mK

mK + mLi
Er ≈ 0.87Er , (A.1)

Ekin,K =
mLi

mK + mLi
Er ≈ 0.13Er , (A.2)

where mK(mLi) is the mass of potassium (lithium). As can be seen from Fig. A.3, the
kinetic energy Ekin,K a K atom can acquire due to spin exchange collisions is only
a few MHz for magnetic fields up to 600G. The initial trap depth of the ODT for
potassium, after loading the atoms from the CMOT, is about 12mK (240MHz) and
is subsequently decreased to about 1mK (18MHz) during the first evaporation stage.
Comparing this trap depth toEkin,K shows that potassium will remain in the trap, even
if spin exchange collisions are enhanced in the magnetic field range of 0-600G.

We measure the effect of spin exchange collisions in a mixture of Li|1, 2⟩ and
K|1, 2, 3⟩ by looking at changes in the atom number for various magnetic fields. Right
after loading into the ODT, we wait with the mixture for 500ms at a given magnetic
field. Then, we ramp the magnetic field to 1180G and sympathetically cool the K
atoms with the Li spin mixture before we take absorption images of the atoms after
time-of-flight. At these high magnetic fields the different spin states of K and Li can
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be imaged independently by using different imaging frequencies and the imaging tran-
sitions are almost closed. The measurements are shown in Fig. A.4 and we observe a
lot of loss features in the K states. The loss features are temperature broadened, since
the atoms have a temperature of a couple of microkelvin during the hold time. As will
be discussed in Appendix B, the loss features can be associated with Feshbach reso-
nances [Chi10] and we additionally perform Feshbach spectroscopy with much colder
samples of Li and K to observe the inter- and intraspecies FRs. The enhancement
and loss in the lithium atom number can be associated with the p-wave resonances
that occur around 160G for Li|1⟩-Li|1⟩, 185G for Li|1⟩-Li|2⟩, and 215G for Li|2⟩-
Li|2⟩ [Zha04, Sch05].

In the case of spin relaxation, we are particularly interested in the magnetic fields
where the atom number in a single spin state is enhanced. In Fig. A.4 a clear enhance-
ment of the atom number in K|4⟩ at 400G can be seen. This coincides with the point
in Fig A.3 where the energy difference between the K|3⟩ and K|4⟩ states is equal to
that of lithium. However, we also see a strong decrease of the total K atom number
at this magnetic field. The enhancement of the K|3⟩ atom number near 200G shows
no loss of K atoms and this is the field we exploit for spin relaxation. Waiting at this
magnetic field leads to a complete removal of the atoms in the K|1⟩ state and we end
up with a final mixture of typically 85% K|3⟩ and 15% K|2⟩. The latter population can
be removed either by a resonant laser pulse or during the subsequent magnetic field
ramps, as discussed in Sec. 5.6.1.
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A.4 Laser Setup and Frequencies

The laser setup to cool and trap K and the changes made to implement 41K are shown
in Fig. A.5. Using modulation transfer spectroscopy and a spectroscopy cell filled
with K vapor, the master laser is locked to the F = 2 → F ′ = 3 transition of 39K.
The output of the master laser is split up into four pathways. Two pathways create the
cooling and repump frequencies for 40K and the other two those for 41K . Depending
on the shutter and waveplate settings either the pathway for 40K or 41K is seeding
the two tapered amplifiers which provide enough power for the cooling and repump
light for the Zeemanslower and the MOT as well as the imaging light. For 41K, the
typical settings of the acoustic optical modulators (AOMs) used for cooling, trapping
and imaging the lowest four spin states are depicted in Fig. A.6.

To cool and trap 39K two acoustic optical modulators (AOMs) in the laser setup
should be realigned. Using the laser setup for 40K, the order of the D204 AOM should
be changed from -1 to +1 as well as the order of the C203 AOM, such that it compen-
sates for the B202 AOM. Typical cooling and trapping frequencies can be found in the
saved parameter files of the control software.
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Figure
A
.5:SchematicoftheK
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APPENDIXB

Feshbach Resonances in Ultracold
Mixtures of
41K and 6Li

The typical evaporation scheme for cooling the 41K and 6Li mixture takes place at
about 1180G, while the predicted Feshbach resonance (FR) of interest is at 335G (see
Chap. 5). When ramping down to this final field, several intra- and interspecies FRs
have to be crossed and it is important to avoid them, since the occurrence of a FR is
associated with atom loss. This loss of atoms can actually be exploited when trying
to measure FRs and with the new 41K-6Li Bose-Fermi mixture an extensive set of
loss measurements was taken for magnetic fields varying between 0 and 1200G. This
appendix provides a summary of the results.

A magnetic Feshbach resonance [Chi10] arises when a pair of ultracold atoms
couples to a near-threshold molecular state that is tuned to be close in energy by an
applied magnetic field. The enhanced interaction properties near the Feshbach res-
onances are often accompanied by increased three-body recombination and inelastic
collisions. Colliding atoms can release internal energy when changing to a lower in-
ternal state or forming a molecule. This energy release gives a gain in kinetic energy
which is usually large enough for all atoms involved in the collision to leave the trap.
These losses provide an easy tool for the identification of resonances, but can at the
same time affect the timescales for experiments in the vicinity of the resonances, as
Chap 9 showed. The width and depth of the loss features associated with the FR, de-
pends on the measurement conditions. The temperature of the mixture can broaden the
width of the loss feature, while the density of the atoms and the hold time at a given
magnetic field determine the amount of atom loss. Furthermore, the trap should be
shallow enough that the atoms, with their increase in kinetic energy, can leave the trap
and losses can be observed.

For the Feshbach spectroscopy measurements, various spin mixtures are created
with K in the lowest |1⟩, second-to-lowest |2⟩, and third-to-lowest |3⟩ Zeeman spin
state and Li in either of its two lowest spin states, i.e. Li|1⟩ or Li|2⟩. The preparation
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procedure was similar to the one described in Chap. 4. The spin relaxation stage is
omitted to ensure that all three spin states of K are present. After evaporative cooling,
one of the Li spin states is removed by a resonant laser pulse. Subsequently we ramp
down in 100ms to a given magnetic field and wait there for 500ms before ramping
back to 1180G where we take absorption images after time of flight. By removing
both Li spin states with resonant laser pulses, a K pure spin mixture can be studied
and, by applying the spin relaxation stage and/or laser pulses resonant to the K spin
states, several combinations of K|1⟩, |2⟩, and |3⟩ can be probed. By varying the com-
ponents in the mixture, we can verify whether the observed loss features are inter- or
intraspecies FRs and between which spin states they occur.

For both species, the trap frequencies of the final crossed optical dipole trap are
measured by exciting either the radial breathing mode or the axial mode [Gri08] of
the Li and K cloud and observing the size of the Li or K cloud for various wait times
in the trap. Fitting these oscillations with a damped sine function leads to the trap
frequency. Typical values for lithium are !r,Li = 2� × 533(4)Hz and !a,Li = 2� ×
78.6(5)Hz for the radial and axial direction, respectively. For potassium the measured
trap frequencies are !r,K = 2� × 333(5)Hz and !a,K = 2� × 46.4(8)Hz.

The typical temperature of the mixture is about 270 nK and is extracted by mea-
suring the size of the thermal K cloud for various expansion times after its release
from the trap. Assuming that the K cloud expands ballistically, i.e. all interactions are
switched off, the temperature T can be calculated from the increase in width of the
cloud � as a function of time t, according to [Ket99]

�(t) =

√

�20 +
kBT
mK

t2. (B.1)

Here, �0 is the initial width of the cloud, kB the Boltzmann constant and mK the mass
of potassium.

A single pair of coils is used to vary the magnetic fields between 0-600G. For
higher magnetic fields, 600-1200G, an additional offset was created by a second pair
of coils at a fixed current. At these high magnetic fields, rf spectroscopy between K|3⟩
and |4⟩ is used to determine the relation between the current I and the magnetic field
Bhigh−f ield as

Bhigh−f ield∕G = 1.47931(5) I∕A + 595.219(9). (B.2)
For lower magnetic fields, the offset changes as the second pair of coils is not used and
the magnetic field Blow−f ield follows

Blow−f ield∕G = 1.47931(5) I∕A + 2.00(3). (B.3)
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Table B.1: Lithium p-wave Feshbach resonances. Experimental uncertainties reflect the fit
error of a Gaussian fit to the loss feature.
Li-state Li-state Bexp0 (G) ΔBexp (G) BTheory0 (G)
1 1 159.14(2) 0.22(1) 159.15(4) [Sch05], 159 [Zha04]
2 2 214.91(2) 0.15(2) 214.90(4) [Sch05], 215 [Zha04]

Here, the offset was deduced from comparing the loss associated with the Li p-wave
FRs to their well-known positions [Sch05, Zha04].

The atom loss measurements up to 450G are shown in Fig. B.1 and B.2 for a mix-
ture with either Li|1⟩ or Li|2⟩ and K|1⟩, |2⟩, and |3⟩. Each data point represents the
average of two measurements and the error reflects the standard deviation. The resolu-
tion of the magnetic field is typically 1.5G, which limits the observation of FRs with
a narrower loss feature. The atom number of lithium is an order of magnitude higher
and is not significantly affected by the interspecies inelastic processes. However, the
p-wave FRs in Li are clearly visible. In another data set, with a smaller magnetic field
resolution, we determine the position of these two features with a Gaussian fit and ex-
tract the magnetic field offset of 2.00(3)G for low magnetic fields. Table B.1 shows
the results of the Gaussian fit as compared to the theoretical values when using Eq. B.3
for magnetic field calibration. The lithium atom loss near their p-wave FR, also affects
the K atom number and in all spin states a clear loss feature is present at the p-wave
FR position.

A summary of the found interspecies resonances between K and Li|1⟩ and between
K and Li|2⟩ is shown in Table B.2 and B.3). Several additional scans, either with a
better resolution or a combination of different spin states, are taken to characterize the
loss spectra. The measured loss features are fitted with a simple Gaussian curve, which
determines the position of the loss mimimaBexp0 and their Gaussian widthΔBexp. Notethat ΔBexp is not related to the width Δ of a FR, which characterizes the difference in
magnetic field between the resonance pole and the zero-crossing. The width of the
loss feature, ΔBexp, merely reflects the range of magnetic fields where inelastic losses
are enhanced due to enhanced interactions. The errors in Table B.2 and B.3 represent
fit errors. For some features, only one data point characterizes the atom loss as the
resolution of the magnetic field is too coarse. In those cases only the position of the
feature is given and the error represents our detection limit. Table B.2 and B.3 as
well as Fig. B.1 and Fig. B.2 also show the theoretically predicted FR positions from
the coupled-channels calculations of T. Hanna and E. Tiesinga [Han10] based on the
potentials from [Tie09b]. There is a remarkable agreement between the predicted FRs
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and those observed, although also unpredicted FRs can be seen.
In Chap. 5, the FR at 334G is further explored and the resonance center was de-

termined more accurately by measuring the binding energy of the feshbach molecules
using rf spectroscopy (see Sec. 5.6.2). The Feshbach resonance center was found to
be B0=335.057(1)G, which is 1G above the position found by the loss spectroscopy
measurements. This indicates that we have a systematic deviation of the measured loss
features of about 1G.

For magnetic fields larger than 450G, we find almost no Li-K FRs, however we do
see K intraspecies FRs, especially in the region of 650 to 770G as is shown in Fig. B.3.
These measurements were taken in the presence of Li|2⟩, however the observed loss
features remain when the measurements were repeated in a mixture with Li|1⟩. Addi-
tional scans with only K also confirm that these losses occur independent of Li. The
found K intraspecies FRs between identical or different spin states are summarized in
Table B.4 and B.5, respectively, as well as the theory predictions [Lys10, D’E07]. No
atom losses in any of the mixture constituents are observed in the region from 950G
to 1200G.

There are several routes that can be used to avoid the found FRs when transferring
the K and Li mixture after evaporation at 1180G to 335G, where the the FR between
Li|1⟩ and K|1⟩ is. After the evaporation at 1180G, the remaining Li|2⟩ and K|2⟩ are
removed with a resonant laser pulse. Down to 770G the pure spin mixture of K|3⟩ and
Li|1⟩ can be easily ramped without collissional loss. Most of the intraspecies K FRs
between 770 and 650G can be avoided by ramping down to about 440G in a few tenths
of milliseconds. Moreover, the K|3⟩-K|3⟩ FR at 753G could also be circumvented by
transferring the K atoms to K|1⟩ using a � rf-pulse, followed by another transfer back to
the K|3⟩ around 730G and a quick ramp to 440G. The region between 400 and 365G
can be dodged by transferring the atoms to K|1⟩. At about 345G the atoms should be
transferred to K|2⟩, before ramping to a field below 335G. The exact magnetic field
where this transfer takes place needs to be carefully calibrated since there is both a
Li|1⟩-K|2⟩ and a Li|1⟩-K|1⟩ FR nearby.

For our latest measurements, a different evaporation scheme has been used as de-
scribed in Sec. 5.6.1. We evaporate at 483G with a Li|1⟩-Li|3⟩ spin mixture and then
ramp to 565G to remove the Li|3⟩ component by a resonant light pulse. Here we also
transfer K|3⟩ to K|2⟩ and then to K|2⟩ to K|1⟩, before ramping down to about 345G.
Then, the atoms are transferred to K|2⟩ and we ramp to a field below 335G.
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Figure B.1: Loss spectrum of a mixture of (a) K|1⟩, (b) K|2⟩, and (c) K|3⟩ in the presence of
(d) Li|1⟩. The data points are connected as guide to the eye. The dot-dashed horizontal lines
show the theoretically predicted interspecies FRs from [Han10] and the dashed lines indicate
the theoretical potassium intraspecies FRs from [Lys10, D’E07]. The color code of the lines
represents the other spin state involved in the FR.
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Table B.2: Interspecies Feshbach resonances between Li|1⟩ and K|1⟩, |2⟩, and |3⟩. The po-
sition Bexp0 and Gaussian width ΔBexp are determine from a Gaussian fit to the observed loss
features. The uncertainties reflect the fit error. The position of the FRs BTheory0 as predicted by
coupled-channels calculations [Han10] are also given. The FR indicated by * is explored in
more detail in Chap 5 and B0 is measured to be 335.057(1)G.

Li-state K-state Bexp0 (G) ΔBexp (G) BTheory0 (G) [Han10]
1 1 21.2(2) 0.17(9) 21
1 1 26.8(4) 2.3(5) -
1 1 31.2(1) 0.7(1) 31.8
1 1 99.6(4) 1.5(2) 99.85
1 1 154.34(4) 0.19(2) -
1 1 334.0(1)* 3.2(2) 335.3
1 1 341.25(7) 0.7(1) 341.5
1 1 771(1) - -
1 2 34.4(3) 1.5(2) 34.5
1 2 43(1) 4(1) 46.5
1 2 100(1) 1.1(6) 99.5
1 2 114.7(5) 1.7(4) 115
1 2 350.8(6) 2.6(6) 352.7
1 2 361.2(4) 1.4(3) 361.6
1 3 25.69(2) 0.19(1) -
1 3 60(1) 4(1) 62
1 3 122.1(9) 4.3(9) 124.7
1 3 210.03(8) 0.46(5) -
1 3 226.9(4) 0.5(1) -
1 3 374.2(2) 1.5(2) 374.7
1 3 383.4(2) 1.5(2) 384.4
1 3 392.0(3) 2.6(3) 393.4
1 3 771.4(5) 0.7(3) -
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Figure B.2: Loss spectrum of a mixture of (a) K|1⟩, (b) K|2⟩, and (c) K|3⟩ in the presence of
(d) Li|2⟩. The data points are connected as guide to the eye. The dot-dashed horizontal lines
show the theoretically predicted interspecies FRs from [Han10] and the dashed lines indicate
the theoretical potassium intraspecies FRs from [Lys10, D’E07]. The color code of the lines
represents the other spin state involved in the FR.
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Table B.3: Interspecies Feshbach resonances between Li|2⟩ and K|1⟩, |2⟩, and |3⟩. The po-
sition Bexp0 and Gaussian width ΔBexp are determine from a Gaussian fit to the observed loss
features. The uncertainties reflect the fit error. The position of the FRs BTheory0 as predicted by
coupled-channels calculations [Han10] are also given.

Li-state K-state Bexp0 (G) ΔBexp (G) BTheory0 (G) [Han10]
2 1 19.3(6) 1.6(4) -
2 1 37.5(1) 0.5(1) 38
2 1 49.1(1) 1.8(1) 49
2 1 106(1) 3(1) 107.5
2 1 126.6(2) 1.2(1) -
2 1 167.8(2) 2.4(2) -
2 1 197.20(5) 0.70(5) -
2 1 211(1) - -
2 1 354(1) 14(3) 359
2 1 375.2(4) 1.7(5) 375.7
2 2 23(3) - -
2 2 61.2(3) 3.2(5) 64.1
2 2 128.9(4) 2.5(4) 130.7
2 2 175.8(1) 1.8(2) -
2 2 213.97(3) 0.45(3) -
2 2 229.7(6) 0.6(3) -
2 2 370(2) 15(2) 378.4
2 2 395.3(3) 2.0(3) 397
2 3 80.0(9) 4(1) 84.2
2 3 155.4(6) 3.7(5) 155
2 3 163(2) - -
2 3 205.55(4) 0.48(3) -
2 3 400.7(2) 2.7(2) 402.4
2 3 409.5(1) 2.1(1) 410
2 3 455.1(3) 0.4(2) -

- 196 -



B

APPENDIX B. Appendix: Feshbach Resonances in Ultracold Mixtures of 41K and 6Li

Figure B.3: Loss spectrum of a mixture of (a) K|1⟩, (b) K|2⟩, and (c) K|3⟩ in the presence of
Li|2⟩. The observed loss features remain when the measurements were repeated in the presence
of Li|1⟩. The data points are connected as guide to the eye. The dashed horizontal lines indicated
the predicted theoretical FRs from [Lys10, D’E07]. The color code of the lines represents the
other spin state involved in the FR.
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Table B.4: Potassium intraspecies Feshbach resonances between identical spin states. Exper-
imental uncertainties reflect the fit error of a Gaussian fit to the loss feature. The waittime is
500ms, however the two features marked with * were observed for t = 1 s.

K-state K-state Bexp (G) ΔBexp (G) BTheory10 (G) BTheory20 (G)
[D’E07] [Lys10]

1 1 658.0(7) - - -
1 1 660.5(7) - 660.1 661.2
1 1 713.6(1) 0.2(1) - -
1 1 717.4(2) 1.0(3) - -
2 2 360(1) - - -
2 2 451.46(9) 1.06(9) 451.5 452.4
2 2 700.8(1) 0.5(1) - -
2 2 703.0(1) 0.9(2) 702.7 703.8
2 2 707.7(7) - - -
2 2 712.1(7) - - -
2 2 748.8(2) 1.2(1) - -
2 2 760.9(7) - - -
2 2 786.1(4) 0.5(2) - -
3 3 46.7(6)* 2.2(7) - -
3 3 51.3(2)* 1.1(2) 51.4 51.17
3 3 453.10(8) 0.37(5) - -
3 3 455.3(7) - - -
3 3 745.4(7) 0.68(7)
3 3 747.5(1) 0.6(1) 747 748.1
3 3 752.8(3) 1.4(3) - -
3 3 757.6(5) 0.9(6) - -
4 4 748.9(2) 2.2(3)
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Table B.5: Potassium intraspecies Feshbach resonances between different spin states. Experi-
mental uncertainties reflect the fit error of a Gaussian fit to the loss feature.

K-state K-state Bexp (G) ΔBexp (G) BTheory10 (G) BTheory20 (G)
[D’E07] [Lys10]

1 2 672(1) - - -
1 2 674.5(2) 0.4(2) - 675.1
1 2 742(1) - - -
1 2 748(1) - - -
1 3 685.01(3) 0.22(2) - -
1 3 685.79(3) 0.30(1) - 685.6
1 3 689.66(6) 0.2(1) - -
1 3 702.2(2) 0.8(1) - -
1 3 704.72(9) 0.93(9) - -
2 3 714.4(3) 0.8(3) - -
2 3 716.92(7) 0.58(5) - 717.6
2 3 786.1(1) 0.40(8) - -
2 3 931.05(8) 0.24(5) - -
4 4 748.9(2) 2.2(3)
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