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Chapter 1

Introduction

Experiments with optical lattices in Bose-Einstein condensates (BEC) and
ultracold atoms have already been credited with remarkable achievements.
The progressively improving control and the still increasing number of con-
trollable parameters of these quantum systems guarantee also for the future
opportunities to gain important knowledge not only of the fundamental con-
cepts of quantum mechanics but also of new experimental applications.
Optical lattices for ultracold atoms are implemented by superimposing counter-
propagating laser beams. By the resulting periodic intensity modulation of
the laser light the atoms experience due to the induced dipole force a periodic
potential.
The physics of ultracold atoms in optical lattices is reminiscent of the physics
of crystaline structures in solid state physics. For example, the appearance
of so called Bloch-oscillations, which are predicted for periodic potentials
and which are hard to measure in real crystals because of various disturbing
mechanisms, could already be verified by the use of ultracold atoms in optical
lattices [1].
Another achievement is the controllable quantum phase transition of a BEC
in an optical lattice from the suprafluid (SF) phase into the Mott-insulator
(MI) phase [2, 3]. In the SF phase the wavefunction has a definite phase
and is spread over many lattice sites, the local atom number of each lattice
site is not well defined. The Mott phase has well defined site occupancy and
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the enhanced confinement of the atoms in the same lattice site, resulting
in a higher interaction between the atoms of the same site, can be used for
studying strongly correlated quantum gases.
Another achievement is the coherent transfer of two Rb atoms into one Rb2

molecule, which is described in [4]. Even though the so created molecules
are in a high vibrational state, they show long lifetimes because they are
prevented from inelastic collisions between each other by the "sheelding" of
the lattice potential.
Ultracold atoms in optical lattices also have promising applications in the
field of Quantum-Information-Processing (QIP). There are many proposals
which utilize the properties of a MI phase of ultracold atoms in optical lat-
tices to implement large qubit arrays for massive parallel QIP-schemes (for
example see [7]).
Ultracold atoms in optical lattices thus offer a unique opportunity to study
solid state physics [5, 6] and provide the necessary requirements for ultracold
chemistry and QIP.
Even more advanced experiments with ultracold atoms and optical lattices
are possible with so called optical superlattices. An optical superlattice is a
modulated optical lattice for ultracold atoms. Various different types of opti-
cal superlattices have already been realized [8, 9, 10, 11]. For our experiment
we will set up a 1D optical superlattice for 87Rb atoms with a double-well
potential as the unit cell of the periodic lattice potential. Thus the 1D optical
superlattice in our experiment will consist of a 3D optical lattice of wave-
length λ1 = 1064nm and an additional standing wave with a wavelength
λ2 = 532nm - that is half the wavelength of the latter - overlaid in one of the
three lattice directions (see figure 1.1). As the two wavelengths are quite far
from the D2-line of 87Rb ( F = 2 → F ′ = 3, 780nm) the spontaneous photon
scattering rate is expected to be low, which results in a long lifetime of the
ultracold atoms in the lattice potential. The parameters of the double-well
potential can be controlled by varying the intensities and the relative phase of
the corresponding lattice beams. So it is possible to shift the energy levels of
the two wells of a double-well relative to each other and to adjust the height
of the barrier between the two wells. These additional degrees of freedom
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Figure 1.1: Shown is the schematic setup of the Rb-experiment and how
the superlattice will be integrated in this setup (top view). The 1D optical
superlattice is implemented inside the glass cell by overlaying an additional
standing wave with λ2 = 0.5λ1 = 532nm in one direction to a 3D optical
lattice with λ1 = 1064nm.

for varying the shape of the unit cell potentials could be used for tunneling
experiments with single atoms [9] or even molecules. Beside this, this optical
superlattice utilizes the controlled transport of atoms from one lattice site to
a neighbouring site, which could be used for experiments involving controlled
collisions of atoms or the entanglement of atoms [13, 12, 7].
Figure 1.1 shows how the superlattice will be integrated to the existing Rb-

experiment. In the Rb-experiment atoms are captured from a background
rubidium (87Rb) vapour in a magneto optical trap (MOT). After precooling
the sample by an optical molasses the atoms are spin polarized and loaded
into a magnetic quadrupole trap, formed by the quadrupole coils of the MOT.
By using a magnetic conveyor belt [14] the cloud is then transported from
the MOT chamber over approximately 40cm into the glass cell, where the
atoms are loaded into a QUIC trap [15] and cooled further by evaporation.
The produced BEC contains about 5 × 105 atoms. For a more detailed de-
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scription of the BEC setup see [16].
For the superlattice the two lattice beams must be frequency locked. In our
experiment this requirement will be accomplished by frequency doubling -
which is also called second-harmonic generation (SHG)- a high power laser
beam with λ1 = 1064nm.
Within my diploma thesis I set up and characterized a single pass SHG-
arrangement with periodically poled lithium niobate (PPLN) to convert a
10W laser beam with a fundamental1 wavelength λ1 = 1064nm into har-
monic light with λ2 = 532nm. Lithium niobate is a nonlinear optic medium
with a high nonlinear electric susceptibility. Dispersion in pure lithium nio-
bate causes a phase mismatch between the fundamental and the harmonic
wave, potentially resulting in a very low conversion efficiency. A solution for
reaching high conversion efficiency is to use a periodically poled lithium nio-
bate crystal and to use quasi-phase matching (QPM) to convert fundamental
infrared light efficiently into harmonic green light.
As both wavelengths of λ1 = 1064nm and λ2 = 532nm are quite far from the
D2-line of 87Rb, lattice beams with relative high powers are needed to achieve
sufficient lattice depths. As the available fundamental power is limited I also
had to optimize the SHG-arrangement for high conversion.
This thesis is divided into a theoretical part, an experimental part and into a
part that includes considerations about the stability of the periodic double-
well potential.
The theoretical part focuses on the theoretical background of the nonlinear
optical effect of SHG and gives the necessary formulas used in the experi-
mental part. In the experimental part the most important components of
the SHG-arrangement are described and the dependences of SHG on the dif-
ferent parameters are determined and discussed. These parameters are the
polarization and the focusing of the fundamental light and the crystal tem-
perature. Beside this the dependence of the conversion for different powers

1During the thesis the infrared light with a wavelength of λ1 = 1064nm will be referred
to as the "fundamental" light and the frequency doubled light with a wavelength of λ2 =
532nm will be referred to as the second-harmonic (SH) or simply the "harmonic" light. Of
course, the two wavelengths are not more fundamental or more harmonic than any other
wavelength.
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of fundamental light is investigated. A short summary of the results of our
SHG-setup and a brief outlook will conclude this thesis.

9



Chapter 2

Second-harmonic generation:
Theory

In this part a brief theoretical introduction and review into nonlinear optics
with focus on second-harmonic generation (SHG) is given. The main purpose
is to derive the necessary formulas used in the experimental part and to
provide some theoretical background. The explanations follow the textbooks
[22] and [23] and are slightly modified here. An additional section is devoted
to the optical properties of lithium niobate.

2.1 Nonlinear polarization density

A linear dielectric medium is characterized by a linear relation between the
polarization density P and the electric field E , P = ε0χE , where ε0 is the
permittivity of free space and χ is the linear electric susceptibility of the
medium. A nonlinear dielectric medium, on the other hand, is characterized
by a nonlinear relation between P and E .
Since externally applied optical electric fields are typically small in compar-
ison with characteristic interatomic or crystalline fields, even when focused
laser light is used, the nonlinearity is usually weak. The relation between P

and E is then approximately linear for small E , deviating only slightly from
linearity as E increases. Under this circumstances, it is possible to expand
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the function that relates P to E in a taylor’s series about E = 0:

P = ε0χE + ε0χ
(2)E 2 + ε0χ

(3)E 3 + ...

= ε0χE + PNL (2.1)

Where χ is the linear susceptibility and χ(2) and χ(3) are the nonlinear suscep-
tibilities of second and third order respectively. In the last line all nonlinear
terms are combined to the nonlinear polarization density PNL. The polar-
ization density in the medium caused by the fundamental wave can be seen
as a source of electromagnetic waves, where the linear term describes linear
optic effects like refraction or dispersion and the nonlinear term is respon-
sible for the occurance of nonlinear effects like second-harmonic generation,
frequency conversion, parametric amplification etc.
In the following we focus on second-harmonic generation (SHG). A more de-
tailed explanation of other nonlinear effects can for example be found in [22]
or [23].
It should be pointed out at this stage, that relation (2.1) in general is some-
what more complex than it seems here at the first sight, because for a usual
medium the susceptibilities χ(i) are tensors of (i + 1)th order, which describe
the anisotropic and frequency dependent properties of the medium. Fortu-
nately, as will be explained in section 1.3, for the used setup it is sufficient to
work out the theory for an isotropic medium, what simplifies the following
calculations a lot.

2.2 Nonlinear wave equation

From Maxwell’s equations for a dielectric medium a nonlinear wave equation
can be derived [22]. This is the starting point for the further calculations
and this differential equation will be solved here by a coupled wave theory.
Thus wave propagation in an isotropic nonlinear medium is governed by the
basic wave equation

∇2E − 1

c2
ν

∂2E

∂t2
= −S (2.2)
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where E is the electric field, cν denotes the phase velocity of a propagating
wave with frequency ν- thus describing dispersion of the medium - and where

S = −µ0
∂2PNL

∂t2
(2.3)

is regarded as a radiation source. For a second-order nonlinear medium

PNL = ε0χ
(2)E 2 (2.4)

is the nonlinear component of the polarization density. Note that the effects
of the linear susceptibility are taken formally into account by the frequency
dependence of cν (see [22]).
As an ansatz for the solution of the differential equation 2.2 for the field E (t)

we assume a superposition of two waves of the fundamental frequency ν1 and
the second-harmonic frequency ν2 = 2ν1 with complex amplitudes E1 and
E2 respectively,

E (t) =
∑
q=1,2

Re [Eq exp(j2πνqt)]

=
∑
q=1,2

1

2

[
Eq exp(j2πνqt) + E∗

q exp(−j2πνqt)
]

=
∑

q=±1,±2

1

2
Eq exp(j2πνqt)

where ν−q = −νq and E−q = E∗
q . The corresponding nonlinear polarization

density from equation 2.4 is then given by

PNL(t) =
1

4
ε0χ

(2)
∑

q,r=±1,±2

EqEr exp [j2π(νq + νr)t]

and the corresponding radiation source 2.3 is calculated to

S =
1

4
µ0ε0χ

(2)
∑

q,r=±1,±2

4π2(νq + νr)
2EqEr exp [j2π(νq + νr)t]
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which is the sum of harmonic components exp [j2π(νq + νr)t] of frequencies
that are sums and differences of the original frequencies ν1 and ν2. Substi-
tuting all into the wave equation 2.2, we obtain a single differential equation
with many terms, each of which is a harmonic function of some frequency.
We can separate this equation into two differential equations by equating the
corresponding harmonic terms on both sides of the nonlinear wave-equation
at each of the frequencies ν1 and ν2, separately. The result can be written in
the form of two Helmholtz equations with the sources:

S1 = 4π2µ0ε0χ
(2)ν2

1E2E
∗
1

S2 = 2π2µ0ε0χ
(2)ν2

2E1E1

So that we obtain the two coupled differential equations:

(∇2 + k2
1)E1 = −4π2µ0ε0χ

(2)ν2
1E2E

∗
1

(∇2 + k2
2)E2 = −2π2µ0ε0χ

(2)ν2
2E1E1 (2.5)

This set of differential equations can be simplified when assuming that the
two waves are collinear plane waves traveling in the z-direction with com-
plex amplitudes Eq = Aq exp(−jkqz), complex envelopes Aq, and wavenum-
bers kq = 2πνq/cq, q = 1, 2. It is convenient to normalize the complex
envelopes by defining the variables aq = Aq/(2ηqhνq)

1/2, where ηq = η0/nq is
the impedance of the medium, η0 = (µ0/ε0)

1/2 is the impedance of free space,
nq is the refractive index and hνq is the energy of a photon of frequency νq.
Thus the spatial dependence of the propagating waves can be written as

Eq = (2ηqhνq)
1/2aq exp(−jkqz) (2.6)

q = 1, 2
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and the intensities of the two waves are Iq = |Eq|2 /2ηq = hνq |aq|2. The
photon flux density (photons/(s m2)) associated with these waves are then

Φq =
Iq

hνq

= |aq|2

The variable aq therefore represents the complex envelope of wave q, scaled
such that |aq|2 is the photon flux density. This scaling is convenient since the
process of wave mixing must be governed by photon-number conservation.
Further, as a result of the interaction between the two waves, the complex
envelopes aq vary with distance z so that aq = aq(z). If the interaction is
weak, the aq(z) vary slowly with z, so that they can be assumed approxi-
mately constant within a distance of a wavelength. This makes it possible to
use the slowly varying envelope approximation. Using this with the ansatz
2.6 the above system of coupled differential equations 2.5 can be simplified
to

da1

dz
= −jgχ(2)a2a

∗
1 exp(−j∆kz) (2.7)

da2

dz
= −j

gχ(2)

2
a1a1 exp(j∆kz) (2.8)

where ∆k := k2 − 2k1 is introduced as the deviation from phase-matching
and

g2 = 4π2ε2
0

η3
0

n2
1n2

hν3
1

2.2.1 Low conversion approximation

To study the effect of phase (or momentum) mismatch, the general equations
(2.7) and (2.8) are used with ∆k 6= 0. For simplicity, we limit ourselves to
the weak-coupling case (γL � 1 see subsection 2.2.2), which in the following
chapters will be referred to as the low conversion approximation. In this
case the amplitude of the fundamental wave a1(z) varies only slightly with
the distance z, and may be assumed approximately constant. Substituting
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a1(z) ≈ a1(0) in equation (2.8) and integrating we obtain

a2(L) = −j
gχ(2)

2
a2

1(0)

∫ L

0

exp(j∆kz′)dz′

= −
(

gχ(2)

2∆k

)
a2

1(0) [exp(j∆kL)− 1] (2.9)

from which the corresponding photon-flux density of the harmonic wave

Φ2(L) = |a2(L)|2 = (gχ(2)/∆k)2Φ2
1(0) sin2(∆kL/2)

follows, where a1(0) is assumed to be real. Consequently the intensity of the
generated harmonic wave is given by

I2 = Φ2hν2 =
2π2ε2

0η
3
0ν

2
1L

2

n2
1n2

(χ(2))2I2
1 (0)

[
sin(∆kL/2)

∆kL/2

]2

(2.10)

Note that for this result we used the model of an isotropic medium and that
the fundamental and harmonic wave are plane waves.1

For a given phase-mismatch ∆k the SH-intensity

I2(L) ∝ sin2(∆kL/2)

(∆k)2
(2.11)

is thus a periodic function of the interaction length L with maximas of equal
height at L = 2π(m+ 1

2
)/ |∆k| (see 2.1). The period length lc of this function

is also called the coherence length and can be expressed with the wave length
λ1 of the fundamental wave by

lc =
2π

|∆k|
=

2π

|k2 − 2k1|
=

λ1

2 |n2 − n1|
=

λ1

2∆n
(2.12)

The first maximum is found at L = lc/2, which also defines the crystal length
that can effectively be used for frequency doubling, because an increasing
crystal length just causes an oscillation of the SH-intensity. The maximum
intensities (see equation 2.11 and figure 2.1) decrease with the square of the

1This will be important for section 3.2.2.
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Figure 2.1: Dependence of the SH-intensity on the crystal length for different
values of the phase-mismatch |∆k|. a is an arbitrary scaling value. For
constant |∆k| the SH-intensity is a periodic function. The period length is
given by the corresponding coherence length lc determined by equation 2.12
(see also figure 2.4).
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Figure 2.2: The dependence of the SH-intensity on the phase-mismatch |∆k|
for a crystal with length L. The SH-intensity has a maximum at |∆k| = 0
(perfect phase-matching) with a fullwidth of δ(∆k) := 2 ∗ 2π/L, that allows
efficient SHG even when |∆k| 6= 0.

phase-mismatch ∆k and are thus proportional to l2c .
On the other hand, when the phase-mismatch ∆k is varied for a fixed crystal
length, then the SH-intensity (equation 2.10) can be written as

I2(L) ∝
[
sin(∆kL/2)

∆kL/2

]2

This function shows a maximum with value 1 at ∆k = 0 and has higher
order maximas, that values decrease approximately quadratically with the
order of the corresponding maximum (see figure 2.2). The intensity for the
case of perfect phase-matching ∆k = 0 for the low conversion approximation
is given by

I2 = I2
1 (0)

2π2ε2
0η

3
0ν

2
1L

2

n2
1n2

(χ(2))2 (2.13)
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2.2.2 High conversion approximation

When the conversion is high we cannot assume a fundamental wave with
constant intensity along the crystal anymore. As each generated harmonic
photon takes up two photons of fundamental light, pump depletion of the
fundamental light in this case must be taken into account. For simplicity
and to focus on the main consequences of pump depletion we assume two
collinear waves with perfect phase matching (∆k = 0). Equations (2.7) and
(2.8) then reduce to

da1

dz
= −jgχ(2)a2a

∗
1 (2.14)

da2

dz
= −j

gχ(2)

2
a1a1 (2.15)

At the input of the crystal (z = 0) the amplitude of the second-harmonic
wave a2(0) = 0 is assumed to be zero and that of the fundamental wave a1(0)

is assumed to be real. With this boundary conditions, and using the photon
number conservation relation |a1(z)|2 + 2 |a2(z)|2 =constant, equations 2.14
and 2.15 can be shown to have the solutions

a1(z) = a1(0)sech
(

gχ(2)a1(0)z√
2

)

a2(z) = − j√
2
a1(0) tanh

(
gχ(2)a1(0)z√

2

)
Consequently, the corresponding photon flux densities are given by

Φ1(z) = Φ1(0)sech2
(γz

2

)
(2.16)

Φ2(z) =
1

2
Φ1(0) tanh2

(γz

2

)
(2.17)

where
γ2 = 2g2(χ(2))2a2

1(0) = 2g2(χ(2))2Φ1(0)

= 8π2ε2
0(χ

(2))2 η3
0

n2
1n2

hν3
1Φ1(0) = 8π2ε2

0(χ
(2))2 η3

0

n2
1n2

ν2
1I1(0)
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Since sech2 + tanh2 = 1 it follows that Φ1(z) + 2Φ2(z) = Φ1(0) is constant,
which indicates that at each position z, photons of the fundamental wave
are converted to half as many photons of the harmonic wave. The fall of
Φ1(z) and the rise of Φ2(z) with z are shown in figure 2.3. For small γL

- that means low conversion - the argument of the tanh-function is small
and therefore the approximation tanh(x) ≈ x may be used. As a proof of
consistency this yields to the same result for the harmonic intensity, that
was calculated in the low conversion approximation (a1(z) = constant) in
subsection 2.2.1.

2.3 The quasi-isotropic lithium niobate crystal

Even though the calculations above were done for the special case of an
isotropic nonlinear medium2, the results can still be used for our setup with
lithium niobate, which actually is an anisotropic medium concerning its re-
fractive index as well as its nonlinear susceptibility. This simplification is
possible, because in our setup the two waves propagate inside the crystal
along a special direction and with a special polarization. For waves with this
special propagation properties the anisotropy of the medium is of no impor-
tance and the waves propagate like in an isotopic medium: The crystal is
designed for a fundamental wave propagating inside the crystal along one of
its principal axis with the polarization of the fundamental light orientated
parallel to the optical axis of the crystal. This fundamental light creates due
to χ

(2)
333 - the only relevant component of the nonlinear susceptibility in this

case (see section 2.5) - a harmonic wave with the same polarization. There-
fore the fundamental and the generated harmonic wave propagate inside the
crystal like they would in an isotropic medium. For example the wavevector
~k and the Poynting-vector ~S of the fundamental and the harmonic wave are
parallel and the direction of polarization keeps constant all through the crys-
tal. This is in general not the case for arbitrary propagation in anisotropic

2For an isotropic medium tensors like the linear and the nonlinear susceptibility reduce
to scalars.
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Figure 2.3: top: A fundamental wave with wavelength λ1 incident on a nonlin-
ear crystal generates a harmonic wave with wavelength λ2. In the frequency
doubling process two photons of the fundamental light combine to a photon
of harmonic light, so that the increase of harmonic light goes along with
the decrease of fundamental light (pump depletion). bottom: Shown are the
corresponding photon flux densities for the fundamental and harmonic light
given in equation 2.16 and 2.17. Since photon numbers are conserved, the
sum Φ1(z) + 2Φ2(z) = Φ1(0) is a constant.
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media (see [22, 23]).
To summarize the theoretical results so far, we calculated the effects of phase-
mismatch and the corresponding dependence of SHG on the crystal length
for the low conversion limit. We also derived formulas for the generated har-
monic intensity in the case of low conversion as well as for the case of high
conversion, where we took pump depletion into account.
Alternatively the SHG in a photon picture can be described as a three pho-
ton process, where photon-number conservation, Φ2(z)+2Φ1(z) = constant,
energy conservation, ν2 = 2ν1, and momentum conservation, ~k2 = 2~k1, hold.

2.4 Experimental methods for SHG

Important criteria, that should be fulfilled as well as possible for sufficient
conversion, are (i) phasematching of fundamental and harmonic wave - to
ensure that harmonic light generated at different sites of the crystal interfere
to a macroscopic harmonic wave - (ii) of course a high nonlinear susceptibility
χ(2) and (iii) - as you most often deal with beams of limited diameter - to
avoid walk off of fundamental and harmonic beam. One method to achieve
these requirements is to use indexmatching with birefringent nonlinear media
as described in [22, 23]. Another method is to use quasi-phase matching
(QPM) with periodically modulated structures, which will be explained in
more detail in the following subsection.

2.4.1 QPM with periodically modulated nonlinear me-

dia

An alternative method to achieve efficient SHG - beside indexmatching with
birefringent nonlinear media - is offered by periodically modulated structures.
In principle a simple method to overcome the disturbance of dispersion would
be to periodically put together regions with different dispersive dependences:
Thus, what one wave gains in phase in one region relative to the other is
compensated in the following region. But what is easy in principle is not
necessarily easy to fabricate. A different method that is well established uses
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structures with a periodically modulated nonlinear susceptibility. This is the
case for the present lithium niobate crystal.

c0

(2)

-c0

(2)
z

lc

The coherence length lc determines the period length of these structures and
the spatial dependence of χ(2) can then be written in terms of a Fourier-series
with 2π/lc = ∆k by

χ(2)(z) = χ
(2)
0

∞∑
m=−∞

Fme−j2mπz/lc

= χ
(2)
0

∞∑
m=−∞

Fme−j2m∆kz

Where χ
(2)
0 denotes the component of the nonlinear susceptibility relevant

for the given polarization of the fundamental light (in our case this is χ
(2)
333).

When this is inserted into (2.8) we obtain

da2

dz
= −j

g

2
χ

(2)
0

∞∑
m=−∞

Fma1a1e
(j(1−m)∆kz)

As can be seen, the Fourier-component m=1 fulfills the phase-matching con-
dition and leads to a linearly increasing SH-field

da2

dz
= −j

g

2
χ

(2)
0 F1a1a1 (2.18)

The other Fourier-components still are not phase-matched and cause the
characteristic spatial oscillation of the SH-field (see figure 2.4). This method
is called quasi-phase-matching (QPM).
In ferro-electric media like lithium niobate such structures can be imple-
mented by producing ferro-electric domains with alternating polarity, in
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Figure 2.4: Shown is the dependence of the SH-field (middle) and the cor-
responding SH-intensity (bottom) on the crystal length z (measured in the
units of the half coherence length lc/2) for the low conversion approximation
and for the three different phase-matching (pm) conditions: not pm, perfect
pm and QPM. (Picture taken from [23])
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the way that an rectangular modulated susceptibility with period length
lc is achieved. As the first Fourier-component of a rectangular function is
F1 = 2/π the resulting SH-field obtained from equation 2.18 for the low con-
version approximation is lower by a factor of 2/π and thus the SH-intensity
is lower by a factor (2/π)2 ≈ 0.4 than in the case of perfect phase-matching
(see equation 2.9). This decrease of conversion efficiency due to QPM is
compensated by the ability to choose the direction of propagation and the
polarization of the fundamental wave freely. The parameters of the funda-
mental wave can be chosen in the way that the highest possible component of
the nonlinear susceptibility is used. Beside this, walk off can also be avoided
by using the same polarization for fundamental and SH-wave or by choos-
ing the direction of propagation in the way that both Poynting-vectors are
collinear.
As already mentioned, our device is designed for a fundamental wave prop-
agating along a principal axis of the crystal with polarization parallel to the
optical axis of the lithium niobate crystal, ensuring that the Poynting-vectors
of fundamental and harmonic wave are collinear and that fundamental and
harmonic light have the same polarization. Fortunately the relevant compo-
nent (χ(2)

333) of the nonlinear susceptibility for this polarization is the highest
possible in the lithium niobate crystal (see section 2.5).

2.5 Optical properties of lithium niobate

In this section some of the material properties of lithium niobate will be
summarized. It will be focused on the optical properties relevant for second-
harmonic generation, so this is no complete discription of all properties of
lithium niobate. For more information on the properties of lithium niobate
see for example [33, 34, 27, 28, 29, 30].
Lithium niobate (LiNbO3) is a dispersive anisotropic nonlinear crystal that
faces trigonal 3m symmetry. It is a compound of niobium, lithium and
oxygen. Congruent3 Lithium niobate is artificially grown by Czochralski-

3They are denoted as congruent when their stoichiometry, expressed as the ratio
cLi=[Li]/([Li]+[Nb]), has a congruent composition value of 48.4%.
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technique from a congruent melt of its components. Due to its wide trans-
parency range, high electro-optic and nonlinear coefficient as well as due to
its chemical and mechanical stability it is used in many applications. Some
of these are frequency doubling, optical parametric oscillation, Pockels cells,
Q-switches, phase and intensity modulators, wave guide substrates etc..
The transparency range of lithium niobate lies between 420nm and 5200nm
and the absorption for light of the wavelength 1064nm is given by α =0.1%/cm
[33, 34]. The propagation of light inside the crystal is governed by the linear
susceptibility χ. Like in all anisotropic media χ = χij is a tensor, that de-
scribes the directional dependence of the susceptibility. For lithium niobate
at a temperature of 200◦C and for light of the wavelength of λ1 =1064nm
this tensor is given by 4

χ(λ1) =

 3.99 0 0

0 3.99 0

0 0 3.69


and for light of the wavelength of λ2 =532nm it is

χ(λ2) =

 4.31 0 0

0 4.41 0

0 0 4.05


Note that the components of a tensor depend on the coordinate system you
choose. In the present case a coordinate system, that diagonalizes χ, was
chosen. The coordinate axis of this special coordinate system are called the
principal axis of the crystal. Usually components of all other tensors (eg.
the nonlinear susceptibility) refer to this coordinate system too. Due to the
crystal-symmetry of lithium niobate two of the three components of χ are
equal χ11 = χ22. Such crystals are termed as uniaxial crystals and the di-
rection along the third component (in this case χ33) is defined as the optical
axis of the crystal. The linear susceptibility is connected to the refractive

4The following values are calculated with the temperature dependent Sellmeier-
equation on page 27.
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Figure 2.5: Schematic cross-section of the k-surfaces of an uniaxial medium
like lithium niobate with no > ne. The 3D k-surfaces are obtained by rota-
tion around the optical axis (o.A.) of the crystal. The circle with radius no

indicates the isotropic refractive index for a propagating wave with its polar-
ization perpendicular to the o.A. (ordinary wave), while the ellipse with the
halfaxis no and ne describes the directional dependence of the refractive index
for an extraordinary wave. As an example ~ko and ~keo indicate an ordinary
and an extraordinary wave respectively. Also shown are the corresponding
polarizations of the electric field ~E and the corresponding Poynting vectors
~S. While for an ordinary wave ~ko ‖ ~S, for an extraordinary wave ~keo ∦ ~S, so
that an ordinary and an extraordinary beam with the same direction of their
wavevectors may travel in different directions (walk off).
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index of the medium by the relation n =
√

1 + χ. Thus lithium niobate
is a birefringent medium, that for a crystal temperature of 200◦C and for
light of the wavelength 1064nm (532nm) shows an ordinary refractive index
no=2.23 (no=2.33) and an extraordinary refractive index ne=2.17 (ne=2.25).
The refractive index, that is experienced by a propagating wave inside an
anisotropic medium depends on the polarization of the wave. For each di-
rection of the wavevector ~k two directions of polarization of the propagating
wave can be found that allow the propagation of a linear polarized wave
in the medium. These certain directions of polarization are referred to as
normal modes (see [22, 23]). There always is one normal mode, that allows
propagation of a wave with polarization perpendicular to the optical axis of
the crystal, with its Poynting vector ~S in the same direction as the corre-
sponding wavevector ~k and with the ordinary refractive index no. And there
is another normal mode, that allows propagation of a wave with its polar-
ization parallel to the plane spanned by the optical axis of the crystal and
the wavevector ~k. Its Poynting vector S now in general deviates from the
direction of the wavevector k and the corresponding extraordinary refractive
index n(θ) depends on the direction of the wavevector k. The dependence of
the extraordinary refractive index is given by (see [22, 23]):

1

n2(θ)
=

cos2 θ

n2
o

+
sin2 θ

n2
e

Where no and ne refer to the corresponding principal refractive indices. Be-
side this the refractive indices no and ne depend on temperature. For a
temperature T and a wavelength λ the refractive indizes no and ne can be
calculated by the temperature-dependent Sellmeier-equation [34]:

n2 = A1 +
A2 + B1F

λ2 − (A3 + B2F )2
+ B3F − A4λ

2 (2.19)

Where F = (T −24.5)(T +570.5), T is given in ◦C and λ is given in nm. The
necessary coefficients are listet in table 2.1. Also the nonlinear susceptibility
χ(2) of lithium niobate depends on the wavelength of the fundamental light
and is anisotropic. For a fundamental wavelength of 1064nm the nonvanish-
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Parameter ne no

A1 4.582 4.9048
A2 9.921× 104 1.1775× 105

A3 2.109× 102 2.1802× 102

A4 2.194× 10−8 2.7153× 10−8

B1 5.2716× 10−2 2.2314× 10−2

B2 −4.9143× 10−5 −2.9671× 10−5

B3 2.2971× 10−7 2.1429× 10−8

Table 2.1: Parameters for the temperature dependent Sellmeier equation
given by [34].

ing components χ
(2)
ijk of the nonlinear susceptibility χ(2) - a tensor of third

rank - are given by:

χ
(2)
222 = −χ

(2)
211 = −χ

(2)
112 = −χ

(2)
121 = 3.07pm/V

χ
(2)
311 = χ

(2)
322 = 5.95pm/V

χ
(2)
333 = 34.4pm/V

As already mentioned above, these components refer back to the principal
axis of the crystal.
A fundamental wave propagating along a principal axis with its polarization
of the fundamental electric field ~E = Ei parallel to the optical axis of the
crystal (Ei = E3) thus generates a nonlinear polarization density ~PNL =

PNL,i also pointing parallel to the optical axis of the crystal:

PNL,i = ε0χ
(2)
ijkEjEk = χ

(2)
333E3E3 = PNL,3 (2.20)

This polarization density can be seen as the source of a harmonic wave, that
propagates with the extraordinary index of refraction.
An essay concerning the dependence of the nonlinear susceptibility on the
fundamental wavelength can be found in [22, 23].
Beside these optical properties of lithium niobate it is worth to note that
lithium niobate is a ferro-electric medium. Ferro-electric crystals are crystals
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that inherently have an electric dipolmoment. In analogy to the magnetic
dipol moments in a ferro-magnet the electric dipols in a ferro-electric medium
orientate themselves due to their interaction into domains (see [24, 25]). In
lithium niobate the electric dipol moments result from slight offsets in the
position of niobium and lithium ions in the unit cell. The orientation of the
crystal defines the direction of the dipol moment. On the other hand -as
described in the following- it is possible to force the electric dipolmoment in
a certain direction by a strong electric field and thus to orientate the crystal
with its anisotropic properties. This is used for producing periodic modu-
lated structures PPLN (Periodically Poled Lithium Niobate). PPLN is used
for second-harmonic generation to achieve efficient conversion of fundamen-
tal light into harmonic light by the method of Quasi-Phase-Matching (QPM)
(see subsection 2.4.1): The efficiency of frequency doubling in a dispersive
nonlinear medium is limited due to dispersion. Just within the coherence
length lc a macroscopic harmonic wave can build up, because after the dis-
tance lc/2 the increasing phase difference between fundamental and harmonic
wave causes destructive interference of the harmonic light. When at this dis-
tance the poling of the crystal is changed, the involved change of the sign of
the nonlinear susceptibility causes the phase of the generated harmonic wave
to jump by π, resulting in constructive interference. The phase jump induced
by the change of the poling can be explained in the following way: As already
mentioned the nonlinear polarization density of the medium can be seen as
the source for the SH-field. The nonlinear polarization density and the non-
linear susceptibility χ(2) are related by PNL,i = ε0χ

(2)
ijkEjEk, where Ei is the

electric field of the fundamental wave. When χ(2) changes its sign, the sign
of the nonlinear polarization density also changes and thus the sign of the
SH-wave, resulting effectively in a phase jump of π. By periodically poling of
the crystal the SH-waves of the individual domains interfere constructively
along the whole crystal, greating a macroscopic harmonic wave. As strictly
speaking the fundamental and harmonic wave are not phasematched this
method is called quasi-phasematching.
To fabricate PPLN the ferro-electric property of lithium niobate is utilized.
As already mentioned above lithium niobate has an inherent electric dipole
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oxygen

niobium

lithium

Figure 2.6: Schematic illustration of the crystal lattice of lithium niobate in
both possible configurations. By applying a proper electric field one config-
uration can be transformed into the other and the nonlinear susceptibility
changes its sign. The arrows correspond to the ones in figure 2.4. (Picture
taken from [23].)

moment, to which the crystal structure is orientated. The crystal structure
and thus the orientation of the anisotropic properties of the crystal can be
changed by changing the direction of the poling of the crystal. When the pol-
ing is changed contrary to the previous orientation of the crystal, the metal
ions change place (see figure 2.6) and the crystal ends up in a crystal, that is
mirrored relative to the initial crystal by the plane perpendicular to the ap-
plied electric field. The nonlinear susceptibility for example then changes its
sign. This change in sign can be explained formally by using the properties
of a tensor of third rank like χ(2) under a coordinate transformation σ = σij

that accomplishes the mirroring:

χ̃
(2)
ijk = χ

(2)
lmnσliσmjσnk

where the mirroring matrix is given by

σ =

 1 0 0

0 1 0

0 0 −1
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For the component χ̃
(2)
333 of the crystal with changed poling this gives:

χ̃
(2)
333 = χ

(2)
333σ33σ33σ33 = −χ

(2)
333

So changing the polarization of the crystal effects the nonlinear susceptibility
to change sign.
Periodically poled structures are realized by fabricating ferro-electric domains
with alternating polarity. In lithium niobate the poling is done by applying
an electric field of about 20kV/mm. The length of the domains is determined
by the lateral dimensions of the auxiliar electrode structure, that is used to
apply the electric field. Starting point is a homogenious polarized crystal,
into which a rectangular modulated susceptibility is created by a periodic
electrode structure with a certain period length. More information about
the fabrication of PPLN can be found in [26]. The resulting spatial depen-
dence of the nonlinear susceptibility is rectangular and it is permanently
imprinted in the crystal even when the electric field is removed.
At the end of this section two effects, that appear in lithium niobate and that
are also relevant for second-harmonic generation, should be posed. These are
the photo-refractive effect and an effect called Green-Induced InfraRed Ab-
sorption (GRIIRA).
The photo-refractive effect describes the change of the refractive index of a
medium due to the presence of light: When a green light beam propagates
through lithium niobate it has been observed, that the profile of the beam
became distorted after some time [31]. This distortion is due to a change of
the refractive index. The distortion is stored in the medium for several days
and can be erased by illuminating the crystal completely with a constant
intensity. The effect is caused by impurities of Fe-iones that enter the crystal
due to imperfections during the growing of the crystal. The energy levels
of these Fe-impurities lie between the valence and the conduction band of
lithium niobate and their electrons can easily be excited to the conduction
band. The excited electrons in the conduction band are redistributed by
different transport mechanisms and cause a charge depletion modulation to
build up. The electric field caused by this charge depletion modulation ef-
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fects the refractive index of the medium to change via the electro-optic effect
(Pockels-effect). A simplified theoretical treatment of the photo-refractive
effect is given in [22] and more details can be found in [31, 32]. The photo-
refractive effect can be minimized by keeping the lithium niobate crystal at
elevated temperatures, because with increasing crystal temperature the mo-
bility of of the charge carriers increases and they recombine faster, so that no
charge depletion modulation can build up. Another way to prevent photo-
refraction in lithium niobate and to allow working at room temperature is
by doping the crystal with Mg [35].
The second effect, that is appearing in lithium niobate and that disturbs
second-harmonic generation here, is Green-Induced InfraRed Absorption (GRI-
IRA): Due to the band gap of about 4eV in lithium niobate the absorption of
infrared light from the ground state is low (α =0.1%/cm). But when green
light is present, electrons due to Fe-impurities are excited to energy levels in-
between the band gap, from where they can be excited further by absorbing
infrared light. So this effect causes an additional decrease of fundamental
power and thus influences the conversion efficiency of second-harmonic gen-
eration (see section 3.2.4). For more profound information about GRIIRA
see for example [38]. Similar to the photo-refractive effect GRIIRA can be
minimized by high crystal temperatures or by doping of lithium niobate with
Mg [35].
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Chapter 3

Experimental part

3.1 Setup of the single-pass SHG arrangement

with PPLN

To keep things simple we set up the frequency doubling arrangement as a
single pass SHG1 system. In such a system the fundamental pump beam is
focused into the nonlinear crystal and passes the medium just once. Further
you do not have to build and stabilize a cavity, but to reach the high electric
fields necessary for nonlinear optics, a source of sufficient high fundamental
power is needed.
In this setup shown in figure 3.1 a self made fiber-amplifier2 delivers funda-
mental power with wave length λ1 = 1064nm of up to over 10W.
To align the fundamental beam high power mirrors which are highly reflec-
tive at the fundamental wavelength are used.
The low order (λ/2)-waveplate in front of the focussing lens is mounted ro-
tateable to allow the adjustment of the polarization of the fundamental light.
A standard plano convex lens (f = 75mm) of Casix with an AR-coating at
the fundamental wavelength focuses the fundamental beam into the crystal.
The plane side of the lens is orientated to the crystal to minimize spherical
aberration, although for the occurring beam diameter and waist spherical

1Abbreviation for second-harmonic generation, that is frequency doubling.
2For more details see section 3.1.2.
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aberration should play a minor role.
The nonlinear medium used in this setup is lithium niobate. To get harmonic
light out of the crystal Quasi-Phase-Matching (QPM) is used by periodically
poling of the ferro-electric medium. Details of this method are explained
in the theory part in subsection 2.4.1. To prevent the PPLN3-crystal from
photo-refractive damage it must be kept at temperatures between 160◦C and
200◦C and thus it is fixed in a small oven. The oven is screwed on a mount
that ensures tilting around the horizontal transverse and the vertical axis
and allows limited adjustment in all three directions of space. The necessary
degrees of freedom of the oven together with the crystal can so be well ad-
justed.
A lens behind the oven is used to (re)collimate the fundamental and har-
monic beam. As there was no lens with AR coating for 1064nm and 532nm
available at this time, an uncoated lens is used to keep reflection losses low.
A dielectric mirror separates the fundamental and harmonic light: 99.8% of
the green light is reflected and 86% of IR light is transmitted.
For efficient SHG it is necessary to adjust the polarization and the focusing

of the fundamental beam as well as the temperature of the crystal. The de-
pendences of these parameters and measurement results will be discussed in
some detail in the following subsections.
But first the necessary elements like the PPLN-clip, the fiber-amplifier and
the oven will be discussed in some detail.

3.1.1 A brief description of the PPLN-clip

The nonlinear crystal used to convert the fundamental light with wavelength
λ1 = 1064nm into green light with wave length λ2 = 532nm is congru-
ently grown lithium niobate, which has a nonlinear susceptibility coefficient
χ

(2)
333 = 34.4pm/V [33].

There are three gratings on the crystal with different poling periods (6.58µm,
6.54µm, 6.50µm), that allow frequency conversion by QPM for fundamental
light of wavelength between 1059.8nm and 1067.6nm at crystal temperatures

3Abbreviation for periodically poled lithium niobate.
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PPLN-crystal

dichroitic mirror
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Figure 3.1: The schematic setup of the frequency doubling arrangement. It
is implemented as a single-pass-configuration, simply focusing fundamental
light of wave length λ1 = 1064nm into the PPLN-crystal. Due to the nonlin-
ear property of the medium the invisible fundamental light (IR wavelength
1064nm) is converted into bright green light of wave length λ2 = 532nm.
The method to get harmonic light out of the crystal is called Quasi-Phase-
Matching (QPM).

of about 160◦C, 180◦C and 200◦C respectively. All QPM temperatures are
above 150◦C which should minimize the effects of photo-refraction4 and GRI-
IRA5 inside the crystal.
Stratophase produces the periodically poling by depositing periodic electrode
structures lithographically on a lithium niobate wafer. Then for some mil-
liseconds a voltage is applied that generates a very large electric field of about
22kV/mm. Due to the ferro-electric property of lithium niobate the applied
electric field periodically inverts the crystal structure and thus the nonlinear
susceptibility of the crystal (see section 2.5). The periodic structure is per-
manently imprinted into the crystal, because for flipping of a domain a lot
of energy would be needed. By careful control of the applied voltage they
achieve with this method that the fraction of periods that are merged or
missing is lower than 5%. The grating next to the saw cut reference mark

4For a brief description of the photo-refractive effect see section 2.5.
5Abbreviation for Green-Induced InfraRed Absorption, see section 2.5.
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has the largest poling period.
Each grating is 0.5 mm wide, 20 mm long and is separated by the neighbour-
ing one by 0.2 mm.
The crystal itself is 10mm wide 0.5 mm thick and 20 mm long. Its input
and output facets are perpendicular to the gratings within ±0.15◦ and the
parallelism between the facets is within ±5′.
The high refractive index of lithium niobate (n>2)6 causes a high reflectivity
when light enters or leaves the crystal. For light incident perpendicular on
the crystal facet the reflectivity is estimated to:

na n

R =

(
na − n

na + n

)2

≈
(

1− 2

1 + 2

)2

≈ 10% (3.1)

na ≈ 1... refractive index of air
n ≈ 2... refractive index of lithium niobate

Therefore to minimize reflection losses, the two facets are AR-coated:
The input facet has a rest reflectivity of less than 0.5% for the fundamental
input wavelength of 1064 nm and the output facet has a rest reflectivity of
less than 0.5% at the converted wavelength of 532nm, whereas for the funda-
mental wavelength of 1064nm the output facet shows quite a high reflectivity
of 20%.
Lithium niobate is an anisotropic medium in which the refractive index as
well as the nonlinear susceptibility depend on the direction of the wavevector
~k and the polarization of the electric field ~E of a propagating wave in the

6As already mentioned in section 2.5 for the wavelength of 1064nm the ordinary index
is no = 2.23 and the extraordinary index is ne = 2.17.
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medium. The coefficients of the tensors nij and χ
(2)
ijk apply to the principal

axis of the crystal. For calculations in an uniaxial crystal like lithium niobate
it is sufficient to know the orientation of the optical axis of the crystal. The
optical axis of the crystal is orientated as shown in figure 3.2.

optical axis

n ( )e q no

0.5

20.0

10.0

0.5 0.2

G1 G2 G3

kz

Figure 3.2: The lithium niobate crystal is about 20 mm long, 10 mm wide
and 0.5 mm thick. The fundamental beam must be focused along one of the
three gratings in the middle of the crystal, so that the fundamental wave
propagates along a principal axis of the crystal with its polarization parallel
to the optical axis of the crystal. Thus the fundamental wave propagates as
an extraordinary wave. The schematic k-surfaces for ordenary and extraor-
denary propagation and the principal axis are orientated as shown in the
figure. For a negative uniaxial crystal like lithium niobate no > ne.

To achieve high conversion it is necessary to work at high intensities of fun-
damental light. But the intensity should not exceed the damage threshold of
the crystal given by 0.5 MW/cm2 or higher.
To avoid crystal damage it should not be heated or cooled faster than 10◦C/min
and the crystal temperature should not exceed 220 ◦C.
To ease the handling of the crystal it is mounted on a clip that consists of an
alignment body, a glass-window and retaining springs, which press the two
parts together.
It is important to keep the facets clean and that the adjustment of the crys-
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retaining spring

alignment body

LiNbO -crystal3glass

Figure 3.3: The crystal is mounted on a clip that consists of the alignment
body, a glass-window, the lithium niobate crystal and retaining springs.

tal is done just with low fundamental power (we used some 10 mW) because
local heating of the crystal due to dust or deadjustment of the fundamental
beam at high powers can result in crystal damage.

3.1.2 The home-built fiber-amplifier

This chapter serves to briefly explain the functional principle of the fiber-
amplifier, which delivers the fundamental power necessary for the frequency-
doubling arrangement. Beside this the most relevant components are de-
scribed and the characteristics of the amplified output beam will be given.
This home-built7 fiber-amplifier utilizes an amplification of 1064nm 0.5W
narrow line width seed-light up to an output power of over 10W of linear
polarized light single mode with a TEM00 Gaussian mode and with a long
term power stability of 0.4%/h at the output power level of 10W. The spec-
tral linewidth and the frequency stability of the amplified output light is
determined by the properties of the seed light. The schematic setup of the
fiber-amplifier is shown in figure 3.4. The heart of the amplifier is the active
fiber, in which the seed-light is amplified. This fiber (PLMA-YDF-20/400)
was fabricated by Nufern. The specification means that it is a Polarization-
Maintaining Large-Mode-Area Ytterbium-Doped Double-Clad fiber.

7Our fiber-amplifier was designed by H.C. Nägerl and built by M. Theis and F. Lang.
For further details see [39].
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active fiber

pump outpump in

beam dump

seed inpower out

dichroitic mirror

Figure 3.4: Simplified schematic setup of the fiber-amplifier. The seed and
the pump light propagate in opposite directions. the advantage of this is,
that there is no pump light at the output. The coiling of the active fiber is
used to suppress higher order modes, so that the amplified light leaves the
fiber single mode with Gaussian beam profile. To yield 10W of amplified
light about 0.5W of seed light and about 25W of pumping light are used.

The doping of the fiber core with the rare earth element Ytterbium is good
for amplification of light with a wavelength of about 1µm. There are also ac-
tive fibers available with other dopants like Erbium, Thulium etc, that allow
amplification of other wavelengths.
The increased mode field diameter of Large-Mode-Area (LMA) fibers
(core/cladding: 20µm/400µm) compared to the dimensions of standard fibers
(core/cladding: 10µm/125µm) is useful for generating high cw powers be-
cause detrimental effects of various nonlinear interactions such as stimulated
Brillouin scattering (SBS) are reduced.
While the cladding acts as a waveguide for the pump light the core is the
active region, where the pump light is absorbed by the rare earth ions. Due
to the resulting population inversion lasing occurs in the core. The core also
defines the transverse modal structure and the resulting beam quality of the
amplified light.
The fiber used in our amplifier has a length of about 5m and reaches an
amplification per meter of about 4/m (also see figure 3.6). The polarization
maintaining property of the fiber ensures that the amplified light is linearly
polarized. The seed light of wavelength 1064nm is delivered by the ultra-
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Ytterbium doped core

inner cladding

outer cladding

coatingpump light

Figure 3.5: Schematic design of the active fiber. The pump light is absorbed
by the rare earth ions in the core and is converted into laser light. The double
clad structure acts as a wave guide for the pump light.

stable cw single-frequency Mephisto from Innolight. The properties of the
seed light concerning its spectral linewidth (1kHz/100ms) and its frequency
stability (1MHz/min) determine the corresponding properties of the ampli-
fied light at the output of the amplifier.
As the source for the pump light with a wavelength of about 980nm (shorter

than the wavelength of the seed light ) a high-power diode laser from Jenop-
tics is used. It must be temperature controlled to guarantee a stable operation
concerning its output power and wavelength. The pump power can be tuned
easily by tuning the current of the power supply of the laser stack. For our
amplifier configuration a pump power of up to 25W is used. A home-built
controller-box regulates and monitors the relevant parameters of the fiber-
amplifier. It regulates the temperature of the pumping laser as well as it
monitors the presence of the necessary power level of the seed light. If the
latter is to low, the pumping laser is switched off for safety reasons, because
running the amplifier at high pumping powers when not enough seed light
- that clears away the absorbed energy - is present would cause a damage
of the fiber. As the fiber-amplifier arrangement is designed for a seed light
of about 0.5W, the controller-box also switches off when the pump power
exceeds 25W.
When the amplifier was tested for the first time, oscillations of the output
power were observed always before the fiber got damaged. Thus an addi-
tional protection was implemented, that causes the pumping laser to switch
off whenever an oscillation of the output light occurs. Thus at the one hand
the fiber was not damaged anymore, but on the other hand the protection is
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Figure 3.6: Shown are the dependences of the output power of the amplified
light on the power of the pumping light (top) and on the current of the power
supply of the pumping laser (bottom). The power of the seed light is about
0.5W. For pump powers and currents larger than the corresponding threshold
of 2W and 5A respectively the output power increases approximately linearly
with the slopes of 0.48W/W and 0.73/A respectively.
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Figure 3.7: The long term stability of the output power of the fiber-amplifier
shows a slight decrease of 0.4%/h.

sensitive enough to cause the amplifier to switch off when mechanical vibra-
tions occur (for example when putting some optics on the table in the vicinity
of the amplifier). The dependence of the output power of the amplifier on
the pump power and on the current of the power supply of the pumping laser
is plotted in figure 3.6, whereas the long term stability at an output power
of 10W is shown in figure 3.7. The amplifier delivers linear polarized light,
single mode with a TEM00 Gaussian beam profile.

3.1.3 Characteristics of the oven for heating the PPLN-

clip

To minimise photo-refractive damage of the crystal and to reduce the effect
of Green-Induced-InfraRed Absorption (GRIIRA) Stratophase recommends
keeping the crystal at temperatures above 160◦C. To achieve efficient quasi-
phase-matching it is necessary to tune and regulate the temperature.
Therefore the crystal must be kept in an oven, which is designed for use of
the PPLN-clip of Stratophase and is a commercially available product.
The clip is fixed in the oven above the heating element by retaining bolts
and can be removed and replaced easily. As the PPLN-clip is merely pressed
onto the heating plate, thermal contact between heating plate and clip seems
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not to be good.
In the oven there is a 12-24V 3.6-15W heating element, that allows to heat
the crystal to temperatures ranging from ambient room temperature up to
about 200◦C. A PT100 resistance is used to measure the temperature. It
is glued on the socket of the oven’s heating plate. The drawback of this is
that the PT100 is quite far away from the crystal and as the thermal contact
between PPLN-clip and heating plate seems not to be good, it is thus not
the actual temperature of the crystal that is measured and regulated. This
gets crucial when high powers are involved (see section 3.2.3).
The oven is insulated, so that even when it is operated at 200◦C the outside
of the oven can easily be handled without any precaution. Small slits at the
front and the back of the oven’s thermal isolation allow the fundamental and
harmonic beam to pass.
To adjust the PPLN clip relative to the fundamental input beam the whole

Figure 3.8: The oven is screwed on a mirror mount for tilting the crystal
and the oven as a whole relative to the input beam. An additional 3D-stage
allows to adjust the crystal position in all three directions of space (x, y,
z). The direction of propagation of the fundamental (λ1 = 1064nm) and the
harmonic (λ2 = 532nm) beam is schematically indicated by arrows. (For
taking this image the lid of the oven was removed.)

oven is mounted on a mirror mount, which itself is fixed on a 3D movable
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stage. Thus the grating of choice can easily be adjusted and you are able to
optimize the position of the fundamental beam waist in the crystal.
The oven is connected to a TC200 temperature controller of Thorlabs. It
allows to control the temperatures from ambient room temperature up to
about 200◦C in steps of 0.1◦C. The values for the P, I and D parts are
programmable and the controller can be operated in two different modes:
In normal mode the controller regulates the temperature to the present set
value, that can be varied any time.
Cycle mode offers the opportunity to program a cycle that consists of up to
five steps. During operation you can pause and continue the cycle any time,
but it is not possible to change any set value.
As the heating rate should not be faster than 10◦C/min to prevent crystal
damage cycle mode is chosen to ramp up the crystal from room temperature
close to the QPM-temperature, where the cycle is paused. Cycle mode is
not useful when you want to fine tune the crystal temperature, so for this
purpose it must be changed to normal mode. It is easily possible to change
from cycle mode to normal mode.
After the experiment when the crystal should be cooled down, the controller
must be changed back to cycle mode again to ramp the crystal down slowly,
because otherwise when the controller is just disabled the oven would cool
down much faster than the allowed maximum value of 10◦C/min (see figure
3.9). Unfortunately it is very unpleasant to change from normal mode to
cycle mode because the heater must be disabled, the cycle has to be set and
the heater must be enabled quickly again within some seconds.
To provide power at least for the time for ramping down the oven if a power
failure happens, an UPS (uninterruptible power supply) is plugged between
the mains connection and the TC200. The UPS produces an acoustic signal
if a power failure happens and the oven must be ramped down manually.
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Figure 3.9: Left top: The diagram shows the measured thermal relaxation
T(t) (solid line, left y-axis) of the oven when the heating element is switched
off at a temperature of 200◦C. The cooling rate c (crosses, right y-axis) ex-
ceeds 10◦C/min until the oven temperature is fallen to about 110◦C. To
prevent damage of the crystal the cooling and heating rate should not be
higher than 10◦C/min. Left bottom: Shown is the thermal relaxation of the
oven in a logarithmic plot, from which can be seen that whereas at a oven
temperature of about 200◦C the oven cools down with a typical cooling time
τ = 7.5min (dashed line) at a oven temperature of 80◦C it cools down with
a typical time τ = 12.7min (dotted line). τ is determined from exponential
fits at the corresponding temperature range. Right top: To ramp the crystal
temperature T(t) (solid line, left y-axis) up to 200◦C in a controlled way a cy-
cle step with starting point at 20◦C and an end point of 200◦C and a duration
of 30min is programmed. The measurement confirms a constant heating rate
h (crosses, right y-axis) of about 6◦C/min. Right bottom: To ramp the oven
temperature T(t) (solid line, left y-axis) down to ambient room temperature
in a controlled way the reverse cycle (200◦C down to 20◦C within 30min) is
used. The temperature decreases with a rate c(t) (crosses, right y-axis) of
about 6◦C/min until about 80◦C, where no controlled ramping is possible
anymore because the oven cannot be cooled actively and the relaxation rate
of the oven is smaller than 6◦C/min.
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3.2 Measured dependences of SHG with PPLN

3.2.1 Optimized polarization of the fundamental light

The lithium niobate crystal is a dispersive anisotropic nonlinear medium.
Its linear optical properties like the refractive index as well as its nonlinear
properties like the nonlinear susceptibility χ(2) depend on the wavelength,
the direction of the wave vector and the polarization of a propagating wave
in the medium. So describing optics in such a medium in the general case
is quite a complex task compared to the case of an isotropic nondispersive
medium.
For efficient SHG of a given fundamental wavelength the optimum combina-
tion of the wave vector and the polarization of the fundamental light has to
be found, so that three important conditions are fulfilled:

• PHASE MATCHING of the fundamental and harmonic wave guaran-
tees that harmonic light generated at different crystal sites interfere
positively and a macroscopic harmonic wave can build up.

• Light beams have a limited diameter and it is therefore necessary that
fundamental and harmonic beam propagate in the same direction - that
is the direction given by the Poynting vector - to allow the macroscopic
harmonic wave to be built up over the whole crystal length. Thus
WALK OFF between the fundamental and harmonic wave must be
prevented.

• Of course the polarization of the fundamental light should be chosen in
the direction that offers the highest possible value for the NONLINEAR
COEFFICIENT χ

(2)
ijk of the medium.

In lithium niobate for example it is possible to prevent walk off and get the
highest possible value of the nonlinear susceptibility by choosing the right
direction of the wave vector and the right polarization of the fundamental
light. Even though due to dispersion in the medium the third necessary con-
dition of phase matching is not fulfilled it is possible to generate harmonic
light by Quasi-Phase-Matching (QPM). The crystal is already designed for
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this direction of the wave vector but the dependence of the converted power
on fundamental light with different linear polarization can be analysed.
In the present setup the fundamental light propagates along a principal axis
of the crystal perpendicular to its optical axis and has a polarization parallel
to the optical axis of the crystal (see figure 3.2). Thus in the crystal the
fundamental light propagates as the extraordinary wave and behaves like it
would in an isotropic medium with the wave vector and the Poynting vector
aiming in the same direction and its direction of polarization does not change
along the crystal.
Because of the chosen polarization of the fundamental light, the only non van-
ishing part of the nonlinear polarization of the medium χ

(2)
333 creates harmonic

light that propagates along the same direction also with its Poynting vector
parallel to its wave vector and constant direction of polarization like the fun-
damental light. So this direction of the wave vector and this polarization of
the fundamental light automatically causes the harmonic and fundamental
wave to propagate in the same direction and so walk off is prevented. To
check the dependence of the converted power on arbitrary direction of polar-
ization the angle of polarization of the fundamental light is varied by tilting
the (λ/2)-waveplate in front of the crystal and measuring the created green
power. Of course for this measurement nether the angle of incidence onto
the crystal nor the focusing of the fundamental light was changed and the
crystal temperature was held fixed at the optimum temperature.

As can be seen from figure 3.10 the conversion decreases from its best
value for fundamental light polarized parallel to the optical axis of the crys-
tal (α = 0) down to the lowest value for light polarized perpendicular to the
optical axis of the crystal (α = π/2), where no green light was created at all.
For the latter there are two obvious reasons why no harmonic light is con-
verted. Fundamental light with this polarization (α = π/2) faces smaller
nonlinear coefficients χ

(2)
311 = 5.95pm/V and χ

(2)
211 = 3.07pm/V and its refrac-

tive index and thus the dispersion is different, so that the poling length of
the grating does not ensure good quasi-phase-matching anymore.
To describe the dependence of the converted power for arbitrary angles of
polarization the electric field E1 of the incident fundamental light is split into
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Figure 3.10: Dependence of the converted output power on the polarization
of the fundamental light. For fundamental input light of constant power
of 1W but different linear polarization the converted output power P2(α) is
measured. The measured values (+) are normalized to the maximum value
P2(α = 0) and plotted against the polarization angle α, which is defined
as the angle between the direction of the fundamental electric field and the
optical axis of the crystal. The straight line shows a calculated cos4(α)-
behaviour, which describes the experimental results quite well. From this
follows that effectively just the component of the fundamental light that is
parallel to the optical axis of the crystal is converted into green light.
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the components E1,‖ and E1,⊥ parallel and perpendicular to the optical axis
of the crystal respectively. It is assumed that this components can be treated
independently from each other, which is not at hoc clear because of the non-
linear relation between the harmonic polarization density of the medium and
the fundamental electric field (see equation 2.20). Following the assumption
above, the generated green power P2 for arbitrary angles of polarization α of
the fundamental light can be calculated as:

E1
E1||

a

E1z

optical axis

P2 ∝ P 2
1,‖

P1,‖ ∝ E2
1,‖ = (E1 ∗ cos α)2

=⇒ P2 ∝ cos4 α

This function is plotted together with the normalized measurement re-
sults in figure 3.10. The calculated behaviour agrees quite well with the
experimental results and thus confirms that the assumption made above is
useful to describe the dependence of the converted power on the polarization
of the fundamental light.
In conclusion for this PPLN-crystal it is important to polarize the funda-
mental light parallel to the optical axis of the crystal to achieve the highest
possible conversion into green light.
For this polarization the emitted rest of the fundamental light and the gener-
ated harmonic light were measured behind the crystal to be polarized parallel
to the optical axis of the crystal, as it should be following the explanations
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made earlier.

3.2.2 Optimum focusing for high conversion

Nonlinear effects like second-harmonic-generation appear when high electric
fields E1 of fundamental light are involved. The higher the available intensity
of the fundamental light is the more harmonic light is generated. As there
is just a limited amount of fundamental power available the electric field is
increased by focusing into the crystal.
In this subsection the optimal focusing will be determined and a simple8

model will be worked out that describes the dependence of conversion on the
focusing of the fundamental light. This is done at low power of fundamental
light and it is assumed that the results are valid also for high powers.
As the starting point for the development of the model the following situa-
tion is considered:
A beam with fundamental frequency ν1 and a power P1 propagating through
the lithium niobate crystal with its wave vector parallel to a principal axis
of the crystal. Because the polarization of the fundamental light is choosen
parallel to the optical axis of the crystal the wave faces a refractive index n1

and a nonlinear susceptibility χ
(2)
333. For this case of the wave vector direction

and polarization the calculation is equal to the one for an isotropic medium.
The beam diameter of the fundamental beam is supposed to be constant all
over the crystal and the intensity is constant anywhere within the fundamen-
tal beam, so that there is a flat intensity profile across the beam diameter.
The generated harmonic beam propagates collinearly to the fundamental
beam and has the same beam diameter 2ω like the fundamental beam and a
flat intensity profile.
The polarization of the harmonic beam is also parallel to the optical axis of
the crystal and the refractive index for the harmonic light is n2.
The converted power P2 at the end of the crystal with length L is then given
by the generated harmonic intensity I2 from equation 2.13 and the cross

8Of course it is possible to calculate the dependence on focusing by brute numerical
calculation, but I would like to develop a simple analytic model here and see how far we
will get with that.
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section area πω2:

P2 = (2/π)2 I2πω2 =

(2/π)2 I2
1

2π2ε2
0η

3
0ν

2
1L

2

n2n2
1

(
χ

(2)
333

)2

πω2 =

P 2
1

πω2

2π2ε2
0η

3
0ν

2
1L

2

n2n2
1

(
(2/π) χ

(2)
333

)2

(3.2)

The factor 2/π in front of the nonlinear coefficient in the third line ac-
counts for the fact that for QPM the effective nonlinear susceptibility is re-
duced compared to the case of perfect phase matching (see subsection 2.4.1).
As exlained in sections 2.3 and 2.5 χ

(2)
333 was used as the relevant nonlin-

ear susceptibility. In the last line the relation for the fundamental intensity
I1 = P1/(πω2) was used.
Of course the fundamental power decreases along the crystal when harmonic
light is created but as long as the converted power can be neglected compared
to the fundamental power the assumption of a fundamental beam with con-
stant power all along the crystal will be valid. So concerning this the above
calculation should give a good approximation because we want to optimize
the focusing at low fundamental power anyway.
The model so far predicts that the converted power P2 increases if the di-
ameter of the beam decreases. (Note that in the last line πω2 is in the
nominator.) The explanation for this is that the smaller the beam diameter
is prepared the higher gets the intensity and thus the nonlinear polarization
of the medium as the source for the harmonic light increases and more har-
monic light is generated.
This is valid as long as the diameter of the beam is constant all over the
crystal, which is the case when the fundamental beam is loosely focused into
the crystal. But when the focusing is tight we must take Gaussian optics
into account. As waist ω0 and divergence ω0/z0 of a beam are interrelated
by ω0

ω0

z0
= λ/π it follows that the smaller the waist of a beam the higher its

divergence will be. So for tight focusing the intensity in vicinity of the waist
is high but outside the waist the intensity drops down quickly. Consequently
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the local conversion in vicinity of the waist increases but summed over the
whole crystal conversion would decrease when the focusing is too tight.

L L

z (n) > L/20 z (n) < L/20

Figure 3.11: When Gaussian optics is taken into account the focusing of the
fundamental beam can be optimized. Left: When the fundamental beam
is loosely focused into the crystal its divergence is low and it propagates
through the medium like a beam with constant beam diameter. As the beam
diameter is big the intensity of the fundamental light inside the crystal is low
and thus conversion is small. Right: When the focusing of the fundamental
beam is too tight, the intensity at the waist is high but due to the high
divergence the intensity drops down outside the Rayleigh range. Effectively
not the whole crystal length is used for conversion.

Thus there should be an optimum focusing somewhere between loose and too
tight focusing that offers a compromise between a small waist and a small
divergence.
In a first approximation the Rayleigh range of a beam is seen as the region
that due to its high intensity generates all of the harmonic power. Then for
a rough estimation of the optimum focusing it is assumed, that the funda-
mental beam should be prepared in the way, that its Rayleigh length z0(n)

equals half the crystal length. When the refractive index n of the medium is
taken into account the corresponding waist can be calculated as:

z0(n) = n
ω2

0π

λ
(3.3)

Where n denotes the refractive index in the medium for the corresponding
wave with the wavelength λ.

−→ ω2
0 =

z0(n)λ

nπ
=

(L/2)λ1

n1π
=≈ (40µm)2
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Where L = 2cm, λ1 = 1064nm and n1 = 2.17. This estimated value of
ω0 = 40µm for the optimum waist differs from the experimentally obtained
value of about ω0,opt = 30µm, which shows that the optimum waist is smaller
than the one estimated by the model above. The experimental results are
plotted in figure 3.12.
It would be fine if the optimum waist could be estimated more accurately and
if the dependence of the converted power on the focusing could be described
for loose and for tight focusing at once. For that purposes the model above
will be improved in the following.
On the one hand it is clear that a beam with a big beam diameter lacks in
intensity and thus conversion is low. On the other hand too tight focusing
causes - due to the involved large divergence of the beam - an increasing
beam diameter outside the Rayleigh range, so that the intensity outside the
focus is too low to contribute considerably to the generated harmonic power.
That is why I try to take both facts into account by substituting in the
model above (equation 3.2) the averaged intensity 〈I1〉 of a Gaussian beam
with given waist ω0 for the constant beam intensity I1, and the averaged
cross-section area π 〈ω2〉 of the Gaussian beam for the constant cross-section
area πω2.9 The improved model then becomes:

P2 = 〈I1〉2
2π2ε2

0η
3
0ν

2
1L

2

n2n2
1

(
(2/π) χ

(2)
333

)2

π
〈
ω2
〉

=

P 2
1

π 〈ω2〉
2π2ε2

0η
3
0ν

2
1L

2

n2n2
1

(
(2/π) χ

(2)
333

)2

(3.4)

In the last line the relation for the fundamental intensity 〈I1〉 = P1/(π 〈ω2〉)
was used, which brings π 〈ω2〉 into the nominator. The average square 〈ω2〉
of the beam radius over the whole crystal length L is calculated with the
assumption for the beam radius ω(z) = ω0

√
1 + (z/z0)2 by:

9At this time doing so is just a guess. The comparison with the experimental results
later on will show if this was a good guess.
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(
L
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)2
)
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ω2
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1

12

(
Lλ1

n1ω0π

)2

To yield the result in the last line the relation 3.3 between waist ω0 and
the Rayleigh length z0(n) for a beam with wavelength λ in a medium with
refractive index n was used, where λ = λ1 = 1064nm and n = n1 = 2.17. The
calculated behaviour (equation 3.4) is plotted with the experimental results
in figure 3.12, thereby χ

(2)
333 was used as a fit parameter. A least-square fit was

implemented to determine the best value for this single fit parameter. From
this fit the value for the nonlinear coefficient χ

(2)
333 = 33pm/V was obtained,

which agrees within the error bars quite well with the corresponding value of
χ

(2)
333 = 34pm/V for lithium niobate given in [33].

In the vicinity of the optimum waist the new model predicts the measurement
results quite well. The experimentally found optimum waist ωopt = 30µm

can also be calculated by the new model. Due to the dependence of the
generated harmonic power P2 (equation 3.4) on 〈ω2〉, which depends on the
waist ω0 of the focused fundamental beam, the optimum waist must fulfill
the condition10:

d

dω0

〈
ω2(ω0)

〉
=

d

dω0

(
ω2

0 +
1

12

(
Lλ1

n1ω0π

)2
)

:= 0

From this necessary condition the optimum waist can further be calculated

10This condition is simply obtained by determining the extremum of P2(ω0) from equa-
tion 3.4.

54



0 50 100 150
0

5

10

15

20

waist ω
0
 in [µm]

gr
ee

n 
po

w
er

 P
2 in

 [m
W

]

co
nv

er
si

on
 e

ffi
ci

en
cy

  κ
 in

 [%
 c

m
−

1  W
−

1 ]

1

0.5

Figure 3.12: The dependence of the converted power P2 on the focusing of
the fundamental input beam shows an optimum at a waist ω0,opt = 30µm.
For the measurement a constant fundamental input power P1 = 1W is used.
The solid line shows the calculated results obtained with the model described
in the text with the value for the nonlinear coefficient χ

(2)
333 = 33pm/V . The

model takes Gaussian optics into account. Choosing the focusing in the way
that the Rayleigh length of the fundamental beam in the crystal is half the
crystal length is a good rule of thumb to get a rough estimation for the
optimum waist (this estimated value of ω0 = 40µm is marked by the dotted
vertical line in the diagram). The right y-axis gives the corresponding values
for the conversion efficiency κ := P2/(P

2
1 L), with the crystal length L = 2cm.
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to:

−→ 2ω0 −
2

12

1

ω3
0

(
Lλ1

n1π

)2

= 0

−→ ω0,opt =
4

√
1

12

(
Lλ1

n1π

)2

=

4

√
1

12

(
2 ∗ 104 ∗ 1.064

2.17 ∗ π

)2

µm ≈ 30µm

When using the optimum focusing for powers of the fundamental light up
to 10W, the damage threshold of the crystal given by 0.5MW/cm2 should
not be exceeded. For a fundamental power of 10W and a beam waist of
ω0,opt = 30µm an averaged intensity of P1/(π 〈ω2(ω0,opt)〉) ≈ 0.2MW/cm2and
a peak intensity directly at the waist of 2P1/(πω2

0,opt) ≈ 0.7MW/cm2 are
calculated. In the latter a Gaussian beam profile was assumed.
Unfortunately these values are quite close to and above the lower limit of the
damage threshold and thus the crystal must be handled carefully when high
powers of fundamental light are involved (see section 3.2.4).
The achieved conversion efficiency near optimum focusing is calculated from
the measurement results to about κ := P2/(P

2
1 L) = 0.01W−1cm−1, where

the used values are P2 = 0.02W, P1 = 1W and L = 2cm. This agrees with
the value of κ = 0.01W−1cm−1 given by the manufacturer. As will be shown
in section 3.2.4 this conversion efficiency determined at a fundamental power
of 1W decreases when higher powers of fundamental light are used.
For experimental reasons it is also interesting to know how good the optimum
waist must be prepared to ensure conversion close to the optimum value. To
formulate a general statement on this issue the new model is used again to
get a relation between deviation from the optimum waist and the resulting
deviation from the optimum conversion efficiency11: From figure 3.12 is seen,
that the harmonic power P2 and thus the conversion efficiency κ depends on
the focusing. A Taylor’s series expansion around the optimum waist ω0,opt

leads to:

11Even though the following calculation looks daunting at the first sight, the calculus
follows simple principles, so hang on.
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∆κ =

[
∂κ

∂ω0

]
ω0=ω0,opt︸ ︷︷ ︸
0

∆ω0 +

[
∂2κ

∂ω2
0

]
ω0=ω0,opt

(∆ω0)
2

The first partial derivative of κ vanishes, which is a necessary condition for
an extremum. The second partial derivative of κ can be calculated by use of
equation 3.4, so

κ ∝ 1

〈ω2〉
=⇒

[
∂2κ

∂ω2
0

]
ω0=ω0,opt

∝ − 1

〈ω2(ω0,opt)〉2

(
∂2

∂ω2
0

〈
ω2(ω0)

〉)
ω0=ω0,opt︸ ︷︷ ︸

≈8

Now having ∆κ the relative deviation of the conversion efficiency is calculated
to

=⇒ |∆κ/κ(ω0,opt)| =
8 (∆ω0)

2

〈ω2(ω0,opt)〉2
/

1

〈ω2(ω0,opt)〉
= 4

(
∆ω0

ω0,opt

)2

Inserting some numbers into this relation it follows that for a conversion
efficiency, which should not deviate by more than 5% from the optimum
value, the waist of the fundamental beam must be in the range of ±10%

of the optimum waist. From this the necessary requirements on the optic
elements and the stability of the setup can be deduced.
For the measurement in figure 3.12 first the relevant parameters of the fun-
damental beam delivered by the fiber-amplifier were determined. The beam
is slightly divergent with a full divergence angle of about 2mrad and has a
beam diameter at the position of the focusing lens of D = (1800± 200)µm.
A fundamental input power of 1W was chosen, that was tested to be low
enough not to damage the crystal but that was high enough to get a good
signal even for not optimized focusing.
For the measurements in figure 3.12 lenses of different focal lengths were used
to prepare different waists and the fundamental power, the crystal tempera-
ture and the direction of polarization parallel to the optical axis of the crystal
were held constant. The respective values of the waists were calculated by
the formula for diffraction limited focusing and the position of each waist
was determined with the waist meter. The calculated waists are listed in the
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f in mm ω0 in µm ∗

50 20
75 30
100 40
150 60
200 80

Table 3.1: For the different focusing lenses with focal length f the calculated
waists ω0 are listed.(∗...calculated for diffraction limited focusing ω0 ≥ 2λ

πD
f ,

λ = 1064nm ...fundamental wavelength, D = 1800µm ...beam diameter at
lens position)

table 3.1.
Crystal and oven as a whole were first placed at this position and fixed on

the optical table, the degrees of freedom of the oven mount then were used
to adjust the fundamental beam through the grating and to fine tune the
crystal orientation and position for maximizing the converted power. The
accuracy with which the position of the waist inside the crystal has to be
adjusted in the direction of beam propagation depends on the focusing. For
loose focusing this adjustment is not as critical as for tight focusing as can
be seen in figure 3.13. This dependence is also predicted by the model above
(compare equation 3.4). The solid lines in figure 3.13 correspond to the values
calculated by the same model, but now the term 〈ω2(ω0)〉 is substituted by
the more general term 〈ω2(ω0, ∆z)〉 - the averaged value of the squared beam
radius over the whole crystal length L for a Gaussian beam of waist ω0 that
is displaced from the middle of the crystal by the distance ∆z:

2w0

Dz

crystal

fundamental beam

The average square of the beam radius along the whole crystal with
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w(z) = w0

√
1 + (z/z0)2 is then

〈
ω2(ω0, ∆z)

〉
:=

1

L

∫ +L/2+∆z

−L/2−∆z

(ω(z))2dz =

1

L

(∫ +L/2+∆z

0

ω2(z)dz +

∫ +L/2−∆z

0

ω2(z)dz

)
= ...

ω2
0

(
1 +

1

12

(
L

z0(n)

)2
)

+ ω2
0

(
∆z

z0(n)

)2

In comparison to 〈ω2〉 from equation 3.5 the second term in the last
line displays the effect of the deadjustment ∆z. So a deviation from the
optimum adjustment (when the focus is in the middle of the crystal) results
in a larger average cross section area of the fundamental beam and thus a
lower conversion.

In this subsection a model was worked out that allows to describe the de-
pendence of the generated harmonic power on the focusing of the fundamental
beam. For the 20mm long PPLN-crystal the optimum waist ω0,opt = 30µm
was found for a fundamental power of 1W at the wavelength of 1064nm.
For this focusing and this fundamental power a conversion efficiency of κ =

0.01W−1cm−1 was achieved. This waist will also be used for fundamental
light power of up to 10W. It was not tested if the optimum focusing depends
on the fundamental input power level. Such a dependence could perhaps
arise from effects that were not considered here like pump depletion or tem-
perature gradients due to local heating of the crystal by absorption.

3.2.3 Dependence of QPM on the crystal temperature

for different powers of fundamental light. An ev-

idence of GRIIRA.

To achieve Quasi-Phase-Matching in lithium niobate of the fundamental and
harmonic wave the nonlinear susceptibility is periodically modulated by peri-
odically poling of the ferro-electric medium. This inverts the crystal structure
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Figure 3.13: The accuracy with which the waist must be adjusted inside the
crystal along the beam propagation axis depends on the focusing of the fun-
damental beam. The diagrams show the dependence of the converted power
on the detuning from the optimum waist-position (waist in the middle of the
crystal). The plotted values are normalized to the corresponding peak value.
(+) denotes measurement results whereas the solid line are calculations ob-
tained with the model explained in the text. Top: For optimal focusing
ω0,opt = 30µm the full half width of the conversion peak is about 16mm and
to ensure a conversion that is within 5% of the optimum value the waist
must be adjusted with an accuracy of about ±2mm relative to the optimum
position. Bottom: For loose focusing ω0 = 80µm the full half width of the
conversion peak is about 80mm and to ensure a conversion that is within
5% of the optimum value the waist must be adjusted with an accuracy of
about ±1cm relative to the optimum position. Thus for tighter focusing the
adjustment of the waist is more critical than for loose focusing.
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of neighbouring damains and so causes the nonlinar coefficient to change sign
periodically (see section 2.5).
It is important that the condition (equation 2.12) between the coherence
length lc, the fundamental wavelength λ1 and the refractive indices n1 of the
fundamental light and n2 of the harmonic light is fulfilled (see sections 2.2.1
and 2.4.1):

lc =
2π

|∆k|
=

2π

|k2 − 2k1|
=

λ1

2 |n2 − n1|
=

λ1

2∆n

This guarantees even in a dispersive medium that the created harmonic fields
from neighbouring domains interfere constructively and a macroscopic wave
of green light can build up.
The gratings on the PPLN-crystal in this setup have period lengths that
allow frequency doubling of fundamental light with a wavelength between
1059.8nm and 1067.6nm. To fulfill the QPM-condition (equation 2.12) for
a given fundamental wavelength within this range the only parameter that
must be adjusted is ∆n - the difference between the refractive indices of fun-
damental and harmonic light.
As the refractive index changes differently with temperature for different
wavelengths, ∆n is temperature dependent and the necessary value for ∆n(T )

can be adjusted by varying the crystal temperature. Thermal expansion
of the crystal with a relative thermal expansion coefficient in the order
of 10−6/◦C 12 can be neglected in comparison to the relative change of
∆n with temperature. The latter can be estimated from figure 3.14 as
(∂(∆n)/∂T )(1/∆n) ≈= 3 ∗ 10−4/◦C. In figure 3.14 the temperature depen-
dence of ∆n = n2 − n1 for the wavelengths of 532nm and 1064nm is shown.
The corresponding values for the extraordinary refractive indices n1 and n2

were calculated by the temperature dependent Sellmeier-equation given in
section 2.5.
For the three gratings on the crystal and the fundamental wavelength of
λ1 = 1064nm the necessary values of ∆n calculated with formula 2.12 and
the expected QPM temperatures taken from figure 3.14 are listed in table

12This value is given by [33] at a temperature of 25◦C. Here it is assumed that the value
of the thermal expansion coefficient does not change much for a temperature of 200◦C.
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Figure 3.14: The difference of the refractive indices between fundamental and
harmonic wave ∆n = n2 − n1 increases with temperature nearly linearly in
the plotted range with a slope ∂(∆n)/∂T ≈ 0.0012/(48◦C) = 0.25∗10−4/◦C.
The temperature dependent extraordinary refractive indices n1 and n2 are
calculated by the Sellmeier-equation in section 2.5. The relative change of ∆n
with temperature is estimated as (∂(∆n)/∂T )(1/∆n) ≈ 3 ∗ 10−4/◦C, where
∂(∆n)/∂T = 0.25 ∗ 10−4 ◦C and ∆n ≈ 0.081 was used. This estimation for
the relative change of ∆n is larger than the thermal expansion coefficient of
2 ∗ 10−6/◦C. Thus fulfilling relation 2.12 for QPM is mainly accomplished
by the temperature dependence of the refractive index difference ∆n and
not due to thermal expansion of the crystal. For each af the three gratings
(G1, G2, G3) on the crystal the necessary refractive index difference ∆n
- calculated by formula 2.12- and the corresponding QPM-temperature are
marked in the diagram.
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G] lc in µm ∆n ∗ TQPM in ◦C ∗∗

G3 6.58 0.08085 154
G2 6.54 0.08135 174
G1 6.50 0.08185 194

Table 3.2: For the different gratings the necessary difference of the
refractive indices ∆n and the resulting QPM-temperature TQPM are
listed.(G]...grating number, lc...poling length, ∗...calculated value with for-
mula 2.12, ∗∗...measured from figure 3.14)

3.2.
The period lengths of the gratings are designed to allow quasi-phase-matching
at elevated crystal temperatures between 160◦C and 200◦C. At such high
temperatures the crystal is prevented of photo-refractive damage (see sec-
tion 2.5), because at high temperature charge carriers, which are generated
by the incident light, have a higher mobility and recombine faster so that no
internal field, that otherwise could affect the refractive index via the electro-
optic effect, can build up.
There are also different methods how the photo-refractive effect can be pre-
vented. For example doping lithium niobate with Mg allows second-harmonic
generation at about room temperature ([35]).

Experimentally the temperature dependence of the converted power for
the corresponding grating was measured by scanning the crystal temperature
and measuring the harmonic green power. All other relevant parameters like
the focusing, the fundamental power and the polarization angle were held
constant. The temperature was ramped with a rate of about 0.4◦C/min -
slow enough to allow the crystal to thermalize. The results of this measure-
ment are displayed in figure 3.15.
The measured QPM-temperatures for the individual gratings of about 163.5◦C,
182.5◦C and 202◦C differ by about 10◦C from the theoretical predicted values
of 154◦C, 174◦C and 194◦C. A possible reason for this quite big difference
is explained in the following: As the predictions from theory should be pre-
cise enough and as the temperature measurement was proved to be reliable
this means that the measured temperature does not correspond to the ac-
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Figure 3.15: On the crystal there are three gratings (G1, G2, G3) with
different poling periods lc (6.50µm, 6.54µm, 6.58µm respectively) resulting
in three different QPM-temperatures, which are measured as 202◦C, 182.5◦C
and 163.5◦C respectively. For a constant fundamental input power P1 = 1W
and loose focusing of ω0 = 80µm the converted output power P2 in the
vicinity of the individual QPM-temperature is shown.
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tual crystal temperature that is measured. The temperature difference could
arise from the fact that the temperature resistor is placed at the socket of
the crystal’s heating plate and is thus not close to the crystal. So strictly
speaking it is the socket temperature that is measured and regulated by the
PID.
As the heating plate of the oven and the alignment body of the clip are made
of gold coated copper with a high thermal conductivity this temperature gra-
dient must arise because of a bad thermal contact between heating plate and
alignment body, which are just pressed onto each other by retaining bolts on
the top of the oven. There cannot be used thermal compound to increase the
thermal conductivity because evaporated material could saddle down at the
crystal facets and could lead to crystal damage when high powers of funda-
mental light are used.
The temperature range in which the conversion does not vanish can be mea-
sured from figure 3.15 to be approximately 2◦C for any grating. This value
agrees with the following theoretical calculation: From figure 2.2 in section
2.2.1 the full width for efficient conversion is obtained:

δ(∆k) =
4π

L

From equation 2.12 can be seen, that ∆k is connected to ∆n by:

∆k =
4π

λ1

∆n

And thus the differential is given by:

δ(∆n) =
λ1

4π
δ(∆k)

The change of ∆n is caused by a change of the crystal temperature T, so
that for small changes it is legal to use:

δ(∆n) =
∂(∆n)

∂T
∆T
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where ∂(∆n)/∂T = 0.25 ∗ 10−4/◦C is obtained from figure 3.14. Putting all
together results in a relation between δ(∆k) and ∆T :

δ(∆n) =
λ1

4π
δ(∆k) =

∂(∆n)

∂T
∆T

With δ(∆k) = 4π/L and ∂(∆n)/∆T = 0.25 ∗ 10−4/◦C the corresponding
temperature range ∆T ≈ 2◦C for efficient conversion is determined.
In principle the QPM-temperature for any of the gratings on the crystal
should be independent of the fundamental pump power. To prove this the
dependence of conversion on temperature was determined for grating G1
with a period length of 6.50µm for fundamental pump powers of 1W and
10W respectively.
The conversion efficiencys κ for each of the two fundamental powers are
plotted against the measured temperature in figure 3.16, where the conversion
efficiency is defined through:

P2 = κP 2
1 L (3.6)

The optimum conversion efficiencys are about 1%W−1cm−1 and 0.7%W−1cm−1

(see section 3.2.4) for pump power of 1W and 10W respectively. The decrease
of the conversion efficiency for high pump powers can be explained by pump
depletion. Each photon of harmonic light that is generated costs two pho-
tons of fundamental light. So an increase of harmonic light along the crystal
goes along with a decrease of fundamental light toward the crystal end. Of
course a reduced fundamental power causes less harmonic power to be gen-
erated and the green output power will not increase with the square of the
fundamental input power anymore. This is considered in the above definition
of κ by allowing the conversion efficiency to be a decreasing function of the
fundamental input power (see section 3.2.4).
Both curves in figure 3.16 show nearly the same full width of 2◦C. So the
relevant temperature range for conversion seems to be independent of the
fundamental input power.
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Figure 3.16: For two different powers of the fundamental input light (P1 =
1W(+), P1 = 10W(∗)) and for grating G1 the temperature is scanned in the
vicinity of the optimum temperature and the effective conversion efficiency κ
is determined (P2 = κP 2

1 L). Here the fundamental beam is focused to a waist
ω0 = 30µm (optimal focusing). The optimum temperature for a fundamental
input power P1 = 10W is about 1◦C lower than the one for P1 = 1W (details
are explained in the text).
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Figure 3.17: The graph displays the measured optimum temperatures for
different fundamental input powers P1. The optimum temperature decreases
as the fundamental input power increases.

In contradiction to expectations made above the optimum temperature 13 for
a fundamental input power of 10W is found to be about 1◦C lower than the
one for a fundamental input power of 1W.
This can be attributed again to the bad thermal contact between the align-
ment body and the heating plate explained above. On the one hand this bad
control of the temperature is not pleasant but on the other hand it provides
an evidence for the appearance of heating effects inside the crystal at high
fundamental powers.
The decreasing behaviour of the measured optimum temperature with in-
creasing fundamental input power is illustrated in figure 3.17:
Responsible for the heating of the crystal is simple absorption of the funda-
mental and harmonic light - which should be small because the two wave-
lengths are within the transparency range of lithium niobate given by (420-
5200)nm - and also responsible is the effect of Green-Induced-InfraRed-
Absorption (GRIIRA): In the ground state, IR-absorption is low, but when
green light, which has a higher coefficient of absorption than the IR-light, is

13The temperature that is measured by the PT100 at the heating plate.
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present the atoms are excited into a state in which they can then absorb the
IR light (see also section 2.5).
The appearance of GRIIRA can thus be proved by detecting an increased
loss of fundamental power at the output when green light is present inside
the crystal. As the absorbed power cannot be measured directly it is in the
following calculated from quantities that can be measured directly:
Because energy is conserved at any time it is possible to deduce that the
incident fundamental power P1 must be shared out completely between the
output channels of the system. These output channels are:

• the power of harmonic light P2 that is generated,

• the rest of the fundamental light P1,rest in the end of the crystal

• and the power Pmissing that is necessary to fulfill energy conservation
and that will be identified later on as the power of IR-light that is
absorbed by GRIIRA.

So at the crystal end but still inside the crystal the following equation should
hold:

P1

P1,trans

P2

T=80% T=86%

crystal dichroitic mirror

P1 = P2 + P1,rest + Pmissing

where P1,rest = P1,trans

0.86∗0.8

−→ Pmissing = P1,input − P2 −
P1,trans

0.86 ∗ 0.8

Where P1,rest is determined by the fundamental power P1,trans that is mea-
sured behind the dichroitic mirror, which has a measured transmission of
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Figure 3.18: The measurement shows the dependence of the missing funda-
mental power on the converted power of green light P2 present. A funda-
mental input power P1 = 10W is used and the green power P2 is varied by
detuning the crystal temperature. Due to GRIIRA the missing IR power
increases with increasing green power.

T = 86% at the fundamental wavelength of 1064nm, and by the mea-
sured transmission of the crystal’s output facet. The latter was measured
to T = 80% at the fundamental wavelength.
The input facet is AR-coated for the fundamental wavelength and thus losses
because of rest-reflectivity are neglected here.
In a measurement series the fundamental input power of 10W was held con-
stant and the corresponding values of the created green power P2 and the
fundamental power P1,trans were measured. P2 was varied between no green
light and up to about 1.4W of green light by adjusting the crystal tempera-
ture from far off up to the QPM-temperature.
The values for the power Pmissing, calculated by these measurement results
are plotted in figure 3.18 against the corresponding power of green light P2.
The diagram illustrates that Pmissing increases from about zero up to about
1W for increasing power of green light. When there is no green light present
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Pmissing is expected to have a value of about Pmissing(Tfaroff ) = αLP1 =

0.001 ∗ 2 ∗ 10 = 0.02W due to simple absorption of fundamental light, where
the absorption coefficient in lithium niobate is given by α = 0.1%/cm [33]
at 1064nm. This value agrees with the corresponding measurement result in
figure 3.18 within the error bars.
The increased loss of power when green light is present cannot be explained
by simple absorption because the necessary absorption coefficient would be
too high.
Simple absorption of green light can also be excluded, because if 1W of green
light would be absorbed an averaged absorption coefficient of
α =1W/((1+1.4)W*2cm)=21%/cm for green light follows. In consideration
of the fact that the harmonic wavelength lies within the transparency range
of lithium niobate, that is given by (420-5200)nm, this value is much to high.
Beside this the whole generated green power P2,ges = P2 + Pmissing ≈1.4W +
1W = 2.4W would clearly exceed the theoretically predicted value of 1.7W
(see section 3.2.4).
Therefore the increased absorption of the fundamental light when green light
is present can be ascribed to the GRIIRA-effect in lithium niobate.
GRIIRA could disturb second-harmonic-generation in many ways:
Green light that has already been created is absorbed and due to the increased
absorption of IR-light the intensity of the fundamental light is reduced and
thus causes that less harmonic light is generated.
As the absorption of IR-light increases with increasing green power and as
the green power grows along the crystal (see subsections 2.2.1 and 2.2.2) the
heating rate along the crystal is not the same and a temperature gradient
along the crystal can build up. At certain places the crystal temperature
thus may differ from the QPM-temperature leading to a lower conversion.

3.2.4 Harmonic power as function of fundamental power

As already mentioned earlier, conversion gets better the higher the available
intensity of the fundamental light is. The optimum waist thus has already
been determined to ω0 = 30µm at a low fundamental power of 1W and this
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focusing will now also be used for high fundamental input power because it
is not expected that effects like GRIIRA or thermal lensing that appear at
high powers will significantly affect the optimum focusing.
For this focusing the intensity can be increased further by simply raising up
the fundamental power.
As long as the created harmonic power can be neglected compared to the
fundamental pump power the converted power will follow the model (equa-
tion 3.4) developed in subsection 3.2.2 and grows with the square of the
fundamental pump power:

P2 =
2π2ε2

0η
3
0ν

2
1

n2n2
1

(
(2/π) χ

(2)
333

)2 L2P 2
1

π 〈ω2〉
= κLP 2

1

κ =
2π2ε2

0η
3
0ν

2
1

n2n2
1

(
(2/π) χ

(2)
333

)2 L

π 〈ω2〉

Although for QPM in a microscopic view fundamental and harmonic wave
are not phase matched, it can in the macroscopic view be treated formally as
the case for a crystal providing perfect phase matching but with a reduced
nonlinear susceptibility coefficient χ

(2)
eff =

(
2
π

)
χ

(2)
333 (see subsection 2.4.1),

which will be needed later on. As explained in subsection 3.2.2 in more de-
tail this model also takes the effects of Gaussian optics into account.
A closer look at this model concerning energy conservation tells that this
approximation breaks down for high fundamental power because the power
that is converted into green light must not exceed the power that was actu-
ally sent into the crystal.
The approximation made in this model assumes a constant fundamental
power all over the crystal, which is just fulfilled when conversion is low and
the created harmonic power P2 is much smaller than the fundamental pump
power P1, so that the effect, that power which is converted into harmonic
light reduces the fundamental power, can be neglected.
When the generated harmonic power cannot be neglected in comparison to
the fundamental power anymore a better approximation for the conversion
can be achieved, if this pump depletion of the fundamental light is taken into
account. For the generated harmonic power as the product of photon-flux
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density (see subsection 2.2.2) and the corresponding photon energy, we then
get:

P2 = 2π~ν2Φ2(z) =

2π~2ν1
1

2
Φ1(0) tanh2

(
γL

2

)
=

P1 tanh2


√

8πε2
0η

3
0ν

2
1

n2n2
1

P1

〈ω2〉

(
(2/π) χ

(2)
333

)2

︸ ︷︷ ︸
γ

L

2

 = κ(P1)LP 2
1 (3.7)

κ(P1) =
tanh2

(
γL
2

)
LP1

Note that the results in subsection 2.2.2 were originally derived for the
case of perfect phase matching and that it is used here to describe the gener-
ated harmonic power for the PPLN-crystal with the nonlinear susceptibility
coefficient χ

(2)
eff =

(
2
π

)
χ

(2)
333 for reasons that were already explained above.

It is easily verified that the low conversion approximation is included in this
new approximation as the limit for small conversion, that means for small
arguments of the tanh-function.
In the last line formula 3.7 was written as a function of the squared fun-
damental input power following the definition of the conversion efficiency in
equation 3.6. Thereby all effects of pump depletion are absorbed in the con-
version efficiency, which then becomes dependent on the fundamental input
power and assures that not more than the initial fundamental pump power is
converted into green light. The low and the high conversion approximation
both are plotted in figure 3.19 together with the measurement results.

We notice that for a fundamental pump power of 6W and a correspond-
ing green power of 0.6W the low conversion approximation already differs by
about 10% relative to the measured value. There the ratio between green
power and fundamental input power is P2/P1 ≈ 0.6W/6W= 10%.
The high conversion approximation predicts the measurement results quite
well within the error bars for fundamental powers up to about 8.5W. For
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Figure 3.19: Top: Dependence of the converted output power P2 on the
fundamental input power P1. The temperature of the crystal is set to its
optimum temperature for each fundamental input power and a focusing to a
waist ω0 = 30µm is used. The created harmonic power increases with increas-
ing fundamental power and reaches a value of about 1.4W at a fundamental
input power of 10W. The solid line shows a theoretical curve including pump
depletion calculated by the high-conversion-approximation. The deviation
of the experimental results for fundamental input powers higher than about
8.5W may be assigned to GRIIRA. For low fundamental input power below
6W pump depletion can be neglected and the low-conversion-approximation
gives a good estimation of the converted output power (dashed line). Bottom:
The conversion efficiency (definition see equation 3.6) decreases for increasing
fundamental power. For a fundamental power of 10W a conversion efficiency
of 0.007W−1cm−1 is determined, that are 70% of the value for the conversion
efficiency at fundamental input power of 1W. (+) represent calculated values
of κ from measurement results of P2 and P1.
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higher fundamental powers the measured harmonic power is even lower than
the high conversion model predicts. At a fundamental pump power of 10W
the measured harmonic power reaches just about 1.4W, that is just about
80% of the value expected by the high-conversion model.
This decrease of harmonic light can be explained by the appearance of GRI-
IRA. In addition to the absorption of green light the fundamental power
decreases and thus less harmonic light is generated. As GRIIRA depends on
the power of green light, which increases along the crystal, it is also possi-
ble that a temperature gradient builds up. This could cause the local crystal
temperature to differ from the QPM-temperature what would lead to a worse
conversion.
For optimal focusing to a waist ω0 = 30µm and a fundamental pump power
of 10W the lower limit given by Stratophase for the damage threshold of the
crystal (0.5MW/cm2 or higher) is exceeded. In subsection 3.2.2 we calculated
an average intensity of 0.2MW/cm2 and a peak intensity at the waist of ca.
0.7MW/cm2.
Therefore this focusing at the fundamental power of 10W first was tested at
a crystal site far off any grating by slowly ramping up the power and keep
it focused into the crystal for several minutes. As no damage occurred, the
fundamental light was focused into the grating, again first the grating was
adjusted for optimal conversion at a low fundamental power (about 100mW)
and then the power was ramped up slowly.
As explained in section 3.2.3, due to the dependence of the optimum temper-
ature on the fundamental power, for the measurement in figure 3.19 it was
necessary to adjust the temperature for each fundamental power.
For 10W of fundamental input light a green output power of 1.4W has been
achieved, from which an effective conversion efficiency of κ = 0.7%W−1cm−1

is calulated. We also watched the long term stability at this power level for
several hours (see figure 3.20).

To summarize this subsection, we notice that whereas Stratophase gave a
conversion efficiency of 1%W−1cm−1 at low fundamental power and thus a
converted power of 2W should be expected when using a fundamental power
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Figure 3.20: The long term stability at a green power level of 1.4W and a
fundamental input power of 10W shows a nearly linear decrease with a rate
of about 2%/h of the green power. A main reason for this could be a drift
of the fundamental power but most likely this decrease is due to the drift
of the crystal’s temperature. A deviation of about 0.2◦C - that is already
the accuracy with which the controller temperature can be set - from the
optimal QPM-temperature would cause about 10% less conversion. When
the fiber-amplifier runs at a high fundamental output power such as 10W it
is better to stop any mechanical working in the vicinity of the fiber-amplifier
because any shaking (for example when putting some optics on the optical
table) causes the controller box of the fiber-amplifier to switch the amplifier
off (see subsection 3.1.2).

of 10W, it turned out that we must take pump depletion into account and
thus obtain some lower harmonic output power.
At high power levels of harmonic light GRIIRA decreases conversion and
limits the generated power at about 1.4W. But neverheless this power seems
to be high enough for our further purpose.
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Chapter 4

Towards the 1D optical
superlattice

4.1 Preparation of the lattice beams

The 1D optical superlattice will consist of a 3D optical lattice made by three
retro-reflected beams at a wavelength of 1064nm and an additional 1D opti-
cal lattice at a wavelength of 532nm in one dimension. Thus the light that
leaves the SHG apparatus must be divided up into three beams at 1064nm
and one beam at 532nm. Furthermore, the power of each of the four beams
must be stabilized-which will be accomplished by AOMs - and each beam
must be coupled into a fiber to deliver the light to the experimental table.
For designing the setup it is important to recognize, that at the one hand the
optical setup should be as compact as possible - because of stability reasons -
and that there should be used as few optical elements as necessary - because
of reflection losses - but on the other hand the setup should be large enough
and should have a sufficient number of degrees of freedom to allow a quick
and uncomplicated (re)adjustment.
Some details of the setup are explained in the following:
The separation of the fundamental IR-light and the harmonic green light
is already done by the dielectric mirror. In the setup the collimating lens
after the oven is adjusted in the way that it prepares a slightly convergent
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fundamental beam. Thus the beam diameters at the three AOMs slightly
differ in the range of about 1400µm to 1100µm and it is not necessary to use
individual lenses in front of each AOM.
The fundamental beam power is divided up by four thin-film-polarizers with
a low order (λ/2)-waveplate in front of each. These thin-film-polarizers of-
fered by Linos have a extinction ratio better than 10000:1 at the transmission
port for wavelength between 750nm and 1100nm, can be used for intensities
up to about 1kW/cm2 and are designed in the way that the angle between
reflected and transmitted beam is 90◦. The first cube is used to adjust the
overall power and the second, third and fourth cube are used to set the pro-
portions for sharing out this power between the three lattice beams. The two
mirrors in front of each AOM are used to adjust the beams right through the
AOMs by beamwalking.

fiber amplifier

PPLN-crystal

dichroitic mirror

fiber

fiber coupler

/2-plate

lens

AOM

beam dump

TFP

l

TFB ... thin film polarizer

HR-mirror

1064nm

532nm

Figure 4.1: Setup of the beam-splitting-arrangement. The rest of the funda-
mental power, that is not converted, is divided up into three beams for the
3D optical lattice. The powers of the fundamental beams and the harmonic
beam are stabilized by AOMs and coupled into fibers.

For the wavelength of 1064nm AOMs from crystal technology (Model# 3110-
197) with a saturation RF-power of 2.5W at a RF-frequency of ca. 110MHz
are used. A measured diffraction efficiency into the first order of 90% for the
present setup was reached.
After each AOM two lenses are used as a telescope configuration to prepare
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the necessary beam diameter of 1800µm±200µm for coupling into the fiber.
For the fundamental wavelength of 1064nm and an optical power of 2W self-
made patch cords are used ( fiber data: Nufern, HP980 cutoff wavelength
900nm, singlemode and polarization maintaining, angle-polished-fc finishes)
and a coupling efficiency of 75% is reached. The polarization of the light
coupled into the fiber is adjusted for minimum fluctuation of the output po-
larization with a (λ/2)-waveplate.
For the harmonic green beam an additional lens is used to prepare a slightly
convergent beam with a beam diameter of about 800µm at the position of the
AOM. For this wavelength an AOM from crystal technology (Model#3080-
120) is used with a RF-saturation-power of 0.5W at a RF-frequency of 80MHz
and a measured diffraction efficiency of 85% into the first order.
Before coupling into the fiber the beam is prepared to a diameter of about
1600µm. Like before a (λ/2)-waveplate is used to optimize the polarization
to minimum fluctuation of the polarization at the output.
For the green light at a wavelength of 532nm and a power over 1W a high-
power-patch-cord made by Ozoptics was bought. The fiber is singlemode
polarization maintaining and has a cut off wavelength of 470nm. The high-
power-connector at the in-coupling-side of the fiber prevents the fiberend to
be burned when high powers are used.
For the out-coupling-side no such high-power-connector is necessary and
therefore it is a simple fc-connector (with angle polished finish). We reached
a coupling efficiency of about 80% into the fiber.

4.2 Stability of the superlattice

In this subsection some considerations and estimations concerning the nec-
essary requirements of the setup for the 1D optical superlattice will be dis-
cussed.
The 1D optical superlattice will consist of a 3D optical lattice with wave-
length λ1 and an additional standing wave with a wavelength of λ2 = 1/2λ1

in one of the three directions. A schematic drawing of the setup is shown in
figure 4.3. The setup of the overlaid lattice beams will in principle be imple-
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Figure 4.2: In standard connectors fibers are glued into place, and the fiber
is polished flush with the connector surface. When used with high power
lasers, heat generated at the tip of the fiber causes the surrounding epoxy to
break down and give off gases. These gases in turn burn onto the tip of the
fiber, causing catastrophic damage to the fiber. In contrast the high power
connectors of Ozoptics feature an air-gap design, where the fiber extends
into free space by 1.1mm to 1.5mm, providing an epoxy-free region where
thermal energy is safely dissipated without burning the surrounding material
(see [36]).

mented as follows: One fundamental beam (λ1 = 1064nm) and the harmonic
beam (λ2 = 532nm) emitted from the corresponding fibers, that transport
the light from the SHG-apparatus to the experimental table, are combined
by a dichroitic mirror. The imaging light with a wavelength of about 780nm,
resonant to the D2-line of 87Rb (F=2→ F′=3), is overlaid to these two lattice
beams by a thin-film-polarizer. The polarizations of the waves are chosen in
the way that fundamental and harmonic light are reflected by the thin-film-
polarizer while the imaging light is transmitted. These three beams then
propagate along the same direction into the glass cell through the atomic
cloud. After the glass cell first the imaging light is separated from the lattice
light by a thin-film-polarizer and then the lattice light is split into the fun-
damental and harmonic component by a dichroitic mirror. Each of the two
beams is then retro-reflected by a mirror and thus builds up a standing wave.
To shift the two standing waves relative to each other and to stabilize this
relative phase, one of the retro-reflecting mirrors is glued onto a piezoelectric
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actuator.

atomic cloud

dichroitic mirror

retroreflecting mirrors

moveable

photo dedector
for power stabilization

n1

n2
n2

n1

imaging light in

thin-film polarizer

imaging light out

Figure 4.3: Possible setup for the superlattice. The fundamental and har-
monic wave are overlaid and separated again by dichroitic mirrors. To adjust
the relative phase between the two standing waves one retro-reflecting mor-
ror can be moved by a piezo. (Not shown are the beams in the other two
directions of space.)

The photo-diodes behind the retro-reflecting mirrors supply the signal for
stabilization of the corresponding power of the fundamental and harmonic
light. As already mentioned in section 4.1 the power stabilization will be
done by the AOMs, which are put in front of each fiber (see figure 4.1).
The light field of the involved lattice beams causes a periodic lattice poten-
tial for the ultracold atomic gas. For 87Rb atoms the fundamental standing
wave causes an attractive potential while the harmonic standing wave causes
a repulsive potential. By combining both standing waves it is possible to
modify the potential felt by the atoms. For example by suitable changing
of the relative phase between the two standing waves and the intensitys of
the two waves it is possible to construct a lattice of double-well potentials
with arbitrary energy shifts ∆E of the two minimas and adjustable barrier
height Eb inbetween the two wells (see figure 4.4). The ability to control the
potential shape by the relative phase between the two standing waves makes
the system also sensitive to relative phase fluctuations due to ambient per-
turbations. Such unwanted phase fluctuations could arise from jittering of
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Figure 4.4: By combining two standing waves with λ1 = 2λ2 it is possible to
generate a periodic double-well potential. The energy difference ∆E and the
barrier height Eb between neighbouring wells can be varied by changing the
relative phase between the two standing waves and their intensities.

the different lattice mirrors relative to each other and from dispersion in air.
Imperfections of the stability of the two wavelengths relative to each other
can affect the periodicity of the double-well lattice. So to guarantee a stable
shape of a periodic lattice potential at the location of the atomic cloud it is
necessary to stabilize the two frequencies relative to each other and to keep
the relative phase between the fundamental and the harmonic standing wave
as stable as possible. In the following the perturbations mentioned above are
discussed in more detail.
To achieve a periodic double-well potential with sufficient good periodicity,
the wavelengths of two lattice beams - with λ1 ≈ 2λ2 - must be frequency
locked. In our experiment we accomplish this by SHG and we use the fun-
damental and the harmonic light to produce the necessary lattice beams.
There is quite some distance between the retro-reflecting mirrors and the
atomic cloud, so that the beams propagate quite some distance in air. As
the actual superlattice consists of two standing waves with different wave-
lengths and as the relative phase between these standing waves at the position
of the atomic cloud affects the potential shape decisively (see figure 4.4), the
dispersion of air must be taken into account.
The dispersion between the fundamental and harmonic wave depends on the
air-temperature and the air-pressure. Fluctuations of these two parameters
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thus cause fluctuations of the relative phase. Therefore to achieve a poten-
tial with sufficient stable shape, results in restrictions for the stability of
air-temperature ∆T and air-pressure ∆p. For a quantitative statement on
this, we assume an optical way with a length l and a phase difference stability
∆φ, that is wished to be achieved, and estimate the necessary stability ∆T

and ∆p of the temperature and the pressure of the surrounding air:
Therefore the relative phase φ between the fundamental and harmonic stand-
ing wave due to dispersion in air is defined as the difference of the phase of
a harmonic wave with the real refractive index n2 and the phase of a ficti-
tious harmonic wave with the refractive index n1 corresponding to the real
refractive index of the fundamental wave in air. Thus the phase difference is
calculated as:

f

k n1 1

mirror

fundamental wave fictitious harmonic wave

harmonic wave

k n2 1

k n2 2

φ = k2l (n2 − n1) =

2π

λ2

l (n2 − n1) =
2πl

λ2

(
(n2 − 1)pT − (n1 − 1)pT

)
(4.1)

Where k2 = 2π/λ2, λ2 is the wavelength of the harmonic beam and n1 and
n2 are the corresponding refractive indices for a fundamental and harmonic
wave propagating in air. The last line was written in a form, so that the
following equations 4.2 and 4.3 can easily be applied. The two indices T p

just denote the dependences on temperature and pressure.
The dependence of the refractive index in air on the temperature T and the
pressure p is given by [37]:

(n− 1)pT = (n− 1)s0.00138823× p/torr
1 + 0.003671T/◦C

(4.2)
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In this formula temperature is given in ◦C and pressure is given in torr.
Where (n−1)S denote the standard values of the refractive index, which cor-
respond to the temperature of 15◦C and the pressure of 760torr(1064mbar).
These standard values for light with a wavelength λ in µm are given by [37]:

(n−1)s×108 = 8342.13+2406030(130−(λ/µm)−2)−1+15997(38.9−(λ/µm)−2)−1

(4.3)
For the following calculations will also be used, that the surrounding air in
the laboratory has a temperature of about 25◦C and a pressure of about
950mbar (710 torr).
With this the fluctuation ∆φ of the relative phase due to fluctuations ∆T of
the air-temperature and ∆p of the air-pressure can be estimated by writing
equation 4.1 in differential form and evaluating the necessary partial deriva-
tives by use of equations 4.2 and 4.3 as:

∆T φ :=
∂φ

∂T
∆T =

2πl

λ2

(
∂(n2 − 1)pT

∂T
− ∂(n1 − 1)pT

∂T

)
∆T ≈ −1.2

2πl

λ2

10−8∆T/◦C

∆pφ :=
∂φ

∂p
∆p =

2πl

λ2

(
∂(n2 − 1)pT

∂p
− ∂(n1 − 1)pT

∂p

)
∆p ≈ 0.5

2πl

λ2

10−8∆p/torr

When a stability of the relative phase between fundamental and harmonic
standing wave of ∆φ = 0.1π should be achieved for an optical way in air
of about l = 1m and with λ2 = 532nm the allowed fluctuations ∆T of
the surrounding temperature and ∆p of the surrounding pressure are thus
estimated as:

∆T ≤ ∆φ

1.2

λ2

2πl
108 ◦C ≈ 2 ◦C

∆p ≤ ∆φ

0.5

λ2

2πl
108 torr ≈ 5 torr

In the setup shown in figure 4.3 the fundamental and harmonic wave
are separated by a dichroitic mirror and propagate along different ways be-
fore they are retro-reflected and compined again. Different fluctuations of
the temperature or the pressure along the two different ways as well as me-
chanical vibrations of the two retro-reflecting mirrors relative to each other
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can affect the relative phase between the two standing waves and thus the
potential shape at the position at the atomic cloud. With a Michelson in-
terferometer configuration the stability for a setup shown in figure 4.3 was
tested. The observed fluctuation of the relative phase of the Michelson in-
terferometer configuration is expected to give an estimation for the order of
magnitude of the fluctuation in the real setup. In the interferometer con-
figuration one retro-reflecting mirror was fixed at a distance of about 2cm
to the beamsplitter the second retro-reflecting mirror was fixed at different
distances, to check if the fluctuations depend on the size of the setup. For
each configuration the interference signal was observed with a photo-detector.
The results in figure 4.5 show that a relative phase stability of about 0.1π for
several minutes without any regulation is achieved by choosing a compact
setup. The time scale for typical fluctuations is about τ > 5s.
In summary the calculations and measurements show that the smaller the

setup is build the smaller are the fluctuations due to the separation of the
two waves and due to fluctuations of the surrounding air-temperature and
air-pressure. Thus on the one hand the setup should be as compact as pos-
sible to guarantee sufficient stability of the lattice-potential but on the other
hand the setup should be large enough to allow a good handling of all the
necessary optical elements. Whether this stability of the relative phase is
sufficient and how stable the whole system has to be, must be tested by real
experiments with the atomic cloud, which was not done so far during this
work.
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Figure 4.5: Shown is the behaviour of the fluctuations of the relative phase
φ of a Michelson interferometer configuration. For each measurement one
retro-reflecting mirror is fixed close to the beam splitter at a distance of about
2cm and the second retro-reflecting mirror is fixed at different distances (top
20cm, middle 10cm, bottom 2cm). The corresponding interference signals
and thus the fluctuations of φ are shown in the diagrams. The observation
time is 1.5min for the diagrams on the left and 7.7min for the diagrams
on the right. These measurement results show that the smaller the setup
is implemented the lower the fluctuation of the relative phase gets. For a
compact setup (bottom diagrams) with both retro-reflecting mirrors in a
distance of about 2cm from the beamsplitter the relative phase fluctuates
slowly with a timescale τ > 5s within about 0.1π for several minutes.
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Chapter 5

Summary and Outlook

In this thesis the setup of a single pass second-harmonic generation (SHG)
apparatus with PPLN as the nonlinear medium was described. In periodic
modulated nonlinear media like periodically poled lithium niobate (PPLN)
second-harmonic generation is achieved by Quasi-Phase Matching (QPM).
In future experiments, the fundamental and the harmonic light will be used
to implement a 1D optical superlattice. In our case the optical superlat-
tice is a periodic double-well potential for 87Rb-atoms. To achieve sufficient
high conversion of fundamental light into harmonic light the whole SHG-
arrangement had to be optimized, which represents the main content of this
thesis.
I found the following results:
It is important that the fundamental light is well polarized, because effec-
tively just the component of the fundamental light parallel to the optical axis
of the crystal is converted. The PPLN-crystal is designed to work for this
polarization because then the highest possible component of the nonlinear
susceptibility for lithium niobate can be used.
I also found that there exists an optimum waist for focusing the fundamen-
tal light into the crystal. In principle, for a high conversion the averaged
intensity of fundamental light along the whole crystal must be as high as
possible. Hence, Gaussian optics must be taken into account. To obtain a
rough estimation of the optimum waist, a good rule of thumb is to choose
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the waist, which belongs to a Gaussian beam with a Rayleigh length that
equals half the crystal length. It turns out, that for the present crystal the
experimentally determined optimum waist of 30µm is somewhat smaller than
the value obtained from the previous estimation. Regarding this, a model
for calculating the dependence of the conversion on focusing of the funda-
mental light was developed which agrees quite well with the experimental
measurement results. For efficient SHG with our crystal it was found, that
for optimum focusing it is also necessary to adjust the position of the focus
inside the crystal along the direction of propagation with an accuracy in the
mm-range.
The fine tuning for QPM of the fundamental and the harmonic light is
achieved by tuning the crystal temperature. The actual optimum tempera-
ture depends on the poling period of the chosen grating on the PPLN-crystal.
For stable conversion this optimum temperature must be kept with an accu-
racy better than 0.1◦C. Because of disturbing heating effects due to absorp-
tion of harmonic and fundamental light and the limited temperature control
of the crystal, the set value of the PID-controller for the optimum tempera-
ture must be decreased with increasing fundamental power.
We also investigated the dependence of conversion on the fundamental input
power. In the case of high conversion pump depletion must be taken into
account, because the creation of one harmonic photon consumes two photons
of fundamental light. Further, the conversion is decreased by the appearance
of Green-Induced-InfraRed Absorption (GRIIRA), so that we end up with
a generated harmonic power of about 1.4W for SHG with fundamental light
with a power of about 10W.
By using SHG for the production of the lattice beams the two different fre-
quencies are already intrinsically frequency locked, which is necessary for
a stable periodic double-well potential. I also made further considerations
and estimations about the stability of the optical superlattice concerning the
necessary stability of the relative phase between the two standing waves,
which make up the superlattice. For the implementation of the superlattice
shown in figure 1.1 on page 7 relevant fluctuations of the relative phase due
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to fluctuations of air-temperature1 and air-pressure are expected to be slow
compared to the typical time scale for a single experimental cycle. These
fluctuations together with the fluctuations arising from vibrations of the two
retro-reflecting mirrors relative to each other can be minimized when a com-
pact setup for the relevant parts is chosen. Nevertheless long term drifts of
temperature and pressure could cause trouble with the desirable repeatabil-
ity of subsequent measurements. Whether the so implemented superlattice
is stable enough must still be tested in experiments with the ultracold atoms.

Controllable double-well lattices offer new possibilities for manipulating
individual atoms. As shown in [17] atoms can be transported coherently and
also coherent splitting of atoms has already been demonstrated in [11, 17].
Various quantum gate proposals with neutral atoms relaying on control-
lable double-well potentials have already been developed. The high poten-
tial of optical lattices for quantum computation has already been shown in
[17, 13, 18, 19, 20, 7]. In the following, one of those will be explained in more
detail.
The QIP-scheme proposed in [7], which we want to impement in the future,
is based on a concept using so called register and marker atoms and involves
the transport of atoms by a spin-independent controllable double-well lattice.
Starting point of this scheme is a regular array of micro traps realized by op-
tical lattices. The qubits are stored separately - one in every lattice site - so
that they never interact directly with each other. A high number of qubits
in such an array is essential for fault-tolerant quantum computation. The
advantage for using spin-independent optical lattices is that decoherence due
to spontaneous emission is suppressed because for the lattice beams far-off
resonant light can be used. Further, for spin-independent lattices the inter-
nal atomic state can be freely chosen, so that it is possible to use an atomic
state, which is insensitive to (stray) magnetic fields - thus again improving
decoherence.

1The relevant parts for fluctuations of the relative phase are the distances between
the glass cell and the retro-reflecting mirrors. Along these paths the corresponding waves
propagate in air, which is a dispersive medium.
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Figure 5.1: Basic operation with a marker atom M on a quantum register Ri:
(i) forward and backward transport steps, (ii) local interaction with register
qubits. (Picture taken from [7].)

While the register atoms are frozen at their specific lattice site, marker atoms
are moved forward and backward between different lattice sites through the
array of register-atoms in a controlled way (see figure 5.1). The controlled
transport of the marker atoms is achieved by globally changing the external
lattice control parameters. These control parameters are the intensities and
the relative position of the two standing waves, that make up the double-well
potential. By changing these external control parameters properly, several
marker atoms even if prepared in a certain spatial pattern will be moved in
parallel.
The marker atoms fulfill two purposes. Marker atoms selectively address
single qubits and they also act as a messenger for transporting quantum in-
formation between two distant register qubits. Moving the marker atom to
a specific site of a register atom allows to address exactly this atomic qubit
due to the marker atomic qubit interaction. Thus atomic qubits can be se-
lectively manipulated with a laser without the requirement of focusing the
laser on a particular site. The transport of quantum information between
different sites can be used to entangle distant atomic qubits ( see figure 5.2).
Single and two qubit gate operations can be performed by employing res-

onant molecular interactions between marker and qubit atom provided by
magnetic or optical feshbach resonances as described in [7].
In sum the proposal [7] relies on techniques that are presently being devel-
oped, and represents therefore a feasible candidate for the implementation of
QIP with neutral atoms in optical lattices.

90



Figure 5.2: Realizing an entangeling operation between distant atoms based
on the elementary steps described in figure 5.1: (a) swapping the first qubit
onto the marker atom, (b) transporting the marker atom unto the second
qubit and local interaction, (c) transport back to the first qubit and inverse
swap. (Picture taken from [7].)

Optical lattices and dynamic controllable double-well potentials offer new
opportunities also for other applications. Beside the simulation of models
in solid state physics like [5, 6], these periodic potentials can be used for
tunneling experiments like [9], for the investigation of entanglement of atoms
due to controlled collisions between the atoms [12, 13] and for the study of
repulsively bound objects [21].
Thus pushing further the research of ultracold atoms in controllable optical
lattices will offer the ability for implementing many proposals and will bring
many new insights not only for fundamental concepts of quantum mechanics
but also for new applications.
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Useful constants and frequently used variables:

ε0 8.8542× 10−12F/m Permittivity of free space
µ0 1.2566× 10−6H/m Permeability of free space
η0 =

√
µ0/ε0 377Ω Impedance of free space

h = 2π~ 6.6262× 10−34J s Planck’s constant

nq Refractive index of wave q
q = 1 denotes the fundamental wave
q = 2 denotes the harmonic wave
∆n = |n2 − n1| Difference of the refractive indices
χ Linear electric susceptibility tensor
χ(2) Nonlin. 2nd order electr. suscept. tensor [m/V]
P Electric polarization density
L Length of the crystal
E Electric field [V/m]
Eq Electric-field complex amplitude [V/m]
νq Frequency of wave q [Hz]
λq Wavelength of wave q
kq Wavevector of wave q
∆k = |k2 − 2k1| Deviation from the phase-matching condition
Iq Intensity of wave q
Φq = |aq|2 Photon-flux density of wave q [m−2 s−1]
S Poynting vector
ω Beam radius
ω0 Beam waist
z0 Rayleigh length
g Coupling coefficient see page 14
γ Gain coefficient see page 18
lc Coherence length
Pq Power of wave q
κ conversion efficiency [W−1 cm−1]
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