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C 1

Introduction

In recent years spectacular success in the field of ultracold quantum gases has sparked
enormous interest in ultracold matter. Laser cooling techniques developed in the 1980s
[CT98, Chu98, Phi98] led to better atomic clocks [Gib93] and opened up the field of
ultracold physics with gaseous atoms and molecules. At ultralow temperatures in the
nanokelvin range the thermal de Broglie wavelength associated with the motion of
particles increases to values where the description of the gas can only be adequate if it
fully takes into account the quantum mechanical wave nature of matter.

In dilute gases of bosonic constituents the cooling process culminates in a distinct
phase transition from a thermal gas to a Bose-Einstein condensate (BEC) when the
wave-functions of the individual particles start to overlap. This is marked by a macro-
scopic occupation of the lowest single-particle energy state of the system and results
in the formation of a macroscopic matter wave. The first experimental realization of
Bose-Einstein condensation came in 1995 [And95, Dav95], 70 years after the proposal
by Einstein in 1925 [Ein25].

The coherent matter-wave character of these systems has since then been im-
pressively confirmed by the experimental observation of matter-wave interference
[And97], the generation of solitons and quantized vortices [Bur99, Den00, Str02,
Kha02, Mat99, AS01], the observation of the superfluid to Mott-insulator transition
[Gre02], and the generation of matter-wave lasers [Mew97, Hag99], to name just a
few examples. Ultracold quantum gases can be prepared in precisely controlled states
and are therefore amenable to detailed theoretical analysis, providing a stringent test
for quantum theory. In addition, they allow measurements of fundamental quantities
such as the fine structure constant, the gravitational constant or the electron dipole
moment at an unprecedented level of precision [Ude02, Ye06b].

Following the achievement of Bose-Einstein condensation of atomic gases there
has been an ever increasing interest in attaining the same degree of coherence in molec-
ular systems and in fully controlling their properties at the quantum level. This has
proven to be more challenging than for atoms due to the complex internal energy struc-
ture of molecules that hampers direct laser cooling. The most fruitful approach in the
quest for Bose-Einstein condensation of molecules so far has been to cool an atomic
sample to ultralow temperatures and then to associate atoms pairwise to very weakly
bound dimer molecules. The resulting molecular ensemble has the same translational
temperature as the atomic ensemble. This technique resulted in the formation of the
first pure molecular quantum gas by our group in 2002 [Her03] and shortly thereafter



1 Introduction

by the Garching group [Dür04] and the MIT group [Xu03]. These molecules were
formed from bosonic alkali atoms by means of a magnetic field ramp over a magnet-
ically tunable Feshbach resonance, resulting in so-called Feshbach molecules. The
molecules created in this association process are translationally very cold but vibra-
tionally highly excited, i.e. very weakly bound. The presence of many lower lying
bound molecular states renders these bosonic Feshbach molecules very sensitive to
inelastic molecule-molecule collisions. Inelastic collisions lead to rapid loss from the
molecular sample and therefore impede the Bose-Einstein condensation of Feshbach
molecules consisting of bosonic atomic species.

The same strategy of Feshbach association was pursued with fermionic quantum
gases. Fermionic atoms were associated from a two-component spin mixture to mo-
lecules of bosonic character. Due to a Pauli-blocking effect the resulting molecules
proved to be much more stable against inelastic losses than their counterparts consist-
ing of bosonic atoms. This finally led to the creation of the first Bose-Einstein con-
densate of molecules in Innsbruck [Joc03a] and at the same time in Boulder [Gre03].
These systems constitute extremely rich model systems for investigating phenomena
in solid state physics such as superconductivity and have opened up the exciting pos-
sibility to study the crossover between a molecular condensate and a superfluid of
Cooper pairs, the so-called BEC-BCS (Bardeen-Cooper-Schrieffer) crossover regime
[Bar04b, Bar04a, Chi04a, Zwi05].

Ultimate control over all degrees of freedom is afforded by placing the ultracold
quantum gas in an optical lattice potential [Gre02]. The number of particles per lattice
site can be controlled at will, interaction between the particles can be tailored and the
internal quantum state of the individual particles can be engineered. Therefore, these
systems constitute very well controlled model systems for solid state physics and for
fundamental quantum mechanics.

With the ability to control the internal states of atoms and molecules at the quan-
tum level, coherent chemistry has come within reach [Hei00]. Ultracold molecules
allow precision measurements leading to a better understanding of molecular struc-
ture [Chi04b]. Work is under progress to use cold dipolar molecules as quantum bits
for quantum computation [DeM02, Sag05] and for the measurement of fundamental
physical quantities such as the the electron’s dipole moment [Hud02, Stu04] that could
potentially lead to new physics beyond the standard model. Recently, with the exper-
imental confirmation of the existence of Efimov quantum states [Kra06b], a particular
type of three-body bound states, the door to few-body quantum physics in the so-called
universal regime has been opened up.

One important aim for the near future is the production of a BEC of molecules
in their rotational and vibrational ground state. Such rovibrational ground state mo-
lecules would be stable against molecule-molecule collisions. The most promising
experimental approach proposed by the Zoller group [Jak02] is to load an atomic BEC
into an optical lattice and then to associate the atoms pairwise to vibrationally highly
excited molecules with essentially unit efficiency. While in the lattice, the molecu-
les are shielded from inelastic collisions. The molecules then will have to be trans-
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ferred to their internal ground state. This should be possible by one or several steps of
two-photon transitions involving electronically excited states. The authors specifically
discuss a three-step process in Rb2 to reach the vibrational ground state. The thus sta-
bilized molecules can then be released from the lattice and would in principle form a
molecular BEC.

The project presented in this thesis is aimed at optical spectroscopy of ultracold
cesium (Cs) Feshbach molecules. The interest in this spectroscopy is twofold: First,
the spectroscopy per se has implications for the derivation of more accurate molec-
ular parameters. Second, and more importantly, precise spectroscopic knowledge of
the first electronically excited state is necessary to drive two-photon processes to the
vibrational ground state of the Cs dimer, as illustrated qualitatively in figure 1.1. The
transitions we intend to drive represent the first step in such a two-photon process that
would lead to the stabilization of the molecules against collisional losses as required
for the production of a BEC of molecules in their rovibrational ground state.

There are distinct advantages of using ultracold samples for spectroscopy [Wei99,
Bur02]. The virtual absence of the Doppler effect at ultralow temperatures allows high
precision measurements which do not suffer from line broadening and line shifts. In
addition, low temperatures allow trapping of the spectroscopic sample [Met99, Tak98]
and therefore enable long interaction times such that even very weak transitions can
be probed. The present study focuses on the wavelength range around 1550 nm, cor-
responding to energies of 6330 cm−1 - 6620 cm−1 above the 6S + 6S asymptote of two
free ground state Cs atoms. This choice is motivated by the following points:

• The theoretical uncertainties for computed transition wavelengths based on ab
initio potential curves are rather large in this region [Koc06a, Dul06] and can be
improved by experimental input. There is data available from “classical” Fourier
transform spectroscopy experiments, see e.g. reference [Ver87]. Spectroscopy
of ultracold molecules can provide very high precision data in principle with
sub-linewidth resolution. Feshbach molecules are slowly rotating and therefore
we address rovibrational states with low rotational quantum numbers. This is in
contrast to the classical spectroscopic experiments and reduces the uncertainty
in determining “rotationless” molecular potentials.

• The two 0+u electronically excited state potentials feature an avoided crossing
that merits additional investigation. Spin-orbit coupling [LB04] leads to mix-
ing of the underlying singlet and triplet states (see sections 2.2.1 and 3.2.2) and
therefore helps to circumvent the usual spin selection rule in electric dipole tran-
sitions. Even more importantly, spin-orbit coupling can change Franck-Condon
factors and accordingly transition probabilities drastically.

• When driving a two-photon process to the molecular vibrational ground state
(v=0), the second laser coupling the electronically excited state to the v=0
ground state level could potentially drive unwanted optical transitions of the
Feshbach molecules to the electronically excited state manifold. An important
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Figure 1.1: Transfer of Feshbach molecules to the vibrational ground state: Molecular po-
tential curves for the electronic ground state and for several of the electronically excited states
dissociating to the 6S +6P1/2 and 6S +6P3/2 atomic asymptotes of Cs are shown schematically.
Molecular energy is plotted as a function of internuclear distance R. The potential curves dis-
sociating to the 6S + 6S atomic threshold are the X1Σ+g singlet electronic ground state and the
a3Σ+u lowest triplet state. Each of the potentials supports a series of bound rovibrational states.
Rovibrational states correspond to horizontal lines. Feshbach molecules are very weakly bound
and vibrationally highly excited. Their binding energy cannot be resolved on the scale of this
plot, it is just below the 6S + 6S asymptote. The arrows indicate a two-photon process that
transfers the population from loosely bound Feshbach state to the lowest rovibrational level
(v = 0, J = 0) of the singlet ground state via an intermediate electronically excited state.

advantage of the chosen wavelength region is that the wavelength of the second
laser can be chosen far from any optical transition of the Feshbach molecules
because the vibrational level spacing in the region of the excited state potentials
reached by the second laser from the Feshbach molecules is still large. Sufficient
detuning from any molecular resonances suppresses such “parasitic” transitions
driven by the second laser.

• Similarly, the 1550 nm laser used in the first step of the process is not expected
to couple the v=0 level of the molecular ground state to any excited state levels.
Again, parasitic transitions leading to molecular loss can be avoided.

• This project is also intended to clarify preliminary results previously obtained in
our group with a borrowed laser in the same wavelength region. Although indi-
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cations of molecular optical transitions in that wavelength region were thought
to be seen with the borrowed laser, they were not reproducible and a thorough
workup was not possible due to time limitations. This lack of reproducibility
was attributed to insufficient stability of the free running laser and it was de-
cided to evaluate these preliminary results more deeply in the framework of the
present study.

• Many interesting experiments rely on the ability to trap the ultracold molecules.
We currently trap molecules in quasi-electrostatic CO2-laser traps. Because of
its long wavelength of 10.6 µm CO2-laser light does not drive any molecular
transitions. However, these lasers are not suited to implement optical lattice po-
tentials because the distance between individual lattice sites would be too large.
We are interested in trapping ultracold molecules in a lattice with far off-resonant
light, reducing the scattering rate from the trapping light with respect to near res-
onant light. High power lasers and amplifiers are available in two wavelength
bands: 1064 nm and 1550 nm. We investigated the possibility to trap molecules
with a broadband 1064 nm source by irradiating a sample of ultracold molecu-
les trapped in a CO2-trap with the 1064 nm light. We observed rapid molecular
loss due to optical molecular transitions and concluded that this was not a good
option. Narrow bandwidth 1064 nm light has been tested as well and seems to
be a viable alternative. In the 1.55 µm region there are less potentials that can
be reached and vibrational level spacing is larger than in the 1064 nm region,
making it easier to avoid molecular resonances for the trapping. Therefore, the
1.55 µm wavelength region is attractive for trapping and for generating optical
lattices. The current project is also intended to evaluated this possibility.

• A technical advantage of the wavelength region around 1.5 µm is the commer-
cial availability of highly stable, widely tunable laser sources developed for the
telecommunication industry.

The type of spectroscopy presented here should be distinguished from photoas-
sociation spectroscopy. Photoassociation occurs when two colliding atoms absorb a
photon and are thereby transferred to an electronically excited bound molecular state
[Jon06, MS01]. The excited state can then decay back into two free atoms or into a
bound molecular state in the electronic ground state. In the present study, we already
start from weakly bound molecules formed by Feshbach association. Accordingly,
transition probabilities at a given detuning from the excited state asymptote are larger
than in the case of photoassociation due to more favorable wave function overlap. This
potentially enables the study of more deeply bound levels in the electronically excited
state.

In contrast to classical laser spectroscopic experiments that start from low lying vi-
brational levels in the ground state we start from very high vibrational ground state lev-
els, with the potential to address higher vibrational levels in the electronically excited
manifold. In that sense, this type of spectroscopy closes a gap between classical laser
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spectroscopy on molecular beams and photoassociation spectroscopy. In the present
study, we work in a region of very large detunings from the excited state asymptotes,
i.e. with low lying vibrational level in the electronically excited state, which is also
accessible to classical spectroscopy [Ver87]. We can however obtain a much higher
resolution than in typical classical spectroscopic experiments.

This project is intended to explore one possible route for the formation of a ground
state molecular BEC. For the formation of a molecular BEC we want to start from a
very cold and dense atomic sample, i.e. from a sample with high phase space density.
During the process of molecule creation and transfer to the rovibrational ground state a
high phase space density must be maintained and must finally reach the condensation
threshold implying that molecule production and the population transfer mechanism
to the rovibrational ground state should be very efficient. The requirements for the
production of a molecular BEC are by far more stringent than in other experiments
involving ultracold ground state molecules such as quantum computing with polar
molecules [Sag05].

This thesis is organized as follows. Chapter 2 provides an introduction to the field
of ultracold quantum gases with special emphasis on molecular quantum gases. It
gives a brief overview over the formation of ultracold molecules and strategies to reach
a molecular BEC in the absolute internal ground state in section 2.1. Interactions be-
tween ultracold particles are discussed in some detail in 2.2. This provides the basis for
the formation of ultracold molecules by means of Feshbach resonances as discussed
in section 2.2.3 and sets the framework for integrating the two approaches to ultra-
cold molecules relevant to the optical spectroscopy of Feshbach molecules, namely
the “atomic” viewpoint and the “molecular” viewpoint. Chapter 2 closes with a brief
primer concerning the physics of Bose-Einstein condensation in section 2.3 in order to
put the present study in the context of its primary goal, namely the creation of a ground
state molecular BEC.

Chapter 3 provides a brief review of molecular theory aimed at the reader unfa-
miliar with molecular structure. It emphasizes the structure of homonuclear diatomic
molecules in section 3.1. The next section is dedicated to the structure of cesium mo-
lecules, both in the electronic ground state and in the first electronically excited state.
The treatment of the ground state molecular structure includes a discussion of the
properties of Cs Feshbach molecules. Optical molecular transitions to electronically
excited states and in particular transitions from Feshbach molecular states to electron-
ically excited states in the wavelength region around 1550 nm are addressed in section
3.3 together with the relevant selection rules.

Chapter 4 lays out the experimental setup including the tunable stabilization of the
spectroscopy laser. A stabilization scheme was developed that allows for stabilization
on a sub-MHz level during an experimental run while maintaining full tunability of the
wavelength. The spectroscopy laser and a reference laser locked to an atomic hyper-
fine transition are coupled into an optical resonator that is continuously scanned. The
locking scheme stabilizes the position of a transmission resonance of the spectroscopy
laser relative to two adjacent resonances of the reference laser. To achieve a narrow
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linewidth, the spectroscopy laser is prestabilized to a second optical resonator with the
Pound-Drever-Hall method. A Michelson interferometer type wavemeter is used in
addition to measure the wavelength of the spectroscopy laser.

Chapter 5 is dedicated to the spectroscopy experiments conducted so far. It sets
out with a description of the preparation of ultracold molecules in section 5.1. The
integration of the spectroscopy setup into the Cs BEC experiment or, synonymously,
into the LevT experiment is discussed in section 5.2. Preliminary results are discussed
in section 5.3 in conjunction with the transition rates expected for our experimental
parameters.

Chapter 6 provides an outlook where technical improvements and the prospects of
reaching a molecular ground state BEC are discussed.

In the appendix, a primer on resonator optics and some additional technical infor-
mation such as a commented version of the assembler code used for a microcontroller-
based laser stabilization and electronic circuit designs are given.
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C 2

Ultracold Quantum Gases

Ultracold quantum gases as opposed to classical gases equate with a regime where the
quantum nature of matter plays a prominent role. Ultracold quantum gases for the first
time provide the means to prepare an atomic or molecular sample with full control over
external and internal degrees of freedom. They allow the preparation of pure quantum
states at will and the coherent manipulation of matter.

The present study is intended to lay the groundwork for the production of a Bose-
Einstein condensate of molecules in their absolute internal ground state. This chapter
deals with the concepts needed to understand the production of ultracold molecules, the
manipulation of their internal state and the formation of a Bose-Einstein condensate.

Section 2.1 first explains the different strategies to produce ultracold molecules in
a general way and then deals with the manipulation of the internal state of ultracold
molecules. We use magnetically tunable Feshbach resonances for ultracold molecule
formation. The resulting molecules are therefore called Feshbach molecules. The main
part of the chapter is dedicated to the knowledge specifically required for understand-
ing the molecule production technique employed in our experiments. This procedure is
closely linked to the particularities of two-body scattering processes in ultracold quan-
tum gases. Section 2.2 provides the background on ultracold interactions necessary to
understand the concept of Feshbach molecules. In the ultracold regime, long range in-
teractions play an important role and therefore they are discussed in section 2.2.1. The
concepts of elastic and inelastic scattering are introduced in section 2.2.2. Ultracold
elastic scattering processes can be fully described by a single parameter, namely the
s-wave scattering length and therefore some emphasis is put on this important concept.
This leads to the discussion of Feshbach resonances in section 2.2.3. They arise when
a bound state in a so-called closed channel couples to the incident scattering state. The
properties of Cs Feshbach molecules are discussed more fully in section 3.2.3.

The chapter concludes with an outline of the physics of Bose-Einstein condensa-
tion in section 2.3, considering briefly the quantum statistical basis for Bose-Einstein
condensation in section 2.3.1 and the case of real gases exhibiting weak interactions in
section 2.3.2. This background is useful for understanding the work towards a BEC of
molecules in their absolute internal ground state.



2 Ultracold Quantum Gases

2.1 Towards Ground State Molecules
In our experiments, we associate ultracold molecules from an ultracold atomic sam-
ple of bosonic 133Cs atoms by means of magnetically tunable Feshbach resonances
[Her03, Mar05]. This technique in principle allows coherent transfer from the atomic
scattering state to a bound molecular state and results in translationally very cold, but
vibrationally highly excited or “hot” molecules. Before discussing the foundations of
this molecule production scheme in more detail, we will take a broader look at differ-
ent strategies to produce ultracold molecules in section 2.1.1. Strategies to manipulate
the internal state of ultracold molecules are required for the production of a molecular
ground state BEC. These are discussed in section 2.1.2.

2.1.1 Ultracold Molecule Production
Molecules are to date not amenable to direct laser cooling that has been so highly suc-
cessful in the quest for ever lower temperatures and for Bose-Einstein condensation of
atomic gases. This inability is due to the highly complex energy structure of molecules
preventing the implementation of a simple closed cooling cycle. Two basic strategies
to produce ultracold molecules have been employed: association of molecules from
precooled atoms and direct cooling of molecules.

Association of Molecules from Precooled Atoms

An atomic sample can be laser cooled and then molecules can be associated from
these precooled atoms. Feshbach association results in very weakly bound molecules.
Photoassociation of atoms results in molecules in an electronically excited state. These
either decay to free atoms or to loosely bound levels in the electronic ground state.
Clearly, this approach is restricted to a narrow set of molecular species, i.e. diatomic
molecules, and one could term the vibrationally highly excited or very weakly bound
molecules “physicist’s molecules” because their properties can very precisely be traced
back to properties of the constituent atoms [Jon06].

Magnetically Tunable Feshbach Resonances Ultracold molecule production by
means of magnetically tunable Feshbach resonances is discussed in section 2.2.3.

Photoassociation Photoassociation was the first technique to associate laser cooled
atoms to bound molecules. Two colliding atoms absorb a photon while they are trans-
ferred to an electronically excited bound molecular state. This state can then decay
back to two free atoms but it also has a certain probability to decay to weakly bound
molecular ground state levels, as illustrated in figure 2.1. The resulting ground state
molecules normally have high vibrational quantum numbers but, due to the properties
of ultracold collisions discussed in section 2.2.2, have low rotational quantum num-
bers.

14
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FIG. 1. (a) Diagram of the Cs2 optical transitions and molecular states relevant for the photoassociation experiment. (b) Two-step
ionization scheme for the Cs

1
2 detection. All potential curves are determined from Refs. [11,12].

which separates Cs
1
2 from Cs1 ions, and detected by a

pair of microchannel plates. In these conditions, the two

ion signals last typically about 100 ns, have respective ar-

rival times of 1.9 ms and 1.3 ms, and can easily be in-
dependently recorded with gate integrators. The relative

magnitude of the Cs1 and Cs
1
2 depends strongly on the

pulsed laser wavelength and intensity. In particular, the

Cs
1
2 signal depends linearly on intensity, while the Cs1

one is quadratic. The latter is mostly due to two-photon

ionization of atomic cesium in the 6p 2P3!2"F0 ! 5# ex-
cited state and is dramatically reduced if the trapping laser

is switched off before the laser pulse, leaving all atoms in

the 6s 2S1!2"F ! 4# ground state.
In Fig. 2 we show a typical photoassociation spectrum,

obtained from Cs
1
2 signal and for l2 $ 716 nm. No cor-

responding resonances on the Cs1 ion signal are observed.

We notice that a Cs
1
2 ion signal is observed even without

the PA laser. We interpret this fact supposing that the cool-

ing and repumping lasers already produce molecular pho-

toassociation. In order to suppress this background, we

have switched off all the cw lasers (cooling, repumping,

and photoassociating), for a time interval before shooting

the ionizing pulse. We observe that the Cs
1
2 ion signal is

still present and decreases, as a function of the delay, with

a characteristic time of nearly 6 ms. This time is 5 or-

ders of magnitude larger than the radiative lifetime of any

singly excited molecular state with electric-dipole allowed

transition to the ground state. Indeed, it is of the order of

the time during which atoms and molecules move signifi-

cantly out of the trap because of their ballistic expansion

in gravity. Analogously, we observe that switching on the

PA laser, tuned on a given resonance line of the experi-

mental spectrum, and delaying the pulsed laser produce a

Cs
1
2 ion signal which increases with the delay and reaches

a constant value in about 3 ms. These two results clearly

indicate that the Cs
1
2 ions are not produced by direct pho-

toionization of the excited rovibrational molecular levels,

but by photoionization of ground state molecules.

We have analyzed the fall of the atomic and molecular

clouds by horizontally space scanning the pulsed laser

beam (tightly focused on a round spot of 0.3 mm diameter)

at different distances below the MOT while keeping all the

cw (trapping, repumping, and PA) lasers on. We observe

the disappearance of the Cs1 ion signal coming from the

MOT (a small signal due to ionization of the background

FIG. 2. Cs
1
2 ion signal versus the detuning of the PA laser.

The assigned positions of the vibrational levels are indicated by
small bars. The PA laser step is 30 MHz and ion counts are
averaged on 10 laser pulses. The zero of counts is given at
D ! 0 and D ! 2100 GHz, where the MOT is off. Note that
the first dissociation limit does not correspond to any atomic
transition; the second one corresponds to the 6s 2S1!2"F !
4# ! 6p 2P3!2"F0 ! 5# transition.

4403

Figure 2.1: Photoassociation of two colliding Cs atoms: At large internuclear distance, the
colliding atoms absorb a photon λ1. The resulting electronically excited state molecule can
then decay back to the continuum of two free atoms (not indicated) leading to trap loss or to
bound levels of the singlet ground state 1Σ+g or lowest triplet state 3Σ+u , indicated by the dashed
arrow. This second step can either involve spontaneous emission of a photon or stimulated
emission in the case of two-color photoassociation. For both the electronic ground and excited
states only the region near the dissociation threshold is shown. Figure taken from [Fio98].

Photoassociation of laser cooled atoms was first demonstrated by the Heinzen
group in 1993 for Rb atoms [Mil93]. The first photoassociation of cold Cs mole-
cules was performed by the Orsay group in 1997 [Fio98]. Crucial to our experiments
is the ability to trap molecules of different internal states. This is most conveniently
done by means of an optical far-off resonance trap (FORT). The first direct observation
of optically trapped cold neutral molecules was reported by Knize and coworkers in
1998 [Tak98]. They employed CO2 lasers to trap ultracold Cs2 molecules generated
by photoassociation. CO2 laser light does not drive any molecular transitions, which
makes it well suited to trap molecules. The recent review article by Jones, Tiesinga,
Lett, and Julienne gives a very good overview of the different aspects of photoassoci-
ation [Jon06], the review article by Masnou-Seeuws and Pillet puts special emphasis
on the Cs experiments [MS01].

Direct Cooling of Molecules

The second approach to cold molecule production is to take stable molecules and cool
them directly by means other than laser cooling. The phase space densities (see section
2.3) achieved hitherto with this approach are orders of magnitude below those required
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for Bose-Einstein condensation. The great advantage of this method is that a larger
variety of molecular species, in particular more complex molecules, can potentially be
cooled. The most established technique for directly cooling molecules is buffer-gas
cooling [Wei98]. Slowing of supersonic jets of polar molecules can be achieved by
pulsed electric fields in Stark-decelerators [Bet99, Bet00].

2.1.2 Manipulation of the Internal State of Ultracold Molecules
It is important to have means to precisely control and manipulate the internal state of
molecules in order to transfer the Feshbach molecules to more tightly bound molecular
states. The basic discussion here follows the review article by Vitanov, Halfmann,
Shore, and Bergmann [Vit01] and an earlier review article by the same group [Ber98].

Incoherent Population Transfer

When a two-state system where the population is initially in the lower state is illumi-
nated with intense light of the appropriate frequency from an incoherent light source,
the population in the excited state will monotonically approach its saturation value of
50%.

Optical pumping Optical pumping is a widely used method for population transfer
in a three-level system and exploits spontaneous emission. If states |1〉 and |2〉 are cou-
pled by a light field and |2〉 spontaneously decays to state |3〉 that has an energy such
that the radiation field cannot transfer it to either |1〉 or |2〉, population will be effec-
tively transferred from |1〉 to |3〉. Optical pumping does not require a coherent light
source and has been used widely to prepare atoms in a defined stable or metastable
state. In the case of molecules, it suffers from severe limitations due to lack of se-
lectivity. When excited state molecules decay into ground state vibrational levels, the
transition probabilities to the individual levels are governed by the Franck-Condon
(FC) factors, as discussed in section 3.3.1, that are of similar magnitude for neighbor-
ing levels.

Stimulated emission pumping Stimulated emission pumping takes this idea further
by not only coupling states |1〉 and |2〉 by means of a pump field but also states |2〉
and |3〉 with a dump or Stokes field that is supplied after the pump field. Such a three
level coupling scheme is shown in figure 2.2. The Stokes field leads to stimulated
emission from state |2〉 to |3〉. If the pump field is strong enough to saturate the first
transition, 50% of the population is transferred to state |2〉. If the dump field is then
strong enough to saturate the second transition, again 50% of the population of state
|2〉 are transferred to |3〉, the rest decaying according to the natural branching fraction
of spontaneous emission of state |2〉. This yields an overall transfer efficiency of 25%.
The scheme can be improved to a transfer efficiency of 1/3 if the pump and dump fields
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2.1 Towards Ground State Molecules

ternatively, these could be metastable atomic states
whose lifetimes are long compared with the length of a
laser pulse.

The initial and final states must be long lived, whereas
the intermediate state will undergo spontaneous emis-
sion not only to states !1! and !3!, but also to other
states. The objective is to transfer all of the population
from state !1! into state !3!, losing none by spontaneous
emission from state !2!.

At first glance, the possibility of radiative decay from
the intermediate level to states other than the desired
final state seems to be detrimental to the implementa-
tion of an efficient transfer to a single quantum state.
However, as we shall see, the STIRAP process to be
discussed has the remarkable property of placing almost
no population into the intermediate state !2!, and thus it
is insensitive to any possible decay from that state.

Coupling is strongest when the individual laser fre-
quencies are tuned to their respective resonance fre-
quencies, but such one-photon frequencies are not
needed; it is only necessary that the combination of
pump and Stokes frequencies be resonant with the two-
photon Raman transition.

The remarkable properties of this scheme have al-
ready had applications in such diverse areas as chemical-
reaction dynamics (Dittmann et al., 1992), laser-induced
cooling (Kulin et al., 1997a), atom optics (Weitz, Young,
and Chu, 1994), and cavity quantum electrodynamics
(Parkins et al., 1993; Walser, Cirac, and Zoller, 1996).

In the following, we shall first discuss some basic as-
pects of the interaction of radiation with a two-state sys-
tem, to stress the importance of coherence. We shall
then move on to discuss three-state and multistate prob-
lems. We provide, in the Appendices, further details of
the theoretical extension of the original STIRAP pro-
cess and of experimental studies in a variety of atomic
and molecular systems.

II. SOME PROPERTIES OF TWO-STATE SYSTEMS

Given the task of transferring population from a ther-
mally occupied quantum state to an empty one, we may

choose one of many processes. Collisional interactions
of various kinds (with neutral or charged particles) can
serve the purpose. However, these processes are either
inefficient or lack selectivity, i.e., more than one final
state is populated. The most obvious choice for state-
selective excitation is the absorption of one or several
photons which together match the energy difference be-
tween the quantum states. The resulting population de-
pends critically upon the coherence characteristics of the
light. Differences in coherence cause differences in the
excitation dynamics and, in turn, require different equa-
tions to describe time evolution (Shore 1990, Chap. 2).
To illustrate the range of differences, Fig. 2 presents ex-
amples of excitation histories of population for three
kinds of radiative excitation.

(a) Incoherent excitation. To quantify excitation in-
volving incoherent light one uses differential equations
for excitation probabilities (rate equations; Shore, 1990,
Sec. 2.2). Assuming that the atoms are in the lower of
two states (the ground state) at time t!0, and that
stimulated emission dominates spontaneous emission,
one finds the excitation probability (of being in the up-
per state) at time t to be

Pex" t #! 1
2 $1"exp%"&F" t #'(, (1)

where & is the absorption coefficient. The pulse fluence
F(t) (energy per unit area) is the integral of the time-
varying intensity I(t) (power per unit area) over the
pulse duration,

F" t #!"
")

t
I" t!#dt!. (2)

This expression for population transfer approaches,
monotonically in time, the saturation value of 0.5 for
long times. Such behavior is shown as the heavy line of
Fig. 2. As can be seen, the population transfer to the
excited state levels off (saturates) at 50%.

(b) Coherent excitation. By contrast, quantitative dis-
cussions of coherent excitation start from a time-
dependent Schrödinger equation (for probability

FIG. 1. Three-level excitation scheme. The initially populated
state !1! and the final state !3! are coupled by the Stokes laser
S and the pump laser P via an intermediate state !2!. This
latter state may decay by spontaneous emission to other levels.
The detuning of the pump and Stokes laser frequencies from
the transition frequency to the intermediate state are *P and
*S , respectively.

FIG. 2. Evolution of the population of the upper level in a
two-level system, driven by a coherent radiation field (thin
line), by an incoherent radiation field (heavy line), and by an
adiabatic passage process (dashed line).

1004 Bergmann, Theuer, and Shore: Coherent population transfer among quantum states

Rev. Mod. Phys., Vol. 70, No. 3, July 1998

Figure 2.2: Three level coupling: States |1〉 and |3〉 are coupled by the pump field P (with
a detuning ∆P) and the Stokes field S (with a detuning ∆S ) via an intermediate level |2〉 that
can decay by spontaneous emission to other states. The basic coupling scheme holds both for
coupling by incoherent radiation and by coherent radiation. Figure taken from [Ber98].

are supplied simultaneously. Stimulated emission pumping has been applied recently
in the group of David DeMille [Sag05] to produce ultracold RbCs molecules in the
v = 0 level of the singlet ground state potential.

Transfer by Coherent Methods

Application of coherent radiation resonant with the energy spacing of a two level sys-
tem results in an oscillatory behavior of the population in the excited state, known as
Rabi oscillations. Their frequency Ω is related to the strength of the transition by

Ω(t) =
D12 · ε(t)

~
(2.1)

with the dipole matrix element D12 between states |1〉 and |2〉 and the envelope of the
electric field amplitude of the laser ε(t). Planck’s constant divided by 2π is denoted by
~ = 1.05457168 x 10−34 J s. The population can in principle be completely transferred
to the excited state for Ωt = π, 3π, . . .. This concept can be generalized to three-
level systems with the analogous result that in principle complete population transfer
is possible. It should be kept in mind, however, that the population then actually
passes through an intermediate state and inevitable population losses take place by
spontaneous emission unless the excitation time is much shorter than the lifetime of
the intermediate state.

To alleviate the problem of losses due to spontaneous decay of the intermediate
level, the two lasers can be detuned from the resonance frequency, creating a two-
photon resonance with a “virtual” excited state, i.e. a two-photon Raman transition.
The effective Rabi frequency for such a process is Ω = Ω1Ω2

2∆ , where Ω1,2 are the Rabi
frequencies for the first (second) step and ∆ is the detuning from the intermediate state.
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2 Ultracold Quantum Gases

The effective spontaneous emission rate is γ = γi
Ω2

1
4∆2 , where γi is the natural linewidth

of the intermediate state [Jak02].
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Figure 2.3: STIRAP pulse sequence and population transfer: top: The Stokes pulse with
Rabi frequencyΩS is applied before the pump pulseΩP with temporal overlap between the two
pulses. bottom: STIRAP with transfer via a decaying state. The population P is transferred
from the initial state |1〉 (P1 = 1) to the final state |3〉 with population P3. The dark state with
population Pd corresponds to the adiabatic state |0〉. Hardly any population reaches the bright
state (Pb) from which decay can occur. In an ideally adiabatic situation, no population at all
would be dissipated and the final state population P3 would reach unity. Figure adapted from
[Vit97].

STIRAP A completely different and at first sight surprising two-photon transfer
scheme is the Stimulated Raman Adiabatic Passage (STIRAP) scheme [Ber98, Vit01].
In the usual sequence of pulses discussed above first a pump pulse is applied to trans-
fer population from the initial state |1〉 to the intermediate state |2〉 and then a dump
or Stokes pulse is applied to transfer population from |2〉 to |3〉. In STIRAP, first the
Stokes pulse is supplied that couples |2〉 and |3〉. Then, with some temporal overlap,
the pump pulse coupling |1〉 and |2〉 is supplied, as illustrated in figure 2.3. The light
field induces a coupling between the bare states |1〉, |2〉 and |3〉, resulting in three new
adiabatic states |+〉, |−〉 and |0〉. The adiabatic state |0〉 is a coherent superposition of
states |1〉 and |3〉 only with no contribution from the excited state |2〉. Hence, state |0〉
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2.1 Towards Ground State Molecules

allows for efficient populations transfer on time scales exceeding the lifetime of state
|2〉. The relative contributions from the individual bare states to each of the adiabatic
states evolve with time according to the evolution of the Rabi frequencies of the Stokes
and pump pulse, ΩS and ΩP, respectively. For state |0〉 this relation reads

|0〉 = cosϑ(t)|1〉 − sinϑ(t)|3〉, (2.2)

where ϑ(t) is the mixing angle between states |1〉 and |3〉 given by

tanϑ(t) =
ΩP(t)
ΩS (t)

. (2.3)

Initially all the population resides in state |1〉. When the Stokes pulse is applied
and the pump pulse is still off, the mixing angle ϑ is zero. As the Stokes pulse declines
and the pump pulse takes over, the mixing angle smoothly evolves to a value of π

2 .
At the end of the pulse sequence, the adiabatic state |0〉 has only contributions from
|3〉, ideally resulting in 100% transfer efficiency from the initial to the final state. The
necessary conditions for STIRAP are (i) two photon resonance between states |1〉 and
|3〉, (ii) counterintuitive pulse ordering, and (iii) adiabatic evolution. In the adiabatic
limit which corresponds to this idealized situation, no population resides in state |2〉 at
any time and therefore its properties do not influence the transfer process. However, in
reality, the adiabatic limit is only approximately reached. If the coupling is insufficient,
i.e. if the Rabi frequencies are too small, some population will reach the leaky state |2〉
and irreversible radiative decay out of the three-level system can ensue. Dissipation
from the intermediate state reduces the transfer efficiency to below unity.
Vitanov and Stenholm [Vit97] discuss an analytical model from which they derive the
dependence of the final state population on the decay rate of the intermediate state in
the limit of low dissipation

P3 ∼ exp
(
−π2γ

2α2

)
, (α2 � πγ) (2.4)

where γ is the dimensionless decay rate of the intermediate state γ = Γ · T , with the
characteristic pulse length T and the intermediate state decay rate Γ. The parameter
α is proportional to the pulse area, i.e. the time integral of the Rabi frequencies. The
peak Rabi frequencies are taken equal for both pulses.

In numerical simulations of the three-level system with a decaying intermediate
state

i
d
dt

c1

c2

c3

 =
 0 ΩP 0
ΩP ∆ − iΓ ΩS

0 ΩS 0


c1

c2

c3

 (2.5)

we empirically found a condition for efficient transfer that is equivalent to the low
dissipation condition of equation 2.4. Here, we used the rotating wave approximation
and set the detuning from the two-photon resonance to zero. The detuning from the
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2 Ultracold Quantum Gases

intermediate state is ∆ = ∆S = ∆P. Decay from the intermediate state is modeled by
the term −iΓ. The condition for efficient transfer then reads

T ·
(
Ωm

2π

)2

� Γ, (2.6)

where Ωm is the peak Rabi frequency which is taken equal for both pulses. Half of the
population is transfered to the final state |3〉 if both sides of equation 2.6 are equal.

STIRAP has recently been used in our group to transfer ultracold Feshbach mo-
lecules from their initial vibrational state to the next lower lying vibrational level
[Win06b].

Further Transfer Schemes The idea to use time resolved wave-packet dynamics to
tailor the internal state of molecules has been studied mainly theoretically so far. It
was proposed that chirped pulses and optimal control theory could lead to preferential
transfer of molecules to specific low vibrational states in two-color photoassociation
experiments [LK04, Koc06b].

We recently demonstrated the possibility to populate a variety of weakly bound
molecular states by adiabatically following avoided crossings between states by means
of magnetic field ramps or non-adiabatically jumping the crossings [Mar07]. Although
this technique gives an extremely high degree of control over the internal state of mo-
lecules, it is only applicable to states close to the scattering threshold.

Another possibility is to transfer molecules from one ground state vibrational level
to the next lower lying levels by means of microwave radiation. Going down the vibra-
tional ladder a few steps might improve the starting position for two-photon transitions
to very low-lying vibrational levels.

Ground State Molecule Production

There is a series of proposals of how to transfer weakly bound ultracold molecules to
the vibrational and rotational ground state (v = 0, J = 0) of the electronic molecular
ground state X1Σ+(g). This section is intended as a first introduction whereas the topic is
discussed in some more detail in section 6.2.

The proposal by Zoller and coworkers for the production of a ground-state molec-
ular BEC [Jak02] has already briefly been mentioned in the introduction. It involves
molecule production and transfer to the ground vibrational state in an optical lattice
where the molecules are shielded from inelastic molecule-molecule collisional losses
and subsequent release from the lattice. The molecules are first formed by two-color
photoassociation and then transferred to the rovibrational ground state by two con-
secutive two-photon transfer steps. The authors give guidelines for the case of Rb2.
Instead of two-color photoassociation, we would form molecules via Feshbach associ-
ation (see sections 2.2.3 and 3.2.3).

In the case of heteronuclear diatomic molecules, the absence of the
gerade/ungerade symmetry of homonuclear dimers is advantageous. Excitation can
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occur via the triplet component of the Feshbach molecules and singlet/triplet mixing
in the electronically excited state can be exploited for transfer to the singlet ground
state. Stwalley [Stw04] discusses the transfer of dialkali Feshbach molecules to the
(X1Σ+, v = 0, J = 0) state via an intermediate state with mixed b3Π and A1Σ+ character
(for state labeling conventions, see section 3.1.1). With the current spectroscopy setup
we are addressing mixed b3Πu/A1Σ+u states in Cs2, see section 3.2.2.

DeMille and coworkers [Sag05] recently transfered ultracold RbCs molecules
formed by photoassociation to the vibrational ground state with a rather narrow dis-
tribution of the rotational quantum number. They exploited singlet/triplet mixing in
the excited state as analyzed in reference [Ber04]. The scheme relied on singlet/triplet
mixing of energetically somewhat higher lying states than suggested by Stwalley.

2.2 Interaction of Ultracold Particles

The realization that cold collision phenomena would open up an exciting new field
of physics came with early work on spin polarized hydrogen in the 1970s. The
field experienced a dramatic surge with the advent of laser cooling techniques
[CT98, Chu98, Phi98] in the 1980s pushing the temperature limits to the millikelvin
and microkelvin range. Evaporative cooling [Ket96] has provided us with the pos-
sibility of performing experiments at nanokelvin temperatures and to reach quantum
degeneracy and Bose-Einstein condensation.
The temperature range accessible via Doppler and polarization gradient cooling be-
tween ∼ 1 mK and ∼ 1 µK is often termed the regime of cold collisions [Wei99].
Here, the quantum mechanical wave nature of the particles becomes important. The
de Broglie wavelength

λdB = h/p, (2.7)

with Planck’s constant h and particle momentum p = (2mE)1/2 becomes comparable
to or longer than the chemical bond length.
The ultracold regime is reached when the de Broglie wavelength grows to a scale com-
parable to the mean distance separating atoms in a dilute gas at the critical density for
Bose-Einstein condensation (see section 2.3). Wave functions of the individual atoms
start to overlap and the atomic ensemble enters the regime of quantum degeneracy. The
de Broglie wavelength is on the order of micrometers which is enormous in compari-
son to the diameter of an atom or the typical chemical bond length. 1 µm corresponds
to 1.9 x 104 a0 or Bohr radii, whereas atomic diameters are less than 10 a0. As will
be detailed below in this regime scattering between ground state atoms takes place
through radial motion and is isotropic. Ultracold collisions can largely be described in
terms of a single parameter a, the s-wave scattering length. The translational energy of
the atoms lies below the recoil imparted on the atom by scattering of a single photon.
The study of ultracold collision processes is motivated by their relevance to the fol-
lowing areas [Wei99, Bur02]:
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1. Quantum degenerate gases: First, when trapping particles magnetically or opti-
cally, one has to understand trap loss mechanisms that result from particle col-
lisions. Second, the ratio of elastic or “good” collisions and inelastic or “bad”
collisions determines whether quantum degeneracy can be reached by evapora-
tive cooling.

2. Precision Measurements: In photoassociation spectroscopy the scattering state is
coupled to an electronically excited molecular state. This has been used to study
long-range excited states not amenable to classical spectroscopy as well as the
properties of the scattering wave function and near threshold ground state levels.
Conventional laser spectroscopic techniques can only address tightly bound lev-
els both in the ground and excited states easily. Feshbach spectroscopy allows
for extremely precise analysis of the molecular structure right below the scat-
tering threshold if combined with a thorough theoretical analysis [Chi04b]. Our
definition of the second rests on the hyperfine splitting of the Cs ground state
atom. Atomic collisions cause density dependent clock shifts [Gib93, PDS02]
and their study is of particular interest to build better atomic clocks.

3. Control of the outcome of collisions: It has long been the dream of chemists
and chemical physicists to be able to precisely control the outcome of a collision
between two particles, i.e. to control chemical reactions on a quantum level. In
the realm of ultracold particles the scattering properties can be tuned by external
optical or magnetic fields. The scattering state can be transfered to a bound
state, thereby inducing the formation of molecules as discussed in more detail in
section 2.2.3. Ultimate control over particle interactions can be achieved in an
optical lattice.

2.2.1 Long-Range Interaction between Atoms
The Hamiltonian that describes a system of two interacting ground state alkali atoms is
composed of the atomic Hamiltonian for each atom, a kinetic energy operator for the
relative radial motion, two Born-Oppenheimer potentials with symmetry 1Σ+g and 3Σ+u

(see section 3.1.1), the nuclear rotation operator ~2`2

2µR2 , and weaker relativistic interac-
tions Hrel. Here ` denotes the nuclear mechanical angular momentum, µ is the reduced
mass of the atom pair and R the separation between the two nuclei. The van der Waals
interaction and the exchange interaction can be viewed as the mean energy and half
the energy difference between the 1Σ+g singlet and 3Σ+u triplet Born-Oppenheimer po-
tentials which comprise all the Coulomb interaction between the electrons and nuclei.
For two interacting neutral atoms in their ground state, all the permanent electric mul-
tipoles are absent. The long range dispersion forces between them are governed by the
attractive induced-dipole-induced-dipole van der Waals interaction [Jon06]. The van
der Waals interaction scales as −C6

R6 , where C6 is the van der Waals coefficient. Weaker
higher order contributions scale as R−8, R−10,. . . Note that the van der Waals interaction
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is only dependent on the distance between the two particles but not on the spin.
In the case of two colliding alkali atoms, the single unpaired or valence electron de-
termines the interaction. When the distance between the colliding atoms gets small
enough for the electronic wave functions to overlap, the exchange energy starts to
significantly contribute to the interaction. This interaction arises from wave function
overlap and depends on electronic spin. The electronic spins sa and sb of the individual
atoms a and b couple to a total spin S = sa + sb with the associated quantum number
S = 0 or S = 1. States with S = 0 are called singlet states and states with S = 1 are
called triplet states. The van der Waals coefficient C6 is the same for the singlet and
the triplet interaction potentials, therefore these are degenerate at large separation. At
smaller separation, in the region of conventional chemical bonding, the two potentials
become distinct due to the increasing contribution from the exchange energy which is
attractive for the singlet state and repulsive for the triplet state, see figure 2.4.
In the region of large internuclear separation, the hyperfine splitting of the atoms is

2.1 Interactions in ultracold cesium

The Feshbach resonances in cesium can be labelled according to the molecular state
which causes the resonance. The molecular states are identified by the following quan-
tum numbers.

f : Quantum number of the internal angular momentum f of the molecule.

mf : The projection of f on the magnetic field axis.

l : The quantum number of the molecular orbital angular momentum l.

ml : The projection of the molecular orbital angular momentum l on the magnetic field
axis.

In all collisions in our experiment the incoming waves are s-waves. As will be ex-
plained below, coupling to molecular channels with l = 0, 2, 4, 6, ... is, however, pos-
sible. Accordingly, the molecular states and the Feshbach resonances can be denomi-
nated s−, d−, g− and l−wave states (resonances).

Coulomb interaction

The Coulomb interaction leads at very short interatomic distances to a repulsive wall
in the interaction potential of the colliding atoms. At larger distances it is responsi-
ble for the splitting of the interaction potential in the triplet (1Σ+g ) and singlet potential
(3Σ+u ). The fully stretched states (F = 4,mF = ±4 in the cesium ground state) form a
pure triplet potential. For scattering of atoms in other internal states, both potentials
contribute. In Fig. 2.6 the singlet and triplet potential for Cs are displayed. Both poten-!"#$%&' () !*+, !*++-.-*/. !"
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Figure 2.6.: The triplet and singlet potential for cesium atoms in the electronic ground state.
The inset shows the energy splitting when one of the colliding atoms is in another hyperfine
state. Figure adapted from [Chi01a].

tials can support molecular bound states. The asymptotes of the scattering potentials
for atoms in different hyperfine states have an energy difference equal to the hyperfine
splitting of the ground state. The degeneracy of the mF magnetic sub-states is lifted in
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Figure 2.4: Cs interaction potentials: Singlet X1Σ+g and triplet a3Σ+u interaction potentials for
two colliding Cs atoms. At large internuclear separation, the energy structure is dominated by
the hyperfine interaction as shown in the inset. Note the different energy scales. The complete
labeling of the molecular states is discussed in section 3.1.1. Figure adapted from [Chi01].

larger than the splitting between singlet and triplet states and than the thermal energy
of the colliding atoms in the ultracold limit. Therefore, three different scattering con-
tinua have to be considered, each separated by the ground state hyperfine splitting of
the Cs atom. At zero magnetic field, they can be labeled by the total atomic angular
momentum quantum numbers F, where F = i + j is the sum of the nuclear spin i and
the total electronic angular momentum j. For alkali atoms in their electronic ground
state j = s and therefore F = i + s. In Cs, nuclear spin is 7/2 and the total angular
momentum can take on the values F = 3 or F = 4 and therefore, these thresholds are
labeled |F = 3, F = 3〉, |F = 4, F = 3〉, and |F = 4, F = 4〉 as indicated in the inset
in figure 2.4. Each of these curves has unresolved degeneracies that can be labeled by
the quantum number f , where f = Fa + Fb [Jon06].
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2 Ultracold Quantum Gases

In contrast to the lighter alkali species, the cesium atom is peculiar in that not only the
van der Waals and the exchange interactions play an important role but also the weaker
relativistic interactions Hrel. These are the magnetic dipole-dipole and second order
spin-orbit interactions that stem from spin-spin interactions between the two atoms.
The second order spin-orbit interaction is synonymous with the indirect spin-spin cou-
pling. Together with the atomic hyperfine structure, this is crucial for understanding
the characteristic scattering properties of cesium and the molecular structure of weakly
bound Cs molecules [Chi04b].

2.2.2 Two-body Scattering
When two atoms a and b in quantum states |αa〉 and |αb〉, where α denotes all rele-
vant quantum numbers, collide and end up in quantum states |α′a〉 and |α′b〉, then an
interaction is termed elastic if the resulting states |α′i〉 are identical to the initial states
|αi〉, (i = a, b). No exchange of energy between inner degrees of freedom and trans-
lational degrees of freedom takes place. Elastic collisions lead to the thermalization
of an ensemble of particles and are therefore crucial for the thermalization during
evaporative cooling on the way to Bose-Einstein condensation. Thus the term “good”
collisions has been coined. In contrast, inelastic collisions are those where the internal
states of the colliding particles change, |α′i〉 , |αi〉. Two atoms or molecules that are not
in their absolute internal ground state can collide and release energy that is distributed
to the translational motion of the collision partners. This process can heat the sample
if the products are trapped. Alternatively, it leads to particle loss because the resultant
states are not trappable or because the kinetic energy is higher than the trap depth.

The atomic scales of length, time, and spectral line width in the ultracold regime
are in sharp contrast to the usual relations valid for scattering at room temperature.
At room temperature, the thermal de Broglie wavelength λdB is on the order of a few
thousandth of a nanometer and gas phase chemical reactions can usually be interpreted
as the interaction of classical nuclear point particles moving along potential surfaces
defined by their associated electronic charge distributions [Wei99]. Due to the high
kinetic energy of the particles, the interaction time is short. In contrast, in the ultracold
regime, the de Broglie wavelength is several hundred times typical molecular bond
lengths and the collisional interaction time is several times the spontaneous emission
lifetime of an atom. The inhomogeneous Doppler width is smaller than the natural
linewidth of atomic dipole transitions, which enables high precision free-bound and
bound-bound spectroscopy. In addition, if an external field is applied, all atoms in
an ensemble are coupled to it, instead of only a certain velocity class that fulfills the
resonance condition. As will be illustrated below, the quantum state of the collision
partners can be precisely controlled and therefore, matter wave effects can be studied.
The long collision durations aid in controlling the outcome of a collision by external
fields.
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2.2 Interaction of Ultracold Particles

The ground state hyperfine splitting, which is 9.192631770 GHz in Cs, is orders of
magnitude larger than the translational energy of the colliding atoms. Therefore, the
hyperfine structure provides well defined scattering channels as illustrated in figure
2.4. When collisional resonances as discussed in section 2.2.3 occur, the scattering
state couples only to one or very few bound states. Similarly, the outgoing channels
are well defined and only one or a few channels typically have to be considered.
As a consequence, ultracold scattering processes are traceable and amenable to de-
tailed theoretical analysis that reveals the underlying molecular structure. In this sense,
they lie at the interface between atomic and molecular physics. Ultracold scattering
experiments allow for extremely precise testing of the theoretical models for inter-
particle interaction that contain no adjustable parameters [Bur02]. Such threshold-
resonance spectroscopy can be done with high precision considering the very small
spread introduced by thermal effects. A temperature of 1 µK yields a thermal energy
spread of kBT

h = 21 kHz, where kB = 1.3806505 x 10−23 J K−1 is the Boltzmann con-
stant.
On the scale of these ultralow collision energies, the interaction potential for two scat-
tering particles already has a significant impact on the scattering wave function at dis-
tances much larger than the classical extension of the interaction potential. Therefore,
ultracold scattering experiments are sensitive to the asymptotic region of the potential
which is hardly accessible to conventional spectroscopy. Note, however, that the group
of Tiemann has obtained spectroscopic data starting from tightly bound ground state
molecules [Sam00] that is very competitive with data obtained from ultracold collision
experiments involving photoassociation.

The quantum mechanical treatment of ultracold scattering processes is greatly fa-
cilitated by introducing a partial wave decomposition of the stationary scattering wave
function of the relative motion of the atom pair. A general introduction to quantum me-
chanical scattering is given in the book by Cohen-Tannoudji, Diu, and Laloë [CT99],
its application to ultracold scattering processes is discussed in reference [Wei99]. The
partial wave method decomposes the scattering wave function according to the quan-
tum numbers ` and m`. The angular momentum of relative motion between the two
colliding atoms is given by `, whereas its orientation with respect to a laboratory fixed
axis defined by the magnetic field axis is given by m`.
The partial waves are termed s, p, d . . . partial waves for ` = 0, 1, 2, . . .. Partial waves
with angular momentum ` , 0 experience an effective repulsive potential barrier that
has to be overcome for scattering to occur. In the ultracold regime, the kinetic energy
of the particles is not sufficient to overcome this barrier for partial waves with ` > 0.
The classical turning points for this centrifugal barrier are located at large interatomic
distances R. Therefore, scattering is effectively reduced to s-wave scattering, resulting
in an isotropic process.
When dealing with scattering among identical atomic species, the scattering wave
function has to be symmetrized with respect to exchange of identical particles [Wei99].
In general, if two atoms a and b of the same species in identical quantum states
|αa〉 = |αb〉 collide, only either even or odd partial waves can contribute to collision
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rates depending on whether the atoms are composite bosons or composite fermions.
For the case of composite bosons, only even partial waves occur whereas for the case
of composite fermions, only odd partial waves are possible. If the two quantum states
are not identical, both even and odd partial waves are possible. 133Cs is a composite
boson and therefore only even partial waves can contribute to scattering, as will be
seen in section 3.2.3.

Elastic Scattering

In elastic s-wave scattering the effect of the scattering process reduces to a mere phase
shift δ0 between the incoming wave and the outgoing wave for values of the interatomic
separation R much larger than the typical length scale of the interaction potential. For a
van der Waals potential, this length scale is set by the van der Waals length lvdW which
is connected to the C6 coefficient by

lvdW =
1
2

(mC6/~2)1/4, (2.8)

where m is twice the reduced mass of the atom pair which in the case of identical
particles coincides with the mass of a single atom [Koh06]. For Cs the van der Waals
length is on the order of 100 a0.
In the interaction region the wave function oscillates rapidly due to the interaction
potential. The behavior of the wave function in the interaction region depends cru-
cially on the precise shape of the interaction potential. Therefore, also the phase shift
imparted by the scattering process is crucially dependent on the exact shape of the po-
tential.
In the ultralow energy limit, as the scattering wave vector k goes to zero the following
relation for the phase shift δ0 converges to a constant value a that has the dimension of
a length:

− lim
k→0

tan δ0(k)
k

= a (2.9)

The entity a is a characteristic quantity for the particular scattering process and con-
tains the information about the phase shift experienced by the scattering wave function.
It is called the elastic s-wave scattering length and has a direct connection to the scat-
tering cross section σ and a wealth of other phenomena in ultracold collision physics.
The scattering length has a very intuitive interpretation given e.g. in reference [Bur02].
When extrapolating the unperturbed long-range scattered wave to small R, one obtains
a node at R = a which is independent of the collision energy, provided that the col-
lision energy is small. In the case of negative scattering length this corresponds to a
virtual node. This interpretation emphasizes the relation between the scattering length
and the scattering phase shift δ0. It should be noted that just as the phase shift δ0 de-
pends on the precise characteristics of the interaction potential, the scattering length
is exquisitely dependent on the precise interaction between the particles. The singlet
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and triplet potentials can be assigned their respective scattering lengths aS and aT . For
a = 0 the incoming and outgoing wave functions interfere destructively and therefore
no s-wave interaction can take place. This is called the Ramsauer-Townsend effect.
The scattering length is closely related to the location of the last bound state of the in-
teraction potential. If the last bound state is located just below the zero energy thresh-
old, the scattering length is large and positive. If the potential is just not deep enough
to support another bound state, the scattering length is large and negative. If the last
bound state exactly coincides with the zero energy threshold, the scattering length di-
verges. This is called a zero energy resonance. Positive scattering length corresponds
to repulsive interaction, negative scattering length corresponds to attractive interac-
tion.
In the zero energy limit the elastic scattering cross section σel for the scattering of
identical bosonic atoms is given by

σel = 8πa2. (2.10)

This elastic cross section can be much larger than the cross section at room temperature
[Bur02]. This is crucial for evaporative cooling to quantum degeneracy. It vanishes
identically for fermions in identical spin states because s-wave scattering is forbidden.
For nonzero collision energies that are still in the s-wave scattering regime, the elastic
cross section for large values of a is

σel =
8πa2

1 + k2a2 . (2.11)

For k2a2 � 1 the zero energy limit is recovered, for k2a2 � 1 this expression reduces
to

σel =
8π
k2 , (2.12)

which is termed the unitarity limit. It sets an upper limit to the elastic cross section for
a given collision energy.
As stated before, the scattering length is large and positive when the potential depth is
such that a bound state exists just below the zero energy threshold. The binding energy
Eb of this last bound state is given by the formula

Eb = −
~2

ma2 (2.13)

where again m is the mass of a single atom in the case of identical particles. This
universal description holds for Feshbach molecules (see section 2.2.3) associated with
so-called entrance channel dominated Feshbach resonances [Koh06]. A more accu-
rate description of the binding energy in this case is given by the Gribakin-Flambaum
correction [Gri93] introducing the mean scattering length a:

Eb = −
~2

m(a − a)2 (2.14)
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The wave function of such a very loosely bound state “lives” predominantly outside the
classical region set by the extent of the interatomic potential, such a state is therefore
called a halo state. In the region of interatomic distances R large compared to the
classical turning point Rclassical, the bound state wave function assumes the general
form

φb(R) =
1
√

2πa

e−R/a

R
(2.15)

with a mean distance or bond length between the atoms of a/2. Note that the charac-
teristic long range of these isotropic diatomic halo molecules is determined by a single
parameter of the interaction potential, namely the s-wave scattering length. It is cus-
tomary to refer to such a situation where physical quantities such as the binding energy
and wave function depend only on the scattering length rather than on the details of the
interaction itself as the universal regime [Koh06]. This universal description holds for
halo molecules such as the 4He dimer as well as highly excited long range Feshbach
molecules that we use for our spectroscopic experiments.
The van der Waals length of Cs atoms (lvdW = 101 a0) corresponds to a halo state bind-
ing energy of h·2.6 MHz. Description as a halo state is only appropriate for binding
energies considerably smaller than this value. The scattering length approximation for
Cs is only good for temperatures below 1 µK.

Inelastic collisions - Spin Changing Collisions

For colliding ground state alkali atoms different scattering channels arise from the hy-
perfine structure of the individual atoms. If the total energy Eα of a scattering channel,
i.e. the sum of the individual atoms’ energies EFa,mFa

and EFb,mFb
is below the total

energy of the system, the channel is said to be open. If Eα is above the total energy of
the system, the channel is said to be closed. This nomenclature is illustrated in figure
2.5.
The van der Waals interaction is not spin-dependent. Therefore, it cannot couple dif-
ferent spin states. The exchange interaction in contrast can induce relaxation of spin
states in inelastic collisions. It conserves the angular momentum ` of the relative mo-
tion between the atoms and its projection m` and therefore only transitions between
states with the same m f are allowed. Such transitions are suppressed for atoms in
stretched states |F,mF = ±F〉.

Contrary to this, the relativistic interactions that are particularly important for the
case of Cs atoms allow an exchange of up to two units of angular momentum be-
tween internal and external degrees of freedom, and enable inelastic collisions even
for stretched states.
The state |3,−3〉 can be trapped magnetically but inelastic collisional losses prohibited
Bose-Einstein condensation of Cs in magnetic traps. In contrast, the |3, 3〉 state cannot
be trapped magnetically but inelastic two-body processes are absent. Therefore, losses

28



2.2 Interaction of Ultracold Particles

!"#$%&' () !*+, !*++-.-*/. !"

(b)

a)

molecular state

scattering state

 

energy

a

 

external magnetic field

inelastic channel

elastic channel
incident channel

open channel

bound

state

 

closed channel

interatomic distance
 

energy

#$%&'( )*+, #(-./01. '(-23031(- 211&' 4.(3 5.( $31$6(35 1.033(7 12&87(- 52 0 /2&36
-505(* 93 :0;< 0 /2&36 -505( -&882'5(6 /= 0 172-(6 1.033(7 $36&1(- 5.( 12&87$3% >'2?
$31$6(35 1.033(7 52 (70-5$1 1.033(7 036 52 $3(70-5$1 1.033(7* @.(3 5.( /2&36 -505(
$- 172-( 52 5.( $31$6(35 1.033(7< 5.$- #(-./01. 12&87$3% 103 /( ?&1. -5'23%(' 5.03
5.( 6$'(15 A'-5 2'6(' 12&87$3%* 93 :/;< 0--&?$3% 5.( -1055('$3% -505( 036 5.( /2&36
-505( .0B( 6$C('(35 ?0%3(5$1 ?2?(35-< 5.( -1055('$3% 7(3%5. 6$B('%(- $3 5.( D('2
5(?8('05&'( 7$?$5 4.(3 5.( ?0%3(5$1 A(76 5&3(- 542 1.033(7- $352 6(%(3('01=*

Figure 2.5: Scattering channels and Feshbach resonances: A channel is said to be elastic if
the internal state of the colliding atoms does not change. An open channel has an energy below
the total energy of the incident channel, a closed channel has higher energy than the incident
channel. A Feshbach resonance arises when the incident channel couples to a bound state in a
closed channel. Figure taken from [Chi01].

are dominated by weaker three-body processes [Web03c] and Bose-Einstein Conden-
sation could be achieved [Web03b].

2.2.3 Feshbach Resonances

In our experiments ultracold molecules are associated from trapped atoms by means
of magnetically tunable Feshbach resonances. The following section gives a brief
introduction to the physics of Feshbach resonances and the production of Feshbach
molecules. The material is taken from the review article by Köhler, Góral and Juli-
enne, where a much more exhaustive discussion can be found [Koh06]. The molecular
structure of cesium Feshbach molecules is discussed in more detail in section 3.2.3 in
the context of near-threshold molecular states of Cs dimers.
The existence of resonance phenomena in the context of cold atomic gases was first
predicted by Stwalley [Stw76]. Magnetically tunable Feshbach resonances were first
predicted by Stoof and coworkers [Tie93] and observed experimentally in the group of
Ketterle [Ino98]. With Cs, they were first observed by Vuletic and colleagues [Vul99b].
Resonances refer to the energy dependent enhancement of inter-particle cross section
due to the existence of a metastable state. This can be a bound state of a subsystem
that couples to its environment, which is then referred to as Feshbach resonance, as
illustrated in figure 2.5. Shape resonances in contrast arise when a bound state re-
sides behind a potential barrier. The ground state hyperfine splitting provides three
well defined scattering potentials that are separated from each other by an energy of
9.2 GHz·h. Each of these potentials supports bound molecular states. The individ-
ual molecular states exhibit different magnetic moments. In a two-channel approach
[Koh06], the effect of an external magnetic field simply corresponds to a magnetic field
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dependent overall shift of the closed channel potential relative to the entrance channel.
Therefore the energy of a bound state belonging to a closed channel can be tuned rel-
ative to the energy of the scattering state by means of the Zeeman effect. This bound
state is referred to as bare Feshbach state and labeled “bound state” in figure 2.5.
When the bare Feshbach resonance state is brought into energetic degeneracy with the
entrance channel and the scattering atoms are allowed to couple to it, a Feshbach reso-
nance occurs. The coupling between the entrance channel and the closed channel leads
to a new eigenstate of the coupled system or synonymously to a dressed state. These
dressed states are the so called Feshbach molecules. From an experimental point of
view most often the term “Feshbach molecule” is used for any molecule produced by
means of a Feshbach resonance, even if it corresponds to the bare Feshbach resonance
state. This somewhat sloppy usage is adopted in this thesis.
Coupling can be induced by strong electronic interaction such as the exchange interac-
tion, and by the relativistic interactions introduced in section 2.2.1. The nonrelativistic
interactions preserve rotational angular momentum ` and consequently lead to s-wave
Feshbach resonances since scattering in the ultracold regime is reduced to s-wave scat-
tering. The relativistic interactions in contrast lead to much weaker coupling of the s-
wave scattering state to bound molecular states with angular momentum ` = 2, 4, . . .,
so called d-wave, g-wave,. . . states. The Feshbach resonances that arise from coupling
of the s-wave scattering state to d- or g-wave molecular states are called d-wave and
g-wave Feshbach resonances, respectively. Near-threshold bound states of Cs2 will be
treated in section 3.2.3. Note that, as already pointed out in section 2.2.2 on page 26,
only even partial waves occur for the case of two identical bosonic atoms in identical
spin states.
The scattering length as well as the collisional cross section is greatly modified by the

presence of a Feshbach resonance, as illustrated in figure 2.6. In the vicinity of a Fesh-
bach resonance the scattering length shows a dependence on magnetic field according
to

a(B) = abg

(
1 −

∆B
B − B0

)
, (2.16)

with the off-resonant background scattering length abg. At the position B0 of the reso-
nance, the scattering length shows a singularity. This is the magnetic field where the
bare Feshbach resonance state is degenerate with the scattering threshold. The width
∆B of the resonance can vary from µG to hundreds of Gauss and is mainly dependent
of the magnitude of the coupling between the incident channel and the bound state.
The coupling strength is given by the matrix element between the bare Feshbach reso-
nance state φres and the entrance channel wave function φ+0 with the coupling operator
W according to

∆B =
m(2π~)3

4π~2abgµres

∣∣∣〈φres|W |φ+0 〉
∣∣∣2 (2.17)

As already pointed out, the relativistic interactions in cesium can weakly couple states
of different relative angular momentum ` and lead to narrow higher order Feshbach res-
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Figure 2.6: Elastic scattering cross section and scattering length near Feshbach reso-
nances: Different bound states and the scattering state differ in magnetic moment. Therefore,
their energies vary differently with the magnetic field due to the Zeeman effect. At the inter-
section of bound states with the scattering state, Feshbach resonances appear (arrows in lowest
panel). The s-wave scattering length varies dispersively in the region of the resonance. Where
the s-wave scattering length is zero, the elastic cross section goes to zero. This is the Ramsauer-
Townsend effect. When the scattering length becomes very large, the elastic scattering cross
section reaches its maximum value which is the unitarity limit, as discussed in section 2.2.2.
Note the different width in magnetic field of the two displayed Feshbach resonances. The width
is determined by the coupling strength and the difference in magnetic moments between the
bound state and the scattering state. (Picture taken from [Chi01]).

onances. The above relation further depends on the difference µres in magnetic moment
between the scattering state and the bare Feshbach resonance state, which is typically
on the order of one Bohr magneton µB in Cs. Figure 2.6 shows this behavior as two
different molecular states intersect the scattering threshold and produce Feshbach res-
onances of different widths. Also shown is the variation of the elastic scattering cross
section as discussed in section 2.2.2.
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Figure 2.7: Molecule production at a Feshbach resonance: Zeeman diagram for the atomic
scattering state and the molecular bound state. The Feshbach resonance corresponds to the
crossing point of the atomic scattering state and a molecular state. Molecules at (2) are created
from the atomic cloud at (1) by a downward sweep of the magnetic field across the resonance.
The inset shows the configuration (2) where the molecular state is below the scattering contin-
uum.

Formation of Feshbach Molecules

The formation of Feshbach molecules is illustrated in figure 2.7. The energies of the
scattering state and a molecular state differ in their magnetic field dependence and
intersect at a certain position. This is the position of the Feshbach resonance. For
molecule formation, the magnetic field is set to a value above the resonance (1) and
then the magnetic field is ramped adiabatically over the resonance to (2). This corre-
sponds to bringing the bare Feshbach resonance state from above the scattering thresh-
old into degeneracy with the scattering state and then further down corresponding to a
bound state in (2). The inset shows the entrance channel and the closed channel with
its associated Feshbach state at position (2) after the sweep. Here, the Feshbach state
corresponds to a weakly bound molecular state.
Atom-molecule coherence was first demonstrated by Wieman and coworkers [Don02]
applying time-dependent magnetic field variations around a zero-energy resonance of
85Rb. Production of ultracold molecules by magnetic field sweeps from Bose-Einstein
condensates was achieved in several groups soon thereafter [Her03, Dür04, Xu03]. In
two-component spin mixtures of fermionic atoms, the same technique was applied suc-
cessfully [Cub03, Joc03b, Reg03, Str03]. Figure 2.2.3 shows a cloud of ultracold Cs2

molecules formed in this way and coupled out of an atomic sample by a Stern-Gerlach
type technique [Her03]. The Stern-Gerlach separation by means of a magnetic field
gradient is due to the different magnetic moments of the atomic and the molecular
state.
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Figure 2.8: Ultracold quantum gas of Cs molecules: left: Absorption picture of an atomic
cloud after release from the trap. The atoms are levitated by a magnetic field gradient. middle:
Association of atoms by means of a magnetic field sweep across a Feshbach resonance. Ultra-
cold Feshbach molecules appear as a separate cloud when the levitation gradient is adjusted to
levitate the atoms. right: When the levitation field is adjusted for the molecules, the atoms are
accelerated upwards. Figure taken from [Her03].

2.3 Bose Einstein Condensation
We are working on the production of a Bose-Einstein condensate (BEC) of molecules
in their absolute internal ground state. In order to reach the phase space density nec-
essary for the condensation of molecules it is necessary to (i) start from a sufficiently
cold and dense atomic sample, (ii) efficiently produce Feshbach molecules, and (iii)
efficiently transfer the molecules to their rovibrational ground state. The efficiency of
Feshbach molecule production is greatly increased in an atomic BEC. For transfer to
the rovibrational ground state, an optical lattice provides the necessary shielding from
detrimental collisional losses. Loading of the optical lattice and preparation of exactly
two atoms per lattice site for Feshbach molecule production is preferentially from
an atomic BEC. In conclusion, it is advantageous to use an atomic BEC as starting
point in the quest for a molecular ground state BEC. Here the basic physics of Bose-
Einstein condensation is discussed, which lays the groundwork for the understanding
of both atomic and molecular BECs. This section is intended as a primer for readers
unfamiliar with the physics of Bose-Einstein condensation. A much more exhaustive
treatment of the topic can be found in a series of review articles and dedicated books
[Ket99, Cor02, Ket02, Cor99, Dal99, Pet02, Pit03].
Bose-Einstein condensation is possible for bosonic particles and can be defined as the
macroscopic occupancy of the system’s lowest single-particle quantum state. The on-
set of Bose-Einstein condensation is heralded by a distinct phase transition. The term
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macroscopic here states that many particles occupy the same state. The phenomenon
of Bose-Einstein condensation was first predicted in 1925 by Einstein [Ein25] based
on work by Bose on photon statistics [Bos24]. Experimentally, liquid helium was for
a long time the only system where the phenomenon of Bose-Einstein condensation
could be studied, at least in the regime of strong particle interactions. The possibility
to study Bose-Einstein condensation of noninteracting particles, i.e. of an ideal gas,
or of weakly interacting particles had to await the development of laser cooling and
trapping techniques in the 1980s and the implementation of the evaporative cooling
technique [Ket96]. Bose-Einstein condensation was first realized experimentally in
1995 by E. Cornell, C. Wieman and collaborators [And95] in a dilute gas of 87Rb.
Soon, other alkali species [Dav95, Bra95, Bra97, Fri98, Cor00, Mod01] and several
non-alkali species followed. Although Cs was initially thought to be a good candidate
for Bose-Einstein condensation, condensation was prohibited in magnetically trapped
samples due to unexpectedly large two-body losses. Bose-Einstein condensation of Cs
was first achieved by our group [Web03b] by adopting an optical trapping approach
instead of magnetically trapping the sample.

In 2003, it became possible to Bose-Einstein condense Feshbach molecules com-
posed of two fermionic atoms [Joc03a, Gre03]. These are much more stable against
inelastic collisions than molecules composed of bosonic atoms. The Bose-Einstein
condensation of Feshbach molecules composed of bosonic atoms has been hindered
hitherto by the presence of inelastic loss channels due to dimer-dimer collisions.

Figure 2.9: Bose-Einstein condensation: The sequence A − D illustrates the transition from
a classical gas at high temperature to a Bose-Einstein condensate. A: In a classical gas, par-
ticles can be considered point-like entities moving at high velocities with the mean distance
d between the particles being much larger than the extent of the individual particle. B: At
smaller temperatures, the thermal de Broglie wavelength λdB of the particles increases and the
quantum mechanical wave nature of the particles starts to play a role. C: The phase transition
to a Bose-Einstein condensate occurs when the wave functions of the individual particles start
to overlap, i.e. when the de Broglie wavelength becomes comparable to the distance between
the particles λdB ∼ d ∼ n−1/3. D: At zero temperature, the system can be described by a single
macroscopic wave function and the condensate is pure with no thermal particles remaining.
Figure adapted from [Ket99].

Figure 2.9 gives a very intuitive illustration of the phenomenon of Bose-Einstein
condensation. At room temperature, atoms in a gas can effectively be regarded as
point-like particles moving at high velocity. The extent of the particles is much smaller
than the mean interparticle distance d which is proportional to n−1/3, where n is the
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number density. The quantum mechanical wave nature of the atoms or molecules can
be neglected. At lower temperatures, the atoms move more slowly and accordingly, the
thermal de Broglie wavelength λdB =

√
2π~2/(mkBT ) increases. Here m is the atom’s

mass, ~ is Planck’s constant divided by 2π and kB is the Boltzmann constant. The de
Broglie wavelength gives a measure of the spatial extent of the wave packet associated
with the particles. Its increasing magnitude indicates that the quantum mechanical
wave nature of the atoms start to play a role. When the individual wave packets start
to overlap, the phase transition to Bose-Einstein condensation ensues and the particles
start to form a macroscopic matter wave. The wave packet overlap can be measured
by the so called phase space density ρ defined by

ρ = nλ3
dB, (2.18)

where n is the density of particles. When ρ ≥ 1, wave packets start to overlap. At
the same time the sample is cooled, it must be assured that the usual transition from
gaseous to liquid to solid is prevented by diluteness of the sample. Diluteness is as-
sured by the condition

n|a3| � 1, (2.19)

where a is the s-wave scattering length which is the single most important param-
eter describing particle interactions in the ultracold regime as discussed in section
2.2.2. The scattering length is thus of fundamental importance for the physics of Bose-
Einstein condensation.
Typical values for the scattering length are around 100 Bohr radii and densities are
n ≈ 1013 − 1015 particles/cm3 with temperatures below 1 µK. Therefore, both the
diluteness requirement and the condition for wave function overlap can be met simul-
taneously.

2.3.1 Bose-Einstein Condensation in the Non-interacting Gas
The phenomenon of Bose-Einstein condensation can be inferred from purely quantum
statistical considerations without taking particle interactions into account. This gives
a fairly good estimate for the temperature at which condensation takes place and the
fraction of particles in the condensate. In contrast, to derive the energy and shape of
a condensate, one has to resort to a treatment including particle interactions as will be
done in section 2.3.2.
Quantum gases obey different statistics depending on whether the particles involved
are bosons or fermions. For the bosonic case, the mean occupation number of a single
particle state v with energy εv is given by the Bose distribution function

Nv =
1

e
εv−µ
kBT − 1

. (2.20)

The energy of the individual single-particle states εv is determined by the trapping po-
tential that confines the gas, whereas the chemical potential µ assures the normalization
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2 Ultracold Quantum Gases

to the total particle number N via the relation

N =
∞∑

v=0

Nv. (2.21)

For a room temperature gas, the single-state occupancy is much less than one for any
given state and in particular for the ground state ε0. This implies that the chemical
potential µ is much smaller than the ground state energy ε0. When the temperature
is lowered and the particle number N is kept constant, µ increases in order to ensure
that equation 2.21 is fulfilled. However, the chemical potential cannot increase beyond
the ground state energy ε0 because this would imply diverging or negative occupancy
of the ground state. At the onset of Bose-Einstein condensation, the ground state ε0

starts to be populated macroscopically by a large number of particles. It is convenient
to treat the number of particles Nex that occupy states v > 0 other than the ground
state separately. Taking the upper limit for the chemical potential into account, one
immediately sees that the maximum number of particles outside the ground state is
given by

Nex,max =

∞∑
v=1

1

e
εv−ε0
kBT − 1

. (2.22)

By necessity then, if Nex,max is smaller than the total number of particles N in the sys-
tem, the particles that cannot be accommodated in the excited states must be residing
in the ground state. This marks the onset of the condensation process. The temper-
ature at which Nex,max becomes smaller than the total particle number N is called the
critical temperature Tc. It usually corresponds to energies kBTc much greater than the
energy difference between the ground and first excited state in the trapping potential.
The number of particles in the ground state N0 can grow to N as µ approaches ε0 when
the temperature is lowered.
In statistical physics, the sum over the states in equation 2.22 is replaced by an inte-
gration over the density of states. It turns out that the phase space density ρ introduced
above is the most convenient parameter to experimentally monitor the progression to-
wards condensation. First, it can easily be calculated from quantities readily measured
in the experiment and secondly Bose-Einstein condensation sets in at a well-defined
value of ρ. Evaluating the case of a three dimensional harmonic oscillator trapping
potential U(r) = m

2 (ω2
xx2 + ω2

yy2 + ω2
z z2), the relation for the phase space density reads

ρ = N
(

~ω
kBT

)3

, (2.23)

where ω is the geometrically averaged trap frequency ω = 3
√
ωxωyωz. For the case of

a three-dimensional harmonic oscillator potential, Bose-Einstein condensation sets in
when the phase space density reaches a value of

ρ = 1.202. (2.24)
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2.3 Bose Einstein Condensation

In the case of a non-interacting, i.e. an ideal Bose-Einstein condensed gas in a har-
monic oscillator potential, the condensate wave function φ(r) takes on the shape of the
harmonic oscillator ground state wave function which is a gaussian distribution

φ(r) =
(
mω
π~

)3/4

exp
(
−

m
2~

(ωxx2 + ωyy2 + ωzz2)
)
. (2.25)

2.3.2 Bose-Einstein Condensation in Weakly Interacting Gases
Real gases exhibit interactions which greatly modify the wave function of the conden-
sate. In addition, evaporative cooling in the final stage of BEC production depends on
rapid thermalization of the sample mediated by elastic collisions. Evaporative cooling
preferentially removes the hottest particles in the sample. Each lost particle therefore
carries away more than the average energy per particle, therefore cooling the sample.
The particle loss is overcompensated by the reduction of the energy in the system and
thus the phase space density increases.

The Gross-Pitaevskii Equation

To derive the properties of a weakly interacting Bose-Einstein condensate, one could
write down the many-body Hamiltonian in second order quantization and solve it nu-
merically. An alternative approach is to treat the interactions as a mean-field effect,
which can be conveniently done in the dilute limit where n|a|3 � 1. One decomposes
the boson field operator Ψ̂ that describes the production and annihilation of particles
according to

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (2.26)

with the complex expectation value of the boson field operator Φ(r, t) ≡ 〈Ψ̂(r, t)〉 and
a first order perturbation term Ψ̂′(r, t) that is usually neglected for ultralow temper-
atures since it represents excitations. Φ(r, t) is related to the condensate density via
n(r, t) = |Φ(r, t)|2 and is called condensate wave function or “order parameter”. In this
approximation, the many-particle Schrödinger equation becomes the Gross-Pitaevskii
equation

i~
∂

∂t
Φ(r, t) =

(
−

~2∇2

2m
+ U(r) + g|Φ(r, t)|2

)
Φ(r, t). (2.27)

The cardinal feature of this equation is the non-linear term g|Φ(r, t)|2 which constitutes
the mean field interaction term. The coupling constant

g =
4π~2a

m
(2.28)

accounts for the magnitude of the interaction by its dependence on the s-wave scatter-
ing length a. The Gross Pitaevskii equation can be used to describe collective excita-
tions, soliton propagation and vortex formation.
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With the ansatz Φ(r, t) = φ(r) exp(−iµt/~) one obtains the stationary Gross-Pitaevskii
equation (

−
~2∇2

2m
+ U(r) + g|φ(r)|2

)
φ(r) = µφ(r), (2.29)

where µ is the chemical potential.

The Thomas-Fermi Regime

The confinement by the trapping potential imparts a momentum uncertainty on the
condensate via the Heisenberg uncertainty principle. In the limit where the kinetic
energy of the condensate is negligible with respect to the interaction energy, which is
called the Thomas-Fermi regime, the stationary Gross-Pitaevskii relation reduces to

µ = U(r) + g n(r). (2.30)

The density of the condensate is zero where µ < U(r) and

n(r) =
µ − U(r)

g
(2.31)

for µ > U(r). Note that this is not a Gaussian distribution but instead, for the case of a
harmonic oscillator trapping potential, represents an inverted parabola. The BEC also
shows this shape during expansion after release from the trap distinguishing it from
the thermal background that shows a Gaussian shape. This has been used widely as a
direct indicator for Bose-Einstein condensation.
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C 3

Molecular Structure

This chapter is intended to acquaint the reader with some basic concepts needed to
understand the molecular structure of Cs dimers. For us, this understanding is instru-
mental in the quantum mechanical control of ultracold cesium molecules.

A series of different techniques have been employed in the study of Cs molecules.
“Classical” laser and Fourier transform spectroscopy is most suited to study tightly
bound vibrational states both in the electronic ground and excited states [Wei85, Ver87,
Ami88b, Ami88a, Ami02]. A substantial improvement in the study of long range
interaction and loosely bound molecules came with the advent of photoassociation
spectroscopy [Fio98, Tak98, Fio99, Com00, Van04, Wes04, Kra05]. The technique of
Feshbach spectroscopy has unveiled the detailed energy structure of molecular states
right at the dissociation threshold [Vul99b, Vul99a, Chi00, Leo00, Chi04a].

The experiments with ultracold molecules performed in our group so far have been
concerned with a regime where the molecules can essentially be seen as a pair of
largely unperturbed atoms that are separated by distances much larger than the length
scale of typical chemical bonds. With the current spectroscopic experiments we are
addressing tightly bound rovibrational states in the electronically excited state. This
corresponds to a region of tight chemical bonding where the molecular character is
much more important and a description in terms of individual atoms is not adequate
any longer. In this respect, the spectroscopic experiments broaden the scope of our
experiments because we simultaneously address both the regime of Feshbach molecu-
les that can be seen as a pair of atoms and the regime of tight molecular binding. In
order to discuss which molecular electronically excited states can be accessed from the
Feshbach molecules and what transition rates to expect, a background on the structure
of diatomic molecules and their symmetries has to be given. Molecular symmetries
are closely linked to the selection rules for optical transitions. In the region addressed
by the 1.55 µm spectroscopy laser, we are primarily dealing with excited state poten-
tials of 0+u symmetry that arise from the Born-Oppenheimer potentials discussed in
the next section through spin-orbit coupling. The energy structure of the 0+u potentials
is perturbed in the whole range of binding energies by the phenomenon of resonant
coupling, as will be discussed below.

We are planning to implement a scheme of coherent population transfer from the
Feshbach states to the rovibrational ground state of the X1Σ+g electronic ground state via
an intermediate electronically excited state in order to stabilize the molecules against
inelastic molecule-molecule collisions. This is required for the formation of a ground
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state molecular Bose-Einstein condensate. The choice of intermediate state depends
on dipole selection rules and expected transition rates between the Feshbach state and
the intermediate state on the one side and the intermediate state and the rovibrational
ground state on the other side. There is a series of possible routes for such a transfer.
We are currently evaluating the possibility to drive a two-photon process with very
large detunings of the intermediate state with respect to its potential asymptote. The
second step in this transfer process, i.e. between the intermediate state and the rovi-
brational ground state of the molecule has been evaluated by classical spectroscopic
experiments with the difference that these experiments were mainly dealing with ro-
tationally highly excited levels. What we are currently implementing is the first step
of this transfer process which has not been addressed experimentally in the regime of
very large detunings from the excited state asymptote. In order to evaluate this scheme
and alternative schemes based for example on more than one two-photon transitions
or on different intermediate electronic states and detunings from the potential asymp-
tote, knowledge of the relevant molecular symmetries, coupling between molecular
excited states by the spin-orbit interaction and the properties of Feshbach molecules is
required. The relevant theoretical aspects are discussed below whereas different trans-
fer schemes are discussed in section 6.2.

The chapter is organized as follows. First, a review of molecular theory with em-
phasis on the homonuclear dimers will be given in section 3.1. An overview of molec-
ular states, their labeling and properties is given in section 3.1.1. The production of
ultracold molecules has been discussed in the previous chapter. Here, the particular
properties of the Cs dimer, both in the electronic ground state and the first electron-
ically excited states are treated in section 3.2. This chapter includes a discussion of
the properties of Cs Feshbach molecules in section 3.2.3. Optical transitions are dis-
cussed in section 3.3. The important Franck-Condon principle (section 3.3.1) and the
relevant selection rules (section 3.3.2) lay the groundwork for the discussion of optical
transitions between Feshbach states and electronically excited states in the wavelength
region of interest for the current spectroscopic experiments in section 3.3.3.

3.1 Theory of Diatomic Molecules
This section gives an overview of the structure of diatomic molecules. In order to un-
derstand diatomic molecules, one has to understand the nature of the binding between
the two constituent atoms and how the properties of the individual atoms translate
into properties of the molecule. In the bound molecule, the nuclei are separated by
some equilibrium distance Re around which the nuclei can exert vibrational motion.
Due to the large mass of the nuclei in comparison to the electrons, the motion of the
nuclei is much slower than the motion of the electrons. This feature is exploited in
the Born-Oppenheimer approximation and will lead to the concept of potential curves.
The rotation of the molecule as a whole about an axis perpendicular to the internu-
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3.1 Theory of Diatomic Molecules

clear connection is an additional degree of freedom that modifies the energy spectrum.
In addition, molecular states are characterized by the way the electronic spins of the
constituent atoms add up whereas nuclear spin has an important role for symmetry
considerations. It will be necessary to explore which quantities are “good” quantum
numbers, meaning that they are conserved. All these topics will be discussed very
briefly here, a much more exhaustive coverage can be found in textbooks on molecular
physics, for example the book by Demtröder [Dem05] and the book by Lefebvre-Brion
and Fields [LB04]. A very compact and practical introduction to the most relevant as-
pects of molecular theory is given in the book by Hill and Lee [Hil07]. The discussion
here mainly follows this latter reference.

3.1.1 The Born-Oppenheimer Approximation

A diatomic molecule can, in simplest approximation, be seen as two heavy masses
in close proximity connected by a massless spring. The nuclei can vibrate and at the
same time rotate about an axis that contains the center of mass perpendicular to the
internuclear line. The possibility of vibrating and rotating at the same time implies
that these two movements are not completely independent of each other. With respect
to the electronic motion, the radial symmetry of single atoms is broken by the presence
of the second atom.

The general Hamiltonian in the center-of-mass coordinates takes on the form

Ĥ = −
~2

2µ
∇2 −

~2

2me

N∑
i=1

∇2
i + V(ri; R1, R2) + ζ. (3.1)

The nabla operator ∇ acts on the nuclear separation R, µ is the nuclear reduced mass
M1M2/(M1 + M2), me is the electronic mass, the sum is over all electrons and ∇i acts
on the electronic coordinates. V(ri; R1, R2) comprises the electrostatic repulsion be-
tween the two nuclei and the repulsion between individual electrons and the attraction
between electrons and nuclei. ζ represents smaller relativistic terms such as spin-spin
and spin-orbit interactions. These are very important for understanding the structure
of Cs Feshbach molecules as discussed in section 3.2.3. Neglecting the relativistic in-
teractions will lead to a “nonrelativistic” model of the molecule. The strongest of the
relativistic interactions in the molecule is the spin-orbit interaction [Jon06] that will
be discussed separately in section 3.1.2. The model developed in this section is based
on the notion of a “nonrelativistic atom” and neglects the hyperfine structure and spin-
orbit interaction of the atom. Hyperfine structure will be included in the discussion of
Feshbach molecules in section 3.2.3.

Theoretical analysis is greatly facilitated if a solution is found that allows to treat
the electronic and the nuclear wave functions separately. This is known as the Born-
Oppenheimer separation. The overall wave function Ψ(Rα, ri) is written as the product

41



3 Molecular Structure

of the electronic wave function ψel(Rα, ri) and the nuclear wave function ψN(Rα)

Ψ(Rα, ri) = ψel(Rα, ri) · ψN(Rα), (3.2)

where α = 1, 2. Substituting this ansatz into the Schrödinger equation ĤΨ = EΨ
one finds that it is possible to separate the Schrödinger equation into an electronic
equation and a nuclear equation by neglecting terms that couple the electronic and the
nuclear motion. This is the Born-Oppenheimer approximation and it is motivated by
the fact that nuclear motion happens on a timescale much slower than the electronic
motion. This is due to the much larger mass of the nuclei with respect to the elec-
trons. Therefore, when the distance between the nuclei changes during one cycle of
nuclear vibration, the electrons can adapt instantaneously to any given value of the
internuclear distance. The fact that the electrons move much faster than the nuclei and
that the electronic wave functions can adapt instantaneously to any variation of the
nuclear configuration is reflected by the term adiabatic approximation for the Born-
Oppenheimer approach.

The nuclear coordinates enter the electronic equation as fixed parameters. The
electronic wave equation can be solved assuming that the internuclear distance R is
fixed to yield the energy eigenvalue for each value of R. For each stationary electronic
distribution ψel,n(r), where r represents the electronic coordinates, there is a well de-
fined energy Eel

n (R) for any given fixed value of R. The index n emphasizes the fact
that these are different for different electronic states.

The molecular potential energy curves Un(R) are the sum of the electrostatic re-
pulsion between the nuclei VN = Z1Z2e2/(4πε0R) and the electronic energies:

Un(R) = VN(R) + Eel
n (R) (3.3)

These molecular potential curves enter the nuclear Schrödinger equation and there-
fore constitute the potential in which the nuclei exert their motion. The nuclear dynam-
ics consist of vibration and rotation and can be described by the following ansatz if the
coupling between these two movements is neglected:

ψN = ψvib · ψrot. (3.4)

Binding potentials feature a potential well that supports a series of bound rovibra-
tional states. Writing down the nuclear equation, one can determine the quantized
energies of the nuclear motion in these potentials. Assuming for example the unphysi-
cal case that the distance R between the atoms is fixed at Re (rigid rotator), one obtains
for the rotational structure in units of wave numbers1:

F(`) =
Erot

hc
= Be`(` + 1). (3.5)

1Wave numbers are defined in the spectroscopic literature as the inverse vacuum wavelength
1/λvacuum. They are given in cm−1 where 1 cm−1 corresponds to roughly 30 GHz.
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Here, the rotational quantum number2 is denoted by `. Be =
h

8π2µR2
e

is called the
rotational constant of the molecule, where the internuclear distance is approximated
by the equilibrium distance Re and µ is the reduced mass of the nuclear system. When
considering the vibrational motion of the nuclei, one has to know something about the
potential energy curve Un(R). The simplest approximation is to expand the potential in
a Taylor series around the equilibrium position. This yields the quantized vibrational
energies in wavenumbers with vibrational quantum number v

G(v) = ωe

(
v +

1
2

)
− ωexe

(
v +

1
2

)2

+ ωeye

(
v +

1
2

)3

+ . . . . (3.6)

The first term describes the energy structure of a harmonic oscillator. The higher order
terms are corrections where the constants ωexe and ωeye can be determined spectro-
scopically.

It is unphysical to neglect the effect of rotation on the vibration of the molecule,
because the rotation will tend to pull the two nuclei further apart. The rotational energy
structure of the vibrating rotor is given by

Fv(`) = Bv`(` + 1) − Dv`
2(` + 1)2 + . . . , (3.7)

where both Bv and Dv depend on the vibrational quantum number v.
Putting the different contributions together, the energy of a given rovibrational state

in wave numbers amounts to

Erovib(v, `)/(hc) = νe +G(v) + Fv(`), (3.8)

νe is the energy of the bottom of the electronic state given in wave numbers (zero for
the ground state).

Sometimes an expression for the energy of the vibrating rotator that was intro-
duced by Dunham is used in the literature. For a brief summary see reference [Hil07].
Reference material for molecular constants of diatomic molecules is available online
[NIS07].

Molecular State Labeling

Different electronic states of diatomic molecules are classified according to three cri-
teria:

1. their energy En,

2. the angular momenta and spins of the electrons and their couplings, and

3. the symmetry properties of the electronic wave function.
2The symbol for the rotational quantum number is not completely agreed on in the literature. We

use ` here as customary in scattering theory to stay consistent with the previous discussion in section
2.2.2. In molecular theory and spectroscopy, it is denoted by R, see references [LB04, Hil07].
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The choice the quantum numbers used to label molecular states depends on which
quantum numbers are good, meaning that they are associated with conserved quanti-
ties. We will first be concerned with the usual Born-Oppenheimer potentials and then
discuss some extensions.

Energy Labeling Based on their energetic sequence, it is customary to distinguish
molecular electronic states by latin letters. The ground state of the molecule is tra-
ditionally labeled with the letter X. The energetically next higher state that can be
reached from the ground state by an allowed optical dipole transition is denoted A, the
next excited state B, and so forth. States that cannot be reached from the ground state
(e.g. triplet states when the ground state is singlet) are denoted by a, b, c. . . in the order
of increasing energy. For historical reasons, there are exceptions to this general rule.

Angular Momenta An electron has orbital angular momentum3 ` as well as spin s.
The orbital angular momenta `i of the individual electrons in the molecule add up vec-
torially to an overall electronic angular momentum L =

∑
`i and the individual spins

add up to yield the total electronic spin S =
∑

si.
Contrary to individual atoms4, where the nuclear charge distribution is spherically
symmetric, the internuclear electric field reduces the symmetry from spherical to cylin-
drical. The internuclear axis of diatomic molecules determines a quantization axis.
The usual quantum numbers are not good quantum numbers any more because they
are associated with operators that do not commute with the Hamiltonian. Generally
speaking, for diatomic molecules the projections of the different angular momenta on
the internuclear axis are good quantum numbers. Similar to the case of the Stark effect
for atoms in an external electric field we can expect that L is not conserved. In contrast,
ML, the projection of L along the electric field direction, is a good quantum number.
It can assume the values ML = −L,−L + 1, . . . L − 1, L. States with L ≥ 1 are doubly
degenerate due to the fact that ±ML states have the same energy. Therefore, it makes
sense to denote the states with the absolute value of ML rather than with ML. This
degeneracy holds for the non-rotating molecule but it is lifted in the rotating molecule.
The absolute value of the projection of L on the internuclear axis is denoted by

Λ = |ML|, (3.9)

and therefore
Λ = 0, 1, 2, . . . , L.

3This is not to be confused with the angular momentum of the nuclear rotation for which we use the
same symbol.

4As a reminder, atomic states are labeled according to n 2s+1l j, where n is the principal quantum
number, s is the quantum number for total electron spin, l is the total electron orbital angular momentum
and j = s+ l. The electron orbital angular momentum is encoded by letters S , P,D, . . . for l = 0, 1, 2, . . ..
So for the ground state of the Cs atom the designation 62S 1/2 arises. F is the quantum number for the
total atomic angular momentum including nuclear spin. The ground state hyperfine transition is the
clock transition defining our second.
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For molecular state labeling, the different values of Λ are encoded by greek capital
letters in analogy to the electronic orbital angular momentum of atoms that is encoded
by latin capital letters:

Λ = 0 1 2 . . .
State: Σ Π ∆ . . . .

In contrast to the electronic angular momentum, the quantum number S associated
with the total electronic spin S and its projection on the quantization axis both remain
good quantum numbers if the electrostatic interaction is dominant since the Hamilto-
nian does not involve the electrons’ spin. The projection is denoted by the quantum
number

Σ = MS = −S ,−S + 1, . . . , S . (3.10)

Note that the symbol Σ is used for two different things. First to label states with Λ = 0
and second for the projection quantum number of the aggregate electronic spin MS .
For Λ = 0 states, states with the same S but different Σ are degenerate. For Λ , 0
states, there will be a splitting in 2S + 1 components according to the value of Σ. This
is due to the magnetic field generated by the electron motion that leads to spin-orbit
coupling, as discussed further below.

One defines the total electronic angular momentum [Hil07, LB04] as

Ja = L + S. (3.11)

Ja is not fixed in space but precesses around the internuclear axis because the field
exerts a torque on it. Again, only the projection of Ja is a conserved quantity. The
associated quantum number is

Ω = |MJa |, (3.12)

which can take on the values Ω = Ja, Ja − 1, . . . , 1
2 or 0. It is immediately clear that

Ω = |Λ + Σ|.

One can define a vector of length Ω coinciding with the internuclear axis

Ω = Ω · ẑ

where ẑ is a unity vector along the internuclear axis.

Born-Oppenheimer potentials are labeled according to the quantum number Λ and
their multiplicity due to the aggregate electronic spin S. The multiplicity is 2S + 1,
defining singlet states for S = 0 and triplet states for S = 1. When spin-orbit coupling
is taken into account as described below, the projection quantum number Ω = |Λ + Σ|
is used as a further label. The designation of a state then reads:

2S+1ΛΩ.
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There are situations where Λ and Σ loose their meaning and therefore cannot be
used to characterize molecular states. This will be discussed briefly in sections 3.1.2
and 3.1.4.

These angular momentum quantum numbers alone, however, are not sufficient to
characterize a given potential. In addition, molecular symmetries have to be taken into
account.

Symmetries For Σ states (Λ = 0), a “±” right superscript indicates a reflection sym-
metry of the spatial component of the electronic wave function in a plane containing
the internuclear axis [Jon06]. A “+” sign indicates that the wave function is left un-
altered by this operation whereas a “−” sign indicates that the wave function changes
sign. This symmetry is only used for state designation in Σ states because for Λ , 0
the ± states are energy degenerate.
For homonuclear diatomic molecules like Cs2, there is an additional symmetry con-
cerning inversion of all electrons through the center of charge, which is equivalent to
the exchange of nuclei. This is denoted by right subscripts “g” and “u”. If the sign of
the wave function does not change when the inversion operation is applied, the state is
said to have gerade symmetry, if the sign changes, the state is said to have ungerade
symmetry. Both symmetries will be of major importance for determining selection
rules.

The complete labeling for a particular electronic state of a homonuclear diatomic
molecule is then

2S+1Λ
(±)
Ω,g/u

preceded by the letter that designates the energetic order of the states and in the case
of Σ states with the addition of the “±” right superscript. Such state labeling is appro-
priate for most of the classical spectroscopic experiments on Cs2.

Long-Range Interactions between Atoms

The picture of two separated atoms interacting with each other is well suited to de-
scribe the long range part of the adiabatic Born-Oppenheimer potentials. As already
discussed in section 2.2.1, for two ground state atoms, there is an attractive induced-
dipole-induced-dipole interaction that is known as van der Waals interaction. The van
der Waals interaction scales as −C6

R6 to leading order. The van der Waals coefficient C6

is the same for the singlet ground state and lowest triplet state and thus the potentials
are degenerate at large separations. At smaller separations, the exchange energy in the
molecular Hamiltonian plays a more important role and the potentials become distinct.
For excited states in homonuclear alkali dimers, when one atom is in a 2P state, the
long range potential scales as 1

R3 . This is due to a resonant dipole-dipole interaction
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and results in a much longer range of the interaction than for the ground state. The Σ
states scale as ±2C3/R3 and the Π states scale as ±C3/R3 in terms of a single constant
C3.
In heteronuclear alkali dimers both the ground and the excited state long range poten-
tials scale as − 1

R6 .

3.1.2 Spin-Orbit Interaction
The non-relativistic interactions set the largest energy scale in a molecule. The rela-
tivistic interactions, such as spin-orbit and hyperfine interactions, are weaker. Never-
theless, they are much larger than the energy scale defined by the translational motion
of ultracold atoms [Jon06], which becomes immediately clear if one compares the
atomic hyperfine splitting of 9 GHz in Cs with the translational energy of ∼ 21 kHz·h
at a temperature of 1 µK.

The strongest of the relativistic interactions is the spin-orbit interaction. Spin-orbit
interaction can lead to coupling between individual Born-Oppenheimer potentials, see
section 3.2.2. Generally speaking, the coupling between individual Born-Oppenheimer
potentials is relevant in the region of large internuclear distances, i.e. near to dissoci-
ation asymptote, where the Born-Oppenheimer interaction is reduced to a magnitude
comparable to the spin-orbit interaction. This region is shown in the left panel of figure
3.1 for the potassium dimer. Each electronic state with given Λ has a multiplicity of
2S+1 because Σ can adopt the values -S,-S+1,. . . ,S, corresponding to different values
of Ω. These 2S+1 different molecular states for a given value of Λ and S are called
fine structure terms, in analogy to the treatment in atoms. The simplest approach to
model the spin-orbit interaction is to define a fine structure coupling term WS O in the
molecular Hamiltonian [Dem05] according to

WS O = A · Λ · Σ

where A is a coupling constant, splitting states with Λ > 0. In general, the R-
dependence of the spin-orbit interaction has to be taken into account by introducing a
more complex effective Hamiltonian [Kok00b].
One can think of the coupling between L and S in terms of a magnetic field created by
L that acts on S.

Molecular State Labeling

If the coupling between L and S is so strong that the electric field between the nuclei
can’t break it up, then Λ and Σ are not good quantum numbers any more and Hund’s
case c for the coupling of angular momenta applies, as will be discussed in section
3.1.4. Examples are the coupled 0−g electronically excited states that have been amply
used in Cs2 photoassociation. The respective potentials have to be computed by taking
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the spin-orbit interaction into account [Jon06]. The states are then labeled according
to the Hund’s case c notation

Ω±g/u.

Here the superscript ± for Ω = 0 states refers to a reflection symmetry of the total
electron wave function through a plane containing the internuclear axis [Jon06]. It
differs from the reflection symmetry of nonrelativistic Σ states. In contrast to the non-
relativistic adiabatic Born-Oppenheimer potentials, these potentials are often referred
to as relativistic adiabatic potentials [Jon06]. When considering the (attractive) elec-
tronic states dissociating to the nS + nP1/2 and nS + nP3/2 atomic asymptotes, where
n is the principal atomic quantum number (n = 6 for the case of Cs), it is customary
to differentiate potentials of the same Ω±g/u symmetry by a shorthand for the atomic
asymptote they dissociate to: either Ω±g/u(P1/2) or Ω±g/u(P3/2).

Connection with the Born-Oppenheimer Potentials

The reader might wonder what the relationship between the relativistic potentials and
the Born-Oppenheimer potentials is. One can look at this connection from two points
of view: First, one is interested in how the relativistic potential energy curves arise
from the Born-Oppenheimer energy curves. Second, it is interesting to realize which
nonrelativistic Born-Oppenheimer potential energy curves are approached by each of
the relativistic potentials. This is discussed here exemplarily for 0+u states of the nS+nP
excited state of homonuclear alkali dimers, where n denotes the principal quantum
number of the atom (6 in Cs atoms) because these are the states most relevant to the
current project:

1. Hund’s case c potentials are found as eigenvalues by diagonalizing the Hamilto-
nian containing the nonrelativistic potentials on the diagonal and the spin-orbit
interaction WS O on the off-diagonal. The spin-orbit interaction obeys the selec-
tion rules u↔ u and g↔ g concerning the inversion symmetry discussed above
and + ↔ +, − ↔ − for reflection in a plane containing the nuclei [Pic06]. The
relativistic adiabatic potentials 0+u (P1/2) and 0+u (P3/2) result as eigenvalues from
diagonalizing the matrix (

A1Σ+u WS O

WS O b3Πu

)
.

In the heavier alkali dimers like Cs2 the spin-orbit coupling is large and there-
fore there are marked perturbations in the molecular spectra. One can think of
the vibrational ladders of two states being coupled by the spin-orbit interaction.
If two energies in the different potentials are nearly degenerate, the phenomenon
of resonant coupling arises and the levels are strongly perturbed which is a pe-
culiarity of the 0+u potentials. An example for Rb2 can be found in reference
[Ami99] and an example for perturbations in Cs2 photoassociation spectra can
be found in reference [Pic06].
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3.1 Theory of Diatomic Molecules

Figure 3.1: Connection between relativistic and non-relativistic potentials: The particular
case of K2 is illustrated. left: The relativistic adiabatic potentials or Hund’s case c potentials of
K2 are shown in the region of large internuclear separation, where the relativistic contributions
are particularly important and cannot be neglected in comparison with the Born-Oppenheimer
interaction whose magnitude declines at large internuclear separation. The energy scale fo-
cuses on the region around the two dissociation asymptotes. The solid curves represent those
potentials that support bound states and are accessible by dipole transitions from the ground
state. right: Connection between the Born-Oppenheimer potentials (distance regions I and II)
and the relativistic potentials (distance regions III and IV). In both cases, the vertical order is
according to the energy progression. The figure has to be read taking into account that g states
in one region only connect to g states in another region and that u states only connect to u
states. The labeling for the atomic dissociation limits is for the particular case of K2. Figure
taken from reference [Wan97].

2. Each of the relativistic adiabatic potentials (the case of K dimers is shown in
the left panel of figure 3.1) approaches one of the Born-Oppenheimer poten-
tials at smaller internuclear separation. There are 16 relativistic potentials in
the left panel but only 8 Born-Oppenheimer potentials. Thus, several of the
Born-Oppenheimer potentials must be approached by more than one relativistic
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potential. This is schematically depicted in the right panel of figure 3.1. On
the right, the dissociation limit into two free atoms is shown. The labeling here
is for the particular case of K2. In the region of large internuclear distance, the
relativistic potentials are listed. The lines indicate which Born-Oppenheimer po-
tential they approach. The figure has to be read by taking into account that only
gerade states in one region connect to gerade states in another region and only
ungerade states connect to ungerade states.

3.1.3 Hyperfine Interactions
It was already discussed in section 2.2.1 that the atomic hyperfine structure provides
well defined channels for ultracold scattering processes. For alkali atoms, the hyperfine
structure is given by ah f si, where ah f is the atomic hyperfine constant and i is the nu-
clear atomic spin. Hyperfine interaction can couple the adiabatic Born-Oppenheimer
potentials with different g/u symmetry or different total electronic spin S [Jon06]. For
homonuclear dimers, the singlet ground state and lowest triplet potentials are coupled.
At short range, the singlet and triplet potentials are well split. The effective hyperfine
interaction is ae f f SI, where I = ia + ib is the total molecular nuclear spin. The connec-
tion between the long range part and the short range part is subtle. The wave function
splits where the hyperfine and the exchange interaction become comparable in magni-
tude. One part samples the singlet potential and one part samples the triplet potential.
They recombine and interfere on the way out, determining the precise pattern of the
outgoing wave function in atomic scattering.
When molecular rotation ` is taken into account, it is found that ` is still a good quan-
tum number. In order to find the potential curves for a given degree of rotational
excitation, it suffices to add a term ~2`(` + 1)/(2µR2).

3.1.4 Angular Momenta and Hund’s Cases
So far, rotation of the molecule and the coupling between the different angular mo-
menta as a whole has not been taken into account systematically. It is worthwhile to
take a more systematic look at these issues. Table 3.1 gives an overview of the differ-
ent angular momenta encountered in a molecule and the conventional abbreviations.
These are not always consistent in the literature, here we largely follow the convention
by [Hil07, LB04, Hou01]. For example, in scattering theory, the mechanical rotation
of the molecule about an axis that is perpendicular to the internuclear axis and con-
tains the center of mass, is denoted by `, as we do in this thesis. In the spectroscopic
literature, it is customary to designate it with R and the associated quantum number
R. We defined Ω in section 3.1.1 as the projection of Ja on the molecular axis. This is
equivalent with the projection of J because ` is by definition perpendicular to the inter-
nuclear axis. In section 3.2.3 we use f = Fa + Fb for the sum of the angular momenta
of the individual ground state atoms including nuclear spin in order to be consistent
with our previous publications and with the abbreviations used by the Stanford-NIST
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3.1 Theory of Diatomic Molecules

collaboration for the Cs Feshbach molecules, see e.g. [Chi04b, Mar07]. The quantum
number F is frequently used for total atomic spin, but this should not lead to confusion.

Table 3.1: Molecular angular momenta and quantum numbers: The different angular mo-
menta relevant for diatomic molecules are listed. R and ` are used synonymously. Ω is either
defined as the projection of J or Ja, both definitions being equivalent. The definitions of f and
F below the horizontal line are those used by the Stanford-NIST analysis of ultracold Cs Fesh-
bach molecules [Chi04b]. Fa and Fb are the total atomic angular momenta including nuclear
spin of the alkali ground state atoms. M = m f + m` is the projection on an external magnetic
field. We allow this double use of F in this thesis because this quantum number is only used in
the context of Cs Feshbach molecules in section 3.2.3 and so there is no risk of confusion. qu.
n. = quantum number, a.m. = angular momentum, w/o = without. Table adapted from [Hil07].

Operator Description Total qu. n. Projection qu. n.
` or R Mechanical rotation ` or R identical zero

L Electronic orbital a.m. L Λ

S Electronic spin S Σ

I Nuclear spin I · · ·

J Total a.m. w/o nuclear spin: ` + L + S J Ω = |Λ + Σ|

F Total a.m.: J + I F · · ·

Ja Total electronic a.m.: L + S Ja Ω

N ` + L = J − S N Λ

O J − L = ` + S O · · ·

f Fa + Fb f · · ·

F f + ` F M

Hund’s cases are limiting cases for the different possibilities of how the individ-
ual angular momenta L, S, Ja or Ω (see below), and ` add up in a molecule to yield
the total angular momentum J. This depends on the relative strength of the different
couplings and determines which quantum numbers are “good” (well-defined). The
nonrelativistic Born-Oppenheimer interaction locks the electron orbital angular mo-
mentum L to the internuclear axis. The spin-orbit interaction couples L with S. The
mechanical rotation of the molecule couples the electron angular momenta L and S
to the rotational angular momentum ` [Jon06]. Often, the coupling scheme changes
with the internuclear separation R because the relative magnitude of the different in-
teractions change and the angular momenta recouple in a different way. Hund’s cases
determine which choice of basis function is appropriate for theoretical treatment. This
choice depends on the internuclear distance. We are only ever dealing with one par-
ticular molecule, the different coupling cases apply to different ranges of internuclear
separation of the same molecule.

There are five cases a−e discussed by Hund, not all of them are relevant to the cur-
rent study. Schematic illustrations are given in figure 3.2. The discussion here follows
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the review article by Jones and coworkers [Jon06], the book by Demtröder [Dem05]
and the book by Hill and Lee [Hil07]. A good online resource for the calculation of
rotational structure is the tutorial by Jon Hougen, available online at [Hou01].

In section 3.1.1 equation 3.7 constitutes an expression for the rotational energy
structure. The only quantum number that remains good in all coupling cases is J. An-
alyzing the different coupling possibilities, it is seen that the rotational progression is
not always determined by J. Therefore, we can generalize equation 3.7 to the follow-
ing form, again in wavenumbers (cm−1):

Fv(X) = BvX(X + 1) + . . . . (3.13)

The letter X stands for the appropriate angular momentum quantum number determin-
ing the rotational pattern. X is determined by the way the individual angular momenta
couple in a particular Hund’s case. Only in pure Hund’s coupling cases, this simple ex-
pression is appropriate. When the coupling scheme is intermediate between two cases,
more complex relations than equation 3.13 result.

In conventional molecular spectroscopy, the states that can be analyzed lie deep
down in the respective potential wells and typically have inner and outer classical
turning points below 20 a0. For such separations, the splitting between individual
Born-Oppenheimer potentials is much larger than the relativistic spin-orbit energies
and rotational energies. These states are best described by Hund’s cases a and b which
differ in the relative strength of the spin-orbit and rotational interaction.

Hund’s case a

In Hund’s case a the interaction between the electronic spin S and the magnetic field
caused by the precession of the electronic angular momentum L around the internu-
clear axis is larger than the direct coupling between L and S. The electronic orbital
angular momentum L is coupled to the molecular axis by the strong axial internuclear
field. Therefore, also S is constrained to precess around the internuclear axis, but the
vectors L and S precess independently around the internuclear axis. Their projections
Λ and Σ are well defined and so is the sum of these projections Ω. The coupling of the
vector Ω and the rotational angular momentum ` yields

J = Ω + `.

Remember that ` and Ω are perpendicular to each other.
Typically for Λ , 0 and S , 0 Hund’s case a is valid for low J. For example low
lying states in the b3Πu electronic potential largely obey Hund’s case a coupling, even
though there are small contributions to the wave functions from the A1Σ+u state due to
spin-orbit coupling even below the A1Σ+u potential minimum.
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Figure 3.2: Vector model for Hund’s cases a − d: Details are given in the text. Designation
of the different angular momenta is consistent with references [Hil07, LB04]. Figure adapted
from reference [Dem05].

The good, i.e. well defined, quantum numbers are n, J, S , Λ, Σ, Ω and the projec-
tion of J on an axis in the laboratory frame MJ. The quantum number n includes the
energetic numbering of the electronic states.
The rotational progression is [Dul04]

Fv(J) = Bv[J(J + 1) −Ω2 + S (S + 1) − Σ2] + . . . , (3.14)

where J = Ω,Ω + 1, . . .. The usual way

2S+1Λ
(±)
Ω,(g/u)

to label molecular potentials is useful for case a coupling.

Hund’s case b

Hund’s case b is important for molecules with small spin-orbit coupling. In case b, the
electron spin S is only very weakly coupled or not coupled at all to the molecular axis.
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Typically, states with Λ = 0 and S , 0 obey Hund’s case b coupling. Weak coupling
is easily understood when Λ = 0 because the magnetic field with which S can interact
will be very small, but it also can occur in situations with Λ , 0. The spin S will tend
to couple to the rotation vector instead of the internuclear axis. L is still coupled to the
molecular axis and therefore Λ is a good quantum number. Since S is decoupled from
the molecular axis, Σ andΩ loose their meaning as quantum numbers. The vector Λ · ẑ,
where ẑ is a unity vector along the internuclear axis, adds up with ` to form an angular
momentum [Dem05] N

N = Λ · ẑ + `

and N couples with S to yield the total angular momentum

J = N + S.

The rotational progression is given by [Dul04]

Fv(J) = Bv[N(N + 1) − Λ2] + . . . .

The a3Σ+u lowest triplet state of the alkali dimers can serve as an example. For singlet
states (S = 0) case a and b are equivalent and they are labeled by case a nomenclature.
The X1Σ+u electronic ground state is an example of such a situation.

Hund’s case c

Hund’s case c typically applies when states with differentΩ are widely separated com-
pared to the other energy scales as in the left panel of figure 3.1, meaning that the
spin-orbit interaction is comparable to the Born-Oppenheimer interaction and both are
larger than the rotational interaction. It was mentioned in section 3.1.2 that the quan-
tum numbers Λ and Σ loose their meaning and therefore molecular state labeling is
according to Ω(±)

g/u. This scheme is usually addressed in photoassociation experiments
where electronically excited states near the asymptote are reached. In the present study,
spin-orbit coupling has resonant character for the 0+u potentials and plays an important
role over the whole range of binding energies. For Hund’s case c the spin-orbit inter-
action is larger than the coupling of L to the molecular axis. L and S couple first to
give Ja = L + S before coupling to the internuclear axis. Its projection Ω is a good
quantum number, whereas the quantum numbers Λ and Σ are not defined any more.
The projection defines Ω = Ja · ẑ. Ω couples to the mechanical rotation ` to yield the
total angular momentum J

J = Ja · ẑ + `.

The states are labeled withΩ and the relevant symmetries, which was discussed in sec-
tion 3.1.2. Therefore, this labeling convention is often referred to as “case c” labeling.
The rotational progression is X = J, as in case a.
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Hund’s case d

For Hund’s case d neither L nor S is coupled to the internuclear axis. This case applies
to very weakly bound states of the two alkali dimer electronic ground state potentials,
X1Σ+g and a3Σ+u [Jon06]. The molecular orbitals are basically a combination of atomic
s-orbitals, which implies that L = 0 and there is no spin-orbit interaction. The rota-
tional progression is therefore X = `. For the weakly bound levels of the electronic
ground state in alkali dimers, the hyperfine interaction that couples the electron spin to
the nuclear spin cannot be ignored and, in addition, the weaker relativistic interactions
like second-order spin-orbit and magnetic spin-spin interactions play a role. For an ad-
equate description of Cs Feshbach molecules (see section 3.2.3) all these contributions
have to be taken into account.

Summary of Molecular Symmetries

For completeness this section gives a short summary of molecular symmetries. For our
purposes the first three points are the most relevant ones.

• For Σ states (Λ = 0) a “±” right superscript indicates a reflection symmetry of
the spatial component of the electronic wave function in a plane containing the
internuclear axis. This symmetry is only used for designation of Σ states because
for Λ , 0 the ± states will be energy degenerate.

• The designation is slightly different for Hund’s case c states. Here the superscript
“±” for Ω = 0 states refers to a reflection symmetry of the total electron wave
function through a plane containing the internuclear axis [Jon06].

• Inversion i only applies to homonuclear molecules and designates molecule-
fixed inversion of the coordinates of all electrons and nuclei through the center
of mass. It defines g/u symmetry.

• The nuclear wave function is given by ψN = ψvib · ψrot. The vibrational part
depends only on the internuclear separation R and therefore always has positive
symmetry with respect to reflection and inversion [Hil07].
The rotational wave function is proportional to the spherical harmonics Υ`,m and
thus has the following symmetry under inversion: ψrot → ψrot for even ` and
ψrot → −ψrot for odd `.

• The total wave function of a homonuclear molecule, including rotation but ex-
cluding nuclear spin, is classified as s (symmetric) or a (antisymmetric) accord-
ing to whether it is even or odd with respect to nuclear exchange [LB04].

• For heteronuclear systems withΛ = 0, in Σ+ states the even rotational levels have
positive symmetry (⊕) and for Σ− states the even rotational levels have negative
symmetry (	).
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In homonuclear molecules, the g/u symmetry has to be taken into account: each
rotational level of a given electronic state is assigned either positive (⊕) or neg-
ative (	) symmetry. This combines with the g/u symmetry and leads to levels
that are either symmetric (s) or antisymmetric (a) [Hil07]. Similarly, rotational
states can either be classified as e or f states [LB04].

• Reflection σv of the total molecular wave function (electronic-vibration-rotation
or rovibronic wave function) in the molecule-fixed coordinate system [LB04,
Dem05] through a plane containing the internuclear axis specifies the parity ±
of a state. In fact, parity is defined by the even/odness of the complete molecular
wave function with respect to inversion of the laboratory-frame coordinates of
all electrons and nuclei, but the operation of σv is equivalent to this.

• 133Cs has nuclear spin 7/2. The nuclei behave as fermions and the overall wave
function including nuclear spin will transform like a fermion under exchange of
the identical nuclei.

3.2 Cs Molecular Structure
In this section, the specific properties of the cesium dimer will be reviewed. For the
current spectroscopic experiments, the properties of Cs Feshbach molecules and the
properties of the first electronically excited state of Cs2 are most important. Feschbach
molecules have been studied in detail. There is spectroscopic data available for tightly
bound vibrational levels in various excited states that were obtained with classical
spectroscopy. The current project is aimed at driving optical transitions of the Fesh-
bach molecules in the 1.55 µm wavelength region, i.e. driving a transition from very
loosely bound molecules in the electronic ground state to tightly bound excited state
levels. Calculations of expected transition wavelengths are currently based on ab ini-
tio potential curves. We plan to transfer the Feshbach molecules to the rovibrational
ground state of the X1Σ+g electronic ground state by means of a two-photon transfer
process. The X1Σ+g state is spectroscopically well known [Wei85, Ami02].

3.2.1 Ground State of the Cesium Molecule
Ground state potential curves for the singlet and the triplet state are shown in figure
2.4 along with the three different scattering channels defined by the atomic hyperfine
structure. The dissociation limit De of the singlet ground state X1Σ+g is [Ami02, Wei85]

De(X1Σ+g ) = 3649.88 ± 0.45cm−1, (3.15)

corresponding to ∼ 110 THz. The number of singlet vibrational levels is 155. The
lowest vibrational level is located at 20.981 cm−1 (629 THz) above the potential mini-
mum and the rotational constant for the v = 0 singlet vibrational level is Bv=0.0117313
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cm−1, which corresponds to 352 MHz. The spacing between the first and the second
vibrational level is 41.855 cm−1, corresponding to 1.26 THz.
The lowest triplet state has the symmetry 3Σ+u , its potential depth is ∼ 290 cm−1 [Wei85]
and the number of bound levels is ∼ 50.

3.2.2 Cs Excited State Potentials
Tightly bound vibrational levels of various Cs2 electronically excited states have
been studied with classical Fourier transform spectroscopy, see e.g. references
[Ver87, Ami88b, Ami88a]. States near the dissociation threshold are accessible to
photoassociation spectroscopy. The first electronically excited state of the Cs dimer
exhibits some interesting features. First, the 0+u states experience strong perturbations
in the form of resonant coupling between states that exhibit the same symmetry but
approach different atomic asymptotes. Secondly, the 0−g (P3/2) and 1u(P3/2) states of the
alkali dimers have become famous for the long range nature of the potentials where
there is either a single potential minimum at very large internuclear distances or an ad-
ditional outer well in the potential curve that supports long-range bound states. In such
long-range states the atoms actually spend all their time far apart from each other. The
0−g (P3/2) state has been exploited for the formation of ultracold Cs2 molecules [Fio98]
and studied in detail in [Fio99]. Spectra of the 1u(P3/2) state of Cs2 have been obtained
by the Orsay group [Com00]. The review article by Masnou-Seeuws and Pillet [MS01]
treats photoassociation and ultracold molecule production with a special emphasis on
Cs. Figure 3.3 shows Hund’s case c ab initio potential curves calculated by Spiess
[Spi89].

In the context of the present study states that are farther detuned from the atomic
transition are of primary interest, most notably the 0+u and 1u(P1/2) states (Hund’s case
c notation). The two 0+u states dissociate to different atomic asymptotes, namely the
6S + 6P1/2 and the 6S + 6P3/2 asymptotes in cesium. The two 0+u states arise from
spin-orbit coupling between the A1Σ+u and the b3Πu states in Hund’s case a notation as
introduced in sections 3.1.2 and 3.1.4. The Hund’s case a states are diabatic potentials
with respect to the spin-orbit interaction whereas the Hund’s case c representation are
adiabatic with respect to the spin-orbit coupling [Pic06]. As mentioned above they are
obtained by diagonalizing the Hamiltonian that contains the spin-orbit coupling as off-
diagonal elements. The relation between the two representations is illustrated in figure
3.4. Note that the Hund’s case a potentials cross each other whereas the Hund’s case
c potentials produce an avoided crossing at ∼ 11a0. The 0+u states are noteworthy for
constituting a textbook example of resonant coupling between two states that have the
same symmetry but dissociate to different atomic asymptotes [LB04]. This resonant
coupling arises between rovibrational states in the singlet and triplet potentials whose
constants of motion are nearly degenerate. It requires the total angular momenta J of
the levels to be equal. It is associated with a spoiling of the spin quantum number.
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Figure 3.3: Cs2 excited state potential curves: Ab initio potential curves for the first elec-
tronically excited state of Cs2. The two atomic asymptotes that the potentials dissociate to
can be clearly discerned. These are the 6S+6P3/2 and the 6S+6P1/2 asymptotes. Each of the
potentials can be traced to one of these asymptotes and therefore it is convenient to label states
of the same symmetry additionally with a shorthand for the asymptote they dissociate to, e.g.
0+u (P1/2) and 0+u (P3/2). There is an avoided crossing between these two states at ∼ 11a0. The
two horizontal lines indicate the approximate regions accessible to spectroscopy with a laser
of 1550 nm wavelength and of 1064 nm wavelength starting with very weakly bound Feshbach
molecules in the ground state. The potentials accessible by a 1.55 µm laser all have unger-
ade symmetry, which means that they can only be accessed from a gerade state by an allowed
optical dipole transition. Therefore, only the singlet ground state is expected to contribute to
transition rates. In contrast, some of the potentials accessible by the 1064 nm laser that we use
for atom trapping in our experiments can also be accessed from the lowest triplet state, because
they have g symmetry. Figure courtesy of Christiane Koch and Olivier Dulieu.

The contribution of the singlet and the triplet state to a given molecular level varies
with internuclear distance R reflecting the recoupling of the angular momenta as the
atoms move closer [Pic06]. The coupling leads to characteristic perturbations in the
molecular spectra manifested as irregularities in the vibrational level spacing and in
the rotational constants. The first experimental observation of spectral perturbations in
alkali dimers dates back to the year 1909 [Woo09] and they have been addressed both
experimentally and theoretically, see for example [Ami99] for the case of Rb2 and
[Pic06, Dio01] for the case of Cs2 or [Kok00b, Kok00a] for further theoretical treat-
ment. The theoretical calculation of bound levels in these potentials is very sensitive
to the potential shape. Shifting the repulsive wall by 0.01 a0 for example already leads
to a modification of the position of the energy levels and of the perturbation struc-
ture to such an extent that it cannot be hoped to find agreement between theory and
experiment based on the current accuracy of molecular potentials. In addition, theoret-
ical results are very sensitive to the choice of the magnitude and R-dependence of the
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II. CALCULATION OF THE ENERGIES AND WAVE

FUNCTIONS FOR THE EXCITED VIBRATIONAL

LEVELS OF Cs2 AND Rb2 0u
¿ „ns¿np… POTENTIAL

CURVES

A. Potentials and coupling

The rovibrational structure in the 0u
! (ns!np 2P1/2,3/2)

spectra, as well as the perturbation and predissociation ef-

fects, depend upon the shape of the two electronic potential

curves and upon the coupling between them. In the calcula-

tions we use potential curves from accurate quantum chem-

istry calculations !17,18", matched at large internuclear dis-
tances to asymptotic calculations !19". The atomic spin-orbit
splitting between excited states 2P1/2 and

2P3/2 is #ESO
"237.6 cm#1 for Rb and #ESO"554.1 cm#1 for Cs.

In the case of the Cs 2 dimer, we display in Fig. 1 the two

Hund’s case a potential curves for symmetries A 1$u
! and

b 3%u , hereafter referred to as diabatic curves and labeled

VA(R) and VB(R), respectively. Also displayed in the figure

are the two Hund’s case c 0u
!(P1/2) and 0u

!(P3/2) potential

curves, hereafter referred to as the adiabatic curves V1(R)

and V2(R). Such curves have been determined by diagonal-

ization of the 2$2 effective fine-structure Hamiltonian, us-
ing the R-dependent molecular spin-orbit coupling W12(R)

computed in Ref. !18" and displayed in Fig. 2. The curves
V1(R) and V2(R) present an avoided crossing in the vicinity

of R&11a0, with a structure markedly depending upon the
value of the spin-orbit coupling in this range of distance: we

shall compare, as a demonstration of the importance of mo-

lecular electronic-structure data, results of calculations either

using R-dependent coupling W12(R) or taking the constant

value W12"#ESO(!2/3) at all internuclear distances. In the
latter case, the splitting between the two Cs2 curves at the

crossing point is found #ESO"554.1 cm#1, whereas in the

former case it is reduced to 335 cm#1. The present calcu-

lated potentials should be considered as very accurate, com-

pared to state-of-the-art quantum chemistry calculations. The

accuracy was checked by comparison with recent photoasso-

ciation experiments !20,8" and found to be a few cm#1 in the

intermediate range of internuclear distances, where the

asymptotic calculations are not yet valid. This accuracy,

however, does not reach the &0.01 cm#1 accuracy of the

observed spectra: we shall therefore discuss the sensitivity of

the results to small variations in the potential curves, shifting

the position of short-range repulsive walls by a distance

smaller than the estimated accuracy of its position, or modi-

fying the coupling. Calculations have been performed using

for the reduced mass '"121 135.83 a.u. In the case of Rb2,
the potential curves extracted from Ref. !17" and matched at
large internuclear distances to the asymptotic curves of Ref.

!19" were given in paper I. Due to the lack of data for mo-
lecular spin-orbit coupling, we shall use for the discussion a

model curve displaying an R variation similar to the com-

puted cesium curve, where the fine-structure splitting de-

creases, from the atomic value at infinity to its minimum at a

distance R"11a0, by a factor 0.61, then increases again. The
ratio between the molecular spin-orbit coupling at given R

and the atomic value is taken identical for the two atoms,

which is a somewhat arbitrary hypothesis. In order to dem-

onstrate the strong isotopic effect, calculations will be per-

formed for both 85Rb2 and
87Rb2 isotopes, choosing for the

reduced mass the values '"77 392.38 a.u. and '
"79 212.88 a.u., respectively.

B. Calculations: The mapped Fourier grid representation

For the calculation of bound levels, we solve the time-

independent Schrödinger equation with the Fourier grid rep-

resentation (FGR) method !21–24,9", where the energies and
wave functions are obtained by diagonalization of a Hamil-

tonian operator written in grid representation, either in posi-

tion or in momentum space. The potential operator is then a

FIG. 1. Cs2 potential curves from Ref. !18" computed without
(a) and with (b) spin-orbit coupling. (a) Hund’s case a A 1$u

! (6s

!6p) (dash-dotted line) and b 3%u (6s!6p) (solid line) curves
from Ref. !18". (b) Hund’s case c 0u

!(P1/2) and 0u
!(P3/2) potential

curves (solid lines) correlated, respectively, to the dissociation lim-
its (6s!6p 2P1/2) and (6s!6p 2P3/2). The two curves, referred to

as V1(R) and V2(R) in the text, display an avoided crossing which

is represented in the inset: there, the solid curves have been com-

puted with a molecular R-dependent spin-orbit coupling (see Fig. 2
below), while the broken curves correspond to calculations assum-
ing a constant spin-orbit coupling.

FIG. 2. Variation of the spin-orbit coupling W1,2(R) used in the

calculations as a function of internuclear distance R. The quantity

represented is VSO(R)"(3/!2)W1,2(R), which is asymptotically

equal to the atomic spin-orbit splitting #ESO . Full line, calculations
of Ref. !18" for Cs2. Dashed line, for Rb2, model curve scaled from
the Cs2 curve and fitted at infinity to the rubidium atom spin-orbit

splitting.

V. KOKOOULINE, O. DULIEU, AND F. MASNOU-SEEUWS PHYSICAL REVIEW A 62 022504

022504-2

Figure 3.4: Cs2 0+u states: The left panel shows the states in Hund’s case a representation that
cross each other at ∼ 11a0. The Hund’s case c potentials in the right panel produce an avoided
crossing instead. They are calculated taking the spin-orbit interaction into account. The dashed
and solid lines represent two different theoretical models. Figure taken from [Kok00b]

spin-orbit coupling [Kok00b]. Even though the Hund’s case c potentials account for
the spin-orbit coupling between the two Hund’s case a potential curves, the resonant
coupling effect precludes the picture of two uncoupled Hund’s case c channels with
their separate vibrational ladders. The perturbations are present over the entire spec-
tral range of the potential reflected by an oscillation of the rotational constant between
a small value corresponding to the 0+u (P1/2) unperturbed series and a larger value cor-
responding to the 0+u (P3/2) series.
Even though the absolute position of deeply bound levels in the electronically excited
state is hard to predict from ab initio calculated potential curves, such calculations are
still a very useful guidance for the experiment in order to determine the expected level
spacing and expected transition rates. The potential curves can be further adjusted
for the available experimental data, see for example the spectroscopic experiments by
Vergès and Amiot [Ver87].
The position of the theoretical potential curves as a whole can be fixed to an exper-
imental value. The A1Σ+u state (Hund’s case a notation) has been studied by Fourier
transform spectroscopy by Vergès and Amiot [Ver87]. They derive a potential energy
curve and determine the Te value to Te = 9627.06 cm−1. Te is the energy difference
between the bottom of the potential wells of the excited state and of the ground state.
The energy of the bottom of the well of the A1Σ+u state corresponds to the energy of the
bottom of the well of the 0+u (P3/2) state, as can be seen from figure 3.4. They determine
the rotational constant to Be = 9.06 · 10−3 cm−1 and the equilibrium distance between
the atoms, i.e. the position of the bottom of the potential well, to Re = 0.5292 nm. The
potential depth was evaluated to be De(A1Σ+u ) = 5200.7 cm−1. The experiment was
done with a heat pipe containing Cs2 and therefore mainly rotationally highly excited
levels are addressed whereas in the ultracold regime, slowly rotating molecules are
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3 Molecular Structure

created.
The dissociation energy of the singlet ground state X1Σ+g is De(X1Σ+g ) = 3649.88 cm−1

[Ami02]. With Te(A1Σ+u ) = 9627.06 cm−1, the bottom of the A1Σ+u well is located
5977.18 cm−1 above the 6S + 6S threshold.

3.2.3 Near Threshold Ground State Structure - Feshbach Molecu-
les

Near threshold molecular structure is not easily addressed experimentally by con-
ventional spectroscopic studies [Wei85]. Recently, it has been addressed by two-
color photoassociation [Van04] and Feshbach-spectroscopy, especially by the Stanford
group with theory support from NIST [Vul99a, Vul99b, Chi00, Leo00, Chi04b]. The
singlet and the triplet scattering length for Cs are aS=280.37 a0 and aT=2440 a0, re-
spectively [Chi04b], the C6 coefficient is 6860 EHa6

0, where EH =4.35974 aJ is one
Hartree, C8 = 860000 EHa8

0.
In different regions of internuclear separation, it is convenient to use different basis
sets. In the region of large internuclear distance the loosely bound molecule can be
seen as being composed of two largely unperturbed ground state atoms. At smaller
internuclear separation the exchange energy becomes comparable to and finally much
larger than the atomic hyperfine energy and the individual electron spins couple to each
other to yield the total molecular spin S. Molecular spin can take on the values S=0 and
S=1 characterizing the singlet and triplet Born-Oppenheimer potentials, respectively.
This is reflected by the choice of molecular basis for short range and for long range.

The molecular basis |(S I) f `FM〉 is useful at short range. Here, S is the total elec-
tron spin S = sa + sb and I is the total nuclear spin I = ia + ib. They couple to form
f = S + I. The nuclear mechanical angular momentum is given by ` and total angular
momentum is F = F + `. M is the projection of F on the magnetic field axis.

At long range, it is more convenient to use a separated atoms basis but it leads to
off-diagonal elements at short range [Koh06]. The long range basis set |(FaFb) f `FM〉
couples the total atomic spins Fa and Fb to yield f = Fa + Fb. Here, the total molecu-
lar angular momentum is F = f +` and M is again the projection of F on the magnetic
field axis. This basis is useful at low magnetic fields where the Zeeman levels do not
anti-cross and where f may be viewed as a good quantum number [Koh06]. Although,
strictly speaking, the atomic total angular momenta Fa and Fb are only good quantum
numbers in the case of zero magnetic field, they remain approximately good quan-
tum numbers in the region of weak magnetic fields. The work in our experiments is
performed at low magnetic fields, therefore, this is an appropriate description. The
selection rules for the Born-Oppenheimer Hamiltonian conserve ` and f = Fa + Fb.
Bound states can therefore be labeled by the quantum numbers f , ` for zero magnetic
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Figure 3.5: Cs molecular s-states: Energy structure of the Cs dimer below the (3,3)x(3,3)
continuum as a function of magnetic field. Only s-states (` = 0) are shown. Labeling is
according to the quantum numbers FaFb( f , v), where v is the vibrational quantum number as
counted from threshold downwards. In the top left corner, the 6s state 44(6,-7) is barely seen,
it turns over near 20 Gauss into the 33(6,-1) state which is not resolved.
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34(6,-6) states coupling to the 33(6,-1) state and then intersecting threshold.
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3 Molecular Structure

field. At magnetic fields not equal to zero, the projection m f = mFa + mFb can be used
as a label along with `.

In the terminology of Feshbach molecules, states with ` = 0, 2, 4, . . . are denoted
s, d, g, . . . states. Only even rotational quantum numbers occur because of the bosonic
nature of 133Cs, similar to the partial waves discussed on page 26.
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FIG. 7: Total angular momentum projection M=6, s, d, and
g-wave bound state energies as a function of magnetic field.
The zero of energy corresponds to the (F = 3, mF = 3)+(F =
3, mF = 3) dissociation limit. Dotted, dashed, and solid lines
correspond to l=s,d, and g states respectively. Furthermore,
each curve is labeled by the quantum numbers fl, i.e. fl = 6s.
The molecular spin f is a zero field quantum number. For
the fl = 6d states the magnetic quantum number mf is also
indicated. The filled circles represent the observed threshold
resonances.

state calculations as too many channels must be coupled
together. The theoretical field locations listed in the last
column of the tables have been obtained from scattering
calculations where all states are included at the cost of
losing the ability to assign quantum labels.

Fig. 7 shows even l M=6 bound states below the low-
est molecular hyperfine state (3, 3) + (3, 3) as a function
of magnetic field. Each bound state is labeled with l, f ,
and mf . A resonance occurs when a bound state crosses
zero energy. The frequency range shown in the figure is
sufficient for the assignment of all B <15 mT s, d, and g-
wave Feshbach resonances in the collision between |3, 3〉
Cs atoms. The filled circles mark the observed thresh-
old resonances in a Cs gas at T=3.5 µK (kBT/h ∼ 0.1
MHz). Agreement between theory and experiment is suf-
ficiently good that assignments can be made even though
discrepancies exist. These discrepancies are caused by
the (slightly) incorrect shape of the Born-Oppenheimer
potentials and the approximations in the bound state cal-
culations. For fields smaller than 1 mT theory predicts
the existence of additional resonances.

The number of coupled channels for M=6 and l=s,
d, and g is 74. However, as discussed in the previous
section, for nonzero applied magnetic field the coupling
between different partial waves and mf ’s is due to weak
second-order spin-orbit and spin-spin interactions. Con-
sequently, for most resonances in Fig. 7 assignment is
unambiguous using independent bound-state calculations
that only include states of a given l and mf . In fact,
the curves in the figure have been obtained in this way.
However, it should be realized that crossings between
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FIG. 8: Expanded view of the M=6, s, d, and g-wave bound
states shown in Fig. 7. An avoided crossing between g-wave
mf=3 and 5 bound state occurs around B= 1.4 mT.

bound states shown in the figure are actually avoided
when second-order spin-orbit and spin-spin interactions
are included. At zero magnetic field coupling between
channels with different molecular spin f is also small.
The assignment of f is obtained by retracing a bound
state to zero magnetic field and noting that |mf | ≤ f .

A close look at Fig. 7 shows that the lines can roughly
be divided into those that are noticeably curved and
those that appear straight. A good example of curved
lines are the two fl = 4d bound states, while the 6d and
4g bound states are good examples of bound states that
have a linear magnetic field dependence. The curved lines
are due to broad avoided crossings that appear because
the same fl labeled states readily mix when a magnetic
field is applied. Mixing is due to the interplay of hyper-
fine, Born-Oppenheimer, and Zeeman interactions and is
significantly larger than in avoided crossings mediated by
second-order spin-orbit and spin-spin interactions.

The most weakly-bound fl = 6s state is bound by
about 65 MHz at zero magnetic field, rises rapidly until
it turns over near 2 mT, and then continues just be-
low the dissociation limit. This avoided crossing is also
shown in Fig. 8. The bound state does not run parallel
to the dissociation limit. It becomes a Feshbach reso-
nance near B=50 mT. The behavior of this bound state
has direct consequences for the s-wave scattering length
of two |fama〉 = |3, 3〉 atoms. Below 1.7 mT the scat-
tering length is negative and above this field value it is
positive. This zero of the scattering length has been ob-
served in Ref. [18] and has been used to optimize the
Born-Oppenheimer potentials in Refs [15, 17], as well as
in this paper. It is interesting to realize that, as discussed
in Ref. [15], for B < 1.7 mT d-wave channels affect the
elastic scattering and must be included in order to obtain
an accurate scattering length.

Some of the M=6 and l=s, d and g Feshbach reso-
nances below B=3 mT could at first not be assigned from
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Figure 3.7: Low field molecular Cs dimer states: In the low-field region, shown here for
0-150 G and 0-30 G, state labeling can be done according to f l(m f ). This is the region of
magnetic fields relevant to our work. The molecular states up to g states (` = 4) below the
(3,3)x(3,3) scattering threshold are shown. Note the different energy scales. The state 44(6,-
7)/33(6,-1) that was not resolved in figure 3.5 can be identified as the 6s state turning over
at 20 G. The filled circles in the left panel indicate the positions of d and g wave Feshbach
resonances. Figure taken from [Chi04b].

The molecular Hamiltonian, including relativistic interactions, conserves parity
and the total angular momentum F = f + ` and its projection M for B = 0 or only
M = m f + m` for nonzero fields [Chi04b]. The Cs atoms in our experiment are po-
larized in their lowest internal hyperfine state |F = 3,mF = 3〉 and therefore m f = 6.
Since only s-wave collisions are possible in the ultracold regime, m` is zero. The sum
M = m f + m` = 6 is conserved during the collision, therefore only states with pro-
jection of the total angular momentum M = 6 are possible. The following discussion
will focus on molecular states below the atomic |F = 3,mF = 3〉+|F = 3,mF = 3〉
scattering continuum or synonymously the (3,3)x(3,3) continuum which are relevant
to our work.
Let us consider first molecular states in the basis |(FaFb) f `FM〉 with the rotational
quantum number ` = 0, i.e. s-states as shown in figure 3.5 at magnetic fields from
0 to 1000 Gauss. Weakly bound 6s states belonging to the channel Fa = 3, Fb = 3
and f = 6 are horizontal lines in this plot. The numbering is FaFb( f , v), where v is
the vibrational quantum number as counted from threshold downwards. Note that the
state 33(6,-1) just below threshold is not resolved in this plot but plays an important
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role for the characteristic behavior of the scattering length of Cs.
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Figure 3.8: Cs scattering length: Scattering length of Cs up to 150 G. There is a smooth
tunability due to the s wave Feshbach resonance caused by the 44(6,-7) state. In addition, a
series of narrow higher order Feshbach resonances that are caused by coupling of the scattering
threshold to d and g bound states can be identified. There is a d wave resonance at 48 G and g
wave resonances at 11.0 G, 14.4 G, 15.0 G, 19.9 G, and 53.5 G. Figure taken from [Chi04b].

The inclined lines in this plot correspond to potentials associated with the scatter-
ing channels Fa, Fb=3,4 or 4,4. Since these have different magnetic moments, they
intersect the 3,3 states and lead to strong avoided crossings. In fact, these states couple
to the 33(6,-1) state lying just below threshold. Three broad s-wave Feshbach reso-
nances arise from these states intersecting the threshold at -11.7 G, 550 G, and 800
G, as indicated in figure 3.6. At 11.7 G there is a Feshbach resonance for two collid-
ing atoms in the F = 3,mF = −3 state which translates into the value of -11.7 G for
the F = 3,mF = 3 state. Only the “shoulder” of this resonance which underlies the
tunability of the scattering length at small magnetic field can be seen. The position
of the Feshbach resonances is not identical with the position one would expect from
the intersection of the unperturbed molecular state with the threshold. This is due to
the strong avoided crossings with the 33(6,-1) state just below threshold. These Fesh-
bach resonances give rise to the outstanding tunability of interactions in ultracold Cs
quantum gases. In the current setup of the Cs BEC experiment, the region of small
magnetic fields between 0 and 150 Gauss has been explored.

Examining the region of low magnetic fields closer and taking states with ` , 0
into account, one finds a very rich spectrum of molecular states as indicated in figure
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3.7. In particular, due to the the relativistic interactions, several narrow higher order
Feshbach resonances arise. These are shown up to g-wave resonances in the figure. In
these plots, the 33(6,-1) state can be identified and is simply denoted as 6s. It runs just
below threshold but does not run parallel to it, causing the aforementioned Feshbach
resonance at 550 G. As already pointed out, f remains approximately a good quantum
number in the low field region and therefore the states are labeled with f `. States with
different m f can be traced back to zero magnetic field to a given value of f . Crossings
between bound states are avoided when the second order spin-orbit and spin-spin in-
teractions are taken into account [Chi04b]. One can broadly classify states into those
that are appreciably curved and those that are not. The curvature arises from strong
avoided crossings between states of the same f ` mediated by the Born-Oppenheimer,
hyperfine and Zeeman interactions. These avoided crossings are much larger than the
weak, i.e. narrow, avoided crossings mediated by second order spin-orbit and spin-spin
interactions. It is now possible to experimentally populate all the shown states and in
addition l-wave states (` = 8) not shown in the figure by either adiabatically follow-
ing avoided crossings or by jumping them with fast magnetic field variations [Mar07].
The molecular states shown in figure 3.7 also couple to the continuum and yield narrow
higher order Feshbach resonances, namely 8 g-wave and 3 d-wave resonances. All of
these resonances can be used to populate the corresponding molecular states [Mar07].
The relativistic interactions in Cs are strong enough to warrant coupling of the s-wave
scattering state to g-wave molecular states with ∆` = 4. The s-wave scattering length
is modified accordingly as a function of magnetic field as indicated in figure 3.8. In
addition to the smooth tunability of the scattering length that mirrors the high mag-
netic field “shoulder” of the Feshbach resonance caused by the 44(6,-7) state, there is
a series of narrow resonances. Note the zero crossing of the scattering length near 17
G.

Molecular states near threshold experience strong mixing of the singlet and triplet
state. One can calculate the expectation value of the total electronic spin for these
states. A value close to one indicates that the state is predominantly triplet, a value
near 0 indicates that the state is predominantly singlet. Assuming that the individual
states were composed of a statistical mixture of singlet and triplet components, the
triplet component would be 75 % due to the threefold degeneracy of the triplet state
and the absence of degeneracy of the singlet state.

3.3 Optical Transitions

The wavelength of the transition between two levels is given by the energy difference
∆Erovib of the two involved rovibrational levels, see equations 3.8 and 3.13

∆Erovib/(hc) = (ν′e − ν
′′
e ) +

(
G′(v′) −G′′(v′′)

)
+

(
F′v(J′) − F′′v (J′′)

)
, (3.16)
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3.3 Optical Transitions

where J is the total angular momentum apart from nuclear spin [Hil07], see section
3.1.4. Here, the prime indicates the upper level and the double prime the lower level.
By writing down the Hamiltonian for the coupling of two states by electromagnetic
radiation and treating it with perturbation theory, one can determine the strength of
the transition between the two states. If one then neglects retardation effects of the
radiation across the particle, the dipole approximation is reached. The probability per
second that an atom or a molecule absorbs a photon and accordingly the transition
probability from state |g〉 to state |e〉 is found to be

dWge

dt
=

2π
~2 |E0 · Dge|

2, (3.17)

where E0 is the electric field vector of the laser and Dge is the dipole matrix element
between the initial and the final state [Dem05]. The strength of optical transitions
between two states is then by the dipole matrix element between the initial and the
final state wave functions Ψg(r, R) and Ψe(r, R) which has the form

Dge = 〈Ψe(r, R)| d |Ψg(r, R)〉, (3.18)

where d is the dipole operator. The integration goes over all electronic and nuclear
coordinates. The dipole operator for a diatomic molecule is

d = −e ·
∑

i

ri + Z1eR1 + Z2eR2 = del + dN .

For homonuclear molecules Z1 = Z2 and since R1 = −R2 the nuclear contribution is
zero dN = 0. In alkali dimers, only the valence electrons contribute appreciably to the
electric dipole moment, inner shell electrons can be neglected.

Based on fundamental symmetries it can be determined between which states non
vanishing dipole matrix elements can exist. These are the so called selection rules.
Transitions that are forbidden by these rules can often still be driven due to higher
order magnetic dipole or electric quadrupole matrix elements, but these are typically
orders of magnitude smaller.

3.3.1 The Franck-Condon Principle
In order to simplify the calculation of molecular transition probabilities, it is very use-
ful to make use of the fact that the time scale for electronic excitations is much shorter
than the time scale for the nuclear motion. This implies that an electronic transition
takes place at fixed internuclear distance R, i.e. the nuclei do not move appreciable
during the time when the electronic transition takes place. This is analogous to the
Born-Oppenheimer approximation, where the different timescales for electronic and
nuclear motion led to the separation of the wave function into an electronic and a nu-
clear component and to the concept of potential energy curves.
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In a classical picture, the nuclei move most slowly near the turning points of the poten-
tial and therefore spend most time in these regions. A transition is favored when one of
the turning points of the ground state potentials nearly coincides with a turning point
of the excited state potential. Quantum mechanically spoken, the Franck-Condon prin-
ciple states that a transition is likely to take place if significant overlap exists between
the initial and final state wave functions. This is analogous to the classical picture
since the wave functions are peaked near the turning points of the potentials. Applying
the Born-Oppenheimer separation of the total wave function Ψ(r,R) into an electronic
wave function ψel(r,R) and a nuclear wave function ψN(R) = ψvib(R) · ψrot, one can
rewrite the matrix element as

Dge = 〈ψel,e · ψrot,e| del |ψel,g · ψrot,g〉 · 〈ψvib,e(R)|ψvib,g(R)〉, (3.19)

where we neglected the R-dependence of the electronic matrix element in order to
separate it from the nuclear component, it is often evaluated at some mean distance R or
at the equilibrium distance Re. It should be stressed that the electronic matrix element
does in general depend on R and can lead to non-Franck-Condon behavior of transition
probabilities. This relation assumes that the nuclear contribution to the matrix element
vanishes as in homonuclear diatomic molecules and in transitions between different
electronic states. The allowed transitions that render the first factor in equation 3.19
non-zero depend on certain selection rules as outlined below. In first approximation,
its value can be taken similar to the atomic value.

The second factor in equation 3.19 represents the overlap of the excited state and
ground state vibrational wave functions. Its square is called the Franck-Condon factor
(FC factor) and crucially determines the strength of a given transition.

FC factor = |〈ψvib,e(R)|ψvib,g(R)〉|2 (3.20)

3.3.2 Selection Rules
Selection rules determine which matrix elements can be nonzero. They fall into two
categories: those that apply to all coupling cases and those that apply only to a par-
ticular Hund’s case. If the initial and the final state are in the same coupling case, the
respective selection rules for that case apply. If they are in different coupling cases,
only the general rules hold. Designation of the angular momenta is according to table
3.1. The following selection rules hold for dipole transitions between different elec-
tronic states of diatomic molecules [Hil07, Dem05]. First we will briefly introduce the
general selection rules and then the case-specific rules.

General Selection Rules

∆J = 0,±1 with J′ = 0 = J′′ = 0 (3.21)

As alluded to in section 3.1.1, each rotational level either has positive or negative
symmetry ⊕ and 	 both in homonuclear and in heteronuclear diatomics. The selection
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rule is
⊕ ↔ 	, ⊕= ⊕, 	= 	. (3.22)

In homonuclear dimers, there is the additional g/u symmetry. This combines with the
⊕/	 symmetry to designate rotational levels either symmetric (s) or antisymmetric (a)
with the selection rules

s↔ s, a↔ a, s = a. (3.23)

The selection rule for the g/u symmetry is

g↔ u, g = g, u = u. (3.24)

There is a selection rule operative for the case of homonuclear dimers for transi-
tions to states with either Λ = 0 or Ω = 0 [Jon06]. A given rotational line in such a
state can only be reached from either only odd or only even waves. The precise rela-
tionship whether odd goes to odd or odd goes to even depends on whether the nuclei
are bosons or fermions and whether the state has g or u symmetry. For example, odd
rotational lines in the vibrational levels of the A1Σ+u state of a dimer with fermionic
nuclei can only be reached from even partial waves. In photoassociation spectroscopy,
this helps to explain the strength of the individual lines.
When the initial state does not have definite g/u symmetry, such as in ultracold ground
state collisions, transitions to both g and u states become allowed [Jon06].

Hund’s case a selection rules

Selection Rules for Electronic Wave Functions For Hund’s case a coupling, the
symmetry of the dipole operator implies the following rules:

Σ+ ↔ Σ+, Σ− ↔ Σ−, Σ+ = Σ− (3.25)

∆Λ = 0,±1 (3.26)

∆S = 0 (3.27)

∆Σ = 0 (3.28)

∆Ω = 0,±1 with the restriction ∆J , 0 when Ω = 0→ Ω = 0 (3.29)

Selection rule 3.26 is modified for multiphoton processes involving N photons to
∆Λ = 0,±1, . . . ± N. The spin selection rule 3.27 stems from the fact that the electric
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dipole moment does not contain spin variables. It is only strictly satisfied when the
wave functions are pure, i.e. in the absence of spin-orbit interactions. Therefore, this
selection rule is absent for case c coupling, see below. These transitions become al-
lowed to a certain extent when states of different multiplicities are mixed by spin-orbit
interaction.
According to the review article by Jones and coworkers [Jon06], there are still re-
strictions even when the initial state has mixed g/u and spin character as in ultracold
collision experiments. Since the initial state in the collision of two ground state al-
kali atoms is a mixture of 1Σ+g and 3Σ+u , transitions to 1Πg or 3Σ+u are forbidden. This
is in contrast with the experiments by Nikolov and coworkers [Nik00] who assign a
photoassociation resonance to a 1Πg state, as illustrated in figure 6.4.

Selection Rules for Rotational Wave Functions

∆J = 0,±1 (3.30)

∆J = 0 is forbidden for J′′ = 0↔ J′ = 0 and Ω′′ = 0↔ Ω′ = 0

∆J = 0 is only possible when the electronic orbital angular momentum is changed
during the transition, i.e. ∆Λ = ±1. This implies that for transitions between Σ states
Σ ↔ Σ the rotational selection rule is ∆J = ±1 whereas for transitions between a Σ
state and a Π state Σ↔ Π the rule is ∆J = 0,±1.

Selection Rules for Vibrational Wave Functions There are no strict selection rules
for the case of a transition between different electronic states. For transitions between
different electronic states, the Franck-Condon principle states that the transition prob-
ability is proportional to the FC factor which is the squared overlap of the vibrational
wave functions of the involved states.

Hund’s Case b Selection Rules

∆Λ = 0,±1 (3.31)

Σ+ ↔ Σ+, Σ− ↔ Σ−, Σ+ = Σ− (3.32)

∆S = 0 (3.33)

∆N = 0,±1 with the restriction ∆N , 0 when Σ = 0→ Σ = 0 (3.34)
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Hund’s Case c Selection Rules

∆Ω = 0,±1 (3.35)

The analogous rule to 3.25 in Hund’s case c is

0+ ↔ 0+, 0− ↔ 0−, 0+ = 0−. (3.36)

Hund’s Case d Selection Rules

∆N = 0,±1 (3.37)

∆L = 0,±1 (3.38)

∆` = 0 (3.39)

3.3.3 Optical Transitions near 1550 nm
The spectroscopy laser operative in the present study has a tuning range from 1510 nm
to 1580 nm, corresponding to 6623 cm−1 and 6329 cm−1, respectively. In figure 3.3
the horizontal line labeled 1550 nm indicates which potentials can be reached with this
laser from the loosely bound Feshbach molecules whose energy roughly corresponds
to the (6S+6S) asymptote.

Only four potentials lie within the wavelength range of this laser: 0−u (P1/2),
0+u (P1/2), 0+u (P3/2), and 1u(P1/2).
A transition to 0−u is dipole forbidden. This can be seen by taking into account that the
two 0−u states arise from the 3Πu and 3Σ+u states as indicated in figure 3.1. The lowest
triplet state a3Σ+u cannot couple to these states due to the u = u selection rule and the
singlet ground state X1Σ+g cannot couple due to the ∆S = 0 selection rule. The figure
also indicates that loosely bound electronic ground state levels correspond to 0+g , 0−u
and 1u, none of which can couple to 0−u .

All the potential curves that reach this far down exhibit ungerade Symmetry. From
the selection rule in bound-bound spectroscopy that a photon couples a g state to a u
state and vice versa, one can see that these states can only be reached from the singlet
ground state 1Σ+g . As discussed above, Feshbach molecules do not have definite g/u
symmetry, so they can be assumed to have a g component. If a statistical mixture of
singlet and triplet states is assumed, the singlet component would be 25%. In reality,
the singlet component of the Feshbach molecules is state dependent and also R depen-
dent and must be calculated from a coupled channels calculation. Such calculations
are currently under way, as discussed in sections 5.3.1 and 6.1.1.

The 1u(P1/2) state arises from the B1Πu, the 23Σ+u and the b3Πu states. These states
exhibit ungerade symmetry and can therefore be reached from the singlet ground state
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which has gerade symmetry or from the 0+g component of the ground state wave func-
tion. However, only the B1Πu component fulfills the electron spin selection rule 3.27.
This constitutes a transition with ∆Λ = 1. Therefore, it can be reached with σ-
polarized light. However, the excited state region reached with the 1.55 µm laser is
far below the bottom of the B1Πu well in a region where it is more adequate for the 1u

state to consider the Born-Oppenheimer Potentials instead of the relativistic potentials,
see section 6.2.2. Moreover, in order to exploit this state for a transfer to the absolute
ground state, the singlet component afforded by the B state is required.

The 0+u states arise from spin-orbit coupling between the A1Σ+u and b3Πu states as
discussed in detail in section 3.2.2. Excitation can only occur via the A1Σ+u compo-
nent because the singlet ground state can only couple to the singlet excited state. This
means that the transition effectively corresponds to a Σ ↔ Σ transition which requires
π polarized light. The contribution from the A1Σ+u state varies between 35% and 80%
in the range of vibrational levels that can be reached with our laser [Bou06]. Perturba-
tion effects present in these states were discussed in section 3.2.2. Our collaborators in
Orsay have calculated the energies of the vibrational states in the 0+u potentials based
on ab initio potential curves. This gives a good estimate of the spacing between the
individual levels but leaves some uncertainty in the absolute energy of the states which
is comparable to the spacing between individual vibrational levels [Koc06a]. The low-
est vibrational level in the 0+u (P3/2) state can be shifted to the spectroscopic value of
Vergès and Amiot [Ver87] who analyzed the A1Σ+u state by Fourier transform spec-
troscopy. Currently, the theoretical potential curves are being adjusted to the available
experimental data [Dul06]. In order to circumvent the uncertainty in the theoretical
calculations, we decided to do a coarse scan of a wavelength region that spans more
than the expected spacing between individual excited state vibrational levels. In the
1.52 µm wavelength region, individual states are separated by up to ∼ 7 nm in the 0+u
potentials.
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C 4

Experimental Setup

This chapter gives a description of the laser system for optical spectroscopy of ultra-
cold Cs-dimers. We are interested in spectroscopy of ultracold Cs2 Feschbach molecu-
les in the wavelength region around 1.55 µm in order to explore a possible route for the
production of a stable molecular ground state BEC by means of coherent population
transfer to the rovibrational ground state in a two-photon process. The spectroscopy
laser is a commercial tunable external cavity diode laser with a tuning range from
1510 nm to 1580 nm. As detailed in this chapter, control over the wavelength of the
spectroscopy laser was implemented in the present work at various levels of accuracy.

In order to enable coarse searching for optical transitions with reproducible wave-
length settings, a stabilization to the output of a wavemeter was implemented as de-
tailed in section 4.1.4. Obviously, the accuracy of such a “lock” is limited by the
resolution of the wavemeter.

For precise stabilization and frequency control of the spectroscopy laser, a locking
scheme was developed with the aim to reach a reproducibility of the frequency settings
in the sub-MHz range while maintaining full tunability of the laser. The scheme relies
on a scanning optical resonator. The position of the transmission resonances of the
spectroscopy laser are determined relative to the resonances of a reference laser that
is stabilized to an atomic Cs transition. The spectroscopy laser is prestabilized with
a second optical resonator by the Pound-Drever-Hall method. Feedback from the fre-
quency measurement via the scanning resonator is on the piezoelectric actuator of the
prestabilization resonator. The stabilization scheme is discussed in section 4.2.

Ultracold Cs atoms are prepared in a series of optical cooling and trapping steps
in the Cs-BEC machine or LevT, as we like to call it for historical reasons. Ultracold
molecules are created by means of a magnetic field ramp across a magnetically tunable
Feshbach resonance, as discussed in section 2.2.3. Sample preparation and the integra-
tion of the spectroscopy setup into the Cs-BEC experiment are discussed in chapters
5.1 and 5.2, respectively. The Feshbach molecules are trapped in a quasi-electrostatic
optical trap formed by CO2 lasers. The trapped molecules are then exposed to the
spectroscopy laser light and loss of Feshbach molecules as a function of spectroscopy
laser frequency is monitored by destructive absorption imaging. The spectroscopy
laser frequency is kept constant during the interaction time and then stepped with each
experimental run. This is in contrast to many conventional spectroscopic experiments,
where the laser frequency can be scanned continuously. One experimental run takes
on the order of 30 seconds. Figure 4.1 shows the main part of the optical spectroscopy
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setup. The CS-BEC experiment is depicted in figure 5.2.

Figure 4.1: Optical setup: In the foreground, the casings of the two optical resonators that
are operative in the stabilization scheme can be seen. The spectroscopy laser is situated in the
background on the left. The reference laser for the stabilization scheme and for the wavemeter
is situated on the far right side behind the black shielding. The wavemeter is not shown.

4.1 The Spectroscopy Setup

A schematic representation of the spectroscopy setup is given in figure 4.2. A waveme-
ter is used to measure the wavelength of the spectroscopy laser. Part of the spec-
troscopy laser’s light is coupled into two different optical resonators, often referred to
as optical cavities, that are used for the tunable frequency stabilization scheme and
provide much finer control of the laser wavelength than would be achievable with the
wavemeter alone. The spectroscopy light is delivered to the Cs-BEC experiment via a
single mode optical fiber. A second laser operating at a precisely known wavelength
near 852 nm is used as a wavelength reference both for the wavemeter and for the
resonator-based stabilization scheme. The reference light is -160 MHz detuned to the
red from the F = 4 → F′ = 5 atomic hyperfine transition of the Cs-D2-line. For
adjustment of the spectroscopy beam in the Cs-BEC experiment as detailed in sec-
tion 5.2.1, resonant light is coupled into the optical fiber that delivers the light to the
Cs-BEC experiment in addition to the spectroscopy light.

The individual components will be discussed in the subsequent sections.
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Figure 4.2: Optical stabilization setup: After passing through an optical isolator, the spec-
troscopy laser light is coupled into an optical fiber to the Cs-BEC experiment. A small fraction
of the light is launched into a fiber to the wavemeter. Resonator 2 serves as prestabilization
resonator by means of a Pound-Drever-Hall lock. Resonator 1 is used for the "Scanlock" de-
scribed in section 4.2.3 and receives reference light from a 852 nm laser stabilized to an atomic
hyperfine transition in Cs. The spectroscopy laser and reference laser transmission signals of
Resonator 1 are fed into a microcontroller-based feedback circuit that acts on the prestabiliza-
tion resonator. Polarizing beamsplitter cubes (PBS ) in combination with λ/2 -plates are used
to adjust beam powers. HR: high reflectivity dielectric mirrors, PD: photodiode, PC: control
computer.

4.1.1 Spectroscopy Laser

For optical spectroscopy of our Cs2 -Feshbach Molecules, we chose the wavelength
region around 1550 nm for the reasons outlined in the introduction. One prac-
tical advantage of this wavelength band is the availability of commercial, widely
tunable, highly stable laser systems for the telecommunications industry. In the
present study a Velocity tunable laser system from New Focus (San Jose, CA, USA),
Model 6328 was used. This is a Littman-type external cavity diode laser system
[Lit78b, Lit78a, Kiu81, Lit84, Day93] that offers a mode-hop free tuning range from
∼ 1510 nm to 1580 nm at output powers around 20 mW. The laser is specified to a
linewidth of < 300 kHz at 50 msec and < 5 MHz at 5 sec.
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The laser can be conveniently controlled by a controller unit that supports manual front
panel control as well as external control of all laser parameters. External control is via
analog inputs or from a personal computer via RS232 or GPIB.
The laser wavelength can be addressed in several ways. A DC-motor offers a tuning
resolution of 0,02 nm. Fine tuning can be done by means of a piezoelectric transducer
that offers a tuning range of 30 GHz (0,24 nm). Both of these act on the position of
the feedback mirror of the Littman extended cavity design. One “slow” and one “fast”
current modulation input enable locking of the laser to an external reference such as
an optical resonator.
A Labview Program was written that allows for convenient control of all laser param-
eters via RS232.
An optical isolator (Model #I-15-LM-SD-1.4-4, Isowave, NJ, USA, 60 dB optical iso-
lation at 1550 nm) prevents optical feedback from backreflections into the laser.

4.1.2 Reference Laser

A reference laser with precisely known wavelength is used as a wavelength reference
both for the wavemeter and for the stabilization of the spectroscopy laser. The ref-
erence laser is stabilized to the master laser of the LevT experiment. This master
laser is locked to the F = 4 → F′ = 5 hyperfine transition of the Cs D2-line by
modulation-transfer saturation spectroscopy [Raj79, Ber01] with a frequency aberra-
tion of less than 100 kHz. This hyperfine transition corresponds to a vacuum wave-
length of 852.35638271 nm [Ste03]. The actual operation frequency of the master
laser is -160.000 MHz red detuned from the atomic hyperfine transition due to a fre-
quency shifting by a double-pass acousto-optical modulator, resulting in a reference
wavelength of 852.3567677 nm. The reference laser used in this work is a home built
diode laser (laser diode: JDSU SDL-5420) stabilized to the master laser using the
“injection lock” technique [Sie86, Ger99]. Figure 4.3 shows the optical setup. After
collimation and polarization rotation the beam is shaped by an anamorphic prism pair.
It then passes through an optical isolator (Isowave, Model I-80-T4-H, 40 dB isolation).
The optical isolator is equipped with exit ports for each of the two polarizers. This is
used for injection-locking as described below. The polarizing beamsplitter cube di-
rectly after the optical isolator delivers a small amount of light to a simple saturation
spectroscopy setup on a Cs-vapor cell that is used to monitor the performance of the
lock. The main part of the output power is coupled into two polarization maintaining
single-mode optical fibers (PM780-HP, Nufern, CT, USA) delivering reference light to
the wavemeter and to the stabilization setup for the spectroscopy laser.
The output power of the reference laser is up to 150 mW. It is usually operated at 110
mW.
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Figure 4.3: Optical setup for reference laser: The reference laser is operated as a slave
laser which is injection locked to the maser laser of the LevT experiment. The locking light
is delivered by an optical fiber labeled Injection Lock Fiber and enters through the distal exit
port of the optical isolator. In the master laser setup there is a polarizing beamsplitter cube
set to maximum transmission right before the injection lock fiber (not shown in the figure).
Optimization of the λ/2-plate shown after the injection lock fiber, i.e. of the polarization of
the locking light, is straightforward by optimizing for maximum transmission of the slave laser
light through that polarizing beamsplitter cube. The reference laser is monitored by standard
saturation spectroscopy. The reference light serves for the wavemeter and the spectroscopy
laser stabilization setup. PBS : Polarizing beam splitter cube, BS 50/50: beamsplitter plate.

Injection Lock

For injection locking the laser diode is brought close to the desired wavelength by tun-
ing the temperature stabilization of the laser and by adjusting the laser diode current. A
small amount of "locking light" (typically a few hundred µW) is then coupled into the
laser diode through one of the exit ports of the optical isolator. This leads to stimulated
emission at the frequency of the locking light and forces the laser to adopt the spec-
tral properties of the master laser [Ger99]. The locking light is delivered to the setup
through a single mode polarization maintaining optical fiber (PM 780-HP, Nufern, CT,
USA). The fiber delivers roughly 1.5 mW of optical power, which makes alignment
and mode matching rather uncritical, since much less optical power is actually needed
to lock the laser. Mode matching is achieved by first overlaying the master laser beam
with the output from the optical isolator’s distal exit port. The slave laser beam is then
coupled into the optical fiber that provides the master laser light. A λ/2-plate is intro-
duced between the optical isolator exit port and the optical fiber in order to align the
direction of polarization of the locking light with the inherent direction of polarization
of the slave diode.
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4.1.3 The Wavemeter
The wavemeter, also known as lambdameter or wavelength meter, used in this study is
a Michelson interferometer with varying path length in both arms of the interferometer
[Hal76, Kow78], as illustrated in figure 4.4. This device is standard in our laboratories
as described in reference [Bla00]. Normally, a helium-neon (He-Ne) laser serves as
reference laser. It is stabilized to its gain profile by polarization stabilization where
the laser resonator length is kept constant by comparing the intensity of two neighbor-
ing laser modes that are operative at the same time and have orthogonal polarization.
The reference beam is divided on a beamsplitter, providing the two arms of the inter-
ferometer. In both arms, there is a corner-cube retroflector that is mounted on a cart
moving back and forth at roughly constant velocity on an air-rail. The beams are re-
flected about one centimeter below the incoming beam and recombined again on the
beamsplitter. This generates a temporal interference signal in the 100 kHz range. The
signal is detected on photodiodes and the number of zero crossings per unit time is
determined by a microcontroller.
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Figure 4.4: Optical setup wavemeter: Details are given in the text. The back-to-back corner-
cube retroflectors move back and forth along the air rail at roughly constant velocity driven
by an electromagnet on one side of the rail. m1 − m7: mirrors. BS : broadband nonpolarizing
beamsplitter cube. BS 50/50: beamsplitter plate.

The laser whose wavelength is to be measured is coupled into the wavemeter
through a single-mode optical fiber and travels the same optical path but in the reverse
direction. Therefore, the output beam of the measured light exits above the reference
output and can conveniently be detected on a separate photodiode. The wavelength λx

of the measured laser can be calculated from the relation

λx =
NRe f

Nx
λRe f (4.1)

where NRe f is the number of zero crossings of the reference laser signal and Nx is the
number of zero crossings of the measured laser for a certain measurement time. The
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uncertainty in the counting procedure is reduced by the Vernier coincidence count-
ing method where the starting and stopping of a counting period is only triggered if
zero crossings from both the reference and the measured laser coincide within a time
period of ∼ 1/100 the period of the reference laser interference signal, reducing the
relative error of this comparative measurement by a factor of 100. This device nor-
mally reaches a relative uncertainty of 10−7.
Alignment instructions are given in appendix C.

Limitations

Several factors limit the accuracy of the Michelson Lambdameter.
For absolute wavelength measurements it has to be calibrated by measuring laser

light of precisely known wavelength. A systematic error is introduced if the reference
light and the light whose wavelength is to be measured are not exactly aligned but in-
tersect at a finite angle. This leads to different optical path differences for the reference
laser and the measured laser when the cart is moving. This error can be eliminated by
calibration measurements.

The reference laser in the standard device is a He-Ne laser that has about 3 MHz
rms short term stability on a time scale of seconds. The long-term drift is around 10−8

per year in the optimal case.
The device is operated in air. Dispersion effects introduce a systematic error, espe-

cially in our case where the reference wavelength and the measured wavelengths differ
widely. In addition, day-to-day variations in ambient temperature, humidity and pres-
sure can make a prominent contribution to the dispersion error exceeding the stated
uncertainty of 10−7.

If the device is not set up in an optimal way, further technical contributions to the
error such as vibration of the cart near the turning points can compromise measured
values.

There is a (small) phase error due to the curvature of the wavefronts of Gaussian
beams that can be reduced by using large beams.

Modifications with Respect to Standard Wavemeters

The following modifications to our standard wavemeter design were made for the
present project:

• The He-Ne reference laser was replaced by the 852 nm reference laser described
in section 4.1.2. In contrast to the He-Ne laser, the wavelength of the 852 nm
reference laser is precisely known. Its long-term stability is 100 kHz, which is
superior to the estimated 10 MHz long-term stability of the He-Ne laser.

• The existing LabView Program that reads out the wavemeter data via RS232
was modified to account for the change from the He-Ne reference to the 852 nm
laser and to compensate for the systematic error introduced by the dispersion of
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air. The quantity NRe f

Nx
from equation 4.1 is determined in air by the waveme-

ter. The wavelength of the spectroscopy laser in ambient air is calculated by
multiplying NRe f

Nx
with the wavelength of the reference laser in air calculated

from its known vacuum wavelength and the corresponding refractive index of
air. Temperature, air pressure and humidity in the laboratory are continuously
monitored and transmitted to the control computer (WS444PC, Conrad Electron-
ics, Germany). The refractive indices of air both for the reference laser and for
the spectroscopy laser are calculated from these measured values and the actual
wavelength readings. The equation used for this calculation is a modified Edlén
equation [Edl66, Bir94] as used in the NIST “Engineering Metrology Toolbox”
[Sto06]. It provides a sufficient level of accuracy and is simpler than the Cid-
dor equation [Cid96]. The refractive index is then used to calculate the vacuum
wavelength of the spectroscopy laser.

• The reference light is coupled into the wavemeter through a polarization main-
taining single-mode optical fiber (Nufern PM780-HP). Light of the spectroscopy
laser is delivered through a polarization maintaining single mode fiber (Nufern
PM1550-HP). The fiber termination is 8◦ angled at the connector where the spec-
troscopy laser is launched into the fiber (FC/APC) and straight on the wavemeter
side. The straight fiber connector minimizes wavelength-dependent beam devi-
ations that would cause systematic errors in the wavelength measurement. An
achromatic outcoupling lens is used (ACH-NIR6x12 NIR-II, Edmund Optics,
Karlsruhe, Germany). The wavemeter optics are adjusted to the wavelength re-
gion around 1.55 µm in order to minimize the amount of spectroscopy laser light
that has to be allocated to the wavemeter. A broadband nonpolarizing beamsplit-
ter cube (BS015, Thorlabs, N.J., USA) for 1100 nm - 1600 nm is used.

The accuracy is currently limited by non-ideal mechanical motion of the cart which
causes dips in the wavelength reading near the turning points of the cart of ∼ 50 MHz
amplitude. These can either be corrected for by optimizing the mechanical setup, by
averaging over several measurements or by excluding these regions of the air rail by
additional light barriers.

Comparison Measurements with Commercial Wavelength Meter

We have not yet performed reference measurements in the 1.55 µm region as dis-
cussed in section 6.1.2 because at the current stage of the experiments we can tolerate
a systematic offset in the wavelength measurements as long as they are reproducible. A
comparison measurement with a commercial wavelength meter (WS6IR, HighFinesse,
Tuebingen, Germany) was performed. This device is specified to an absolute accuracy
of 500 MHz. Measured wavelengths agreed within this tolerance.
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4.1.4 Lock to the Wavemeter

The spacing between individual vibrational states in the excited state region reached
with the 1.55 µm spectroscopy laser is between 1 nm (125 GHz) and 7 nm (875 GHz).
Our collaborators in Orsay [Bou06] have calculated the expected binding energy of
the vibrational levels in the coupled 0+u potentials based on ab initio potential curves
calculated by Spiess and Meyer. The energy of the lowest vibrational level in the A1Σ+u
state (see section 3.2.2) is adjusted to the spectroscopic knowledge from classical laser
spectroscopy [Ver87] but the shape of the potentials is not adjusted to the spectroscopic
data. Consequently, even though the spacing between individual vibrational levels is
fairly well known from the calculations, the absolute energy of the levels can be re-
garded only as an estimate. Accordingly, a region larger than the expected spacing
between consecutive levels must be scanned when looking for a molecular transition.
Each experimental run takes on the order of 30 seconds. When searching for a molec-
ular transition it is not manageable to step the spectroscopy frequency through such a
wide range with MHz resolution as would be possible with the stabilization scheme
discussed in section 4.2. For coarse searching for optical transitions, a computer-based
“lock” to the wavemeter was implemented. This merely serves to make the wavelength
settings reproducible during coarse searching since the laser’s inherent wavelength re-
producibility is only on the order of 0.1 nm. The wavemeter lock has a resolution
of 10−7 and relies on feedback to the stepping motor and the piezoelectric actuator
(PZT) of the Littman mirror in the laser head. The wavemeter yields a wavelength
measurement every few hundred msec, so is is clear that this “lock” can only enhance
reproducibility and the laser displays its free-running time averaged spectral width of
a few MHz.

The stepping motor is addressed by computer control via RS232 and the piezo by
the analog frequency modulation input of the laser. The program is implemented in
LabView, analog voltages are generated using a PCI-6221 device from National In-
struments (TX, USA) that enables analog output with 16 bit resolution.
The program receives the setpoint from the main control computer of the LevT exper-
iment via UDP and reads out the vacuum wavelength of the spectroscopy laser. For
large detunings, a digital PID controller acting on the stepping motor is used. Once
the wavelength is within the range manageable by the Littman-PZT (30 GHz), the
laser enters a more stable mode of operation (local mode) and a second digital PID
controller acting on the PZT becomes operative. Feedforward on two levels is im-
plemented: If a new wavelength setpoint differs from the actual wavelength value by
more than a certain amount, the laser is set to that wavelength and the PID output is
suppressed until the laser is close to the desired wavelength. This is advantageous be-
cause the wavemeter produces large spurious “spikes” in the wavelength reading if the
wavelength of the measured laser is changed rapidly. A second level of feedforward
is used for the finer PZT-based servo component: When the piezo integrator is close
to its maximum allowed level, the integrator is reset and the stepping motor is driven
to a new value compensating for the piezo step. Again, the PID output is suppressed

79



4 Experimental Setup

during that time.
All relevant parameters are saved in a wavemeter log file. Data is stored during the
time when the spectroscopy light is actually switched on including some additional
margin before and after. This margin is usually set to two seconds before opening of
the shutter until 2 seconds after closing the shutter, which gives 6 or 7 datapoints. Data
storage is triggered by one of the Adwin timer cards controlling the Cs-BEC experi-
ment
An online analysis calculates the mean and the standard deviation of these wavelength
measurements and combines the mean wavelength for a given experimental run with
the particle number measured by absorption imaging.

Modulation of the Laser for Coarse Searching

The spectroscopy laser is specified to a linewidth of 5 MHz within 5 seconds. When
doing a coarse search for optical transitions, it is convenient to artificially increase this
linewidth by sweeping the laser by a small amount while the spectroscopy beam is
irradiating the molecules. The idea is to scan the laser wavelength on the order of the
wavelength step size from one experimental run to the next in order to avoid “gaps”
of wavelengths that are not sampled during the coarse search. The drawback of this
method is that the effective spectral intensity of the spectroscopy laser is reduced by a
factor given by the ratio of the linewidth of the excited state divided by the scanning
interval.
A simple analog circuit sums the PID output of the wavemeter lock and the output
of a function generator that provides a linear voltage ramp. The function generator
is triggered when the spectroscopy light is turned on. The available optical resonators
with known free spectral range can be used to calibrate the amplitude of the wavelength
sweep. The sweep amplitude is chosen to be somewhat larger than the wavelength
steps between individual experimental runs in order to assure some overlap between
consecutive measurements. Typically, the sweep amplitude is chosen to be 700 MHz,
whereas the wavelength stepsize is 500 MHz.
The output of the PID controller can be kept constant during the sweep in order to
avoid wavelength steps.

4.2 Stabilization Scheme
The requirements for the spectroscopy laser stabilization scheme can be stated as fol-
lows: Each run of the Cs-BEC experiment evaluates one spectroscopic frequency that
should be automatically programmable from the main control computer with a repro-
ducibility that lies in the sub-MHz range. The full tuning range of the spectroscopy
laser should be maintained. While the ultracold molecular sample is prepared, the
controller has about 20 seconds to reach the setpoint. Then the spectroscopy beam is
turned on for a certain amount of time during which the laser frequency has to remain
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stable on a sub-MHz scale.
The implemented locking scheme relies on a combination of the classical Pound-
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Spectroscopy
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Figure 4.5: Scanlock setup: Both the reference laser and the spectroscopy laser are coupled
into optical resonator 1. The function generator produces a linear voltage sweep that drives a
high voltage amplifier that acts on one of the piezoactuators of optical resonator 1. A micro-
controller then measures the time from the beginning of the sweep to the laser transmission
peaks. A digital PID regulator acts on one of the piezoactuators of the prestabilization res-
onator (cavity 2) in order to regulate the position of the spectroscopy laser transmission peak
with respect to the reference laser peaks.

Drever-Hall (PDH) lock to an optical resonator and a feedback circuit that acts on PZT
of this prestabilization resonator.
The spectroscopy laser is prestabilized to an optical resonator (cavity 2 in figure 4.5)
by the PDH technique as described in section 4.2.2. One of the mirrors of this presta-
bilization resonator is mounted on a piezoelectric transducer that changes the length
of the optical resonator when voltage is applied to it. Therefore, the resonator’s res-
onance frequencies can be shifted at will. The frequency of a laser locked to one of
the modes of the optical resonator follows such a shift of the resonator modes. Since
piezoelectric transducers show some degree of hysteresis, there is no strict correlation
between the voltage applied to the resonator PZT and the mirror position. In addition,
long term drifts of the optical resonator can shift the resonance frequencies.
In order to be able to precisely control the frequency of the prestabilized laser, a feed-
back scheme was developed that can be termed “scan lock scheme” as described in
detail in section 4.2.3. In brief, both the spectroscopy laser and the 852 nm reference
laser are coupled into a scanning optical resonator (resonator 1 in figure 4.5). The
length of this resonator is modulated continuously by means of a piezoelectric trans-
ducer. Since the applied voltage ramp is linear, the voltage applied to the piezo is
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linearly correlated with the time elapsed from the beginning of the sweep. The time
intervals from the beginning of the sweep to the appearance of two resonances of the
reference laser and of one resonance of the spectroscopy laser are measured by a mi-
crocontroller. The position of the spectroscopy laser resonance relative to the position
of the two reference laser resonances is stabilized by applying feedback to the piezo-
electric transducer of the prestabilization resonator.

4.2.1 Optical Resonators
Two largely identical optical resonators or “cavities” are operative in the stabilization
scheme. A primer on resonator optics can be found in appendix B. There the con-
cepts of free spectral range (FSR, νF) and finesse are discussed and a simple stability
criterion for the design of an optical resonator is given. The position of higher, non-
Gaussian modes has to be considered in order to avoid spectral overlap between the
Gaussian (0,0)- mode and the higher transverse modes. Higher modes are equally
spaced in frequency, see appendix B and table 4.2. This can be used to linearize the
piezo motion in our scan lock scheme. The following section should give practical
guidance for building an optical resonator.

Resonator Construction Details

We use optical resonators that consist of one curved and one flat mirror mounted on a
spacer of 100 mm length that assures a stable distance between the mirrors. One of the
mirrors can be moved along the axis of the resonator by means of piezoelectric trans-
ducers. The free spectral range is 1.5 GHz and the finesse is slightly below 1000 de-
pending on the wavelength. The measured full-width-half-maximum resonance width
at 852 nm is 1.894±0.023 MHz. The optical characteristics of the resonators used in
the present study are summarized in table 4.1.

Table 4.2 gives the frequency shifts of the first few transverse modes (l,m, q) for
given q relative to the frequency of the (0, 0, q)-Gaussian mode (see appendix B). Here,
q indicates the longitudinal mode number whereas the labels l,m refer to the transverse
modes. The values given are specific for the optical resonators in the present setup,
units are in terms of the free spectral range. It can be seen that none of the higher
modes lies close to the Gaussian (0,0)-mode.
The mirrors were custom coated by Layertec GmbH, Mellingen, Germany. The coat-

ing is specified to a reflectivity of 99.7% for the 852 nm reference laser and for the
spectroscopy laser in the range from 1510 nm to 1580 nm. From measured mirror
transmission it can be inferred that reflectivity is slightly lower, decreasing the calcu-
lated finesse to 800-1000, depending on the actual wavelength. The mirrors are 30’
wedged and anti-reflection coated on the back surface. Surface quality is specified to
λ/10 for the flat surfaces and to λ/4 for the curved surfaces.
To keep the mirrors at a precisely determined distance they are mounted on a spacer.
The spacer was purchased from Hellma Optik (Jena, Germany). It has a length of 100
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length 100 mm
FSR νF 1,5 GHz
mirror 1 curvature radius -250 mm
mirror 2 curvature radius ∞

Wavelength region 852 nm and 1480 nm - 1670 nm
mirror reflectivity 99.6 – 99.7%
finesse (calculated) 800 – 1000
waist 852 nm flat mirror 0.182 mm
waist 1550 nm flat mirror 0.246 mm
waist 852 nm curved mirror 0.235 mm
waist 1550 nm curved mirror 0.317 mm

Table 4.1: Optical resonator parameters: Optical characteristics of the resonators used in the
present study. The wavelength range is taken from the measured transmission of the mirrors
where the transmission stays below 0.4%. The finesse stated is calculated from the transmission
of the mirrors measured in the tuning range of the spectroscopy laser. Mirror transmission is
0.3% at 852 nm, corresponding to a calculated finesse of 1000.

l + m (νl,m,q − νq)/νF l + m (νl,m,q − νq)/νF

1 0.218 4 0.872
2 0.436 5 1.09
3 0.65 6 1.308

Table 4.2: Higher resonator modes: Frequency shift of the transverse modes for given q
relative to the frequency νq of the (0, 0, q)-Gaussian mode in units of the FSR for the resonators
used here (d=100 mm, one flat mirror, one concave mirror with 250 mm radius of curvature).
The frequency of the (1, 0, q) mode is ν1,0,q = νq + 0, 218 · νF .

mm and a quadratic cross section of 30 mm x 30 mm with a central bore of 10 mm.
A hole on the side connects the bore with the outside in order to allow for pressure
equilibration. One of the end faces features a hollow of 20 mm diameter that is 5 mm
deep for the inner ceramic ring of the piezo construction discussed below.
Zerodur (Schott AG, Mainz, Germany) was chosen as spacer material because it fea-
tures a nominal thermal expansion coefficient of zero. Expansion class 0 has the tight-
est tolerances and is specified to a thermal expansion coefficient of 0±0.002∗10−6K−1.
A viable alternative to Zerodur is ULE (“ultra low expansion”) material from Corning
(NY, USA). Zerodur has the disadvantage of showing some residual material relax-
ation, which ULE does not. In the present stabilization scheme such a long term drift
can be corrected for and consequently Zerodur was chosen because of its lower price.
The flat mirror is glued directly to the spacer with ultraviolet light (UV)-curing glue
(OP-66 LS, Dymax, Frankfurt, Germany) that features low contraction during curing.
Care was taken not to introduce glue between the mirror and the spacer, glue was ap-
plied on the side of the mirror in several individual spots. This assured that the axis of
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the resonator is defined by the parallelism of the spacer’s end faces and that the supe-
rior thermal characteristics of the spacer material were not counteracted by a layer of
glue.
The concave mirror is mounted on an assembly of two piezoelectric actuators. Both
piezos are tubes made from Pz27 (Ferroperm, Kvistgaard, Denmark). An outer tube
(outer diameter: 24 mm, inner diameter: 22.4 mm, length: 4 mm) is glued directly to
the end face of the resonator. This piezo holds a ceramic ring custom made in our work-
shop from macor ceramic material (RS components, Austria). A smaller inner piezo
ring (outer diameter: 18.3 mm, inner diameter: 16.7 mm, length: 4 mm) rests on this
outer ceramic ring and holds a small inner ceramic ring. This in turn holds the curved
mirror whose reflecting surface is thus flush with the end face of the spacer. Again, UV
curing glue was applied as individual spots without introducing glue between the parts
to be bonded. The thermal expansion coefficient of the piezoelectric material is much
worse than the expansion coefficient of the spacer material. This nested construction
assures that length drifts due to thermal expansion of the two piezos cancel each other
out in first order. The macor rings do not contribute to thermal drifts in first order since
they only bridge between the piezos or between the inner piezo and the mirror. This
construction has been used in our group previously, a technical drawing can be found
in reference [Kin05]. Figure 4.6 shows the piezo construction and the spacer.

Figure 4.6: Optical resonator piezos: left: Nested piezo construction before glueing the outer
piezo ring to the spacer. The large ceramic ring is attached to the outer piezo and supports the
inner piezo. This in turn holds the smaller ceramic ring that the mirror is attached to. right:
Zerodur spacer with piezos attached.

The piezos were electrically contacted by soldering. The wall thickness of the
piezos is 0.8 mm. Since the resonators are operated in air and high voltage discharges
in air can be expected at an electric field of roughly 1 kV/mm, the voltage across the
piezoelectric transducers should remain below 800 V.
For the 852 nm reference laser, one free spectral range of 1.5 GHz corresponds to 426
nm length change of the piezo actuator which is covered by applying roughly 250 V
to the piezo. Similarly, for the spectroscopy laser, one free spectral range corresponds
to approximately 450 V.
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Pressure-tight Housing and Temperature Stabilization

Both optical resonators are contained in an air-tight housing that consists of a vac-
uum tube with inner diameter of 68 mm for resonator 1 and 60 mm for resonator 2
and length 126 mm. The tube is closed with CF blind flanges on both sides. Optical
access is provided by a 1 inch diameter glass window in each of the flanges that is
anti-reflection coated for 852 nm and tilted against the axis of the tube by 10 degrees
on one resonator and 7 degrees on the other to avoid back reflections and etalon effects.
The optical resonators are held in the vacuum tube by stable plastic mounts fixed by
rubber rings made in our workshop, as shown in figure 4.7.
One of the flanges features two airtight voltage feed-throughs (HGP.0S.302.CLLPV,
Lemo Elektronik) for the piezoelectric transducers.
The vacuum tubes of both resonators are actively temperature stabilized. The stabi-
lization constantly heats the vacuum tube by means of resistive wire wound around
it. The regulation thus keeps the vacuum tubes at constant temperature a few degrees
above room temperature. Both vacuum tubes are passively isolated and placed in ex-
ternal metal containers. Figure 4.7 shows one of the optical resonators mounted inside
the vacuum tube and the vacuum tube after closing with the temperature measurement
circuitry attached and a first layer of passive isolation over the heating wire. For the

Figure 4.7: Optical resonator housing: left: View of the optical resonator inside the vacuum
tube held by plastic mounts. right: Vacuum tube with temperature measurement circuitry. The
flange in the foreground features a window and voltage feed-throughs. The heating wire is
underneath the adhesive tape and the white isolation material.

scan lock resonator, there is a single active stabilization of the vacuum tube. For the
prestabilization resonator, there is a dual active temperature stabilization, one servo
loop acting on the vacuum tube and a further one keeping the additional outer metal
container at constant temperature somewhat below the temperature of the vacuum tube.
Both servo loops measure the temperature with independent measurement bridges.
Temperature sensing is done with a 100 kΩ NTC (B57891M104J, Epcos) glued to the
respective metal parts with heat conducting glue (TBS, Electrolube). A second inde-
pendent NTC on the vacuum tube can be used to monitor the temperature. A circuit
diagram for the temperature measurement circuitry can be found in the appendix, see
section D.1. By selecting appropriate resistors in the temperature measurement bridge,
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the temperature set points are chosen to be ∼ 32◦C for the vacuum tubes and ∼ 28.4◦C
for the outer casing of the prestabilization resonator. The bridge features a trimmer po-
tentiometer that allows for adjustment of the temperature set point by roughly ±1◦C.
The temperature PID regulator is based on a standard electronic design used in our
group. The standard output power stage was replaced with the circuit shown in fig-
ure D.2 which is more convenient than the standard amplifier. The heating wire used
(RD100/0.6, Block, Germany) has a resistance of 1.73 Ω/meter and was applied both
to the vacuum tubing and to the flanges over a layer of electrically isolating heat resis-
tant glass fiber tape (3M). Total resistance was ∼ 22 Ω for each temperature stabiliza-
tion. Judging from the amplitude of the error signal, the temperature stabilization is
stable to within 1 mK during an observation time of 10 hours.
We measured the drift of the prestabilization resonator by locking the spectroscopy
laser to it and measuring its drift with the scanning resonator whose center position
was stabilized to the reference laser as will be explained in section 4.2.3. We obtained
a drift rate of ∼15 MHz per hour for the prestabilization resonator. Resonance positions
are reproducible on a day-to-day basis on this scale. The scan lock described below
does not use this stability of the resonators as a reference but relies on the stability of
the reference laser which has a frequency aberration of less than 100 kHz.

4.2.2 Pound-Drever-Hall Prestabilization
As outlined above, the locking scheme requires prestabilization of the laser to an op-
tical resonator whose resonance frequencies can be tuned by means of a piezoelectric
actuator. The standard method for locking a laser to an optical resonator is the Pound-
Drever-Hall sideband locking scheme [Dre83]. Sidebands are modulated on the laser
light. Essentially, the amplitude and phase of the different frequency components re-
flected from the resonator depend on their frequency difference with the resonance
frequency, which results in an error signal.

The reflected beam is detected on a photodiode. The photodiode signal is then
mixed by a phase detector with a local oscillator signal that. The modulation signal
and the local oscillator signal have the same frequency and a fixed phase relation. This
multiplication in the time domain yields the component of the photodiode signal at
the frequency ω of the modulation signal. A low pass filter after the phase detector
is used to suppress the signal at 2ω. The shape of the error signal as a function of
detuning from the resonance frequency is dependent on the relative phase between the
modulation signal and the local oscillator. One big advantage of the radiofrequency-
sideband lock is that the detection process is shifted to high frequencies where the
typical technical 1/ f noise is suppressed. Note that the bandwidth of the lock is not
limited by the photon storage time in the resonator, enabling high bandwidths even
when locking to very high finesse resonators that have a long photon storage time.
The lock was implemented in such a way that the laser can be maintained in lock while
the cavity’s resonance frequencies are shifted by more than a free spectral range. This
assures tunability of the lock. Figure 4.8 shows the optical setup of the PDH lock.
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Figure 4.8: Optical setup of the PDH lock: The spectroscopy laser reaches this part of
the setup through a single-mode optical fiber. The laser light is phase modulated in the EOM,
reflected from the resonator and detected on a fast photodiode (PD3). A phase detector receives
both the photodiode signal and a local oscillator signal and, in combination with a low pass
filter, provides the error signal. Feedback is put on the laser diode current and laser piezo
voltage.

The laser reaches this part of the spectroscopy setup through a polarization main-
taining single mode optical fiber (PM 1550-HP, Nufern, collimator lens: Thorlabs
C220-TM-C, f=11 mm). This assures that the beam has a Gaussian intensity distribu-
tion. Mode matching between the Gaussian beam and the optical resonator is achieved
with a f = 500 mm lens. The fiber’s polarization axis is aligned in such a way as
to provide maximum modulation in the electro-optic modulator (EOM). The EOM is
directly driven at 30 MHz by a RF amplifier at a power of 25 dBm. The sidebands have
a measured height of ∼ 3 % of the carrier. The polarizing beamsplitter cube in combi-
nation with the λ/4-plate serves to separate the beam reflected by the cavity from the
incoming beam. The reflected beam is detected on a photodiode. The photodiode has
a bandwidth of 125 MHz and is DC coupled. In order to prevent saturation of the radio
frequency (RF) mixer, a capacitor in series with the photodiode signal is used to cut off
the DC component of the signal. The phase detector (MiniCircuits ZRPD-1) receives
7 dBm of local oscillator power. The low pass filter (MiniCircuits BLP-1.9) has a 3
dB rolloff at 1.9 MHz. The parameters are such that the amplitude of the error signal
is limited by the laser intensity incident on the cavity. Typically, the peak-to-peak am-
plitude of the error signal is set to 800 mV.
The “laser PID” circuit is a standard electronic design in our lab and has a fast and a
slow branch. The fast branch is a PI controller and modulates the laser diode current.
The slow branch is a PID controller and acts on the piezoelectric transducer in the
laser head. In order to enable the large tuning range of 2 GHz of this lock, the circuit
was modified in the following way: The output of the fast PI branch was fed into the
slow branch as input via a unity gain buffer operational amplifier with an optional low-
pass filter. Therefore, the value of the fast integrator determines the output of the slow
branch.
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Problems Locking the Spectroscopy Laser

Several problems arose when locking the spectroscopy laser:

1. The gain of the analog frequency modulation input of the laser is too large for
convenient locking to an external reference. This input acts on the PZT of the
Littman setup. A voltage of ±3 V corresponds to a frequency shift of 30 GHz.
A 50 Hz voltage ripple of 2 mV due to ground loops already leads to a devia-
tion of 10 MHz and suffices to drive the laser out of lock, since the frequency
modulation range attainable by current modulation is on the order of 20 MHz.
This problem was solved by inserting the voltage divider circuit shown in figure
4.9 between the laser PID controller and the frequency modulation input of the
laser. The laser PID operates at its full ±13.5 V range and the circuit combines
a voltage divider with a low pass filter. The grounds of the PID circuit and the
New Focus laser are decoupled by a 5 kΩ resistor.

Ground Laser

Laser PID
PZT Output

New Focus
Frequency Modulation
Input

22 F bipolµ

180!

5 k!

5 k! 1 k!

Figure 4.9: PDH lock voltage divider and low pass filter: Circuit that conditions the output
of the laser locking PID circuit to account for the high gain of the laser’s frequency modulation
input.

2. When analyzing the frequency characteristics of the laser with the optical res-
onator, it was discovered that there are series of spikes on the resonator transmis-
sion signal. These were interpreted as short frequency spikes. A typical pattern
is shown in figure 4.10. In between these series intervals of several msec without
such spikes are present. The picture shows an oscilloscope trace of the resonator
transmission signal with the free running laser tuned to the side of the cavity
resonance peak. This problem is known for this particular type of laser and has
been observed by other research groups as well, for example in the Ye group at
JILA, Colorado [Ye06a]. The problem apparently arises from bad circuit layout
with some crosstalk between the digital and the analog circuitry in the laser con-
trol unit. It is estimated that the amplitude of these frequency fluctuations is ∼1
MHz. This poses a limitation for precision spectroscopy and would compromise
coherent population transfer schemes.

3. The New Focus laser is specified to work single mode and without mode hops
over the entire tuning range. However, we observe sudden transitions to multi-
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Figure 4.10: Frequency spikes of the New Focus laser: Trains of repetitive spikes when the
free running laser is tuned to the side of the resonator transmission.

mode operation evidenced by a smeared-out transmission pattern when sweep-
ing an optical resonator and disappearance of the temporal interference signal in
the Michelson type wavelength meter. This can normally be corrected by chang-
ing the current or frequency settings. However, during periods of multimode
operation, spectroscopy is not possible. This is especially inconvenient because
the whole setup can normally be run in a completely automated way.

4.2.3 Scanlock
Setup

The basic idea of this locking scheme was already introduced on page 81. The setup
is depicted in figure 4.5. Both the prestabilized spectroscopy laser and the 852 nm
reference laser are coupled into an optical resonator. A function generator (Agilent
33220A) produces a linear voltage ramp that is amplified by a high voltage amplifier
(PA-94, Apex, Tucson, AZ, USA) to an amplitude of ±300 V. This is applied to one
electrode of the piezoelectric actuator while the other electrode is biased to 300 V in
order to keep the voltage across the piezo positive at all times. The voltage ramp trans-
lates into a length change of the optical resonator of approximately 800 nm. Such a
sweep covers almost two free spectral ranges (FSR) for the reference laser and little
more than one FSR for the spectroscopy laser, implying that two transmission reso-
nances can be observed for the reference laser and one resonance for the spectroscopy
laser.
The transmission signals for 852 nm and for 1550 nm are detected on separate photodi-
odes. Separation of the two wavelengths is achieved by means of the dielectric mirrors
specific for the respective wavelength. Each of these photodiodes feeds one compara-
tor circuit that converts the transmission peaks to square pulses of defined amplitude
whose width is dependent on the magnitude of the reference voltage and on the slope
of the voltage ramp. Circuit diagrams for the comparators are given in the appendix,
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see section D.2.
A microcontroller measures the time intervals from the beginning of the resonator
sweep to the appearance of each of the transmission peaks. The resonator sweep fre-
quency is 50 Hz. This is described more fully on page 90 and depicted schematically
in figure 4.11.
It is important to note that the frequency of the reference laser is fixed whereas the
frequencies νq of the optical resonator modes can be adjusted by means of the temper-
ature stabilization and the bias voltage across the resonator’s piezoelectric transducers.
Through active feedback the reference modes are maintained at a fixed position with
respect to the resonator sweep, as described on page 92. The position of the spec-
troscopy laser transmission peak with respect to the resonator sweep depends on the
“position” of the prestabilization resonator as determined by its temperature settings
and the voltage applied to its piezos.
A digital PID regulator is used to stabilize the position of the spectroscopy laser peak
relative to the position of the two reference laser peaks. The PID loop uses one of the
piezoelectric transducers of the prestabilization cavity as actuator. The second PZT of
the prestabilization cavity serves to place the modes of the prestabilization cavity at
a convenient position relative to the modes of the scanning resonator (resonator 1 in
figures 4.5 and 4.2).
The position of the spectroscopy laser transmission peak relative to the center between
the first and the second reference laser transmission peak (CRe f in figure 4.11) is largely
independent of the sweep amplitude and period if the position is measured in units of
the time that elapses between the first and the second reference laser transmission peak
(TFSR Ref ) which is equivalent to one free spectral range.

Microcontroller

A microcontroller measures the time intervals from the beginning of the resonator
sweep to the appearance of two reference laser transmissions and one spectroscopy
laser transmission. The atmega162 microcontroller from Atmel Corp. is an 8-bit RISC
processor and was chosen because it features two 16-bit counters with input capture
units, external interrupts, more than sufficient RAM for an application like this and a
convenient serial interface. The microcontroller is clocked by an external crystal at
16 MHz, yielding a time resolution of 0.0625 µsec, which is not limiting the accuracy
of the lock. To save development time, the microcontroller is operated on a slightly
modified STK 500 board from Atmel with the inputs being decoupled by digital opto-
couplers (H11L1).
The development platform AVRstudio offers convenient simulation and debugging
functionalities. The microcontroller program was written in assembler code in or-
der to assure maximum control over each step of execution.
The commented assembler program can be found in the appendix, see section A. Fig-
ure 4.11 is a schematic representation of the stabilization and gives an overview of the
time intervals measured by the microcontroller.
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Figure 4.11: Scanlock schematic: Optical resonator transmission signal during one sweep of
the scan lock resonator with definition of the timer values and time intervals as discussed in
the text. The bottom panel shows the piezo voltage ramp that sweeps the resonator length. The
top panel shows the transmission signal for the spectroscopy laser with one resonance peak.
The center panel shows the transmission signal for the reference laser. The wavelength of the
reference laser (852 nm) is much shorter than the wavelength of the spectroscopy laser (1550
nm), therefore two transmission peaks show up whereas for the spectroscopy laser only one
resonance is present. The function generator provides a trigger signal at the beginning of the
sweep. The microcontroller measures the time intervals TS pec, TRe f 1 and TRe f 2. The center
between the two reference laser peaks defines the reference point CRe f for the stabilization. The
stabilization scheme locks the position of the spectroscopy laser transmission relative to CRe f .
The setpoint is given in relative units Tx

TFSR Ref
, which makes the regulation largely insensitive

to the amplitude and frequency of the resonator sweep. The mean resonator length is actively
stabilized such that the CRe f coincides with the middle of the resonator sweep.

Here, a summary of the program structure is given that should make it easy to
understand the program. First, register names are defined and all required functional-
ities like stack pointer, external interrupts, the two 16-bit timers including their input
capture units, and serial communication are initialized. One of the timers is used to
measure time intervals for to the spectroscopy laser (TS pec in figure 4.11), the other
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timer those pertaining to the reference laser (TRe f 1 and TRe f 2 in figure 4.11). The pro-
cessor then waits in a loop for the synchronization trigger that marks the beginning of
the resonator sweep. This event is handled by an interrupt routine that sets the point-
ers that address the RAM to the memory addresses where the timer values are stored,
erases all counter values from the previous run from the RAM and starts the timers.
For each peak, the rising and the falling edge are measured in order to make a more
accurate measurement of the peak position and in order to make the system more fail-
proof. The events for the reference laser and the spectroscopy laser are handled by
separate interrupt routines. These read out the input capture registers that contain the
timer value for the input capture event. After detection of all peaks, the microcontroller
exits the waiting loop and converts the measured binary timer values to ASCII-coded
hex digits that are sent to the control computer over the RS 232 interface.

PID

The microcontroller transmits a string that contains the timer values for the rising and
the falling edges of two reference laser peaks and one spectroscopy laser peak to the
spectroscopy control computer every 20 msec via RS232.
A program implemented in LabView uses this data to regulate the position of the spec-
troscopy laser relative to the position of the reference laser transmissions. First, the
individual timer values are extracted from the transmitted string. The timer values are
given in units of the reciprocal processor frequency (16 MHz) stabilized by an exter-
nal crystal. These counter values are then transformed into milliseconds. For each
transmission peak, the center of the peak is calculated, which makes the peak position
measurements less sensitive to the setting of the reference voltage of the comparators.
Due to the hysteresis of the Schmitt-triggers, there is a small systematic shift in the
direction of increasing times which is similar for all detected peaks.
From the two reference laser peaks (TRe f 1 and TRe f 2 in figure 4.11), the center between
these two peaks CRe f and the time interval TFS R Re f between them is calculated. The
former serves as the reference point for the position of the spectroscopy laser peak
while the latter defines relative units for the position of the spectroscopy laser trans-
mission that are independent of the resonator sweep amplitude and period.

Regulation of the Resonator Center Position A first digital PID controller stabi-
lizes the center (CRe f in figure 4.11) between reference peak 1 (TRe f 1) and reference
peak 2 (TRe f 2) to the middle of the sweep (e.g. to 5 msec for a sweep frequency of 20
Hz). This makes it easier to mathematically compensate for nonlinearities of the res-
onator sweep due to piezo hysteresis because it makes the system more reproducible.
The regulation acts on the outer piezoelectric ring of the scan-lock resonator, whereas
the inner piezoelectric ring is used for sweeping. An offset generated by a high volt-
age amplifier (PA-95, Apex) is applied to the positive electrode of the piezo ring. The
output of the digital PID is applied to the negative electrode of the piezo ring by means
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of a PCI-6221 analog I/O device from National Instruments.
This regulation compensates for the very slow drifts the optical resonator suffers.

Regulation of the Spectroscopy Laser Frequency A second digital PID regulator
stabilizes the position of the spectroscopy laser transmission (TX in figure 4.11) rel-
ative to the center CRe f of the reference laser transmissions by acting on one of the
piezoelectric transducers of the prestabilization resonator. The regulation receives its
setpoint from the main control computer of the Cs-BEC experiment via UDP. Assum-
ing a linear sweep of the resonator length, the setpoint is set in units of MHz shift
relative to CRe f according to the relation

∆νS pec = −
λS pec

λRe f
∗

TX

TFSR Ref
∗ FS R (4.2)

where ∆νS pec is the frequency shift of the spectroscopy laser, λRe f and λS pec are the
wavelengths of the reference laser and of the spectroscopy laser, respectively. FS R is
the free spectral range of 1.5 GHz while TFSR Ref is the time interval between peak 1
and peak 2 of the reference laser.
The digital PID regulation is programmed according to the following relation:

PIDn = KP∗(
Txn

TFSR Ref
−S )+KI ∗

n∑
k=1

(
Txk

TFSR Ref
−S )∗dt+

KD

dt
∗(

Txn

TFSR Ref
−

Txn−1

TFSR Ref
)+KS ∗S

(4.3)
where PIDn is the PID output, KP, KI , KD and KS are constants, Txk is the measured
value in the k-th iteration and S is the setpoint. The last term constitutes some feed-
forward which is not important.
Two filter routines are implemented in order to avoid erroneous activity of the servo
in case a resonator transmission peak is not smooth and leads to more than one TTL
pulse from the comparator circuit or in case transmission errors occur between the
microcontroller and the control computer:

• A small subroutine tests the received RS232 string for the correct length and
replaces it with the string from the last iteration if the length is not correct.

• For each of the transmission peaks a digital filter calculates a moving average
of a selectable number of measurements. For each new measured value, the
routine computes the deviation from this average. A threshold can be set for
the deviation above which a certain measurement is discarded. This filters out
spikes due to repetitive firing of the comparators.

Both mechanisms occur rarely during measurements if the settings for the electronics
are correct.
One subroutine displays whether the laser is out of the PDH-prestabilization lock. The
program indicates when the laser has reached the setpoint within a certain tolerance.
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These two values together with the setpoint for the regulation are transmitted to the
wavemeter program that saves this information together with the wavemeter data. In
this way the wavemeter indicates which mode of the scan lock is operative whereas
the microcontroller-based stabilization sets the laser frequency modulo the free spec-
tral range of the scan lock resonator on a much finer scale than could be achieved with
the wavemeter alone.
If the sweep of the scan lock cavity covers less than a free spectral range of the spec-
troscopy laser, the regulation could drive the spectroscopy laser out of the region that
is covered by the scan. In this situation the microcontroller does not receive the ex-
pected interrupts and does not transmit data to the control computer. This constellation
is detected by a watchdog timer in the program and corrected for by programmatically
forcing the setpoint to zero. Similarly, if a setpoint is entered that drives the mode to
be stabilized out of the scanned region and the next mode enters at the other end of
the scan, a situation of positive feedback arises. Such a situation is also detected and
corrected for. The PID output is converted to an analog voltage by an analog/digital
I/O device (PCI-6221, National Instruments) with 16-bit resolution. Since the DC-DC
converter (Hamamatsu C4900-50, Shizuoka-Ken, Japan) used to drive the piezoelectric
transducer of the prestabilization resonator accepts 0-5 V at the programming input,
the signal generated by the PCI-6221 device is conditioned with a voltage divider and
by external addition of an analog offset in order to be able to take full advantage of
the resolution of the digital-to-analog converters. Circuit diagrams can be found in the
appendix, see section D.3.

Compensation of Piezo Nonlinearity Piezoelectric actuators do not display a linear
dependence of the length change on the driving voltage. The hysteresis of the piezos
can be accounted for by a calibration measurement of the position of the higher res-
onator modes. These are spaced by identical frequency intervals. The frequencies of
the transverse modes relative to the (0,0) Gaussian mode are given in table 4.2.

Limitations

One of the major limitations of the scan lock setup is the fact that it operates at very
low detection frequencies. Consider for example the Pound-Drever-Hall method for
laser stabilization: Some of its beauty stems from the fact that the error signal is a
component of the photodiode signal at the modulation frequency, in the MHz range.
This implies that it is largely immune to much of the technical noise whose magnitude
typically scales with the inverse of the frequency. The scan lock operates at 50 Hz,
making it vulnerable to technical noise from photodiodes, high-voltage amplifiers that
drive the piezos and so on. The time measurements of the microcontroller depend on
the reproducibility of the high-voltage ramp for the piezoelectric transducers as well
as on the comparator response that contribute to the technical noise.
The fact that the scan lock resonator is operated in air and not in vacuum induces
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additional noise, which is probably the main contribution to the total jitter in the stabi-
lization.
With respect to absolute frequency accuracy, the scheme relies on a strict correlation
between the time from the beginning of the piezo sweep, piezo voltage, and piezo po-
sition. The amplitude of the piezo response is normalized by taking the time interval
between two reference laser peaks, that is the time interval that corresponds to one free
spectral range, as a reference. The nonlinearity of the piezo response can be accounted
for, but such a procedure is only valid for one particular sweep amplitude and sweep
frequency and should therefore be repeated regularly.

Alternative Schemes

As an alternative to the current implementation of the spectroscopy laser stabilization,
namely the “scan lock” scheme, a scheme based on Pound-Drever-Hall locking the
spectroscopy laser to a reference cavity in a tunable way could be used. The idea is
to modulate sidebands on the carrier that can be tuned in frequency from 0 to some
value above half the free spectral range of the resonator. The laser would then be
locked to these tunable sidebands by additional sidebands that are modulated onto the
tunable sidebands. This would require a broadband RF amplifier and a broadband
EOM and a tunable RF source that could be modulated at a few MHz as required
for the PDH lock. As suggested by Ye [Ye06a], a frequency mixing scheme would
be advantageous: A synthesizer frequency could be added with a voltage controlled
oscillator (VCO) frequency via a double balanced mixer. A bandpass filter can pick
the sum or difference frequency. The synthesizer could be used for the frequency scan,
while the modulation for the PDH lock could be done via the VCO.
Still another approach would be to shift the laser frequency with a double-pass acousto-
optical modulator (AOM) and lock the shifted light to a reference cavity with the PDH
method. Tunability would be achieved by varying the driving frequency of the AOM.
This scheme requires a broadband AOM and the lock to the resonator would probably
suffer from beam pointing issues when tuning the driving frequency of the AOM over a
wide range. Therefore, the frequency mixing sideband scheme suggested above would
probably be the more viable alternative.
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C 5

Optical Molecular Spectroscopy of Feshbach Molecules

5.1 Sample Preparation

A pure sample of trapped ultracold Cs Feshbach molecules is prepared by a series of
laser cooling techniques applied to 133Cs atoms and final association by means of a
magnetic field ramp over a Feshbach resonance. Feshbach resonances are discussed in
section 2.2.3 and the particular properties of weakly bound cesium dimers are exam-
ined in section 3.2.3.

Here a brief overview of the Cs BEC experiment or “LevT” experiment, as we like
to call it for historical reasons, where the spectroscopic measurements are carried out
is given. The name “LevT” or “levitated trap” stems from the fact that this setup relied
on a combination of optical dipole traps and a magnetic field gradient that levitates
the Cs atoms against gravity for the realization of the first Bose-Einstein condensate
of cesium in 2002 [Web03b]. The focus of the experiment has since then shifted from
ultracold atoms to ultracold molecules and few-body physics, as evidenced by the pro-
duction of a pure molecular quantum gas in 2003 [Her03] and the recent experimental
observation of Efimov quantum states [Kra06b].
The Cs BEC machine is described in detail in the doctoral theses by Tino Weber
[Web03a], Jens Herbig [Her05], and Tobias Kraemer [Kra06a] and in the diploma
thesis by Michael Mark [Mar03]. The production of ultracold Feshbach molecules in
our experiment is detailed in references [Her03, Mar05, Kra04, Mar07]. Background
on laser cooling techniques can be found in the classic book by Metcalf and van der
Straten [Met99]. Optical dipole traps are discussed in the review article by Grimm,
Weidemüller and Ovchinnikov [Gri00].

A beam of 133Cs atoms is produced in an oven and then slowed by a Zeeman slower.
A magneto-optical trap (MOT) is loaded for a time of typically 6 s. Subsequently,
the sample is cooled and polarized in the lowest hyperfine state |F = 3,mF = 3〉 by
Raman-sideband cooling. We typically obtain 2 · 107 atoms after this step.

The sample is adiabatically released from the Raman lattice into a large volume
dipole trap. This so-called reservoir trap presently consists of one CO2 laser beam with
a wavelength of 10.6 µm and one Yb high power fiber laser beam with a wavelength
of 1070 nm. The beam waists are 600 µm for the CO2 laser and 700 µm for the Yb
fiber laser. Both lasers can deliver up to 100 W but are normally operated at lower
power. With these parameters, the resulting trapping potential is too shallow to hold
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the atoms against gravity. Therefore we apply a magnetic gradient field ∇B ' 31 G/cm
that couples to the magnetic moment µ of the atoms and exerts a force Fz = −µ∇Bz

on the atoms and levitates them. The resulting effective trap depth is around 7 µK.
After release from the Raman lattice into the reservoir trap, the sample is allowed to
thermalize during a period of plain evaporation that lasts 2 seconds, as shown in panel
A of figure 5.1. We obtain around 4 ·106 atoms at a temperature of T ' 1µK.

A B C D E

Figure 5.1: Evaporation scheme for ultracold molecule production: The figure shows
the current evaporation scheme for ultracold molecule production. A: Plain evaporation in
a crossed dipole “reservoir” trap, consisting of one CO2 laser beam and one 1070 nm Ytter-
bium fiber laser beam. B: Collisional loading of the CO2 dimple beam. C: Forced evaporative
cooling in the dimple beam. D: Final trap configuration. The dimple beam is able to hold
the atoms against gravity without the need for magnetic levitation. The CO2 reservoir beam
assures inclusion in the dimple’s longitudinal direction. Molecule formation by means of a
Feshbach resonance is done in this final trap that is suited to trap molecules as well as atoms.
The laser beams for the dipole traps lie in the horizontal plane, the magnetic bias field is ap-
plied in the vertical direction. E: The spectroscopy laser beam (diagonal) lies in the same plane
as the trapping beams.

In the next stage, the trapping potential is modified by a “dimple” beam [Gri00]
that consists of a more tightly focused CO2 laser beam. The dimple creates a much
stiffer optical trap, as illustrated in panel B of figure 5.1. The phase space density is
increased during dimple loading because the density increases whereas the temperature
stays constant. This is due to thermal contact with the reservoir and depends on elastic
collisions. The 1064 nm beam is then switched off and the final trap consists of the
crossed CO2 dimple and CO2 reservoir beams. In this crossed CO2 trap we typically
measure 1 ·106 atoms at a temperature of T ' 1µK.

In the next step forced evaporative cooling is implemented as shown in panel C.
The power of the CO2 dimple is first slightly lowered within 2 seconds yielding a trap
depth of ∼ 8 µK. Then the magnetic field gradient is turned off in an exponential
way during 4.2 seconds leading to one-dimensional evaporative cooling of the atomic
sample. The magnetic bias field and therefore the scattering properties of the atoms are
set to appropriate values for each step of the experiment to optimize the evaporation
efficiency. Finally, we obtain ∼ 5 · 105 atoms at a temperature of T ' 250 nK.

Note that this trap setup consisting of the CO2 dimple and the CO2 reservoir beam,
see panel D in figure 5.1, is suited to trap molecules as well as atoms. Turning off
the 1070 nm light has the distinct advantage that radiative molecule losses caused by
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the broadband 1070 nm light can be avoided. The 1070 nm laser can drive molecular
optical transitions whereas the CO2 lasers cannot. In fact, we find that the high-power
1070 nm laser we are using is not suited to trap molecules because it inevitably drives
molecular transitions due to its broad spectral profile of ∼ 2 nm width. We observe
rapid molecular loss when illuminating the sample with this laser, as discussed in
more detail on page 107. As an alternative to the CO2 traps we are currently using,
trapping of molecules would be possible with a narrow-band single frequency laser
in combination with a fiber amplifier. The absence of a magnetic field gradient for
levitation enables a much more precise control of the magnetic field and therefore
of the molecular properties. For molecule production, we use one of the Feshbach
resonances indicated in figure 3.7, namely the 19.8 G, the 47.9 G or 53.4 G Feshbach
resonances. After association by adiabatically ramping over the resonance position,
we ramp the magnetic field to a value that corresponds to a molecular binding energy
of roughly 5 MHz. Since the molecules would rapidly be lost due to atom-dimer
collisions, it is imperative to clean the molecular sample from the atoms remaining
after the association step. This is done with a “blast” beam resonant with an atomic
transition, similar to reference [Xu03]. The blast light is the same as the imaging
light described in the next section. The molecular binding energy of 5 MHz during
this procedure assures that molecular losses due to the blast light can be kept small.
However, the the blast procedure increases the temperature of the molecular sample to
T ' 400 nK.

As detailed in a recent paper [Mar07], we use the 19.8 G resonance to populate the
4g(4) state, where the labeling is according to the quantum numbers f `(m f ), as shown
in figure 3.7. The 48 G resonance is due to an avoided crossing of a 4d state and
a 6s state right below threshold with the upper branch of the crossing intersecting the
threshold (see inset in figure 3.7). Therefore, when we use this Feshbach resonance for
molecule formation, we initially populate the 6s state. The 53 G Feshbach resonance
is associated with a 2g state.

By adiabatically following avoided crossings between different molecular states or
nonadiabatically jumping the crossings, we have populated any given weakly bound
molecular state up to l-wave states (binding energies up to 10 MHz below the (F =
3,mF = 3)x(F = 3,mF = 3) scattering threshold) in the region of low magnetic fields
(up to 50 G) [Mar07].

When the Feshbach molecules reside in the final crossed CO2 trap, they are ex-
posed to the spectroscopy light, see panel E of figure 5.1. Both the spectroscopy laser
beam and the dipole trap beams lie in the horizontal plane. The magnetic bias field is
in the vertical direction. The spectroscopy light is switched on for a given amount of
time while the molecules reside in the final trap. One cycle of the experiment takes on
the order of 30 seconds. On the one hand, this cyclic experimental procedure bears the
great advantage that also weak absorption lines can be detected by increasing the time
the spectroscopy light interacts with the molecular sample, which is only limited by
the collisional lifetime of the sample. On the other hand, the discontinuous character
of the spectroscopy severely limits the frequency range that is practicable to scan. De-
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tection of the molecules remaining in the original Feshbach state after interaction with
the spectroscopy light is by dissociation of the molecules at the respective Feshbach
resonance and standard absorption imaging, as detailed in section 5.2.2.

5.2 Integration of the Spectroscopy Setup into the
LevT Experiment

5.2.1 Coupling the Spectroscopy Beam into the Experiment

The spectroscopy light reaches the optical table of the Cs-BEC experiment through a
polarization-maintaining single-mode optical fiber (PM1550HP, Nufern). Figure 5.2
shows part of the LevT experiment with the optics for the spectroscopy beam in the
foreground. The beam is collimated (C220TM-C, Thorlabs, f=11 mm, beam waist
1.04 mm), passes a mechanical shutter and a λ/2 waveplate and is then expanded by
a telescope (f=-30 mm and f=300 mm), again yielding a collimated beam. A 2” gold
mirror mounted on a piezo driven mirror holder allows for fine adjustment. The beam
is then focused by a f=400 mm lens which creates a focus of waist w0 = 21.3±0.5 µm
at a distance of 412.5 mm from the f=400 mm lens at a wavelength of 1550 nm. At
1510 nm, the focus is at 411 mm with a waist of 20.3 ± 0.6 µm, at 1580 nm the focus
is at 413 mm with a waist of 22±0.4 µm. The Rayleigh range is on the order of 1 mm.

The power after the optical fiber is 16 mW at 1550 nm when the spectroscopy
laser is operated at full power. Transmission through the vacuum chamber viewport is
∼ 85%. Together with losses from two silver mirrors, one gold mirror and the lenses, a
maximum power of ∼ 12 mW can be delivered to the molecules. During experiments,
the laser is not operated at full power in order to assure single mode operation and a
small fraction of the light is used for the stabilization scheme, decreasing the power
delivered to the molecules to 9 – 10 mW, depending on the power and wavelength
settings of the laser.

Alignment with Near Resonant Light

The spectroscopy beam was first aligned geometrically relative to the position of the
laser beams used for Raman sideband cooling.
In a second step, light of the 852 nm reference laser that runs -160 MHz red detuned
from the F = 4→ F′ = 5 hyperfine transition of the Cs D2-line was used to further op-
timize beam pointing by monitoring the atom number in the dimple trap and optimizing
for maximum loss from the trap induced by the near resonant light. Even though beam
pointing is not perfectly identical for the reference light and the spectroscopy light
due to dispersion effects, the spectroscopy beam is enclosed by the reference beam
(∼ 200 µm waist) at the position of the molecules. Therefore, this adjustment gives a
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Figure 5.2: LevT experiment with spectroscopy beam: Part of the experimental setup of
the LevT experiment is shown. The main vacuum chamber is in the center and can hardly be
discerned. On the right hand side, elevated above the optical table, the Cs oven can be seen.
Below are the two CO2-lasers. The little elevated platform in the foreground supports the optics
for the spectroscopy beam. Left of it there is the CCD camera used to image the atomic cloud.

very good starting point for the last step of adjustment, namely for the implementation
of an optical dipole trap with the spectroscopy light.

Optical Dipole Trap with Spectroscopy Light

In order to see a direct effect of the spectroscopy laser beam on the atomic and molec-
ular Cs clouds, an optical dipole trap was implemented using the spectroscopy light.
In an optical dipole trap for neutral atoms or molecules, the laser light induces a di-

pole moment in the particle that in turn interacts with the laser light. For a detailed
discussion, see the review article by Grimm et al. [Gri00]. For large detuning from the
atomic resonance frequency ω0, the interaction potential Udip(~r) between the induced
dipole moment of an atom modeled as a two-level system and the light field can be
written as

Udip(~r) = −
3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(~r), (5.1)

where Γ is the natural linewidth of the atomic transition and I(~r) is the intensity distri-
bution of the laser light.
A discussion related to the 1064 nm traps and CO2 traps that we use for cesium in our
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Figure 5.3: Optical dipole trap with spectroscopy laser: The image on the left shows a
time-of-flight picture of an atomic cloud after release from the CO2 dimple beam with the
spectroscopy laser switched off. The CO2 reservoir beam is greatly reduced in intensity to
provide only very weak inclusion along the axis of the dimple beam. The picture on the right
is taken with the spectroscopy laser turned on while the sample resides in the dimple beam.
It shows an additional feature on the right hand side of the cloud induced by the spectroscopy
light, as indicated by the dashed circle. The two images correspond to the same region of
interest. They are viewed at the same magnification. The arrows indicate the position of the
focus of the CO2 dimple beam. During experiments the additional CO2 reservoir beam that
provides inclusion along the axis of the dimple beam shifts the cloud to the position of the
dashed circle. The total number of atoms in the dimple is increased when the spectroscopy
light is switched on as evidenced by the more prominent central feature in the right panel
(arrows). This is due to better longitudinal inclusion of the atomic cloud.

experiment can be found in reference [Mar03]. Taking into account both the D1- and
the D2-line of cesium, the dipole potential can be calculated from

Udip(~r) = −πc2
[
Γ1

2ω3
1

(
1

ω1 − ω
+

1
ω1 + ω

)
+
Γ2

ω3
2

(
1

ω2 − ω
+

1
ω2 + ω

)]
· I(~r), (5.2)

where the indices 1 and 2 pertain to the Cs D1- and D2-lines, respectively. Note that
the D1-line and D2-line have been weighted by a factor of 1/3 and 2/3, respectively,
when comparing with the two-level model, in order to account for the different line
strengths. The line widths are Γ1 = 2π · 4.56 MHz and Γ2 = 2π · 5.22 MHz, the atomic
transition frequencies are ω1 = 2π · 335.116 ∗ 1012 Hz and ω2 = 2π · 351.7257 ∗ 1012

Hz.
It is convenient to express the potential depth as a temperature by rescaling with the
inverse of the Boltzmann constant kB. With these parameters and a laser power of 10
mW, a beam waist of 22 µm at the focus and a wavelength of 1510 nm, one obtains a
trap depth of 1.7 µK, which should be observable experimentally for a sample that has
a temperature of 200 – 250 nK.
We prepared a sample in the final trap of the LevT experiment that consists of the CO2-
dimple beam and the large CO2- reservoir beam that provides inclusion along the axis
of the dimple beam. We then lowered the intensity of the reservoir beam in order to
make the trap very shallow along the axis of the dimple beam. The spectroscopy laser
light was used to provide inclusion of the atomic or molecular cloud along the axis
of the dimple beam. This could be observed as a slight shift of the samples position
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in comparison to the dimple beam alone. The position of the cloud with the spec-
troscopy light trap corresponds to the position of the trap used in the spectroscopic
experiments consisting of the CO2 dimple and the CO2 reservoir beam. In addition,
an increase in particle number can be observed. Figure 5.3 shows this change in the
shape of the cloud with and without the spectroscopy light, which we take as evidence
for hitting the sample with the spectroscopy light. This procedure was done both for
the atomic sample and for the molecular sample after Feshbach association, yielding
largely identical patterns.

5.2.2 Detection of the Spectroscopy Signal
For detection, the molecular sample is dissociated by ramping the magnetic field 1
to 2 G above the respective Feshbach resonance. Then the resulting atomic cloud is
imaged by standard absorption imaging. The imaging light is resonant with the F =
4,mF = 4 → F′ = 5,mF′ = 5 atomic transition and preceded by a repumping beam.
The frequency of the imaging light is adjusted to the magnetic field at which imaging
takes place to account for the differential Zeeman shift of the transition. Temperature
measurements are done by fitting the size of the atomic cloud in a time-of-flight series.

When the spectroscopy laser coincides with a molecular transition, molecules in
the first electronically excited state are produced. If these decay to the continuum
of two free atoms and yield two hot atoms, they are immediately lost from the trap
because the dipole trap is too shallow to trap them. On the other hand, the excited mo-
lecules can decay to ground state molecules that are more deeply bound than the orig-
inal Feshbach molecules due to good Franck-Condon overlap with lower lying states.
When the Feshbach molecules are dissociated by a magnetic field ramp across the re-
spective Feshbach resonance and imaged by absorption imaging, these more deeply
bound molecules are not going to be dissociated to free atoms and remain invisible
to our imaging laser. Therefore, both mechanisms, trap loss and production of more
deeply bound molecules, lead to a decrease in the absorption imaging signal. With
each experimental run, the molecules are prepared in the same way and the spec-
troscopy light is switched on for a given constant time. A stable baseline molecule
count of approximately 20.000 molecules was obtained.

5.3 Spectroscopic Measurements
Ultracold molecules were prepared according to the procedure described above. As
detailed in section 4.2.3, a stabilization scheme was developed that allows for control
of the spectroscopy laser frequency with sub-MHz precision. Since it is not practical
to search for a molecular transition at such high resolution, we resorted to a coarse
searching procedure as discussed in section 4.1.4. We “locked” the spectroscopy laser
to the output of a wavemeter. During each individual experimental cycle, the laser
wavelength was swept over a certain range. The sweep was triggered when the spec-
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troscopy light was switched on. The sweep duration was equal to the duration of the
spectroscopy pulse. Typical values for the step size in laser frequency from one run of
the experiment to the next were 500 MHz with a sweep amplitude of 700 MHz to allow
for some overlap between the individual data points. We chose a duration of 500 msec
for the spectroscopy pulse. This is a tradeoff between the longest possible observation
times in order to increase the contrast for very weak molecular lines on the one side
and limited molecular lifetime due to inelastic collisions on the other side. We would
be able to increase molecular lifetime by decreasing trap frequencies and consequently
molecular density.

For the spectroscopic experiments performed thus far we have chosen 4g(4) mo-
lecules produced at the 19.8 G Feshbach resonance, see figure 3.7. At the moment,
detailed calculations of the singlet and triplet component of different Feshbach molec-
ular states at different magnetic fields are under way in Innsbruck, where Peter van der
Straten has been using the NIST code provided by Paul Julienne. Olivier Dulieu, Nadia
Bouloufa and Anne Crubellier are currently setting up ground state hyperfine calcu-
lations to obtain accurate ground state wave functions that can be used to calculate
Franck-Condon Factors with the excited state.

5.3.1 Expected Transition Rates
It is important to have an orientation about what photon scatter rates can be expected
for a given transition. A basic introduction to optical transitions is given in section
3.3. As discussed in chapter 2.4 of reference [Met99], the photon scatter rate γp of a
two-level system can be calculated from

γp =
s0γ/2

1 + s0 + (2δ/γ)2 , (5.3)

where s0 is the on-resonance saturation parameter

s0 =
2|Ω|2

γ2 =
I
Is
. (5.4)

Here, γ is the decay rate of the excited state population, δ is the laser detuning from
the resonance frequency and Ω is the Rabi frequency. Is is the saturation intensity for
the transition and depends on the dipole matrix element between the upper and the
lower state. For Cs atoms, the saturation intensity Iat

s = 1.09 mW/cm2 and the excited
state decay rate is γat = 2π · 5.2 MHz. Optical transition rates of molecules depend
on the electronic matrix element as well as on the FC factor. One can assume in first
approximation that the electronic part of the dipole matrix element and the linewidth
of the molecular excited state are similar to the values known for atoms. If we take the
width of the excited molecular level γmol to be twice the width of the atomic excited
state γat, use the atomic saturation intensity Iat

s and take the Franck-Condon factors
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(FC) for the vibrational wave function overlap into account, we reach the following
relation for the Rabi frequency of an optical transition

|Ωmol| ≈ γat

√
I

Iat
s
· FC (5.5)

The photon scatter rate from the initial state for Rabi frequencies much smaller than
the excited state linewidth is

γmol
p ≈

|Ωmol|2

γmol ≈
1
2
γat ·

I
Iat

s
· FC. (5.6)

Nadia Bouloufa and Olivier Dulieu from Orsay have calculated Franck-Condon
factors for transitions between weakly bound ground state levels and vibrational levels
in the coupled 0+u (P1/2) and 0+u (P3/2) excited state potentials. They have been using pure
X1Σ+g singlet ground state potentials without taking the hyperfine interaction, i.e. the
coupling between the singlet and triplet ground states into account. More accurate cal-
culations for the ground state using wave functions that take the ground state hyperfine
interaction into account are under way, see also section 6.1.1. For the electronically
excited state, wave functions were calculated from ab initio relativistic potentials that
take spin-orbit coupling into account, see figure 3.3. As stated above, potentials with
0+u symmetry were chosen. Since these potentials are not adjusted to the spectroscopic
knowledge gained by Vergès and Amiot [Ver87] they can reliably predict “typical”
wave functions but cannot give accurate estimates for transition wavelengths. In the
wavelength region from 1510 nm - 1520 nm they obtain FC factors on the order of
10−12 taking the last bound vibrational level (v = 155) of the singlet ground state.

Assuming that P = 10 mW of spectroscopy laser power are delivered to the atoms
with a beam waist w0 of 22 µm, we obtain a peak intensity of I0 =

2P
w2

0π
= 1.3 kW/cm2.

Taking typical values for the atomic excited state decay rate γat = 2π·5.2 MHz and for
the atomic saturation intensity Iat

s = 1 mW/cm2, one obtains a photon scatter rate of
γp = 20/second which corresponds to a molecule lifetime of 1/γp=50 ms and a Rabi
frequency of Ωmol ≈ 2π · 6 kHz.

In addition, it has to be taken into account that the g/u symmetry allows for tran-
sitions to the 0+u excited state potentials only from ground states with g symmetry.
Feshbach molecules have mixed g/u character due to hyperfine mixing of the X1Σ+g
state and the a3Σ+u state. If we equate the magnitude of the g component in the Fesh-
bach molecule’s wave function with the magnitude of the X1Σ+g contribution, we can
adjust the expected transition rates. The magnitude of the singlet component varies
depending on the state and magnetic field. Using the NIST code for the structure of
Cs Feshbach molecules provided by courtesy of Paul Julienne, Peter van der Straten
estimated the singlet component of different Feshbach states by calculating the expec-
tation value for the spin operator. A value of 1 corresponds to a pure triplet state and

105



5 Optical Molecular Spectroscopy of Feshbach Molecules

a value of 0 corresponds to a pure singlet state. Typical values were on the order of
20% singlet component in terms of probability, which reduces the photon scatter rate
to 4/s. This does not take into account the R-dependence of the singlet/triplet mixing
in the ground state. It is mainly the singlet component at the inner turning point of
the ground state potential that is important for the transition, because there the turning
points of the excited and the ground state potentials nearly coincide, as required by
the Franck-Condon principle, see section 3.3.1. Due to the much weaker slope of the
potential at long range, the probability distribution has a much greater magnitude at
large internuclear separation. As the interatomic “spring” is very soft at large sepa-
rations, the atoms spend most of their time at large internuclear distance. The outer
turning points of the ground and excited state potentials are situated at widely different
interatomic separation R due to the long-range nature of the Feshbach molecules and
the tight binding of the excited state levels addressed with a 1.55 µm laser.

Franck-Condon factors increase by one order of magnitude when going to states
that are bound by a value comparable to the atomic hyperfine splitting [Bou06], e.g.
the singlet vibrational level v = 151, bringing up the photon scatter rate to 40/s. The 6s
state that arises from coupling between the 33(6,−1) and the 44(6,−7) states described
in section 3.2.3 for example can be viewed to be bound by twice the atomic hyperfine
splitting with respect to the (4, 4)x(4, 4) atomic scattering threshold at magnetic fields
below 15 G. There it mainly consists of the 44(6,−7) state, justifying the assumption
of such increased FC factors. The singlet component at the inner turning point of the
potential is a factor of 3 larger for this state at a magnetic field of 15 G as compared
to 20 G [Str07], where it has predominantly 33(6,−1) character. Similar calculations
have been performed for the s, d and g wave Feshbach states (see figure 3.7) that lie
within the range of accessible magnetic fields for our experiment. Individual states
differ by a factor of 10 with respect to the magnitude of the singlet probability distri-
bution near the inner turning point of the potential. This indicates that the choice of
initial state and magnetic field can influence the transition probabilities considerably,
see figures 5.4 and 5.5.

In the coarse search for molecular resonances, we scanned the laser over a range
of 700 MHz during each experimental run. The scanning technique leads to a reduc-
tion of the effective spectral intensity. If we again assume the linewidth of molecular
transitions to be twice the atomic transition linewidth, such a scanning reduces the ef-
fective intensity by a factor of almost ∼10−2, leaving us with a photon scatter rate on
the order of 1/s. We use trapped molecules and therefore the interaction time between
the light field and a given molecule is only limited by the lifetime of the molecules,
allowing very long interaction times of 500 msec. This is in contrast to the short in-
teraction times for molecular beam experiments. Thus, even though the photon scatter
rates are extremely low, one could hope to see an effect of the spectroscopy light due to
the long interaction times. These calculations only give a rough estimate of transition
rates and constitute a crude approximation but they clearly show the difficulty driving
these transitions.
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Figure 5.4: Ground state 6s wave functions: The absolute square of the singlet and triplet
component of the Feshbach molecules’ wave function is shown. The figure illustrates how the
choice of magnetic bias field can influence the magnitude of the singlet and triplet components
near the inner turning points of the potentials which is the region that is most relevant for
optical transitions in the 1.55 µm wavelength region. The inset shows an enlarged view of the
singlet component in the region of small nuclear separation. For transitions to the excited 0+u
states, only the singlet component is relevant. It can be clearly seen that the singlet component
near the inner turning point is much larger at a magnetic field of 15 G than at 20 G. Details are
given in the text. Binding energy is with respect to the (3,3)x(3,3) scattering threshold. Figure
courtesy of Peter van der Straten.

We illuminated a molecular sample trapped in the crossed CO2-trap with a 1070
nm Ytterbium fiber lasers and a single-frequency Nd:YAG-laser to find out whether we
could use these lasers to trap molecules. With the narrow linewidth, single-frequency
Mephisto laser, we did not observe a reduced lifetime of the molecular sample. In
contrast, when we used the very broadband Yb fiber laser at an intensity of 10W/cm2,
we observed rapid molecular loss decreasing the lifetime of the molecular sample from
5 seconds to 200 msec, indicating that we were driving optical transitions with the
broadband 1070 nm laser light.

This observation led us to change the trap setup from our previous crossed dipole
trap [Her03, Mar03] that involved a combination of CO2-laser light and broadband
1070 nm light to the current setup described in section 5.1. In our current trap setup,
the final trap consists of two crossed CO2-laser beams that do not drive any molecular
transitions and are therefore well suited to trap molecules as well as atoms.

It is instructive to compare the parameters for the current spectroscopy laser setup
with the observations involving the broadband 1070 nm light. The spectral width
γ1070nm of the 1070 nm laser is approximately 2 nm, corresponding to 520 GHz. There-
fore, assuming a smooth spectrum of the laser, the intensity available for driving a
transition with a witdth γ of a few MHz is the total laser intensity Itot scaled by a factor
of γ

γ1070nm
which is on the order of 10−5. The Franck-Condon factors between highly

excited singlet ground state wave functions and vibrational levels of the 0+u potentials
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133Cs 4d-res at B = 40 Gauss and  E=-12.092970 MHz
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Figure 5.5: Ground state 4d wave functions: Similar to figure 5.4, squared singlet and triplet
wave functions are shown for the 4d Feshbach state that causes the Feshbach resonance at 48
G. This illustrates that the particular choice of Feshbach state also influences the magnitude of
the singlet contribution near the inner turning point. Figure courtesy of Peter van der Straten.

in the range accessible to the 1070 nm laser are on the order of 10−5 to 10−4, again con-
sidering a pure singlet vibrational level (v=151) in the ground state bound by the same
value as above [Bou06]. With these parameters, taking a FC factor of 10−5, equation
5.6 yields a photon scatter rate γp,1070nm=30/s for the 1070 nm laser. Rescaling this
again for the singlet component of the ground state wave function, we obtain a value
on the order of 6/s just as before with the 1.55 µm spectroscopy laser. We observed a
molecular lifetime of 200 msec. Assuming that every molecule that absorbs a photon
is lost from the trap, this is consistent with the calculated photon scatter rate given the
large uncertainty of such a simplistic estimation.

These results should be interpreted with care, however. First, we do not know the
spectral profile of our 1070 nm laser. It is conceivable that on the scale of the width of
the molecular resonances, the spectral intensity shows great variations and the simple
ratio between the spectral width of the molecular resonance and the spectral width of
the laser underestimates the spectral intensity driving the molecular transition at 1070
nm. We plan to use an optical spectrum analyzer to investigate the spectral properties
of the 1070 nm laser. Second, this comparison assumes that only transitions involving
the 0+u potentials are involved. Looking at figure 3.3, one can see that the 1070 nm laser
reaches the excited state manifold in a region where further potentials become available
in addition to the potentials reached by the 1.55 µm laser. They can be accessed from
the lowest lying triplet state a3Σ+u that contributes the main component to the wave
function of our Feshbach molecules. These are the 1g(P1/2), the 0+g (P1/2) and the
0−g (P1/2) potentials. The 1u(P1/2) potential can be reached from the singlet ground
electronic state. We do not know the Franck-Condon factors for these potentials and
therefore the above estimate could be misleading. If the FC factors for these potentials
were much larger than for the 0+u potentials we would be erroneously led to believe
that we would be able to drive transitions with the 1.55 µm laser. In addition, the
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1070 nm laser is spectrally broad enough to drive several molecular transitions at the
same time. Their rates would then add up, again leading us to believe that we would
be able to drive the transitions. The spacing between individual 0+u vibrational levels
is ∼ 1 − 2 nm in the region addressed by the 1070 nm laser, while the laser’s spectral
width is 2 nm. The laser could also drive transitions to potentials of different symmetry
simultaneously.

With the caution warranted by these considerations, the extremely small Franck-
Condon factors for transitions driven by the 1550 nm laser appear to be compensated
for by its higher spectral intensity if one only contemplates transitions involving the 0+u
potentials. From this comparison it should be possible to drive molecular transitions
with the 1.55 µm spectroscopy laser similarly to the 1070 nm laser.

5.3.2 Preliminary Results
We identified a series of wavelengths that were associated with a decrease of the
molecule count by more than 2 standard deviations from the mean of the previous 25
experimental cycles in the region from 1510 nm to 1522 nm. The laser was “locked”
to the wavelength meter during this coarse searching procedure. According to theo-
retical calculations of the bound levels in the two Cs2 0+u potentials, this range covers
more than the expected spacing between two consecutive vibrational levels [Bou06] in
this region which is up to 7 nm. These “candidate frequencies” represent the starting
point for fine scanning by means of the stabilization scheme discussed in section 4.2.3.
Most of these lines will turn out to reflect instability of the molecule count due to tech-
nical variations of the Cs-BEC experiment not associated with molecular loss due to
the spectroscopy laser. Some of these “candidate lines” have been checked with the
scan lock stabilization scheme demonstrating that the locking scheme can be operative
over several hours in an automated way. A thorough remeasurement of the individual
candidate lines with the scan lock stabilization scheme is needed in order to make a
statement about whether we can drive molecular transitions with the current setup.
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Outlook

Future efforts concerning the optical spectroscopy project fall into two broad cate-
gories. Those dedicated to the optical spectroscopy of the Cs2 Feshbach molecules
per se, as outlined in section 6.1, and those dedicated to the production of ultracold
molecules in their rovibrational ground state, discussed in section 6.2.

6.1 Optical Spectroscopy
The most immediate task is clearly the thorough evaluation of the “candidate frequen-
cies” identified with the coarse searching procedure, as discussed in section 5.3.2.
This evaluation will comprise remeasurement of the respective wavelength regions by
means of the stabilization scheme described in section 4.2. This will clarify whether
we can drive optical transitions of the Feshbach molecules in the 1.55 µm region with
the current setup. We hope to get further guidance on expected transition wavelengths
from theoretical calculations since the potential curves used for the computation of vi-
brational state energies are currently being adjusted to experimental data from classical
spectroscopic experiments [Dul06]. In parallel, on the theoretical side, it is imperative
to model the expected transition rates more accurately. On the experimental side, the
current setup can be improved in two ways. First, an increase of the spectroscopy
laser power can warrant higher transition rates. Second, the addition of a reference
spectroscopy setup will increase the absolute wavelength accuracy of the setup.

6.1.1 Transition Rates
Theory

The FC factors for optical transitions to the 0+u electronically excited potentials avail-
able so far are calculated with the wave functions of the last few bound vibrational lev-
els of the pure X1Σ+g singlet ground state potential. The potentials reached with the 1.55
µm spectroscopy laser all have u symmetry and can therefore only be reached from the
singlet ground state. These calculations have been carried out by Nadia Bouloufa and
Olivier Dulieu from Orsay. The wave functions of the Feshbach molecules have mixed
singlet/triplet character. Hyperfine coupling between the two potentials could modify
the wave functions of the Feshbach molecules considerably. According to the Franck-
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Condon principle (see section 3.3.1), optical transitions are expected to take place near
the inner turning points of the potentials, because these are well aligned. The wave
function of the Feshbach molecules is peaked at very large nuclear distance but the
magnitude of the singlet component of the wave function near the inner turning point
is crucial for the transition probability. We have got two handles on the ground state
wave function: the choice of initial Feshbach state (see section 3.2.3) and the magnetic
bias field, i.e the binding energy (see figure 3.7). We have been using the NIST code
for the structure of Cs Feshbach molecules in order to estimate the singlet and triplet
components of the wave functions for different states and different magnetic fields.
Figures 5.4 and 5.5 show a comparison of the wave functions of different Feshbach
states and illustrate the effect of different magnetic fields. We will use such calcu-
lated ground state wave functions to optimize the overlap with the excited state wave
functions (the FC factors) and the ground state singlet component by appropriately
choosing the Feshbach state and magnetic field. This will also yield a better estimate
of the transition rates.

The Orsay group, namely Olivier Dulieu, Nadia Bouloufa and Anne Crubellier,
have been setting up ground state calculations including hyperfine structure in order
to get a comprehensive model for the Feshbach molecules and in order to be able to
calculate correct rates for the whole excitation process. Their results will guide the fu-
ture experimental strategy. Thus far, they have calculated ground state wave functions
at zero magnetic fields for levels that are somewhat more tightly bound than our Fesh-
bach molecules. Figure 6.1 shows examples of a wave function that has predominantly
singlet character and of a wave function with greater triplet component.

Experiment

There are two options in order to increase the transition rates in the spectroscopy ex-
periment. The first option is to increase the power of the spectroscopy laser by means
of a fiber amplifier, the second option is to choose a smaller detuning from the excited
state asymptote. The photon scatter rate scales linearly with laser power as can be
seen from equation 5.6. With the present parameters, the saturation parameter s0 is
on the order of 10−6, see section 5.3.1. It is realistic to increase the laser power from
the current 10 mW to 1-10 W, resulting in a saturation parameter of ∼ 10−4 − 10−3.
Therefore, photon scatter rates could be increased considerably, but the saturation pa-
rameter will inevitably stay much smaller than one. Simply scaling up the photon
scatter rate obtained in section 5.3.1 by a factor of e.g. 100 assuming that 1 W of
laser power is delivered to the molecules would yield a rate of 104/s on resonance and
∼100/s for the case of the scanning procedure. There is a tradeoff however, because
the Erbium-doped-fiber amplifiers used in this wavelength region start to operate only
at wavelengths of 1520 nm and above and have their peak gain in the 1530 nm - 1570
nm region. FC factors are higher for the shortest wavelengths we can achieve with
our laser, around 1510 nm. As mentioned in section 5.3.1, Feshbach molecules that
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Figure 6.1: Ground state wave functions: Two different ground state wave functions calcu-
lated by the Orsay group are shown. They will be used to calculate FC factors with excited
state 0+u vibrational levels. The insets show an enlarged view of the region near the inner turn-
ing points of the potentials. The inner turning point of the X1Σ+g potential is located at smaller
internuclear separation R than the turning point of the triplet a3Σ+u potential. This causes the
double structure of the wave function at small R. It can be seen that the singlet component
reaches in to internuclear distances of ∼ 6.5a0. It is larger in the left panel. Binding energies
are 2.67 cm−1 and 2.73 cm−1 for the left and right panel, respectively. The present calculations
do not include the magnetic field. Figure courtesy of Olivier Dulieu.

have predominantly contributions from the (F = 4,mF = 4)x(F = 4,mF = 4) channel
can be viewed in first approximation to be bound by roughly twice the ground state
atomic hyperfine splitting. The binding energy of the X1Σ+g (v = 150) level is 17 GHz
and would correspond to such a state. FC factors for the v=155 (v=150) ground state
singlet level and a 0+u level at 1511 nm are 1.5 · 10−12 (6.6 · 10−11), whereas at 1525 nm
they are 2 · 10−13 (1 · 10−11) and at 1532 nm, they are 8 · 10−14 (3.8 · 10−12) [Bou06],
which corresponds to a decrease by a factor of 8 and 20 in scattering rate, respectively.
This diminishes the benefit from using an amplifier. Assuming a spectroscopy laser
power of 5 W at the location of the molecules, the increase of scattering rate afforded
by an amplifier would be a factor of 25-50. FC factors decrease rapidly with increasing
wavelength so the lower cutoff in the amplifier gain is crucial and for commercial am-
plifiers often lies above the 1520 nm - 1530 nm assumed here, completely canceling
the benefit from using an amplifier.

Franck-Condon factors increase dramatically when going to shorter wavelengths,
i.e. smaller detunings from the excited state potential asymptotes. Again with calcu-
lations based on pure singlet wave functions for the ground state and 0+u potentials in
the excited state, FC factors increase to 5·10−9 for the v=155 ground state level and
2·10−7 for v=150 in the spectroscopy wavelength region around 1.4 µm. Representa-
tive values for FC factors are given in table 6.1. Figure 6.2 gives an overview of the
FC factors between the last bound vibrational level in the X1Σ+g state (v = 155) and 0+u
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excited state levels as a function of the spectroscopy laser wavelength. Also given is
the FC overlap between the respective excited state level and the rovibrational ground
state level of the X1Σ+g state which is relevant for transfer to the absolute ground state
as discussed below.

Wavelength v = 155 v = 150 v = 0
1.5 µm 8 · 10−12 4 · 10−10 1 · 10−3

1.4 µm 4.6 · 10−9 2 · 10−7 1 · 10−4

1.3 µm 4 · 10−9 1.6 · 10−7 9 · 10−9

1.2 µm 2 · 10−6 8.6 · 10−5 2 · 10−15

Table 6.1: Franck Condon factors for 0+u levels: Representative values for FC factors based
on unperturbed X1Σ+g states and ab initio calculations for the 0+u vibrational wave functions.
Excited levels are indicated by the approximate wavelength required for a transition from the
6s+6s asymptote, which corresponds approximately to the energy of the Feshbach molecules.
FC factors for X1Σ+g levels with vibrational quantum numbers v = 155, v = 150 and v = 0 are
given. The FC factors given are for particular excited state levels that lie within a few nanome-
ters of the indicated wavelength. FC factors for the v = 0 state are relevant for the transition
to the vibrational ground state as discussed below. Calculations done by our collaborators in
Orsay [Bou06].

Between 1.4 µm and 1.3 µm they show a plateau and then increase rapidly at still
shorter wavelengths. The useful range of wavelengths for the spectroscopy is given by
the overlap of the intermediate state with the vibrational ground state of the X1Σ+g state
given in the last column of table 6.1. It is largest for deeply bound excited state levels,
i.e. long pump wavelengths. Already at 1.3 µm, this overlap becomes small. Going
to wavelengths around 1.4 µm where FC factors for both the pump and the Stokes
transition are acceptable is hampered by the rather poor availability of lasers for the
wavelength region between 1.1 µm and 1.5 µm.

6.1.2 Reference Spectroscopy

Currently, the absolute wavelength accuracy of the 1.55 µm spectroscopy rests on the
accuracy of the wavemeter, see section 4.1.3. The reproducibility of spectroscopy
frequencies is set by the stabilization scheme (section 4.2). The wavemeter measure-
ments agree with the measurements of a commercial wavemeter within the commercial
wavemeter’s stated absolute frequency accuracy of 500 MHz.

The most convenient way to calibrate the setup more accurately would be by
means of a reference spectroscopy. Alternatively, one could frequency-double the
spectroscopy light and perform iodine spectroscopy with the frequency doubled light.
The most established reference method in the 1.55 µm region involves acetylene (H-
C≡C-H, C2H2) spectroscopy. In the wavelength region from 1510-1540 nm, 12C2H2

has more than 50 strong absorption lines. Hydrogen cyanide (HCN) covers the region
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Figure 6.2: Franck Condon factors as a function of pump laser wavelength: The squared
overlap between the X1Σ+g v = 155 vibrational wave function and 0+u excited state vibrational
wave functions as a function of spectroscopy or pump laser wavelength is labeled FC with v
= 155. The squared overlap between a level reached by the spectroscopy laser and the rovi-
brational ground state of the X state is labeled FC with v = 0. Also indicated is the product of
these two FC factors. Data provided by Nadia Bouloufa and Olivier Dulieu [Bou06].

from 1530-1565 nm. The isotopic variant 13C2H2 covers the range 1520 nm - 1550 nm.
The tuning range of our laser is 1510 nm-1580 nm. The region from 1510 nm -1540
nm is most important for us because there the Franck-Condon factors for transitions
from Feshbach states to the first electronically excited states in Cs2 are higher than in
the longer wavelength region. Therefore, 12C2H2 would be a good choice. The sim-
plest setup involves absorption spectroscopy with a 50 Torr (1 Torr =̂ 133.3 Pa) stan-
dard acetylene reference cell. These cells are widely available because they are used
for calibration purposes in the telecommunications industry. The main limitations for
the accuracy of such simple absorption spectroscopy are the pressure-dependent col-
lisional line shifts and pressure broadening as well as the Doppler broadening of the
resonances, yielding a width of 450 MHz. Pressure-induced shifts have been measured
[Swa00] and stated reference wavelengths have been adjusted, yielding an absolute
wavelength accuracy specified to 0.1 pm - 1pm [Gil01]. One pm is equivalent to a
frequency of 130 MHz at a wavelength of 1520 nm. The accuracy limit for a simple
transmission apparatus is 0.01 pm.

If higher accuracy is required, a more sophisticated setup has to be implemented.
Much narrower spectroscopy features can be obtained with Doppler-free spectroscopy.
Pressure shifts can be avoided by using very low acetylene pressure, e.g. 4 Pa (0.03
Torr). Saturation features can be produced with a width of 2 MHz and selected tran-
sition frequencies have been measured to an uncertainty of 2 kHz [Edw04, Mad06].
Most groups interested in high accuracy frequency standards in this region have used
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a build-up cavity [Lab94] to reach the rather high saturation intensities. The absorp-
tion cell is placed within an optical resonator that increases the absorption path by an
amount determined by the finesse of the resonator. Losses are kept low by means of
Brewster-angled windows on the absorption cell. Here, low pressures are imperative
not only in order to avoid pressure shifts but also because absorption would be too
strong with a standard 50 Torr cell. Others have used an erbium doped fiber amplifier
[Ona97]. Balling and colleagues [Bal05] used a very simple setup for saturation spec-
troscopy without a build-up cavity. They used a 50 cm long cell with 2 Pa pressure and
a laser intensity of 25 W/cm2.
There is also the alternative to use high frequency FM spectroscopy with a standard
high pressure cell.

6.1.3 Optical Dipole Traps with 1.55 µm Light

We are currently trapping ultracold molecules with CO2 laser light. As pointed out in
the introduction it is attractive to be able to trap molecules at a shorter wavelength,
especially when implementing optical lattice potentials. There is the option of using
near-resonant light to generate an optical lattice. This has the disadvantage of off-
resonant scattering losses. Far off-resonant lasers of sufficient power are available in
the 1070 nm region and in the 1.55 µm region. The 1.55 µm region is especially attrac-
tive for trapping purposes because the number of molecular potentials that are reached
is very limited, whereas at 1070 nm several additional potentials are addressed, see
figure 3.3. Using a narrow band laser source in combination with an optical amplifier
and tuning the laser frequency far from any molecular transitions, one could conve-
niently trap molecules at 1.55 µm. 0+u states are a mixture of 1Σ+u and 3Πu states. At
still longer wavelengths, below the 1Σ+u minimum, in principle transitions to the 3Πu

state and therefore transitions to the 0+u (P1/2) state should be forbidden from both the
lowest singlet and the lowest triplet state. However, there is a small 1Σ+u admixture even
below its potential minimum and Feshbach molecules do not have definite g/u sym-
metry and therefore these transitions become allowed. The vibrational level spacing is
sufficiently large in the 1.55 µm region that it should definitely not pose a problem to
set the trapping laser to a wavelength far from any molecular resonance.

6.2 Transfer of Ultracold Cs Molecules to the Absolute
Ground State

The ultimate goal of the present project is the efficient transfer of molecules from
the vibrationally highly excited Feshbach states to the lowest rovibrational level (v=0,
J=0) of the X1Σ+g ground state and the production of a stable molecular BEC.

We plan to employ a Λ-like two-photon coupling scheme, as illustrated in figure
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1.1. To this end, both the Feshbach state we start from and the intermediate state
have to be chosen appropriately, as discussed in section 6.2.1. Then an appropriate
transfer scheme has to be set up, see section 6.2.2. In order to prevent collisional
losses of the Feshbach molecules during the transfer procedure, the addition of an
optical lattice to prepare precisely one molecule per lattice site is advantageous. An
analogous transfer scheme is applicable to the case of heteronuclear dimers. We are
most interested in ultracold Rb-Cs mixtures and the production of heteronuclear RbCs
molecules, as sketched in section 6.2.4.

6.2.1 Choice of Initial and Intermediate State

Initial Feshbach State

The choice of initial Feshbach state for transfer to the absolute molecular ground state
is guided by the same criteria as for the spectroscopy, discussed in sections 5.3.1 and
6.1.1. Qualitatively spoken, we would like to achieve the largest possible magnitude of
the singlet component of the Feshbach molecule wave function near the inner turning
point of the potential. For a quantitative analysis we have to optimize the magnitude of
the dipole matrix elements reflected by the FC overlap between the ground and excited
state wave functions.

It is advantageous to start from low angular momentum states, i.e. s states (` = 0)
or d states (` = 2) because in a two-photon process the dipole selection rules are such
that the angular momentum can change by no more than two units. Therefore, when
trying to reach J = 0 of the v = 0 ground state level, higher ` states are not favorable.
Due to the bosonic nature of 133Cs, we only ever deal with even ` states.

A further option would be to increase the FC overlap by first transferring the mo-
lecules to a somewhat more tightly bound state by means of microwave transitions.
Ongoing calculations will show whether this approach holds promise.

Intermediate State

We are restricted to very large detunings from the excited state asymptotes by the
tuning range of the present spectroscopy laser. FC factors are higher for shorter wave-
lengths, which means that we want to go to the shortest wavelengths possible with our
system. The intermediate rovibrational level is characterized by the vibrational and
rotational quantum numbers v′i and J′i , respectively. For the intermediate state, J is
a good quantum number. Odd J′i levels contain a combination of even partial waves,
e.g. J′i = 1 contains ` = 0 and ` = 2 components. For the Feshbach molecules, ` is a
good quantum number. Intermediate levels with J′i = 1 can be accessed from s (` = 0)
and d (` = 2) states. The singlet component of the 0+u levels in our range of interest is
between 40% and 75%.
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6.2.2 Transfer Scheme

Franck-Condon factors for the “second step”, i.e. for the Stokes or dump laser transi-
tion that couples the intermediate level to the v = 0 level of the X1Σ+g state are many
orders of magnitude larger than for the the pump laser transition we are evaluating
with the current spectroscopic experiments. They are on the order of 0.1-0.001 in the
excited state region we are most interested in [Bou06]. Therefore, it would be easy to
saturate the Stokes transition.

Assuming that we can drive the pump step, it is worth taking a look at the full
scenario that arises. Let us assume a transition wavelength of 1515 nm (6600 cm−1)
for the pump step starting from the Feshbach molecules. The X1Σ+g v = 0 level lies
G(v = 0) = 20.981 cm−1 above the potential minimum. The ground state disso-
ciation energy of Cs2 is De(X1Σ+g ) = 3649.88 cm−1. Therefore, the transition from
the intermediate level to the X1Σ+g v = 0 level corresponds to a laser energy of 6600
cm−1 + De(X1Σ+g ) − G(v = 0) = 10229 cm−1. This is equivalent to a wavelength of
978 nm. The tuning range of the present spectroscopy laser from 1510 nm to 1580 nm
corresponds to Stokes wavelengths of 975 nm (10253 cm−1) to 1005 nm (9947 cm−1).
The detuning of the intermediate state from the 6S +6P1/2 asymptote is approximately
4580 cm−1.

“Parasitic” coupling of the Feshbach state to unspecified rovibrational levels in the
excited state manyfold by the Stokes laser as illustrated in figure 6.3 is not desirable.
It opens up additional loss channels because these excited state levels spontaneously
decay into free atoms or ground state levels other than v = 0. Therefore, a large
level spacing in the excited state region reached by the Stokes laser from the Feshbach
molecules is convenient. In the 0+u potentials, level spacing is on the order of 0.3 - 1.7
nm (1 nm ' 310 GHz ) in the 980 nm region, which serves to illustrate that the level
spacing is large. Naturally, all the other potentials reached in this wavelength region
have to be taken into account as well but it should not be difficult to find an intermediate
state such that the Stokes laser is tuned far away from any parasitic resonances. FC
factors for such transitions are on the order of 10−6. This has to be compared to the FC
factors for the Stokes transition which are on the order of 10−3, which implies that the
Stokes laser intensity can be very low. Both the large level spacing and the small FC
factors for parasitic transitions in comparison to the desired Stokes transition help to
suppress such transitions in addition to the detuning from the parasitic resonances.

Similarly, the pump laser should not deplete the v = 0 level of the X1Σ+g state by
coupling it to excited states. This requirement is easily fulfilled since the lowest rovi-
brational state of the 0+u (P1/2) state is located 8020 cm−1 (1247 nm) above the lowest
vibrational level of the X state, which is much higher than what could be reached by
the spectroscopy laser. The spacing between tightly bound excited state levels is very
large and therefore it is expected that even when choosing shorter wavelengths for the
pump laser, parasitic excitation from the ground state v = 0 level would not be an
issue.
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Figure 6.3: Molecular loss due to coupling to unspecified excited states: The ground state
potentials and several of the electronically excited potentials are shown schematically. Two-
photon transfer to the rovibrational ground state involves a pump and a Stokes laser. The
Stokes laser can in principle drive optical transitions to unspecified excited state levels. The
pump laser with its wavelength around 1.55 µm cannot drive any parasitic transitions from the
rovibrational ground state of the X1Σ+g state because its energy is too low to reach any of the
excited state potentials.

In order to increase the very small FC factors, one could choose shorter wave-
lengths for both the pump and the Stokes laser, resulting in smaller detuning from the
excited state asymptotes. FC factors for the pump laser increase with decreasing de-
tuning from the molecular asymptote (decreasing wavelength) whereas FC factors for
the Stokes laser decrease, as illustrated in figure 6.2. In the calculations by the Orsay
group [Bou06] again based on unperturbed singlet wave functions for the Feshbach
molecules and coupled ab initio 0+u states, FC factors for both transitions become of
comparable magnitude at a pump laser wavelength of 1300 nm. There, they are around
10−8. At a pump wavelength of 1.4 µm, the FC factor for the pump transition is still
10−8 whereas the FC factor for the Stokes laser is to ∼ 10−4. Therefore, for a regime
involving a single two-photon transition to the ground state, the wavelength region
around 1.4 µm - 1.45 µm would be advantageous. A significant increase of FC factors
for the pump step is predicted below 1250 nm. However, in this region, the FC factors
for the Stokes laser decrease dramatically.

In addition to the 0+u potentials, also the 1u potentials have the u symmetry required
for transitions to the X1Σ+g state (transitions to the 0−u states are forbidden). Near the
potential asymptotes, the 1u potentials arise from spin-orbit mixing of the B1Πu, the
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23Σ+u and the b3Πu states. Looking at the potential curves in figure 3.3, one can see
that these potentials span a large range of internuclear distances. The inner turning
point of the 1u(P3/2) potential provides favorable FC overlap with the X1Σ+g (v = 0)
level, whereas the outer turning point of the 1u(P1/2) potential provides the overlap re-
quired for transitions from the Feshbach molecules. This effect was exploited by Sage
and coworkers [Sag05] for the production of a sample of ultracold RbCs molecules by
means of a two-photon transition, starting from loosely bound a3Σ+ molecules. Their
production and detection scheme is illustrated in figure 6.4. Clearly, for a quantitative
analysis, we would need the FC factors for the cesium dimer. In Cs2, the potential
well of the B1Πu state is located 13 043.88 cm−1 above the minimum of the singlet
ground state potential, i.e. at 9394 cm−1 above the ground state potential asymptote
[NIS07]. The B1Πu component is needed for coupling to the X1Σ+g state. In analogy to
the case of RbCs [Ber04], vibrational levels belonging to the 1u potentials below the
B1Πu potential minimum probably have some small singlet contribution. In the RbCs
experiment cited above, this admixture was exploited for transfer to the ground state
but for Cs2 this hypothesis has to be checked by theoretical calculations.

Stimulated Emission Pumping

Stimulated emission pumping (SEP), see section 2.1.2, is a popular method for popu-
lation transfer that does not depend on the coherence properties of the radiation field.
If both the pump and the Stokes transitions can be saturated, population transfer can
be 25%. If both lasers are applied at the same time, this can be increased to 1/3. SEP
relies on population transfer first to the intermediate state and then to the ground state.
In their study involving the transfer of RbCs molecules to the vibrational ground state,
Sage and coworkers [Sag05] observed coupling of the intermediate state to unspecified
higher lying states by the Stokes laser.

Although it should be easy for us to saturate the Stokes transition, we cannot hope
to saturate a pump transition in the wavelength region accessible to our spectroscopy
laser. The timescale for excitation from the Feshbach molecules to the intermediate
state is much longer than the spontaneous emission lifetime of the intermediate state.

STIRAP

The principles of the STIRAP two-photon technique have been discussed in section
2.1.2. Its distinguishing feature is population transfer in a three-level system in such
a way that the intermediate state is never actually populated. Therefore, in an ideal
case no losses due to spontaneous decay of the intermediate level out of the three-level
system can occur and transfer efficiency can reach unity. The transfer process can take
place on a time scale much longer than the spontaneous lifetime of the intermediate
state.

Population transfer is achieved by means of two temporally overlapping laser
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Figure 6.4: Experimental production schemes for (v = 0) ground state molecules: left:
Production of ultracold RbCs molecules starting from loosely bound triplet molecules with a
mixed B1Π1/c3Σ+1 /b

3Π1 intermediate level as explained in section 6.2.4. Figure taken from
reference [Sag05]. right: Three step process for the production of low lying ground vibrational
states in the work by Nikolov et al. [Nik00] in the case of K2.

pulses with the peculiarity that the Stokes pulse is applied before the pump pulse.
The Stokes pulse is associated with the Rabi frequency ΩS (t) and the pump pulse with
the Rabi frequency ΩP(t). These are slowly varying functions of time according to
the evolution of the pulse envelope. If the coupling is insufficient, i.e. if the Rabi fre-
quencies are too small, some population will reach the intermediate state. From there
it will spontaneously decay to states other than the initial and the desired final state
[Ber98]. Population transfer via a decaying state is discussed in section 2.1.2 and in
reference [Vit97]. As discussed in section 2.1.2 we performed numerical simulations
of a three-level system with a “leaky” intermediate state and obtained an empirical
criterion for efficient population transfer given in equation 2.6. Basically, for a given
intermediate state decay rate Γ, either the Rabi frequencies must be large or the pulses
must be long in order to ensure adiabaticity. If we evaluate equation 2.6 with the value
of 2π · 6 kHz for the Rabi frequencies we obtained in section 5.3.1 and again use an
intermediate state decay rate of twice the atomic value, we obtain a timescale for the
STIRAP process that is on the order of 2 seconds. This is orders of magnitude longer
than the spontaneous lifetime of the intermediate level and also considerably longer
than the pulse durations used in a recent experiment in our group [Win06b]. Clearly,
on such long time scales the phase stability of the lasers used in the STIRAP process
becomes an issue. Laser phase and frequency fluctuations of the pump and Stokes
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laser are normally uncorrelated and lead to a detuning from the two-photon resonance
required for STIRAP. Such fluctuations lead to losses due to nonadiabatic coupling
[Ber98] and could be significant on such long time scales. Phase coupling between
the pump and the Stokes laser by means of a frequency comb could probably alleviate
this problem. On shorter time scales it is sufficient to use two independent lasers or to
Pound-Drever-Hall lock two different lasers to the same optical resonator.

Optical Lattice

Feshbach molecules are inherently unstable against two-body collisions. Therefore,
for efficient transfer of the whole sample to a different quantum state, the addition of
an optical lattice is advantageous. The optical lattice can be prepared in such a way
that lattice sites are either not occupied or occupied by precisely one molecule. The
molecules are then completely shielded from inelastic collisions. Two of the experi-
ments in our group are employing optical lattices, namely the Rb project and the the Cs
III experiment. In the Rb experiment, coherent transfer to a different, albeit still highly
vibrationally excited, molecular vibrational level by STIRAP with ∼ 85% efficiency
has already been demonstrated [Win06b]. The difference in binding energy between
the initial and the final state was only on the order of 600 MHz·h whereas for transfer
to the rovibrational ground state this difference in binding energy is on the order of
100 THz·h.

Frequency Comb

An optical frequency comb could be used to increase coherence between the pump and
the Stokes laser. Probably the most convenient option would be to set up a fiber ring
laser [Nel97] and then lock both the pump and the Stokes lasers to different modes of
the comb. Commercially available femtosecond frequency comb systems are able to
generate a spectrum that covers a region from 1050 nm - 2100 nm.

6.2.3 Alternative Transfer Schemes
One alternative to population transfer by a single two-photon transition as we are cur-
rently pursuing it is a scheme consisting of two or three Λ-like two-photon transitions
as suggested by Zoller and coworkers [Jak02] and illustrated in figure 6.5. For the case
of Rb2, they discuss a process that involves two-color photoassociation in an optical
lattice to produce vibrationally highly excited ground state molecules followed by two
consecutive Λ-like two-photon transitions between the X1Σ+g state and the A1Σ+u state
to finally reach the rovibrational ground state.

When Tiemann and coworkers studied the near-threshold structure of sodium
dimers by molecular spectroscopy [Sam00, Elb99], they started from v = 0 ground
state molecules and used two consecutive Λ-like two-photon transitions to address the
molecular spectrum near the ground-state threshold.
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Nikolov and colleagues [Nik00] produce tightly bound ground state molecules by
a completely different scheme. First they form excited state molecules by one-color
photoassociation and then transfer the molecules to a molecular Rydberg state with a
second laser, see figure 6.4. The inner turning point of the latter state has significant
FC overlap with low lying ground state levels which are reached by radiative decay.

Figure 6.5: Proposed production schemes for (v = 0) ground state molecules: left: Three
step process proposed by Jaksch and coworkers [Jak02]. First atoms are photoassociated in-
side an optical lattice. Then two consecutive two-photon transitions are applied to reach the
rovibrational ground state (in the figure only two transitions are shown). right: Scheme pro-
posed by Pichler and colleagues [Pic04]. Transfer from large to small internuclear distances
is proposed in a single two-photon transition exploiting the double well structure of the 31Σ+u
state. The lower panel gives the transition dipole function extrapolated to the case of Cs2 from
Li2 data.

Pichler and coworkers [Pic04] propose the formation of low vibrational ground
state cesium molecules by exploiting the 31Σ+u double minimum excited state, see fig-
ure 6.5. Based on ab initio potential curves calculated by Spies and Meyer and an
extrapolation of transition dipole functions from the case of Li2, they consider the
probability of photoassociation near the outer turning point of the outer well of the po-
tential and spontaneous emission to the v = 0 level of the X1Σ+g ground state near the
inner turning point of the inner well. They conclude that a vibrational level just above
the potential barrier in the excited state (v = 94) is best suited for such a transition.
Similar to the other schemes discussed in this section, we would use Feshbach molecu-
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les as a starting point instead of free atoms. It has been observed experimentally in our
group that transition rates for bound-bound transitions involving Feshbach molecules
are orders of magnitude stronger than the corresponding photoassociation transitions
[Win06a]. This would enhance the ground state molecule production rate. Pichler and
colleagues state that driving a two-photon Raman process would be advantageous but
they do not discuss the issue of the two lasers involved in such a transition coupling to
other unspecified molecular levels which would introduce an additional loss channel.
They calculate a photoassociation - or in our case - pump wavelength of ∼582 nm (17
182 cm−1) to reach the v = 94 level of the 31Σ+u state. This corresponds roughly to a
dump wavelength of 480 nm (20 812 cm−1) to reach the lowest vibrational level in the
singlet electronic ground state. It is not clarified which states would be reached with
the dump laser from the Feshbach molecules and whether the pump laser would excite
the v = 0 ground state molecules.

6.2.4 Extension to Heteronuclear Systems
Heteronuclear molecules have lately received a lot of attention in the field of ultracold
quantum gases. Due to their permanent electric dipole moment, they are interesting
for example as qubits for quantum computing [DeM02] and in search for the electron
electric dipole moment [Hud02]. One of our experiments, the GOST project, is cur-
rently pushing towards the creation of ultracold Rb-Cs mixtures and the formation of
ultracold RbCs molecules. Combining this with the effort to transfer ultracold mole-
cules to the rovibrational ground state would give us the opportunity to create a stable
heteronuclear molecular BEC with a series of interesting properties.

It should be noted that the excited state potential curves for homonuclear dimers
depend on the internuclear distance as −1/R3 whereas for heteronuclear dimers, this
dependence is −1/R6. Consequently, excited state potentials are more long-range in
character in homonuclear molecules. Franck-Condon factors will differ but in prin-
ciple, for the low lying states, our spectroscopy and transfer scheme could easily be
adapted to RbCs Feshbach molecules.

Stwalley discusses the prospects for the transfer of heteronuclear Feshbach mole-
cules to the rovibrational ground state of the electronic ground state X1Σ+ [Stw04] via
an intermediate state of mixed A1Σ+/b3Π character. Feshbach molecules have mixed
X1Σ+/a3Σ+ character, with the a state contribution being more prominent. The author
points out that due to the coincidence of the inner turning point of the a3Σ+ lowest
triplet potential curve and the outer turning point of the b3Π state, FC factors should
be favorable for excitation from the a triplet state. The inner turning point of the A
state almost coincides with the minimum of the X state providing the necessary FC
overlap for the dump step. To summarize, in this scheme, excitation occurs from the
triplet ground state, then singlet/triplet mixing is exploited in the excited state and
deexcitation is to the (v = 0, J = 0) level of the singlet ground state.

The potential curves given in figure 6.6 illustrate that the region around 6500 cm−1
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Internuclear distance (Å)

Figure 6.6: Transfer of RbCs molecules to the absolute ground state: In the transfer scheme
proposed by Stwalley, excitation occurs at the inner turning point of the triplet ground state
potential a3Σ+. Singlet/triplet mixing between the A and b electronically excited states provides
the singlet character necessary for coupling to the X state. The inner turning point of the A state
nearly coincides with the minimum of the X state providing favorable FC overlap with the v = 0
ground state. Figure adapted from [Stw04].

is best suited for transfer to the rovibrational ground state via a mixed A1Σ+/b3Π ex-
cited state level in RbCs molecules. Note that this region coincides with the region
addressed by the spectroscopy laser used in the present project.

This scenario is different from the situation with homonuclear dimers. In homonu-
clears, the g/u symmetry precludes that these levels be accessed from the a3Σ+u triplet
ground state because, just as the a state, they exhibit u symmetry and u → u transi-
tions are dipole forbidden. The X1Σ+g state we want to populate finally has g symmetry.
Selection rules require that the intermediate state has u symmetry and the initial state
therefore g symmetry if we consider a single two-photon process. Feshbach molecules
have mixed singlet/triplet character and mixed g/u character. For transitions to such an
intermediate state, only the g component of the Feshbach molecules is relevant. The
ongoing calculations by our collaborators in Orsay will clarify whether an analogous
effect can be exploited in Cs2 due to the hyperfine mixing of the X and a state. To
conclude, extension of our transfer scheme to RbCs is straightforward and transfer via
the mixed A/b states might be more promising in the case of heteronuclear molecules
than in the case of homonuclear dimers.

Sage and colleagues [Sag05] have produced ultracold RbCs molecules in the v = 0
X1Σ+ state with a narrow rotational distribution and a translational temperature of
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∼ 100 µK at a rate of ∼500 molecules per second. This is clearly far away from
the realization of a molecular BEC. Their stated goal is quantum computing with po-
lar molecules. As mentioned above, they employed stimulated emission pumping for
the transfer and reach a transfer efficiency of 6%. They used two-color photoassocia-
tion to produce RbCs molecules in high vibrational levels of the a3Σ+ state and trans-
fered them to the lowest vibrational level of the X1Σ+ state in a single two-photon
step. For both the pump and the dump beam they used pulsed lasers. This way,
they were able to saturate transitions with FC factors down to 10−6. Dipole selec-
tion rules normally prevent transitions from the triplet to the singlet manyfold. They
exploited mixed singlet/triplet character in the excited intermediate level. They chose a
mixed B1Π1/c3Σ+1 /b

3Π1 level detuned about 1370 cm−1 from the Rb(5S 1/2)+Cs(6P1/2)
asymptote. The c3Σ+1 component provides the triplet character for the pump transi-
tion (the b component, even though triplet as well, is not so important due to smaller
FC factors) whereas the B1Π1 provides the coupling to the X1Σ+ state. As mentioned
above, their intermediate state lies energetically below the minimum of the B1Π1 po-
tential curve but still features a small 1Π1 admixture.
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A A

Microcontroller Assembler Program

This section gives a commented version of the microcontroller assembler program for
the digital laser stabilization described in section 4.2.3. A general description of the
setup and of the program is given there. The device used is an atmega162 microcon-
troller from Atmel Corporation. The rising and the falling edge of two reference laser
transmission peaks and of one spectroscopy laser transmission peak are detected in
this program. The reference laser is referred to as “master”, the spectroscopy laser
as “slave”. “Rising” and “falling” edge refers to the rising and falling edge of the
transmission peaks as seen on the photodiodes. Due to the optocoupler at each input
(H11L1) the edges are inverted in the program.
The two 16-bit timers of the microcontroller are started at the beginning of the res-
onator sweep by a TTL that is handled by the external interrupt 0 (INT0). The mi-
crocontroller then waits for the laser transmission peaks in a loop. When the rising
or falling edge of a transmission peak occurs, it is detected by the input capture unit
of that timer. The input capture units feature a digital noise canceler and save the
actual timer value to the input capture registers. These registers are read out in the
corresponding interrupt routines and saved to the RAM. The position of the x- and y-
pointers are used to save the slave data and the master data, respectively. After saving
one measured timer value, the pointers are incremented in order to point to the next
free RAM address where the timer value for the next edge is stored. In the comments
to the program, these timer values that do not account for any timer overflow events are
referred to as “raw data”. Timer overflows are handled by a separate interrupt routine
and accounted for later.
The simplest way to find out which peaks have already been detected is to query the ad-
dress value the x-pointer and the y-pointer indicate. After detection of all four events
for the master laser, the x-pointer points to an address 9 bytes higher than initially.
The analogous is true for the slave laser. The pointer addresses are queried in order to
decide whether all necessary peaks have been detected. In case all necessary values
are detected and stored, the microcontroller exits the waiting loop and converts the
saved timer values to ASCII-coded hexadecimal digits. To do so, timer overflows that
occurred during the measurement period and that are handled by a separate interrupt
routine are taken account of. Finally, the data is transmitted to the control computer
through RS232. The transmitted string contains an “@” sign as attention sign, a single
letter identifier before each timer value and a carriage return as termination character.



A Microcontroller Assembler Program

A.1 Program code

.include "m162def.inc" ;include definition file

.def vglm = r0 ;define register to query whether masterpeaks have been detected

.def vgls = r1 ;define register to query whether slavepeaks have been detected

.def switchedge = r2 ;define register to quickly switch between detection of the rising
;or the falling edge of the transmission peaks using an XOR operation
.def temp1 = r16 ;define temporary working register
.def temp2 = r17 ;define temporary working register
.def temp3 = r18 ;define temporary working register
.def temp4 = r19 ;define temporary working register
.def trans1 = r20 ;define register used in serial transmission
.def umw1 = r23 ;define register used in ASCII conversion
.def umw2 = r24 ;define register used in ASCII conversion
.def overrun = r25 ;define register to handle timer overflows
.equ masterrise = 0x0100 ;SRAM address for timer value of the rising edge of first
;master peak
.equ masterfall = 0x0107 ;SRAM address for timer value of the falling edge of first
;master peak
.equ masterrise2 = 0x010E ;SRAM address for timer value of the rising edge of second
;master peak
.equ masterfall2 = 0x0115 ;SRAM address for timer value of the falling edge of sec-
ond ;master peak
.equ slaverise = 0x011C ;SRAM address for timer value of the rising edge of slave
;peak
.equ slavefall = 0x0123 ;SRAM address for timer value of the falling edge of slave
;peak
.equ masterdata = 0x012D ;SRAM address for raw data of master laser timer
.equ slavedata = 0x0142 ;SRAM address for raw data of slave laser timer
.equ CLOCK = 16000000 ;definition clock rate
.equ BAUD = 38400 ;definiton baud rate for serial transmission. the double speed
;option is set, so transmission rate is effectively 76800
.equ UBRRVAL = CLOCK/(BAUD*16)-1 ;compute value for UBRRH and UBRRL
;registers

.cseg ;start of program code

.org 0x0000 ;write interrupt handler table to this location
jmp main ;reset handler
jmp int0_handler ;external interrupt 0 starts the two 16-bit timers
jmp EXT_INT1 ;not in use
jmp EXT_INT2 ;not in use
jmp PC_INT0 ;not in use
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jmp PC_INT1 ;not in use
jmp TIM3_CAPT ; timer 3 input capture handler - slave laser
jmp TIM3_COMPA ;not in use
jmp TIM3_COMPB ;not in use
jmp TIM3_OVF ;timer3 overflow handler
jmp TIM2_COMP ;not in use
jmp TIM2_OVF ;not in use
jmp TIM1_CAPT ;timer1 input capture handler - master laser
jmp TIM1_COMPA ;not in use
jmp TIM1_COMPB ;not in use
jmp TIM1_OVF ;timer1 overflow handler
jmp TIM0_COMP ;not in use
jmp TIM0_OVF ;not in use
jmp SPI_STC ;not in use
jmp USART0_RXC ;not in use
jmp USART1_RXC ;not in use
jmp USART0_UDRE ;not in use
jmp USART1_UDRE ;not in use
jmp USART0_TXC ;not in use
jmp USART1_TXC ;not in use
jmp EE_RDY ;not in use
jmp ANA_COMP ;not in use
jmp SPM_RDY ;not in use

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

main: ;start of main program
clr temp1 ;set registers to defined value
clr temp2
clr temp3

;the following sequence deletes all timeroverflows from the SRAM and is only ;rel-
evant for the first run of the program after start up:
clr overrun ;clear register
ldi xh,high(masterrise) ;write zero to the location in the SRAM where timer overflows
;are saved
ldi xl,low(masterrise)
st x, overrun
ldi xh,high(masterfall)
ldi xl,low(masterfall)
st x, overrun
ldi xh,high(masterrise2)
ldi xl,low(masterrise2)
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st x, overrun
ldi xh,high(masterfall2)
ldi xl,low(masterfall2)
st x, overrun
ldi xh,high(slaverise)
ldi xl,low(slaverise)
st x, overrun
ldi xh,high(slavefall)
ldi xl,low(slavefall)
st x, overrun
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;set x- and y-pointer to the locations in the RAM where the raw measured data is stored
ldi xh, high(masterdata) ;x-pointer saves timer values for the master laser
ldi xl, low(masterdata)
ldi yh, high(slavedata) ;y-pointer saves timer values for the slave laser
ldi yl, low(slavedata)
;;;;;;;;;;;;;;;;;;;;;
;initialize stack pointer
ldi temp1, LOW(RAMEND) ;set stack to end of RAM
out SPL, temp1
ldi temp1, HIGH(RAMEND)
out SPH, temp1
;;;;;;;;;;;;;;;;;;;;;
;initialize serial interface (USART1)
clr temp1
ldi temp1, LOW(UBRRVAL) ;set transmission baud rate
out UBRR1L, temp1
ldi temp1, (1«URSEL)|(1«UCSZ1)|(1«UCSZ0); frame-format: 8 bit, double speed op-
eration
out UCSR1C, temp1
clr temp1
ldi temp1, (1«TXEN1); activate transmission
out UCSR1B,temp1
in temp1,UCSR1A
ori temp1, 0b00000010
out UCSR1A, temp1
;;;;;;;;;;;;;;;;;;;
;initialize interrupt 0; starts timers at the beginning of the resonator sweep:
ldi temp1,0b00000010
out mcucr,temp1 ;set interrupt 0 to detection of falling edge - inverted logic due to
digital optocoupler
ldi temp1,0b01000000
out gicr,temp1 ;activate INT0
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;;;;;;;;;;;;;;;;;;;
initalize timer capture:
ldi temp1,0b10000000
out tccr1b,temp1; activate input noise canceller and set detection to falling edge
sts tccr3b,temp1; for timer 1 and timer 3
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;The following section initializes the serial peripheral interface (SPI) for communi-
cation with a digital-to-analog converter (DAC714). It’s not used in the current setup.

clr temp1
ldi temp1, (1«DDB7)|(1«DDB5)|(1«DDB4)|(1«DDB1)|(1«DDB0) ;set MOSI, SCK
and SS to output, PB1 as DA latch,pB0 as “clr all”
out ddrb, temp1
ldi temp1, 0b00010011 ; slave select and DA latch to high (lock inputs of DAC)
out portb, temp1
clr temp1
ldi temp1, (1«SPIE)|(1«SPE)|(1«MSTR)|(1«CPHA) ;interupt enable, SPI enable, mas-
ter select, transmission with 1

4 of clock rate
out spcr, temp1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;vglm: register to query whether all the necessary master data has been collected: two
rising and two falling edges, each comprising two bytes, overflow is handled separately

ldi temp1,0b00110101 ;low byte of x-pointer; after saving 8 bytes, the pointer points
to byte 9
mov vglm, temp1
;vgls: register to query whether all the necessary slave data has been collected: one
rising and one falling edges (4 bytes), overflow is handled separately
ldi temp1,0b01000110
mov vgls, temp1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;switchedge: register to switch the from detection of the rising edge to detection of the
falling edge and vice versa for input capture units
ldi temp1,0b01000000
mov switchedge, temp1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;save ASCII coded letters to the RAM that identify each timer value in the string trans-
mitted via RS232

ldi xh,high(masterfall)
ldi xl,low(masterfall)
ldi temp1, ’n’
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st -x, temp1 ; ASCII ’n’ for falling edge of first master peak
ldi xh,high(masterrise2)
ldi xl,low(masterrise2)
ldi temp1, ’o’
st -x, temp1 ; ASCII ’o’ for rising edge of second master peak
ldi xh,high(masterfall2)
ldi xl,low(masterfall2)
ldi temp1, ’p’
st -x, temp1 ; ASCII ’p’ for falling edge of second master peak
ldi xh,high(slaverise)
ldi xl,low(slaverise)
ldi temp1, ’s’
st -x, temp1 ; ASCII ’s’ for rising edge of slave peak
ldi xh,high(slavefall)
ldi xl,low(slavefall)
ldi temp1, ’t’
st -x, temp1 ; ASCII ’t’ for falling edge of slave peak

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;globally activate interrupts
sei
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

loop: ;microcontroller waits for INT0 and detection of the individual peaks in this
loop
cpse xl,vglm ;query position of x-pointer: all master peaks detected? if yes, then exit
loop
rjmp loop ;if master data is still missing, keep on waiting in the loop
cpse yl, vgls ;query position of y-pointer: slave peak completely detected? if yes, then
exit loop
rjmp loop; if slave data is still missing, stay in the loop
;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;after completion of all measurements, continue here:

cli ;clear interrupts - no more data can be measured
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;switch off the timers:
in temp1, tccr1b
andi temp1, 0b11111110
out tccr1b, temp1 ;switch off timer1
lds temp1, tccr3b
andi temp1, 0b11111110
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sts tccr3b, temp1 ;switch off timer3
in temp1,timsk ;bit 3 in TIMSK register to 0 âĂŞ disables input capture interrupt for
timer1
andi temp1, 0b11110111
out timsk, temp1
lds temp1,etimsk ;bit 5 in ETIMSK to 0 - disables input capture interrupt for timer3
andi temp1,0b11011111 ;write to registers
sts etimsk,temp1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
ldi zh,high(masterrise) ;z-pointer is used zu fetch the overflow of the rising edge of the
first master peak and to save the ASCII coded hex digits
ldi zl,low(masterrise)
ldi xh, high(masterdata) ;x-pointer is used to fetch the saved timer values
ldi xl, low(masterdata)
rcall HexInASCII ;this subroutine fetches the overflow and the timer values and con-
verts it to a ASCII coded hex number; it expects the z-pointer to point to the overflow
and the x-pointer to the saved binary timer value, the x-pointer is then incremented
automatically, the z-pointer needs to be set to the desired address for each call
;;;;;;;;;;;;;;;;;;;;;;;;;;
ldi zh,high(masterfall) ;set to address of overflow
ldi zl,low(masterfall)
rcall HexInASCII; do the conversion
ldi zh,high(masterrise2) ;set to address of overflow
ldi zl,low(masterrise2)
rcall HexInASCII
ldi zh,high(masterfall2) ;set to address of overflow
ldi zl,low(masterfall2)
rcall HexInASCII
ldi zh,high(slaverise) ;set to address of overflow
ldi zl,low(slaverise)
ldi xh, high(slavedata); set x pointer to RAM address where slave data is stored
ldi xl, low(slavedata)
rcall HexInASCII
ldi zh,high(slavefall) ;set to address of overflow
ldi zl,low(slavefall)
rcall HexInASCII

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

rcall senden ; jump to the subroutine that sends the data to the control computer over
RS232

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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sei; switch on the interrupts
rjmp loop; jump to loop and wait for start of resonator sweep (interrupt 0)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;—————————————————————————————–
int0_handler: ;Starts time measurement when triggered by sync of the function gener-
ator that generates resonator sweep
in temp3, SREG ;save status register
cli; disable interrupts

ldi temp1,0b00000000 ;clear working register
out TCNT1H,temp1 ;set timer1 highbyte to 0
out TCNT1L,temp1 ;set timer1 lowbyte to 0
sts TCNT3H,temp1 ; can’t use “out” here since timer3 control registers are located at
the extended I/O map
sts TCNT3L,temp1 ;set timer3 to 0

ldi temp1, 0b10000001 ;switch on noise canceller, set trigger to falling edge (inverted
logic due to optocouplers), clock without prescaler
out tccr1b, temp1 ;switch on timer1
sts tccr3b, temp1 ;switch on timer3

ldi temp2,0b00001000 ;bit 3 in TIMSK enables input capture interrupt for timer1
ldi temp1,0b00100100 ;bit 5 in ETIMSK enables input capture interrupt for timer3
out timsk,temp2 ;write to register
sts etimsk,temp1 ;write to register

ldi xh, high(masterdata) ;set x-pointer to RAM address for raw master timer values
ldi xl, low(masterdata)
clr temp1 ;clear working register
st x+,temp1 ;delete master laser data from previous run from RAM
st x+,temp1
st x+,temp1
st x+,temp1
st x+,temp1
st x+,temp1
st x+,temp1
st x+,temp1
ldi yh, high(slavedata) ;delete slave laser data from previous run from RAM
ldi yl, low(slavedata)
st y+,temp1
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st y+,temp1
st y+,temp1
st y+,temp1

clr overrun ;delete timer overflows of the previous run from the RAM
ldi xh,high(masterrise)
ldi xl,low(masterrise)
st x, overrun ;clear the overflow for rising edge of the first master peak
ldi xh,high(masterfall)
ldi xl,low(masterfall)
st x, overrun
ldi xh,high(masterrise2)
ldi xl,low(masterrise2)
st x, overrun
ldi xh,high(masterfall2)
ldi xl,low(masterfall2)
st x, overrun
ldi xh,high(slaverise)
ldi xl,low(slaverise)
st x, overrun
ldi xh,high(slavefall)
ldi xl,low(slavefall)
st x, overrun
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;set the x-pointer to the RAM address for the raw master data and y-pointer to the ad-
dress for the raw slave data:
ldi xh, high(masterdata)
ldi xl, low(masterdata)
ldi yh, high(slavedata)
ldi yl, low(slavedata)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

lds temp1,etifr ;clear all interrupt flags for timer3
ori temp1,0b00111100
sts etifr,temp1
in temp1,tifr ;clear all interrupt flags for timer1
ori temp1,0b11101000
out tifr,temp1

out SREG, temp3 ;restore status register and therefore enable interrupts
reti ;return from interrupt routine
;————————————————————————————
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;————————————————————————————–
TIM3_CAPT: ;interrupt handler for detection of master laser peaks
in temp3, SREG ;save status register
cli ;clear interrupts
lds temp1,icr3l ;read timestamp generated by input capture unit
lds temp2,icr3h
st x+,temp2; save to RAM: high byte before low byte
st x+,temp1; increase x-pointer after saving for next master laser capture event
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;switch the detection edge:
lds temp4,tccr3b
eor temp4,switchedge
sts tccr3b,temp4
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
out SREG, temp3; restore status register
reti ;return from interrupt
;—————————————————————————–

;——————————————————————————
TIM3_OVF: ;this subroutine handles overflow events both for timer1 and timer3, it is
executed each time there is an overflow for timer3. Since overflows for timer1 occur
at the same time, these are handled together
in temp3, SREG; save status register
cli; clear interrupts
inc overrun; increase register that counts number of overflow events
cpi yl, 0b01000110 ;Is all slave laser data collected? Comparison of the low byte of
the y-pointer with the low byte of the relevant RAM address
breq masteroverflow; if the slave peak is already fully saved, then jump to the part
handling only master overflows.
;;;;;;;;;;;;;;;;;;;;;;
;if falling edge of slave has not been detected:
cpi yl, 0b01000100 ;rising edge of slave detected?
breq slavefallendoverflow ;if rising edge already detected, then overflow only for
falling edge - jump there
ldi zh, high(slaverise)
ldi zl, low(slaverise)
st z, overrun ;overflow for rising edge of slave peak
slavefallendoverflow: ; overflow for falling edge of slave peak
ldi zh, high(slavefall)
ldi zl, low(slavefall)
st z, overrun ;store overflow for falling slave edge
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cpi xl, 0b00110101 ; both master peaks measured? if yes, skip routine for master over-
flows
breq endeoverrun
masteroverflow:
cpi xl, 0b00110001 ;true, if first master peak completely measured
breq only_peak2 ;if true, skip first master peak -> branch to second peak
cpi xl, 0b00101111 ;rising edge of first master peak detected?
breq fallingedge_peak1 ;if true, branch to falling edge of first master peak
rising_and_falling_edge_peak1:
ldi zh,high(masterrise)
ldi zl,low(masterrise)
st z, overrun; store overflow for rising edge of first master peak
fallingedge_peak1:
ldi zh,high(masterfall)
ldi zl,low(masterfall)
st z, overrun ;store overflow for falling edge of first master peak

only_peak2: ;saves overflow for second master peak
cpi xl, 0b00110011 ;rising edge of second master peak detected?
breq fallingedge_peak2 ;if rising edge already measured -> jump to falling edge
rising_and_falling_edge_peak2:
ldi zh,high(masterrise2)
ldi zl,low(masterrise2)
st z, overrun ;store overflow rising edge second master peak
fallingedge_peak2:
ldi zh,high(masterfall2)
ldi zl,low(masterfall2)
st z, overrun ;store overflow falling edge second master peak

endeoverrun:
out SREG,temp3 ;restore status register
reti ;return from interrupt
;————————————————————————————

;————————————————————————————
TIM1_CAPT: ;timer 1 capture interrupt: handles slave laser peak detection
in temp3, SREG ;save status register
cli ;disable interrupts
in temp1, icr1l ;read timestamp low byte
in temp2, icr1h ; read timestamp high byte
st y+, temp2 ;save timer value to RAM, highbyte before lowbyte
st y+, temp1
in temp4,tccr1b ;switch detection edge
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eor temp4, switchedge
out tccr1b, temp4
out SREG, temp3 ;restore status register and activate interrupts
reti ;return from interrupt

;————————————————————————————
senden: ;subroutine that sends a string with the measured values to the control com-
puter over RS232 (USART)
in temp3, SREG ;save status register
cli ;disable interrupts
ldi xh,high(masterrise) ;set x-pointer to overflow of rising edge of first master peak
(beginning of saved data in the RAM)
ldi xl,low(masterrise)
ldi trans1,0x40 ;load ’@’ sign
rcall serout ; send @ via USART
ldi trans1,0x6D ; load ASCII ’m’: indicates rising edge of masterpeak 1
rcall serout ; send ’m’ via USART
;;;;;;;;;;;;;;;;;;;;;;;;
senden2:
ld trans1,x+ ; start reading data from the RAM, increase pointer
cpi xl,0x2A ;compare pointer address with stop value
breq ende1 ;if stop value in RAM reached, branch to ende1
rcall serout ; send data from RAM as long the pointer is below the specified stop value
rjmp senden2 ;stay in sending loop
;;;;;;;;;;;;;;;;;;;;;;;;
ende1:
ldi trans1, 0x0D
rcall serout ;sends carriage return via USART
;clear overflows from RAM:
clr overrun
ldi xh,high(masterrise)
ldi xl,low(masterrise)
st x, overrun
ldi xh,high(masterfall)
ldi xl,low(masterfall)
st x, overrun
ldi xh,high(masterrise2)
ldi xl,low(masterrise2)
st x, overrun
ldi xh,high(masterfall2)
ldi xl,low(masterfall2)
st x, overrun
ldi xh,high(slaverise)
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ldi xl,low(slaverise)
st x, overrun
ldi xh,high(slavefall)
ldi xl,low(slavefall)
st x, overrun
out SREG, temp3 ;restore status register
ret ;return
;——————————————————————
serout: ;sends single bytes to the USART
sbis UCSR1A,UDRE1 ;wait until USART is ready for next byte
rjmp serout ;waiting loop
out UDR1, trans1 ;write to USART data register

ret ;return to calling routine

;——————————————————————–
HexInASCII:
in temp3, SREG
cli
ld temp1,z ;overflow of the respective peak/edge
ld temp2,x+ ;highbyte of ICR
ld temp4,x+ ; lowbyte of ICR
rcall HexInASCIIa ; adds ASCII offset to overflow
mov temp1,temp2
rcall HexInASCIIa ; adds ASCII offset to both nibbles of high byte
mov temp1,temp4
rcall HexInASCIIa ;adds ASCII offset to both nibbles of low byte
out SREG, temp3 ;restore status register
ret ;return to calling routine

HexInASCIIa:
mov umw1,temp1 ;copy result to umw1
swap umw1 ;swap nipples
cbr umw1,$F0 ;delete higher half byte
subi umw1,-$30 ;add ASCII offset to number
cpi umw1,$3A ;ASCII-code > $39 ($39 = ’9’)?
brlo AH1 ;jump, if not
sbci umw1,-$07 ;add additional offset for letter
AH1:
mov umw2,temp1 ;copy character to umw2
cbr umw2,$F0
subi umw2,-$30
cpi umw2,$3A
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brlo AH2
sbci umw2,-$07
AH2:
st z+,umw1 ;save ASCII character to RAM and increase pointer (ASCII-codes of hex
number in umw1:umw2)
st z+,umw2
ret
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

EXT_INT1: reti ; IRQ1 Handler
EXT_INT2: reti ; IRQ2 Handler
PC_INT0: reti ; PCINT0 Handler
PC_INT1: reti ; PCINT1 Handler
TIM3_COMPA: reti ; Timer3 CompareA Handler
TIM3_COMPB: reti ; Timer3 CompareB Handler
TIM2_COMP: reti ; Timer2 Compare Handler
TIM2_OVF: reti ; Timer2 Overflow Handler
TIM1_COMPA: reti ; Timer1 CompareA Handler
TIM1_COMPB: reti ; Timer1 CompareB Handler
TIM1_OVF: reti ;not used, overflow handled by TIM3_OVF
TIM0_COMP: reti ; Timer0 Compare Handler
TIM0_OVF: reti ; Timer0 Overflow Handler
SPI_STC: reti ; SPI Transfer Complete Handler
USART0_RXC: reti ; USART0 RX Complete Handler
USART1_RXC: reti ; USART1 RX Complete Handler
USART0_UDRE: reti ; UDR0 Empty Handler
USART1_UDRE: reti ; UDR1 Empty Handler
USART0_TXC: reti ; USART0 TX Complete Handler
USART1_TXC: reti ; USART1 TX Complete Handler
EE_RDY: reti ; EEPROM Ready Handler
ANA_COMP: reti ; Analog Comparator Handler
SPM_RDY: reti ; Store Program Memory Ready Handler
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A B

Primer on Resonator Optics

In its simplest implementation, an optical resonator consists of two highly reflective
mirrors facing each other. We use optical resonators that consist of one flat mirror and
one curved mirror.
The condition for mode matching between a Gaussian beam and an optical resonator
of given length and mirror curvature will be given in this section. There is a simple sta-
bility criterion that has to be obeyed when designing an optical resonator. The optical
characteristics are determined by the finesse and the free spectral range. Finally, one
has to consider the spectral position of unwanted non-Gaussian higher modes. These
should not overlap spectrally with the Gaussian modes in order to avoid influences on
the Gaussian modes’ line profile.

A very nice introduction to resonator optics is given in the book by Saleh and
Teich [Sal91]. Light is coupled into the resonator through one of the mirrors and is
then reflected back and forth between the two mirrors. During one resonator round trip
the light acquires a certain phase depending on the distance between the mirrors. If the
phase acquired during one round trip is a multiple of 2π, constructive interference can
occur with each round trip and the intensity in the resonator builds up. The resonance
condition means that the resonator length must be equal to an integer multiple of the
half wavelength.
The resonators we use are composed of one flat and one curved mirror. Such a system
can be analyzed most conveniently in the framework of Gaussian beam optics. A
Gaussian beam is characterized by its Gaussian intensity distribution:

I(ρ, z) = I0

[
W0

W(z)

]2

exp
[
−

2ρ2

W2(z)

]
(B.1)

where ρ is the radial distance from the axis of propagation and z is the coordinate
along this axis with the focus defining the zero position. W0 is the radius or waist of
the Gaussian beam in the focus and W(z) is the width as a function of the axial distance.
W(z) increases with distance from the focus on a scale set by the characteristic range,
the Rayleigh range z0:

W(z) = W0

1 + (
z
z0

)21/2

. (B.2)

The Rayleigh range is related to the beam waist radius by

z0 = π
W2

0

λ
. (B.3)
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In a Gaussian beam, the wavefronts are plane for z = 0, that is in the focus, which
means that the radius of curvature is infinite. The radius of curvature of the wavefronts
evolves with z according to the relation

R(z) = z +
z2

0

z
. (B.4)

For spherical mirror resonators, equation B.4 is important because the idea is to match
the curvature of the wavefronts to the curvatures R1 and R2 of the mirrors at positions
z1 and z2 separated by a distance d = |z2 − z1|.
A short calculation yields the Gaussian beam’s Rayleigh range required for mode
matching between a given resonator and a Gaussian beam:

z2
0 =
−d(R1 + d)(R2 + d)(R1 + R2 + d)

(R1 + R2 + 2d)2 . (B.5)

For a given wavelength, the Rayleigh range fully characterizes the beam and the beam
radii at the mirrors are

Wi = W0

1 + (
zi

z0

)21/2

, i = 1, 2. (B.6)

In order for z0 to be real as required for a confined solution that represents indeed a
Gaussian beam, z2

0 from equation B.5 must be greater than zero. This condition can
be restated in order to give a useful expression for the confinement condition for an
optical resonator:

0 ≤
(
1 +

d
R1

) (
1 +

d
R2

)
≤ 1. (B.7)

The quantity
(
1 + d

Ri

)
is often abbreviated as gi. The confinement condition then be-

comes 0 ≤ g1g2 ≤ 1.
The resonators used here consist of one spherical mirror with radius of curvature R =
-250 mm, where the minus sign indicates concave curvature, and one flat mirror with
R = ∞ at a distance of d = 100 mm. The value of the confinement parameter is there-
fore g1g2 = 0.6.
An important quantity that characterizes an optical resonator is the finesse F. The fi-
nesse is a measure of contrast of the resonator. If the finesse is high, the resonances are
sharp peaks. Put more quantitatively, the finesse is related to the round trip amplitude
attenuation factor r according to

F =
π r1/2

1 − r
(B.8)

The amplitude attenuation factor r stems from mirror reflectivity below 100% and from
absorption in the medium. The intensity attenuation factor is r2.
We are using mirrors with an intensity reflection coefficient of 99.7%. Reflection on
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two mirrors yields a round trip intensity attenuation factor of 0.9972 and correspond-
ingly a round trip amplitude attenuation factor of 0.997. The calculated finesse F is
therefore 1046. The finesse has important implications for the spectral width δν of the
cavity resonances:

δν ≈
νF

F
f or F � 1. (B.9)

As will be discussed in the next section, νF is the spectral spacing between two adjacent
resonances of the optical cavity. A high finesse assures spectrally narrow resonances.
For νF = 1.5 GHz as used in the present study a finesse of 1000 yields resonances with
a full-width-half-maximum (FWHM) width of 1.5 MHz.

Resonator Modes

The phase of a Gaussian beam is

ϕ(ρ, z) = kz − ζ(z) +
kρ2

2R(z)
(B.10)

where ζ(z) = tan−1(z/z0). All points on a wavefront by definition share the same phase,
and, due to the mode matching condition, at the position of the mirror the curvature of
the wavefronts equals the curvature of the mirror. Therefore, all points on the mirror
share the same phase. As the beam propagates from mirror 1 to mirror 2, the phase
changes by

∆ϕ = kd − ∆ζ (B.11)

where ∆ζ = ζ(z2) − ζ(z1), zi indicating the position of mirror i. The condition that the
beam must retrace itself for constructive interference with each roundtrip implies that
the round-trip phase change must be equal to an integer multiple of 2π, i.e. 2kd−2∆ζ =
2πq, q = 0,±1,±2, . . .
With k = 2πν/c and νF = c/2d, the condition for the resonance frequencies νq of the
resonator becomes

νq = qνF +
∆ζ

π
νF . (B.12)

Adjacent modes are spaced by νF = c/2d. Therefore, the quantity νF is called the “free
spectral range”, often abbreviated as “FSR”. The free spectral range is an important
characteristic of the resonator.
Similar to the Gaussian modes, there are further solutions to the equation that un-
derlies beam optics, namely the paraxial Helmholtz equation, that retrace themselves
after each round trip in the resonator. These are the Hermite-Gaussian modes with
resonance frequencies νl,m,q according to

νl,m,q = qνF + (l + m + 1)
∆ζ

π
νF , (B.13)

where the integers (l,m) characterize the intensity distribution of these so-called trans-
verse or higher modes. The (0, 0)-mode is identical to the Gaussian mode discussed
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above. Different values for q designate different longitudinal modes.
The significance of equation B.13 for designing an optical resonator lies in the fact
that none of the first few higher modes should coincide with the (0, 0)-mode since
this would result in a distortion of the (0, 0)-resonance. A configuration where all the
higher modes are brought into degeneracy with the Gaussian mode is called confocal
resonator.
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A C

Alignment Instructions for Wavemeter

The following section gives quick and easy instructions to adjust a Michelson waveme-
ter of the type we use in the present study, see section 4.1.3. The setup is illustrated in
figure 4.4. The aim is to have both arms of the interferometer adjusted in such a way
that the beams travel exactly parallel to the rail, which means that the beams do not
alter their direction when the slide is moving. In addition, both beams must be super-
imposed on the beamsplitter and the photodiodes. Mirrors are designated m1 through
m7 as indicated in figure 4.4.

The reference beam is collimated with a C220 TM-B lens from Thorlabs with
focal length f = 11 mm and 5.5 mm clear aperture. The resulting waist W0 is ∼ 1
mm, resulting in a Rayleigh range of z0 ' 3.7 m. Mirrors m1 and m2 couple the
reference laser into the interferometer. In a first step, they are adjusted so that the beam
runs parallel to the base of the wavemeter and roughly parallel to the rail. The beam
should hit the beamsplitter in its upper portion to leave enough room for the returning
beam that travels 10 to 15 mm below. The beam transmitted through the beamsplitter
hits mirrors m3, m4 and the retroflector. Mirrors m3 and m4 should be adjusted such
that the beam hits the retroflector slightly above the center and returns to these same
mirrors and the beamsplitter below the original beam. With the air flow for the rail
turned on, one can move the slide from one end of the rail to the other and adjust the
mirrors in such a way that the beam does not change its position when the slide is
moved. To accomplish this, it is useful to block the slide in one position and adjust one
mirror, then move the slide to the other extreme of the rail and adjust the other mirror.
When the slide is near m4, adjust m3; when the slide is near m7, adjust m4. Once
the beam does not move appreciably any more, the second arm of the interferometer
can be adjusted. There is one additional mirror m5 in this arm. The procedure is the
same as for the first arm of the interferometer. When the slide is near m7, the two
mirrors m5 and m6 should be adjusted, when the slide is near m4, mirror m7 should
be adjusted. With each iteration cycle, one can switch between m5 and m6. After this
coarse adjustment, a 4-quadrant-photodiode (4Q-PD) is helpful for the fine tuning. The
X- and Y-outputs of such a photodiode reflect the deviation of the beam position from
the center of the device and can be used conveniently to visualize the beam position
on an oscilloscope. Place the 4Q-PD at the position of the lambdameter’s detection
photodiodes and repeat the same procedure as outlined for the coarse tuning. Once the
reference laser is adjusted in this way, the “reference” photodiodes of the wavemeter



C Alignment Instructions for Wavemeter

should give an interference signal of constant contrast along the whole length of the
rail. If the contrast of the interference signal changes when the retroflectors move,
adjustment is not optimal. After adjustment of the reference beam, the beam beam to
be measured is coupled into the wavemeter by coupling the reference laser into the
fiber that delivers the spectroscopy light. The fiber collimator of this fiber is adjusted
to give a collimated beam at the wavelength of the spectroscopy laser.
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A D

Circuit Diagrams

D.1 Temperature Stabilization of Optical Resonators

Figure D.1: Temperature measurement bridge: Prestabilization resonator, inner tempera-
ture stabilization: R1 = 80 KΩ || 1 MΩ, R2 = R3 = 100 KΩ, Rgain = 100 Ω, gain 500. Presta-
bilization resonator, outer temperature stabilization: R1 = 100 KΩ || 1 MΩ, R2 = R3 = 100
KΩ, Rgain = 100 Ω, gain 500. Scan lock resonator: R1 = 80 KΩ || 1 MΩ, R2 = R3 = 100
KΩ, Rgain = 249 Ω, gain 200. All resistors used are precision resistors (0.1% tolerance).
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Figure D.2: Power stage of temperature PID servo.
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D.2 Comparator Circuits

D.2 Comparator Circuits
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D.3 High-Voltage DC-DC Converter
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