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Abstract

This master thesis contains a description and a characterisation of a laser setup with
a final wavelength of 418.6 nm and a pulse duration in the sub-hundred nanosecond
range. The setup is part of a STIRAP laser setup which is used to populate opposite
parity states in Dysprosium. This is a novel approach in producing an ultracold gas
of Dysprosium atoms with both a strong magnetic and electric dipole moment. An
external cavity diode laser in cat’s eye design with a wavelength centered around
840 nm acts as a light source. The desired wavelength can be adjusted by means
of an interference filter inside the external cavity. A tapered amplifier is used to
amplify the optical power for optimizing the second harmonic generation process in
an enhancement cavity of bow-tie geometry. An acousto optic modulator in a double
pass configuration generates short pulses by switching a RF-driver on and off. The
setup has proven to be able to produce a laser beam of approximately 3 mW which is
almost twice the power needed. The rise time of the pulses has been measured to be
about 30 ns and should be fast enough.
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Kurzfassung

Diese Masterarbeit beinhaltet eine Beschreibung sowie eine Charakterisierung eines
Laser Aufbaus mit einer Wellenlänge von 418.6 nm und einer Pulsdauer im Bereich
von unter 100 ns. Der Erzeugte Laser ist Teil eines STIRAP Prozesses zur Besetzung
von Zuständen mit entgegengesetzter Parität in Dysprosium. Dies ist eine neuartige
Methode zur Herstellung eines ultrakalten dipolaren Quantengases aus Dysprosium-
Atomen mit sowohl magnetischen als auch elektrischen dipolmoment. Als Lichtquelle
dient ein Diodenlaser mit externem Resonator bei einer Wellenlänge von 840 nm. Mit
Hilfe eines drehbaren Interferenzfilters, welcher sich im Resonator befindet kann die
emittierte Wellenlänge angepasst werden. Ein Trapezverstärker wird eingesetzt um
die optische Leistung zu verstärkten und den drauf folgenden Frequenzverdoppelungs
Prozess zu optimieren. Die Frequenzverdoppelung wird mit Hilfe eines nichtlinearen
Kristalls welcher sich in einem Ringresonator befindet durchgeführt. Ein Akusto-
optischer Modulator in der sogenannten double-pass Konfiguration, erlaubt es durch
Ein- und Aus-schalten des RF-Verstärkers kurze Laser-Pulse zu erzeugen. Der Aufbau
zeigte sich geeignet zur Erzeugung eines Laserspulses mit einer Spitzenleistung von
etwa 3 mW und einer Anstiegszeit von 30 ns. Die erzielte Leistung ist etwa doppelt
so groß wie notwending und die Anstiegszeit reicht aus um Pulse von unter 100 ns zu
erzeugen.
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1. Introduction

1.1. Motivation

During the last 25 years, since the first realization of Bose Einstein condensates (BEC)
and the following realization of degenerate Fermi gases, an increasing attention in the
field of ultracold gases took place. These days, cold atoms in the tens of nanokelvin
range can be realized by combined laser- and evaporative-cooling techniques. There
is special interest in the production of so-called dipolar quantum gases, because such
systems can be controlled by means of external fields and are excellent candidates
for observing novel physics [1]. Of the 13 elements condensated to a BEC, there are
Chromium (Cr), Erbium (Er) and Dysprosium (Dy) which are available for dipolar
physics. The first BEC, where dipolar effects could be observed, was realized in 2005
[2]. This was followed by the first realizations of this type of quantum gases with
Dysprosium [3] and Erbium [4]. However, dipolar effects can also be observed in
systems which posses an electric dipole moment.
A possible approach to produce an ultracold gas of atoms, possessing both strong
magnetic and electric dipole moments, can be realized with Dy atoms. This is possible
because of the existence of almost degenerate opposite parity states (termed opposite
parity doublet OPD). The nearly degeneracy of such states makes it possible to achieve
strong mixing with moderate and experimentally accessible electric field strengths.
Such a OPD is existing for Dy at 19 797.96 cm−1 with lifetimes in the µs range and
a reduced dipole moment on the order of 0.01 a u . Two years ago, another OPD
in Dy, positioned at 17 513.33 cm−1 and 17 514.50 cm−1 and with electronic angular
momentum J = 10 and J = 9 respectively, was predicted theoretically [5]. The states,
labelled with |a〉 and |b〉 have estimated decay rates of γa = 3.5× 10−2 s−1 and γb =
3× 104 s−1 respectively, and a reduced dipole moment of 〈a| |d̂| |b〉 ≈ 3.2 a u . Therefore,
this OPD is a promising candidate for dipolar physics. For an experimentally accessible
electric field of 5 kV/cm and an magnetic field of 100 G, a permanent magnetic dipole
moment (PMDM) of µ∗ = 13µB and an induced electric dipole moment (IEDM) of d∗

= 0.22 D is predicted [5].

A promising way to populate the OPD is by using a Stimulated Raman Adiabatic
Passage (STIRAP). The ground state in 164Dy is of even parity and configuration
[Xe]4f106s2(5I) with total angular momentum of J = 8. In order to reach the |b〉 state,
an intermediate state with good coupling to ground and final state is needed. Such an
intermediate level could be the state at 23 877.75 cm−1 with J = 8, and configuration
[Xe]4f106s6p(8; 1)◦. To address this specific state from the ground state a laser with a
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1.2. Goals and how to achieve them

wavelength of λ1 = 418.6 nm is needed which has to be developed first. For the second
branch, which corresponds to the transition from the intermediate state to state |a〉
at 17 513.33 cm−1, a fiber laser system with an output wavelength of λ2 = 1571 nm is
used. The Once the STIRAP populates the state |b〉, which requires the two lasers to
be in σ+ and π configuration, a π-microwave-pulse is applied to mix the states with
opposite parity. Figure 1.1 shows the energy level diagram of 164Dy.

Figure 1.1.: Energy level diagram of 164Dy up to 25 000 cm−1. Even (odd) parity levels
are shown in red (black). Blue arrow indicates the transition from the ground state to the
intermediate state and the red arrow from the intermediate state to the final state in a
STIRAP process. Energy levels taken from [6] and [5].

1.2. Goals and how to achieve them

To address the |b〉 state at 17 514.50 cm−1 in a STIRAP process using the state at
23 877.75 as an intermediate state, a laser with a wavelength of λ = 418.6 nm is needed.
The intermediate state has a lifetime of γ = 7.9 ns [7]. This requires that the laser
pulses, which are needed for STIRAP, have to be very short in order to realize a high
transfer efficiency. In this section here, it is tried to give a simple estimation of how
much power is needed for the blue branch of the STIRAP transition.
To quantify how much power is needed, we need a quantity that describes how well an
atom is able to absorb or emit electromagnetic radiation for a specific transition and
then connect it to the laser intensity. This quantity is the so called transition dipole
moment d which is incorporated in the Rabi frequency Ω which reads

Ω =
dE

~
(1.1)
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1. Introduction

where E is the electric field amplitude and ~ the reduced Planck constant. In general
d is a complex vector operator, but for the sake of simplicity we neglect both, the
vector and operator aspect. By using the well known expression I = 1

2
ε0cE

2, inserting
it into (1.1) and rearranging for the intensity one obtains

I =
ε0c~2Ω2

2d2
. (1.2)

The constants ε0 and c are the permittivity of free space and the speed of light,
respectively. As explained in section 2.1.3, for an adiabatic evolution ΩmaxT > Amin

has to be fulfilled. Ωmax denotes the peak Rabi frequency, T the pulse duration and
Amin some minimum pulse area. For most STIRAP applications Amin & 3π ≈ 10 has
proved to be enough in order to achieve good transfer efficiencies. Therefore, the peak
intensity becomes

Ipeak =
100ε0c~
2d2T 2

. (1.3)

The next step is to determine the transition dipole moment d. From quantum optics,
one finds that the radiative decay rate Γ is connected with d according to

Γ =
d2ω3

3πε0~c3
. (1.4)

In equation (1.4) ω corresponds to the frequency associated with the transition. By
using γ = 1

Γ
and c = λω

2π
equation (1.3) can be solved to obtain an expression for d2

d2 =
3ε0hλ

3

2(2π)3γ
. (1.5)

By inserting all the known values into equation (1.5), this gives d2 = 3.296× 10−58 C2m2.
By plugging this value, and a pulse duration of T = 50 ns into equation (1.3), a needed
intensity of Ipeak = 1791 W/m2 is obtained. Assuming a reasonable diameter of the
laser beam of D = 1 mm, a peak power of Ppeak = 1.407 mW is needed.
The aim of this master thesis is therefore, to build a laser with wavelength λ =
418.6 nm, a puls duration T in the sub-hundred nanosecond range and corresponding
peak power of at least Ppeak = 1.407 mW. To achieve this, the setup consists of four
main parts. An external cavity diode laser in cat’s eye design with a wavelength
centered around 840 nm is acting as a light source. A build in interference filter can
be used to adjust the desired wavelength by tilting it. Next, a tapered amplifier is
then used to amplify the optical power as much as possible. This is needed to achieve
reasonable powers in a second harmonic generation process. A bow-tie cavity with
a nonlinear crystal is the part of the setup where the blue light at λ = 418.6 nm is
produced. To generate a pulse from a continuous wave laser a double-pass AOM is
realized as a last part of the setup. The design of the external cavity diode laser, the
tapered amplifier setup and the doubling cavity is by Emil Kirilov.
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2. Introduction to STIRAP

A Raman process typically involves a three-state quantum system and it’s scope is to
transfer population among two of these states. The initial population is changed via
two-photon transitions into a final state that normally cannot be reached by electric
dipole radiation. In the traditional Raman process, radiative excitation by a pump
laser field is followed by spontaneous emission (Stokes field). Due to spontaneous
emission many final states are addressed, and hence such a process is not very selective.
By using a second laser field, and therefore replacing spontaneous by stimulated
emission, the process can be made more selective. Due to the fact that in this situation
both fields are under experimental control, such a process is often called stimulated
Raman scattering (SRS). One might think that a intuitive pulse sequence, pump field
before Stokes field is the right way to implement a successful population transfer.
However, this kind of pulse ordering suffers from spontaneous emission due to the
fact that a lossy intermediate state is populated. In a so called counterintuitive pulse
sequence, it is possible to transfer all of the population from an initial to a target state,
without never populating the intermediate state. Such a process is called stimulated
Raman adiabatic passage (STIRAP) [8].

STIRAP was initially developed to study the chemical dynamics of molecules and
the original paper [9] dates back to 1990. Within the last 30 years STIRAP found
applications not only in chemistry and physics, but also in engineering and information
processing. As an example in physics, STIRAP is used in the formation of ultracold
molecules where they are “STIRAPed “into the rovibronic ground state. Another
example arises in probing physics beyond the standard model. To measure the electrons
electric dipole moment, STIRAP is used to transfer the population of thorium monoxide
in a suitable molecular state [10]. In this experiment, STIRAP will be used to transfer
the population from the 164Dy ground state via an intermediate state into the opposite
parity state at 17 514.50 cm−1, and afterwards to produce simultaneously a magnetic
and electric dipolar gas of ultracold dysprosium atoms.

This section gives a short introduction into the mechanism of STIRAP. An insight
into the most important equations is given to illuminate the special features of the
process. Therefore, the chapter relies mostly on papers written by N.V. Vitanov and
K. Bergmann which are [10], [11], [12], and [13]. Additional information is taken from
[14] and [15].
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2. Introduction to STIRAP

2.1. Basic Equations and Definitions

STIRAP provides a (nearly) complete and robust method to transfer population
efficiently and selectively between two quantum states lying in a three-state quantum
system. To transfer atoms, that are initially populated in a state |Ψ1〉, to a (not
populated) target state |Ψ3〉, two pulsed electromagnetic fields are needed. The pump
pulse and the Stokes pulse couple an intermediate state |Ψ2〉 with |Ψ1〉 and |Ψ3〉,
respectively. This situation is shown in figure 2.1

Figure 2.1.: STIRAP coupling scheme. The pump pulse with Rabi frequency ΩP (t) couples
the states |Ψ1〉 and |Ψ2〉. The Stokes pulse with Rabi frequency ΩS(t) couples the states
|Ψ3〉 and |Ψ2〉. Left plot: ∆P and ∆S are the Rabi frequencies of the corresponding pulses.
Right plot: both pulses are detuned by ∆ from resonance and δ is called the two-photon
detuning. After the STIRAP process is completed, the atom is transferred from state |Ψ1〉
to the state |Ψ3〉, never populating state |Ψ2〉.

Figure 2.1 shows the so called Λ system. Other three state systems like a V− or a
ladder-system are possible, but not needed here. The time evolution of a laser driven
three-level system is given by the time dependent Schrödinger equation

i~
d

dt
c(t) = H(t)c(t) (2.1)

where c(t) = [c1(t), c2(t), c3(t)]T is a column vector containing the probability amplitudes
of the bare (or diabatic states) |Ψ1〉, |Ψ2〉 and |Ψ3〉. Within the rotating wave approximation
(RWA) the STIRAP Hamiltonian reads [14]

H(t) = ~

 0 1
2
ΩP (t) 0

1
2
ΩP (t) ∆P − iΓ/2 1

2
ΩS(t)

0 1
2
ΩS(t) ∆P −∆S

 , (2.2)

where ΩP (t) = −d12 ·EP/~ and ΩS(t) = −d32 ·ES/~ correspond to the Rabi frequencies
of the pump and Stokes pulse, respectively. The Rabi frequencies represent the
coupling strengths. The detunings ∆P and ∆S correspond to the detunings of the
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2.1. Basic Equations and Definitions

pump and Stoke pulse to the intermediate state. This situation corresponds to the left
plot of figure 2.1. The parameter Γ is the spontaneous decay rate from the intermediate
state |Ψ2〉 to other states than |Ψ1〉 and |Ψ3〉. By defining the single photon detuning
∆ ≡ ∆P and the two-photon detuning δ = ∆P −∆S the situation can be transformed
to that corresponding to the right plot of figure 2.1. In the following, Γ = 0 and δ = 0.
The requirement of δ = 0 is known as two-photon resonance and is crucial to achieve
high efficiencies.

2.1.1. Eigenstates and Adiabatic Basis

The instantaneous eigenstates of the Hamiltonian of H(t) are linear superpositions of
the unperturbed (bare) states |Ψ1〉, |Ψ2〉 and |Ψ3〉 and read

|Φ+(t)〉 = sin θ(t) sinφ(t) |Ψ1〉+ cos θ(t) |Ψ2〉+ cos θ(t) sinφ(t) |Ψ3〉
|Φ0(t)〉 = cos θ(t) |Ψ1〉 − sin θ(t) |Ψ3〉 (2.3)

|Φ−(t)〉 = sin θ(t) cosφ(t) |Ψ1〉 − sin θ(t) |Ψ2〉+ cos θ(t) cosφ(t) |Ψ3〉

where we have defined the mixing angles θ(t) and φ(t) which are giving the ratio of
the coupling strengths and of the coupling strength and detuning. They are defined
as

tan θ(t) =
ΩP (t)

ΩS(t)
and tan 2φ(t) =

Ω(t)

∆(t)
(2.4)

where Ω(t) =
√

ΩP (t)2 + ΩS(t)2, sometimes also denoted as Ωrms(t) (root mean square
Rabi frequency) [15]. The eigenvalues of the STIRAP Hamiltonian (2.2), also called
adiabatic energies, are

~ε+ =
~
2

Ω(t) cotφ(t)

~ε0 = 0

~ε− =
~
2

Ω(t) tanφ(t)

(2.5)

STIRAP relies on the so called dark (or population trapping) state |Φ0(t)〉 of equation
(2.3). This state is a coherent superposition of states |Ψ1〉 and |Ψ3〉 and does not
depend on state |Ψ2〉. If it is possible to stay in this state during the whole transfer
process, then all the population can be transferred from |Ψ1〉 to |Ψ3〉 [11].

2.1.2. Schrödinger Equation in the Adiabatic representation

The eigenvectors (2.3) form an orthogonal (W−1 = WT ) rotation matrix
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2. Introduction to STIRAP

W =

sin θ sinφ cos θ sin θ cosφ
cosφ 0 − sinφ

cosφ sinφ − sinφ cos θ cosφ

 (2.6)

which connects the probability amplitudes of the adiabatic states a(t) = [a1(t), a2(t), a3(t)]T

to the bare (or diabatic) amplitudes c(t) by the orthogonal transformation

c(t) = Wa(t) (2.7)

where the time dependence of W was omitted. By inserting equation (2.7) into
equation (2.1), one obtains

i~
d

dt
a(t) = Ha(t)a(t) (2.8)

where the Hamiltonian is given by Ha(t) = W−1HW − i~W−1Ẇ. Equation (2.8) is
the Schrödinger equation in the adiabatic basis. The explicit form of Ha(t) reads

Ha = ~

 1
2
Ω cotφ iθ̇ sinφ iφ̇

−iθ̇ sinφ 0 −iθ̇ cosφ

−iφ̇ iθ̇ cosφ −1
2
Ω tanφ

 . (2.9)

The diagonal elements of the above matrix correspond exactly to the eigenvalues of the
STIRAP Hamiltonian given by (2.5). The off-diagonal elements correspond to non-
adiabatic couplings which will induce transitions between the adiabatic eigenstates
given by (2.3). To achieve a (nearly) complete population transfer, these off-diagonal
elements have to be reduced to very small values. In this case, the system can be
forced to stay approximately in the dark state for all times.

2.1.3. Local and Global Adiabatic Condition

To guarantee nearly complete population transfere from state |Ψ1〉 to state |Ψ3〉 the
off-diagonal elements of the Hamiltonian given by (2.9) have to be small compared to
the separation of the diagonal elements (differences of the eigenvalues). The derivatives
of the mixing angles (2.4) are given by

φ̇ =
Ω(t)∆̇(t)−∆(t)Ω̇(t)

Ω2(t) + ∆2(t)

θ̇ =
ΩS(t)Ω̇P (t)− ΩP (t)Ω̇S(t)

ΩS(t)2 + Ω2
P (t)

. (2.10)

The single photon detuning ∆ is usually very small and ideally equal to zero. Therefore,
φ̇ is typically a small number. Hence, the crucial derivative for high transfer efficiencies
is θ̇. Dividing the eigenenergies (2.3) by ~ one obtaines the corresponding eigenfrequencies.
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2.2. STIRAP Mechanism

The differences between the eigenfrequencies has to be much larger than θ̇ which gives
the following condition

|ω± − ω0| =
1

2

√
ΩS(t)2 + Ω2

P (t)� |θ̇|. (2.11)

The above expression is exactly true for ∆ = 0. This condition quantifies the smoothness
of the laser pulses and must hold for any time during the transfer process. Hence, it is
called local adiabatic condition. If the condition (2.11) is fulfilled, then nonadiabatic
couplings between the state |Φ0(t)〉 and states |Φ+(t)〉 and |Φ−(t)〉 are small. As a
consequence, the STIRAP process is insensitive to small variations in laser intensity,
pulse duration and pulse delay [16].
A global criterion can be derived by integrating equation (2.11) over time. The pulse
root mean square area is then given by

A =

∫ ∞
−∞

Ωrms(t)dt =

∫ ∞
−∞

√
ΩP (t)2 + ΩS(t)2dt. (2.12)

The integral over θ̇ from equation (2.10) gives exactly π/2, and therefore the inequality

A � π/2 (2.13)

holds. Equation (2.13) can be viewed as a global condition for adiabatic population
transfer. Due to the fact that A ∝ ΩmaxT , where Ωmax is the peak Rabi frequency and
T the pulse duration, equation (2.13) can be rewritten as

ΩmaxT > Amin (2.14)

where Amin is some minimum pulse area which depends on pulse shape and required
transfer efficiency. For most STIRAP applications, pulse areas of Amin & 3π have
provided sufficient population transfer [13].

2.2. STIRAP Mechanism

In this section the STIRAP mechanism is explained in a more illustrative way. For this
purpose, the process is divided in three steps. For a successful population transfer a
counterintuitive pulse ordering is needed. To guarantee adabatic evolution, a suitable
overlap of the pulses must be present. Furthermore, we require that the detuning
∆ = 0 remains constant for the whole transfer. Figure 2.2 shows the most important
characteristics of a STIRAP process. For the STIRAP pulses we assume a Gaussian
shape

ΩP (t) = Ω0e
−(t−τ/2)2/T 2

and ΩS(t) = Ω0e
−(t+τ/2)2/T 2

, (2.15)

with characteristic width T , peak Rabi frequency Ω0 and pulse delay τ . In the
following, the different stages of the STIRAP mechanism are discussed.
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2. Introduction to STIRAP

Figure 2.2.: Example of STIRAP induced by
Gaussian pulses: (a) time evolution of the
pulses, (b) adiabatic eigenvalues ,(c) mixing
angle and (e) the diabatic populations. The
following parameters are used for plotting:
γ13 = 2T−1, Ω0 = 50T−1, and τ = 0.8T .
Figure adapted from [13].

Plot (a) shows the Gaussian pulses of
equation (2.15) in an counterintuitive
order.
Stage I: Over a great range only of this
first step, only the Stokes pulse is present
which couples the states Ψ2 and Ψ3. Plot
(b) shows the so called Autler-Townes
splitting of the adiabatic energy levels.
The dark eigenvector Φ0 of equation (2.3)
is equal to Ψ1 and the population remains
unchanged as can be seen in plot (d).
Stage II: In this second step both
pulses are present. The pump pulse
is decreasing while the Stokes pulse
increases. According to equation
(2.4) this causes the mixing angle θ
approaching π/2 as indicated in plot c.
State Φ0 departs from Ψ1 to −Ψ3 and a
population transfer starts taking place.
Stage III: During the last stage the
Stokes pulse vanishes and only the pump
pulse is present. The mixing angle θ
is now equal to π/2 and all of the
population has been transferred from the
initial state Ψ1 to the target state Ψ3 [13]
[11].
It should be noted, that in this
very simplified picture of STIRAP, is
only valid if dephasing processes are
completely neglected. For more detailed
explanations consider [8], [13] or [15].
Another important condition for a
successive population transfer should be
briefly mentioned. As already explained
in section 2.1.2, the off-diagonal matrix

elements of (2.9) have to be small compared to the differences of the diagonal matrix
elements. These diagonal matrix elements correspond exactly to the eigenvalues in plot
(b) of figure 2.2. It happens that these off-diagonal elements take only considerable
values when the splitting of the eigenfrequencies is biggest. Therefore, this splitting
is one of the striking characteristics of STIRAP that enables a successful population
transfer.
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2.3. STIRAP with Spontaneous Emission

Real physical systems are never perfect and various decoherence effects, such as phase
relaxation dephasing and population losses due to spontaneous emission will decrease
the transfer efficiency in a STIRAP process. In the Λ system exploit in this experiment,
the decay rate of the used intermediate state at 23 877.75 cm−1 to the Dysprosium
ground state is much larger than two the opposite parity state at 17 514.50 cm−1.
Therefore, the effect of unequal spontaneous decay rates from the intermediate state
to the initial and target state has to be considered. Because the derivations are very
lengthy, only the most important results for this thesis are summarized in this section.
For more detailed information consider [11] and [12].

2.3.1. Bright-Excited-Dark Basis

To treat the problem of spontaneous decay within the system it is convenient to work
in a basis composed of the dark state |d(t)〉, the bright state |b(t)〉 and the excited
state |e〉,

|b(t)〉 = sin θ(t) |Ψ1〉+ cos θ(t) |Ψ3〉
|e〉 = |Ψ2〉 (2.16)

|d(t)〉 = cos θ(t) |Ψ1〉 − sin θ(t) |Ψ3〉

where θ(t) is the mixing angle defined in equation (2.4). The presence of the dark
state |d(t)〉 is justified by the fact that it is the state where the population resides for
the whole process in the adiabatic limit. For this particular problem, the special role
of state |e〉 is that it’s the only decaying state. The adiabatic basis states on the other
hand are superpositions of all three basis states (beside the dark state) and hence they
involve decaying and stable states which makes the problem more complicated. The
bright state |b(t)〉 is determined by the two other states uniquely. The vectors (2.16)
form a similar rotation matrix like the one obtained from the adiabatic basis vectors.
For the bright-excited-dark basis the rotation matrix R reads [12]

R =

sin θ(t) 0 cos θ(t)
0 1 0

cos θ(t) 0 − sin θ(t)

 . (2.17)

2.3.2. Effect of Unequal Decay Rates

In the adiabatic limit the intermediate state |Ψ2〉 remains unpopulated during the
whole STIRAP process and the transfer efficiency reaches unity. In the case of a
non adiabatic evolution, |Ψ2〉 can acquire some population and spontaneous emission
will lower the transfer efficiency. The dephasing process can no longer be treated by
the time dependant Schrödinger equation. Such processes are treated by introducing
phenomenological decay terms into the Liouville equation
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2. Introduction to STIRAP

i~
dρ

dt
= [H, ρ] + D, (2.18)

where the dissipator D describes spontaneous emission within the system [11]. In
matrix form D can be written as

D = −i~
2

 −2Γ1ρ22 (Γ1 + Γ3)ρ12 0
(Γ1 + Γ3)ρ21 2(Γ1 + Γ3)ρ22 (Γ1 + Γ3)ρ23

0 (Γ1 + Γ3)ρ32 −2Γ3ρ22

 . (2.19)

Here ρmn = 〈Ψm|ρ̂|Ψn〉, where ρ̂ is the density operator. The decay rates Γ1 and Γ3

describe spontaneous emission from state |Ψ2〉 to states |Ψ1〉 and |Ψ3〉, respectively.
Initially, the system is in state |Ψ1〉 and hence equation (2.18) is solved for ρ11(−∞)
= 1 and ρmn(−∞) = 0 for mn 6= 11. The rotation matrix from (2.17) transforms the
Liouville equation (2.18) into the bright-excited-dark basis

i~
dD̃

dt
= [H̃, D̃]− i~[RṘ, ρ̃] + D̃ (2.20)

where ρ̃ = RρR, H̃ = RHR and D̃ = RDR. By defining the parameters Γ = Γ1 + Γ3

and γ = Γ1 − Γ3 one can derive the following two differential equations

v̇ = −Ω2

2Γ
v − 2θ̇w +

Ω2γ sin 2θ

2Γ2
(w + 1)

ẇ = 2θ̇v − Ω2

2Γ
(1 +

γ cos 2θ

Γ
)(w + 1)

(2.21)

where Ω is the root mean square Rabi frequency and time dependencies have been
omitted. The variables v and w are connected to the density matrix elements in the
bright-excited-dark basis by v = 2Re{ρbd} and w = ρbb − ρdd. With the additional
requirement that ρbb(t) + ρdd(t) ≈ 1, equations (2.21) can be solved numerically. In
order to transform from the bright-excited-dark basis back to the original basis the
relation ρ̃ = RρR. For the initial and final state populations one gets [12]

ρ11(t) = ρbb(t) sin2 θ(t) + ρdd(t) cos2 θ(t) + Re{ρbd} sin 2θ

ρ33(t) = ρbb(t) cos2 θ(t) + ρdd(t) sin2 θ(t)− Re{ρbd} sin 2θ.
(2.22)

Numerical integration of (2.21) leads to figure 2.3 which shows the effect of unequal
decay rates. Due to the fact that the difference of the decay rates γ can be positive
(Γ1 > Γ3) or negative (Γ3 > Γ1), the solution of (2.21) is not symmetric with respect
to γ. The left plot of figure 2.3 shows an example of how the populations evolve as
a function of time. The right plot shows that the population of the target state ρ33

decreases as γ goes from negative to positive values. The limits in this plot correspond
to γ = Γ and γ = −Γ. One can clearly see that the latter limit is favourable in a
STIRAP process, because due to Γ1 = 0 and Γ3 = Γ spontaneous emission only occurs
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2.3. STIRAP with Spontaneous Emission

in the direction to the target state |Ψ3〉. The other limit where Γ1 = Γ and Γ3 = 0
least favourable for STIRAP. Spontaneous emission is returning the population back
to state |Ψ1〉 and hence keeping the values for ρ11 high and for ρ33 low [12].

Figure 2.3.: Effect of unequal decay rates. Left plot: Evolution of the populations as a
function of time for Gaussian pulses (2.15) with a pulse delay τ = 1.5T−1, peak Rabi
frequency Ω0 = 60T−1 and decay rates of Γ1 = 500T−1 and Γ3 = 1500T−1. Right plot:
Final populations as a function of difference of decay rates γ. The same parameters for the
pulses are used and the total decay rate is fixed to Γ = 2000T−1. The grey area indicates
the operation regime for this experiment, depending on pulse duration and pulse delay.
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3. Physics of Optical Resonators

A simple optical resonator can be constructed by placing two mirrors at two different
locations z1 and z2 on the optical axis. The radii of the mirrors, R1 and R2, must
correspond to the radii of the beam wavefronts at the two locations. The beam
in between the two mirrors is then reflected back an forth without a change of its
transverse profile. Due to the fact that the reflection of a Gaussian beam from a
mirror with a radius of curvature R is formally equivalent to its transmission through
a lens with focal lens f = R

2
, the following simple confinement condition can be derived

0 ≤ (1− g1) (1− g2) ≤ 1. (3.1)

In this simple equation g1 and g2 are equal to l
R1

and l
R2

, respectively. Thereby, R1

and R2 are the radii of curvature of the mirrors and l is the separation between them.
Figure 3.1 shows the confinement diagram for optical resonators.

Figure 3.1.: Confinement diagram for optical resonators. Blue area shows the region where
equation (3.1) is fulfilled and therefore the resonator is stable. Outside the blue area the
resonator is unstable. For better orientation g1 = 0 and g2 = 0 are plotted as red dashed
lines.

This section will give a short introduction how to describe the propagation of Gaussian
beams through an arbitrary optical system, using the so called ABCD-Matrix method.

20



3.1. Gaussian Beams

This allows us to construct more complicated optical resonators consisting of several
optical elements instead of just two mirrors. The special case of a Bow-Tie Cavity will
be discussed in one of the following sections. More detailed information can be found
in [17], [18], [19], [20] and [21].

3.1. Gaussian Beams

Waves that exhibit the characteristics of an optical beam must satisfy the paraxial
Helmholtz equation

∇2
TA− 2ik

∂A

∂z
= 0 (3.2)

where A = A(~r) is the complex envelope, ∇2
T = ∂2

∂x2
+ ∂2

∂y2
is the transverse part of

the Laplace operator and k is the wavenumber. A special solution of the paraxial
Helmholtz equation is the Gaussian beam. A general expression for the complex
amplitude U(~r) of the Gaussian beam reads

U(~r) = A0
w0

w(z)
exp{− ρ2

w(z)2
} exp{−jkz − jk ρ2

2R(z)
+ jζ(z)} (3.3)

with ρ2 = x2 + y2. The other parameters appearing in equation (3.3) are briefly
mentioned below. The beams spot size w(z), also called the 1/e-radius of the beam,
is given by

w(z) = w0

[
1 +

(
z

z0

)2
]1/2

(3.4)

where z is the coordinate along which the beam is propagating. The radius of curvature
R(z) of the Gaussian beam is given by

R(z) = z

[
1 +

(
z

z0

)2
]
. (3.5)

The phase factor η

η = arctan

(
z

z0

)
(3.6)

is called the Gouy phase. The minimum spot size w0 characterizing the beam is given
by

w0 =

(
λz0

π

)1/2

(3.7)
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3. Physics of Optical Resonators

where λ is wavelength of the beam and z0 =
πw2

0

λ
is called the Rayleigh range.

Sometimes, a Gaussian beam is characterized by it’s confocal parameter, which is
defined as b = 2z0. The beam divergence in the far field is given by θ0 = λ

πω0
. A

connection between the radius of curvature R(z) and the spot size w(z) is given by
the complex beam parameter q(z)

1

q
=

1

R
− i λ

πW 2
(3.8)

where the dependence of z is omitted in equation 3.8 [17, 20].

3.2. ABCD-Matrix Method

To develop the ABCD-Matrix method, we start considering light rays instead of
Gaussian beams. A light ray is completely characterized by its hight y above the
optical axis and its slope θ. In the paraxial approximation, where θ is small, the
relation between an incoming ray (y1, θ1) and an outgoing ray (y2, θ2) is linear and can
be written as [

y2

θ2

]
=

[
A B
C D

] [
y1

θ1

]
(3.9)

where A, B, C and D are characterizing the corresponding optical element through
which the ray is passing or being reflected. The ABCD-Matrix of a system of optical
components can be obtained by multiplication of the corresponding matrices. Table
3.1 presents a few important ABCD-Matrices.

A very useful property of all the ABCD-matrices (and systems composed of a number
of optical elements) is that they are unimodular, i.e.

det

[
A B
C D

]
= AD −BC = 1. (3.10)

The effect of different optical components on a Gaussian beam is described by the
ABCD-law. The q parameters of an incident Gaussian beam q1 and a transmitted/reflected
Gaussian beam q2 at the input and output planes of a paraxial optical system are
related in the following way

q2 =
Aq1 +B

Cq1 +D
(3.11)

where A, B, C and D are again the components of the corresponding ABCD-matrices
(or composite system). As it can be seen from equation (3.8), the beam parameter
q connects the spot size w(z) and the radius of curvature R(z) of a Gaussian beam
and therefore describes the effect of an arbitrary optical system on the Gaussian beam
[17].
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Table 3.1.: Summary of a number of important ABCD-Matrices. The parameter d describes
a distance in free space, f is the focal length of a lens and R is the radius of curvature of
a mirror (R > 0 for a concave and R < 0 for a convex mirror). ABCD-Matrices for other
optical components can be found in [17], [19], [20] and [21].

Optical element Sketch ABCD-Matrix

Free space
[

1 d
0 1

]

Reflection from a planar mirror
[

1 0
0 1

]

Reflection from a spherical mirror
[

1 0
−2
R

1

]

Transmission through a thin lens
[

1 0
−1
f

1

]

3.3. The Self-Consisted Method

To have a stable resonator, we require that the resonating mode reproduces it self
after a complete round trip. Therefore one can choose an arbitrary reference plane
inside the resonator and denote the complex beam parameter at this plane q. Using
equating (3.11) the self-consistency condition reads

q =
Aq +B

Cq +D
(3.12)

where A, B, C and D are the components of the transfer matrix of the whole resonator
setup. Equation (3.12) can be transformed in a quadratic equation for 1

q
. Using the

unimodularity of ABCD-matrices and comparing with equation (3.8) one gets

1

q
=
D − A

2B
± i

√
1−

(
D+A

2

)2

B
=

1

R
− i λ

πW 2
(3.13)

For a confined Gaussian beam it is therefore necessary that∣∣∣∣D + A

2

∣∣∣∣ ≤ 1 (3.14)

is fulfilled. Equation (3.14) can be viewed as a generalized confinement condition
for an arbitrary optical resonator [20]. From equation (3.14) it is possible to derive
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3. Physics of Optical Resonators

expressions for the radius of curvature R and the beam spot size W at a chosen
reference point

R =
2B

D − A
(3.15)

w =

√
2λ|B|

π
√

4− (A+D)2
. (3.16)

Values at other points in the cavity can be obtained by using equations (3.5) and (3.4)
[21].

3.4. Ring Cavities and Intensity Enhancement

Now, some of the key ideas concerning passive optical cavities are presented. Therefore,
a plane wave model is used, which is applicable for both standing wave resonators (two
mirror resonators) and travelling wave resonators (ring cavities).

In the following, we denote Einc and Erefl as the incident and reflected complex signal
amplitudes, respectively. Ecirc denotes the circulating signal amplitude. The relation
between the circulating and incoming field amplitudes is given by [18] [21]

Ecirc

Einc

=
t1

1− r1rme−iδ
(3.17)

where δ corresponds to a phase shift associated with one round trip. The parameters
r1 and t1 are reflection and transmission coefficients of the mirror where the incoming
signal is coupled in to the cavity. The parameter rm combines the reflection (and
eventually transmission) coefficients of the other elements. In the case of a cavity
with four mirrors (like in a Bow-Tie configuration) and a lossy medium inside with
transmission coefficient t, rm reads

rm = r2r3r4t. (3.18)

In other words, rm can be considered as the fraction of the electric field that remains
inside the cavity after one round trip, excluding the transmission through the input
mirror t1. Using the quadratic dependence of the intensity upon the electric field
amplitude, it is easy to calculate from equation (3.17) the fraction between incoming
intensity Icirc and the circulating intensity Iinc [21]

Icirc

Iinc

=
t21

(1− r1rm)2 + 4r1rm sin2(δ/2)
. (3.19)

For the reflected field Erefl and intensity Irefl similar expressions can be obtained [21]
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Figure 3.2.: Resonant behaviour of a ring cavity: Circulating intensity (left) and reflected
intensity (right) as a function of phase shift δ according to equations (3.20) and (3.20). The
values for reflection coefficients are chosen such that rm = r1.

Erefl =Einc
rme

−iδ − r1

1− r1rme−iδ

Irefl

Iinc

=
(r1 − rm)2 + 4r1rm sin2(δ/2)

(1− r1rm)2 + 4r1rm sin2(δ/2)
.

(3.20)

Figure 3.2 shows the circulating intensity and the reflected intensity as a function of
phase shift δ according to equations (3.20) and (3.20). One can see that for specific
values of δ there is almost no circulating intensity and no reflected intensity. For a
total round trip phase shift of δ = 2πq, where q is a integer number, the circulating
intensity inside the cavity is highest and almost no intensity is reflected. This confirms
also the very customary result for the axial resonance frequencies of νq = q c

Ln
, where

L is the path of a total cavity round trip (L = 2× mirror separation for standing wave
resonators) and c

n
is the speed of light in a medium with refrative index n [21].

It is easy to see, that equation (3.19) is a periodic function in δ with a period of 2π.
This is equivalent as to say that the free spectral range in terms of δ is 2π. The
circulating intensity has a maximum for δ = 2πn where n is a integer number. A
graphical representation of equation (3.19) shows figure 3.3.
Figure 3.3 shows that it is essential to minimize round trip losses in order to have
rm close to unity which implies high circulating field intensities. For rm = 0.99 a
circulating field intensity can be obtained that is ∼ 100 times larger than the incident
field intensity. Furthermore, one can see that the maximum circulating intensity is
obtained for

r1 = rm. (3.21)

Equation (3.21) is the so called impedance-matching condition [22]. This result can
also be obtained by differentiating equation (3.19) (at resonance) with respect to r1

and setting the result to zero. Equation (3.20) indicates that in this case (at resonance)
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Figure 3.3.: Representation of equation (3.19) for δ = 2πn and different values of rm. Figure
adapted from [22].

there is zero reflected power. The half maximum intensity which occurs at a phase
δ1/2 equal to

δ1/2 ≈
1− r1rm√
r1rm

(3.22)

where we have assumed δ1/2 � 1. The full width at half maximum (FWHM), denoted
with ∆ν1/2, of the circulating field at resonance, is therefore given by

∆ν1/2 = 2δ1/2 =
2(1− r1rm)
√
r1rm

. (3.23)

A common definition for the finesse F , is the free spectral range of the cavity divided by
the FWHM of the circulating intensity resonances. Considering that the free spectral
range in terms of phase shift is equal to 2π, the finesse reads

F =
FSR

∆ν1/2

=
π
√
r1rm

1− r1rm
=

π

δ1/2

. (3.24)

Considering equation (3.24), a justification for the approximation (δ1/2 � 1) for
deriving equation (3.22) can be given: most useful cavities have a finesse F � 1
which implies δ1/2 � π. The results reported here can be found in greater detail in
[17] and [21].

3.5. Bow-Tie Cavity

In this section a special typ of ring-cavity, the so called bow-tie cavity, is described.
This cavity consists of four mirrors, two curved and two flat, which are aligned in such
a way that the beam follows a zig-zag path. The curved mirrors have the same radii
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3.5. Bow-Tie Cavity

Figure 3.4.: Schematic representation of the symmetric bow-tie configuration. The cavity
consists of two flat mirrors (M1 and M2) and two curved mirrors (M3 and M4). To perform
second harmonic generation, a nonlinear crystal (LBO) lies in between the two curved
mirrors. Figure adapted from [21].

and the configuration is symmetrical about a vertival line halfway between the mirrors
(symmetric bow-tie configuration). A schematic representation of the bow-tie cavity
is shown in figure 3.4.
To describe this kind of resonator we will use the ABCD-matrix method from section
3.2. Taking the corresponding matrices from table 3.1 and using equation (3.16) one
can easily calculate the waist between the flat and between the curved mirrors. By
choosing the reference planes lying exactly between the curvend mirrors and the flat
mirrors, figure 3.5 results.

Figure 3.5.: Small waist (between curved mirrors) and large waist (between flat mirrors)
calculated using equation 3.16 as a function of d2. The following values for the calculation
are used: d1 = d3 = 20 cm, R = 10 cm, Lcrystal = 1.5 cm, n = 1.61 and λ = 840 nm.
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Figure 3.6.: Real part of tangential waist WT and sagittal waist WS between curved mirrors
(left) and between flat mirrors (right) as a function of d2. For the calculation the same
parameters as in figure 3.5 are used.

Figure 3.5 shows the real part and the imaginary part of the small and large waist using
equation (3.16). The resonator is stable if the imaginary part of both waists is zero.
The resonator starts to be unstable in the regions where the small waist (left plot)
is shrinking rapidly. As one can clearly see, the waist between the curved mirrors is
roughly a factor of 10 smaller and therefore suitable as location for a nonlinear crystal.
Figure 3.5 describes the behaviour of the waists qualitatively correct. Due to fact, that
the curved mirrors are tilted by an angle θ the configuration is no longer cylindrical
symmetric. The off axis reflection from the curved mirrors is responsible for the
geometrical aberration, called astigmatism. In order to describe this problem it is
helpful to define two planes: the tangential plane (parallel to the plane of incidence)
and the sagittal plane (perpendicular to the tangential plane). Tangential rays will
experience a different geometry than sagittal rays. It can be shown that off-axis
reflection of a tilted mirror at angle θ leads to two individual focal lengths

fT =
R cos θ

2
,

fS =
R

2 cos θ

(3.25)

for the tangential and sagittal plane, respectively [23]. This means that each plane has
it’s own ABCD matrix and focus has to be replaced by (3.25). An analog calculation
for the waists like before leads to figure 3.6.
Figure 3.6 shows the astigmatic behaviour of a bow-tie cavity. For the waists between
the curved mirrors there is a special mirror d2 separation where both waits are equal.
For the chosen parameters here, this happens for a curved mirror separation of d2 ≈
11.4 cm.
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The theory of linear optics was completely sufficient at that time where only classical
light sources were available. With the invention of the laser, it was possible to
interact with matter so strongly, that beside linear effects also nonlinear ones became
noticeable. Second Harmonic Generation (SHG) is a subarea of this field, called
nonlinear optics. By the interaction with materials, which show strong nonlinear
behaviour, light with frequency ω is converted into light with frequency 2ω. First
experiments of SHG had a conversion efficiency of the order 10−8. To make this process
more successful, more efficient materials, high laser frequencies and index matching
techniques are needed. This chapter is intended to show the most important steps on
the way to frequency-doubled light [21, 24].

4.1. Basic Optics in Crystals

Before starting with the theory of nonlinear optics the physical concepts of dispersion,
birefringence and uniaxial crystals should be briefly reviewed. These terms are then
needed for the following discussion of the SHG process. For a deeper explanation of
these topics please [17], [25] and/or [26].

Dispersion

The role of dispersion in nonlinear optics is hard to overestimate. A very important
property of the index of refraction is it’s dependence on frequency. This variation
of the index of refraction with frequency is called dispersion. Two different types of
dispersion have to be distinguished: materials where the refractive index rises with
increasing frequency (decreasing wavelength) are said to have normal dispersion and
materials where the refractive index falls as the frequency increases are said to have
anomalous dispersion [25].

Birefringence

The refractive index of a specific material is the factor by which the speed of light is
reduced (relative to vacuum) inside the material. If the index of refraction is equal in
all directions, then this special kind of material is called optically isotropic. Anisotropic
materials have crystallographically distinct axes which lead to different refractive
indices for different directions. In an anisotropic media, there is at least one direction
of propagation of the incident wave in which the refractive index is independent of
polarization. This direction is known as the optic axis. In the case of only one optic
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axis, the material is called uniaxial crystal. If there are two optic axes, the material is
called biaxial. Most of the crystals which occur in nature are biaxial crystals. These
are much more difficult in their crystals geometry, but fortunately many electro optical
devices and the effect of SHG deal with uniaxial crystals. Therefore, in the following
we will concentrate only on the case of uniaxial crystals.
The wavefronts of the incident wave and refracted wave must match at the boundary.
The anisotropic medium supports two modes of distinctly different phase velocities
and therefore in an uniaxial crystal, two types of waves can propagate [17, 26]:

(i) Ordinary waves: waves linearly polarized and perpendicular to the plane formed
by the optic axis and the direction of incidence. For ordinary waves, the wave
passes through the crytsal satisfying Snell’s law.

(ii) Extraordinary waves: waves linearly polarized and parallel to the plane formed
by the optic axis and the direction of incidence. The refractive index for this
type of wave depends on the direction of propagation inside the medium.

Figure 4.1.: Intersection of the k-surfaces of a nonlinear crystal and air (left) and ray
corresponding picture (right). θ1 is the angle of incidence. θo and θe are the angles of
refraction of the ordinary and extraordinary wave, respectively. Figure adapted from [17].

Uniaxial Crystals

As already mentioned we limit our discussion to uniaxial crystals. These kind of
crystals only posses one optical axis and their index surfaces are shown in figure 4.2.
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Figure 4.2.: Index surfaces for a negative (left) and a positiv (right) uniaxial crystal. θ is the
angle between the z-axis (optic axis) and the k-vector of an electromagnetic wave travelling
inside the crystal. no and ne are called principal values of the ordinary and extraordinary
refractive index.

The left plot of figure 4.2 shows a negative (ne < no) uniaxial crystal and the right
plot shows a positive (no < ne) uniaxial crystal. The ordinary wave experience always
the same index of refraction no, regardless of their direction of propagation. The
extraordinary wave experience a angle dependant index of refraction ne = ne(θ). This
is true for both, negative and positive uniaxial crystals. Some examples for positive
uniaxial crystals are quarz (SiO2) and lithium tantalate (LiTaO3). Lithium niobate
(LiNbO3), potassium dihydrogen phosphate (KH2PO4) or KDP and lithium triborate
(LiB3O5) or LBO are examples that exhibit negative birefringence [25].

4.2. Introduction to Nonlinear Optics

All linear dielectric media are related by the well known linear relation P = ε0χE.
The polarisation density P connects the permeability of free space ε0, the dielectric
susceptibility χ and the electric field E. This scalar equation neglects anisotropy,
dispersion and inhomogenity. Non linear dielectric media are characterized by a more
complicated relation between P and E. Typically, the relation between P and E is
linear for small values of E, but becomes nonlinear as E increases. Even for very strong
optical fields the nonlinear contribution of the electric field to polarisation density is
small and hence P can be expanded in a Taylor series around E =0:

P = a1E +
1

2
a2E

2 +
1

6
a3E

3 + ..., (4.1)

where the ai are the ith derivatives of P with respect to E evaluated at E =0. The
ai parameters are characteristic constants of the medium. It is often convenient to
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4. Second Harmonic Generation

replace the ai parameters by a1 = ε0χ , 1
2
a2 = 2d and 1

6
a3 = 4χ(3). To consider that

the medium can be anisotropic, each of the components of the polarization vector ~P =
(P1, P2, P3) is a function of the three components of the electric field ~E = (E1, E2, E3).
Then a more general formula reads

Pi = ε0χijEj + 2dijkEjEk + 4χ
(3)
jklEjEkEl (4.2)

with i, j, k, l = (x, y, z) and we assume summation over repeated indices. The coefficients
arising in this formula are tensor elements of χ, d and χ(3) for the scalar case. The
third term on the right hand side of equation (4.1) and 4.2 is only important for third
order nonlinear optics and is therefore neglected throughout the whole chapter [17].
It should be noted, that Pi is the instantaneous polarization density and Ei is the
instantaneous electric field, both of the ith component. Considering the coupling of
two optical fields given by

Eω1
j (t) = Re{Eω1

j e
iω1t} =

1

2
(Eω1

j e
iω1t + c.c)

Eω2
k (t) = Re{Eω2

k e
iω2t} =

1

2
(Eω1

k e
iω2t + c.c)

(4.3)

where k, j = (x, y, z). In a nonlinear medium, these field components are responsible
for polarization densities at frequencies nω1+mω2, where n and m can take any integer
values. As an example we take the polarization density component at ω3 = ω1 + ω2

along the i-direction which is given by

P ω3=ω1+ω2
i (t) = Re{P ω3

i eiω3t}. (4.4)

By limiting our attention only to the second term of equation (4.2) and considering
only the sum frequency term we obtain

P ω3=ω1+ω2
i (t) = dijkE

ω1
j E

ω2
k e

i(ω1+ω2)t + c.c. (4.5)

where we have assumed, that our system is lossless (instantaneous response) and
therefore dikj = dijk. This assumption is justified because in many nonlinear experiments
the used material is transparent over a region that includes the involved frequencies
[27].

4.3. Coupled Amplitude equations

In this section we denote the arbitrary direction of propagation through a nonlinear
crystal as z. Furthermore, we are considering only three frequencies ω1, ω2 and ω3

and assuming travelling plane waves. With this prerequisites we will introduce a set
of coupled amplitude equations which are then applied to the special case of SHG
(frequency doubling). A more detailed derivation can be found in [20].

When considering Maxwell’s equation in dielectric materials, the electric field ~E has
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4.3. Coupled Amplitude equations

to be replaced by the electric displacement ~D = ε0 ~E + ~P . This allows us to bring
the equations in a form which includes the polarization density ~P explicitly. The
polarisation density consists of a linear and a nonlinear term

~P = ε0χL ~E + ~PNL (4.6)

where the tensor aspect of the linear susceptibility χL is completely ignored. The
nonlinear part of the polarisation density is given by

(PNL)i = 2d′ijkEjEk (4.7)

where the tensor d′ijk is second order susceptibility tensor of equation 4.2 transformed
from the crystal coordinate system to a Cartesian system, used to describe the propagation.
Then the coupled amplitude equations can be written as

dE1i

dz
= −σ1

2

√
µ0

ε1
E1i − iω1

√
µ0

ε1
d′ijkE3jE

∗
2ke
−i(k3−k2−k1)z

dE∗2k
dz

= −σ2

2

√
µ0

ε2
E∗2k + iω2

√
µ0

ε2
d′kijE1iE

∗
3je
−i(k1−k3+k2)z

dE3j

dz
= −σ3

2

√
µ0

ε3
E3j − iω3

√
µ0

ε3
d′jikE1iE2ke

−i(k1+k2−k3)z.

(4.8)

4.3.1. SHG without Depleted Input

In the following we will work with equations (4.8). In the case of SHG ω1 = ω2 and
ω3 = 2ω1. If we assume, that the amount of power lost form the input beam (ω1) due
to conversion is negligible (dE1i

dz
≈ 0), then we only have to consider the last equation

of (4.8). For a transparent medium at frequency ω3 the conductivity σ3 = 0 and we
have

dE3j

dz
= −iω

√
µ0

ε
d′jikE1iE2ke

−i∆kz (4.9)

where we set ω = ω1 = 1
2
ω3, ε = ε3 and ∆k = k

(j)
3 − k

(i)
1 − k

(k)
1 . The propagation

constant at ω1 and along direction i is denoted by k
(i)
1 . If we solve equation (4.9) for

E3j(0) = 0 and a crystal length of L and express the result in terms of power 1 we end
up with

P (2ω)

P (ω)
= 2

(
µ0

ε0

)3/2 ω2L2d′2ijk
n3

(
P (ω)

A

)
sin2(1

2
∆kL)

(1
2
∆kL)2

(4.10)

where we have taken ε1 ' ε3 = ε0n
2.

The conversion efficiency, given by equation (4.10) is proportional to the sinc(1
2
∆kL)

1 P (2ω)

A = 1
2

√
ε
µ0
E3jE

∗
3j
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4. Second Harmonic Generation

function. For a ∆k = 0 the conversion efficiency is highest as can be seen in figure
4.3 (left). If ∆k 6= 0 then the conversion efficiency drops dramatically. Furthermore,
it imposes an oscillating behaviour on the second-harmonic generated output power
(see figure 4.3, right). Two adjacent maxima of equation (4.10) are separated by the
so called coherence length

LC =
2π

∆k
=

2π

k(2ω) − 2k(ω)
(4.11)

where ω1 = ω2 = ω and ω3 = 2ω. Equation 4.11 gives a measure for the maximum
useful length of the crystal in SHG [20] [27].

Figure 4.3.: Effects of phase mismatch on SHG efficiency. Left plot: normalized SHG
conversion efficiency as a function of phase mismatch according to equation (4.10). Right
plot: SHG power as a function of propagation distance for different values of ∆k.

4.3.2. Phase Matching Techniques

According to equation (4.10), ∆k = 0 or equivalently for SHG k(2ω) = 2k(ω), has to be
fulfilled to achieve high conversion efficiencies. By using the relation k(ω) = ω

√
µε0n

(ω),
this phase-matching requirement can be written as

n(2ω) = n(ω). (4.12)

This means that the indices of refraction of the fundamental and the second-harmonic
frequencies must be equal. Alternatively, one can say that the fundamental and the
second harmonic wave must have the same phase velocity. If this is not the case,
destructive interference between the second harmonic waves generated at different
locations takes place. To achieve high conversion efficiencies a variety of methods have
been developed to perform phase matching. The two most common phase matching
techniques are birefringent phase matching and quasi phase matching. In the following,
we concentrate on birefringent phase matching only since this is the used method in
this thesis. .
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4.3. Coupled Amplitude equations

Type I and Type II Phase Matching

As already mentioned, if the refractive index depends on the polarization direction
of the optical radiation, then the material is birefringent. Here we concentrate our
discussion on uniaxial crystals. In the case of SHG, both input fields can be of the
same or of orthogonal polarizations. The special case of phase matching, where both
polarizations are the same, is called type-I phase-matching. Two photons with the
same polarization and frequency ω are transformed in one photon with orthogonal
polarization and frequency 2ω:

kw,o + kw,o → 2k2w,e

or

kw,e + kw,e → 2k2w,o

(4.13)

Under normal dispersion, the second harmonic generated wave experiences a higher
index of refraction. Therefore, for a negative uniaxial crystal, the fundamental wave
has to be ordinary polarized and the second harmonic generated wave has to be
extraordinary polarized. For a positive uniaxial crystal the vice versa is the case.
When the input fields have orthogonal polarizations, the process is called type-II
phase-matching. Two photons with orthogonal polarizations and frequency ω are
transformed in one photon with frequency 2ω:

kw,o + kw,e → 2k2w,o

or

kw,o + kw,e → 2k2w,e

(4.14)

The latter is less tunable since only one field’s refractive index can be used for
compensation of the index difference between ω and 2ω [21, 28].

Birefringent Phase Matching

A very common method to achieve phase matching is by using birefringence, an effect
displayed by many crystals. In an uniaxial crystal the index of refraction of the
extraordinary wave is a function of the angle θ between the propagation direction of
the fundamental wave and the crystal optic axis. This relationship reads

1

n2
e(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
e

. (4.15)

In equation (4.15) no and ne are the principal values of the ordinary and extraordinary
refractive index. By changing the propagation direction of the fundamental wave, one
can change the extraordinary index of refraction, but not the ordinary. This makes
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4. Second Harmonic Generation

phase matching possible over a wide range of wavelengths. The second-harmonic wave
has to be polarized along the direction of the lower refraction index. In a negative
uniaxial crystal this corresponds to the extraordinary index of refraction. In the case
of a negative uniaxial crystal, where n

(ω)
e < n

(ω)
o , equation (4.15) can be solved by

setting n
(ω)
o = n

(2ω)
e

sin2 θ =
(n

(ω)
o )−2 − (n

(2ω)
o )−2

(n
(2ω)
e )−2 − (n

(2ω)
o )−2

. (4.16)

This process is shown in the right plot of figure 4.4. Phase matching takes place where
the solid blue line and the dotted orange line intersect.

Figure 4.4.: Birefringent phase matching. Left plot: refractive indices for ordinary and
extraordinary direction of propagation. Right plot: index surfaces for a negative uniaxial
crystal for the fundamental frequency ω and the second harmonic generated frequency 2ω.

The method discussed above to achieve phase matching is also known as angle tuning.
Another method which makes use of the birefringence of the crytsal is called temperature
tuning. Due to the fact the the refractive indices depend on temperature, it is possible
to make he values for the ordinary and extraordinary refractive index equal. This
method often requires high temperatures and is more difficult to perform.

4.3.3. SHG with Depleted Input

Equation (4.10) assumes that during the interaction with the nonlinear crystal no
power of the fundamental wave gets lost. Therefore, theses results are valid only for
situations where the fraction of the converted input power is very small. This sections
gives the results which lift this restriction. More detailed information can be found in
[20] and/or [27].

By defining new field variables Al =
√

nl

ωl
El where l = 1, 2, 3, the coupled amplitude

equations 4.8 can be written in a more convenient way
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dA1

dz
=− 1

2
α1A1 − iκA∗2A3e

−i∆kz

dA∗2
dz

=− 1

2
α2A

∗
2 + iκA1A

∗
3e
i∆kz

dA3

dz
=− 1

2
α3A3 − iκA1A2e

i∆kz.

(4.17)

The subscripts 1,2,3 correspond to the polarization directions of the electric fields
E1,E2,E3. The new appearing parameters are

κ ≡d′123

√
µ0

ε0

ω1ω2ω3

n1n2n3

αl ≡σl
√
µ0

ε0
l = 1, 2, 3.

(4.18)

The advantage of equations (4.17) over equations (4.8) is that the former ones contain
only one single coupling parameter κ. In the case of SHG A1 = A2 and under phase
matched conditions ∆k = 0, the coupled amplitude equations (4.17) can be solved

A3(z) = iA1(0) tanh[κA1(0)z] (4.19)

and the conversion efficiency therefore reads

P (2ω)

P (ω)
=
|A3(z)|2

|A1(0)|2
= tanh2[κA1(0)z]. (4.20)

In the last equation P (ω) ≡ P (ω, z = 0) is the input power and P (2ω) ≡ P (2ω, z) is
the second harmonic generated power after an interaction distance of z. By means of
energy conservation P (ω, 0) = P (ω, z) + P (2ω, z) it follows from (4.20) that

P (ω, z)

P (ω, 0)
=

1

cosh2[κA1(0)z]
. (4.21)

Figure 4.5 plots equations (4.20) and (4.21). Since A1 = A2, for κA1(0)z → ∞ all
the input photons can be converted into half as many output photons at twice the
frequency [20].
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4. Second Harmonic Generation

Figure 4.5.: Power conversion of the input power P (ω, 0) to SHG power P (2ω, z) according
to equations 4.5 and (4.20) and (4.21), respectively.

4.4. Boyd-Kleinman analysis for SHG

So far, all the presented results in this chapter are based on a plane wave model. Boyd
and Kleinman were able to think one step further and examined SHG using a focused,
circular Gaussian beam in a material exhibiting walk-off. For the chosen parameters
like in figure 3.6 this situation occurs in a bow-tie cavity. For the case of type I phase
matching, the second harmonic generated wave underlies the influence of birefringence
and hence propagates at an angle ρ relative to the fundamental wave. Due to this
lateral spatial displacement, the output second harmonic generated beam has no longer
a Gaussian distribution. A clean derivation of the Boyd-Kleinman approach is rather
complicated and long. For the sake of brevity, only the key result is shown here. The
power of the second harmonic generated wave is given by the following expression

P (2ω) =
16πd2

eff

ε0cλ(ω)n(ω)n(2ω)
e−α

′lh(σ, β, κ, ξ, µ)(P (ω))2 := K(P (ω))2. (4.22)

In the above expression, P (2ω) and P (2ω) are the power of the second harmonic and
fundamental wave and n(2ω) and n(ω) their corresponding refractive indices. The
fundamental wavelength is given by λ(ω) and deff is the effective second order susceptibility.
The parameter α′ = α(ω)+α(2ω)

2
is a loss parameter for both wavelengths and h(σ, β, κ, ξ, µ)

is the Boyd-Kleinman factor. The length of the crystal is denoted by l and c and ε0
are the well known constants for the speed of light and the vacuum permittivity [29].
The crucial parameter to determine the second harmonic generated power is the Boyd-
Kleinman factor h(σ, β, κ, ξ, µ) because it contains all the optimizable parameters.
Now, a brief explanation of the involved parameters is given. The parameters are
given by σ = b∆k/2, β = ρ/θ0, κ = ab/2, ξ = l/b and µ = 1− 2f/l:

- σ: phase mismatch parameter that describes the phase mismatch between fundamental

and second harmonic wave, in which b =
2πω2

0

λ
is the confocal parameter already
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introduced in section 3 and ∆k is given by equation (4.11).

- β: walk-off parameter that describes the influence of the walk-off ρ in contrast
to the Gaussian beam divergence θ0 = λ

πω0
.

- κ: absorption parameter that describes the absorption inside the crystal.

- ξ: foscusing parameter that gives simply the length of the crystal in units of the
confocal parameter.

- µ: displacement parameter which measures the displacement of the focus from
the center of the crystal.

The scope of this section is to show the influence of the birefringence and the focusing
for the SHG process. This is done by varying the confocal parameter b. If losses (κ = 0)
are neglected and we assume that the Gaussian beam is focused at the center (µ = 0)
of the crystal we only need to evaluate h(σ, β, ξ). With the definition of B = β

√
ξ,

the Boyd-Kleinman factor h(σ,B, ξ) has to maximized by varying only the confocal
parameter b. This is done by using analytical functions for the Boyd-Kleinman factor
provided by [30] where an optimum phase mismatch parameter σ is used.

Figure 4.6.: Boyd-Kleinman factors h(B, ξ) as a function of the focusing parameter ξ under
conditions of optimal phase mismatch σ according to [30].

Figure 4.22 shows a strong dependence of the h-function with B. The highest value
of h = 1.068 is obtained for B = 0 (no walk-off, ρ = 0). For higher values of B
the Boyd-Kleinman factor is decreasing. Furthermore, one can see that the maxima
of h are shifted to smaller ξ values for increasing values of B. This means that with
increasing B, less focusing (smaller ξ) is needed to obtain the maximum possible value.
This can be seed by using the expression for ξ in combination with (3.7) and obtaining

w0 =
√

lλ
2πξ

.

Combining the above equations, one obtains B = ρ
√

πln
2λ

, λ being the fundamental

wavelength and n the refraction index of the LBO crystal. By taking the corresponding
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values for the LBO crystal from [31] and assuming that these values do not change
much for the wavelengths used in this experiment, one obtains a value for B of 3.5.
The Boyd-Kleinman factor from equation (4.22) has then a maximum value of h(B, ξ)
= 0.19 at ξ = 1.47. The length of the crystal is l = 15 mm. The obtimum waist for
this specific case results to be w0 = 36µm. This is the same value for the tangential
and sagittal waist seen in figure 3.6 for a curved mirror separation of d2 = 11.4 cm.

4.5. SHG in a Bow-Tie Cavity

To achieve high conversion efficiencies in a SHG process, high powers of the fundamental
wave are needed. Therefore, a large enhancement factor for the fundamental power
can be obtained by using a bow-tie cavity and hence performing intra-cavity SHG.
Even though all of the results from section 3.4 are true for standing wave cavities and
travelling cavities, the latter are preferred due to their simplicity in SHG geometry.
The reason for that is, that in a standing wave cavity the fundamental wave circulates
into two directions which generates also the second harmonic in two directions [32].

4.5.1. Optimum intra-cavity SHG

The bow-tie cavity has an input coupler with transmissivity T1 and intra-cavity losses
L. This losses consist of intra-cavity losses due to reflection at the cavity mirrors
(excluding the input coupler) and transmission through the nonlinear crystal as well
as losses due to conversion from of the intra-cavity Pcirc power into second harmonic
power P (2ω). The latter one is equal to

LNL =
P (2ω)

Pcirc

= KPCirc (4.23)

where K is the nonlinear conversion coefficient from equation 4.22. The overall SHG
conversion efficiency is defined as

η =
P (2ω)

Pinc

(4.24)

where PInc is the incoming power before entering the bow-tie cavity (see equation
(3.19)) [32]. By means of equation (3.19) (at resonance, δ = 2mπ) and equation (4.23)
it is easy to obtain

Pcirc =
PincT1

[1−
√

(1− T1)(1− LCav)(1−KPcirc)]2
. (4.25)

In the above equation the factor (1 − LCav) = Rm. The parameter Rm is equal to
r2
m, where rm is defined by equation (3.18). Equation (4.25) represents a quadratic

equation in Pcirc. Therefore, the circulating power Pcirc can be maximized by choosing
an input coupler with transmission [31]
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T1 =
LCav

2
+

√
L2

Cav

4
+KPinc. (4.26)

4.5.2. Locking the Cavity to the Laser

Optical resonators underlie many perturbations such as pressure changes, temperature
changes and mechanical/acoustical resonances. To make an optical resonator work
properly, the resonator must be kept on resonance with the incoming radiation. To
achieve this, the probably most widespread methods are the Pound–Drever–Hall (PDH)
scheme and the Hänsch-Couillaud (HC) scheme. The PDH scheme uses a frequency-
modulated signal reflected from the cavity and is usually used for locking a laser to a
cavity. The HC scheme instead, is used to lock the cavity to the laser. This method
does not need a frequency-modulated signal, but a intra-cavity polarizing element.
Since this element is already present by the nonlinear crystal, the HC scheme is the
method of choice [21].

Figure 4.7.: Adapted Hänsch-Couillaud locking scheme.

The HC method was proposed in the 1980 [33] and is sometimes also known as passive
polarization scheme. Figure 4.7 shows how the HC scheme can be implemented with
a bow-tie cavity and a non linear crystal (LBO). Before the light enters the cavity,
a λ/2 wave-plate is used to rotate the vertical polarization (parallel to the resonator
axis) by a small angle θ. In the following we assume that the finesse of the cavity is
very high for the vertical- (y) and very low for the horizontal (x) direction. This is
justified due to the fact that the crystal inside the cavity does only support y-polarized
light. Therefore, x polarized light is directly reflected at the input mirror and y-
polarized light experiences a frequency dependant phase shift δ. After one round trip
inside the resonator, y- and x-polarized components recombine again. If the resonance
condition is fulfilled, then the y-polarized light does not experience any phase shift and
both components combine again to linear polarized light. If, on the other hand, the
resonance condition is not fulfilled and hence δ 6= 2πm (m any integer number), due
to the phase shift both components combine to elliptically polarized light. By means
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of a λ/4 wave-plate (and a λ/2 wave-plate in order to have an additional degree of
freedom) elliptically polarized light is converted to linear polarized light. A PBS is
then used to separate x- and y- polarized components which have different amplitudes
and sends them to a photo diode. The difference of these two signals is given by

IHC ∝ 4E2
0r

2
mt

2 cos θ sin θ
sin δ

(1− r2
m)2 + 4rm sin2 δ

(4.27)

where t is the field transmission coefficient of the input mirror and rm is given by
(3.18). If the resonance condition is fulfilled, both photo diodes receive the same
signal and equation (4.27) is equal to zero, otherwise it is different from zero. This
signal is feed to a control electronics (see Appendix B.1) which holds the cavity on
resonance. Figure 4.8 shows the error signal according to equation (4.27) for different
angles of θ. For more detailed information see [21] or [33].

Figure 4.8.: Hänsch-Couillaud error signal for different angles θ as a function of phaseshift
δ.
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The purpose of this chapter is to give an insight in the experimental setup. When
possible, it is avoided to introduce new equations and for more detailed explanation
reference is made to the corresponding literature. A schematic layout is shown in figure
5.1. The setup consists mainly of four parts. The first part is an external-cavity diode
laser (ECDL) (green dashed frame) in cat’s eye design. The emitted light should
have a wavelength of λfund = 837.2 nm with a possibly small bandwidth. The second
part (red dashed frame) of the setup is a tapered amplifier (TPA). The optical power
emitted from the ECDL will be amplified by a factor of 10 to 100. The third part
(orange dashed frame) is a bow-tie cavity wit an nonlinear crystal inside. The cavity
itself increases the optical power inside the cavity up to several Watts. When the light
passes through the crystal, the desired wavelength of λSHG = 418.6 nm is generated
due to SHG. The last part consists of an AOM in a double-pass configuration (blue
dashed frame) and is used for pulse shaping. In the following these four parts are
discussed in more detail. Figure 5.2 shows a picture of the entire setup.

Figure 5.1.: Schematic Layout of the experimental setup which consists of four main parts:
An external-cavity diode laser (ECDL) (green dashed frame) , an tapered amplifier (TPA)
(red dashed frame) , a bow-tie cavity (orange dashed frame) and a double-pass AOM (blue
dashed frame). For the abbreviations of the used components see table 5.1.
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Table 5.1.: Summary of used devices.

Label Device Supplier Product specification
LD AR coated laser

diode
eagleyard Photonics EYP-RWE-0840-06010-

1500-SOT02-0000
L1 Aspheric lens THORLABS A230TM-B
L2 Aspheric lens THORLABS A220TM-B
L3 Aspheric lens THORLABS C260TMD-B
L4 Spherical lens Casix –
L5 Spherical lens Casix –
L6 Aspheric lens THORLABS A230TM-B
L7 Aspheric lens THORLABS A375TM-B
L8 Cylindrical lens THORLABS LJ1695RM-B
L9 Cylindrical lens THORLABS LK1753L1-B
L10 Cylindrical lens THORLABS LJ1144L1-B
L11 Cylindrical lens THORLABS LJ1363C1-B
L12 Cylindrical lens THORLABS LJ1567L1-A
L13 Cylindrical lens THORLABS LJ1363RM-A
L14 Plano-convex lens THORLABS LA1433-A
L15 Plano-convex lens THORLABS LA1433-A
M1 Mirror unknown –
M2 Mirror unknown –
M3 Mirror unknown –
M4 Mirror unknown –
M5 Mirror unknown –
M6 Mirror unknown –
M7 Mirror Casix 45◦ 425/626
M8 Mirror Casix 45◦ 425/626
M9 Mirror Casix 45◦ 425/626
M10 Mirror Casix 45◦ 425/626
M11 Mirror Casix 45◦ 425/626
Mcav,1 Mirror Laseroptik rred = 0.99
Mcav,2 Mirror Laseroptik rred > 0.999
Mcav,3 Mirror Laseroptik rred > 0.999
Mcav,4 Mirror Laseroptik rred > 0.999, rblue = 0.9
MS1 Mirror Laseroptik –
MS2 Mirror Laseroptik –
MC1 Mirror unknown –
MC2 Mirror Casix 45◦ 425/626
F1 Fiber THORLABS P1-780PM-FC-1
F2 Fiber THORLABS P1-405BPM-FC-1
I1 Optical Isolator THORLABS IO-5-850-VLP
I2 Optical Isolator THORLABS IO-5-850-VLP
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I3 Optical Isolator unknown –
PBS1 Polarizing beam

splitter
unknown –

PBS2 Polarizing beam
splitter

unknown –

PBS3 Polarizing beam
splitter

THORLABS PBS101

PD1 Photo diode THORLABS FDS100
PD2 Photo diode THORLABS FDS100
PZT1 Piezo electric

actuator
THORLABS PQ91JK

PZT2 Piezo electric
actuator

THORLABS PQ91JK

LB/2 λ/2-waveplate THORLABS –
LB/4 λ/4-waveplate THORLABS –
IF Interference filter RADIANT DYES LASERS custom made
OC Outpout coupler LAYERTEC Output Coupler 108216
TPA Tapered amplifier eagleyard Photonics EYP-TPA-0830-01000-4006-

CMT04-0000
LBO Lithium triborate

crystal
RAICOL CRYSTALS no specification

AOM Acousto-optical
modulator

Gooch & Housego 3100-125

E02 Broadband
dielectric mirror

THORLABS BB1-E02

DM Dichroic mirror THORLABS DMSP550
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Figure 5.2.: Picture of the whole laser setup. Red arrows indicate the direction of the light
before the SHG process. Blue arrows indicate the direction of the light after the SHG process.
Orange dashed frames show the optics used for beam shaping.

5.1. ECDL in Cat’s Eye Design

Laser diodes became one of the most important electro-optical devices in experimental
physics. Applications range from atomic physics, metrology to telecommunication.
Many of these areas of application, including this experiment, have one thing in
common: they require single mode operation with a narrow line width and good
tunability [34].

To provide single mode operation an external cavity is needed. In the common Littrow
and Littman-Metcalf configurations diffraction gratings are used for wavelength selection.
Both designs require a very precise alignment and are therefore sensitive to acoustic
and mechanical disturbances [35]. A further disadvantage is that the direction of
the output beam depends on the wavelength. Better robustness and wavelength
independent output direction can be achieved by the use of narrow-band dielectric
interference filters (IF) which can easily used in an external cavity [34].

Such a IF can easily be combined with a so called cat eye reflection geometry. This
configuration is self-aligning and inherently mechanically robust. A sketch of the cat
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eye configuration is shown in figure 5.3.

Figure 5.3.: Schematic layout of an external cavity diode laser with cateye geometry
consisting of a laser diode (LD), a collimating lens (L1), an interference filter (IF), an cat eye
lens (L2), a piezoelectric transducer (PZT1), an output coupler (OC) and an re-collimating
lens (L3). Figure recreated from [35].

5.1.1. Laser Diode

The laser diode (LD) used here is an anti reflection (AR) coated Fabry-Perot laser
gain chip [36]. The LD is cathode grounded, which means that the diode’s metal case
is connected to ground. Due to AR coating the bare LD is not able to lase and it is
necessary to build an external cavity upon the diode. The central wavelength is λ =
840 nm with a tuning range from 810 nm to 860 nm. This allows enough tunability
in order to adjust the required wavelength for this experiment. The emitted light of
the laser diode is strongly divergent (Θ‖ = 10° and Θ⊥ = 23° are FWHM values) and
hence the beam shows an elliptical profile.

5.1.2. Interference Filter

The wavelength selective element is an interference filter (IF) and is therefore the part
of the setup which forces the laser to single mode operation and reduces the linewidth.
An IF is made of many dielectric layers between two highly reflecting facets. To
understand how an IF works, one can compare the working principle to that of a
simple Farby-Perot interferometer (FPI). The transmittance T of an FPI is a function
of the finesse F and the phase shift δ after a round trip within the interferometer.
Furthermore, the path difference ∆S of a FPI is a function of the angle of incidence θ.
Phase shift δ, path difference ∆S can be related to each other. This means, that by
tilting the IF, the transmitted wavelength can be changed. A more detailed description
can be found in [17].
Dielectric materials are preferred on metals, because metals have the absorption property,
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which increases the temperature of the coating and leads to damage which decreases
the reflectance and transmittance of the coating. Dielectric materials instead have very
low absorption which do not affect the reflectance and transmittance of the coating [37].
Real IF consist of a multilayer structure instead of a single material. The transmittance
spectrum of an IF is slightly temperature dependant. As temperature increases, all
layer thicknesses increase. At the same time, all refractive indices change. These
effects combine in such a way that the transmittance spectrum shifts slightly to longer
wavelengths with increasing temperature [38].
In this setup an IF at a central wavelength of λ = 852 nm at an rotation angle θ = 6°

is used. By rotation of the IF a tuning range from 855 nm to 834 nm is possible. This
allows us to adjust for the desired wavelength needed in the experiment. The IF has
a small linewidth of ∆λIF = 0.4 nm (FWHM) and a transmission from over 90 % for
the different wavelengths [39].

5.1.3. Output Coupler and Piezo Electric Transducer

The output coupler (OC) is a mirror which provides the feedback and together with
lens (L2) forms the cat’s eye. The OC used in this experiment is from the company
LAYERTEC and has a wavelength range of 600 nm to 1000 nm at an angle of incidence
of 0°. The OC is flat and round, made of fused silica, has a diameter of (25.0± 0.1) mm
and a thickness of (1.0± 0.1) mm. The partial reflectance for the specified wavelength
range and angle of incidence is PR = (20± 4) % [40]. The parameter PR is the one
which determines the feedback. Higher values of PR lead to more feedback, higher
values for the finesse and therefore narrower cavity modes but also less output. The
vice versa is true for lower values of PR.
To have the possibility to vary the length of the external cavity, a piezo electric
transducer (PZT) is attached to the OC.

5.1.4. Lenses

As shown in figure 5.3, three lenses are used for the whole cat’s eye setup. As already
mentioned, the light emitted by the LD is very divergent. Therefore, the aspheric
lens L1 acts as a collimating lens. This lens has a focal length of f = 4.51 mm and a
numerical aperture of NA = 0.55. This is necessary to collect as much light as possible
emitted by the diode.
Lens L2 and the OC together form the cat’s eye. This configuration is supposed to be
less sensitive to misalignment, especially if the OC is slightly tilted. Light reflected
from a cat’s eye will always be parallel to the incident direction. A requirement for this
is that the lens-mirror distance has to match the focal length of the lens. In this setup
the lens L2 has a focal length of f = 11 mm. Therefore, the light is always reflected
back to the LD.
The last lens of this part of the setup, L3, is a re-collimation lens and is not part of
the external cavity. The only purpose of this lens is to create a collimated laser beam
which can be used further on [41]. Figure 5.4 shows a picture of the ECDL.
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Figure 5.4.: Picture of the ECDL in cat’s eye design. Optical elements: laser diode (LD),
a collimating lens (L1), an interference filter (IF), an cat eye lens (L2), a piezoelectric
transducer (PZT1), an output coupler (OC) and an re-collimating lens (L3).

5.2. Tapered Amplifier

The output power of an ECDL often lies in the range between 10 mW – 100 mW.
A lot of applications in experimental physics, require a much higher laser output
power. Furthermore, when performing SHG inside a cavity, only a small fraction
of the incident light is converted to the second harmonic frequency. In this case, a
tapered amplifier (TPA) can be used to directly amplify the ECDL power output up
to approximately 1 W. Usually, the amplification takes place before the output beam
goes through a non linear crystal to perform SHG. The reason for this is that most
optical devices, such as diodes and amplifiers work fine in the range of red to near
infrared radiation, but very badly in the blue regime of the electromagnetic spectrum.

The function principle of a TPA should be discussed only briefly here. For more
information consider [42] and [21]. TPA’s are in principle ordinary diode lasers with
AR coatings on both ends. In ordinary laser diodes the output power is limited due
to saturation of the active medium. A TPA overcomes this problem with a tapered
gain region which is obtained by electronically pumping. The advantage of this kind
of geometry is that the output power increases linearly with length. The difference
between a linear and a tapered amplifier is quickly shown in appendix A. The relevant
setup for the TPA is shown in 5.5.
The used TPA has a center wavelength of λTPA = 830 nm. At an operational current
of ITPA = 2.5 A the output power should be Pout,TPA = 1 W. The input power ranges
from Pinput = 10 mW - 50 mW. If no power is seeded into the TPA while operation,
the device can be damaged.
Lenses L4 and L5 together form a telescope and are used to shape the beam dimensions
of the light emitted by the ECDL to those needed to perform an optimum coupling
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Figure 5.5.: Amplification setup. L4 and L5 are cylindrical lenses, I1 and I2 are optical
isolators, LB/2 is a λ/2-waveplate, PBS1 is a polarizing beam splitter, M1 and M2 are
mirrors for a wavelength of 852 nm, TPA is the tapered amplifier, L7 is an aspheric lens used
to focus the light into the TPA and L6 is an aspheric lens used to collimate the light after
the TPA.

into the TPA. As mentioned in the previous section, the light emitted by a LD is
rather elliptical than round. By observing the spontaneous emission of the TPA at
the side where the light is coupled in, one can measure the needed beam dimensions.
The optical isolators I1 and I2 avoid that TPA radiation due to spontaneous emission
enters the ECDL. The used TPA requires that the polarization is parallel to the
junction plane. To adjust this polarization a λ/2-waveplate (LB/2) is used. The
polarizing beam splitter PBS1 is used to couple some of the light into a fiber. This
light can then be used for measuring the emitted wavelength of the ECDL. Mirrors
M1 and M2 can simply be used to optimize the coupling of light into the TPA. Lens
L7 is focusing the light on the TPA chip and lens L6 is used for a first collimation of
the TPA output.
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Figure 5.6.: Pictures of the TPA including housing for temperature stabilization. Left
picture: TPA, focusing lens L7 and re-collimating lens L6. Right picture: Both lenses
can be adjusted vertically and horizontally by a pair of screws. For the lens L7 the screws
for horizontal adjustment are marked and for lens L6 the screws for vertical adjustment are
marked.

5.3. Bow-Tie Cavity

This section deals with the heart of the setup, the bow-tie cavity. The bow-tie cavity
and the locking setup is illustrated inside the orange frame od figure 5.7. In order
make the bow-tie cavity work properly and hence obtaining a large amount of second
harmonic generated power the beam coming directly from the TPA has to be mode
matched to the cavity. All needed optical elements lie outside and before the orange
frame. The cavity then has to be aligned carefully and the outgoing beam made
circular so that it can be used for the realization of the double-pass AOM. The optical
elements used for circularizing the beam lie outside and after the orange frame.

5.3.1. Mode Matching

In section 3.5 the consequence of the used curved mirrors, Mcav,3 and Mcav,3, and the
associated astigmatism inside the cavity was explained. Figure 3.6 showed the effect
of astigmatism of the bow-tie cavity resulting in different values for the tangential and
sagittal waists. The used parameters (dimensions of the cavity and crystal, refraction
index of the crystal and so on) already correspond to the real setup. The curved mirror
separation is d2 = 11.4 cm. For this value figure 3.6 shows a beam waist for the sagittal
plane of wS = 298µm and for the tangential plane of wT = 266µm in the middle of
the two flat mirrors. To achieve good mode matching the beam arriving from the TPA
has to be adjusted in such a way that its waist correspond to these values. Otherwise
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some portion of the light gets lost inside the cavity due to mode mismatch.

Figure 5.7.: Bow-tie cavity setup including mode matching and circularizing optics. Optics
concerning the bow-tie cavity lie inside the orange frame. Optical elements L8 - L11, M3 -
M6, I3 as well as a LB/2 are used for mode matching and guiding the beam into the cavity.
Optical elements L12 - L13, M7 - M9 and DM are used for further beam adjustments.

Figure 5.8.: Picture of the electronics employed in the Hänsch-Couillaud locking scheme.
PBS2 is separating the two different polarizations which are measured by the photodiodes
PD1 and PD2. OPA1 and OPA2 are operational amplifiers in order to realize a low pass
(each connected on of the diodes) and OPA3 is used to realize a differential amplifier.

5.3.2. Bow-Tie Cavity Configuration

The whole bow-tie configuration, shown inside the orange frame of figure 5.7, consists
of the cavity itself as well as a scheme for locking the cavity to the laser. Light is
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Figure 5.9.: Picture of the bow-tie cavity.

entering the cavity through the input coupler Mcav,1. It hits then mirror Mcav,2 which
has a piezo electric transducer PST2 attached. The mirror Mcav,3 guides the light
through the LBO crystal where the SHG takes place. The LBO crystal is a birefringent
crytsal and hence is able to separate the components of the incoming electric field into
a parallel and perpendicular part with respect to the transmission axis. Thus, the
LBO crystal takes the role of the polarizing element in the Couillard-Hänsch locking
scheme explained in section 4.5.2. The dichroic mirror Mcav,4 is high reflective for the
IR part of the spectrum but transmits most of the blue light. Therefore, the cavity
is closed to achieve a high power enhancement for the incoming wavelength while the
second harmonic generated light is able to leave the cavity.
Due to the very high powers inside the cavity (of the order of 20 W), some of the light
is leaking through the input coupler. Figure 5.9 shows a picture of the bow-tie cavity.

5.3.3. Alignment of the Cavity

Adjusting a bow-tie cavity such that the beam inside overlaps after a round-trip is not
so easy when doing it the first time. Therefore, a short instruction is given how to
adjust the cavity. Doing so, it is also very easy to determine the power enhancement
inside the cavity. The following steps can help to adjust the cavity:

- Remove the input mirror Mcav,1. This corresponds to the left situation of figure
5.10.
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- Using mirrors M5 and M6 to make sure that the laser beam is travelling horizontally
and hits mirror Mcav,2 in the center.

- Using Mcav,2 and Mcav,3 in order to make the beam passing through the center
of the LBO crystal.

- If no blue light is visible, slightly rotate the crystal. When some light is detected
by the photo detector (PD), the measured power P0 (a few µW) should be
optimized by adjusting mirrors Mcav,2 and Mcav,3.

- Once P0 is optimized, mirrors Mcav,2 and Mcav,3 are no longer changed. The
input mirror Mcav,1 is put back in place. This corresponds to the right situation
of figure 5.10.

- Due to complete misalignment of the cavity no light is detected anymore.

- To make the beam overlap after one round trip only mirrors Mcav,1 and Mcav,4

are used.

- When the cavity is aligned, the bue light returns and P1 should be in the mW
range. By using all possible degrees of freedom (including M5 and M6) this power
should be optimized as much as possible.

- It is necessary to use a blue-filter for the power measurements, because due to
the high power of circulating light inside the cavity (several Watts), relatively
much of it gets detected by the photo detector.

Figure 5.10.: Procedure to align the bow-tie cavity. First the input mirror Mcav,1 is removed
which leaves the cavity open (left situation). The closed cavity consists of all four cavity
mirrors Mcav,1, Mcav,2,Mcav,3 and Mcav,4 (right situation). M5 and M6 are mirrors outside
the cavity (see figure 5.1), PD is a photo detector and LBO denotes used nonlinear crystal.
PLASER is the power entering the cavity, PCirc is the circulating power in case of a closed
and optimized cavity, P2ω is the second harmonic generated power behind the crystal and
P0 and P1 are the powers reaching the PD for the closed and the open cavity situation,
respectively. T is the transmittance of the mirror Mcav,4 and κ is the second harmonic
conversion coefficient.
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With the two cavity configurations shown in figure 5.10 the circulating power inside the
cavity can be estimated. In the case of an open cavity the second harmonic generated
power corresponds to P2ω = κP 2

LASER. The transmittance of mirror Mcav,4 is denoted
with T so that P0 = TκP 2

LASER reaches the photo detector (PD). In a second step the
cavity is closed by putting mirror Mcav,1 back in place again. After the cavity is aligned
the circulating power PCirc goes through the crystal and the power reaching the PD is
P1 = TκP 2

Circ. The power enhancement inside the cavity is given by Epower = PCirc

PLASER
.

By measuring the power P0 and P1 the enhancement factor can be calculated according
to

Epower =

√
P1

P0

. (5.1)

Figure 5.11.: Picture of bow-tie cavity and photodetector DET36A. After proper alignment
of the bow-tie cavity, the non visible IR radiation is changed into visible radiation with twice
of the fundamental frequency.

5.4. Double-Pass AOM

5.4.1. AOM Function Principle

The acousto optic modulator (AOM) is a device which allows to modulate the frequency,
intensity and direction of optical beams by the amplitude of an electrical RF-signal.
In our application, intensity modulation is requested to provide the STIRAP laser
pulses. The AOM consists of a rectangular crystal bar with high refraction index. At
the front side of the bar a piezo actuator is attached. With this electrically excited
piezo actuator, sound waves are generated and are travelling across the crystal. A
consequence of these sound waves is a refraction index modulation in the crystal. The
back side of the crystal bar is slanted to avoid standing sound waves in the crystal.
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The electrical AOM-input is impedance-matched to avoid electrical reflections on the
RF-cable. The optical beam is crossing the crystal perpendicular to the sound waves.
The interaction of sound and light can be explained in a classical wave picture as well
as in an quantum mechanical picture [17, 43].
The quantum interpretation is more intuitive to understand. In an optical wave with
frequency ω and wave vector k, photons carry energy ~ω and momentum ~k. In the
same way, in an acoustic wave of frequency Ω and wave vector K, the acoustic quanta
called phonons, carry energy ~Ω and momentum ~K. The interaction of light and
sound results in a scattering processes and is described in first order by the energy
momentum relations

ωd = ωi ± Ω

kd = ki ±K
(5.2)

where the subscripts d,i are indicating whether the corresponding photon is incident
or diffracted. The relative orientations of the photon and phonon wave vectors decide
if the sign is positive or negative. For optimum scattering into the +1st or -1st order
the Bragg condition

sin θB =
K

2ki

(5.3)

has to be fulfilled. The angle of the incident photon and the diffracted photon are equal
to the Bragg angle in this optimum situation, hence θB = θi = θd. It is important to
note that equation 5.3 does not includes boundary effects of the acousto-optic medium
[43].
The used AOM is made for a wavelength of λAOM = 470 nm and modulates the
frequency of the optical beam by an applied RF signal of 100 MHz. If operating in the
Bragg regime, the interaction of the sound wave, generated by a RF driver connected
to a piezo-electric transducer (incorporated in the AOM), with the optical wave causes
Bragg diffraction. For the stated wavelength, the first order diffracted light is deflected
by twice the Bragg angle θd = 2θB = 11.2 mr. With a beam diameter of 1 mm the
AOM has a diffraction efficiency of 85 % and a rise time of 159 ns. Since the wavelength
of the light entering the AOM is smaller than λAOM, we expect to loose a few percent
of diffraction efficiency. Furthermore, to realize the STIRAP process efficiently, very
fast pulses in the range of a few ten’s of nanoseconds are needed. The rise time is
defined as the time the signal needs to rise from 10 % to 90 % of it’s maximum and
depends on the beam diameter d according to

tR = 0.65
d

vS

(5.4)

where vS is the speed of sound in the acousto-optic medium. Equation (5.4) is only
valid for a TEM00 beam and the appearance of the prefactor is explained in appendix
C. To reduce the rise time to 16 ns, we have reduced the optical beam diameter to
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approximately to 0.1 mm. Equation (5.3) is based on the assumption of plane waves.
This is true for the acoustic wave and for the optical wave in the neighbourhood of
the beam waist. For a 1 mm diameter beam at a wavelength of 422 nm the rayleigh-
length is 18 mm, for a 0.1 mm diameter beam the rayleigh-length is only 0.18 mm.
That means that in a crystal with a width and highth of 2 to 4 mm the plane wave
assumption is true only for 1 mm beams but by fare not for 0.1 mm beams. Therefore
the AOM efficiency is much lower for smaller beam diameters.

5.4.2. Double-Pass Configuration

Next, the double-pass configuration shall be explained. The advantage of the AOM-
double pass configuration against a single AOM is that the direction of the diffracted 1st

order beam is independent of the optical and sound-wave frequency. The disadvantage
is the necessity of an additional beam-splitter, mirror and λ/2-wave plate. In addition
the efficiency is reduced and the rise time will increase because the optical beam is
passing the AOM twice. The configuration for this setup is shown in figure 5.12. After
the beam is made circular by using cylindrical lenses L12 and L13 (figure 5.1) it enters
the polarizing beam splitter PBS3. To obtain a very short rise time, the AOM is placed
in the focus of lens L14.

Figure 5.12.: AOM double-pass setup. The frequency doubled light passes through a
polarizing beam splitter PBS3 and is focused into an AOM by lens L14. Optimum diffraction
is obtained when the AOM is tilted by the Bragg angle θB with respect to the incoming
optical beam. A second lens L15 is used for recollimation and a λ/4-waveplate for changing
the polarization. A dielectric mirror E02 reflects the first order back which is extracted then
by the PBS3.

Behind the AOM, the incoming beam splits up in a zero order (not diffracted) and a
first order diffracted beam. To keep the setup as compact as possible, two mirrors,
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M10 and M11, are place after the AOM to guide the beams. A second lens L15 is used
to recollimate the beam. A λ/4-waveplate is used immediately after L15 to change
the polarization from horizontal to vertical. The zero order beam is blocked so that
only the first order diffracted beam is reflected by the broadband dielectric mirror E02
and passing twice through the AOM. The light which passes twice through the AOM
splits up again in a refracted and not refracted portion. Both parts are reflected by
the PBS3, but the portion which is not refracted by the AOM (dashed line in figure
5.12) is blocked. Therefore, the remaining light is shifted in frequency by twice of the
acoustic frequency Ω.
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In this chapter some basic measurements of the different parts of the setup are shown.
This should serve to record the performance at the beginning and as a reference for
the future. Furthermore, it is important to check if the setup can deliver the requested
power and duration of the laser pulses.
Starting with the cat’s eye ECDL, the common power/current and current/voltage
curve is measured. Furthermore, the influence of the angle of incidence of the IF is
investigated. For the second part, the output power of the TPA against it’s operation
current is measured for two different seed powers. The biggest part of this chapter
deals with the characterisation of the bow-tie cavity. The second harmonic generated
light, the mode mismatch, the generated error signal as well as the circulating power
inside the cavity and the conversion efficiency are determined. Finally, the double-pass
configuration is discussed. AOM performance and rise time are measured.

6.1. Cat’s Eye ECDL

We begin to show a few measurements of the Cat’s Eye ECDL. The most common
LD characteristic is the power/current diagram (left plot of figure 6.1) which plots
the output power against the drive current. This curve determines the LD operating
point and the current at which the device begins to lase (threshold current). Typically
the threshold current increases with increasing temperature. Even for the small
temperature range shown in figure 6.1, this behaviour can already be observed. Threshold
currents for all three temperatures are shown in table 6.1. The right plot of figure 6.1
shows the current/voltage diagram. This curve is rather insensitive to a change in
temperature.
To calculate the threshold current Ith, a linear regression P = a + I · b for all three
temperatures was performed. The threshold current can be obtained by setting P = 0
and hence I = −a

b
. For better visibility the corresponding linear regressions are not

shown in figure 6.1, but all parameters are summarized in table 6.1.
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Figure 6.1.: Power/Current characteristics (left) and Current/Voltage characteristics (right).
The power/current diagram was measured for different temperatures at a wavelength of λ
= 838.4564 nm. The current/voltage diagram was measured at the same wavelength and
a temperature of 20.9 °C. Current and Voltage was measured with a multimeter of type
UT139B from Uni-Trend Technology. The uncertainty regarding the voltages is estimated
to be ± 0.5 %+2 and regarding the current to be ± 1 %+3. The power measurement was
performed with an PM100D powermeter and an the S120C power head from THORLABS.
Therefore, the uncertainty regarding power is estimated to be ± 3 %. Due to poor visibility,
no errorbars are shown.

The next two measurements show the influence of changing the IF incidence angle θ
relative to the optical axis. The IF is the wavelength selective element and hence forces
the resonator to lase on a single wavelength. The IF has a multilayer structure. By
assigning the IF an effective refractive index neff , it can be modelled as a simple FPI.
The left plot of figure 6.2 shows the emitted wavelength of the cat’s eye at a certain
incidence angle θ. Part of the light (10µW) were coupled into to a fiber and send to
WS6-600 Wavelength Meter to measure the wavelength. The fit function is shown in
left plot of figure 6.2. From this the highest transmitted wavelength is obtained and
determined to be λmax = (854.4± 0.4) nm. For the effective refractive index a value
of neff = 1.75± 0.02 is obtained. According to [44] neff = 1.7 is a common value.

Table 6.1.: Obtained fit parameters and calculated threshold current for different
temperatures from the power/current diagram shown in figure 6.1. A linear regression
P = a + I · b was performed. P is the output power, I the diode current, a the offset
and b the slope of the linear regression. Specified errors for a and b resulted by performing
a linear fit using MatLab. The specified errors for the threshold current Ith was calculated
from error propagation. Temperature was obtained from the used temperature controller.

Temperature Offset a Slope b Threshold Current Ith

20.9 °C -13.0(8) 0.41(1) 32(2)
25.1 °C -18.3(9) 0.49(2) 37(2)
30.2 °C -18(2) 0.46(3) 39(9)
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Figure 6.2.: Emitted wavelength against angle of incidence (left) and emitted power against
wavelength. By simply rotating the IF the angle of incidence θ was changed by 2° for each
measurement. The wavelength was measured by using a WS6-600 Wavelength Meter. The
power measurement was performed by using a PM100D powermeter and an The S120C
power head from THORLABS. The uncertainty of the angle of incidence is estimated to be
±0.5° due to reading inaccuracy. Power uncertainty is again estimated to be ± 3 %.

The right plot of figure 6.2 shows the output power of the Cat’s Eye ECLD versus
the corresponding wavelength. One can see that, around a wavelength of λ = 840 nm
the highest power values are emitted. For smaller wavelengths of λ = 835 nm and for
higher ones than λ = 845 nm the emitted power decreases rapidly. This corresponds
with the center wavelength of λ = 840 nm of the used diode. The power fluctuations
around this wavelength come from the measurement, which was performed by holding
manually the power head into the laser beam.

6.2. Tapered Amplifier

To seed the TPA properly, the seed laser must be aligned with the TPA’s input facet.
A measurement of the beam dimensions directly after lens L3 (figure 5.1) resulted in
the following dimensions (1/e2 diameter): ∆YLaser = 4437µm (vertical) and ∆XLaser

= 2295µm (horizontal). By operating the TPA without seed (and not exceeding 1 A
of TPA current ), it’s spontaneous emission could be observed. The resulted beam
dimensions of the TPA’s spontaneous emission (1/e2 diameter) are ∆YTPA = 1949µm
(vertical) and ∆XTPA = 1055µm (horizontal). From these values the ratios of ∆YTPA

∆YLaser
≈

1/2.3 and ∆XTPA

∆XLaser
≈ 1/2.2 are determined. The results are summarized in table 6.2.

Due to the obtained ratios, two spherical lenses with proper foci are used to shape
the dimensions of the beam emitted from the ECDL: f(L4) = 100 mm and f(L5) =
−50 mm. Lens L5 is chosen to have a negative focal length to keep the telescope as
compact as possible.

The absolute maximum operation current of the used TPA is 3 A. The recommended
maximum operation current is 2.5 A. To extend the lifespan of the device, a maximum
current of 2.35 A should never be exceeded. It is also very important to choose a fixed
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Table 6.2.: Vertical (∆Y ) and horizontal (∆X) beam dimensions emitted from the ECDL
and the TPA (spontaneous emission) and resulting ratios.

vertical horizontal ratio

∆YLaser = 4437µm ∆YTPA = 1949µm ∆YTPA

∆YLaser
≈ 1/2.3

∆XLaser = 2295µm ∆XTPA = 1055µm ∆XTPA

∆XLaser
≈ 1/2.2

Figure 6.3.: Output power in mW against TPA current in A. Blue circles are measurements
with a seed power of Pseed = 15 mW and red squares with Pseed = 38 mW. This corresponds
to a LD current of ILD = 66 mA and ILD = 132 mA, respectively. The wavelength of the
seed for this measurement is λ = 838.4564 nm. Current measured was performed with a
multimeter of type UNI-T UT139B and it’s uncertainty is estimated to be ± 1 %+3. The
power measurement was performed with an PM100D powermeter and an the S120C power
head from THORLABS.

operation current for the device, because this has a decisive influence on the coupling
efficiency of the seed. Increasing the current for a specific setting for coupling the seed
into the TPA leads to an increase in temperature und therefore to deformations of the
TPA chip. This property of the device makes it rather difficult to further increase the
current. Once the TPA runs stable, neither it’s current or it’s coupling settings should
be changed. To characterize the TPA, it’s output power is measured as a function
of the TPA current for two differend seed powers. The power/current diagram of the
TPA is shown in figure 6.3. The minimum required seed power for this TPA is Pmin

= 10 mW and the maximum allowed seed power is Pmax = 50 mW. To be sure to stay
within this range, the chosen seed powers for this measurement are Pseed = 15 mW
(blue circles) and Pseed = 38 mW (red squares).
As expected figure 6.3 shows that higher values for the seed power leads to higher
output powers. The last data point for both measurements was taken at a TPA
current of ITPA = 2.30 A. For a seed power of Pseed = 15 mW (blue circles) an output

62



6.2. Tapered Amplifier

power of Pout = 248.5 mW resulted. For Pseed = 38 mW (red squares) a value of Pout

= 447.6 mW was obtained. Furthermore, one can observe a linear behaviour between
TPA current and output power. This linear relationship seems reasonable, because a
TPA is a semiconductor device very similar to that of a laser diode (which is showing
such a linear relatioship between current and output power too).
For the next steps the laser diode current is fixed to a value of ILD = 135 mA, which
corresponds to a seed power of Pseed = 45 mW as shown in figure 6.3. The TPA
current is fixed to ITPA = 2.35 A. It is important to fix these two values, because
beam dimensions at the output side of the TPA depend on them. With these settings
the TPA delivers a output power of Pout = 530 mW.
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6. Characterization of the Setup

6.3. Bow-Tie Cavity

As explained in section 5.3.3, the bow-tie cavity is optimized in order to obtain as
much as possible second harmonic generated power. As explained in section 5.3 and
shown in figure 5.7, two photo diodes (PD1 and PD2) are used to measure the reflected
light from the cavity. From this two photo diodes three signals can be obtained: two
polarization dependent reflections signals and the error signal obtained by subtracting
PD1 - PD2. A fourth signal can be measured by placing an additional photo detector
right behind mirror Mcav,3 as shown in figure 5.10. This signal corresponds to the
transmitted second harmonic generated light. To obtain a chronological sequence of
these four signals, a frequency generator and a DCDC converter are connected to the
piezo electric transducer PZT2 to scan the length of the cavity. Such a scan is shown
in figure 6.4.

Figure 6.4.: Scan of the bow-tie cavity. Upper plot shows the peaks of second harmonic
generated light every time the cavity fulfills the resonance condition. Middle plot shows
both photo diode signals that are used to generate the error signal. Lower plot shows the
error signal that is feed into a PID controller.

Figure 6.4 shows signals in units of voltage obtained by connecting the photo diodes to
an oscilloscope. To achieve this chronological sequence, the cavity was scanned with
a frequency of fscan = 18 Hz within a voltage range from 40 V to 60 V. The upper
plot shows the signal of second harmonic generated power. Every time the resonance
condition is fulfilled, the circulating intensity inside the cavity is at it’s maximum and
the most second harmonic generated power is produced. The middle plot shows the
the signals corresponding to the reflected light of the bow-tie cavity detected by the

64



6.3. Bow-Tie Cavity

photo diodes PD1 and PD2. According to the HC locking method, discussed in section
4.5.2, these two signals are then used to create an error signal for locking the cavity to
the laser. The error signal, shown in the bottom plot, is then magnified by the control
electronics.

6.3.1. Finesse and Second Harmonic Generated Light

By looking closer to the transmission peaks of the bow-tie cavity shown in the upper
plot of figure 6.4 it is possible to calculate the finesse and to estimate the obtained
second harmonic generated power. Figure 6.5 shows the transmission peaks in more
detail.

Figure 6.5.: Free spectral range and FWHM of the bow-tie cavity. Left plot: Two consecutive
peaks , hence one free spectral range, including the piezo voltage ramp (green line) is shown.
Right plot: FWHM of one of the transmission peaks. A Lorentzian function is fitted to
the data points (black dots). The function is given inside the left plot, whereas A is a
multiplicative constant, B is known as the width and t0 gives the peak position of the curve.

The left plot shows two consecutive transmission peaks including the piezo voltage
ramp which is also used as a trigger signal. To determine the peak positions and hence
the free spectral range FSR in units of time a Lorentzian function is fitted to the data
points. For the free spectral range in units of time a value of FSR = 5.6 ms is obtained.
The errors for the peak positions estimated by MatLab lie in the range of 10−22 ms for
which reason the error for the free spectral range is neglected. The FWHM ∆tFWHM in
units of time, shown in the right plot, is evaluated for both transmission peaks. This
gives values of t0,L = 1.11× 10−2 ms and t0,R = 1.33× 10−2 ms for left and right peak,
respectively. Again, uncertainties given by MatLab are in the range of 10−21 ms. To
estimated the FSR properly (which means measuring the time distance of two adjacent
peaks) and giving reasonable uncertainties, this measurement is repeated five times.
From this ∆tmean = (1.1800± 0.0007)× 10−2 ms and FSRmean = (5.9± 0.2)× 10−2 ms
is obtained. The given values consist of mean value and the corresponding standard
error. Finally, according to (3.24), a finesse of F = 496± 33 is obtained.
From the maximum value of such a transmission peak it is possible to estimate the
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6. Characterization of the Setup

second harmonic generated power.The device to measure the transmission peaks was
a DET36A – Si Detector from THORLABS. From the DET36A data sheet we can
estimate a responsivity of Resp = (0.10± 0.02) A/W for the blue wavelength at
418.6 nm. To make the detector fast enough to measure the transmission peaks, a
1 kΩ resistor is connected in parallel to the input impedance of the oscilloscope. From
ten transmission peak values (highest measured data point) an average value of Upeak =
(3.36± 0.12) V is obtained. The value consists again of mean value and corresponding
standard error. The responsivity of the photo detector gives the produced photo
current for a specific incident radiation power.Therefore, the expected second harmonic
generated power can be calculated to be

P =
Upeak

R ·Resp
= (34± 7) mW, (6.1)

where for the resistance R an uncertainty of 5 % was assumed. To verify this result
the cavity is locked to the laser according the HC method explained in section 4.5.2.
By placing a THORLABS S120C power head behind the bow-tie cavity, a power of
(33± 2) mW can be measured which is consistent with the above estimation. The
uncertainty of the measured value is due to the uncertainty of the measurement device
at the corresponding wavelength.

6.3.2. Reflected Light

The middle plot of figure 6.4 corresponds to the amount of reflected light by the
cavity. By looking more closely to one of the photodiode signals that measure x- or y-
polarized components, one can estimate how well the mode matching was performed.
Figure 6.6 shows one of this signals in more detail.

Figure 6.6.: Reflected light from the cavity. The black line shows the real data. The blue line
corresponds to the theoretical expectation under impeadance and mode matched conditions
[21]. The dashed orange line accounts for the mode mismatch by including an offset C to
the fit functions shown inside the plot.
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6.3. Bow-Tie Cavity

If the cavity is perfectly impeadance matched, one would expected the reflected signal
to be zero. However, it is important to note, that a non-zero reflected signal at
resonance does not mean that the cavity is not impeadance matched. A finite reflection
signal from the cavity can arise when the mode matching was not well performed. In
this case not all of the incident power is coupled into the single cavity mode. The
portion which is not coupled will be reflected at the input mirror, no matter the
cavity is impeadance matched or not. Under impeadance matched and mode matched
conditions, the blue line shown in figure 6.6 results. To account for mode mismatch,
an offset is added this curve. By fitting the orange dashed line to the data for this
offset a value of C = (44.7± 0.2) % is obtained. This means (55.3± 0.2) % of the light
is coupled into the cavity. The errors are obtained by a fitting program written with
MatLab. The reason that not more light is coupled into the cavity is because the TPA
output beam has a very high astigmatism which makes mode matching difficult.

6.3.3. Error Signal

According to the HC locking scheme a dispersive signal is generated which is then
amplified by the control electronics and feed to a PID controller. To produce the
error signal, a triangle shaped voltage generator, integrated in the Advanced Laser
PID electronics (see appendix B.1) is used to find the free spectral range of the bow-
tie cavity. This triangle shaped signal is then feed into the modulation input of the
HV-DCDC converter. The triangle signal is then superimposed with an offset from
the HV-DCDC converter (see appendix B.2) and sent to the piezo electric trancducer
mounted on the Mcav,2 mirror (see figure 5.1) of the bow-tie cavity. This signal is
shown in figure 6.7.

Figure 6.7.: Error signal (black line) after the Advanced Laser PID electronics. The
horizontal red line corresponds to 0 V.

The shown signal is qualitative the same as the theoretical error signal from figure 4.8
and the control electronics can be switched from scanning to locking mode. When the
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6. Characterization of the Setup

cavity is locked to the laser, the transmission signal is maximal and apart from small
deviations the error signal is hold to 0 V.
The ability of the control electronics to keep the cavity locked to the laser can be
judged by analyzing the closed loop error signal. A Fourier analysis of this signal
gives information of how well the feedback loop is suppressing detected fluctuations
at various Fourier frequencies. By using an SR1 Audio Analyzer Stanford Research
Systems, the Fourier transformation of the error signal can be performed directly and
is shown in figure 6.8.

Figure 6.8.: Noise Spectral density of the closed loop system consisting of control electronics
and bow-tie cavity.

Figure 6.8 shows that starting from 0 kHz, the ability of the control electronics to
suppress fluctuations is getting worse, reaching a maximum around 1 kHz. For higher
frequencies the amplitude has a mean value around −60 dB.
When the cavity is locked to the laser, one can see some oscillation of the error signal
when making some noise. This oscillation comes from acoustical resonances of the
cavity. An example is shown in figure 6.9 which was produced by whistling while
the whole apparatus was on. Performing a fit to the data gave a frequency of ω =
(6234± 3) Hz.

6.3.4. Circulating Power inside the Cavity and Conversion
Efficiency

Now we will estimate the circulating power inside the bow-tie cavity. This can be
done as explained in section 5.3.3 by measuring the transmitted power in an open and
closed cavity configuration. The laser beam hitting the cavity coming from the TPA
has a power of Pinc = (350± 11) mW. In the open cavity configuration a value of P0

= (5.0± 0.3)µW for the transmitted power is obtained. In order to not detect also
some additional leaking power of red wavelength, a blue filter is positioned in front of
the power meter. When the cavity is closed, a tansmitted power P1 = (30± 2) mW
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6.3. Bow-Tie Cavity

Figure 6.9.: Oscillation of the error signal when making some noise. The fitted function
is shown inside the figure: A is an offset, B is the amplitude of the oscillation, ω is the
frequency and φ some phase.

is measured. Uncertainties arise from the used power meter. According to equation
(5.1) a power enhancement of Epower = 77± 3 arises. This is already quiet close to the
maximum power enhancement shown in figure 3.3 for an impeadance matched cavity.
For Pinc = (350± 11) mW this leads to a circulating power inside the cavity of Pcirc =
(27± 1) W.
Next, the dependence of the SHG power as a function of the input power is shown.
To calculate the circulating power inside the cavity for different incoming powers,
equation (4.25) has to be solved numerically. The nonlinear conversion coefficient from
equation (4.23) can be estimated by measuring the single pass conversion efficiency
(open cavity configuration) and for the stated values (Pinc and P0) above K is equal
to (4.1± 0.3)× 10−8 mW−1. Due to mode matching issues not all of incoming light
is coupled into the cavity and hence Pinc has to be replaced by ηmodePinc where
ηmode is the mode matching efficiency. From section 6.3.2, ηmode is known to be
(55.3± 0.2) %. Assuming the reflectivity of mirrors Mcav,2, Mcav,3 and Mcav,4 to be
r1,2,3 = 0.9990± 0.0005 and the transmissivity to be tcryst = 0.9990± 0.0005, the
theoretical losses inside the cavity are lcav = (4.0± 0.8)× 10−3. The transmittance of
the input coupler is assumed to be T1 = 0.010± 0.002. Figure 6.10 shows measured
values of the SHG power output for different input powers and the corresponding
theoretical curve.

As one can clearly see, the theoretical curve does not fit with the measured data. By
varying the parameters of equation (4.25) it appears that changing lcav has the biggest
influence. Therefore, it can be assumed that the losses inside the cavity are different
than stated above. A much better result can be achieved by changing the value of lcav

from the theoretical one of 4× 10−3 to 6× 10−3. This behaviour is shown in figure
6.11.
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6. Characterization of the Setup

Figure 6.10.: Measured values and theory curve of the SHG inside the bow-tie cavity for
the following parameters: K = (4.1± 0.3)× 10−8 mW−1, ηmode = (55.3± 0.2) %, r2,3,4 =
0.9990± 0.0005, tcryst = = 0.9990± 0.0005 and T1 = 0.010± 0.002.

Figure 6.11.: Measured values and theory curve of the SHG inside the bow-tie cavity for the
same parameters as used in figure 6.10. The dashed lines correspond to an upper and lower
uncertainty of the theoretical curve taking into account the stated uncertainties of the used
parameters.

During the time this setup was built, the cavity box has been opened for readjusting
the bow-tie configuration several times. When adjusting the cavity, the cavity elements
are exposed to the environment and dust deposition on mirrors and on the nonlinear
crystal may happen. Especially on the crystal this can lead to sever damage of the
AR coating. Furthermore, it cannot be ruled out that the surfaces of the devices have
been damaged while placing them in the cavity ord during adjustments. Because of
this, it seems reasonable to change lcav to a higher value to make the theoretical curve
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fit with the measured data. Figure 6.11 shows a conversion efficiency of (16± 1) % at
an input power of (367± 12) mW.

6.4. Double Pass AOM

6.4.1. Beam Shaping for AOM

To use the laser beam coming from the bow-tie cavity, it is important to shape it
circular first. Figure 6.12 shows the beam dimensions (left: horizontal, right: vertical)
behind the bow-tie cavity (top), behind lens L13 (middle) and after a distance of 50 cm
(bottom) from lens L13 (bottom).

Figure 6.12.: Laser beam dimensions (left column: horizontal, right column: vertical) right
after the bow-tie cavity (top), right after lens L13 (middle) and after 50 cm from lens L13

(bottom).
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As one can see from the top two plots, the beam dimensions right after the bow-tie
cavity are far away from being circular. The upper left plot shows a nice Gaussian
behaviour. The intensity profile for the vertical dimension, shown in the upper right
plot, shows a different behaviour. Around the maximum it looks like a Gaussian
distribution but then starts to flatten. For the range where the intensity profile looks
Gaussian a fit was performed. From fitting both intensity profiles a ratio of 1/3.97 is
obtained. This justifies the values of the focal lengths of lenses L12 (f = 100 mm) and
L13 (f = 400 mm).
The middle to plots show the intensity profiles right after lens L13. Again from
fitting Gaussian functions to both profiles, a ration of 1/1.09 is obtained which can be
considered as a circular beam. The Gaussian beam diameter after L13 is approximately
1.3 mm.
To check if the beam stays approximately circular, the intensity profile of both dimensions
is measured after a distance of 50 cm from lens L13. This is shown in the two bottom
plots of figure 6.12. From the Gaussian beam diameters obtained by fitting, a ration
of 1/1.21 is obtained. This shows that beam dimensions change a bit with increasing
distance from lens L13, but stay rather circular.

6.4.2. AOM Performance and Rise Time

For the STIRAP transition very short pulses in the sub-hundred nanosecond range are
needed. To achieve such short pulses, the rise time, defined in section 5.4.2, needs to
be considerable fast. Therefore, lens L14 is used to focus the circularized beam to a
smaller spot size, such that the beam diameter inside the AOM is smaller than 1 mm
which then reduces the rise time given by equation (5.4).
Lens L14 has a focus of f = 150 mm which results in beam dimensions of dx = 120µm
for the x- and dy = 100µm for the y-direction. This very strong focusing of the beam
into the AOM causes diffraction losses, so that the first order diffraction efficiency is far
away from the supplier specification. With a power of Pinc = 23.3 mW, only P 1st

single =
11.6 mW are diffracted into the first order. This corresponds to an diffraction efficiency
of 48.9 %. With the same input power the power in the first order after passing through
the double pass is P 1st

double = 5.9 mW. This corresponds to a diffraction efficiency of
26.4 %. Due to limited space it was not possible to implement an additional beam
shaping optics to increase fiber coupling efficiency.
Due to this sharp focusing, the beam dimensions behind the double pass change again
from circular to elliptic. So after PBS3 the beam dimensions are dx = 629µm for the
x- and dy = 1280µm for the y-direction. Due this elliptical shape of the beam only
55 % could be coupled into a fiber which results than in 3.2 mW power available for
the STIRAP transition.
To measure the rise time of the double-pass configuration, the AOM is switched on
and off very fast. This switching can be seen in the left plot of figure 6.13. The
slightly delay of approximately 180 ns between the RF driver signal (green) and the
photodiode signal (black) comes from the time the acoustic wave needs to arrive at
the position where the beam travels through the AOM twice.
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6.5. Summary

Figure 6.13.: Rise time meaurement of the AOM double-pass configuration. Left plot: RF
signal and photodiode signal. Left plot: Photodiode signal on a stretched time scale to make
the rise time visible.

The rise time tR can than be measured by a fast photodetector (in this case a 2 GHz
photodetector from THORLABS). The measured signal is shown in the right plot of
figure 6.13. The horizontal gray dashed lines represent the 10 % and 90 % threshold of
the signal. The vertical gray lines are placed at the crossing points of the horizontal
ones with the actual signal (black curve). The rise time is estimated to be approximately
30 ns.

6.5. Summary

In this section the whole setup was characterized. The goal of the setup is to produce
a reasonable short lasber pulse with enough power for the STIRAP transition from
the Dysprosium ground state to the intermediate state at 23 877.75 cm−1.
The first part of the setup is the ECDL in cat’s eye design. It could be shown that
by rotating the interference filter inside the cavity the desired wavelength of 837.2 nm
could be obtained. Furthermore, the ECDL is able to provide the TPA with the
required seed power of 10 - 50 mW.
The TPA is the used to amplify this power. It could be shown that the TPA is able
to produce easily a power of around 500 mW while not exceeding the maximum TPA
current of ITPA,max = 2.5 A. Staying below this value might increase the life time of
the TPA.
The SHG takes place inside the bow-tie cavity which is needed to build up enough
power to make the process more efficient. The mode matching and impeadance
matching of the cavity were performed in such a way that (53.3± 0.2) % of the
incoming power could be coupled in the cavity. An error signal with an amplitude
of approximately 8 V could be produced which is able to lock the laser to the cavity.
When the cavity is locked to the laser a total output power of (33± 2) mW could be
achieved.
The last part of the setup is the formed by the AOM in a double-pass configuration
which is used to shape pulses from the continuous wave laser provided by the bow-tie
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cavity. Due to the very sharp focusing into the AOM to achieve fast rise times, the
diffraction efficiency dropped to approximately 26.4 %. Another consequence of the
focusing is that after the beam passes though the AOM it’s not circular any more. The
beam dimensions of the beam after the double-pass have a ration of approximately 1:2
which reduces the amount of light that can be coupled into a fiber. At the end of the
double-pass configuration a laser pulse with total power of approximately 3 mW and
a rise time of 30 ns is available.
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7. Transfer Efficiency Simulations for
Dysprosium

To get a better feeling what transfer efficiencies one could expect and what pulse
parameters (pulse width, pulse delay, peak rabi frequency...) are needed, simulations
have been performed. Due to the fact that the STIRAP transition for populating the
state |b〉 at 17 514.50 cm−1 which involves the intermediate state at 23 877.75 cm−1 has
highly unequal decay rates within the Λ system, the simulations rely on section 2.3.

7.1. Analytical Solution

The STIRAP transition for this experiment connects the Dysprosium ground state
and the opposite parity state |b〉 with an intermediate at 23 877.75 cm−1. The life
time of the intermediate state is γ = 7.9 ns. If we assume that the decay from this
intermediate state will mostly occur to the ground state, the decay rate can be assumed
to be approximately Γ1 = 2π×20 MHz. The reduced dipole moment for the transition
from the intermediate state to state |b〉 is estimated to be 〈b||d̂||23 877.75 cm−1〉 =
0.3 a u [45]. Converting this value into SI units and using equation (1.4), a decay rate
of Γ2 = 2π × 0.8 kHz results. Due to the fact that Γ1 is several orders of magnitude
bigger that Γ2, a population of the intermediate level would return the population back
to the Dysprosium ground state rather than to the target state. In order to simulate
this problem the coupled differential equations (2.21) are solved numerically using
MatLab. The left plot of figure 7.1 shows the final populations ρ33 as a function of
time for different pulse widths T . To fulfill the adiabatic criteria (2.14) the pulse area
of the Gaussian pulse is kept to a constant value of A = 50. The pulse delay in figure
7.1 is set to τ = 50 ns for all pulse widths. For this specific pulse parameters one can
see that population transfer efficiencies over 90 % are possible reaching a value close
to 100 % for pulses with T = 50 ns.This high transfer efficiencies can be explained due
to the fact that in the adiabatic regime the intermediate state is almost not populated
and hence spontaneous decay from this state has no big influence on the process. The
right plot shows the Gaussian pulses for a pulse width of T = 100 ns.
Figure 7.2 shows a simulation for different pulse delays τ . The pulse area is again set
to A = 50 and the pulse width is equal to T = 100 ns. The simulation then shows that
increasing the pulse delay from τ = 20 ns to τ = 100 ns increases the transfer efficiency
from about 70 % close to 100 %. Increasing the pulse delay the further more will result
in a decrease of transfer efficiency. This is due to the fact that for bigger pulse delays
the STIRAP pulses do not overlap well. However, a large overlap of pulses is required
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Figure 7.1.: Transfer efficiency for different pulse widths. Left plot: Population ρ33 as a
function of time for pulse widths T of 50 ns, 80 ns and 100 ns. The pulse are of the Gaussian
pulses is kept to A = 50 and the pulse delay is set to
tau = 50 ns. Right plot: Gaussian pulses as a function of time for pulse width T = 50 ns
and pulse delay τ = 50 ns.

because the mixing angle θ(t) stays nearly constant during the overlap. This leads to
θ̇(t) ≈0 and the nonadiabatic couplings during the process do not play a big role. This
observation is consistent to the criteria of optimum pulse delays τ & T [13].

Figure 7.2.: Transfer efficiency for different pulse delays of τ = 20 ns, 50 ns, 100 ns and 200 ns.
Pulse area is set to A = 50 and the pulse width is T = 100 ns.

Lowering the pulse area toA= 10 will weaken the adiabatic evolution. The intermediate
state gets populate and the spontaneous decay will affect the transfer efficiency. Due
to the fact that Γ1 is much bigger than Γ2, atoms in the intermediate state will decay
more likely to the ground state rather than to the final state and hence this will
decrease the transfer efficiency. This is shown in figure 7.3. The situation is quiet
the same as in the left plot of figure 7.1 just that the pulse delay is set to be τ = T .
The condition for optimum pulse delay is therefore fulfilled and one can see that it is
favourable to apply short pulses rather than long pulses to achieve high population
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values of the final state. Due to decoherence effects that arise during the population
transfer shorter pulses are better suited as longer pulses for STIRAP. For this specific
example only about 60 % of the initial population is transferred to the final state when
the pulse has a width and a delay of of T = τ = 50 ns. For longer pulses this value
decreases even more and the process becomes very inefficient.

Figure 7.3.: Transfer efficiency for the condition τ = T . Pulse area is set to A = 10.
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8. Summary and Outlook

The motivation of this thesis is to build and to characterize a laser setup which can
be used in a STIRAP process for populating opposite parity states in Dysprosium.
Chapter 2 presented an introduction to stimulated Raman adiabatic passage (STIRAP).
STIRAP is an efficient and selective method to transfer the population from an initially
populated state to a target state by coupling them with two radiations fields via an
intermediate state. The time evolution of such a system is given by the time dependent
Schrödinger equation. The instantaneous eigenstates of the Hamiltonian are linear
superpositions of the unperturbed states. STIRAP relies on the so called dark state
which is a coherent superposition of the initial and target state only. The dark state
does not contain the intermediate state, and hence spontaneous emission from this
level does not play a role. If it is possible to stay in the dark state during the whole
transfer process, then all the population can be transferred from the initial to the
target state.
To build a laser with enough power for the STIRAP transition, an enhancement cavity
for the second harmonic generation (SHG) process is needed. Chapter 3 deals with the
physics of optical resonators. Starting from the basic properties of Gaussian beams,
the ABCD-matrix method is developed and the self-consistent method, which implies a
confinement condition for optical resonators, are reported. Using a plane wave model,
which is applicable for both standing wave resonators and ring cavities, expressions for
the circulating and reflected intensities (as a function of the incoming intensity) are
motivated. These expressions can be used to derive the so called impeadance-matching
condition. This condition basically says that the Transmittance of the cavity’s input
coupler has to be equal to the losses inside the cavity. Finally, the special case of a
bow-tie cavity consisting of two flat and two curved mirrors is discussed.
Chapter 4, probably the biggest topic, is describing the second harmonic generation
process. At the beginning some basic terms concerning optics in crystals are reviewed.
Then, an introduction to nonlinear optics is given. The process of second harmonic
generation without depleted input and with depleted input is examined. In the
depleted input case, the second harmonic generated power exhibits a sin2(δ) behaviour
where δ describes the phase mismatch. In the case without a depleting input the
second harmonic generated power is proportional to tanh2(κA1(0)z), where κ is a
factor depending on the crystal properties and A1(0) can be brought into relation
with the electric field amplitude E1(0) at the position z = 0. Next, the Boyd-Kleinman
analysis for SHG, which deals with Gaussian beams rather than with plane waves, is
introduced briefly. The last section in this chapter combines the SHG process with
the resonator optics from the previous chapter.
The setup presented in chapter 5 consists mainly of four parts . The first part is an
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external-cavity diode laser (ECDL) in cat’s eye design which acts as a light source.
The emitted light should have a wavelength of λfund = 837.2 nm with a possibly small
bandwidth. The second part of this setup is a tapered amplifier (TPA). The optical
power emitted from the ECDL will be amplified by a factor 10 to 100. The part
behind the TPA is a bow-tie cavity wit an nonlinear crystal inside. The cavity itself
increases the optical power inside up to several Watts. When the light passes through
the crystal, the desired wavelength of λSHG = 418.6 nm is generated due to SHG. The
last part consists of an AOM in a double-pass configuration and is used for pulse
shaping.
Chapter 6 characterizes the entire setup. This is not only important to see if the
required goals could be achieved, but also for performance documentation of the setup
as a reference for the future. The cat’s eye ECDL shows the well known power/current
and current/voltage characterisics. By rotating the interference filter the wavelength
and the power of emitted from the ECDL can be changed. The TPA shows the
expected output power/ TPA current characteristic. By measuring the output power of
blue light from the bow-tie cavity a maximum value of (33± 2) mW could be achieved.
Looking at the reflected light, it has been determined that only (55.3± 0.2) % of the
light is coupled into the cavity due to mode mismatching. The obtained error signal
looks qualitatively like the theoretical one and can be used to lock the laser to the
cavity. The power inside the cavity is estimated to be (27± 1) mW. The double-pass
AOM could be realized with a rise time of approximately 30 ns. At the end of the
whole apparatus approximately 3 mW of light in the desired wavelength is available.
In chapter 7, based on [12], a simulation has been performed which accounts for
the very unequal decay rates from the intermediate state to the inital and target
state, respectively. This simulation should help to find the right settings for the pulse
duration as well as for the pulse delay in the STIRAP process. Due to coherence
effects pulses in the range of 100 ns are preferred.

The next step would be to test this laser setup on the Dysprosium atoms and doing
spectroscopy. Once the state positioned at 23 877.75 cm−1 has been found the second
STIRAP branch can be engineered. For the second branch one may use an extended
cavity diode laser using a standard optical diode centered at 1625 nm. Both lasers
need to be phase locked to a high finesse ultra low expansion cavity in vacuum using
Pound-Drever-Hall technique to ensure frequency noise on a kHz level. After the
desired opposite parity state is populated, one then reverses the STIRAP in order to
image the atoms in the ground state using standard absorption imaging. Once the
STIRAP populates efficiently the opposite parity state which requires the two lasers
to be in σ+ and π configuration, a π-microwave pulse is driven to mix it with the
other opposite parity state. The microwave source will be a phase-locked loop based
on a VCO, operating in the range up to 10 GHz locked to a 10 MHz reference, doubled
and amplified in two stages. Once the opposite parity states are mixed, the simplest
manner of the dipole-dipole interaction (DDI), namely the expansion dynamics of a
bosonic sample or the deformation of the Fermi surface due to DDI can be diagnosed.
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A. Tapered vs non-tapered Amplifiers

It is very difficult to obtain high output powers in the range of 1 W or more from
ordinary laser diodes. Output powers of ≈ 100 mW can damage the small output
facets of laser diodes. One of the best solutions to get higher output powers with a
narrow frequency spectrum is to use semiconductor traveling wave amplifiers with a
tapered geometry. The equation of such a travelling wave amplifier in terms of power
P is given by

dP

dz
= (

g0

1 + P
Ps0(1+ktz)

− a)P. (A.1)

In equation (A.1) Ps0 is known as saturation power at the input end (z = 0), kt
(taper ratio) describes the tapered geometry, g0 is called unsaturated gain and a is the
absorption coefficient due to losses in the active medium. For a detailed derivation
consider [21]. To see the behaviour of the tapered gain region, equation (A.1) can
easily be integrated with MatLab. The solution is shown in figure A.1.

Figure A.1.: Power as a function position in a tapered and a non-tapered amplifier with the
following parameters: g0/a = 56, kt = 5 and input = 0.1 PS, PS being the saturating power
at the amplifier input. Figure created according to [21].
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B. Electronic Circuits

B.1. Advanced Laser PID

For most experiments in atomic physics a frequency stabilized laser beam is required.
The frequency stability is disturbed by various influences such as temperature change,
vibration, sound, noise from the laser diode, etc. and must therefore be stabilized by
a control loop. The used control electronics is rather complicated and unfortunately
no circuit description exists. To make the life of a future master student easier it is
tried to describe the circuit here in greater detail.
The HC method is used for frequency stabilization. The difference signal from two
photo diodes, which are illuminated from a polarization beam splitter, serves as the
measurement variable. The difference signal of the two photodiodes is guided and
amplified via a 50 Ω coaxial cable to the controller circuit boards (frontboard and
mainboard V5.4 PID fast). The desired value of the difference signal of the two photo
diodes is 0 V. In this case the intensities of the horizontal and vertical polarization
directions are equal. For interference signals with low frequencies, the difference signal
is amplified by a PI controller and transformed by a DC-DC converter from the +/- 12
V voltage range to a range of +/- 150 V. This relatively high voltage controls a mirror
position in the bow-tie resonator by means of a piezo electric tranducer. As a result,
the phase position in the resonator is kept constant within a free spectral range. For
interference signals with high frequencies, the difference signal is amplified by a fast
PID controller and thus regulates the frequency of a laser diode.
To work with the control electronics it is essential to know what the operating elements
are doing. Therefore, a detailed description of the operating elements and plug
connections follows now. Mainboard and Frontboard circuit diagrams are shown in
figures ?? and ??, respectively.

Switch-S3 Mainboard - Fast PID Prop On/Off There are two different names for the
switch S3, ”PID off” and ”PID IO”, of the signal line. The switch itself is mounted
on the front plate, but is defined in the ”Mainboard” circuit diagram. The electronic
switch ”U13” is controlled with the signal line. If the signal line ”PID off” for ”S3” is
connected to + 5V, then the connection between pin 1 and pin 8 is conductive and
the PID-Fast signal is sent to the BNC connector via OPA ”U14” P4 forwarded. If the
”PID off” signal line on ”S3” is connected to GND, the connection between Pin-1 and
Pin-8 is non-conductive and the PID-Fast signal is interrupted.

S5 Mainboard - Fast PID Int On / Off There are also two different names for the S5
switch, ”I-fast” and ”I-fast IO”, on the signal line. The switch itself is mounted on the
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B.1. Advanced Laser PID

Figure B.1.: Laser PID advanced.

front plate, but is defined in the ”Mainboard” circuit diagram. The electronic switches
”U11” and ”U12” are controlled with the signal line ”I-fast”. If the signal line ”I-fast”
on the switch ”S5” is connected to GND, then the connections between pin 1 and pin
8 of the IC’s ”U11” and ”U12” are non-conductive. OPA ”U2” and OPA ”U3” work
as P and I control loop amplifiers. If the signal line ”I-fast” is connected to + 5V,
the capacitor ”C16” and the resistor ”R26” connected to the OPA ”U2” are bridged.
Regarding the OPA ”U3”, capacitors ”C9” to ”C15” and the resistor ”R22” are bridged.
Now the P-loop amplifier has a lower gain and a smaller time constant, the ID-loop
amplifier is now only a D-loop amplifier. The PID controller now has a lower gain and
only the fast-reacting D component.

Error Signal - P9 Frontboard The ”Error Signal” represents the difference between
the two diode signals at the ”BNC” plugs ”P2” and ”P3”. When the control circuit
is steady, the ”Error Signal” should show approximately 0 V and over 50 Ω it can be
measured on the oscilloscope.

-Input - P2 Frontboard Diode input signal D1 at the ”BNC” connector ”P2”.

+Input - P3 Frontboard Diode input signal D2 at the ”BNC” connector ”P3”.

Offset - R18 frontboard The potentiometer ”R18” enables an effective offset voltage
of +/- 12.5 mV via the OPA ”U10”. The potentiometer ”R62” can theoretically reduce
the effectiveness of the offset, but only in the range of approximately +/- 0.25 mV.
The relationship Uoffset = UD2− R37 · (UD2− U10)/(R37 + R40 + R69 + R62) and
U10 = +/− 5V ·R13/(R13 +R19) applies to the offset voltage.
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B. Electronic Circuits

PiezoProp On / Off - S1 mainboard The switch mounted on the front panel, designated
”S1” in the ”Mainboard” circuit diagram, is designated as a signal with ”I-slow IO”.
It bridges the capacitors ”C12” and ”C42” of the I-controller when the switch ”S1”
is closed. This situation corresponds to the position ”PiezoProp Off”. The capacitor
”C12”also bridges the ”R54”resistor on the ”Frontboard”circuit diagram. The outputs
of the OPA’s ”U5A”, ”U5B” and ”U5C” are at GND potential and the influence on the
adding OPA ”U6” is prevented. In the ”Prop On” position, switch ”S1” is open, the
OPA’s ”U5A” and ”U5B” form a PI controller. The OPA ”U5C” is required in order
the phase shift matches the OPA ”U5D”.

PiezoInt On/Off - S4 Mainboard The switch mounted on the front panel, designated
”S4” in the ”Mainboard” circuit diagram, is referred to as a signal with ”P-slow IO”. It
bridges capacitor ”C41” and capacitors”C80” and ”C25” to ”C31” on the ”Frontboard”
circuit diagram when the switch is closed. This corresponds to the ”PiezoInt Off”
position. The output of the OPA ”U5D” is then at GND potential, the influence on
the adding OPA ”U6” is prevented. In the ”PiezoInt On” position, switch ”S4” is open,
the OPA ”U5D” is a pure I controller.

LED Power +/- 5V LED D8 / D9 light up if +/- 5V are present.

Piezo Out - P7 frontboard ”P7” is the output from the summing amplifier ”U6” which
is supplied by the PI controllers or by the delta voltage generator and is to be connected
to the DC-DC converter so that a mirror of the resonator can then be adjusted with
a piezo electric transducer.

Piezo Out-Inverted - S5 Frontboard The connector to the switch ”S5” is located in
the circuit diagram ”Frontboard” and changes the phase of the ”Piezo Out” signal by
180 deg with the help of the OPA ”U6”.

Piezo Out Attenu - R57 Frontboard Resistor ”R57” is located in the ”Frontboard”
circuit diagram next to connector ”P7” and can weaken the output signal of OPA ”U6”
in the ”Mainboard” circuit diagram and is forwarded to the front board as a ”Piezo
out” signal.

Piezo Out Gain - R48 Frontboard Resistor ”R48”is located on the ”Frontboard”circuit
diagram at the output of inverter OPA ”U6” and can weaken the output signal of OPV
”U6” in the ”Frontboard” circuit diagram and is forwarded to the P and I controller in
the ”Mainboard” circuit diagram.

Piezo Out Prop - R54 Frontboard The resistor ”R54” is on the ”Frontboard” circuit
diagram, but is part of the wiring of the OPA ”U5A”. The OPA ”U5A” is the P
amplifier of the PI controller in the ”Mainboard” circuit diagram.
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B.1. Advanced Laser PID

Piezo Offset - R56 Frontboard The resistor ”R56” is located on the ”Frontboard”
circuit diagram and acts as an adjustable voltage divider between the voltages + Uref
and –Uref which are equal to ± 5 V. With the resistor ”R56” the output of the OPA
”U5” can be trimmed to 0 V and is therefore probably called ”Piezo Offset”.

Piezo Monitor - P6 Frontboard Oscilloscope connection for measuring the voltage
which is proportional to the voltage at the HC-DCDC converter. Together with
connection ”P9” and connection ”P8” = Sweep Trigger Out, the free spectral range
of the resonator can be measured.

Piezo Monitor BW Int - S4 Frontboard ”S4”is a series of switches with which the
capacitors ”C8 ”and ”C25”to”C31”can be connected in parallel to ”C41”. The capacitor
”C41” is on the circuit diagram ”Mainboard”, ”C8” and ”C25” to ”C31” are on the
circuit diagram ”Frontboard”. If all switches ”S4” are open, only ”C41” is effective.
The capacitance value decreases from left to right. The capacitors act as integrator
capacitance on the I-controller OPA ”U5D”.

Fast PID Gain D sec - R17 Frontboard The resistor ”R17”is located on the ”Frontboard”
circuit diagram and is an adjustable resistor. Together with the resistor ”R15”, ”R17”
is connected in series with the capacitors of the D controller and determines the effect
of the D component of the PID controller. The smaller the set value of R17, the
greater the effect of the D component.

Fast PID Gain I sec - R22 Frontboard The resistor ”R22”is located on the ”Frontboard”
circuit diagram and is an adjustable resistor. Together with the resistor ”R26”, ”R22”
determines the static amplification of the OPA ”U3”, i.e. the DI controller, to a range
from 0.1 to 10 (essentially limited by the resistors ”R25” and ”R29”).

Fast PID Attenuation - R31 Frontboard The resistor ”R31”is located on the ”Frontboard”
circuit diagram at the output of the ”Fast PID controller” and is an adjustable resistor
with which the gain of the PID controller can be weakened.

Fast PID Offset - R72 Frontboard The resistor ”R72” is located on the ”Frontboard”
circuit diagram and is used to compensate for the offset of the ”U14” OPA. The setting
range is 0 V to +20 V, based on the output of ”U14”.

Fast PID Attenu DC - S1 Frontboard The series of switches ”S1” is located on
the ”Frontboard” circuit diagram and is used to digitally set the attenuation of the
photodiode difference signal from the OPA ”U1”. The switch ”S1-1/16” is on the far
left and makes the largest contribution from the input signal, the switches further to
the right make increasingly smaller contributions. When all switches are closed, the
attenuation is lowest.

Fast PID AC BW Diff - S2 Frontboard The series of switches ”S2” is located on the
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”Frontboard” circuit diagram and is used to digitally set the capacitor value of the D
controller. The switch ”S2-1/16” is on the far left and brings the largest contribution
(”C8” = 1 nF), the switch ”S2-8/9”, on the far right brings the smallest contribution
(”C1” = 4.7 pF).

Fast PID AC BW Int - S3 Frontboard The series of switches ”S3” is located on the
”Frontboard” circuit diagram and is used to digitally set the capacitor value of the I
controller. The switch ”S3-1/16” is on the far left and brings the largest contribution
(”C15” = 22 nF), the switch ”S3-8/9”, on the far right brings the smallest contribution
(”C9” = 220 pF).

LED D3 - D3 Frontboard The LED ”D3”is located on the ”Frontboard”circuit diagram
and lights up when the voltage at ”P5” is greater than approximately 2 V.

Sweep On/Off - S2 Mainboard The switch ”S2” is located in the”Mainboard” circuit
diagram. In the ”Sweep Off” position, the capacitor ”C28” of the integrator ”U12B” is
bridged with a resistor, thereby preventing the generation of the triangular voltage. In
addition,”R14” and ”R10” are connected to GND, which enables the AND operation of
the output signals from ”Sweep”, ”U5D” and ”P3 Second Int”. The triangular voltage
generator is used to search for the ”free spectral range” in the bow-tie resonator.

Sweep Amplitude - R10 Mainboard The potentiometer ”R10”is located on the ”Frontboard”
circuit diagram and is used to weaken the amplitude of the triangular voltage if the
piezo actuator hub allows too many resonance frequencies. The setting range is from
0 % to 100 %.

Fast PID Monitor - P5 Frontboard Oscilloscope connection for monitoring the Fast
PID controller output. The LED ”D3” lights up when the voltage at ”P5” is greater
than approximately 2 V.

Fast PID out - P4 Frontboard The output of the Fast PID controller ”P4” may need
to be connected to the current modulation input on the laser to reduce fast phase
modulations.

B.2. HV-DCDC Converter

The used high voltage (HV) DCDC-converter is a crucial element for locking the laser
to the cavity. By changing the position of the potentiometer ”R15”and hence the voltge
in figure ??, an offset up to 150 V can be adjusted. The BNC output ”P7” (Piezo-Out)
from the advanced laser PID circuit (??) is connected to the modulation input of the
HV-DCDC converter ”P3A”. The HV-DCDC output ”P3B” is then connected to the
piezo electric actuator of the bow-tie cavity to close the feedback loop.
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C. AOM Rise Time Equation

The rise time is defined as the time the first order diffraction needs to rise from 10 %
to 90 % of it’s maximum and is given by

tR = 0.65
d

vS

(C.1)

where d is the 1/e2 beam diameter and vS is the speed of sound in the acousto-optic
medium. It is not immediately apparent where the prefactor of 0.65 comes from.
Equation C.1 is only valid for a Gaussian beam in the TEM00 mode. The intensity
distribution of such a beam propagating in z-direction is given by

I(r, z) = I0

(
w(z)

w0

)2

e
−2r2

w(z)2 (C.2)

where w(z) is the 1/e radius according to equation (3.4), w(z = 0) = w0 is the waist
or minimum spot size and r =

√
x2 + y2 is the radial distance measured from the

intensity maximum. I0 is the maximum intensity located at x = 0 and y = 0. When
the AOM is switched on, the sound wave is propagating through the optical beam
such that, at the beginning not the whole optical beam gets diffracted. This situation
is equivalent by cutting the beam in one direction (here we chose x-direction) and
measuring the remaining power. By choosing z = 0 and integrating equation (C.2)
one obtains

P (x′) =

∫ x′

−∞

∫ +∞

−∞
e
−2(x2+y2)

w2
0 dxdy

= I0
w2

0

2

∫ √
2x′
w0

−∞
e−x̃

2

dx̃

∫ +∞

−∞
e−ỹ

2

dỹ

=
P0

2

[
1 + erf

(√
2x′

w0

)] (C.3)

where x′ is the starting point where the beam is cut. In equation (C.3) the substitutions√
2x
w0

= x̃ and
√

2y
w0

= ỹ and the relationship I0 = 2P0

πw2
0

with P0 as the total power are

used. erf(x) is the well known error function. The relationship between I0 and P0 can
easily be obtained by integrating equation (C.2) from −∞ to +∞ instead to a specific
x = x′.
Considering now the final result of equation (C.3), 10 % of the total power P0 are
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C. AOM Rise Time Equation

measured when the beam is cut at x′1 = -0.65 w0 and 90 % for cutting the beam at x′1
= +0.65 w0. Equation (C.1) deals with the diameter of the beam which explains the
appearance of the prefactor 0.65. The situation is shown graphically in figure C.1.

Figure C.1.: Measured power when cutting a Gaussian beam located at x = 0 and y = 0
along the x-direction. Black curve shows equation (C.3). Red vertical lines correspond to ±
0.65 w0 cutting positions. Grey horizontal dashed lines indicate 10 % and 90 % thresholds of
the transmitted power.
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