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Abstract

In this habilitation-thesis a collection of 14 experiments is presented. In
these experiments we have developed and used novel techniques to control
ultracold gases on the quantum level.

In brief, Bose-Einstein condensates (BEC) and degenerate Fermi gases
of laser-cooled alkali atoms are subjected to specially designed optical and
magnetic fields. The fields influence in a coherent way the behavior, proper-
ties and dynamics of the gases. On this basis we developed tools to prepare,
coherently manipulate, and analyze pre-defined quantum states. With this
high level of control, it was possible to investigate interesting physics phe-
nomena, and we were able to achieve several breakthroughs in the field of
ultracold atoms.

Highlights of our experimental results include the demonstration of phase
engineering of a BEC wavefunction where we created solitons in a BEC and
studied their propagation. In another experiment we constructed a spatially
resolved matter wave interferometer with which we mapped out the phase
distribution on a condensate. Illuminating the BEC with a periodic pattern,
i.e. an optical lattice, allowed us to study solid states physics phenomena.
In a second set of experiments we demonstrated optically tuning of the inter-
action between atoms with optical Feshbach resonances. Employing either
magnetically tunable Feshbach resonances or laser radiation, we were able to
produce ground state molecules in well defined quantum states. This led to
the production of the first molecular BEC. By tuning the coupling of atom
pairs in a Fermi gas of atoms, we could for the first time investigate the
so-called BEC-BCS crossover which describes the continuous change from a
BEC superfluid to a Bardeen-Cooper Schrieffer (BCS) superfluid.

Due to the excellent control on the quantum level, the developed cold
atom techniques open up intriguing prospects for future applications and
experiments. They represent a general tool box to investigate fundamental
physical phenomena in a pure and undisturbed environment. In the future,
cold atoms might serve as a testing ground for fundamental theories or as
quantum simulators for complex systems.
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Chapter 1

Introduction

When laser cooling of neutral atoms was first demonstrated in the early
1980’s, the handful of researchers at that time could not have possibly imag-
ined the size to which their field would grow within a few years. Initially
proposed as a tool for high precision spectroscopy and as a means to build
a new generation of atomic clocks, laser cooling has also led to new devel-
opments and research well beyond the field of atomic, molecular and optical
physics. The importance of these developments has been widely accredited.
In 1997 Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips were
awarded the Nobel prize for laser cooling. In 2001 Eric Cornell, Wolfgang
Ketterle and Carl Wieman shared the Nobel prize for Bose-Einstein conden-
sation of dilute atomic gases.

Ultracold atoms are now being used as a key technology to investigate
such diverse fields as condensed matter physics, plasma physics, physics
of chaos and quantum information. Highlights of condensed matter ex-
periments with ultracold atoms include Bose-Einstein condensation (BEC)
[And95, Bra95, Dav95], Bloch oscillations [Dah96, Mor01, Den02], quantized
vortices [Mad00, Abo01, Ino01], quantum phase transitions [Jak02, Gre02]
and low dimensional states of matter, e.g. the Tonks-Girardeau gas
[Par04, Kin04]. Non-linear phenomena such as four-wave-mixing for matter
waves in a BEC can be studied [Deng99b]. Ultracold neutral atoms can be
used to study entanglement [Jak99, Man03], and proposals for quantum infor-
mation processing schemes look encouraging (e.g. [Bri00, Cal03]). It has been
even suggested that BEC could be used to simulate astro-physical processes
connected to black holes and the expansion of the universe [Fed03, Che05].
Employing ultracold atoms has not only led to the construction of the most
precise clocks (e.g. [Gib93, Kat03]) but also to very sensitive detectors for
rotation and gravitation which are based on matter wave interferometry
[Gus97, Sna98]. By ionizing ultracold atomic gases, it is also possible to
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produce plasmas in the strongly coupled regime [Kil99]. Finally, the recent
achievement to produce ultracold molecules out of degenerate atomic gases
opens new avenues for quantum chemistry (e.g. [Don02, Her03, Reg03]).

The success of the ultracold gases is largely based on the very high degree
of control we have gained over the atoms in recent years. We have learned
how to manipulate the internal and external degrees of freedom of the atoms
on the quantum level using light fields, radio frequency and magnetic fields.
We can prepare the atoms in a single quantum state and trap them, so that
they are well isolated from the outside world. This leads to long coherence
times and allows for studying the coherent dynamics of the atomic ensemble
in a pure environment. Finally, with the help of Feshbach resonances we have
also recently learned to control the interaction between atoms.

Together with my collaborators I have contributed to a number of these
developments in recent years. This habilitation thesis is a compilation of
original research papers describing experimental research work which was
carried out within the last 6 years in Prof. William D. Phillip’s group at
the National Institute for Standards and Technology (NIST), Gaithersburg
(Maryland) and in Prof. Rudolf Grimm’s group at the Institut für Experi-
mentalphysik, Universität Innsbruck. The experiments at NIST where per-
formed with a sodium BEC during a two-year postdoc. My work in Innsbruck
can be grouped into two projects: an experiment with an ultracold fermionic
lithium gas and a rubidium BEC experiment which was set up from scratch.
One unifying theme of our research is the development of control and analysis
tools in order to manipulate atomic and molecular quantum degenerate gases
on the quantum level. By applying these methods in experiments, novel and
fundamental physics phenomena can be studied and observed in a very direct
manner.

The thesis is organized as follows. In chapter 2, a brief overview of the
basic concepts of ultracold degenerate quantum gases is given. Also, the
key experimental methods to produce and work with ultracold gases are
described. This chapter has tutorial character and is intended for the general
reader.

Chapter 3 demonstrates methods for controlling and manipulating the
wavefunction of a BEC with specially designed light fields. Pulsed optical lat-
tices can be used to build coherent matter wave beam-splitters and spatially
resolved matter wave interferometers. We have used these interferometers to
study a temporal Talbot Effect for matter waves [Den99], and to measure the
distribution and the dynamical evolution of the quantum mechanical phase
of a BEC wavefunction [Den00, Sim00]. With spatially designed light fields
we demonstrated phase engineering of the BEC wavefunction and generated
dark soliton waves in a condensate [Den00]. Optical lattices represent an ex-
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cellent environment to study solid state physics. In [Den02] we have prepared
specific Bloch eigenstates of the lattice and investigated their coherent evolu-
tion after inducing coherent excitations. A BEC accelerator and a coherent
multi-photon beamsplitter was constructed [Den02]. In a 3D optical lattice
we have observed the Mott insulator phase transition which is an important
starting point for future experiments.

Chapter 4 discusses various methods to control the interactions between
the particles of the degenerate gas. These methods are based on the use
of magnetically or optically tunable Feshbach resonances. Such a scattering
resonance appears when a state of two colliding particles is resonantly coupled
to a molecular bound state. In [Joc02] we observe such a Feshbach resonance
for 6Li as previously predicted by [Hou98]. By changing the magnetic field
we can continuously tune and control the interaction between the lithium
atoms. In two following articles [The04, Tha04] we demonstrate for the first
time a novel optical scheme to tune the inter-particle interaction. This so-
called optical Feshbach resonance is based on laser light coupling the colliding
atoms to a molecular state. The atomic interaction can be tuned by changing
the power and detuning of the laser.

In Chapter 5 we discuss experiments which are linked to the production
of ultracold dimer molecules out of an ultracold gas of atoms. We apply
two methods. One method uses photoassociation, where laser light ‘fuses’
two atoms into one molecule [McK02, Win05]. The appearance of a novel
atom-molecule dark state indicates the formation of a BEC-like molecular
quantum gas [Win05]. Our second method to produce ultracold molecules
is based on three-body recombination close to a Feshbach resonance. In an
inelastic collision of three atoms, two atoms combine to form a ground state
molecule and the third atom takes care of energy and momentum conser-
vation. The formation rate can be controlled via a magnetically tunable
Feshbach resonance [Joc03b].

The topic of Chapter 6 is the BCS-BEC crossover where we study a su-
perfluid gas of paired fermionic atoms in various coupling regimes. In the
two limiting cases of strong and weak coupling, atom pairs correspond to
molecular dimers and Cooper pairs, respectively. Starting out in the strong
coupling limit, we have produced the world’s first molecular Bose-Einstein
condensate [Joc03a] simultaneously with that from [Gre03]. In a next step,
we have converted this molecular condensate into a degenerate gas of paired
fermions [Chi04a]. The paired fermions are similar to Cooper pairs in su-
perconductors as described by the Bardeen-Cooper-Schrieffer (BCS) theory.
In [Chi04a] we have been able to measure the binding energy of the Fermi
pairs using radio frequency. Using a Feshbach resonance it is possible to
continuously tune from the BEC to the BCS regime. This is called the
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BEC-BCS crossover. We have employed several methods to investigate this
crossover: studying the cloud size [Bar04c], collective oscillations [Bar04b]
and measuring the pair binding energy [Chi04a]. These measurements pro-
vide interesting information about the state of the gas, e.g. whether it is
superfluid or thermal.

Finally, chapter 7 gives a short summary of the work presented here and
an outlook for future directions.

The reprinted research papers of each chapter are preceded by an in-
troduction to the theoretical concepts and experimental methods. We also
discuss how our work relates to the research of other groups worldwide.
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Chapter 2

Ultracold degenerate quantum
gases

This chapter is a brief review for the general reader on the properties of
ultracold degenerate bosonic and fermionic gases and how to actually produce
them in the laboratory. In addition to some historic background information,
these tutorials present the essentials in order to understand the following
research articles.

2.1 Bosons and Fermions

Since the early days of quantum mechanics, it has been known that particles
can be classified depending on the their collective properties in two groups:
fermions and bosons. Fermions and bosons are characterized by half integer
and integer spins, respectively. In the experiments described here we worked
with the alkali atoms 87Rb, 23Na and 6Li, where 87Rb and 23Na are bosons
and 6Li is a fermion. As a consequence of the indistinguishability of identical
particles and the symmetry of their wavefunctions, the quantum statistic
behavior of bosons and fermions is quite different. The antisymmetry of the
fermion wavefunction under particle exchange gives rise to the Pauli exclusion
principle: two identical fermions can not exist in the same quantum state.
This is not true for bosons. Putting two identical bosons into the same
quantum state is even ‘Bose enhanced’, leading ultimately to Bose-Einstein
condensation. A Fermi gas, however, can at best form a Fermi sea where all
the lowest quantum states are filled up to the Fermi energy (see Fig. 2.1).
Quantum statistical effects of Fermi and Bose gases become visible, when the
wave packets of the individual particles start to overlap, i.e. the phase space
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trap

bosons fermions

E
F

Figure 2.1: (left) At zero temperature bosons are fully condensed in a single
macroscopic matterwave, the Bose-Einstein condensate. (right) Fermions, on
the other hand, form a Fermi sea filling the trap potential up to the Fermi
energy EF .

density becomes sizeable,

λ3
dB n ≥ 1. (2.1)

Here λdB =
√

2πh̄2/mkBT is the thermal de Broglie wavelength, n is the
density of the gas, T is its temperature, and kB is the Boltzmann factor.
Experimentally we reach these high phase space densities by confining the
atoms in a trap and using various procedures to cool the ensemble down
below µK temperatures.

There is an extensive literature covering degenerate gases and quan-
tum statistics. For an in depth introduction I recommend the textbooks
by Pitaevski and Stringari [Pit03], Pethick and Smith [Pet02] and Huang
[Hua63].

2.1.1 Interaction of ultracold particles

In our experiments the effective interactions between particles are mediated
through collisions. These collisions are described by scattering theory of
which here only a few main results are summarized. For a thorough treatment
the reader has to be referred to the literature, e.g. [Jul92, Dal99b, Wei99].

Collisions and interactions between the atoms are of central importance
for our research. As we will show later, by controlling the interaction between
the particles we can create molecules, molecular condensates, and investigate
strongly coupled Fermi pairs. The interactions give rise to various collective
phenomena of the quantum gases which we study. On a practical side, we
use elastic collisions for evaporative cooling of our atomic and molecular
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Figure 2.2: Schematic of the effective potential of the 1D radial Schrödinger
equation. a) The situation for s-wave scattering. b) For l > 0 a centrifugal
barrier h̄2l(l + 1)/2mrr

2 is added. If the collision energy E is much lower
than this barrier, collisions are suppressed.

gases. At the same time, inelastic collisions leading to trap loss have to be
minimized.

We consider the collision of two particles with a spherically symmetric
interaction potential V (r). Angular momentum is then a conserved quantity
and we can diagonalize the scattering problem into partial waves, i.e. states
with well defined angular momentum l. These partial waves ψl are described
by a one-dimensional (1D) Schrödinger equation[

∂2

∂r2
+ k2 +

2mr

h̄2 V (r) +
l(l + 1)

r2

]
ψl(r) = 0, (2.2)

where r is the interparticle distance, mr is the reduced mass of the collision
partners and h̄k is the collision momentum. As can be seen from Eq. 2.2,
the higher partial waves experience an effective potential which includes a
repulsive centrifugal barrier Veff = V (r) + h̄2l(l+ 1)/(2mrr

2). An illustration
of this is shown in Fig. 2.2. If the collision energy is much lower than this
barrier, particles with angular momentum l > 0 cannot reach the inner part
of potential V (r) and as a consequence do not interact. As an example,
lithium has a l = 1 centrifugal barrier of kB × 7mK [Jul92]. Thus in general
for typical experimental temperatures in the µK regime only l = 0 partial
waves (s-waves) contribute to scattering.

One can show [Jul92, Dal99b, Wei99] that in this low temperature limit
the scattering process is described by a single number: the scattering length
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a. Typical s-wave scattering lengths for alkali atoms are on the order of 10
- 100 a0 (1 a0 = 1 Bohr = 0.529×10−10m.). From the scattering length we
can calculate the scattering cross section σ,

lim
k→0

σ = 4πa2. (2.3)

This relation can be extended to higher collision energies through σ =
4πa2/(1 + k2a2). If k2a2 � 1, we recover the zero-energy limit in Eq. 2.3,
whereas the limit k2a2 � 1 yields the so-called unitarity limit σ(k) = 4π/k2,
which is the maximum possible cross section for s-wave collisions. For the
above considerations we assumed that the two colliding particles were distin-
guishable, which is not the case if one considers identical particles. In this
case, two scattering amplitudes interfere (see [Dal99b]). This leads to an ex-
tinction of the scattering cross section for the symmetric even partial waves
in the case of fermions and of the symmetric odd partial waves in the case
of bosons. The cross sections for the remaining partial waves are doubled.
Thus the cross section for identical bosons reads σ = 8πa2.

Mean field interaction

We now consider a particle in a dilute, weakly interacting gas (a3n � 1) at
sufficiently cold temperatures so that only s-waves contribute to scattering.
The interaction through the collisions gives rise to a mean interaction energy
which can be considerably larger than the thermal energy of the system.
Applying the Born approximation, one can derive a simple expression for
this effective mean field potential Vmf [Pit03],

Vmf =
4πh̄2a

m
n. (2.4)

If we deal with identical, noncondensed particles, this mean field interaction
has to be multiplied by a factor of two due to exchange symmetry [Gri96].
Expression (2.4) is of central importance for all following chapters.

2.1.2 Dilute Bose-Einstein condensates

The theoretical prediction of Bose-Einstein condensation dates back 80 years.
Following the work of Bose on the statistics of photons [Bos24], Einstein con-
sidered a gas of non-interacting, massive bosons. He concluded, that below a
certain temperature a certain fraction of the total number of particles would
occupy the the lowest-energy single-particle state [Ein25]. Bose-Einstein con-
densation is a quantum statistical effect which takes place even in the absence
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of interparticle interactions. In this case the occupation number Ni of the
quantum states with energy εi is determined by

Ni =
1

exp [(εi − µ)/kBT ]− 1
, (2.5)

where µ is the chemical potential [Pit03]. Since Fritz London in 1938, it is
known that superfluid liquid 4He is a Bose-Einstein condensate. However, the
strong interaction between the 4He atoms depletes the condensate which can
be problematic for certain applications and investigations. This led to the
search for BEC in weakly-interacting Bose gases which was finally achieved
in 1995 with dilute gases of alkali atoms in the groups of E. Cornell, C.
Wiemann, W. Ketterle and R. Hulet [And95, Dav95, Bra95]. Stemming
from this discovery, a new branch of cold atom physics grew very fast and
this compilation gives account of some of these developments.

We will now list a few facts about BEC which are important for the fol-
lowing chapters. A full account can be found in the following books and
review article, respectively [Pit03, Pet02, Dal99a]. Bose-Einstein condensa-
tion sets in when the phase space density λ3

dB n of a gas which is held in a
harmonic trap reaches ≈ 1.2. For a pure condensate all atoms are in the
same quantum state ψ and the overall wavefunction Ψ is a product state

Ψ = ψ(rN , t) ψ(rN−1, t) . . . ψ(r2, t) ψ(r1, t). (2.6)

Within the mean field approximation the wavefunction ψ is a solution of a
non-linear Schrödinger equation, the so-called Gross-Pitaevskii equation,

ih̄
∂

∂t
ψ(r, t) =

(
− h̄2

2m
∆ + V (r) + g |ψ(r, t)|2

)
ψ(r, t) (2.7)

which for a time independent case reads

µ ψ(r, t) =

(
− h̄2

2m
∆ + V (r) + g |ψ(r, t)|2

)
ψ(r, t). (2.8)

Here µ is the chemical potential and g = 4πh̄2a/m, as discussed before in
Eq. 2.4. It is conventional to normalize ψ to

∫
d3r|ψ|2 = N , the number of

atoms in the condensate.
Often the kinetic energy in the condensate is completely negligible com-

pared to the interaction energy. In this so called Thomas-Fermi regime, one
can rewrite Eq. 2.8 as

µ = V (r) + g n(r) (2.9)
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We can solve Eq. (2.9) for n(r) and find that it has the inverted shape of the
trapping potential. In the case of a harmonic trap, the BEC density distri-
bution looks like an inverted parabola. Eq. (2.9) can further be conveniently
used to calculate various quantities, as for example the chemical potential µ.
Using N =

∫
d3r n(r) we obtain for a harmonic potential V (r) = 1/2mω2r2

µ =
h̄ω

2

(
152N2a2 mω

h̄

)1/5

. (2.10)

2.1.3 The Fermi sea

The distribution of non-interacting fermions is described by the Fermi func-
tion

Ni =
1

exp [(εi − µ)/kBT ] + 1
, (2.11)

similar to Eq. 2.5 for bosons [Hua63, Pet02, Joc04]. At zero temperature,
the ensemble of fermions forms a so-called Fermi sea where each quantum
state is filled up to the Fermi energy EF = µ = kBTF . TF is called the Fermi
temperature. For an isotropic harmonic trap with trapping frequency ω and
N fermions one finds

EF = h̄ω(6N)1/3. (2.12)

As an example, 105 identical fermions harmonically trapped with a trapping
frequency ω = 2π× 100 Hz correspond to a Fermi energy of about 400nK. It
is useful to define a Fermi wavenumber kF =

√
2mEF/h̄. This wavenumber

can be expressed in terms of the density n,

kF =
(
6π2n

)1/3
. (2.13)

This shows that apart from a constant factor, the Fermi wave number cor-
responds to the mean inverse particle separation. In a local density approx-
imation we can write

h̄2k2
F (r)

2m
+ V (r) = µ. (2.14)

From Eqs. (2.13) and (2.14) we can then solve for the density distribution
n(r), similar as in the Thomas Fermi approximation for the Bose gas in Eq.
(2.9).

The Fermi temperature TF is a convenient temperature scale. If the gas
temperature exceeds TF , we essentially recover the behavior of a classical
Boltzmann gas. At T = TF the phase space density approaches unity and
quantum statistic effects begin to play a role. It is interesting to note, that the
physics of degenerate Fermi gases play an important role in our everyday lives
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even at ambient temperatures: not only does it determine the properties of
electric conductors. The Fermi pressure, due to the Pauli exclusion principle,
stabilizes neutron stars as well as all material objects around us against
collapse.

Still, it took until 1999, 4 years after BEC had been demonstrated, before
the onset of quantum degeneracy of a dilute Fermi gas could first be observed
by Deborah Jin’s group at JILA [DeM99b]. Subsequently other groups at
Rice, Paris and MIT, Florence, Duke, Innsbruck, Zurich and Hamburg have
also produced degenerate Fermi gases, and the field has seen a tremendous
development and success these last years. So far only the fermionic elements
6Li und 40K have been brought to degeneracy. One reason for this is that
fermionic atoms are less abundant than bosonic atoms, which can be traced
back to the odd-even effect in the pairing of nucleons in nuclei. A second
reason is that cooling fermions to coldest temperatures is more difficult than
for bosons due to Pauli blocking. As we have shown in chapter 2.1.1 at
very low temperatures identical fermions do not collide and therefore the
standard procedure of evaporative cooling does not work. The absence of s-
wave scattering in an ultracold Fermi gas was observed at JILA for a cold gas
of 40K [DeM99a]. The group was also able to measure how p-wave collisions
are frozen out according to σp ∝ E2.

In order to get around the reduction in evaporative cooling, one uses
mixtures of non-identical atoms, e.g. atoms in different spin states. S-
wave collisions between the non-identical atoms are allowed and lead to the
necessary thermalization of the atomic ensemble. For 6Li we use a 50-50
mix of the two lowest spin states which, at low magnetic fields, correlate to
F = 1/2,mF = ±1/2. We employ evaporative cooling in a scheme similar to
the one demonstrated at the group of J. Thomas [Gra02]. Another successful
method for cooling is to sympathetically cool fermions with bosons, which
can be cooled to BEC temperatures [Tru01, Sch01, Had02, Roa02].

Cooper pairing and superfluidity

The properties of the degenerate Fermi gas become really interesting when
interactions between the fermions are taken into account. For attractive
effective interactions between the fermions and low enough temperatures,
fermions can pair up to form a superfluid phase. This is in analogy to
Bardeen, Cooper and Schriefer’s (BCS) theory of superconductivity where
electrons in metals form bosonic Cooper pairs [Bar57]. The BCS theory suc-
cessfully describes Fermi systems with weak interactions, for which the mean
distance between paired atoms is much larger than the mean interparticle
spacing in the gas. Cooper pairing goes along with the formation of an en-
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ergy gap ∆0 in the single particle excitation spectrum which corresponds to
the binding energy of the Cooper pairs. ∆0 is given by [Pit03, Tin96]

∆0 =
1

2

(
2

e

)7/3

EF exp

(
− π

2kF |a|

)
, (2.15)

where a is the scattering length. The critical temperature TBCS for the tran-
sition to the BCS state is proportional to the gap energy at zero temperature
[Pit03],

TBCS = 0.57 ∆0/kB. (2.16)

In the weak coupling (BCS) limit, when kF |a| � 1, we can see from
Eqs. (2.15) and (2.16) that TBCS is a very small fraction of TF . High tem-
perature superconductivity, of which the theory still is not fully understood,
corresponds to a relatively strongly interacting Fermi system. Therefore this
strong coupling regime is currently of high interest to the superconductivity
community. As it is now possible to experimentally control the scattering
length a via Feshbach resonances, experiments in atomic quantum gases can
contribute to this research. Using ultracold atoms we can, for the first time,
explore pairing of fermions and superfluidity in the strong interacting limit,
a regime which has been called resonance superfluidity [Hol01, Oha02]. In
this limit, where −kF a � 1, the critical temperature can be quite high,
≈ 0.2 TF . Since such temperatures can be routinely achieved in current
experiments with fermionic atomic gases, resonance superfluidity should be
experimentally observable.

Universal regime

The regime of resonance superfluidity where kF |a| � 1, is also interesting
for another reason. Here the interactions are unitarity limited by the Fermi
momentum 1/kF . In this so-called universal regime the properties of the gas
become independent of any particularities of the atomic interaction proper-
ties [Hei01, Car03, Ho04] and interesting scaling laws appear. First investi-
gations of the universal regime were performed at Duke university [Har02a].
In chapter 6 we will discuss our own experiments.

BCS-BEC cross over

Coming from the weakly coupling BCS limit, the initially large Cooper-pairs
become increasingly localized and tightly bound as the interaction is in-
creased. Finally, for strong enough coupling, bosonic molecular dimers are
formed. The gas of fermions can then be treated as a gas of elementary bosons
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which can undergo Bose-Einstein condensation. In the zero-temperature
limit one can thus continuously go from a BCS superfluid of atoms to a
superfluid BEC of molecules by controlling the coupling between the parti-
cles. This so called BCS-BEC cross over has already been in the focus of
theorists for several decades [Eag69, Leg80, Noz85, Che04]. It can now, for
the first time, be investigated in our experiments (see chapter 6).

2.2 Key experimental methods

In this section we will briefly introduce the main experimental methods that
were used in all our experiments to create and observe the bosonic conden-
sates or the fermionic degenerate quantum gases. Because of lack of space,
only a short overview will be given. For more background information the
interested reader is referred the to the excellent book by H. Metcalf and P.
van der Straten [Met99]. Details about the laser systems and vacuum cham-
bers of the Innsbruck experiments can be found in the PhD theses by Selim
Jochim [Joc04], Markus Bartenstein [Bar04a] and Matthias Theis [The05].

2.2.1 Magneto-optical trap

The magneto-optical trap (MOT) has become the ‘workhorse’ in basically
every cold atom lab around the globe. Conceived by J. Dalibard, it was first
demonstrated in 1987 by E. Raab and collaborators [Raa87]. The MOT ro-
bustly laser cools thermal, room-temperature atoms down below mK temper-
atures and traps them. It consists of three red-detuned counter-propagating
pairs of laser beams along the orthogonal x, y, z directions in space and a
magnetic quadrupole field (gradient ≈ 10 G/cm).

Laser cooling uses Doppler-shift tuned radiation pressure from spon-
taneously scattered laser photons in a closed excitation scheme. It was
first proposed by Hänsch and Schawlow in 1975 [Hän75] and then ap-
plied for neutral atoms in the beginning of the 80’s. For a review see
[JOSA, Chu98, Coh98, Phi98]. Typical MOTs can capture up to 1011 atoms
in a mm-sized cloud at densities of about 1011cm−3. The lowest reachable
temperatures are in general bound by the Doppler limit,

TD =
h̄γ

2kB

, (2.17)

where γ is the linewidth (typ. γ ≈ 2π × 6MHz) of the excited atomic level.
Correspondingly, the achievable phase space densities reach only 10−6 which

13



is still far away from degeneracy! In order to reach quantum degeneracy, cool-
ing and trapping schemes without spontaneous light scattering are necessary
which are described in the following.

2.2.2 Conservative traps

There are mainly two types of conservative traps for cold atoms: magnetic
and optical dipole traps. These traps are typically only 1mK deep and thus
can only trap atoms which have been previously laser cooled, e.g. in a MOT.

Magnetic traps

An atom with a magnetic moment ~µ feels a force ~F in an inhomogeneous
magnetic field ~B as demonstrated in 1924 in the Stern-Gerlach experiment.

~F = ~∇(~µ · ~B) = gF µB mF
~∇B, (2.18)

where gF is the g factor, µB is the Bohr magneton and mF is the magnetic
quantum number of the atom. For gF mF < 0 the atom is a ‘low field seeker’,
being attracted to magnetic field strength minima. Various such magnetic
fields with local minima exist and the corresponding traps carry different
names. In our experiments we have used magnetic quadrupole traps [Ber87],
a Ioffe trap [Ber87] in the QUIC configuration [Ess98] and the TOP trap
[Pet95]. Ioffe and TOP traps exhibit a non-zero magnetic field minimum,
which is essential to prevent the so-called Majorana losses of atoms through
spin flips. Close to this field minimum their trapping potential V (r) is ap-
proximately harmonic

V (r) = V (x, y, z) =
m

2

(
ω2

x x
2 + ω2

y y
2 + ω2

z z
2
)
. (2.19)

Typical trapping frequencies ωi range between 2π × 10 · · · 200 Hz.

Optical dipole traps

Optical dipole traps are versatile tools to confine ultracold atomic and molec-
ular gases independent of their spin state [Gri00]. They rely on the electric
polarizability of the particles in the light field, not on spontaneous scatter-
ing of photons. If the laser frequency is tuned below the atomic resonance
frequency, the induced atomic dipole oscillates in phase with the laser field
and the resulting potential is attractive. Conversely, for blue detuning the
atomic dipole oscillates 180o out of phase and the potential is repulsive. This
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phenomenon is known as AC-Stark shift or light shift. The potential depth
is approximately given by [Gri00],

Vdip(r) = −3πc2

2ω3
0

(
γ

ω0 − ω
+

γ

ω0 + ω

)
I(r), (2.20)

where ω0 denotes the atomic resonance frequency, ω is the laser frequency,
I(r) is the laser intensity and γ is the excited state linewidth (typically
2π × 6MHz). The associated spontaneous photon scattering rate is

Γdip(r) = − 3πc3

2h̄ω3
0

(
ω

ω0

)3 ( γ

ω0 − ω
+

γ

ω0 + ω

)2

I(r). (2.21)

Note that the photon scattering rate is suppressed stronger than the trapping
potential as the laser frequency is tuned away from the atomic resonance.
Therefore, it is advantageous to work at very large detuning, if a low photon
scattering rate is desired.

Optical dipole traps were introduced by A. Ashkin in 1970 to hold di-
electric objects [Ash70] and were first applied to trap atoms in 1986 [Chu86].
Optical dipole traps are now ubiquitous in atomic physics as well as in optical
tweezer applications in biology [Dho02]. A simple dipole trap consists of a
focussed gaussian laser beam whose intensity varies as

I(r) = I0

(
w0

w(z)

)2

exp

(
−2(x2 + y2)

w2(z)

)
with w(z)2 = w2

0

(
1 + (z/z0)2

)
,

(2.22)
where w0 is the waist at the focus and z0 is the Rayleigh range. Around its
focus the resulting trap is again approximated by a harmonic potential. As
an example, we use a 10 W Yb-YAG laser in our Li experiment. Focussing
the beam to a about 20 microns, we achieve trapping frequencies in the kHz
range while keeping the spontaneous scattering rate at the Hz level [Joc04].

2.2.3 Evaporative cooling

Evaporative cooling can in principle produce arbitrarily low temperatures.
It is well known in our every day life as it cools our cup of coffee in the
morning and is used by our body when we sweat during sports. Evaporative
cooling was proposed by H. Hess in 1985 [Hes85, Hes86] as an efficient way
to cool trapped hydrogen atoms. After adapting it for alkali atoms in 1994,
evaporative cooling quickly led to Bose-Einstein condensation [And95, Bra95,
Dav95]. For a detailed review we refer the reader to [Ket96]. The main idea
behind evaporative cooling is to remove the high energy particles in the tail of
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Figure 2.3: a) Evaporative cooling. The hottest particles escape from the
trap. b) Forced evaporation. In order to keep the evaporation going the
potential ‘rim’ is lowered. c) Optical dipole trap based on a focussed gaussian
laser beam (transverse direction). d) Evaporative cooling in a magnetic trap
with radio-frequency.

the Maxwell-Boltzmann distribution in a thermal gas. Since the evaporating
particles carry away more than their share of thermal energy, the temperature
of the system decreases after re-thermalization through collisions. In the
experiments this is realized by holding the atoms in a trap of finite depth, so
that particles with higher energy than the trap depth escape (see Fig. 2.3 a).

In order to prevent the slow down of the evaporation process as the tem-
perature decreases, one uses ‘forced evaporation’ by lowering the potential
rim of the trap (Fig. 2.3 b). For an optical dipole trap this potential depth is
controlled via the light intensity (Fig. 2.3 c). For magnetic traps the depth is
set by radio frequency (rf) which induces resonant transitions to non-trapped
spin states (Fig. 2.3 d).

Evaporation can be made very efficient by choosing a large potential
depth, so that a few lost particles carry away a lot of energy. However,
there is a trade-off since increasing the depth slows down the evaporation.
This can be compensated by high collision rates in tight traps. A useful
theoretical model to understand the evaporation dynamics and efficiency is
given in [Lui96, Har01].

In our experiments with rf-evaporative cooling we typically lose 99% of all
magnetically trapped thermal atoms before we achieve degeneracy [Den00,
Tha04]. In contrast, in our fermionic lithium experiment where we use a
tight optical dipole trap, we achieve degeneracy after losing only about 80%
of the trapped atoms [Joc04]. The highly efficient evaporative cooling to
degeneracy with optical dipole traps was first realized by M. Chapman’s
group for the creation of a Rb BEC [Bar01] and by the group of J. Thomas
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Figure 2.4: Typical absorption imaging pictures of a 87Rb gas undergoing the
phase transition to Bose-Einstein condensation. Above: Raw images showing
the shadow cast by the atomic gas. Below: 3D and false color rendering of
the corresponding density distribution.

for the creation of a degenerate Fermi gas [Gra02].

2.2.4 Detection of atoms

Almost all our experiments end with a measurement of the atomic density
distribution n(r) which can be used to determine the number of atoms and
the temperature of the gas. In the case of a BEC, n(r) maps out the quantum
mechanical wavefunction in position or, after time of flight, momentum space.
We image the atoms with the well established absorption imaging technique
[Ket99]. The atoms are irradiated by a homogenous laser beam in z-direction.
They cast a shadow according to the column density ñ =

∫
n dz. According

to Beer’s law, the transmission of the light is given by I = I0 exp(−ñσ).
Here, σ is the absorption cross section which is a function of the wavelength
and the laser detuning. Absorption imaging can be sensitive enough to dis-
criminate between different spin states. It is, however, destructive and after
each image, a “fresh” condensate for further measurements has to be pre-
pared. There exists also a non-destructive imaging method [And96] based
on phase contrast imaging. This method was only used once in our exper-
iments when it was important to compare atom numbers in a BEC before
and after exposure to photoassociation light [McK02]. A typical resolution
for absorption imaging is on the order of 5 µm. We worked with exposure
times as short as 10 µs in order to prevent blurring of subtle patterns in the
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atomic density distribution.
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Chapter 3

Controlling matter waves with
potentials made of light

Far-detuned optical light fields are an excellent means to coherently manipu-
late and analyze states of degenerate quantum gases. When located in a light
field, the atoms of the gas experience a potential which is proportional to the
local light intensity (see Eq. (2.20) in chapter 2.2.2). Detuning far from res-
onance suppresses spontaneous scattering of photons, which otherwise would
lead to decoherence. By shaping these light fields in time and space, almost
any arbitrary potential can be created. The spatial resolution of the light
pattern is essentially diffraction limited. The light field potentials can form
interesting environments within which matter-wave dynamics can be studied.
Optical lattices, for example, allow for novel solid state physics experiments.
Furthermore, applying optical light fields in a pulsed manner provides a pow-
erful set of tools to control and manipulate the atomic wavefunctions. A lot
of these applications have already been used with non-degenerate gases in
the early days of laser cooling (for an overview see [Met99, Ber97, Ada94]),
i.e. before the advent of BEC. However, in combination with BEC their full
potential for coherent manipulation has become clear.

In the following three sections, various applications of light fields are
described: diffraction of atoms with pulsed light fields, phase engineering,
and emulation of solid state physics in optical lattices. With these methods
specific quantum states of matter are prepared and interesting physics can
be investigated. The corresponding original research papers are attached at
the end of the chapter.
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Figure 3.1: Diffracting atoms off an optical lattice. (left) The lattice imparts
momentum in multiples of the lattice vector to the atoms, which can be
observed after time of flight. (right) A moving lattice can resonantly couple
two momentum states. This so-called Bragg scattering can be used to build
a coherent beam splitter for atoms.

3.1 Diffracting atoms off optical lattices

We consider here the important case where a BEC is subjected to an optical
lattice for a short interaction time. Such an optical lattice can be constructed
simply by superimposing to counter-propagating laser beams, which results
in a standing light wave. The atoms experience a sinusoidal potential which
imparts momenta in multiples of the inverse lattice constant to the atoms.
This results in a diffraction of atoms by this optical lattice (see Fig. 3.1).
Bragg scattering is a special form of diffraction where (in general) a moving
lattice resonantly couples two momentum states. Bragg scattering is the basis
for several very useful tools in atom optics, e.g. coherent beam splitters for
matter waves and matter wave interferometers (see Fig. 3.2).

Historically, the first diffraction experiments with optical lattices were
performed in D. Pritchard’s lab at MIT (e.g. [Gou86, Mar88]) where a col-
limated beam of thermal sodium atoms impinged on a standing laser light
field. Since then extensive studies were carried out with thermal collimated
atom beams (for a review see [Ber00, Sen95]), laser cooled atoms [Kun97],
and BEC which was first diffracted in 1999 [Koz99]. A further development
lead to Bragg spectroscopy [Ste99] to measure the momentum distribution
in a condensate. As we will show in chapter 4, Bragg spectroscopy can also
be used as a fast method to measure the scattering length in a condensate
[The04]. Furthermore, Bragg diffraction was used to collide atomic mat-
ter waves with well defined momentum. This lead to beautiful experiments
demonstrating for example 4-wave mixing of matter waves [Deng99b] and
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Figure 3.2: Mach-Zehnder interferometer for atoms. By combining two Bragg
diffraction beam splitters (at time t = 0 and t = T1 + T2) and a Bragg
diffraction π-pulse which swaps the momenta of the wave packets, a matter
wave interferometer can be constructed. Depending on the relative phase
of the two interferometer arms, atoms leave the interferometer in port 1 or
2. Since we can spatially resolve the condensate wave packets, also phase
distributions across the condensate can be measured.

matter wave amplification [Ino99].

During my postdoc at NIST, we employed optical lattices to diffract
a sodium BEC in several experiments. In a first experiment [Den99], we
demonstrated a temporal analog of the well-known Talbot effect. Using a
pair of short exposures of an optical lattice onto a condensate, interferomet-
ric diffraction patterns were created which showed temporal periodic recur-
rences. In another set of experiments we combined two matter wave beam
splitters based on Bragg diffraction to build a Mach-Zehnder type interfer-
ometer for matter waves (see Fig. 3.2). The specialty of the interferometer
was that it could spatially resolve the condensate wave function. In this way
we were able to interferometrically measure the phase distribution on a con-
densate wave packet [Den00]. In a further development we mapped out the
evolution of the phase of a condensate wave packet [Sim00]. Here an inter-
ferometric autocorrelation measurement on the BEC was performed. This
scheme is analog to the “FROG” technique [Tre97] which is used to measure
the complete electric field of ultrafast laser pulses. We found that a released,
free evolving condensate in the Thomas-Fermi regime develops spatially a
quadratic phase distribution across its wave packet.
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Figure 3.3: Phase imprinting. By exposing a BEC wave function to an
off-resonant light field, phase patterns can be written onto the BEC. These
phase distributions can be read out via matter wave interferometry. Here we
spelled the word “NIST” on a sequence of condensates. On the upper right
the two ports of the interferometer are shown. The density distributions of
the two ports are complementary. The typical size of the condensate in the
images is about 60 µm.

3.2 Phase engineering with light

Using far off resonant light we can control the phase distribution of a BEC
wavefunction. The idea is to expose the BEC to pulsed off-resonant laser
light field pattern I(~r). The condensate experiences a spatially varying light
shift potential (see also Eq. (2.20))

U(~r) ∝ I(~r).

After a time t the BEC acquires a corresponding phase shift

φ(~r) = −U(~r)t/h̄.

This modifies the condensate wave function accordingly

Ψ −→ Ψ exp[iφ(~r)].

It is important that the pulse duration t is short enough that atomic motion
in the condensate is negligible during the pulse. In this limit the effect of
the pulse can be expressed as a sudden phase imprint. In principle, phase
imprinting can produce arbitrary phase distributions as determined by the
light field pattern. Ultimately the resolution of the light field patterned is
diffraction limited and is on the order of the laser wavelength. Figure 3.3
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Figure 3.4: Imprinting a azimuthally varying phase pattern (left) can be used
to create vortices. We have imprinted such phase patterns on a condensate.
After matter wave interferometry we obtained the characteristic fork patterns
for vortices (center). (right) The interference pattern without phase imprint.

shows a BEC onto which we phase imprinted letters from the alphabet. Us-
ing an interferometer similar to the one shown in Fig. 3.2 we converted this
“secret” phase-ink into a density distribution which can be read out with
absorption imaging. Phase imprinting allowed to excite dark solitons for the
first time in a BEC, as demonstrated by our group at NIST and the group of
W. Ertmer in Hannover [Den00, Bur99]. Dark solitons feature a characteris-
tic phase jump across their wave packet. By imprinting such a phase jump
onto a BEC, we could create such a soliton. Bright solitons also exist, which,
however, do not feature a phase jump. Such bright solitons were created in
2002 with a different method where the interaction between the condensate
atoms was tuned with the help of a Feshbach resonance [Kha02, Str02]. Phase
imprinting can also excite other interesting quantum mechanical states. For
example an azimuthally varying phase pattern could create quantized vor-
tices1 [Dob99, Den00]. We have imprinted such phase patterns (see Fig. 3.4)
at NIST and after consecutive interferometry we obtained the characteristic
fork patterns for vortices. However, the search for vortex holes via direct
imaging of the condensate was not successful since the density distribution
of the condensate was too agitated and turbulent. These experiments are un-
published. Vortex phase singularities were reported in 2001 by the Ketterle
group [Ino01].

1Vortices have been already successfully produced in atomic BECs, e.g. by stirring
[Mad00].
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superfluid

Mott insulator

Figure 3.5: Two different regimes for quantum mechanical ground states in
the lattice. The delocalized superfluid state can be attributed a phase and
exhibits coherence. The Mott insulator state has a well defined atom number
per lattice site and there is no phase relation between the different sites.

3.3 Solid state physics in optical lattice

Studying ultracold atoms in optical lattices has evolved into an incredibly
active and successful research field which investigates solid state physics. In
comparison to ordinary solid state systems like metals and crystals, opti-
cal lattices are essentially free of defects, are fully controllable, and can be
dynamically changed. Over the last 15 years, many research groups have
contributed to this research and as a consequence it will be impossible here
to give an overview of their achievements. Already before the advent of BEC
many fascinating effects like Bloch oscillations and the quantized lattice band
structure could be studied with laser-cooled atomic gases (for an overview
see [Jes96]). With BEC and degenerate Fermi gases at hand, the interest in
optical lattices has grown even more and many new groups have joined the
field.

Despite the multitude of experiments dealing with bosons, fermions or
mixtures in lattice systems with various dimensions, one can group the recent
experiments roughly into two categories. In the first category atoms are
coherently delocalized over many lattice sites, and the quantum states are
well described in a Bloch state basis. The second category corresponds to the
Mott insulator regime where atoms are localized at individual lattice sites
(see Fig. 3.5) and coherences between neighboring lattices are suppressed.

3.3.1 Bloch states in optical lattices

Bloch states are the single-particle eigenstates in a periodic environment. In
the band structure theory these eigenstates |n, q〉 are characterized by their
quasi-momentum q and the band index n and they can be expanded in a
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Figure 3.6: The Mott insulator state is a promising tool to create stable
ground state molecules via photoassociation and to perform quantum infor-
mation processing.

discrete plane wave basis

|n, q〉 =
∞∑

m=−∞
a(m)|m2h̄k + q〉, (3.1)

where 2k is the lattice vector and a(m) are the coefficients. These Bloch
states are delocalized over the lattice. Their wavefunction shows a well
defined phase relation between the lattice sites which is determined by
the quasi-momentum. When a BEC is loaded into an optical lattice, the
mean-field self-interaction of the condensate atoms will give rise to non-
linear effects. This can strongly affect the dynamics of the wave function
and has generated a lot of interest. The list of topics which were recently
investigated in the superfluid regime include experiments on Bloch oscil-
lations [Dah96, And98, Mor01, Den02, Pez04], gap solitons [Eie04], self-
trapping [Ank05], collective excitations [Mor03, For03, Sch04], patterned
loading [Pei03], dynamical instabilities [Fal04, Cri04, Sco04], Landau-Zener
tunnelling [Den02, Jon03] and Josephson junctions [Cat04].

In our work at NIST [Den02] we have studied in detail different loading
regimes of a BEC into an optical lattice in order to create specific Bloch
states. Various schemes were used to analyze these states in terms of mo-
mentum composition and band population. We showed how Bloch states
can be coherently transferred to other Bloch states in different bands and
quasi-momenta. For example, interband transitions can be excited via gen-
eration of appropriate side bands of the lattice lasers frequencies. We used
these interband transfers to investigate the band structure spectroscopically,
i.e. measure the energy gap between the lattice bands as a function of the
quasi-momentum. Finally using these techniques we built a BEC accelerator
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Figure 3.7: Quantum phase transition into the Mott insulator state. For high
enough lattice depths (≈ 15× photon recoil energy) the diffraction pattern
disappears, a signature for the localization of the atoms. The coherence
reappears by ramping down the lattice within a few ms (last two images).
Shown are experimental data from our experiment in Innsbruck. The lattice
was based on laser light at a wavelength of 830nm, far detuned from atomic
resonance of 87Rb.

and a novel, coherent, large-momentum-transfer beam-splitter. These exper-
iments were performed in the limit of negligible mean-field interaction of the
condensate.

3.3.2 The Mott insulator

The Mott insulator phase transition for ultracold atoms in optical lattices
was predicted in 1998 by Jaksch et al. [Jak98] in Innsbruck and was first
demonstrated by Greiner et al. [Gre02] in Munich. In a deep optical lat-
tice where tunnelling between the lattice sites is hampered and the atoms
experience a strong repulsive inter-particle potential, the quantum mechan-
ical ground state of the system is highly correlated and beyond the usual
mean-field description of BEC. This Mott insulator state exhibits a well de-
fined number of particles per lattice site which locally corresponds to Fock
states. Due to a gap in the excitation spectrum the insulator is insensitive to
perturbations below a certain threshold. Quite a large number of proposals
exist to use the Mott insulator to, e.g. study new quantum phases, real-
ize quantum information processing, entangle atoms, create stable ultracold
molecules and study disordered systems (see Fig. 3.6.

In December 2004 we have achieved such a Mott insulator phase transi-
tion in our lab in Innsbruck starting from a 87Rb condensate (4× 105 atoms)
in an optical lattice, see Fig. 3.7. We want to use the Mott insulator for two
lines of research. One goal is to create stable molecules in deeply bound vi-
brational states and possibly the vibrational ground state. If these molecules
are stable enough against inelastic collisions, then it should be possible to
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create a BEC of such deeply bound molecules by melting the Mott insula-
tor [Jak02]. Our second goal is to realize quantum information processing
schemes. The interesting proposal [Cal03] by Calarco et al. involves superlat-
tices, marker atoms, q-bit atoms and Feshbach resonances. Modulating the
superlattice moves the marker atoms which carry the quantum information
through the optical lattice. The quantum gates involve controlled collisions
of marker and q-bit atoms via Feshbach resonances. First promising steps
in the direction of quantum information processing with optical lattices have
been recently demonstrated by the group around I. Bloch and T. Hänsch
(Munich, Mainz) demonstrating coherent transport [Man03a] and entangle-
ment of atoms [Man03].
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3.4 “Generating Solitons by Phase Engineer-

ing of a Bose-Einstein Condensate”

J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark,
L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley, K. Helmer-
son,W. P. Reinhardt, S. L. Rolston, B. I. Schneider, and
W. D. Phillips

Science 287, 97-101 (2000)
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visualized on 15% denaturing polyacrylamide gels
using tricine buffer. All stable fragments larger than 2
kD were identified through NH2-terminal sequencing
and mass spectrometric analyses.

12. Mutant constructs were generated using standard
polymerase chain reaction–based cloning strategy,
and the identities of individual clones were verified
through double-strand plasmid sequencing. The
Smad-binding fragment from SARA (residues 665–
721) was overexpressed in Escherichia coli strain
BL21(DE3) as a glutathione S-transferase (GST)–fu-
sion protein using a pGEX-2T vector (Pharmacia) and
was purified by a glutathione sepharose 4B affinity
column. The MH2 domain from Smad2 (residues
241–467) was overexpressed in a pET3d vector (No-
vagen). The soluble fraction of Smad2 MH2 in the E.
coli lysate was purified by cation-exchange chroma-
tography (SP-sepharose; Pharmacia) and gel-filtration
chromatography (Superdex-75 column; Pharmacia).
Equimolar amounts of GST-SARA SBD and Smad2
MH2 domain were mixed and incubated in 25 mM
NaMES (pH 6.0), 50 mM NaCl, and 2 mM dithiothre-
itol (DTT). The complex was then passed through an
cation-exchange column (SP-sepharose; Pharmacia),
to which Smad2 MH2 domain binds avidly. GST-
SARA SBD in isolation does not bind this column.
Smad2 binding to the column has no effect on inter-
action with SARA. The bound complex was eluted
from this column with 1 M NaCl and visualized on
15% SDS–polyacrylamide gel electrophoresis.

13. Proteins of the Smad2 MH2 domain and SARA SBD
were individually purified and mixed in a 1:1 molar
ratio. The final complex was concentrated and puri-
fied through gel-filtration chromatography (Super-
dex-75 column; Pharmacia). The concentration of the
complex is ;20 mg/ml. Heavily twinned crystal clus-
ters were grown at 4°C by the hanging-drop vapor-
diffusion method by mixing the SARA-Smad2 protein
complex with an equal volume of reservoir solution
containing 100 mM Tris buffer (pH 8.5), 10% Dioxane
(v/v), 2.0 M ammonium sulfate, and 10 mM DTT.
Streak-seeding followed by three rounds of macro-
seeding eventually generated crystals suitable for
x-ray diffraction. The crystals, with a typical size of
0.1 mm by 0.1 mm by 0.4 mm, are in the trigonal
space group P3121, with unit cell dimensions a 5 b
5 138.5 Å, c 5 55.9 Å, a 5 b 5 90°, g 5 120°, and
contain two complexes in the asymmetric unit. Initial
diffraction data were collected using an R-AXISIIC
imaging plate detector mounted on a Rigaku 200HB
generator. High-resolution data sets were collected
at beamline X25 at the National Synchrotron Light
Source (NSLS), Brookhaven National Laboratory. All
data sets were collected under freezing conditions;
crystals were equilibrated in a cryoprotectant buffer
containing 100 mM Tris buffer (pH 8.5), 10% Dioxane
(v/v), 2.0 M ammonium sulfate, and 20% glycerol,
and were flash frozen under a –170°C nitrogen
stream. The structure was primarily determined by
molecular replacement using the software AMoRe [ J.
Navaza, J. Acta Crystallogr. A 50, 157 (1994)]. The
atomic coordinates of Smad4 MH2 were used for a
rotational search against a 15–3.5 Å data set. The top
50 solutions from the rotational search were individ-
ually used for a subsequent translational search,
which yielded one solution with a correlation factor
of 20.8 and an R-factor of 52.4%. This solution was
used to locate the second complex in the crystals.
Together, these two solutions gave a combined cor-
relation factor of 33.5 and an R-factor of 44%. This
model was examined with the program O [T. A. Jones
et al., Acta Crystallogr. A 47, 110 (1991)], and the
Smad4 side chains were replaced with those of
Smad2. Refinement by simulated annealing with the
program X-PLOR (A. T. Brünger, Yale University),
against a 3.0 Å native data set decreased the R
factor and R free to 35% and 42%, respectively.
Refinement against 2.2 Å resolution data allowed
progressive identification of the SARA fragment.
The final refined model contains two complexes of
Smad2 (residues 263– 456) and SARA (residues
669 –709), and 243 water molecules. The NH2- and
COOH-terminal residues in Smad2 have no elec-
tron density, and we presume that these regions
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425 (1999).
20. R. Wieser, J. L. Wrana, J. Massagué, EMBO J. 14, 2199
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Generating Solitons by Phase
Engineering of a Bose-Einstein

Condensate
J. Denschlag,1 J. E. Simsarian,1 D. L. Feder,1,2 Charles W. Clark,1
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Quantum phase engineering is demonstrated with two techniques that allow
the spatial phase distribution of a Bose-Einstein condensate (BEC) to be written
and read out. A quantum state was designed and produced by optically im-
printing a phase pattern onto a BEC of sodium atoms, and matter-wave in-
terferometry with spatially resolved imaging was used to analyze the resultant
phase distribution. An appropriate phase imprint created solitons, the first
experimental realization of this nonlinear phenomenon in a BEC. The subse-
quent evolution of these excitations was investigated both experimentally and
theoretically.

Ultimate control over a physical system can
be achieved by precisely manipulating its
quantum mechanical wave function, which
fully characterizes its state. A BEC of a dilute
gas (1) is particularly well suited for such
manipulations because of its directly observ-
able wave function: It has many identical
atoms in the same quantum state, and it is
large enough to be optically imaged.

We demonstrate two optical techniques to
prepare and measure the phase of a BEC
wave function. A chosen pattern of laser light

imaged onto a condensate shapes its phase
almost arbitrarily in two dimensions (2–4).
Matter-wave interferometry (5) using optical-
ly induced Bragg diffraction (6, 7) is then
used to analyze the spatial phase distribution
by direct imaging (8). These methods are
applied in experimental studies of a phenom-
enon in nonlinear atom optics (9), the prop-
agation of solitons [solitary waves (10)] in a
BEC. Three-dimensional (3D) numerical cal-
culations agree well with and substantiate the
experimental observations of soliton genera-
tion and propagation. Both reveal the rich
dynamics of this nonlinear system, such as
the formation of multiple solitons.

Theoretical background. Solitons are
stable, localized waves that propagate in a
nonlinear medium without spreading. They
appear in diverse contexts of science and
engineering, such as the dynamics of waves
in shallow water (11), transport along DNA
and other macromolecules (12), and fiber
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optic communications (13). Solitons may be
either bright or dark, depending on the details
of the governing nonlinear wave equation. A
bright soliton is a peak in the amplitude; a
dark soliton is a notch with a characteristic
phase step across it.

A weakly interacting BEC obeys a non-
linear wave equation that supports solitons,
as shown by recent theoretical studies (14–
17). At zero temperature, this wave equation
is known as the Gross-Pitaevskii equation
(18),

i\(]/]t)c 5 [2(\2/2M )¹2 1 V 1 gc2]c
(1)

where c is the condensate wave function
normalized to the number of atoms, V is the
trapping potential, M is the atomic mass, \ is
the Planck constant divided by 2p and g
describes the strength of the atom-atom inter-
action (19). Solitons propagate without
spreading (dispersing) because the nonlinear-
ity balances the dispersion; for Eq. 1, the
corresponding terms are the nonlinear inter-
action gc2 and the kinetic energy – (\2/
2M)¹2, respectively. Our sodium condensate
only supports dark solitons because the atom-
atom interactions are repulsive (g . 0).

A distinguishing characteristic of a dark
soliton is that its speed is less than the Bogo-
liubov speed of sound, y0 5 (gn/M)1/2 (18,
20), where n 5 c02 is the unperturbed
condensate density. The soliton speed ys can
be expressed in terms of either the phase step
d (0 , d # p) or the soliton “depth” nd,
which is the difference between n and the
density at the bottom of the notch (14, 15):

ys/y0 5 cos(d/2) 5 [1 2 (nd/n)]1/2 (2)

For d 5 p, the soliton has zero velocity, zero

density at its center, a width on the order of
the healing length j 5 (2nMg/\2)–1/2 (15),
and a discontinuous phase step. As d decreas-
es, the speed increases and approaches the
speed of sound. The solitons become shal-
lower and wider and have a more gradual
phase step (15). They travel opposite to the
direction of the phase gradient. Because a
soliton has a characteristic phase step, opti-
cally imprinting a phase step on the BEC
wave function should be a way to create a
soliton.

Phase imprinting. We performed our ex-
periments with a condensate having ;2 3
106 sodium atoms in the 3S1/2, F 5 1, mF 5
21 state, with no discernible thermal fraction
(7). The condensate was held in a magnetic
trap with trapping frequencies vx 5 =2vy 5
2vz 5 2p 3 28 Hz. The Thomas-Fermi
diameters (18) were 45, 64, and 90 mm,
respectively. Initially the BEC, described by
the ground-state solution of Eq. 1, had a
uniform phase (21, 22).

We modified the phase distribution of the
BEC by exposing it to pulsed, off-resonant laser
light with an intensity pattern I(x, y) (Fig. 1). In
this process, the atoms experience a spatially
varying light-shift potential U(x, y) 5 (\G2/
8D)[I(x, y)/I0] and acquire a corresponding
phase f(x, y) 5 –U(x, y)T/\. Here G is the
transition line width, I0 is the saturation inten-
sity, D is the detuning of the laser from the
atomic resonance, and T is the laser pulse du-
ration (23). We chose T to be short enough so
that the atomic motion was negligible during
the pulse (Raman-Nath regime). In this limit,
the effect of the pulse can be expressed as a
sudden phase imprint, which modifies the ini-
tial wave function: c3 c exp[if(x, y)] (24).

Interferometry. We measured the imprint-

ed phase distribution of the condensate wave
function with a Mach-Zehnder matter-wave in-
terferometer that makes use of optically in-
duced Bragg diffraction (25, 26). Our Bragg
interferometer differs from previous ones in
that we can independently manipulate atoms in
the two arms (because of their large separation)
and can resolve the output ports to reveal the
spatial distribution of the condensate phase. In
our interferometer, a Bragg pulse splits the
initial condensate into two states, uA& and uB&,
differing only in their momenta (Fig. 2). After
they spatially separate, the phase step (Fig. 1A)
is imprinted on uA&, while uB& is unaffected and
serves as a phase reference. When recombined,
they interfere according to their local phase
difference. Where this phase difference is 0,
atoms appear in port 1, and where it is p atoms
appear in port 2. Imaging the density distribu-
tions of ports 1 and 2 displays the spatially
varying phase (27). The image in Fig. 2 shows
the output of the interferometer when a phase of
p was imprinted on the upper half of uA& (28).
The high-contrast “half moons” are direct evi-
dence that we can control the condensate spatial
phase distribution and, in particular, imprint the
phase step appropriate for a soliton (29).

Soliton propagation. To observe soliton
propagation, we did not use interferometry
(30) but instead measured BEC density dis-
tributions with absorption imaging (1, 27)
after imprinting a phase step (31). Figure 3, A
to E, shows the evolution of the condensate
after the top half was phase-imprinted with
f0 ' 1.5p, a phase for which we observed a
single deep soliton (the reason for imprinting
a phase step larger than p is discussed be-
low). Immediately after the phase imprint,
there is a steep phase gradient across the
middle of the condensate such that this por-

x

y
z

A

B C

Fig. 1. (A) Writing a phase step onto the con-
densate. A far-detuned uniform light pulse
projects a mask (a razor blade) onto the con-
densate. Because of the light shift, this imprints
a phase distribution that is proportional to the
light intensity distribution. A lens (not shown)
is used to image the razor blade onto the
condensate. The mask in (B) writes a phase
stripe onto the condensate. The mask in (C)
imprints an azimuthally varying phase pattern
that can be used to create vortices.

Fig. 2. Space-time diagram of the matter-wave interferometer used to measure the spatial phase
distribution imprinted on the BEC. Three optically induced Bragg diffraction pulses (7 ) formed the
interferometer. Each pulse consisted of two counterpropagating laser beams detuned by 22 GHz
from atomic resonance (so that spontaneous emission is negligible), with their frequencies differing
by 100 kHz. The first Bragg pulse had a duration of 8 ms and coherently split the condensate into
two components uA& and uB& with equal numbers of atoms; uA& remained at rest and uB& received two
photon recoils of momentum. When they were completely separated, we applied the 500-ns phase
imprint pulse to the top half of uA&, which changed the phase distribution of uA& while uB& served as
a phase reference. A second Bragg pulse (duration 16 ms), 1 ms after the first pulse, brought uB& to
rest and imparted two photon momenta to uA&. When they overlapped again, 1 ms later, a third
pulse (duration 8 ms) converted their phase differences into density distributions at ports 1 and 2.
The image shows the output ports 1 and 2 as seen when we imprinted a phase step of p (29).
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tion has a large velocity in the 1x direction.
This velocity, which can be understood as
arising from the impulse imparted by the
optical dipole force, results in a positive den-
sity disturbance that travels at or above the
speed of sound. A dark notch is left behind;
this is a soliton moving slowly in the –x
direction (opposite to the direction of the
applied force).

We have numerically solved Eq. 1 in three
dimensions through the application of real-
space product formulas (32) and by using a
discrete variable representation of the wave
function (33) based on Gauss-Chebyshev
quadrature with 50 to 400 spatial grid points
in each dimension; in the latter approach, the
time dependence of the solution was obtained
by Runge-Kutta integration. Figure 3, F to J,
shows the results of the simulations where the
experimental phase imprint is approximated
as f(x, y) 5 (f0/2)[1 1 tanh(x/l )], where
f0 5 1.5p, and l 5 2 mm corresponds to an
imprinting resolution of ;4.4 mm (27, 34).
The calculated and experimental images are
in very good agreement.

A striking feature of the images is the
curvature of the soliton. This curvature arises
from the 3D geometry of the trapped conden-
sate and occurs for two reasons. First, the
speed of sound y0 is largest at the trap center,
where the density is greatest, and decreases
toward the condensate edge. Second, as the
soliton moves into regions of lower conden-
sate density, we find numerically that the
density at its center (n 2 nd) approaches zero,
d approaches p, and ys decreases to zero
before reaching the edge. The soliton stops
because its depth nd, rather than its phase
offset d, appears to be a conserved quantity in
a nonuniform medium.

Soliton speed. The subsonic propagation
speed of the notches seen in Fig. 3 shows that
they are solitons and not simply sound waves.
To determine this speed, we measured the
distance after propagation between the notch
and the position of the imprinted phase step
along the direction indicated in Fig. 3H. Be-
cause the position of our condensate varied
randomly from one shot to the next (presum-
ably because of stray, time-varying fields),
we could not always apply the phase step at
the center. A marker for the location of the
initial phase step is the intersection of the
soliton with the condensate edge, because at
this point the soliton has zero velocity. By
using images taken 5 ms after the imprint, at
which time the soliton had not traveled far
from the BEC center, we obtained a mean
soliton speed of 1.8 6 0.4 mm/s (35). This
value is significantly less than the mean
Bogoliubov speed of sound, y0 5 2.8 6 0.1
mm/s. From the propagation of the notch in
the numerical simulations (Fig. 3, F to J), we
obtained a mean soliton speed, ys 5 1.6
mm/s, in agreement with the experimental

value. The experimental uncertainty is main-
ly due to the difficulty in determining the
position of the initial phase step.

We can also compare the results of the
numerical 3D solutions of Eq. 1 to the ana-
lytical predictions of Eq. 2, which describes a
traditional dark soliton in a homogeneous, 1D
geometry. We calculated the soliton speed
using a local density approximation in Eq. 2
[n 5  p0(r)2, where p0(r) is the ground-
state solution of Eq. 1] from either the phase
or depth of the solitons obtained in the 3D
simulations. In every case examined, this
speed is in excellent agreement with the re-
sults of 3D numerical simulations.

Figure 4 shows the theoretical density and
phase profile along the x axis through the center
of the condensate 5 ms after the f0 5 1.5p
phase imprint (Fig. 3H). The dark soliton notch
and its phase step are centered at x 5 28 mm.
This phase step, d 5 0.58p is less than the
imprinted phase of 1.5p. The difference is
caused by the mismatch between the phase
imprint and the phase and depth of the soliton
solution of Eq. 1: Our imprinting resolution
(27) is larger than the soliton width, which is on
the order of the healing length ( j ' 0.7 mm),
and we do not control the amplitude of the
wave function. The mismatch produces features
in addition to the deep soliton, such as a shallow
dark soliton at x 5 214 mm moving to the left

and other excitations near x 5 20 mm moving
rapidly to the right. Most of these features are
not well resolved in the experimental images
(Fig. 3, A to E). We observed both experimen-
tally and theoretically that when the imprinted
phase step is increased, the weak soliton on the
left becomes deeper; when the phase step is
lowered, both solitons become shallower and
propagate faster.

We could avoid the uncertainty in the
position of the initial phase step and improve
our measurement of the soliton speed by
replacing the step mask (Fig. 1A) with a thin
slit (Fig. 1B). The thin slit produced a stripe
of light with a Gaussian profile (1/e2 full
width ' 15 mm). With this stripe in the center
of the condensate, numerical simulations pre-
dict the generation of solitons that propagate
symmetrically outward. We selected experi-
mental images with solitons symmetrically
located about the middle of the condensate
and measured the distance between them.
Figure 5A shows the separation of the pair of
solitons as a function of time. For a small
phase imprint of f0 ' 0.5p at Gaussian
maximum, we observed solitons moving at
the Bogoliubov speed of sound within exper-
imental uncertainty. For a larger phase im-
print of f0 ' 1.5p, we observed a much slower
soliton propagation, in agreement with numer-
ical simulations. An even larger phase imprint

1 ms 10 ms7 ms5 ms2 ms 

x

F G H I J

A B C D E

Fig. 3. Experimental (A to E) and theoretical (F to J) images of the integrated BEC density for
various times after we imprinted a phase step of ;1.5p on the top half of the condensate with a
1-ms pulse. The measured number of atoms in the condensate was 1.7 (60.3) 3 106, and this value
was used in the calculations. A positive density disturbance moved rapidly in the 1x direction, and
a dark soliton moved oppositely at significantly less than the speed of sound. Because the imaging
pulse (27 ) is destructive, each image shows a different BEC. The width of each frame is 70 mm.

Fig. 4. Calculated density and phase
along the x axis (dashed line in Fig. 3H) at
0 ms (thin lines) and at 5 ms (thick lines)
after applying a phase step imprint of
1.5p. The soliton located at x 5 28 mm
has a phase step of 0.58p and a speed of
1.61 mm/s, which is much less than that
of sound.
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generates many solitons (Fig. 5C).
The lower theoretical curve in Fig. 5A

shows that the speed of the corresponding
solitons (the slope of the curve) approaches
zero at a separation of ;33 mm before they
reach the edge of the condensate (whose
Thomas-Fermi diameter is 45 mm). This re-
sult follows directly from Eq. 2. Assuming a
constant soliton depth nd and working in the
Thomas-Fermi limit, the derivative of ys with
respect to time yields the equation of motion
dys/dt [ d2xs/dt2 5 –v2xs/2. Thus, the soli-
ton in a 1D trap should oscillate harmonically
with a frequency vs 5 v/=2, smaller than
the trap frequency v. Previous calculations
have also found this behavior (17). In our
system, therefore, the soliton should stop af-
ter one-quarter of the oscillation time, (p/
2)(=2/vx) ms, which is in agreement with
our 3D simulations. The 3D calculations,
however, indicate that the soliton does not
oscillate back after stopping, but instead
breaks up, forming vortices that migrate to
the BEC surface and disappear.

Future directions. The optical phase im-
printing and matter-wave interferometry tech-
niques presented here are new control and
analysis tools for wave function engineering
of Bose-Einstein condensates. For example,
the interferometer might also be used to study
randomness in the evolution of the conden-
sate phase (phase diffusion). Our optical im-
printing techniques could be extended to the
control of wave function amplitude, with the
use of near-resonant laser frequencies to in-
duce absorption. The probability of removing
atoms from the condensate would then be
proportional to the local intensity of the laser
beam, allowing us to tailor the density distri-
bution of the BEC in addition to its phase.

Future avenues for research include stud-
ies of soliton stabilities and the interactions
between solitons, as well as other nonlinear
dynamics of condensates. Another possibility
is the use of optical phase imprinting to create
quantized vortices in a BEC (2). The 2p

phase winding of the vortex wave function
around its core can be imprinted by imaging
an intensity pattern with a linear azimuthal
dependence (Fig. 1C). Quantized vortices in a
BEC are a manifestation of superfluidity and
have recently been observed in a two-com-
ponent condensate (4) and a condensate in a
rotating trap (36). We note that a group in
Hannover, Germany, has independently stud-
ied solitons in a BEC using optical phase
imprinting (37).
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(B) The condensate 6 ms after a stripe phase imprint of f0 ' 1.5p. (C) For a larger phase imprint of
f0 ' 2p many solitons appeared.
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R E P O R T S

Equilibrium Regained: From
Nonequilibrium Chaos to

Statistical Mechanics
David A. Egolf

Far-from-equilibrium, spatially extended chaotic systems have generally eluded
analytical solution, leading researchers to consider theories based on a statis-
tical rather than a detailed knowledge of the microscopic length scales. Building
on the recent discovery of a separation of length scales between macroscopic
behavior and microscopic chaos, a simple far-from-equilibrium spatially ex-
tended chaotic system has been studied computationally at intermediate,
coarse-grained scales. Equilibrium properties such as Gibbs distributions and
detailed balance are recovered at these scales, which suggests that the mac-
roscopic behavior of some far-from-equilibrium systems might be understood
in terms of equilibrium statistical mechanics.

Statistical mechanics describes the macro-
scopic physical properties of matter through a
probabilistic, rather than a detailed, knowl-
edge of the microscopic dynamics and has
been applied successfully to a wide variety of
equilibrium systems, from simple molecular
gases to white dwarf stars. It has provided a
theoretical understanding of the phases of
matter, the transitions between phases, and
the deep property of universality that unifies
the descriptions of continuous transitions in
systems that are physically quite distinct (for
example, magnets and gases). In nature, how-
ever, many systems are not in equilibrium,
including, for example, large-scale flows in
the atmosphere, the evolution of ecological
systems, and the transport of energy in cells.
None of these situations can be understood
with equilibrium statistical mechanics.

Although theory has been developed to ex-
tend equilibrium statistical mechanics to sys-
tems only slightly perturbed away from equilib-
rium (for which the evolution of the system is
well-approximated with only linear terms), in
deterministic systems driven far from equilibri-
um (where nonlinearities are important) theoret-
ical progress has been limited to “simple” situ-
ations, such as the onset of symmetry breaking,
the stability of perfect patterns, and the motions
of single topological defects in perfect patterns
(1). Theorists have not yet developed an under-
standing of the intriguing phenomenon of “spa-
tiotemporal chaos” (or spatially extended chaos)

that is typically characterized by disordered ar-
rays of defects, patches of uncorrelated regions,
and a chaotic dynamics that persists indefinitely
(2). This remarkable behavior has been found in
large, deterministic, far-from-equilibrium sys-
tems as varied as convecting horizontal fluid
layers (3), chemical reaction-diffusion systems
(4), colonies of microorganisms (5), and fibril-
lating heart tissue (6). These disparate systems
often display strikingly similar macroscopic fea-
tures (such as locally ordered striped or hexag-
onal patterns and dislocation, spiral, and target
defects) and behavior (for example, dramatic
qualitative changes in response to modifications
of experimental parameters reminiscent of phase
transitions in equilibrium systems). Such behav-
ior within a system and the similarities between
different systems beg the question of whether
one can construct a statistical, predictive theory
of phases and transitions in these chaotic, far-
from-equilibrium systems.

At first glance, far-from-equilibrium,
strongly dissipative, deterministic systems may
appear to have little in common with equilibri-
um systems; for example, at the detailed level,
these systems do not have the benefit of tending
toward the minimum of a free-energy function-
al, do not have a Gibbsian distribution of states,
and do not allow the calculational technique of
averages over noise terms. However, several
experimental and computational studies have
explored the similarities in the behaviors of
these systems and the behaviors of equilibrium
systems. A particular focus has been the possi-
bility of phase transition–like behavior in these
systems (4, 7–11). The data reported here un-
cover a deeper level of similarity and suggest
the possibility of salvaging much of the frame-

work of equilibrium statistical mechanics. In
particular, large-scale computational studies of a
simple, large, chaotic, far-from-equilibrium sys-
tem demonstrate that several cornerstones of
equilibrium statistical mechanics—ergodicity,
detailed balance, Gibbs distributions, partition
functions, and renormalization group flows of
coupling constants—are recovered at a coarse-
grained scale.

In analogy to the simple explorations of
equilibrium statistical mechanics with the Ising
model, one of the simplest spatially extended
chaotic systems was used as a test bed (12). This
system, a coupled map lattice (CML) first stud-
ied by Miller and Huse (8), consists of a set of
scalar variables uxW

t at integer time t on a square
two-dimensional spatially periodic L 3 L grid
with positions indicated by xW 5 ax̂ 1 bŷ, where
a and b are integers and x̂ and ŷ are the unit
vectors of the two-dimensional lattice. The rule
for updating the variables from time t to t 1 1 is

uxW
t11 5 f~uxW

t ! 1 gO
yW~ x̂!

@f~uŷ
t ! 2 f~uxW

t !#

(1a)
where g indicates the strength of the spatial
coupling, and yW(xW) denotes nearest neighbors
of site xW. The chaotic local map f(u) is given
by

f~u! 5 5
2 3u 2 2 21 # u # 2

1

3

3u 2
1

3
, u ,

1

3

2 3u 1 2 1

3
# u # 1

(1b)
This CML exhibits chaotic, spatially disordered
dynamics for values of g at least within the
range [0, 0.25]. Miller and Huse (8) reported
that at gc ' 0.2054, this system undergoes a
paramagnetic-to-ferromagnetic transition ex-
hibiting a number of features in common with
the equilibrium transition in the Ising ferromag-
net (13).

To study the statistical bulk properties of
spatially extended chaotic states [“extensive
chaos” (1, 14)], the “thermodynamic limit”
of systems approaching infinite size was tak-
en. O’Hern et al. (15) demonstrated that the
behavior of Eq. 1 can be considered extensive
for system sizes as small as L ' 9. Results
reported here were obtained for system sizes
ranging from 1 3 1 to 1024 3 1024 over
times as large as 1010 iterations (after typi-
cally 106 iterations of transient), often aver-
aged over ensembles of up to 256 systems
with identical parameters but differing initial
conditions [with each site uxW

t50 initialized to a
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We demonstrate a spatially resolved autocorrelation measurement with a Bose-Einstein condensate
and measure the evolution of the spatial profile of its quantum mechanical phase. Upon release of the
condensate from the magnetic trap, its phase develops a form that we measure to be quadratic in the
spatial coordinate. Our experiments also reveal the effects of the repulsive interaction between two
overlapping condensate wave packets and we measure the small momentum they impart to each other.

PACS numbers: 03.75.Fi, 32.80.Qk, 39.20.+q

A trapped Bose-Einstein condensate (BEC) [1] has
unique value as a source for atom lasers [2] and matter-
wave interferometry [3] because its atoms occupy the
same quantum state, with uniform spatial phase. However,
when released from the trapping potential, a BEC with
repulsive atom-atom interactions expands, developing
a nonuniform phase profile. Understanding this phase
evolution will be important for applications of coherent
matter waves. We have developed a new interferometric
technique using spatially resolved autocorrelation to mea-
sure the functional form and time evolution of the phase
of a BEC wave packet expanding under the influence of
its mean-field repulsion.

In 1997, the coherence of weakly interacting BECs was
demonstrated by releasing two spatially separated conden-
sates and observing their interference [4]. Subsequent ex-
periments have further investigated condensate coherence
properties. One [5] used velocity-resolved Bragg diffrac-
tion [6] to probe the momentum spectrum of trapped and
released BECs. A complementary experiment [7] that used
matter-wave interferometry can be interpreted as a mea-
surement of the spatial correlation function, whose Fourier
transform is the momentum spectrum. These experiments
showed that a trapped condensate has a uniform phase,
and a released condensate develops a nonuniform phase
profile. (Recently the influence of nonzero temperature on
coherence properties was also investigated [8].) The ex-
periments reported in this Letter combine spatial resolution
and interferometry to measure the functional form of the
time-dependent phase profile of a released condensate. We
also make the first measurement of the velocity imparted
to two equal BEC wave packets from their mutual mean-
field repulsion [9].

We perform our experiments with a condensate of
1.8�4� 3 106 [10] sodium atoms in the 3S1�2, F � 1,
mF � 21 state. The sample has no discernible non-
condensed (i.e., thermal) component. The condensate is
prepared following the method of Ref. [6] and is held in a
magnetic trap with trapping frequencies vx �

p
2 vy �

2vz � 2p 3 27 Hz. Using a scattering length of a �

2.8 nm, the calculated Thomas-Fermi diameters [11] are
47, 66, and 94 mm, respectively.

We release the BEC from the magnetic trap and it ex-
pands, driven mostly by the mean-field repulsion of the
atoms. This expansion implies the development of a non-
uniform spatial phase profile (recall that the velocity field
is proportional to the gradient of the quantum phase). Af-
ter an expansion time T0, we probe the phase profile with
matter-wave Bragg interferometry [12–14]. Our interfer-
ometer splits the BEC into two wave packets and recom-
bines them with a chosen overlap, producing interference
fringes, which we measure with absorption imaging [15].
From the dependence of the fringe spacing on the overlap,
we extract the phase profile of the wave packets.

Our atom interferometer [14] consists of three optically
induced Bragg-diffraction pulses applied successively in
time (Fig. 1). Each pulse consists of two counterpropa-
gating laser beams whose frequencies differ by 100 kHz.
They are detuned by about 22 GHz from atomic reso-
nance (l � 2p�k � 589 nm) so that spontaneous emis-
sion is negligible. The first pulse has a duration of 6 ms

FIG. 1. Space-time diagram of the experiment. Three optically
induced Bragg-diffraction pulses form the interferometer. The
condensate is released for a time T0 before the first Bragg pulse.
The centers of cA and cB are separated by dx at the time of
the third Bragg pulse, which splits them into cA1, cB1, and cA2,
cB2. Before imaging the atoms, we allow the output ports to
separate for a time T3 � 2 ms. The image shows the output
ports when T0 � 3 ms, T1 � 1 ms, and T2 � 1.3 ms.

2040 0031-9007�00�85(10)�2040(4)$15.00 © 2000 The American Physical Society
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and intensity sufficient to provide a p�2 pulse, which co-
herently splits the BEC into two wave packets, cA and cB.
The wave packets have about the same number of atoms
and differ only in their momenta: p � 0 and p � 2h̄k.
At a time T1 � 1 ms after the first Bragg pulse, the two
wave packets are completely separated and a second Bragg
pulse (a p pulse) of 12 ms duration transfers cB to a state
with p � 0 and cA to p � 2h̄k [16]. After a variable
time T2 the wave packets partially overlap again and we
apply a third pulse, of 6 ms duration (a p�2 pulse). This
last pulse splits each wave packet into the two momentum
states. The interference of the overlapping wave packets in
each of the two momentum states allows the determination
of the local phase difference between them. By changing
the time T2 we vary dx � xA 2 xB, the separation of cA

and cB at the time of the final Bragg pulse. The set of
data at different dx constitutes a new type of spatial au-
tocorrelation measurement that is similar to the “FROG”
technique [17] used to measure the complete electric field
of ultrafast laser pulses. From these measurements we ob-
tain the phase profile of the wave packets in the x direction.

Figures 2a–2e shows one interferometer output port
for different dx (different T2) after an expansion time
T0 � 4 ms. In general, we observe straight, evenly spaced
fringes (although for small T0 and T2 the fringes may
be somewhat curved). There is a value of dx � x0 fi 0
where we observe no fringes (Fig. 2c) and the fringe
spacing decreases as jdx 2 x0j increases. Figure 2f, a cut
through Fig. 2d, shows the high-contrast fringes [18]. Our
data analysis uses the average fringe period d, obtained
from plots like Fig. 2f.

The fringes come from two different effects: the inter-
ference of two wave packets with quadratic phase profile,
and a relative velocity between the wave packets’ cen-
ters. The data can be understood by calculating the fringe
spacing along x at output port 1 [19]. We assume that
the phase f of the wave function feif can be written as
f � a

2 x2 1 bx. The equal spacing of the fringes im-

FIG. 2. (a)–(e) One of the two output ports of the interfer-
ometer with T0 � 4 ms and dx as indicated. (f ) A plot of the
density along the x direction of (d).

plies, as predicted in the Thomas-Fermi limit [20], that
f has no significant higher-order terms [21]. The curva-
ture coefficient a describes the mean-field expansion of
the wave packets and b describes a relative repulsion ve-
locity. The velocity arises because the wave packets expe-
rience a repulsive push as they first separate and again as
they recombine. The density at port 1 (see Fig. 1) just af-
ter the final interferometer pulse is the interference pattern
jcA1 1 cB1j

2 of the wave packets cA1 and cB1:

j f�x 2 dx�ei��a�2� �x2dx�22b�x2dx�� 1 f�x�ei��a�2�x21bx�j2,
(1)

where we assume that the amplitudes and curvatures of
the wave packets are equal and their velocities have equal
magnitude and opposite direction. The cross term of (1) is

2f�x 2 dx�f�x� cos

∑µ
adx 1

Mdy

h̄

∂
x 1 C

∏
, (2)

where M is the sodium mass, Mdy�h̄ � 2b, and C is
independent of x [22]. dy � yB 2 yA is the relative re-
pulsion velocity between the wave packets cA1 and cB1.
Expression (2) predicts fringes with spatial frequency,

k � adx 1
Mdy

h̄
, (3)

where jkj � 2p�d. When there are no fringes, k � 0 and
the wave packet separation dx � x0 � 2Mdy�ah̄.

Figure 3 plots the measured k vs dx [23] for T0 �
1 and 4 ms. The data are well fit by a straight line as
expected from Eq. (3) in the approximation that a and
dy are independent of dx. The slopes of the lines are the
phase curvatures a, and the k intercepts give the relative
velocities dy.

We checked the validity of the data analysis procedure
by analyzing data simulated with a 1D Gross-Pitaevskii
(GP) treatment. Despite variations of dy and a with dx
(due to their continued evolution during the variable time
T2), we find that k is still linear in dx. The slopes and
intercepts in general are averages over the range of dx
used in the experiment.

The interference fringes used to determine a and dy

are created at the time of the final interferometer pulse.
Because the two outputs overlap at that moment, we wait
a time T3 for them to separate before imaging. During
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FIG. 3. Plot of the spatial fringe frequency k versus dx for
T0 � 1 ms (filled circles) and 4 ms (open squares). The solid
and dashed lines are linear fits to the data.
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this time, the wave packets continue to expand. The 1D
simulations show that the fringe spacings and the wave
packets expand in the same proportion. We correct k

(by typically 15%) for this, using the calculated expansion
from a 3D solution of the GP equation described below.

The different slopes and intercepts of the two lines in
Fig. 3 show that the curvature a and relative velocity dy of
the wave packets depend on the release time T0 before the
first interferometer pulse. Figure 4 plots the dependence
of a and dy on various release times T0. The condensate
initially has a uniform phase so that immediately after its
release from the trap a � 0. We nevertheless measure a
nonzero a for T0 � 0 ms because the BEC expands dur-
ing T1 and T2. As a function of time, a behaves as �D�D
where D is the wave packet diameter and �D is its rate of
change [20]. At early times when the mean-field energy
is being converted to kinetic energy, �D increases rapidly,
increasing a. At late times, after the mean-field energy has
been converted, D increases while �D is nearly constant,
decreasing a.

We predict the time evolution of a using the Lagrangian
variational method (LVM) [24]. The LVM uses trial wave
functions with time-dependent parameters to provide ap-
proximate solutions of the 3D time-dependent GP equa-
tion. In the model, the effect of the interferometer pulses is
to replace the original wave packet with a superposition of
wave packets having different momenta; e.g., the action of
our first interferometer pulse is c0 ! �c0 1 ei2kxc0��

p
2.

We use Gaussian trial wave functions in the LVM to calcu-
late the phase curvature a at the time of the last interfer-
ometer pulse. For simplicity, the interaction between the
wave packets is neglected. This result, with T1 � T2, is
the solid line of Fig. 4a.

We use energy conservation to calculate the relative
repulsion velocity dy between cA1 and cB1 because we ne-
glect wave packet interactions in the LVM. In the Thomas-
Fermi approximation, we can calculate the amount of
energy available for repulsion when T0 � 0. A trapped
condensate has 5

7m average total energy per particle,
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FIG. 4. (a) Plot of the phase curvature a versus the initial ex-
pansion time T0 showing the phase evolution from mean-field
expansion. The solid line is a calculation using the Lagrangian
variational method (LVM). (b) Plot of the relative repulsion
velocity dy versus T0. The solid curve is the calculated maxi-
mum repulsion velocity (when dx � 0) and the dashed curve is
the repulsion velocity averaged over the range of dx used in the
experiment.

where m is the chemical potential [11]. After release from
the trap, it has 2

7m average mean-field energy per particle.
Applying a p�2 Bragg pulse to the BEC causes a density
corrugation, which increases the mean-field energy to
3
7m per particle. In the approximation that the wave
packets do not deform as they separate and recombine,
one can show that 1

3 of the total mean-field energy goes
into expansion of the wave packets, and 2

3 is available for
kinetic energy of center-of-mass motion. Therefore 2

7m of
mean-field energy per particle is available for repulsion.
The corresponding repulsion velocity is only about 1022

of a photon recoil velocity. The repulsion energy and dy

decrease for larger T0 because both are inversely pro-
portional to the condensate volume, which we calculate
with the LVM. The two curves shown in Fig. 4b are
the calculated dy when dx � 0 (solid curve) and dy

averaged over the different dx used in the experiment
(dashed curve). The 1D GP simulations suggest that for
small T0, the results of the experiment should be closer
to the solid curve, and for large T0, closer to the dashed
curve. The data are consistent with this trend.

In a related set of experiments we performed interfer-
ometry in the trap. This differs from the experiments on a
released BEC because there is no expansion before the first
interferometer pulse [25] and the magnetic trap changes
the relative velocity of the wave packets between the in-
terferometer pulses (Fig. 5a). To better reveal the velocity
differences, we choose T1 � T2 � T to suppress fringes
arising from the phase curvature. As with the released
BEC measurements, we observe equally spaced fringes at
the output of the interferometer, although the fringes are
almost entirely due to a relative velocity y between the
wave packets cA1 and cB1 at the time of the third inter-
ferometer pulse. We obtain y from the fringe periodicity
after a small correction for residual phase curvature [26].

Two effects contribute to y: the mutual repulsion be-
tween the wave packets cA and cB and the different action
of the trapping potential on the two wave packets in the in-
terferometer. The latter effect occurs because after the first
Bragg pulse, cA remains at the minimum of the magnetic
potential while cB is displaced. Wave packet cB therefore

FIG. 5. (a) Schematic representation of the interferometer in
the trap, with the principle difference from Fig. 1 being the
curved arrows indicating the acceleration of the wave packets.
(b) The relative velocity y between the two trapped wave packets
versus the interferometer time T . The solid line is a fit.
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spends more time away from the center of the trap and ex-
periences more acceleration than cA.

Following the last Bragg pulse, cA1 and cB1 have
a velocity difference which for our parameters can
be approximated by y � 2

2 h̄k
M sin2�vxT � 1 dy [27].

Figure 5b plots y versus T , and the curve is a fit
to the above expression. We obtain the trap frequency
vx�2p � 26.7�15� Hz, in excellent agreement with an in-
dependent measurement. We also obtain the relative veloc-
ity from the mean-field repulsion dy � 0.49�12� mm�s,
which we expect to be somewhat larger than for the
released measurements because the wave packets contract,
producing a larger mean field.

In conclusion, we demonstrate an autocorrelating
matter-wave interferometer and use it to study the evolu-
tion of a BEC phase profile by analyzing spatial images
of interference patterns. We study how the phase curva-
ture of the condensate develops in time and measure the
repulsion velocity between two BEC wave packets. Our
interferometric method should be useful for characterizing
other interesting condensate phase profiles. For example,
it can be applied to detect excitations of a BEC with
characteristic phase patterns, such as vortices and solitons
[14,28–31]. The method should be useful for further
studies of the interaction of coherent wave packets and to
study the coherence of atom lasers.
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Chapter 4

Controlling the interaction
between atoms with Feshbach
resonances

Feshbach resonances have become one of the most important tools to manip-
ulate ultracold quantum gases and are largely responsible for the fast progress
in this field in recent years. With the help of Feshbach resonances we can
arbitrarily tune the interactions between atoms and can thus control their
behavior. Feshbach resonances were first discussed in the context of nuclear
physics [Fes58] and introduced into field of ultracold atoms in 1993 [Tie93].
After the first observation in 1998 [Ino98, Cou98, Rob98] they were used
in range of experiments such as ultrahigh-resolution spectroscopy [Chi00],
study of collapsing and exploding BECs [Don01], the creation of bright mat-
ter wave solitons [Kha02, Str02] and ultra cold molecules (see chapter 5).
It also led to the production of new atomic [Cor00, Web03] and molecular
[Joc03a, Gre03, Zwi03, Bou04] BECs and allowed for the controlled pairing
in ultra-cold fermionic gases [Reg04, Zwi04, Chi04a].

In general, a Feshbach resonance is a scattering resonance and it occurs
when a colliding pair of atoms is resonantly coupled to a molecular bound
state (see Fig. 4.1). Depending on the parameters, the Feshbach resonance
strongly influences the collision and changes the scattering length. A mag-
netically tunable Feshbach resonance is based on Zeeman shifting a bound
molecular state into resonance with the scattering state. For an optical Fesh-
bach resonance, as first predicted by Fedichev et al. [Fed96], the molecular
level is coupled to the scattering state with a light field. This scheme not
only works with a single photon transition but also with a Raman scheme
(see Fig. 4.1) [Tha04]. Because of two-body losses due to photoassociation
and consecutive decay of the molecule, the resonance curve for the optical
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Figure 4.1: Magnetic and optical Feshbach resonances. By resonantly cou-
pling a scattering state of two atoms to a bound molecular state the scattering
length a changes. For an optical Feshbach resonance this coupling is provided
by a strong light field in a photoassociation transition. (far right) Being a
general concept, optical Feshbach resonances also appear in optical Raman
transitions.

Feshbach resonance does not diverge in contrast to the magnetically tunable
Feshbach resonance in Fig. 4.1.

In the following two sections we describe our experiments in which we
have confirmed the existence of a particular magnetic Feshbach resonance in
6Li and optical Feshbach resonances in general.

4.1 Magnetically tunable Feshbach resonance

in 6Li

As will become clear in the following chapters 5 and 6, the existence of
the broad Feshbach resonance for 6Li is of central importance for recent
experiments with Fermi gases. It appears in the collision channel of the two
lowest spin states of 6Li and was predicted in 1998 by Houbiers et al. [Hou98].
Figure 4.2 shows the shape of this broad Feshbach resonance. In general the
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Figure 4.2: A broad Feshbach resonance 6Li appears in the collision channel
of the two lowest spin states. It is located at 834 G and exhibits a zero
crossing of the scattering length at about 530 G.

functional form of such a resonance can be conveniently approximated by

a = abg

(
1 +

∆B

B −BRes

)
, (4.1)

where abg is the background scattering length, BRes is the resonance position
and ∆B is the resonance width. In the case of 6Li, it turns out that abg is
not constant at the position of the Feshbach resonance. This gives rise to a
slightly changed expression for a [Bar04d].

In 2002 our group [Joc02] in parallel with other groups [Har02b, Die02,
Bou03] was able to experimentally demonstrate the existence of this Fesh-
bach resonance. Our approach was to study the elastic collision cross section
∝ 4πa2/(1 + k2a2) in terms of evaporative loss as a function of the magnetic
bias field. We were able to demonstrate the tunability of the interaction
within the gas and also to precisely locate the zero crossing at 530(3) G which
can be used to determine the position of the Feshbach resonance. The zero
crossing was also observed by the Thomas group [Har02b]. Ketterle’s group
used inelastic loss spectroscopy to locate the Feshbach resonance [Die02].
However, as it turned out later, these losses were not centered on the reso-
nance in contrast to Feshbach resonances in bosonic gases. Salomon’s group
measured the interaction energy from the expansion of a released Fermi gas
to find the Feshbach resonance [Bou03]. This mean field energy could also be
measured using radio-frequency (RF) spectroscopy [Reg03a, Gup03, Reg03]
where the mean field interaction gives rise to a frequency shift of the spin
flip resonance. We recently developed still another method to precisely de-
termine the position of the Feshbach resonance. Using radio frequency we
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precisely measured the transition frequency between various weakly bound
molecular states in the vicinity of the Feshbach resonance. Together with a
multichannel quantum scattering model all relevant scattering properties of
6Li as well as the position of the Feshbach resonance (834.1 ±0.15 G) could
be precisely determined [Bar04d].

4.2 Optical tuning of the scattering length

After their prediction in 1996 [Fed96, Boh97] optical Feshbach resonances
have been first observed by Fatemi et al. [Fat00] in photoassociation spec-
troscopy in a thermal gas of sodium atoms. Fatemi et al. found that the
photoassociation laser induced changes in the scattering wave function which
was probed via photoionization. Our experiments with a 87Rb condensate
demonstrated for the first time the tunability of the scattering length a with
optical means [The04, Tha04]. By controlling the power and detuning of the
optical laser light field we can change the atomic scattering length. With a
power of 500W/cm2 in our experiments we varied the scattering length in a
range of ± 100 a0 (1 a0 = 1 Bohr radius = 0.529×10−10 m). For comparison,
the scattering length of the unperturbed atoms is 100 a0. The approximate
mathematical expression for the scattering length is

a = abg

(
1 +

c (f − fRes)

(f − fRes)2 + (Γs/2)2

)
. (4.2)

Here, f denotes the laser frequency, fRes is the resonance frequency for the
photoassociation transition, c is a intensity dependent constant, and Γs is the
spontaneous decay width of the excited molecular state. In the limit that
Γs vanishes Eq. (4.1) and (4.2) become identical. A finite Γs prevents the
scattering length from diverging on resonance (see Fig. 4.1) and is responsible
for the unwanted loss of atoms due to spontaneous decay of photoassociated
molecules. In principle, one can suppress these losses for a given change
in scattering length by detuning far from the photoassociation resonance
and using a high laser power. This is in complete analogy to optical dipole
traps where powerful, far-detuned lasers are chosen to suppress spontaneous
photon scattering. As recently pointed out by Julienne’s group [Ciu05], some
atomic species are more favorable for optical Feshbach tuning than others.
Ultracold alkaline-earth-metal atoms, for example, have very narrow and
strong molecular photoassociation lines. These lines are located close to the
atomic intercombination 1S0 −3 P1 transition and therefore exhibit a good
Franck-Condon overlap. This is favorable for achieving large changes in the
scattering length at small atomic losses. Compared to 87Rb the gain-loss
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ratio for 40Ca is better by several orders of magnitude, raising interesting
prospects for future application of optical Feshbach tuning. Besides changing
the scattering length, optical Feshbach resonances can also be used to create
ground state molecules [Koc05].
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We study elastic collisions in an optically trapped spin mixture of fermionic lithium atoms in the
presence of magnetic fields up to 1.5 kG by measuring evaporative loss. Our experiments confirm the
expected magnetic tunability of the scattering length by showing the main features of elastic scattering
according to recent calculations. We measure the zero crossing of the scattering length at 530(3) G
which is associated with a predicted Feshbach resonance at �850 G. Beyond the resonance we observe
the expected large cross section in the triplet scattering regime.

DOI: 10.1103/PhysRevLett.89.273202 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

In an ultracold atomic gas, the s-wave scattering length
characterizes the elastic interactions and has a profound
effect on the physical behavior. The scattering length can
be conveniently tuned by using a magnetic field when a
Feshbach resonance is present. For bosonic atoms, such
resonances have been observed [1–3], and they have found
particular applications for attainment and manipulation
of a Bose-Einstein condensate in 85Rb [4,5] and for the
production of bright solitons in bosonic 7Li [6,7].

For fermionic gases, Feshbach resonances in s-wave
scattering of atoms in different spin states are of great
interest to experimentally explore the rich physics of
paired fermionic gases [8–11]. For obtaining superfluidity
in a Cooper-paired gas, magnetic tuning allows one to
raise the critical temperature [8] from values far below
the Fermi temperature into a region that seems accessible
with current experimental methods. With resonantly
tuned interactions the fermionic superfluid is predicted
[9,10] to perform a crossover from a superfluid of weakly
coupled Cooper pairs to a Bose-Einstein condensate of
strongly coupled molecules. Feshbach tuning also offers a
possible way to detect this molecular coupling through
oscillations induced by magnetic-field transients [10]
analogous to a recent observation with coupled bosonic
atoms [5]. Experimental control of different pairing re-
gimes thus represents an intriguing prospect of a fer-
mionic gas with magnetically tuned interactions.

A narrow Feshbach resonance between two different
spin states of fermionic 40K was recently observed by
Loftus et al. [12]. The other fermionic species currently
used in several experiments, 6Li, is predicted to a show a
Feshbach resonance with strong modifications of s-wave
interactions in a very wide magnetic-field range [13–15].
At relatively small fields, this dependence was recently
used by Granade et al. to obtain a sufficient scattering

cross section for the all-optical production of a degenerate
Fermi gas of lithium [16].

In this Letter, we experimentally explore the magnetic
tunability of elastic scattering in an optically trapped spin
mixture of fermionic lithium atoms in high magnetic
fields up to 1.5 kG. Our results verify the expected de-
pendence of s-wave interactions in the whole magnetic-
field range of interest [13–15]. As a particular feature
associated with the predicted Feshbach resonance [13],
we observe the zero crossing of the scattering length at a
field of 530 G. The exact location of this feature is of great
interest as a sensitive input parameter to better constrain
the uncertainty in the molecular potentials for more
accurate theoretical calculations of the scattering proper-
ties of 6Li. Our measurements of elastic collisions are
based on evaporation out of an optical dipole trap.

The scattering properties in different spin mixtures of
fermionic lithium atoms were theoretically investigated
by Houbiers et al. [13], Kokkelmans et al. [14], and
Venturi and Williams [15]. Magnetic tunability, of par-
ticular interest for Cooper pairing in a Fermi gas [8,9],
was predicted for the stable combination of the two low-
est states j1i and j2i; at low magnetic field these states
correspond to F � 1=2, mF � �1=2, and mF � �1=2,
respectively. Most prominently, a broad Feshbach reso-
nance at �850 G is expected to mark the transition from
the low-field scattering regime to the high-field region.
As a precursor of the Feshbach resonance, the s-wave
scattering length a crosses zero in the range between
500 and 550 G. Beyond the resonance, scattering in
higher fields is dominated by the triplet potential with a
very large and negative scattering length of �2200a0,
where a0 is the Bohr radius. The available theoretical
data [13–15] show the same behavior for a�B� within
some variations due to the limited knowledge of the
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molecular interaction parameters. Figure 1(a) illustrates
these predictions for the scattering length a�B� by a
corresponding model curve that approximates the results
of Refs. [13–15].

In a cold gas at finite temperature the cross section for
elastic scattering of nonidentical particles is unitarity
limited to a maximum value of �max � 4�=k2, where
k � mv=�2 �h� is the wave number corresponding to a
relative velocity v and a reduced mass m=2. Taking into
account the B-field dependent scattering length a�B� and
the unitarity limit, the resulting B-field dependent cross
section can be written as � � 4�a2=�1� k2a2�. For the
considered j1i � j2i spin mixture of 6Li the expected
behavior of the cross section is shown in Fig. 1(b) for
the example of a wave number k � �300a0�

�1 close to our
experimental conditions. Most notably, as a consequence
of the unitarity limit in combination with the very large
scattering length for high magnetic fields, the Feshbach
resonance does not appear as a pronounced feature in the
cross section. The zero crossing of the scattering length,
however, leads to a vanishing scattering cross section and
thus shows up as a manifestation of the resonance.

Our dipole trap [17] makes use of the enhancement of
the laser intensity inside a linear optical resonator to
create a large and deep trapping volume for lithium
atoms. The power provided by a 2-W Nd:YAG laser
(Innolight Mephisto-2000) at a wavelength of 1064 nm
is enhanced by a factor of 120 to create a far red-detuned
1D optical lattice trap with an axial period of 532 nm and
a transverse 1=e radius of 115 
m. The maximum trap
depth is of the order of 1 mK. To vary the trap depth the
resonator-internal power is servo-controlled by an
acousto-optical modulator in the incident laser beam.
From a standard magneto-optical trap (MOT) operated
with diode lasers we typically transfer 5	 105 6Li atoms
into roughly 1000 individual wells at a temperature of

�400 
K. The resulting peak density is �1:5	
1011 cm�3. By extinguishing the repumping light of the
MOT 1 ms before the main trapping light is turned off, all
atoms are pumped into the two states j1i and j2i to create
a 50-50 spin mixture [16].

The magnetic field is produced by a pair of water-
cooled coils outside of the glass vacuum cell of the trap.
At a maximum continuous operation current of 200 A the
coils produce a magnetic field of 1.5 kG with a curvature
of only 75 G=cm2 along the symmetry axis; the corre-
sponding power dissipation is 6 kW. The setup allows for
a maximum ramp speed of 5 G=ms within the full range.
The magnetic field is calibrated by radio-frequency in-
duced transitions from j2i to the state that at B � 0
corresponds to F � 3=2, mF � �1=2. The latter is un-
stable against inelastic collisions with j2i which leads to
easily detectable loss. With a fit to the Breit-Rabi formula
we obtain a calibration of the magnetic field to better than
1 G over the full range.

The basic idea of our measurements is to observe
elastic collisions through evaporative loss at a variable
magnetic field [18]. The method is particularly well suited
for measuring the position of a resonance by locating the
corresponding zero crossing of the scattering length.With
this sensitive experimental input for theoretical calcula-
tions, as is readily available in our case [13–15], precise
knowledge of the magnetic-field dependent scattering
length can be obtained. Our dipole trap is loaded under
conditions where the effective temperature T of a trun-
cated Boltzmann distribution [19] is only slightly below
the trap depth U. A strongly nonthermal distribution is
thus created with a small truncation parameter � � U=
kBT 
 2. The thermal relaxation resulting from elastic
collisions then leads to rapid evaporative loss and cooling
of the sample, i.e., an increase of �. The trap depth can be
kept constant to study plain evaporation or, alternatively,
ramped down to force the evaporation process.

In a series of plain evaporation experiments performed
at a constant trap depth of 750 
K we measure evapo-
rative loss over the maximum accessible range of mag-
netic fields up to 1.5 kG. After a fixed holding time the
remaining atoms are retrapped into the MOT and their
number is measured via the fluorescence signal by a
calibrated photodiode. The signal is recorded after hold-
ing times of 1 and 3 s corresponding to the time scale of
evaporation. These holding times are short compared
with the rest-gas limited lifetime of 30 s. Figure 2 shows
the result of 1000 different measurements obtained in an
acquisition time of 6 h. The data points are taken in a
random sequence for 31 magnetic field values equally
distributed over the full range. Data points for 1 and 3 s
are recorded alternatingly. This way of data taking en-
sures that the signal is not influenced by residual long-
term drifts of the experimental conditions.

The observed evaporation loss in Fig. 2 shows a pro-
nounced dependence on the magnetic field, which we

FIG. 1. (a) Model curve approximating the results of [13–15]
for the s-wave scattering length of 6Li atoms in the two lowest
spin states versus magnetic field. (b) Corresponding behavior of
the scattering cross section at a finite collision energy with a
relative wave number of k � �300a0�

�1.
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compare with the expected cross section for elastic colli-
sions ejecting atoms out of the trap. Figure 1(b) displays
the cross section for k � �300a0�

�1, which corresponds to
a collision energy of about half the trap depth and thus to
the relevant energies for evaporating collisions. After
being very small at low magnetic fields, the observed
loss increases for fields up to �350 G where the expected
local maximum of evaporation shows up. The loss then
decreases and disappears at about 530 G in agreement
with the predicted zero crossing of the scattering length.
Here the slight observed loss in the 1 s curve is explained
by the finite ramp time of the magnetic field. In the 100 ms
ramping time some evaporation does already take place.
At 530 G the decrease of the trapped atom number
between 1 and 3 s is fully explained by rest-gas losses
without any further evaporation. For higher magnetic
fields evaporative loss rapidly rises until it levels off at
about 700 G. Up to the maximum attainable value of
1.5 kG high evaporation loss is observed. A slight de-
crease of the atom number for fields exceeding 1 kG
occurs which we attribute to technical reasons; we ob-
serve an increasing noise for currents higher than
�130 A in the error signal of the resonator lock. The
relatively large and constant evaporative loss for fields
exceeding 700 G is consistent with the predicted behavior
of the cross section.

The evaporative cooling effect is confirmed by mea-
suring the change of the truncation parameter � after 3 s
of trapping at selected values of the magnetic field. For
thermometry we turn off the magnetic field to avoid fur-
ther elastic collisions and adiabatically lower the trap
depth in a 1-s exponential ramp. The fraction of remain-
ing atoms as a function of the relative depth then provides
a good measure of �. At the zero crossing at 530 G we
observe only a slight increase of � to a value of 2.3(3)
which is explained by the unavoidable evaporation during

the magnetic-field ramps. At 340 G close to the local
maximum of jaj we find an increase of � to 4.2(3) as a
clear evidence of evaporative cooling. At 720 G, i.e., in
the case of a large positive scattering length, a higher
value of 5.5(4) is measured showing deeper evaporative
cooling. Essentially the same � of 5.3(4) is obtained at
B � 1290 G where scattering takes place in the triplet-
dominated regime with a very large negative scattering
length.

We measure the minimum-loss feature in a closer range
of magnetic fields to precisely determine the value of the
magnetic field at which the zero crossing of scattering
length occurs. The main data points in Fig. 3 are obtained
with 500 individual measurements at a holding time of 3 s
with the magnetic field randomly varied between 30 val-
ues in an interval between 370 and 670 G; the data shown
in the inset are obtained with 1000 measurements in the
very narrow range between 520 and 544 G. The results
allow us to determine the B field for minimum evapo-
rative loss, and thus the zero crossing of the scattering
length to 530(3) G [20].

Forced evaporation measurements provide complemen-
tary data to plain evaporation and allow us to rule out a
significant role of inelastic collisions.When the trap depth
is ramped down, elastic collisions reduce trap loss in con-
trast to increased loss at constant trap depth. This can
be understood by the spilling loss of energetic particles
[19]: Without elastic collisions the most energetic par-
ticles are spilled out of the trap when its depth is reduced.
With elastic collisions the evaporative cooling effect de-
creases the temperature and thus reduces the spilling loss.

In our forced evaporation measurements we reduce the
trap depth in 10 s to 20% of its initial value in an
exponential ramp and measure the number of remaining
atoms; the results are displayed in Fig. 4. A minimum

FIG. 3. Measurements on plain evaporation in magnetic fields
close to the zero crossing of the scattering length under the
same conditions as in Fig. 2 for a holding time of 3 s. Here the
number of remaining atoms is normalized to the observed
maximum value. The inset shows a series of measurements in
a very narrow range around the maximum at 530(3) G together
with a parabolic fit.

FIG. 2. Evaporative loss measurements over the full magnetic
field range. The data points show the measured number of
atoms remaining in the trap after 1 s (�) and 3 s (�) of plain
evaporation at a constant trap depth of 750 
K.
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number of atoms is now measured at 0 and 530 G instead
of the maximum observed with constant trap depth. The
largest number of atoms is observed in the high-field
region above 650 G as expected for the large scattering
cross section.

On a Feshbach resonance, enhanced inelastic loss can
occur as a result of three-body collisions [1] or, if the
system has internal energy, as a result of two-body decay
[3]. For fermions, three-body processes are symmetry
forbidden at ultralow energies when only s-wave colli-
sions are involved. In a spin mixture at nonzero magnetic
field, two-body decay is energetically possible (in our
case with an energy release of kB 	 3:5 mK) but involves
higher partial waves and relies on weak dipolar coupling.
Consequently, inelastic loss can be expected to be weak
in our experiments. Indeed, our data do not show any
indication of inelastic loss even at the very center of the
Feshbach resonance.

At much higher densities (� 1013 cm�3) as compared
to our conditions (� 1011 cm�3), a recent experiment
[21] has revealed inelastic loss with a maximum at
680 G. As our results support the predicted position of
the s-wave resonance at �850 G, the explanation for the
inelastic feature cannot be attributed to the Feshbach
resonance in a simple way. The experiment [21] also
provided evidence for a two-body nature of the under-
lying process with a rate constant of 2	 10�12 cm3=s
measured at �20 
K. At a higher temperature of
�100 
K we derive an upper bound for the two-body
rate constant of 1	 10�12 cm3=s, whereas for a process
involving higher partial waves one would expect the rate
to increase with temperature. For three-body collisions
our densities are too low to provide useful constraints.
Obviously, inelastic loss in the fermionic spin mixture is
an interesting problem that deserves more attention.

In conclusion, our measurements confirm the predicted
magnetic tunability of the s-wave scattering length in a
spin mixture of fermionic lithium atoms in the whole
magnetic-field range of experimental interest. The ob-

served zero crossing of the scattering length at 530(3) G
together with the large cross section observed for higher
fields provides clear evidence of the predicted Feshbach
resonance. Moreover, it enables more precise calculations
of the 6Li scattering properties. The resonance itself
is masked by unitarity-limited scattering and requires
much deeper evaporative cooling for a direct observation.
The fact that we do not see any significant effect of
inelastic loss highlights the fact that the extremely large
positive and negative scattering lengths attainable with
fermionic lithium offer intriguing new possibilities for
experiments on interacting Fermi gases.

We thank R. G. Hulet and H. Stoof for very useful
discussions and V. Venturi for valuable input. Support
by the Austrian Science Fund (FWF) within Project
No. P15115 and SFB15 and by the Institut für Quanten-
information GesmbH is gratefully acknowledged.

Shortly before submission of the present Letter we
learned about the measurements of the group of J. E.
Thomas on the zero crossing of the scattering length
which agree with our data.
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We employ radio-frequency spectroscopy on weakly bound 6Li2 molecules to precisely determine the
molecular binding energies and the energy splittings between molecular states for different magnetic
fields. These measurements allow us to extract the interaction parameters of ultracold 6Li atoms based on
a multichannel quantum scattering model. We determine the singlet and triplet scattering lengths to be
as � 45:167�8�a0 and at � �2140�18�a0 (1a0 � 0:052 917 7 nm), and the positions of the broad
Feshbach resonances in the energetically lowest three s-wave scattering channels to be 83.41(15),
69.04(5), and 81.12(10) mT.
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Molecular level structure near a collision threshold
uniquely determines the scattering properties of ultracold
atoms. When a molecular state is tuned near the scattering
threshold, the atomic scattering amplitude can be reso-
nantly altered. Magnetically tuned Feshbach resonances
[1] in ultracold fermionic gases have recently led to
ground-breaking observations, including the condensation
of molecules [2–6] and the studies of the crossover physics
from a molecular Bose-Einstein condensate (BEC) to
atomic Cooper pairs in the Bardeen-Cooper-Schrieffer
state (BEC-BCS crossover) [5,7,8]. These studies are of
general importance in physics as the ultracold Fermi gas
provides a unique model system for other strongly inter-
acting fermionic systems [9].

In spin mixtures of 6Li atoms, a broad Feshbach reso-
nance in the energetically lowest s-wave channel [10]
allows for precise interaction tuning. This, together with
the extraordinary stability of the system against inelastic
decay [2,11], makes 6Li the prime candidate for BEC-BCS
crossover studies. A precise knowledge of the magnetic-
field dependent scattering properties is crucial for a quan-
titative comparison of the experimental results with cross-
over theories. Of particular importance is the precise value
of the magnetic field where the s-wave scattering diverges.
At this unique point, the strongly interacting fermionic
quantum gas is expected to exhibit universal properties
[12]. Previous experiments explored the 6Li resonance by
measuring inelastic decay [13], elastic collisions [14,15],
and the interaction energy [16], but could locate the exact
resonance point only to within a range between 80 and
85 mT.

An ultracold gas of weakly bound molecules is an ex-
cellent starting point to explore the molecular energy
structure near threshold [17]. An improved knowledge on
the exact 6Li resonance position was recently obtained in

an experiment that observed the controlled dissociation of
weakly bound 6Li2 molecules induced by magnetic-field
ramps [18]. These measurements provided a lower bound
of 82.2 mT for the resonance position. Studies of system-
atic effects suggested an upper bound of 83.4 mT. Within
this uncertainty range, however, we observe the physical
behavior of the ultracold gas to exhibit a substantial de-
pendence on the magnetic field [8]. In this Letter, we apply
radio-frequency (rf) spectroscopy [17,19] on weakly
bound molecules to precisely determine the interaction
parameters of cold 6Li atoms. Together with a multichan-
nel quantum scattering model, we obtain a full character-
ization of the two-body scattering properties, essential for
BEC-BCS crossover physics.

The relevant atomic states are the lowest three sublevels
in the 6Li ground state manifold, denoted by j1i, j2i, and
j3i. Within the magnetic-field range investigated in this
experiment, these levels form a triplet of states, essentially
differing by the orientation of the nuclear spin (mI �
1; 0;�1). Figure 1 shows the energy level structure of the
two scattering channels j1i � j2i and j1i � j3i, denoted by
�1; 2� and �1; 3�, respectively. The broad Feshbach reso-
nance occurs in the �1; 2� channel near 83 mT. When the
magnetic field is tuned below the resonance, atoms in the
�1; 2� channel can form weakly bound molecules [20]. For
the �1; 3� channel, a similar Feshbach resonance [19] oc-
curs near 69 mT.

Starting with molecules formed in the �1; 2� channel, we
drive the rf transition to the �1; 3� channel at various
magnetic-field values B. The rf excitation can dissociate
a molecule into two free atoms (bound-free transition; see
Fig. 1) [17] or, for B< 69 mT, it can also drive the
transition between the molecular states in the �1; 2� and
�1; 3� channels (bound-bound transition). In both pro-
cesses, the rf excitation results in loss of molecules in the
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�1; 2� channel. This loss constitutes our experimental sig-
nal. We perform measurements at different magnetic fields
for both the bound-free and the bound-bound transitions.

Our experimental procedure is similar to Ref. [8]. The
optically trapped sample is cooled by forced evaporation at
a magnetic field of 76.4 mT. With deep cooling we rou-
tinely produce a BEC of 2� 105 molecules [2], which at
the lowest trap laser power of 3.8 mW has a peak density of
4� 1012 cm�3. After evaporation we linearly ramp the
field to a specific value between 66 and 72 mT in typically
200 ms. We then apply a single rf pulse for 200 ms with its
frequency tuned close to the atomic transition j2i to j3i.
Following the rf pulse, we apply state-selective absorption
imaging, which is sensitive to free atoms in state j2i and
molecules in the �1; 2� channel.

To precisely determine the magnetic field, we employ rf
spectroscopy on a ‘‘hot’’ thermal sample of 2� 106 atoms
at a temperature T 	 90 �K (about 6 times the Fermi
temperature TF) with the highest trap laser power of
10.5 W. Under these conditions we do not observe any
density-dependent frequency shifts, in agreement with
[19]. The rf transition energy then corresponds to the
internal energy difference hf0 between the states j2i and
j3i, where h is Planck’s constant. This energy is magnetic-
field dependent and the transition frequency is about
83 MHz in the magnetic-field range we study. The mea-
sured transition has a narrow linewidth of less than 1 kHz,
and the center position can be determined to within a few
hundred Hz. This high resolution allows us to calibrate our
magnetic field to an accuracy of a few �T based on the
Breit-Rabi formula and the 6Li parameters given in [21].

For bound-free transitions, the molecules in the �1; 2�
channel make a transition to the �1; 3� scattering contin-
uum. The excitation rate from a stationary molecule to an
atomic scattering state with kinetic energy 2Ek is deter-

mined by the Franck-Condon factor between the bound and
free wave functions [22]. From energy conservation, 2Ek is
related to the rf transition energy hf by hf � hf0 � Eb �
2Ek, where Eb is the binding energy of the molecules in the
�1; 2� channel. The variation of the Franck-Condon factor
with atomic kinetic energy leads to a broad and asymmetric
dissociation line shape [22].

Rf dissociation spectra taken at 72.0 and 69.5 mT for a
molecular BEC in a weak optical trap are shown in Fig. 2.
An important feature of the spectra is the sharp rising edge
on the low frequency side. This threshold corresponds to
the dissociation of a molecule into two atoms with zero
relative momentum. Therefore, the position of the edge
relative to the atomic transition directly indicates the mo-
lecular binding energy.

We determine the dissociation threshold and thus the
molecular binding energy by fitting the full line shape. The
line shape function [22] depends on both the �1; 2� mo-
lecular binding energy Eb and the scattering length a13 in
the �1; 3� channel. In the range of magnetic fields we
investigate, a13 is much larger than the interaction range
of the van der Waals potential of 
30a0. The line shape
function P�E� is then well approximated by [22]

P�E� / E�2�E� Eb�
1=2�E� Eb � E0��1; (1)

where E � hf� hf0 and E0 � �h2=ma213. From the fits to
the experimental data [23], we determine the threshold
positions, given in Table I. Together with the atomic tran-
sition frequencies, we conclude that the molecular binding
energies are Eb � h� 134�2� kHz at 72.013(4) mT and
Eb � h� 277�2� kHz at 69.483(4) mT.
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FIG. 2. Bound-free rf spectra at 72.013(4) mT (a) and
69.483(4) mT (b). Fractional loss in state j2i is measured as a
function of the radio frequency. The solid lines represent a fit
based on Eq. (1). The atomic transition frequencies, which are
measured independently, are indicated by the vertical dashed
lines.
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FIG. 1 (color online). Energy level structure near the Li2
dissociation threshold as a function of magnetic field B. The
threshold energy of the �1; 3� scattering channel (upper dotted
line) is plotted relative to the �1; 2� threshold (lower dotted line).
In the �1; 2� channel, a molecular state (lower solid line) exists
below the Feshbach resonance at 
83 mT. In the �1; 3� channel,
another molecular state (upper solid line) exists below the reso-
nance at 
69 mT. The bound-free and bound-bound transitions
of molecules in the �1; 2� channel are illustrated by the arrows.
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For magnetic field B< 69 mT, we can drive the rf
transition between the �1; 2� and �1; 3� molecular states.
Here, the resonance frequency is given by the energy
difference of the two molecular states. To avoid possible
systematic mean-field shifts at these lower magnetic fields
[19], we prepare a thermal mixture of atoms and molecules
with temperature T 	 TF by a controlled heating method
[8]. Rf spectroscopy is performed at 67.6 and 66.1 mT. The
bound-bound transition signal at 66.1 mT is shown in
Fig. 3. By fitting the narrow transition line with a
Lorentzian profile, we determine the resonance frequency;
see Table I. Notably, below the resonance in the �1; 3�
channel at 
69 mT, the bound-free transition is much
weaker due to a Fano-type interference effect [22].

Because of the high precision of the measured transition
frequencies, a careful analysis of systematic effects is
necessary. Possible systematic shifts include differential
light shifts of the two molecular states and density-
dependent many-body shifts. In order to characterize these
possible systematic errors, we experimentally investigate
these shifts by varying the trap depth of the optical poten-
tial. In a deeper trap, both the differential light shifts and
mean-field shifts are expected to increase. We repeat the

bound-free and bound-bound rf spectroscopy for different
trap laser powers in a range between 3.8 and 310 mW. At a
typical magnetic field of B � 69 mT the peak number
density of a molecular BEC is thereby varied between 8�
1012 cm�3 and 5� 1013 cm�3. Within our statistical un-
certainties we do not see any systematic density-dependent
shifts.

Given the measured data summarized in Table I, it is
possible to predict the location of the scattering resonances
in the �1; 2�, �1; 3�, and �2; 3� channels if we have an
accurate theoretical model of the collision. We use a stan-
dard multichannel model for the interaction of two 2S
atoms with nuclear spin [24] to calculate the scattering
lengths and bound state energies for these channels. It is
necessary to include s waves only in the basis set, since we
find that there is a negligible change within the experimen-
tal uncertainties if we also include higher partial waves in
the basis set. The interaction potential model is the same as
described in Ref. [14]. It uses a combination of Rydberg-
Klein-Rees and ab initio potentials for the singlet (1��

g )
and triplet (3��

u ) states at short range and joins them
smoothly onto long range potentials based on the exchange
[25] and van der Waals dispersion energy [26], the lead
term of which is C6 � 1393:39�16� au (1 au � 9:573 44�
10�26 J nm6). As in Ref. [14], the singlet 1��

g and triplet
3��

u scattering lengths, as and at, respectively, are varied
by making small variations to the inner wall of the poten-
tial. Once as and at are specified, all other scattering and
bound state properties for all channels of two 6Li atoms are
uniquely determined, including the positions of the reso-
nances. Consequently, varying as and at to fit the binding
energies and energy differences from rf spectroscopy de-
termines the values of these two free parameters.

Fitting the data of the present experiment determines
as � 45:167�8�a0 and at � �2140�18�a0. The uncertainty
includes both the uncertainty in the measured value of the
magnetic field and the uncertainty in the rf measurements.
Our scattering lengths agree within the uncertainties with
previous determinations: as � 45:1591�16�a0 [18] and
at � �2160�250�a0 [27]. Table I shows a comparison of
the measured and best fit calculated energies. The calcu-
lated positions of the broad s-wave resonances for the
�1; 2�, �1; 3�, and �2; 3� channels are 83.41(15), 69.04(5),
and 81.12(10) mT, respectively.

Figure 4 shows the scattering lengths calculated for
several different channels in the magnetic-field range of
interest to BEC-BCS crossover experiments. We find that
the formula a�ab
1���B�B0�

�1�
1���B�B0�� fits
the calculated scattering lengths to better than 99% over
the range of 60 to 120 mT. This expression includes the
standard Feshbach resonance term [28] with the back-
ground scattering length ab, resonance position B0, and
resonance width �, and a leading-order correction parame-
trized by �. The respective values for ab, B0, �, and � are
�1405a0, 83.4149 mT, 30.0 mT, and 0:0040 mT�1 for
channel �1; 2�, �1727a0, 69.043 mT, 12.23 mT, and

TABLE I. Comparison between our experimental and theoreti-
cal results. The magnetic field B is determined from the mea-
sured atomic transition frequency f0. The molecular transition
frequency fmol refers to the resonance peak for bound-bound
transitions (upper two rows) or the dissociation threshold (lower
two rows). The values in parentheses indicate 1� uncertainties.

fmol (MHz)
B (mT) f0 (MHz) Experimental Theory

66.1436(20) 82.968 08(20) 83.6645(3) 83.6640(10)
67.6090(30) 82.831 84(30) 83.2966(5) 83.2973(10)
69.4826(40) 82.666 86(30) 82.9438(20) 82.9419(13)
72.0131(40) 82.459 06(30) 82.5928(20) 82.5910(13)

83.660 83.665 83.670
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FIG. 3. Bound-bound rf spectrum at 66.144(2) mT. The frac-
tional population loss in state j2i shows a narrow resonance. We
determine the center position to be 83.6645(3) MHz from a
Lorentzian fit (solid line).
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0:0020 mT�1 for channel �1; 3�, and �1490a0, 81.122 mT,
22.23 mT, and 0:003 95 mT�1 for channel �2; 3�.

The �1; 3� channel molecular bound state can decay to
the �1; 2� channel by a very weak spin-dipolar coupling. We
have used the methods of Ref. [29] to calculate the two-
body lifetime of the �1; 3� bound state due to predissocia-
tion to the �1; 2� channel and find that it is very long,
greater than 10 s at 60.0 mT, increasing to 1000 s at
68.5 mT very close to resonance. However, �1; 3� mole-
cules might be quenched by collisions with j2i atoms or
�1; 2� channel molecules, since with three different spin
states involved in the collision, there would be no fermi-
onic suppression of collision rates according to the mecha-
nism of Ref. [11].

In conclusion, radio-frequency spectroscopy on ultra-
cold, weakly bound molecules allowed us to precisely
determine the molecular binding energies and the energy
splittings between two molecular states for different mag-
netic fields. Based on the measured data and a multichan-
nel quantum scattering model, we determine the scattering
lengths as a function of magnetic field and the Feshbach
resonance positions in the lowest three channels with un-
precedented precision. With these data, we can fully char-
acterize the interaction strength between particles in the
BEC-BCS crossover regime for future experiments based
on 6Li atoms.
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FIG. 4 (color online). Scattering lengths versus magnetic field
from multichannel quantum scattering calculations for the �1; 2�,
�1; 3�, and �2; 3� scattering channels. The arrows indicate the
resonance positions.
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Tuning the Scattering Length with an Optically Induced Feshbach Resonance
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We demonstrate optical tuning of the scattering length in a Bose-Einstein condensate as predicted by
Fedichev et al. [Phys. Rev. Lett. 77, 2913 (1996)]. In our experiment, atoms in a 87Rb condensate are
exposed to laser light which is tuned close to the transition frequency to an excited molecular state. By
controlling the power and detuning of the laser beam we can change the atomic scattering length over a
wide range. In view of laser-driven atomic losses, we use Bragg spectroscopy as a fast method to
measure the scattering length of the atoms.

DOI: 10.1103/PhysRevLett.93.123001 PACS numbers: 34.50.Rk, 03.75.Nt, 32.80.Pj, 34.20.Cf

The great progress in the field of ultracold quantum
gases in recent years can be largely attributed to the
existence of magnetically tunable Feshbach resonances
[1]. Since their first experimental introduction into the
field [2–4], they have been widely used to arbitrarily tune
the interactions between atoms.

In general, a Feshbach resonance occurs when a collid-
ing pair of atoms is resonantly coupled to a molecular
bound state. A magnetically tunable Feshbach resonance
is based on Zeeman shifting a bound molecular state into
resonance with the scattering state. Alternative coupling
schemes for inducing Feshbach resonances have been
proposed but never experimentally applied to control
atomic interactions. The use of radio frequency [5] and
static electric fields [6] was suggested. Fedichev et al. [7]
proposed optical coupling of the scattering state with the
molecular state, which was theoretically analyzed further
in [8,9]. This scheme, often referred to as ‘‘optical
Feshbach resonance,’’ can be controlled via laser detun-
ing and laser power.

Inducing Feshbach resonances with optical fields offers
experimental advantages compared to magnetic fields.
The intensity and detuning of optical fields can be rapidly
changed. Furthermore, complex spatial intensity distri-
butions can be easily produced which result in corre-
sponding scattering length patterns across the sample.
Optical transitions are always available, even when no
magnetic Feshbach resonances exist. Recently, Fatemi et
al. [10] observed optical Feshbach resonances in photo-
association spectroscopy. They used photoionization to
probe optically induced changes in the scattering wave
function. However, the direct influence of the optical
Feshbach resonance on the atomic scattering properties
was not studied.

In this Letter, we report a direct measurement of the
atomic scattering length a in a BEC of 87Rb jF �
1; mF � �1i as we cross an optical Feshbach resonance.
With moderate laser intensities of about 500 W=cm2, we
can change the scattering length over 1 order of magni-
tude from 10 a0 to 190 a0 (a0 � 1 Bohr radius).

To optically modify the scattering length, we use laser
light tuned close to a photoassociation resonance which
couples the continuum state of incoming free atoms to an
excited molecular level (see inset in Fig. 1). This changes
the wave function and consequently the scattering length
of the scattering state. It also leads to atomic loss due to
spontaneous decay via the molecular state. The resonant
transition rate between the continuum state and the mo-
lecular state, which we denote �stim, is proportional to the
laser intensity. In our experiment, �stim=2� is on the order
of a few 10 kHz. This is 3 orders of magnitude less than
the spontaneous decay rate �spon from the excited mo-
lecular state. In [8], Bohn and Julienne give convenient
expressions for the scattering length a and the inelastic
collision rate coefficient Kinel which describes the photo-
association loss. For �stim � �spon, these expressions can

FIG. 1. Scattering length a (solid line) and inelastic collision
rate coeffient Kinel (broken line) as a function of the laser
detuning from the photoassociation resonance. The curves
are based on Eqs. (1) and (2) for typical experimental parame-
ters: �stim=2� � 54kHz, �spon=2� � 20MHz, ki �
2:47� 105m�1, abg � 100a0 (dotted line). Inset: Scheme for
optically coupling the scattering state with an excited molecu-
lar state.
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be approximated and, for a condensate [11], read:

a � abg �
1

2ki

�stim�

�2 � ��spon=2	2
(1)

Kinel �
2� �h
m

1

ki

�stim�spon

�2 � ��spon=2	2
(2)

where abg is the scattering length in the absence of light,
� is the detuning from the photoassociation line, m the
atomic mass, and �hki the relative momentum of the col-
lision. Figure 1 shows a and Kinel as functions of the
detuning � for typical experimental parameters.
According to Eqs. (1) and (2), one should in general
choose large detuning and strong coupling in order to
maximize the change in scattering length while keeping
the losses low.

Our experiments are carried out with an almost pure
87Rb condensate in the jF � 1; mF � �1i spin state with
typically 1� 106 atoms. The setup uses a magnetic trans-
port scheme [12] to transfer atoms from a magneto-
optical trap (MOT) chamber to a glass cell where the
BEC is produced by rf-evaporation in a cigar shaped
quadrupole and Ioffe configuration (QUIC) trap [13]
with trap frequencies !axial=2� � 15Hz and !radial=2� �
150Hz. The intensity stabilized photoassociation laser
beam ( 
 40 mW) is derived from a Ti:Sa laser. It is
aligned along the axial direction of the cigar shaped
BEC and has a waist radius of 76 �m. Its linear polar-
ization is perpendicular to the trapping magnetic bias
field of 2 Gauss. In our experiments, we limit the maxi-
mum laser intensities to about 500 W=cm2 because we
observe the appearance of a growing component of ther-
mal atoms for higher intensities. This effect is negligible
for laser powers below 500 W=cm2.

In order to identify a suitable molecular level with
strong coupling to the continuum state, we investigated
molecular lines in the 1g and 0�g potentials, which connect
to the �S1=2 � P3=2	 and �S1=2 � P1=2	 asymptotes. We
choose the excited state j0�g ��S1=2 � P3=2	; � � 1; J �

2i which is located 26:8 cm�1 below the D2 line [14].
Figure 2 shows the corresponding photoassociation line
together with the line for J � 0. At a laser intensity of
460 W=cm2, the measured atom losses yield a peak in-
elastic collision rate Kinel � �2� 1	 � 10�10cm3=s,
which is a factor of 5 weaker than Kinel in the example
of [8]. Losses due to excitation of the D2 line can be
neglected. We observe a strong intensity dependent light
shift of 215 MHz=�kW cm�2	 of the photoassociation
line which might be mainly explained by coupling to a
d-wave shape resonance [15].

Measuring the scattering length close to a photoasso-
ciation resonance requires a fast experimental method as
atom losses restrict the observation time to below 100 �s
in our experiments. Thus, the scattering length can nei-
ther be extracted from measurements of the collision rate

[4] nor from the mean-field energy in a condensate ex-
pansion [2], both of which require a few ms. Instead, we
use Bragg spectroscopy [16] to determine the mean-field
energy by imposing on the atoms a moving optical lattice
composed of two counter-propagating laser beams with
wave number k and an adjustable frequency difference
�f. The Bragg lattice transfers a momentum of 2 �hk to the
atoms in a first order diffraction process. This is resonant
when energy conservation is fulfilled, which for nonin-
teracting atoms reads h�f0 � �2 �hk	2=2m. For a conden-
sate, however, the resonance frequency �fr is shifted by
the mean-field energy. In the Thomas-Fermi approxima-
tion, this yields a value of

�fr � �f0 �
8 �h
7m

n0a (3)

where n0 denotes the atomic peak density [16]. Observing
this shift of the Bragg resonance frequency therefore
allows to measure the product of density and scattering
length.

We derive the two Bragg beams from a laser which is
1.4 nm blue detuned relative to the 87Rb D2 line. This
determines �f0 to be 15.14 kHz. Two acousto-optical
modulators are used to control the frequency difference
�f between the two counter-propagating beams. The
beams have a diameter of 
 900 �m and are aligned
along the radial trap axis in a horizontal direction. In
our measurements, we apply a 70 �s square-pulse of
Bragg light to the condensate. After 12 ms of time of
flight, when the momentum components of the conden-
sate have spatially separated, we use absorption imaging
to measure the portion of condensate atoms that have been
diffracted. We always choose the intensity of the lattice
such that about 15%–20% of the atoms are diffracted at
resonance. Scanning �f and determining the percentage
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FIG. 2. Photoassociation spectrum of the excited molecular
state used in the experiment. The two lines belong to the state
j0�g ��S1=2 � P3=2	; � � 1i and have rotational quantum num-
bers J � 0; 2, respectively. Shown is the remaining atom num-
ber after exposing a BEC to a 70 �s light pulse of 460 W=cm2

intensity. The detuning is given relative to the J � 2 line. Each
data point is an average of three measurements.
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of diffracted atoms yields curves as shown in Fig. 3 from
which we extract the resonance positions. Shining in a
photoassociation laser pulse (70 �s square-pulse) at the
same time as the Bragg pulse shifts the resonance posi-
tion. This shift depends on the detuning � from the
molecular line (filled and open circles in Fig. 3).

For short illumination times T as in our experiment,
the shape of the spectra fits well to the Fourier transform
of the rectangular light pulse, sin2
���f�
�fr	T�=��f��fr	

2, which we use to fit the data (see
Fig. 3). Our measurements show that in spite of the
Fourier-limited width of the Bragg resonance of 13 kHz
(FWHM), we can resolve the peak position to better than
�100 Hz.

When we invert the frequency difference of the Bragg
laser beams and diffract atoms to a momentum state with
�2 �hk instead of �2 �hk, we notice that the absolute value
of the resonance frequency j�frj changes. This can be
explained by an initial condensate momentum of up to
0:05 �hk which we find to slowly vary from day to day.
This initial momentum is due to residual experimental
imperfections like optical dipole forces of a slightly non-
centered photoassociation beam. To eliminate this effect,
we always measure �fr for �2 �hk as well as for �2 �hk and
then take the difference.

Figure 4 shows the data we obtain from scanning
the photoassociation laser over the optical resonance for
a fixed laser intensity of 460 W=cm2. The number of
atoms in the condensate at the end of the laser pulse
is plotted in Fig. 4(a) indicating the position of the
molecular line. On resonance, about 90% of the atoms
are lost after the 70 �s of interaction time. Figure 4(b)
shows the resonance frequency �fr for Bragg diffraction
as a function of laser detuning �. For large positive
(and negative) detuning �, the value of �fr agrees with

the 16.6 kHz expected from theory for the back-
ground scattering length abg � 100 a0 [17,18] and a
BEC with 
 8:2� 105 atoms. As we tune across the
molecular resonance, the measured resonance frequen-
cies exhibit a distorted dispersive shape. Following
Eq. (3), this is the result of the combination of two effects:
first, the scattering length a varies with � which alone
should result in a dispersive line shape as in Fig. 1.
Second, the atomic density n0 decreases due to photo-
association losses which would, if the scattering length
was constant, result in a symmetrical dip for �fr. On the
right-hand side of the resonance, these two effects nearly
compensate each other whereas on the left-hand side, the
effects add up to produce a prominent dip in �fr.

In order to extract the scattering length a from the
measured frequencies one can, in a first approach, replace
the dynamically changing density n0 in Eq. (3) by a time
averaged value hn0it. The average hn0it can be derived
from the rate equation for the local density _n �
�2Kineln

2 [19] describing two-atom losses. This yields
values for a which differ only marginally from the ones in
Fig. 4(c). The data in Fig. 4(c) were obtained from a more
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FIG. 3. Two Bragg resonance curves with an optically in-
duced relative shift of 0.75 kHz. The percentage of the dif-
fracted atoms is plotted against the frequency difference of the
lattice beams. The two curves correspond to a detuning
�=2� � �47 MHz (filled circles) and �=2� � �47 MHz
(open circles) at a photoassociation laser intensity of
460 W=cm2. The lines shown are fits to the data. For better
comparison the right curve (open circles) has been scaled by a
factor of 1.09 to the same height as the left one.

FIG. 4. Optical Feshbach resonance. In (a), the final atom
number is plotted versus the detuning of the photoassociation
laser (the dashed line is a Lorentz curve to guide the eye). The
data in (b) display the measured Bragg resonance frequencies.
In (c), the values for the scattering length obtained from the
data in (a) and (b) are plotted. The continuous line is a fit of
Eq. (1) to the data.
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detailed examination which takes into account the full
spatially resolved time evolution of the condensate den-
sity [20]. This includes the dynamical flattening of the
condensate density profile caused by the rapid atom loss
which is much faster than the trap frequencies [19].
Figure 4(c) shows that with a laser power of
460 W=cm2, we can tune the scattering length over a
range from 10 a0 to 190 a0. A fit of Eq. (1) to these data
for a yields a spontaneous decay width �spon=2� of
20 MHz and a resonant inelastic collision rate coefficient
Kinel � 1:7� 10�10cm3=s. These values agree with those
we obtain from atom loss measurements. Thus, our data
consistently confirm the intrinsic relation between a and
Kinel as expressed in Eqs. (1) and (2).

The measured width �spon=2� of 20 MHz is larger than
the expected molecular decay width of 12 MHz (corre-
sponding to 2 times the atomic width). This might be
explained by the line width of the Ti:Sa laser of about
4 MHz and a power broadening of the line due to different
light shifts of unresolved molecular hyperfine states
[18,19].

Figure 5 demonstrates the linear dependence of the
scattering length a on the photoassociation laser intensity.
For these measurements, we determine the Bragg reso-
nance frequency for the detunings �=2� 
 �50 MHz at
various photoassociation laser intensities. This is slightly
complicated by the light shift and broadening of the
photoassociation line which lead to an uncertainty in
�=2� of �10 MHz. We keep the final atom number and
density fixed by adjusting the pulse duration for each laser
intensity. This ensures that only changes in a are reflected
in the varying mean-field shift. In Fig. 5, we plot the
frequency difference �f��50MHz	 ��f��50MHz	
which increases our signal.

In conclusion, our experiments demonstrate the tuna-
bility of the scattering length in ultracold samples by
optically coupling free atoms to a bound molecular state.
Because of the exquisite control one has over laser fields,

we expect optical Feshbach resonances to be valuable
when it comes to controlling atom-atom interactions in
demanding applications. The inherent losses suggest the
use of high laser intensities at large detuning and a good
choice of the molecular state in order to optimize the ratio
of change in scattering length and loss rate. Optical
Feshbach tuning could be particularly useful to control
atomic interactions in optical lattices which are discussed
as potential future quantum information processors.
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We demonstrate a method of inducing an optical Feshbach resonance based on a coherent free-bound
stimulated Raman transition. In our experiment atoms in a87Rb Bose-Einstein condensate are exposed to two
phase-locked Raman laser beams which couple pairs of colliding atoms to a molecular ground state. By
controlling the power and relative detuning of the two laser beams, we can change the atomic scattering length
considerably. The dependence of scattering length on these parameters is studied experimentally and modeled
theoretically.

DOI: 10.1103/PhysRevA.71.033403 PACS numberssd: 34.50.Rk, 32.80.Pj, 03.75.Nt, 34.20.Cf

I. INTRODUCTION

Feshbach resonances have become a central tool in the
physics of ultracold quantum gases during the last years be-
cause they allow for a tuning of the interactions between
atoms. Controlling interparticle interactions is a central key
in many fields of modern physics and is especially relevant
for future applications in quantum computation and explor-
ing novel many-particle quantum effects. Beautiful experi-
ments using magnetically tunable Feshbach resonancesf1,2g
have been performed, ranging from ultrahigh-resolution mo-
lecular spectroscopyf3g to the coherent coupling of atomic
and molecular statesf4g as well as the creation of bright
matter wave solitonsf5g. It also led to the production of new
atomic f6g and molecularf7g Bose-Einstein condensates
sBEC’sd and allowed control of pairing in ultracold fermi-
onic gasesf8g.

Recently we demonstrated how atom-atom interactions in
a 87Rb BEC can also be tuned with an optically induced
Feshbach resonancef9g ssee alsof10gd, a scheme which was
originally proposed by Fedichevet al. f11,12g. Optically in-
duced Feshbach resonances offer advantages over magneti-
cally tuned Feshbach resonances since the intensity and de-
tuning of optical fields can be rapidly changed. Furthermore,
complex spatial intensity distributions can be easily pro-
duced and optical transitions are always available even when
no magnetic Feshbach resonances exist. A disadvantage of
optically induced Feshbach resonance is the inherent loss of
atoms due to excitation and spontaneous decay of the mo-
lecular statef9g. Typical lifetimes for excited molecular
states are on the order of 10 ns which corresponds to a line-
width of 2p316 MHz. Evidently, coupling to molecular
states with longer lifetime should improve the situation.
Ground-state molecules are stable against radiative decay,
and narrow transition linewidths on the order of kHz have
been observed in two-photon Raman photoassociation
f13,14g. This raises the question whether it is possible to
create optical Feshbach resonances using stimulated Raman
transitions and whether this scheme might be advantageous
compared to the one-photon optical Feshbach resonance.

In this paper we indeed demonstrate that optical Feshbach
resonances can be induced using a coherent two-color Ra-

man transition to a highly vibrationally excited molecular
ground state in a87Rb BEC. In the experiment we show how
the scattering length and loss rates can be tuned as a function
of the intensity of the lasers and their detuning from molecu-
lar lines. We use Bragg spectroscopyf15g as a fast method to
measure the scattering length in our samplef9g. To fit and
analyze our data we use a model by Bohn and Juliennef16g.
We find that using the Raman scheme for optically induced
Feshbach resonances leads to similar results in tuning of the
scattering length as for the single-photon Feshbach scheme.
The Raman scheme does not lead to an improvement com-
pared to the one-photon scheme because its atomic loss rate
is not lower for a given change in scattering length. How-
ever, using a stimulated Raman transition does offer experi-
mental advantages. To tune over the Feshbach resonance, the
relative frequency of the two laser beams only has to be
changed typically by several MHz which can be conve-
niently done using an acousto-optic modulator. This allows
for very fast and precise control of the scattering length. On
the other hand, working with a one-photon optical Feshbach
resonance in the low-loss regime typically requires large de-
tunings and scan ranges on the order of GHz. The Raman
scheme relaxes the necessity for absolute frequency control
of the lasers which can be tedious to maintain far away from
atomic lines. Since off-resonant light fields in general lead to
dipole forces acting on the atoms, a variation of the scatter-
ing length via optical tuning leads to a variation of the dipole
forces on the atomic sample. This unwanted effect can be
made negligible for the Raman scheme which tunes over
resonance within a small frequency range.

The paper is organized as follows: We start in Sec. II by
discussing the Raman scheme with a simple theoretical
model. In Sec. III we describe in detail our experimental
setup and the measurement method. In Sec. IV we discuss
the experimental results which are compared with a theoret-
ical model. The Appendix gives details of the model that is
used to describe the data.

II. RAMAN SCHEME FOR OPTICAL FESHBACH TUNING

Before discussing optical Feshbach tuning based on a
two-photon Raman transition, it is instructive to briefly recall
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the one-photon scheme firstf9,11,12g. This configuration
uses a single laser beam tuned close to a transition from the
scattering state of colliding atoms to a bound level in an
excited molecular potentialsstatesu0l and u1l in Fig. 1d.
Varying the detuningD1 or the intensityI1 modifies the cou-
pling and hence the scattering length. Atomic loss can occur
through population of the electronically excited molecular
state which has a decay width ofg1.

Introducing a second laser as shown in Fig. 1 will now
couple the collisional stateu0l to a bound levelu2l in the
ground-state potential. As we will show, this allows for a
tuning of the scattering length similar to the one-photon
scheme. We now have, however, four parameters which can
be used to influence the scattering length: the intensitiesI1
and I2 of lasers 1 and 2 and the detuningsD1 and D2 as
shown in Fig. 1.1

Fromf16g fEqs.s4.8d–s4.11dg one can extract approximate
expressions for the inelastic collision rate coefficientKinel

and the scattering lengtha in a Bose-Einstein condensate:2

Kinel =
2p"

m

1

ki

G01g1

sD1 − V12
2 /D2d2 + sg1/2d2 , s1d

a = abg −
1

2ki

G01sD1 − V12
2 /D2d

sD1 − V12
2 /D2d2 + sg1/2d2 . s2d

HereG01 denotes the on-resonance stimulated transition rate
from u0l to u1l which is proportional toI1. V12 is the Rabi
frequency for the coupling of the statesu1l and u2l and is
proportional toÎI2. "ki is the relative momentum of the col-
lision, where" is Planck’s constant divided by 2p. abg is the
background scattering length andm is the atomic mass.

Equationss1d and s2d neglect spontaneous decay from
stateu2l sg2=0d and assumeG01!g1. SettingV12=0 yields
the expressions for the one-photon Feshbach resonance as
given in f9g. Equationss1d and s2d yield a Lorentzian and a
corresponding dispersive line shape as a function ofD1. In
our experiments, however, we holdD1 constant and scanD2.
Figure 2 shows typical curves forKinel anda for two detun-
ings D1. The curves forKinel are slightly asymmetric, but for
D1@V12 they can be well approximated by Lorentzians. This
can be seen by expanding the denominator of Eq.s1d in
terms ofD2 at the resonance position. A light shift displaces
the position of the resonance toV12

2/D1. It is also interesting
to note that the resonance width decreases with increasing
detuningD1 asg1sV12/D1d2.

In a sense the two-photon Raman-Feshbach resonance can
be coined in terms of a one-photon Feshbach scheme. The
detuningD2 effectively replaces the detuningD1 of the one-
photon Feshbach scheme.3

Since Eqs.s1d and s2d have exactly the same form as for
the one-photon Feshbach resonance, it follows that, given a1As we observe a significant light shift of levelu1l, depending on

the intensityI1 of laser 1f9g, we measure the detuningD1 from the
observed position of the one-photon line at a given intensity of laser
1. Note thatD1 is a one-photon detuning whereasD2 is a two-
photon detuning.

2Kinel is reduced by a factor of 2 as compared to the case of
thermal atoms. This is because in a BEC all atoms share the same
quantum state.

3There is even a more direct way to understand the two-photon
Feshbach resonance in terms of a one-photon Feshbach resonance.
Laser 1 couples the collision stateu0l to a virtual levelu28l, which
is generated by laser 2 acting on levelu2l. The splitting betweenu28l
and u1l is given byD28=D1−D2. Its linewidth isg1sV12/D28d

2 and
the transition rateG028=G01sV12/D28d

2.

FIG. 1. Schematic diagram of the transitions used for optically
coupling the collisional stateu0l to molecular statesu1l and u2l. u1l
is electronically excited whereasu2l is in the electronic ground
state. D1 and D2 are defined to be positive for the shown
configuration.

FIG. 2. Kinel and scattering lengtha according to Eqs.s1d and
s2d, plotted for two values ofD1. Solid line: D1/2p=100 MHz.
Dashed line:D1/2p=50 MHz. The other parameters areG01/2p
=50 kHz,V12/2p=30 MHz, andg1/2p=25 MHz. The wave num-
ber ki =2.53105 m−1 corresponds to the finite size of the conden-
sate wave function.a0 is the Bohr radius.
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fixed free-bound transition rateG01, the maximum tuning
range of the scattering length for the two-photon case cannot
be larger than in a one-photon scheme. Furthermore, given a
fixed change in scattering length, the loss rate as determined
by Kinel is not lower for the Raman scheme than for the
one-photon scheme.

III. EXPERIMENTAL SETUP AND METHODS

A. Production of BEC’s

For the experiments we produce87Rb BEC’s of typically
1.23106 atoms in the spin stateuF=1,mF=−1l. Our setup
comprises a magnetic transfer linef17g to transport atoms
from a magneto-optic trapsMOTd chamber to a glass cell
where the BEC is produced and all experiments are carried
out. In a first step about 33109 atoms are loaded within 4 s
into a MOT directly from the background gas and are then
cooled further to about 50µK in a molasses cooling phase.
After optically pumping into theuF=1,mF=−1l state we
load the atom cloud into a magnetic quadrupole trap with a
gradient of 130 G/cm in thesstrongd vertical direction.
Within 1.4 s the atoms are then moved via a magnetic trans-
fer line4 over a distance of 48 cm including a 120° corner
into a glass cell which is at a pressure below 10−11 mbar. In
this cell we finally load the cloud into a QUIC trapsa type of
magnetic trap that incorporates the quadrupole and Ioffe con-
figurationd f18g, ending up with typically 43108 atoms at a
temperature of about 250µK. All three coils of the QUIC
trap are operated at a current of 40 A, dissipating 350 W.
This results in trap frequencies ofvradial/2p=150 Hz and
vaxial/2p=15 Hz at a magnetic bias field of 2 G. To achieve
Bose-Einstein condensation we use forced radio-frequency
evaporation for a period of 20 s. The stop frequency is cho-
sen so that we end up with condensates with a thermal back-
ground of about 25% of noncondensed atoms. At this value
we concurrently get the highest number of atoms in the con-
densate and good reproducibility. For our measurements we
consider only the condensed atoms.

B. Raman lasers

To realize the Raman scheme shown in Fig. 1 we use the
electronically excited molecular stateu1l= u0g

−, n=1, J=2l
located 26.8 cm−1 below thesS1/2+P3/2d dissociation asymp-
tote f9,19g. About 290 MHz below theJ=2 line, there is
another rotational level withJ=0.5 Although about 5 times
weaker than theJ=2 line, its effect cannot be totally ne-
glected in our experiment. We choose levelu2l to be the

second to last bound state in the ground-state potential. It has
a binding energy of 636 MHz3h f13g whereh is Planck’s
constant.

The Raman laser beams are derived from a Ti:sapphire
laser using an acousto-optical modulator at a center fre-
quency of about 318 MHz in a double-pass configuration.
This allows precise control of their relative frequency differ-
ence over several tens of MHz. Both Raman lasers propagate
collinearly and are aligned along the weak axis of the mag-
netic trapssee Fig. 3d. They have a 1/e2 waist of 76µm, and
their linear polarization is perpendicular to the magnetic bias
field of the trap.

The Ti:sapphire laser is intensity stabilized and its fre-
quency has a linewidth of about 3 MHz. In order to stabilize
its frequency relative to the photoassociation lines, the laser
is offset locked relative to theD2 line of atomic rubidium
with the help of a scanning optical cavity. This yields an
absolute frequency accuracy of better than 10 MHz. In all
our experiments the Raman laser intensities were set toI1
=300 W/cm2 and I2=60 W/cm2 at the location of the con-
densate, if not stated otherwise.

C. Bragg spectroscopy

To measure optically induced changes in the scattering
length a, we use Bragg spectroscopyf9,15g. This method
allows for a fast measurement on time scales below 100µs
which is vital because of the rapid photoassociation losses

4For our magnetic transportssimilar to that described inf17gd 13
pairs of quadrupole coils are used. These transfer coils each have an
inner diameter of 23.6 mm, an outer diameter of 65 mm, and a
height of 5.7 mm and consist of 34 windings. They are arranged in
two layers above and below the vacuum chamber with a separation
of 50 mm. Peak currents of 75 A are necessary to maintain a vertical
gradient of 130 G/cm during transfer.

5Due to different light shiftsf9g for the J=0 andJ=2 lines, their
splitting is intensity dependent. The value of 290 MHz is valid for
an intensity of 300 W/cm2.

FIG. 3. Top left: experimental arrangement of the laser beams
stop viewd. Top right: absorption image obtained after Bragg-
diffracting a portion of the atoms to a state with a momentum of
two photon recoilsslower atom cloudd and subsequent time of flight
expansion. Bottom: Bragg resonance curves for two different rela-
tive detunings of the Raman lasers. The relative shift of 700 Hz is
due to two different scattering lengths which are optically induced
in the condensates. The atom numbers are the same for both curves.
Shown is the percentage of diffracted atoms versus the frequency
difference of the Bragg lattice beams. For better comparison we
have scaled up the right curve by 10%.
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we experience in our experiments. A moving lattice com-
posed of two counter propagating beams with wave number
k and a frequency differenceDf is used to diffract some of
the condensate atoms to a state with nonzero momentum.
When energy and momentum conservation are fulfilled, the
Bragg lattice resonantly transfers a momentum of two pho-
ton recoils 2"k in a first-order diffraction process. For the
case of a homogeneous condensate of densityn, the reso-
nance energy for Bragg diffraction is given by the sum of
transferred kinetic energyhDf0=s2"kd2/2m and the change
in mean-field energy 4p"2na/m.6 This corresponds to a fre-
quency difference of the Bragg lasers of

Df r = Df0 +
2"

m
na. s3d

If the condensate is initially not at rest, the kinetic energy
contributionDf0 to the Bragg resonance frequencyfEq. s3dg
contains an additional term 2"kp/m, wherep is the initial
atom momentum in the direction of the Bragg lattice. In our
experiments we observe such a motional shift corresponding
to condensate momentum of up top=0.1 "k. This momen-
tum can partly be attributed to optical dipole forces of Ra-
man beams which are slightly noncentered on the conden-
sate. Partly it can be attributed to a forced oscillation of the
condensate in the magnetic trap at 150 Hz which coincides
with the trapping frequency. Since this oscillation is driven
by a higher harmonic of the line frequencys50 Hzd, it is in
phase with the line frequency and we are able to stabilize the
initial condensate momentum by synchronizing the experi-
ment to the line. A stable initial condensate momentum can
then be determined and canceled out by measuringDf r alter-
nately for Bragg diffraction to the +2"k and −2"k momen-
tum components. After these measures we were left with a
residual momentum noise level of up top=0.01"k.

In our setup the Bragg lattice beams are oriented along the
horizontal direction perpendicular to the Raman laser beams
ssee Fig. 3d and have a width of<0.9 mm. We extract both
beams from a single grating-stabilized diode laser and use
two acousto-optical modulators to control the frequency dif-
ference. The laser is tuned 1.4 nm below the87RbD2 line
which definesDf0 in Eq. s3d to be 15.14 kHz. This frequency
is much larger than the typical mean-field contribution,
2"na/m, which in our experiments was below 3 kHz.

We illuminate the trapped condensate for 100µs with the
Bragg lattice light. After 12 ms of free expansion the dif-
fracted atoms are spatially separated from the remaining at-
oms. Absorption imaging allows us to determine the diffrac-
tion efficiency. By adjusting the Bragg laser intensity
stypically 1 mWd we keep the maximum diffraction effi-
ciency between 15% and 20%. When we scan the frequency
differenceDf and measure the fraction of Bragg-diffracted
atoms we obtain curves as shown in Fig. 3sbottomd. These
curves have a width of approximately 9 kHz as determined
by the 100µs length of our Bragg pulses. The shape of the
curves is given by the Fourier transform of our square light

pulses which we use to fit the data to obtain the resonance
positionDf r f9g. The shift between the two Bragg spectros-
copy curves in Fig. 3sbottomd is optically induced by shin-
ing in the Raman lasers at the same time as the Bragg lattice.
For both curves the atom numbers are the same andD1
=60 MHz. Only the Raman detuningD2 differs by 26 MHz.
According to Eq.s3d this observed shift in Bragg resonance
frequency is then due to a change in scattering length, in-
duced by tuningD2. This demonstrates that we can tune the
scattering lengtha with a Raman Feshbach resonance.

D. Determination of scattering length

We use Eq.s3d to determine the scattering lengtha from
the measurements of the Bragg resonance frequencyDf r.
Equations3d, however, is derived for the case of a homoge-
neous condensate. Our trapped condensate, in contrast,
which is subject to photoassociation losses, exhibits a time-
and position-dependent densityn. This can be taken into ac-
count by replacing the densityn in Eq. s3d by an appropriate
effective valuen̄.

A simple approach to estimaten̄ is to calculate the spatial
and time average of the condensate densityn over the dura-
tion of the Raman pulse lengthT. For this we use the rate
equation for the local densityṅ=−2Kineln

2 for two-atom
losses. The inelastic collision rate coefficientKinel governing
this process is obtained from measuring the atom number at
the beginning and end of the light pulse. This procedure
already yields good results which differ less than 10% from
an improved approach which we use for our data analysis
and which is explained in the following.

The improved approach consists of a full numerical simu-
lation which describes Bragg diffraction in a dynamically
and spatially resolved way. We divide the condensate into
density classes and treat their time dependence individually.
The Bragg diffraction process is identified as a Rabi oscilla-
tion between a coherent two level system—i.e., the BEC
component at rest and the Bragg-diffracted component. The
changing density of the condensate due to loss is reflected in
a time-dependent resonance frequencyfsee Eq.s3dg. As a
result of these calculations we obtain for each density class a
Bragg resonance curve similar to the experimental ones
shown in Fig. 3. Averaging over these resonance curves and
determining the center position yields the simulated value for
the Bragg resonanceDf r. Using Df r=Df0+2"n̄a/m we can
then determine the effective densityn̄.

IV. RESULTS

A. Raman scans

Figure 4 presents measurements where the detuningD1 of
laser 1 from the excited molecular state is set toD1/2p
=60 MHz. The intensities of the Raman lasers 1 and 2 are
300 W/cm2 and 60 W/cm2, respectively. Figure 4sad shows
the atom number after illuminating a condensate of initially
1.43106 atoms for 100µs with the Raman lasers. Scanning
the Raman detuningD2 we find a strong loss of atoms on
resonance. As already expected from Eq.s1d the line shape is
slightly asymmetric. Figure 4sbd shows the resonance fre-

6This is valid in the limit that only a small fraction of the conden-
sate is diffracted.
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quencyDf r as measured by Bragg spectroscopy. When we
analyze the data in Figs. 4sad and 4sbd with the improved
procedure described in Sec. III D we obtain values for the
scattering length which are shown in Fig. 4scd. The scattering
length a shows a dispersive variation between 50a0 and
140a0 as we scan over the resonance. The dispersive scat-
tering length curve is offset by about 20a0 from the back-
ground scattering lengthabg=100a0 for 87Rb in the uF=1,
mF=−1l statef20–22g. This is due to the one-photon Fesh-
bach tuning of laser 1, in agreement with our previous mea-
surementsf9g.

We find that Eqs.s1d ands2d are not sufficient to describe
these data properly, mainly because they neglect the decay
rate g2. A more complete modelssee the Appendixd, also
taking into account both theJ=0 andJ=2 rotational levels,
was used for creating fit curves,7 depicted as solid lines in
Fig. 4. The fact that the data for atomic loss as well as for the
scattering lengtha are both well described by the theoretical

curves is an intrinsic consistency check for our model and
our data analysis.

The shape of the signalDf r in Fig. 4sbd is a combination
of the effects of the varying scattering lengtha and the vary-
ing atom numberfsee Eq.s3dg. This is illustrated by the
dashed and continuous lines in Fig. 4sbd: The dashed line
shows the expected signal if only the variations in atom
number would occur and the scattering length stayed
constant.8 The solid line takes the variations in both atom
number and scattering length into account. The deviation of
the measured data points from the dashed line is due to an
optical induced change of the scattering length.

B. Dependence on detuning

We now investigate how detuningD1 affects the scattering
length a. Figure 5 shows a set of three curves showing the
scattering length for detuningsD1/2p=40, 60, and 90 MHz.

The measurements clearly show that the position and
width of the resonances depend onD1. The change in posi-
tion can be mainly explained as light shifts of levelsu1l and
u2l due to laser 2. The decrease of the resonance width with
increasing detuningD1 follows directly our discussion in
Sec. II. The solid lines are model calculations as described in
detail in the Appendix. They are derived from a simultaneous
fit to the data shown in Fig. 5 and a large number of atom
loss measurements with different detuningssnot shownd. The
set of fit parameters is listed in the Appendix. We also use
this same set of parameters for the theoretical curves in Figs.
6 and 7.

7The resulting fit parameters are similar to those given in the
Appendix.

8To account for the one-photon Feshbach tuning of laser 1, a value
for the background scattering lengthabg=80a0 was used for the
calculation.

FIG. 4. Optical Feshbach resonance using a Raman scheme.sad
shows the measured atom number after the Raman pulse,sbd the
measured Bragg resonance frequency, andscd the scattering length,
as determined fromsad andsbd. In sad the solid circles correspond to
measurements where Bragg spectroscopy was used to determine the
scattering length, while the small open circles stem from additional
loss measurements without Bragg spectroscopy. From our measure-
ments we estimate the uncertainty of the Bragg resonance fre-
quency to be smaller then ±100 Hz, as indicated by the error bar in
sbd. The solid lines insad, sbd, andscd are from a model calculation
ssee the Appendix and textd. The dashed line insbd shows the ex-
pected signal if there was only loss in atom number but no change
in scattering lengthssee also discussion in textd. The vertical line
indicates the location of maximal loss insad and helps to compare
the relative positions of the three curves.

FIG. 5. Variation of the scattering length with Raman detuning
for three various detuningsD1 from the excited molecular state. The
solid line is a calculationssee the Appendixd which uses a single set
of parameters for all curves.
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It is interesting to note from Fig. 5 that the amplitude of
the dispersive scattering length signal decreases asD1 be-
comes larger. This is not to be expected from the simple
model Eqs.s1d and s2d. To investigate this effect we have
performed scans for atom loss and scattering length for sev-
eral detuningsD1. Figure 6 shows the maximum variation in
scattering length,Da=amax−amin, obtained for detuningsD1
ranging from 40 MHz to 200 MHz. Here,amax andamin are
the maximal and minimal scattering length values for corre-
sponding scan curves. Typical scan curves are shown in Fig.
5. Each data point in Fig. 6 was derived from a complete
scan and corresponds to one day of data collection.

An analysis of our data using our theoretical model indi-
cates that the decrease ofDa as a function ofD1 is a conse-
quence of two effects.

sid To properly model these measurements we have to
assign to the molecular stateu2l in the ground-state potential

a non-negligible decay widthg2/2p<2 MHz. For compari-
son, two calculations of a three-level model are plotted in
Fig. 6. For smallg2/2p=100 kHz sdashed lined Da de-
creases only weakly. Forg2/2p=2 MHz sdotted lined the
theory fits the data much better. Such a large decay rate of a
ground-state level is surprising. It seems too large to be ex-
plained purely by collisions. We find that the decay rate in-
creases with the light intensity. At low light powers of a few
W/cm2 we have observed very narrow linewidthsg2/2p on
the order of a few kHz, similar to the values reported by
f13,14g. The broadening of the molecular ground level could
be due to coupling to excited molecular levels. We can ex-
clude, however, from our experimental data that these levels
are located within our experimental scanning range between
the statesu1l andu3l. This would lead to additional resonance
features in the scattering length, absorption, and light shifts,
which are inconsistent with our data. In contrast, our data
indicate a relatively constant background loss rate of the
ground level over the experimental scan range. This allows
us to analyze the data successfully with our simple few-level
model. Besides coupling to excited molecular states, we sus-
pect that coupling to thed-wave shape resonance of the scat-
tering channel also gives rise to a sizable contribution to the
molecular decay rate. Because thed-wave shape resonance is
located very closesa few MHzd to threshold, it is resonantly
coupled to the molecular ground-state level via the Raman
transition. To include the shape resonance is beyond the
reach of our simple model and has to be investigated later.

sii d The second reason for the decrease inDa is a quan-
tum interference effect involving both theJ=2 andJ=0 ro-
tational levels as predicted by our model. At a detuning of
D1/2p<250 MHz the interference effect leads to a complete
disappearance of the optical Feshbach resonance. We ob-
serve this in a corresponding disappearance of the atom loss
feature in our measurementssnot shownd. The interference
effect alone—i.e., without a 2 MHz linewidth—is not suffi-
cient to explain the experimental data in Fig. 6.

C. Dependence on intensity

From the simple model Eq.s2d it is clear that the maxi-
mum variation in scattering lengthDa is proportional toG01
and consequently scales linearly with the intensityI1 of laser
1. We have verified this dependence recentlyf9g for the case
of a one-photon optical Feshbach resonance.

In contrast, the dependence ofDa on intensityI2 of laser
2 is not so trivial. According to the simple model, Eqs.s1d
and s2d, which neglects the decay rateg2, the maximum
changeDa is independent ofI2. It is also clear, that forI2
=0 we haveDa=0 since there is no dependence of scattering
length onD2 at all. This unphysical discontinuous behavior
can be resolved if we introduce a finite decay rateg2.0. We
then find that for increasing intensityI2,Da rises mono-
tonously from zero to a value where it saturates. We observe
this general behavior in our measurements presented in Fig.
7. Our full model, as described in the Appendix, describes
the measured data well if we set the decay rate tog2/2p
=2 MHz ssolid lined. In contrast, the dashed line in Fig. 7
shows the calculation for the same model whereg2 is set to

FIG. 6. Maximum variation in scattering lengthDa=amax

−amin versus one-photon detuningD1. Solid line: full model calcu-
lation ssee the Appendixd. Dotted line: three-level modelssee Fig.
1d, with g2/2p=2 MHz. Dashed line: three-level model, with
g2/2p=100 kHz.

FIG. 7. Maximum variation in scattering lengthDa=amax

−amin versus I2. For this data setI1=300 W/cm2 and D1

=60 MHz. The solid line is a full model calculationssee the Ap-
pendixd. The dashed line stems from the same model, but with
g2/2p set to 100 kHz and is scaled by a factor of 0.84 for better
comparison.
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g2/2p=100 kHz. Saturation then occurs at a much lower
intensity I2 than forg2/2p=2 MHz.

V. CONCLUSION

Our experiments demonstrate the use of an optical Fesh-
bach resonance for tuning of the scattering length via stimu-
lated Raman coupling to a bound molecular state. Our results
show that there is no advantage over a one-photon scheme
when comparing tuning range and loss rate. However, for
certain applications a Raman scheme is experimentally more
favorable since it demands a lower tuning range of the lasers.
Our presented theoretical model is in good agreement with
our data and might be helpful when tailoring experimental
parameters for a specific application. Furthermore, it gives
insight into the process of creating stable ultracold molecules
via two-photon photoassociation.
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APPENDIX: THEORETICAL MODEL AND FIT
PARAMETERS

We use a theoretical model by Bohn and Juliennef16g to
fit the data in Figs. 4–7. In the following we give a short
summary of this model and present the procedure to calcu-
late the scattering matrixS, the loss coefficientKinel, and the
scattering lengtha. The model has the advantage that it is
concise and intuitive and it allows treatment of multilevel
systems with several couplings between the levels. The nu-
merical calculations involve simple manipulations of small
matrices.

In Fig. 8 the level scheme for our two models involving
four and six levels are shown. We first restrict our description
to the four-level model as shown in the right part of Fig. 8. In
this way our description stays compact and matrices are kept
small. The extension to six or more levels follows the same
scheme.

Four-level model

Compared to Fig. 1 an additional excited levelu3l is
added. This level corresponds to the rotational levelJ=0 and
lies 290 MHz below theJ=2 rotational levelu1l f9g. We
work in the dressed atom picture and every leveluil is attrib-
uted a detuningDi ssee Fig. 8d. D0 is arbitrarily set to 0. The
transition strengths from the continuumu0l to levelsu1l and
u3l are described by stimulated ratesG01 and G03 which are
proportional to the intensityI1 of laser 1. The transitions
between the bound levelsu2l andu1l , u3l are characterized by
the Rabi frequenciesV12 and V23, respectively, which are

proportional toÎI2. Spontaneous decay from the bound lev-
els leading to atomic losses is formally taken into account by
introducing artificial levelsuail for each leveluil to which a
transition at rategi takes placesnot shown in Fig. 8d. All
these couplings between different levels are summarized in
the symmetric reaction matrixK. We arrange the level names
in the orders0, a1,a2,a3, 1, 2, 3d and use them as row and
column indices. The nonzero matrix elements of theK ma-
trix then readK01=ÎG01/2, K03=ÎG03/2, Kiai

=Îgi /2, K12

=V12, andK23=V23. Levels 0, a1,a2, and a3 are referred to as
open channels, levels 1, 2, and 3 as closed channels. The
reaction matrixK is partitioned into open and closed channel
blocks,

K = S 0 Koc

Kco KccD .

Koc reads in our case

Koc =1
ÎG01/2 0 ÎG03/2

Îg1/2 0 0

0 Îg2/2 0

0 0 Îg3/2
2 .

Kco is the transposed matrix ofKoc and

Kcc = 1 0 V12 0

V12 0 V23

0 V23 0
2 .

From K the reducedK matrix

Kred= KocsD − Kccd−1Kco

is calculated, eliminating the closed channels 1–3, whereD
denotes a diagonal matrix with diagonal elements

FIG. 8. Extended level schemescompare to Fig. 1d for the four-
level modelsright-hand sided and its extension with six levels. State
u3l corresponds to theJ=0 level and lies 290 MHz below theJ
=2 level u1l. The four-level model is based on levelsu0l , u1l , u2l,
and u3l. The auxiliary levelsu18l and u38l are introduced in the
extended model to describe the coupling betweenu2l and u1l , u3l,
respectively, due to laser 1ssee textd.
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sD1,D2,D3d. This determines the unitary 434 scattering ma-
trix S:

S= s1 + iK redds1 − iK redd−1.

From the matrix elementsSij of S the trap loss coefficient
Kinel is calculated by

Kinel =
p"

mki
o

i

uS0ai
u2 =

p"

mki
s1 − uS00u2d,

wherem=mRb/2 is the reduced Rb mass and"ki the relative
momentum of the colliding atoms. The scattering length is
obtained fromS00 via

a = abg −
1

2ki

ImsS00d
ResS00d

,

where ResS00d and ImsS00d denote the real and imaginary
parts ofS00, respectively.

In the limit of small relative momentum"ki and small
coupling strengthsG0i !gi, Kinel and the light-induced
change of the scattering lengtha−abg are independent ofki
because theG0i are proportional toki sWigner threshold re-
gimed f16g.

Extension of the four-level model

The four-level model neglects that laser 1sof which the
intensity is typically 5 times greater than that of laser 2d also
couples the levelsu2l-u1l andu2l-u3l. However, this coupling
should be taken into account since laser 1 is not far detuned
from these transitionsssee Fig. 8d due to the small binding
energy of stateu3l s636 MHz3hd which is comparable to
typical detuningsD1. It mainly leads to broadening and light
shifting of level u2l. The additional coupling can approxi-
mately be taken care of by adding another two auxiliary lev-
els u18l and u38l with detunings D18=D1+D2+2p
3636 MHz andD38=D3+D2+2p3636 MHz as shown in
Fig. 8. The coupling strengthsV182 and V238 are fixed by
V182=V12

ÎI1/ I2 andV238=V23
ÎI1/ I2. Compared to the four-

level model no new fit parameters are introduced. We can
calculateKinel and the scattering lengtha following the same
recipe as for the four-level model, only with larger matrices.
Fitting the data in Figs. 4–7 this extended model produced
much better results than the four-level model. For complete-
ness we give here the fit parameters which were used in the
calculations in Figs. 5–7 sI1=300 W/cm2 and I2
=60 W/cm2d: G01/2p=42 kHz, G03/2p=8 kHz, V12/2p
=32 MHz, V23/2p=12 MHz, g1/2p=25 MHz, g3/2p
=22 MHz, andg2/2p=2 MHz. We usedki =2.5310−5 m−1.
Due to the limitations of our model, these fit parameters
should not be mistaken as the true values of the correspond-
ing physical quantities.
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Chapter 5

Converting atoms into
ultracold molecules

With the success of the field of ultracold atomic gases came the quest for
ultracold molecules (for a review see [Bah00, Mas01, Den04]). Molecules are
interesting to work with, since in contrast to atoms, they exhibit vibrational
and rotational degrees of freedom and thus offer potentially more possibilities
for manipulation. One future goal is to gain full control over their quantum
mechanical molecular state and to establish a molecular optics in the style
of today’s atom optics. Ultracold molecules will be useful for high precision
spectroscopy and the search of a permanent electric dipole moment [Hud02].
Further, cold collisions between molecules can be studied. Controlling the as-
sociation and dissociation of molecules could lead to a novel kind of coherent
chemistry where quantum statistics and Bose-enhancement play an impor-
tant role. As we will elaborate in chapter 6, binary molecules consisting of
fermionic atoms are especially interesting to study due to their connection
to high Tc superconductivity and Cooper pairing.

In contrast to atoms, laser cooling does not work for molecules in gen-
eral due to the absence of closed optical transition schemes. For trapping
and cooling molecules, buffer gas cooling in a magnetic trap [Wei98] and
electrostatic deceleration and trapping [Bet99, Bet00] have been developed.
Other methods, which recently have turned out to be particularly successful,
synthesize the molecules from a gas of ultracold atoms. One method uses
optical light fields to photoassociate a pair of atoms. A second method makes
use of a Feshbach resonance to fuse atoms together either by slowly sweeping
over the resonance or via three body recombination. The Feshbach resonance
method has rapidly developed over the last two years and recently lead to
the production of the first molecular BECs [Joc04, Gre03, Zwi03, Bou04]. In
the following, recent experiments on the production of ultracold molecules
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Figure 5.1: Ultracold molecules can be formed from an ultracold gas of atoms
via photoassociation. With a one-photon transition (only laser 1), excited
molecular states are formed with a short lifetime of typically a few ns. A
two-color stimulated Raman transition can be used to create ground state
molecules.

with Feshbach resonances and photoassociation will be discussed in detail.

5.1 Photoassociation

Photoassociation was first proposed in 1987 by Julienne et al. [Tho87,
Ban95]. A scattering state of two atoms is optically excited in a free-bound
transition to a molecular bound state (see Fig. 5.1). In the following years, a
number of experimental groups around the world developed photoassociation
into a spectroscopy tool to investigate molecular potentials and precisely lo-
cate their bound levels (for a review see [Wei99]). Photoassociation can be
carried out in a one-color or a two-color scheme (see Fig. 5.1). In the one color
scheme, excited molecules are formed which typically decay within a few ns of
lifetime into free atom pairs or a range of different ground state molecules. In
the two-color scheme ground state molecules in specific ro-vibrational states
can be formed by using a stimulated Raman transition.

One-color photoassociation

In 1998 the first detection of photoassociated molecules was reported [Fio98,
Tak98, Nik99]. In these experiments, one-color photoassociation in a laser
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cooled gas of alkali atoms produced molecules in an excited state which
afterwards spontaneously decayed to molecular ground state levels. These
ground state molecules were then detected via photoionization.

One main purpose of our one-color photoassociation experiment with a
sodium condensate at NIST [McK02] was to investigate how fast a BEC of
atoms can be converted into molecules. In a semi-classical theory that is com-
monly applied to collisions of laser-cooled atoms, the photoassociation time
scale τ is given by 1/τ = nσv. Here, n is the density, v is the relative velocity
of the atoms and σ is the reaction cross section which can be approximated
by πR2

c where Rc is the Condon radius. Interestingly, the maximum pho-
toassociation rate from these considerations is several orders of magnitude
slower than what we observed in our measurements where we could convert
the BEC into molecules within a few µs. Beyond the semi-classical theory
there is a unitary quantum limit for the conversion rate which we could not
reach in our experiments due to the limitations of our laser intensity. This
unitarity regime was later reached in measurements by Hulet’s group when
photoassociating a degenerate gas of 7Li. Their experimental findings agree
well with the theoretical predictions [Pro03].

Two-color photoassociation

Using a two-color photoassociation scheme (see Fig. 5.1) for the produc-
tion of ultracold molecules has several interesting aspects. It allows for
the production of stable ground state molecules in a specific quantum state
with well-defined vibrational and rotational quantum numbers. The stim-
ulated Raman transition also leads to a coherent coupling between atoms
and molecules. This has given rise to quite a number of theoretical pa-
pers predicting Rabi flopping between an atomic BEC and a molecular
BEC [Hei00], stimulated Raman adiabatic passage (STIRAP) for efficient
conversion of an atomic BEC into a molecular BEC (for a selection of pa-
pers see [Mac04, Jul98, Var97, Dru02]) and superchemistry (see for example
[Hei00, Moo02, Hop01]).

In 2000 Heinzen’s group reported the production of Rb2 molecules out
of an atomic Rb condensate using a free-bound stimulated optical Raman
transition [Wyn00]. The presence of the molecules was inferred from the
narrow kHz linewidth of the transition corresponding to molecular lifetimes
on the order of 1 ms. Similar results were also observed in other groups
afterwards, e.g. [Tol01, Rom04].

A recent experiment with a 87Rb BEC in our group [Win05] adds a new
twist to this line of research. Using an experimental setup very similar to
the one of D. Heinzen’s group, we observe a narrow electromagnetically in-
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Figure 5.2: Observation of an atom-molecule dark state. Shown is a pho-
toassociation line where laser 1 (see Fig. 5.1) is scanned over an the excited
molecular state (dotted line, empty circles). In the presence of laser 2 which
resonantly couples a molecular ground state level with the excited level, the
photoassociation is dramatically reduced on resonance (full line, filled cir-
cles).

duced transparency (EIT) line in our photoassociation spectra (see Fig. 5.2).
This line corresponds to a novel dark state 1, a coherent superposition of
the atomic BEC and a degenerate gas of Rb2 ground state molecules. The
superposition state decouples from the light field and leads to a striking sup-
pression of photoassociation loss.

This dark state represents a very useful tool since from its mere obser-
vation we can directly conclude on 1) the presence of the molecules 2) the
coherence between atoms and molecules, and 3) the quantum degeneracy of
the molecular gas since it is coherently coupled to a BEC of atoms. From our
measurements we can deduce that up to 100 Rb2 molecules exist in our Rb
condensate of about 5×105 atoms. We find that our ground state molecules
exhibit relatively short lifetimes due to laser induced decay. Currently, this
puts practical constraints on efficient conversion of the atomic BEC into
molecules. However, an increase of the number of molecules by several orders
of magnitude should be possible by choosing better suited molecular states.
With the dark resonance as an analysis tool, we will be able to conveniently
optimize the conversion of atoms into molecules in the future.

1Dark states were first observed in atom spectroscopy [Ari76].
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Figure 5.3: Scattering length (full line) and molecular binding energy for the
weakly bound molecular state (dotted line) at the broad Feshbach resonance
for fermionic 6Li. The binding energy vanishes quadratically as the resonance
position (834 G) is approached. Above the resonance where the scattering
length is negative, no weakly bound molecular state exists.

5.2 Producing molecules with Feshbach res-

onances

Using magnetically tunable Feshbach resonances for the production of
molecules has proven to be very successful and already has led to a num-
ber of scientific breakthroughs. The generic feature behind this production
method is the existence of a weakly bound molecular state on one side of
the Feshbach resonance where the scattering length is positive (see Fig. 5.3).
The binding energy of this molecular state vanishes quadratically as the Fesh-
bach resonance position is approached. On the side with negative scattering
length, no weakly bound state exists. Molecules are then produced either by
sweeping over the resonance or by three-body recombination on the side of
the Feshbach resonance with positive scattering length.

Sweeping over the Feshbach resonance

The conversion of the atoms into molecules via sweeping can be qualitatively
understood from Fig. 5.3. One starts with a degenerate gas of atoms in
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Figure 5.4: In three-body recombination close to the Feshbach resonance,
the weakly bound molecular state is populated. In this process the binding
energy Eb is released.

the quantum mechanical ground state on the side of the Feshbach resonance
where the scattering length is negative. By adiabatically sweeping over the
Feshbach resonance the quantum degenerate gas should stay energetically in
the lowest state which, on the left hand side of the resonance, is clearly the
molecular state. A more precise theoretical picture is given by Julienne et
al. in [Jul04]. An early sweep experiment was performed in 2002 [Don02]
with a 85Rb BEC where also coherences between atoms and molecules were
observed. In the following year a wave of reports on molecule formation
via sweeping were published from various groups. Molecules were produced
in fermionic gases [Reg03, Str03, Cub03] and from bosonic BECs [Her03,
Xu03, Dur04]. Recent studies [Hod05] show that the conversion efficiency is
determined by the phase space density of the atomic cloud. Furthermore,
in non-adiabatic sweeps the molecule conversion efficiency follows a Landau-
Zener model.

Three-body recombination

In our 6Li experiment we used three-body recombination in the vicinity of
a Feshbach resonance to produce Li2 molecules [Joc03b]. This production
method proved to be quite simple, efficient and robust and was also used by
Ketterle’s group [Zwi03]. In a collision of three atoms, two atoms in different
spin states combine to form a molecule, whereas the third atom takes care of
momentum and energy conservation. During this process the binding energy
of the weakly bound molecule is released (see Fig. 5.4) and heats the sample.
By tuning to the appropriate magnetic field, we chose this binding energy
to be in the kB × µK range which corresponds roughly to the temperature
of our atomic sample. Thus the release energy was comparatively small and
could efficiently be removed by evaporative cooling.

The association process can also run backwards, dissociating a molecule
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in a collision. Left alone for some time, the mix of atoms and molecules will
establish a thermodynamic equilibrium which depends on the temperature
and the the binding energy of the molecule [Chi04b]. The Boltzmann factor
exp(−Eb/kbT ) favorizes occupation of the molecular level, so that by con-
stantly lowering the temperature the gas can be fully converted into molecules
[Joc03a]. In order to clean our gas of molecules from the last remaining im-
purity atoms, we applied a Stern-Gerlach purification scheme [Joc03a]. A
magnetic field gradient separated the atoms from the molecules due to their
different magnetic momenta.

At the time of our experiments it came as a great surprise when we ob-
served the very long lifetime of the Li2 molecules. Close to the Feshbach
resonance the molecules lived for many seconds [Joc03a, Cub03, Str03]. This
stood in strong contrast to previous experiments with molecules made from
bosons where lifetimes were in the ms range for typical condensate densities
of 1014/cm2. Inelastic collisions between the boson-molecules lead to relax-
ation of the highly excited vibrational molecular state to lower vibrational
states. The release of the corresponding energy induces particle loss. The
puzzle for the stability of the ‘Fermi’-molecules was explained by Petrov et al.
[Pet04] as a Pauli blocking effect. In order for the molecules to relax to lower
vibrational states at least three fermionic constituents have to approach each
other very closely in a collision. Since two of those atoms are identical in a
two component gas, this collision is strongly suppressed.

The long lifetime of the Fermi-molecules finally cleared the road for the
first BEC of molecules as discussed in chapter 6.
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We form ultracold Na2 molecules by single-photon photoassociation of a Bose-Einstein condensate,
measuring the photoassociation rate, linewidth, and light shift of the J � 1, y � 135 vibrational level
of the A1S1

u molecular state. The photoassociation rate constant increases linearly with intensity, even
where it is predicted that many-body effects might limit the rate. Our observations are in good agreement
with a two-body theory having no free parameters.
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Bose-Einstein condensates (BECs) of atomic gases [1,2]
are versatile systems for the study of quantum behavior.
Of particular interest are the suggestions for the coher-
ent coupling of a BEC of atoms with a BEC of molecules
[3–6] and the possibility of creating entangled atoms via
coupling with molecular levels [7]. Photoassociation pro-
cesses using stimulated Raman transitions have formed
ground state molecules from ground state atoms in a BEC
[8,9], but at very low rates. Here we explore the fundamen-
tal upper limits of molecule formation by making them at
high rates using the elementary process of single-photon
photoassociation.

In single-photon photoassociation, two atoms collide in
the presence of a light field and form an excited state mole-
cule. Photoassociative spectroscopy is used extensively to
study collisions between laser-cooled atoms [10]. Photoas-
sociation in a BEC presents quite a different regime: The
collision energies are orders of magnitude lower than in a
laser-cooled sample (the de Broglie wavelength is as big
as the sample) and the densities are higher. This puts us in
a regime where many-body effects may be important.

We concentrate on a particular photoassociation transi-
tion and measure the photoassociation spectra for various
intensities and durations of the light pulse. From these, we
determine the photoassociation rate, line shape, and the
shift of the resonance. Finally, we examine various limits
on the photoassociation rate.

Figure 1 shows the photoassociation process. The
molecular level chosen for study is the J � 1, y � 135,
rotational-vibrational level of the A1S1

u Na2 molecular
state, excited from free atoms by a laser frequency of
16 913.37�2� cm21 [11]. We chose this level because its
detuning from the D1 resonance is far enough �43 cm21�
for atomic absorption to be negligible and because
our experiments in a magneto-optical trap indicated a
high photoassociation rate. The lifetime of our excited
molecules is about 8.6 ns. The immediate decay of ex-
cited molecules into hot atoms or ground state molecules
constitutes loss from the condensate. This loss is how we
detect photoassociation.

We prepare an almost pure condensate of N � 4 3 106

sodium atoms in the jF � 1, mF � 21� ground state with
a peak density of n0 � 4 3 1014 cm23. The condensate
is held in an anisotropic time-averaged orbiting potential
(TOP) [12] magnetic trap with oscillation frequencies of
vx�

p
2 � vy �

p
2 vz � 2p 3 198 Hz and corresponding

Thomas-Fermi radii of
p

2 rx � ry � rz�
p

2 � 15 mm.
To induce photoassociation, we illuminate the BEC with

a Gaussian laser beam focused to 120 mm FWHM at
the condensate. The peak intensity is varied from 50 to
1200 W cm22. The polarization is linear and parallel with
the rotation �z� axis of the TOP trap bias field. The light is
applied as a square pulse for between 10 and 400 ms with
rise and fall times less than 0.5 ms.

The condensate number is measured using phase con-
trast imaging [13], taking two images before and two im-
ages after the photoassociation pulse to determine loss.
The imaging occurs at 40 ms intervals using a 100 ms
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FIG. 1. The two-atom potentials for the ground state and the
excited state used for photoassociation. The atoms are initially
unbound and on the ground state asymptote and are excited into
the J � 1, y � 135 level. From there they decay and are lost
from the condensate. RC � 2.0 nm is the Condon radius, the
internuclear separation where the energy of a resonant photon
matches the difference between the potentials.
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FIG. 2. A typical photoassociation loss spectrum. A
140 W cm22 pulse was applied for 100 ms. The dotted line is
a fit to Eq. (2). The uncertainty in the frequency for each point
is 5 MHz.

probe pulse from a laser tuned 1.78 GHz to the red of
the 3S1�2, F � 1 ! 3P3�2, F � 2 transition. The imag-
ing rate is limited by the readout time of our camera. The
photoassociation pulse begins halfway between the second
and the third images. We use multiple imaging pulses to
improve statistics and to partially correct for small losses
other than those due to the photoassociation pulse. These
losses are typically 4% between images, most likely due to
three-body losses and the imaging light. Once the number
of atoms is extracted from the images [14], we calculate f,
the fraction of atoms remaining after the photoassociation
pulse.

Figure 2 shows a typical photoassociation spectrum.
Each point represents a freshly prepared condensate. We
use a Fabry-Perot etalon and a reference laser locked to
an atomic Na line to measure differences in the photoas-
sociation frequency with a precision of 5 MHz. The laser
linewidth is ,3 MHz. All detunings quoted are relative
to the center of the photoassociation line in the low in-
tensity limit. For small trap loss, we expect the line to
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FIG. 3. The dependence of the maximum condensate loss on
the photoassociation pulse length for I � 140 W cm22; the
curve is a fit of Eq. (2).

be Lorentzian (in contrast to photoassociation lines in an
uncondensed thermal sample where the kinetic energy dis-
tribution distorts the line shape [15]). For significant trap
loss, as in Fig. 2, one must account for the change of the
density profile during the photoassociation pulse.

The two-body photoassociation process changes the lo-
cal atomic density as �n�t, r� � 2K�I, v�n2�t, r�, where
K�I, v� is the intensity and frequency dependent photoas-
sociation rate constant. Because the characteristic time for
the motion of the atoms, the trap oscillation period, is long
compared to the photoassociation pulse, we can assume
that the local density changes only due to photoassocia-
tion, and

n�t, r� �
n�0, r�

1 1 K�I, v�n�0, r�t
. (1)

The density distribution flattens with time. Spatially in-
tegrating Eq. (1), assuming an initial, parabolic (Thomas-
Fermi), density distribution and a uniform intensity I, leads
to an expression for the fraction of atoms remaining in the
condensate:

f�h� �
15
2

h25�2
Ω
h1�2 1

1
3

h3�2 2 �1 1 h�1�2 tanh21
hq

h��1 1 h�
iæ

, (2)

where h � K�I, v�n�0,0�t � Km�I�n�0, 0�t����1 1 �2�v 2

v0�I���g�I�	2���. We use a three parameter fit of Eq. (2) to
the spectra to extract the on-resonance rate constant Km�I�,
effective linewidth g�I�, and central frequency v0�I� (for
example, the dotted line in Fig. 2). The fit is good. To
further verify Eq. (2), we plot the measured 1 2 f as a
function of pulse length for I � 140 W cm22 and v �
v0, along with a one parameter �Km� fit to the data (Fig. 3).
The fitting uncertainties are indicated.

By fitting spectra obtained at various intensities, we
measure Km�I�, g�I�, and v0�I�. Following [16] we cal-
culate the unbroadened molecular linewidth of the chosen
state to be g0�2p � 18.5 MHz (nearly twice the atomic
linewidth). This is in good agreement with the mea-

sured linewidth of 19.5(25) MHz in the low intensity limit,
where it is independent of intensity. At higher intensi-
ties, we observe broadening with a maximum linewidth
of 60 MHz at 1 kW cm22. Homogeneous power broad-
ening is calculated to be 3 orders of magnitude too low
to explain this width. It is, however, partially explained
by differential light shifts of the unresolved molecular hy-
perfine states. These states are calculated to be split by
less than 1 MHz at low intensities and about 30 MHz at
our maximum intensity. Another possible contribution is
the inhomogeneity of the photoassociation beam inten-
sity combined with the large light shift (discussed below).
Variations due to either local spatial inhomogeneity (e.g.,
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interference fringes) or displacement of the cloud from
the center of the Gaussian beam could account for the
extra width. Assuming these inhomogeneous broadening
mechanisms do not change the area of the line (verified by
a simulation), we take the on-resonance photoassociation
rate constant to be K0�I� � Km�I�g�I��g�I ! 0�.

Figure 4 shows corrected and uncorrected rate constants
as a function of intensity (for various pulse lengths). The
error bars are the fitting uncertainties. Once we correct
for the inhomogeneous broadening we get a linear depen-
dence on intensity with a slope of dK0�dI � 3.5�2� �10� 3

10210 �cm3 s21���kW cm22�. The uncertainties are due,
respectively, to fitting and to the combined uncertainties in
the measurement of the intensity and density. For intensi-
ties above 1.2 kW cm22, which we could achieve only by
more tightly focusing the photoassociation laser, atomic
dipole forces significantly perturb the condensate, thwart-
ing meaningful measurements. A coupled-channels, two-
body scattering calculation with no adjustable parameters
[17] yields a photoassociation rate constant of dK0�dI �
4.1 3 10210 �cm3 s21���kW cm22� for our range of inten-
sities. This includes a factor of 2 decrease relative to a
noncondensed gas and agrees well with our experimental
result.

We study the photoassociation light shift, previously
observed in a noncondensed gas [18], in a set of experi-
ments where the total fluence (intensity 3 pulse length) of
the pulse was kept constant, to maintain the depth of the
photoassociation dip in an easily observable regime. The
results are shown in Fig. 5. The measured light shift is
2164�35� MHz��kW�cm2�, which leads at high intensity
to a shift large compared to the linewidth. The principal
contribution to the uncertainty is the intensity calibration.
During preparation of this work, we became aware of simi-
lar results in lithium [19].

While the strength of the photoassociation resonance
is dominated by s-wave scattering, the dominant contri-
bution to the light shift is due to a d-wave shape reso-
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FIG. 4. Resonant photoassociation rate constant as a function
of intensity. The corrected data has been adjusted to account for
the inhomogeneous broadening.

nance. A theoretical calculation of the light shifts using
Eq. (3.7) of Ref. [20], including the effect of the d-wave
shape resonance embedded in the continuum, gives an av-
erage value of 2130 MHz��kW�cm2� with a spread of
613 MHz��kW�cm2� due to the hyperfine structure.

We now consider the upper limit to the photoassocia-
tion rate constant K0 [this implies a lower limit on the
photoassociation time t � �K0n�21]. If one uses a semi-
classical theory that is commonly applied to collisions of
laser-cooled atoms [21], then K � sy � pR2

CPy, where
RC is the Condon radius (see Fig. 1), and P is the probabil-
ity of a photoassociative transition with a maximum value
of 1. If we take the relative velocity y of the atoms to
be h��2mry� � 0.6 mm s21, where m is the atomic mass,
then the maximum photoassociation rate constant is 4 or-
ders of magnitude lower than our highest measured value.
This reveals the inadequacy of a semiclassical approach,
which fails to take into account threshold laws [10].

Quantum theories for the photoassociation rate constant
can be compared by expressing K as K � �h�m�L, where
L is a characteristic length. Two-body s-wave scatter-
ing theory for a BEC gives Ls � jS�k�j2�k, where h̄k is
the relative collision momentum and S�k� is the S-matrix
element for atom loss via photoassociation. References
[20,22] show that, on resonance,

Ls�I� �
4g0G�k, I��k

�g0 1 G�k, I��2
, (3)

where h̄G�k, I� � 2pj
ejh̄Vjk�j2 is the Fermi-golden-rule
stimulated-decay width of the excited molecular state je�
due to the optical coupling h̄V ~

p
I with the colliding

atoms. Since G ~ k as k ! 0, and G�g0 , 0.001 in our
range of power and collision energy, Ls is independent of
k. Ls is linear in I for our experimental conditions, and
dLs�dI is calculated to be 24 nm��kW�cm2�. This gives
the above-quoted rate constant in good agreement with the
experiment. In our power range, Ls can be significantly
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FIG. 5. The light shift of the resonance as a function of laser
intensity.
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larger than the Condon point for the transition, 2.0 nm.
Note that Eq. (3) shows that Ls�I� will saturate with in-
creasing I and decrease for sufficiently large I.

The upper limit to the two-body quantum K0 is the uni-
tarity limit where jSj2 � 1 so Lu � 1�k � l�2p, where
l is the de Broglie wavelength. Since l is on the order
of the BEC size Ls�Lu ø 1, thus our experiment is well
below the unitarity constraint.

Recent many-body theoretical work [3,23,24] has sug-
gested an upper limit to K0 in a BEC of K0 � h

m LJ , where

LJ �
n21�3

2p and n21�3 is the mean distance between par-
ticles. One might question if two-body scattering methods
are applicable at densities where Ls becomes larger than
LJ . At our maximum density LJ � 22 nm, so Ls�LJ � 1
at our highest intensities. Nevertheless, the linearity of
K0�I� (Fig. 4) shows that, with our experimental uncer-
tainty, we have no evidence for the failure of two-body
theory.

Larger values of Ls�LJ might be accessible by a modi-
fication to our experimental design. We can use the atomic
dipole force (which currently limits our ability to use high
intensities) to our advantage by trapping the atoms with
the photoassociation laser. Without changing the atomic
dipole forces, the laser can be suddenly brought from far
off molecular resonance to on molecular resonance to in-
duce photoassociation. Difficulties due to the molecular
light shift might be reduced by finding a transition with a
smaller light shift.

In conclusion, we have measured the single-photon pho-
toassociation in a BEC, in good agreement with two-body
theory. This agreement represents a confirmation of the
factor-of-two reduction for a two-body inelastic process in
a BEC. The characteristic time for photoassociation is as
short as 5 ms, much shorter than the 100 ms to traverse the
mean distance between atoms, another demonstration of
the extreme quantum nature of the collisions. Our largest
rate is still much smaller than the unitarity limit, but is on
the order of a limit suggested on the basis of many-body
effects; however, we have yet to see the effects of this limit.
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We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC)
and a degenerate gas of Rb2 ground state molecules in a specific ro-vibrational state using two-color
photoassociation. As a signature for the decoupling of this coherent atom-molecule gas from the
light field we observe a striking suppression of photoassociation loss. In our experiment the maximal
molecule population in the dark state is limited to about 100 Rb2 molecules due to laser induced
decay. The experimental findings can be well described by a simple three mode model.

PACS numbers: 34.50.Rk, 32.80.Pj, 03.75.Nt, 42.50.Gy

The phenomenon of coherent dark states is well known
in quantum optics and is based on a superposition of
long-lived system eigenstates which decouples from the
light field. Since their discovery [1] dark states have found
numerous applications. Prominent examples are electro-
magnetically induced transparency and lasing without in-
version [2], sub-recoil laser cooling [3], and ultra-sensitive
magnetometers [4]. A particular application is the coher-
ent transfer of population between two long-lived states
by a stimulated Raman adiabatic passage (STIRAP) [5].

In the emerging field of ultracold molecules, the con-
version of atomic into molecular BECs is a central is-
sue. A series of recent experiments on the creation of
molecular quantum gases rely on the application of Fes-
hbach resonances [6]. This coupling mechanism, how-
ever, is restricted to the creation of molecules in the
highest ro-vibrational level and is only practicable for a
limited number of systems. As a more general method a
stimulated optical Raman transition can directly produce
deeply bound molecules as demonstrated a few years ago
[7, 8]. STIRAP was proposed as a promising way for
a fast, efficient and robust process to convert a BEC of
atoms into a molecular condensate [9–14]. The central
prerequisite for this kind of STIRAP is a dark superpo-
sition state of a BEC of atoms and a BEC of molecules.

In this Letter, we report the observation of such a col-
lective multi-particle dark state in which atoms in a BEC
are pairwise coupled coherently to ground state mole-
cules. This dark atom-molecule BEC shows up in a strik-
ing suppression of photoassociative loss, as illustrated by
the spectra in Fig. 1. In one-color photoassociation, the
excitation of a molecular transition produces a resonant
loss feature that reflects the optical transition linewidth,
see Fig. 1(a). The presence of a second laser field cou-
pling the electronically excited molecular state to a long-
lived ground-state level can drastically reduce this loss,
as shown in Fig. 1(b) and (c). In (b), for example, we
observe a striking loss suppression by about a factor of
70 on resonance.

Already the mere observation of an atom-molecule
dark resonance in a BEC proves that a coherent, quan-
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FIG. 1: Dark resonances in two-color photoassociation. (a)
Atomic loss signal in one-color photoassociation as a function
of the laser detuning from the electronically excited molecular
line. (b), (c) When we apply a second laser (fixed frequency)
which resonantly (∆ = 0) couples the excited molecular state
to a long lived molecular ground state, the losses are strongly
suppressed at δ = 0. Depending on the intensity of laser 2,
this dark resonance can get very narrow. The atom life time
on the dark resonance in (b) is 140 ms whereas in (a) atoms
have an initial decay time of about 2 ms. Intensities of laser
1 (I1) and 2 (I2) are as indicated.

tum degenerate gas of molecules has been formed. This
follows from the facts that 1) the dark state is by defi-
nition a coherent superposition of atoms and molecules
and 2) the atomic BEC is a coherent matter-wave. In this
fully coherent situation, the molecular fraction itself must
be quantum degenerate with a phase-space density cor-
responding to the number of molecules. The very narrow
resonance lines indicate the high resolution of our mea-
surements and the potential sensitivity of the dark state
as an analysis tool. Using a BEC allows direct inter-
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FIG. 2: Level scheme. ∆ and δ denote the detunings. Ω1

and Ω2 are the Rabi frequencies. The excited molecular state
|b〉 spontaneously decays with a rate γb to levels outside this
scheme. The molecular state |g〉 is attributed a decay rate γg

which phenomenologically takes into account losses through
inelastic collisions and laser induced dissociation, e.g. when
laser 1 couples |g〉 to the unstable state |b〉. In all our mea-
surements laser 1 is scanned (varying δ) while laser 2 is held
fixed at a particular detuning ∆.

pretation and clear understanding of our data without
ambiguity. Thermal averaging of signal features plays
no role in contrast to previous measurements in thermal
gases [8, 15, 16].

The starting point of our measurements is a BEC of
4 × 105 87Rb atoms in the spin state |F = 1,mF = −1〉
[17]. In the level scheme of Fig. 2 the atomic BEC state
is represented by |a〉. Laser 1 couples this state to the
excited molecular state |b〉. Laser 2 couples |b〉 to the
molecular ground state |g〉. We choose level |b〉 to be
the electronically excited molecular state |0−g , ν = 1, J =
2〉 located 26.8 cm−1 below the S1/2 + P3/2 dissociation
asymptote [17]. For level |g〉 we choose the second to
last bound state in the ground state potential. It has
a binding energy of Eb/h = 636 MHz [7]. |a〉, |b〉 and
|g〉 form the lambda-system for the atom-molecule dark
states.

We illuminate the trapped condensate for typically
10 ms with two phase-locked laser beams in a Raman con-
figuration as shown in Fig. 2. Both laser beams are de-
rived either from a single diode laser or, for higher optical
powers, from a Ti:Sapphire laser. The frequency differ-
ence between the two beams is created with an acousto-
optical modulator at a center frequency of about 320 MHz
in a double-pass configuration. This allows precise con-
trol of the beams’ relative frequency difference over sev-
eral tens of MHz. Both beams propagate collinearly and
are aligned along the weak axis of the trap. They have
a waist of about 100 µm, and their linear polarization
is perpendicular to the magnetic bias field of the trap.
The diode laser and the Ti:Sapphire laser both have line
widths of less than 1MHz. They are offset locked rela-
tive to the D2-line of atomic rubidium with the help of a
scanning optical cavity. This yields an absolute frequency
stability of better than 10 MHz.

We are able to describe all our spectra with a relatively

−60 −40 −20 0 20 40 60
0

0.5

1

∆/2π = 44 MHz

(c)

δ/2π (MHz)

0

0.5

1

∆/2π = 27 MHz

(b)

no
rm

al
iz

ed
 a

to
m

 n
um

be
r

0

0.5

1

∆/2π = 2 MHz

(a)

FIG. 3: Two-color photoassociation spectra for various de-
tunings ∆ at a large intensity I2 = 20 W/cm2. Here I1 =
80W/cm2. The solid lines are fit curves based on our theo-
retical model.

simple three mode model. Although the atom-molecule
dark states are intrinsically complicated and entangled,
in a first approximation the atoms and molecules can
be represented as coherent matter fields [9–14]. Using
the notation of M. Mackie et al. [11] we obtain a set of
differential equations for the normalized field amplitudes
a, b, and g of the BEC state, the excited molecular and
ground state, respectively:

iȧ = −Ω1a
∗b,

iḃ = [(∆ + δ)− iγb/2] b− 1
2 (Ω1aa + Ω2g),

iġ = (δ − iγg/2)g − 1
2Ω2b.

(1)

We refer to Ω1 as the free-bound Rabi frequency (see
Fig. 2). It scales with intensity I1 of laser 1 and initial
atom density ρ as Ω1 ∝

√
I1
√

ρ. The bound-bound Rabi
frequency Ω2 ∝

√
I2 only depends on the intensity I2 of

laser 2. The detunings ∆ and δ are defined as depicted
in Fig. 2. γb and γg denote the effective decay rates
of state |b〉 and |g〉 (for details see Fig. 2). |a|2, |b|2, and
|g|2 give the ratio between the respective atom (molecule)
number and the initial atom number. In the absence of
losses, i.e. γb = γg = 0, particle numbers are conserved
globally, |a|2 + 2|b|2 + 2|g|2 = 1. Unlike the previous
theoretical treatments [9–14] where the decay rate γg was
basically neglected, we find that γg is relatively large and
intensity dependent, γg = γg(I1). In our simple model we
do not include atomic continuum states other than the
BEC state. We neglect inhomogeneity effects due to the
trapping potentials and finite size laser beams. Energy
shifts caused by the mean-field interaction of atoms and
molecules are small and neglected.

In order to determine the parameters of our model
and to check it for consistency, we performed measure-
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I2/I1 (see legend) at a fixed intensity I1 = 7 W/cm2. The
solid curves are calculations based on our theoretical model.
∆ = 0.

ments in a broad parameter range of intensities and de-
tunings. Fits to the photoassociation curves determine
all unknown parameters of the system such as Ω1, Ω2,
γb and γg. Figure 3 shows photoassociation spectra for a
relatively high laser power I2 = 20 W/cm2 and various
detunings ∆. For a small detuning ∆ (Fig. 3 (a)) the
dark resonance line from Fig. 1 has broadened consider-
ably. This spectrum can also be viewed as two absorp-
tion lines resulting from a strong Autler-Townes split-
ting which was also observed in thermal gases [8, 16].
From the 30 MHz separating the two resonance dips, the
magnitude of the Rabi frequency Ω2 can be directly de-
termined. For a larger detuning ∆, the resulting spec-
trum becomes asymmetric and turns into a narrow and a
broad dip, see Fig. 3 (b) and (c). The narrow loss feature
is related to the two-photon Raman transition while the
broad dip is due to the one-photon transition |a〉 → |b〉.
Note that similar to Fig. 1, losses are suppressed at δ = 0.

Figure 4 shows the dark resonances in the low power
limit where I1 is held constant and I2 is lowered in 4
steps. The dark state transforms more and more into
a grey state, because losses become more dominant due
to a nonzero decay rate γg. The height of the dark res-
onance decreases when the pumping rate Ω2

2/γb comes
in the range of the decay rate of the molecular ground
state γg. This allows for a convenient determination of
γg. From Fig. 4 it is also clear that the width of the dark
resonance decreases with Ω2. For Ω2 ¿ γb the width
is given by Ω2

2/γb + γg, corresponding to power broad-
ening and the effective ground state relaxation. The
following set of parameters describes all our measure-
ments quite accurately and was used in particular for
the calculated solid lines in Fig. 4: Ω1/(

√
I1

√
ρ/ρ0) =

2π × 8 kHz/(Wcm−2)1/2 at a peak density of ρ0 =
2 × 10−14 cm−3, Ω2/

√
I2 = 2π × 7MHz/(Wcm−2)1/2,

and γb = 2π × 13MHz. We find that the decay rate γg

of the ground state molecular level increases with the in-
tensity I1 of laser 1 as shown in Fig. 5. A dependence
of γg on I2 was negligible in our experiments where typ-
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FIG. 5: Dependence of the decay rate γg of the ground state
molecules on the laser intensity I1, measured with an intensity
ratio I2/I1 = 1/40. The solid curve is given by γg = 2π ×
6 kHz/(Wcm−2)I1 + 2π × 1 kHz.

ically I2/I1 ∼ 1/5 . . . 1/500. We model the behavior of
γg as γg = 2π × 6 kHz/(Wcm−2)I1 + γbg, the sum of
a light-induced decay rate proportional to I1 and back-
ground decay rate γbg due to inelastic collisions in the
absence of light. From measurements at low intensities
we can estimate an upper value for the background decay
rate of about γbg ≈ 2π × 1 kHz for ρ0 = 2 × 1014 cm−3.
This value for γbg is consistent with previous experimen-
tal results for 87Rb at similar atom densities [7]. The in-
crease of γg with I1 is due to several imperfections which
break the ideal 3-level lambda system. Laser 1 also cou-
ples the molecular ground state |g〉 to the short-lived ex-
cited molecular state |b〉, which leads to an incoherent
loss of the molecules due to spontaneous decay. Due to
the rather small frequency difference (≈ 2π × 636 MHz)
of the two Raman lasers and the strong bound-bound
transition, this cannot be neglected. In addition, only
290 MHz below level |b〉 exists another excited molecular
state |0−g , ν = 1, J = 0〉 which represents an additional
loss channel [17]. These two contributions explain about
one third of our observed losses. Furthermore, losses can
also stem from a photodissociation transition which cou-
ples ground state molecules directly to the continuum
above the S1/2 + P1/2 dissociation asymptote.

Having determined the parameters we can use model
(1) to calculate the fraction of ground state molecules
|g|2. For the measurements presented in Fig. 4 we have
a peak molecular fraction of 2 × 10−4 corresponding to
about 100 molecules (at δ = 0 and I2/I1 = 1/500). For
comparison, for I2/I1 = 1/40 the molecule number is
only about 25 at δ = 0. It is interesting to note how few
molecules are needed to stabilize almost a million atoms
against photoassociation. This large asymmetry of the
particle numbers reflects the different coupling strengths
of the free-bound and bound-bound transitions. Natu-
rally the question arises how the experimental parame-
ters should be chosen to optimize the number of mole-
cules. This is non-trivial due to the finite decay rate γg.
With model (1) we have numerically mapped out mole-
cule numbers as a function of time, detuning and laser
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FIG. 6: (a) Maximum molecular fraction as function of the
intensity ratio I2/I1 at a fixed intensity I1 = 10W/cm2 and
(b) as a function of intensity I1 at a fixed intensity ratio
I2/I1 = 1/500. The solid lines show the molecule fraction for
the measured decay rate γg = 2π × 6 kHz/(Wcm−2)I1 + γbg.
The dashed lines show the molecule fraction assuming a lower
decay rate γg = 2π × 1 kHz/(Wcm−2)I1 + γbg. The dotted
line corresponds to γg = 0. The calculations are based on
Eqs. (1) with ∆ = 0.

intensities, starting out with a pure atomic BEC and sim-
ply switching on the lasers. In general within a few µs
of evolution, the dark state is formed. This involves only
negligible losses of atoms since the dark state is very close
to our initial BEC state. The maximum number of mole-
cules of every evolution is then determined. We find that
we can optimize the molecular production by working at
∆ = 0 although other values for ∆ can be used. For
∆ = 0 the maximum number of molecules correspond
to δ = 0, hence both lasers are on resonance. Figure 6
shows the molecular fraction as a function of the laser
intensities. In Fig. 6(a), as I2/I1 is lowered from high
values, the molecule fraction initially grows and follows a
straight dotted line which coincides with the ideal route
for STIRAP. Following this route would lead to a full

conversion of atoms into molecules in the absence of loss
γg. This can be seen from Eqs. (1) when setting ḃ = 0
and b = 0 such that |g|2 = Ω2

1/Ω2
2|a|4. For finite γg,

however, the molecular fraction curve rolls over for some
value of I2/I1, when the molecule loss rate is larger than
its production rate. A smaller γg would lead to a larger
number of molecules (dashed line). The finite γg in our
experiments leads to a maximum molecule number at
I2/I1 ∼ 1/500, a ratio which we also used in our mea-
surements (see Fig. 4, open diamonds). For this optimum
value the dependence of the molecular fraction on I1 is
shown in Fig. 6(b). Here it becomes clear that the laser
intensities have to be kept above a certain threshold so
that losses are not dominated by the background decay
rate γbg of the molecular state.

To summarize, we have created a novel multi-particle
dark state where an optical Raman transition coherently
couples an atomic Rb BEC of about 4×105 atoms to
a quantum degenerate gas of up to 100 Rb2 ground
state molecules. Our investigations can be extended in
a straight forward manner to create and study BECs
of arbitrarily deeply bound molecules and coherent
atom/molecule mixtures. The dark resonance has proven
itself as a useful tool to analyze the atom-molecule sys-
tem and to optimize the optical conversion of atomic to
molecular BECs. An increase of the number of mole-
cules by several orders of magnitude should be possible
by choosing better suited ground and excited molecular
states for the free-bound Raman transition.

We appreciate the help of George Ruff and Michael
Hellwig at an early stage of the experiment. We thank
Paul Julienne, Eite Tiesinga, Peter Drummond and
Karen Kheruntsyan for valuable discussions. This work
was supported by the Austrian Science Fund (FWF)
within SFB 15 (project parts 12 and 17) and the Eu-
ropean Union in the frame of the Cold Molecules TMR
Network under contract No. HPRN-CT-2002-00290.

[1] E. Arimondo and G. Orriols, Lett. Nuovo Cim. 17, 333
(1976).

[2] For a review see S.E. Harris, Physics Today 50, 36 (1997).
[3] A. Aspect et al., Phys. Rev. Lett. 61, 826 (1988).
[4] M. Stähler et al., Opt. Lett. 27, 1472 (2002).
[5] K. Bergmann, H. Theuer, and B.W. Shore, Rev. Mod.

Phys. 70, 1003 (1998).
[6] For a review D. Kleppner, Phys. Today 57, 12 (2004).
[7] R. Wynar, R.S. Freeland, D.J. Han, C. Ryu, and

D.J. Heinzen, Science 287, 1016 (2000).
[8] B. Laburthe Tolra, C. Drag, and P. Pillet, Phys. Rev. A

64, 061401 (2001).
[9] A. Vardi, D. Abrashkevich, E. Frishman, and M. Shapiro,

J. Chem. Phys. 107, 6166 (1997); A. Vardi, V.A.
Yurovsky, and J.R. Anglin, Phys. Rev. A 64, 063611
(2001).

[10] P.S. Julienne, K. Burnett, Y.B. Band, and W.C. Stwalley,
Phys. Rev. A 58, R797 (1998).

[11] J. Javanainen and M. Mackie, Phys. Rev. A 58, R789
(1998); M. Mackie, A. Collin, and J. Javanainen, Phys.
Rev. A 71, 017601 (2005).

[12] J.J. Hope, M.K. Olsen, and L.I. Plimak, Phys. Rev. A
63, 043603 (2001).

[13] P. D. Drummond, K.V. Kheruntsyan, D.J. Heinzen, and
R.H. Wynar, Phys. Rev. A 65, 063619 (2002); P.D.
Drummond, K.V. Kheruntsyan, D.J. Heinzen, and R.H.
Wynar, Phys. Rev. A 71, 017602 (2005).

[14] B. Damski et al., Phys. Rev. Lett. 90, 110401 (2003).
[15] C. Lisdat, N. Vanhaecke, D. Comparat, and P. Pillet,

Eur. Phys. J. D 21, 299 (2002).
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Chapter 6

Bose-Einstein condensation of
molecules and the BEC-BCS
crossover

Properties of quantum degenerate gases are largely determined by quantum
statistics. At low enough temperatures bosons form a BEC and fermions
form a Fermi sea. An interesting situation arises when a gas of particles
changes its quantum statistics, i.e. fermionic particles become bosons or vice
versa. This happens, for example, when we combine two fermionic atoms
to form a composite boson. However, depending on the strength of their
bonding, these fermion pairs (or composite bosons) can still have strong
fermionic characteristics. In the strong coupling limit the fermion pair is a
bosonic molecule which can undergo Bose-Einstein condensation. In the weak
coupling limit the coupled atoms are Cooper pairs in a degenerate Fermi gas
and lead to BCS superfluidity [Bar57], (see also chapter 2). These Cooper
pairs are delocalized in the sense that the distance between the paired atoms
can be larger than the mean particle distance in the Fermi gas. It should
be possible to continuously go over from the regime of BEC superfluidity to
BCS superfluidity by controlling the coupling between the fermions. This
is called the BEC-BCS crossover. The BEC-BCS crossover has been the
subject of great theoretical interest for more than three decades [Eag69,
Leg80, Noz85, Hol01, Oha02, Sta04]. For an overview see [Che04]. Using
ultracold degenerate fermionic quantum gases and Feshbach resonances it
is now possible for the first time to experimentally access and study this
regime since with the Feshbach resonance we can control the interaction and
coupling of the fermionic atoms. Figure 6.1 illustrates how this works.

On the left hand side of the Feshbach resonance where the scattering
length is positive, a weakly bound molecular state exists (see also Fig. 5.3).
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Figure 6.1: BEC-BCS crossover. By controlling the coupling in pairs of
fermions with a Feshbach resonance we can continuously go over from a
tight coupling regime (molecules) to a weak coupling regime (Cooper pairs).
For low enough temperatures this corresponds to a continuous change from
BEC superfluidity to BCS superfluidity, called the BEC-BCS crossover. The
shaded area where the scattering length diverges, marks an interesting uni-
versal regime where the interaction between the particles is unitarity limited.

The binding energy of these molecules is tunable via the magnetic field
strength. For low magnetic fields we are in the strongly coupled regime
where the molecules behave as pure bosons and can form a BEC. On the side
of the Feshbach resonance with negative scattering length, no such weakly
bound molecular state exists and we will have a degenerate Fermi gas with
attractive interactions. For low enough temperatures the fermionic atoms
should pair up similar to Cooper pairs and form a superfluid. The interac-
tion between the atoms is proportional to the scattering length |a| and can
be tuned with the magnetic field. In the typical BCS regime the interactions
between the fermions are very weak, i.e. kF |a| � 1. In this regime the crit-
ical temperature Tc for Cooper pairing and superfluidity is very low, i.e. a
small fraction of the Fermi temperature Tc ∝ TF exp

(
− π

2kF |a|

)
(see also Eq.

2.15).
With typical Fermi temperatures on the order of µK in our experiments,

fermionic superfluidity in the BCS limit is then very hard to achieve, since
it would require temperatures in the pK range. What helps dramatically,
however, is that close to the Feshbach resonance the Fermi gas is strongly
interacting, i.e. the scattering length a becomes very large. This raises Tc

to a large fraction of TF (≈ 0.2 TF ) and brings it right into the range where
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Figure 6.2: Overview of superfluidity in different Fermi pair coupling regimes.
For strong coupling (here given in terms of the energy gap ∆, we are in the
BEC regime and the critical temperature Tc is around the Fermi temperature
TF . For weak coupling, as for example in typical superconductors, Tc is a
small fraction of TF . In the regime of resonance superfluidity (the range
between the dashed lines) where we have a strongly interacting Fermi gas,
Tc ≈ TF . This figure is adapted from [Hol01].

it becomes accessible in current experiments. This regime has been theoret-
ically studied and is termed resonance superfluidity [Hol01, Oha02, Sta04].
Figure 6.2 gives an overview over the superfluid regimes in various physical
systems. Tc/TF strongly depends on the coupling strength of the Fermi pair.
It should be pointed out that pairing of fermions and superfluidity plays an
important role in several fields of physics beyond the standard systems of
superconductors (normal and high-Tc) and superfluid Helium 3. Two such
fields are, for example, astronomy and nuclear physics where we deal with
degenerate Fermi gases in neutron stars and nuclei, respectively.

Studying the Fermi gas right on the Feshbach resonance is interesting
from another point of view. Here the scattering length diverges (see Fig. 6.1)
and as a consequence the interaction between the particles becomes unitar-
ity limited by the finite Fermi momentum kF (see also section 2.1.3). The
scattering length then completely drops out of the physical description and
is not relevant anymore. We are entering a universal regime where the be-
havior of the gas becomes independent of the particularities of the atomic
interaction properties. A number of theoretical predictions for the behav-
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ior of these gases, regarding mechanical stability, collective excitations and
thermodynamics (see for example [Hei01, Ho04, Geh03b]) have been brought
forth recently and can now be tested experimentally.

In the following two sections we first describe the experimental realization
of Bose-Einstein condensation of molecules and fermionic pairs. Afterwards
we discuss several experiments which investigate the BEC-BCS crossover
with several methods, studying the size, collective oscillations and the pairing
gap of the Fermi gas 1. For these crossover experiments we used the molecular
BEC as a convenient starting point.

6.1 Bose-Einstein condensation of Fermi

pairs: molecules and Cooper pairs

Molecular BEC

In 2003, our group and that of D. Jin simultaneously produced the world’s
first molecular BECs [Joc03a, Gre03]. These condensates consisted of the
dimeric molecules Li2 and K2 for our and Jin’s group, respectively. Several
weeks later this was followed by reports of molecular condensation of Li2 from
the groups of W. Ketterle [Zwi03] and C. Salomon [Bou04]. The condensate
in our experiment contained more than 105 Li2 molecules and was produced
starting out with a laser cooled spin mixture of 6Li in an optical dipole trap
(see previous chapter 5). During only 2 seconds of a single forced evaporation
ramp, molecules were formed from three-body recombination near a Feshbach
resonance and brought to condensation. The forced evaporative cooling was
very efficient due to high trapping frequencies in the optical dipole trap
and large elastic scattering cross sections close to the Feshbach resonance.
Here we could conveniently follow the work of the Thomas group [Gra02]
(for theoretical ground work see also [Lui96]), who had previously used this
method to create a degenerate Fermi gas.

It is the long lifetime of many seconds of the molecules which was essential
for the success of molecular condensation. As discussed already in chapter
5, the long lifetime is the result of a Pauli suppression effect in inelastic
collisions.

In our original paper [Joc03a] we inferred the presence of the condensate
from two facts. First, a measurement of the phase space density of our molec-
ular gas clearly showed quantum degeneracy. Second, our molecular gas must
have been in thermal equilibrium due to its long lifetime of many seconds.

1Recently R. Hulet’s group has demonstrated another interesting method to investigate
the cross over using an optical transition [Par05].
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Furthermore we found clear signatures for superfluidity of the molecular gas
1) by measuring a characteristic frequency of a collective oscillation mode
and 2) by observing mean field effects which are in general only present for
degenerate quantum gases. A few weeks later, after upgrading our imaging
system, we could also observe an in-situ bimodal density distribution during
condensation [Bar04c] which is commonly regarded as a smoking gun for the
BEC phase transition. We currently produce almost pure BECs (> 90%) of
about 2 × 105 Li2 molecules at temperatures of a few 10 nK with typical
lifetimes reaching 40 s.

The molecular BEC is a convenient starting point for the BEC-BCS
crossover experiments. Reaching low temperatures through evaporative cool-
ing tends to be easier on the BEC side than on the BCS side where Pauli
blocking slows down evaporation. Further, measuring temperatures on the
BEC side is simpler because the thermal cloud is much better separated from
the degenerate gas than on the BCS side.

Pair condensation

Only a couple of months after the first BEC of molecules D. Jin’s group and
W. Ketterle’s group made interesting experiments which were interpreted as
a condensation of fermionic atom pairs [Reg04, Zwi04]. Starting out with an
ultracold degenerate Fermi gas on the BCS side, the Fermi gas was quickly
swept across the Feshbach resonance onto the BEC side and imaged. There,
for low enough temperatures, the appearance of a molecular BEC was ob-
served. The high fraction of molecules on the BEC side led to the conclusion
that preformed pairs of fermions must have already existed on the BCS side.
Furthermore, since the sweep time was much too short for condensation to
take place, these Fermi pairs also had to be condensed already on the BCS
side.

In a separate line of experiments we could support these interpretations.
Using radio-frequency spectroscopy 2 we were able to measure the binding
energy of the fermion pairs on the BCS side as a function of temperature,
density and atomic interaction strength [Chi04a]. The binding energy be-
tween the fermionic atoms can be understood in terms of a pairing gap as it
is known from superconductivity.

Calculations of the group around P. Törmä agreed qualitatively and quan-
titatively with our experimental findings [Kin04b]. Their model predicted
that at temperatures just below the Fermi temperature preformed Fermi
pairs should appear which is also what we observed in the experiment. At

2Details of the radio-frequency spectroscopy method will be explained in the next
section.
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temperatures around 0.2 TF , superfluidity in the core of our gas should set
in. Finally, at our lowest temperatures of around 0.05 TF a large fraction of
the fermionic gas should be superfluid. Indeed, our experiment showed that
at this temperature all fermions in the gas had paired up. In a beautiful
experiment Zwierlein et al. very recently demonstrated superfluidity on the
BCS side by creating vortices in the Fermi gas [Zwi05].

6.2 Probing the BEC-BCS crossover

Starting with a basically pure condensate of 6Li2 molecules held in a far
detuned optical dipole trap, we explored the BEC-BCS crossover by simply
sweeping the magnetic field across the Feshbach resonance. While doing so,
we used various methods to investigate our system of ultracold fermions and
pairs of fermions.

Adiabatic crossing

In a first experiment we performed in-situ imaging of the trapped degenerate
gas during the crossover [Bar04c]. We found that the gas density was well
described by a Thomas-Fermi distribution. Calculations by Strinati et al.
showed very good agreement with our experimental data [Per04].

By slowly ramping the magnetic field across the Feshbach resonance in
an adiabatic way (time scale ≈ 1 s), the molecular BEC was converted into a
strongly interacting degenerate Fermi gas. By slowly ramping back over the
Feshbach resonance, this Fermi gas was fully reconverted into a molecular
BEC. No additional losses of atoms nor any heating could be observed. This
demonstrates the reversibility and adiabaticity of the crossover and conse-
quently also conservation of entropy. Isentropic behavior is very useful be-
cause it allows us to conveniently estimate the temperature of the Fermi gas
on the BCS side from a temperature measurement on the BEC side [Car04].
As a result, our high condensate fraction of >90% corresponds to an ex-
tremely low temperature of kBT < 0.04EF in the non-interacting Fermi gas
limit. For such low temperatures, superfluidity has been predicted on the
BCS side close to the Feshbach resonance [Hol01] and was experimentally
confirmed recently [Zwi05].

Studying the size of our trapped gas we observed a smooth change of
the cloud size during crossover. The cloud size increased monotonously with
the magnetic field until it levelled off on the BCS side 3. The increase of

3The cloud size was rescaled in order to compensate for unwanted changes in the
trapping potential.
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the cloud size can be partially understood as a response to the increasing
repulsive interaction between the particles on the BEC side and partially
due to the conversion into a degenerate Fermi gas which is governed by the
Pauli principle. Although it is as predicted, the smoothness of the crossover
is still somewhat surprising since on-resonance the effective interaction of the
gas changes abruptly from strongly repulsive to strongly attractive. Related
measurements on the crossover were carried out in the group of C. Salomon
in Paris [Bou04] where the anisotropy and the release energy of the cloud
was studied. Again, a smooth and monotone behavior was observed.

Directly on the Feshbach resonance where the scattering length di-
verges,the universal behavior of the gas has been studied experimentally by
various groups [Bar04c, Bou04, Har02a].

Collective excitations

Our collective excitation experiments were motivated by Sandro Stringari
who predicted an interesting behavior across the BEC-BCS crossover [Str04].
Already with atomic BECs, the study of collective excitations has proven to
be an important tool to characterize the properties of these superfluid gases
and to gain insight into their behavior (see for example [Jin97, Mew96, Che02,
Str96]). Collective excitations can be quite sensitive to interaction effects,
and their frequencies can in general be measured with high accuracy. The
subject of collective excitations is a large field with many theoretical and
experimental groups having contributed over the years. For the lack of space
we cannot go into detailed discussions here and merely give an overview. For
introductory literature we refer to [Pit03, Pet02, Dal99a, GO99, Bar04a].
With respect to collective oscillations one distinguishes between compres-
sional modes and surface modes which can be characterized by angular mo-
mentum and radial quantum numbers. Different modes have different sensi-
tivities on properties of the trapped gas, its equation of state as well as the
trapping potential. Depending on the state of a gas, two different asymp-
totic regimes can be realized: the collisional/ hydrodynamic and collisionless
regime. In general, these different regimes result in different collective exci-
tation responses, which can be used to identify the state of the gas.

We performed our experiments [Bar04b] in a cigar shaped dipole trap
where we excited two different oscillation modes, a slow axial quadrupole
mode and a fast radial monopole (breathing) mode. We studied the change
in frequencies and damping of these modes in the crossover as we passed
through several regimes: BEC limit, strongly interacting BEC, unitary limit
and strongly interacting Fermi gas. In brief, our measurements on the ax-
ial quadrupole mode agree well with the theoretical predictions. Close to
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Figure 6.3: Radio-frequency (rf) spectroscopy. (left) We use rf of about
80 MHz to flip the spin from state |2〉 to state |3〉. In our gas of atoms the
induced loss in state |2〉 gives rise to a narrow absorption line (right). If state
|2〉 is bound in a molecule, then in order to flip the spin, both the molecule
has to be broken up and the spin is to be flipped. This requires additional
energy and thus produces a second absorption line at higher frequencies. The
distance between the two lines corresponds to the binding energy Eb of the
molecule.

resonance very low damping is observed which gives strong evidence for su-
perfluidity. For the radial breathing mode the frequency shifts are in general
larger than predicted. Especially on resonance our data do not agree with
the calculations for the universal regime [Str04, Hei04, Hu04, Man05]. Apart
from these quantitative differences, we also discovered a striking and un-
expected feature in our measurements. An abrupt change of the oscillation
frequency appeared on the BCS side which was accompanied by strong damp-
ing. We currently interpret this as a sudden transition from a superfluid to
a collisionless phase.

Parallel to our work, the group of J. Thomas studied extensively the ra-
dial breathing mode in the crossover region [Kin04a, Kin04c, Kin05]. Qual-
itatively, their results are similar to ours. Quantitatively there are some
discrepancies. In general they observe smaller frequency shifts compared to
our measurements. Further, on resonance in the unitary limit their data
agree with the theoretical predictions in contrast to ours. The reason for this
different behavior is not yet fully understood and needs to be investigated
further.
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Measuring the binding energy of Fermi pairs

Rf spectroscopy was first introduced by the groups of D. Jin and W. Ketterle
as a powerful and sensitive tool to measure interaction effects of the Fermi
gas near the Feshbach resonance [Reg03a, Gup03] and to measure the binding
energy of the molecules on the BEC side of the Feshbach resonance [Reg03].
We have extended the rf spectroscopy method to measure the binding energy
of fermion pairs across the whole crossover [Chi04a]. Figure 6.3 illustrates
the scheme. In brief, driving a spin flip of the nuclear spin in our atomic
6Li gas we can measure accurately the energy it takes to do so. For free
atoms this energy is given precisely by the well known Breit-Rabi formula
[Bar04a]. If the atoms, on the other hand, are bound in a molecule or some
kind of Cooper pair, then flipping the spin takes some additional energy
which corresponds to the binding energy.

We found that far away from the Feshbach resonance on the BEC side, the
measured binding energy of the molecules is well described by conventional
two-body physics. As we approach the Feshbach resonance the binding en-
ergy increasingly deviates from this theory. Further, we observed an increas-
ing dependence of the binding energy on the gas density, which demonstrates
the setting in of many-body effects. As we approach the Feshbach resonance
the two-body bound state continuously goes over into a Cooper pair kind of
bound state which is stabilized by the degenerate Fermi gas around it. Right
on resonance and on the BCS side, where no molecules can exist according
to two-body theory, we still observe bound states which correspond the pairs
of fermions.

There is still a lot we can learn in the future about the properties of the
Fermi pairs with the help of rf spectroscopy. The shape of the rf-peak of the
Fermi pair, for example, contains information on the pair size. By studying
how the rf-signals depend on temperature and density of the degenerate Fermi
gas, scaling effects can be studied which are especially interesting in view of
existing theoretical predictions in the universal regime [Hei01, Ho04].
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Bose-Einstein Condensation
of Molecules

S. Jochim,1 M. Bartenstein,1 A. Altmeyer,1 G. Hendl,1 S. Riedl,1

C. Chin,1 J. Hecker Denschlag,1 R. Grimm1,2*

We report on the Bose-Einstein condensation of more than 105 Li2 molecules
in an optical trap starting from a spin mixture of fermionic lithium atoms.
During forced evaporative cooling, the molecules are formed by three-body
recombination near a Feshbach resonance and finally condense in a long-lived
thermal equilibrium state. We measured the characteristic frequency of a
collective excitation mode and demonstrated the magnetic field–dependent
mean field by controlled condensate spilling.

Since the first experiments on Bose-Einstein
condensation (BEC) in ultracold atomic gases
in 1995 (1–3), atoms of eight chemical ele-
ments have been condensed. BEC of more
complex objects such as molecules or Cooper-
paired atoms will open up many new avenues
of research because they offer new degrees of
freedom. An intriguing example is the funda-
mental change in quantum statistics when
paired fermions form composite bosons. Recent
experiments have demonstrated the formation
of molecules in ultracold atomic gases of
bosons (4–9) and fermions (10–13). Experi-
ments starting with atomic BEC show the cre-
ation of molecular clouds at the threshold to
quantum degeneracy (7) or clearly in that re-
gime (9), but not in a thermal equilibrium state.
In most of these experiments, weakly bound
dimers are produced via magnetically tuned
Feshbach resonances (14). Such a scattering
resonance occurs when a free colliding atom
pair energetically coincides with a bound mo-
lecular state. On the side of the resonance where
the energy of the molecular level is below the
dissociation limit, a weakly bound dimer state
exists. The experiments indicate an important
difference between weakly bound dimers com-
posed of bosonic and of fermionic atoms.
Dimers of bosons show a quick decay via in-
elastic atom-molecule or molecule-molecule
collisions (9), so that quantum-degenerate mo-
lecular clouds can only be created in a transient
regime. In contrast, the dimers of fermions ex-
hibit a remarkable stability (11–13, 15). Such
molecular gases have been observed with life-
times far longer than the time scales for elastic
collisions and thermalization. This fact has been
explained by a fermionic suppression of vibra-
tional quenching in molecule collisions (16).
Their stability allows us to use bosonic mole-

cules composed of fermionic atoms to achieve
molecular BEC in thermal equilibrium.

Our experiment is based on evaporative
cooling of an optically trapped mixture of fer-
mionic 6Li atoms in the two lowest spin states
(11–13, 17–21). During the cooling process, a
large number of bosonic dimers are formed by
three-body recombination and finally condense
into a molecular BEC. The spin mixture exhib-
its a broad Feshbach resonance at a magnetic
field of about 850 G (18, 19, 22, 23), which
leads to a pronounced magnetic field depen-
dence of the scattering length a (Fig. 1) that
characterizes the s-wave interactions. Dimers in
a single weakly bound state can be formed in
the range of large positive a with a binding
energy of �2/(ma2), where � is Planck’s con-
stant h divided by 2� and m is the mass of a 6Li
atom. This has been observed in magnetic
field–dependent loss features (24) and changes
in the interaction energy of the gas (21). Two
recent experiments have directly demonstrated
the presence of these molecules and investigat-
ed some of their properties (12, 13). For nega-
tive scattering length, no weakly bound dimer
state exists. For negative scattering length,
where a weakly bound dimer state does not
exist, the 6Li gas exhibits a remarkable stability
against collisional decay, and deeply degener-
ate Fermi gases have been created (20).

Our optical dipole trap is realized with a
single Gaussian laser beam at a wavelength
of 1030 nm, which is focused to a waist of 23
�m. At the full power of P0 � 10.5 W, the
radial and axial oscillation frequencies are
�r/2� � 14.5 kHz and �z/2� � 140 Hz,
respectively, and the atom trap is U0 � kB �
800 �K deep (kB denotes Boltzmann’s con-
stant). When the power P is reduced to a
relative value p � P/P0, the optical trap
frequencies follow p1/2�i(i � r, z) and the
trap depth for the atoms is Uat � pU0. Our
magnetic field B used for Feshbach tuning
exhibits a curvature that gives rise to an
additional contribution to the trapping poten-
tial. For the tight radial confinement of the
optical trap, this effect is negligibly small.
For the weak axis, however, a magnetic trap-

ping effect becomes important with decreas-
ing p. Taking this into account, the axial trap
frequency is given by �z � 	p�z

2 
 �m
2.

Here �m/2� � 24.5 Hz � 	B/kG is the
magnetic contribution, which is precisely
known for our coils. For weak traps with
p �� 0.03 (Uat/kB �� 25 �K), the magnetic
contribution dominates, and the axial con-
finement is harmonic with a corresponding
frequency known on the percent level. In this
regime, the mean trap frequency is given
by � � (p�r

2�m)1/3. For the weakly bound
6Li dimers, all external forces are twice the
ones on the individual atoms. Thus, the mo-
lecular trap is two times deeper than the atom
trap (Umol � 2Uat), and the trap frequencies
are identical. Gravity is compensated for by a
magnetic field gradient of 1.1 G/cm.

We start the evaporation process with
�1.5 � 106 atoms at a temperature of �80
�K, a peak number density of �1014 cm
3,
and a peak phase-space density of �5 �
10
3. The mean elastic collision rate is as
high as �5 � 104 s
1. These excellent start-
ing conditions are obtained by a two-stage
loading process. The atoms are loaded into
the dipole trap from another deep, large-
volume standing wave trap (25), which itself
is loaded from a magneto-optical trap. Forced
evaporative cooling is then performed by re-
ducing the trap power (17, 20). We use a
simple exponential ramp with a relative pow-
er p(t) � exp(
t/�), where the time constant
� � 0.23 s is experimentally optimized. A
feedback system allows us to precisely control
the laser power to levels well below p � 10
4.

BEC of weakly bound molecules occurs
when we perform evaporative cooling at a large
positive scattering length of a � 
3500a0,
where a0 is Bohr’s radius. In this case, the
evaporation process shows a strikingly different
behavior in comparison with the corresponding
situation at large negative scattering length,
where no dimers can be produced.

First we discuss the creation of a degenerate
Fermi gas without the possibility of molecule
formation at a magnetic field of 1176 G, where
a � 
3500a0 (23). Here the evaporation pro-
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Fig. 1. Feshbach resonance at �850 G in a
mixture of the two lowest spin states of 6Li
(18). The s-wave scattering length a is plotted
as a function of the magnetic field B.
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ceeds in a very similar way as that described in
(17, 20). The measured atom number N (26)
first follows a scaling law N/N0 � p� (27), with
� � 0.25. In this regime, the temperature of the
gas is typically a factor of 10 below the trap
depth (27), and the elastic collision rate stays
well above 104 s
1. The crossover to Fermi
degeneracy, where the thermal energy kBT
reaches the Fermi energy EF � � � (3N)1/3,
takes place at p � 0.05 (Uat/kB � 40 �K). By
further decreasing p, the trap depth Uat � p
decreases faster than the Fermi energy EF �
p1/3. A threshold occurs when EF reaches Uat

and the trap is filled up to the “rim.” Further
decrease of p then leads to a spilling of atoms
out of the trap and thus to a rapid decrease of N
with p. Our data (Fig. 2) clearly show this
spilling effect for p � 1 � 10
3 (Uat/kB � 800
nK). Modeling the spilling curves provides us
with an upper bound of kBT � 0.2EF for the
temperature in terms of the Fermi energy. In the
regime of a completely filled shallow trap, the
number of atoms in the two-component spin
mixture is given by two times the number of
quantum states in the trap. A numerical calcu-
lation, shown in Fig. 2, confirms this interpre-
tation of our data.

The same evaporation procedure is per-
formed at a magnetic field of 764 G, where the
scattering length a � 
3500a0 (23) has essen-
tially the same magnitude but opposite sign.
Here the weakly bound dimers have a binding
energy of �2 �K, and their formation has been
observed in several experiments (12, 13, 21). In
order to detect the molecules, we dissociate
them and measure the number of resulting at-
oms (26). For this purpose, we abruptly turn on
the full trap power, which strongly heats the
sample and leads to collisional dissociation. In
order to ensure that we dissociate all molecules,
we also apply a magnetic field ramp across the
Feshbach resonance (13). The number of atoms
measured after the dissociation process thus
yields the number of free atoms together with
atoms having formed molecules.

Below p � 1 � 10
3 the measured atom
numbers (solid circles in Fig. 2) show a strik-
ing difference in comparison with the case of
the degenerate Fermi gas. Down to a power
level of p � 3 � 10
4 (Umol/kB � 480 nK),
the trap holds almost all particles and con-
tains up to 20 times more atoms than would
be possible for fermions. Hence, the trapped
sample can no longer be an atomic Fermi
gas. The trap is filled with bosonic mole-
cules in the weakly bound state (28). The
lifetime of the molecular ensemble, for
which we measure about 20 s at a fixed trap
depth of Umol/kB � 560 nK, exceeds the
time scale of elastic collisions (�100 �s)
by several orders of magnitude. This
highlights the fact that the molecular
cloud exists in a thermal equilibrium state.

The formation of molecules during the
evaporative cooling process can be understood

in terms of a chemical atom-molecule equilib-
rium (29, 30). Exothermal three-body recombi-
nation processes compete with dissociation by
endothermal two-body processes. When the gas
is cooled down, the equilibrium shifts to an
increasing fraction of molecules. Because at-
om-atom, atom-molecule, and molecule-mole-
cule collisions have comparable cross sections
near the resonance (16), evaporation continues
at about the same speed. In the final stage of
cooling, all relevant energies, such as the ther-
mal energy kBT and the trap depths Uat and
Umol, are far below the binding energy �2/
(ma2), so that in chemical equilibrium one is
left with an essentially pure sample of mole-
cules. The fact that the binding energy of �2
�K at our optimized magnetic field of 764 G is
a few times larger than the final trap depth
(inset, Fig. 1) fits well into this picture.

The observation that a large number of
Nmol � 1.5 � 105 molecules is confined in our
very shallow, only 480 nK deep trap under
thermal equilibrium conditions already shows
that a molecular BEC is formed. The trap offers
about 10 times more quantum states for dimers
as compared to the case of atoms discussed
before (31). Because we observe a factor of
�20 more particles than for the degenerate
atomic Fermi gas, the molecular gas is neces-
sarily quantum degenerate. Because of the high
elastic collision rates, which stay well above
103 s
1 even for very shallow traps, the sample
is also thermalized. The temperature then is a
small fraction of the trap depth. According to
standard evaporation theory (27), we can typi-
cally assume T � 0.1 Umol/kB � 50 nK. This is
well below the critical temperature for BEC, for

which we calculate TC � � � kB

1

(Nmol/1.202)1/3 � 280 nK. Because the con-
densate fraction is given by 1 
 (T/TC)3, these
arguments show that the molecular BEC must
be almost pure.

To investigate the molecular condensate, we
have studied a characteristic collective excita-
tion mode (32, 33). For a cigar-shaped sample
in the Thomas-Fermi limit, well fulfilled in our
experiment, such a quadrupolar mode is expect-
ed at a frequency of 	5/2 �z � 2� � 33.8 Hz.
We perform our measurement at p � 3.5 �
10
4 (Umol/kB � 560 nK) with a trapped sam-
ple of �105 molecules. We apply a sinusoidal
modulation to the magnetic field with an am-
plitude of 3.5 G to modulate the molecular
scattering length am � a (16) with a relative
amplitude of about 5%. After 2 s of continuous
excitation, we measure the remaining number
of particles in the trap. The resonance manifests
itself in a sharp dip in the number of particles
(Fig. 3). The observed resonance frequency of
33.6 Hz is in remarkable agreement with the
expectation. We point out that a noncondensed
gas deep in the hydrodynamic regime would
show a similar frequency of 33.2 Hz (34), but
thermalization in our shallow trap excludes this
scenario (35). The measured collective excita-
tion frequency rules out a gas in the collision-
less regime, which would show its resonant loss
at 2�z � 2� � 42.8 Hz, and thus again con-
firms the thermalization of the sample. The
observed narrow resonance width of �1 Hz
shows a very low damping rate and is consis-
tent with an almost pure BEC (33, 36).

An essential property of a BEC is its mean
field potential UMF � 4�nam �2/(2m) resulting

Fig. 2. Evaporative
cooling results ob-
tained on both sides
of the Feshbach reso-
nance. We measure
the number of trapped
particles (the number
of all atoms that are
free or bound in long-
range dimers) as a
function of the rela-
tive laser power p at
the end of an expo-
nential evaporation
ramp p(t) � exp(
t /
230 ms). The trap
depth for atoms is
Uat/kB � p � 800 �K,
whereas for molecules
it is two times larger
(Umol � 2Uat). The
measurements taken at 1176 G with negative scattering length a � 
3500a0 (open circles) show
the spilling of a degenerate Fermi gas when the trap depth reaches the Fermi energy. The solid line
shows the maximum number of trapped atoms in a two-component Fermi gas according to a
numerical calculation of the number of quantum states in our trap. The dashed lines indicate the
corresponding uncertainty range due to the limited knowledge of the experimental parameters. The
measurements at 764 G with positive scattering length a � 
3500a0 (solid circles) exhibit a striking
increase of the trapped particle number at low values of p, which is due to the formation of molecules.
The inset shows the optimum production of molecules in the magnetic field range where a weakly
bound level exists. Here the total number of particles is measured for various magnetic fields at a fixed
final ramp power p � 2.8 � 10
4 (Umol/kB � 440 nK).
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from s-wave interactions; here n denotes the
molecular density. For our molecular BEC with
large positive am, the mean field is repulsive
and thus stabilizes the BEC against collapse and
decay. In a trap of finite depth, however, the
mean field repulsion limits the maximum num-
ber of trappable molecules. When the chemical
potential � reaches the trap depth, a similar
spilling effect is expected as we see for the
Fermi gas, but for weaker traps. The decrease of
our molecular signal (Fig. 2) below p � 3 �
10
4 (Umol/kB � 480 nK) may be explained by
such a spilling effect.

We used spilling in a controlled way to
demonstrate the mean field of the molecular
BEC and to investigate its dependence on the
magnetic field. After producing the BEC at a
magnetic field of B1 � 772 G and p � 3.5 �
10
4 (Umol/kB � 560 nK), we adiabatically tilt
the vertical trapping potential by application of
a magnetic field gradient B� that is smoothly
ramped up within 50 ms. The number of re-
maining particles as a function of the applied
field gradient (Fig. 4) shows the loss of mole-
cules resulting from the reduced trap depth.
When the magnetic field is kept at the evapo-
ration field of B1 � 772 G, where a � 4100a0

(23), even very weak gradients lead to loss
(open circles in Fig. 4). This indicates that the
chemical potential is close to the potential
depth, so that the trap is full. The chemical
potential can be lowered by reducing the scat-
tering length. For this purpose, we ramp the
magnetic field to a smaller value. A spilling
curve taken at B2 � 731 G, where a � 2200a0

(23), indeed shows a markedly different behavior
(solid circles in Fig. 4). Here small gradients do
not lead to any loss and the curve thus shows a flat
top. For gradients  B� exceeding 0.65 G/cm,
molecules get spilled until everything is lost at
 B� � 1.3 G/cm. The sharp onset of the spilling
confirms the essentially pure nature of the BEC.

A comparison of the two spilling curves in
Fig. 4 provides us with information on the ratio
of the scattering lengths am at the two magnetic
fields B1 and B2. In the spilling region above
 B� � 0.65 G/cm, the trap is full in both cases,

and the trapped particle number is inversely
proportional to am. Comparing the two spilling
curves in that region, we obtain a scattering
length ratio of am(B1)/am(B2) � 2.4(2). This
factor is indeed close to the factor of 1.9 (23)
expected from the proportionality of atomic and
molecular scattering lengths am � a (16) and
the dependence of a shown in Fig. 1. This
observation demonstrates the mean field of the
molecular BEC together with its magnetic tun-
ability.

The ability to control interactions in a Bose
condensed ensemble of paired fermionic atoms
has many exciting prospects (37, 38). It opens
up unique ways to cool a fermionic gas far
below the Fermi temperature (39) and to study
different regimes of superfluidity (40–43). The
experimental exploration of the strongly inter-
acting crossover regime between a BEC-like
and a Cooper-paired phase is a particular chal-
lenge and promises more insight into the phys-
ical mechanisms underlying superconductivity.
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Fig. 3. Resonance of a collective excitation
mode at 	5/2 �z. The oscillation is excited by
magnetic modulation of the molecular BEC
mean field. The solid curve shows a Lorentzian
fit to the data.

Fig. 4. Controlled spilling of the BEC by appli-
cation of a magnetic field gradient B�. This
variable gradient is applied in addition to the
constant gradient of 1.1 G/cm that we use for
gravity compensation. The data are taken at
the two different magnetic fields B1 � 772 G
(open circles) and B2 � 731 G (solid circles),
where the mean field of the BEC is different by
a factor of �2.
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Observation of the Pairing Gap in
a Strongly Interacting Fermi Gas
C. Chin,1 M. Bartenstein,1 A. Altmeyer,1 S. Riedl,1 S. Jochim,1

J. Hecker Denschlag,1 R. Grimm1,2*

We studied fermionic pairing in an ultracold two-component gas of 6Li atoms
by observing an energy gap in the radio-frequency excitation spectra. With
control of the two-body interactions through a Feshbach resonance, we dem-
onstrated the dependence of the pairing gap on coupling strength, temperature,
and Fermi energy. The appearance of an energy gap with moderate evaporative
cooling suggests that our full evaporation brought the strongly interacting
system deep into a superfluid state.

The spectroscopic observation of a pairing gap
in the 1950s marked an important experimental
breakthrough in research on superconductivity
(1). The gap measurements provided a key to
investigating the paired nature of the particles
responsible for the frictionless current in metals
at very low temperatures. The ground-breaking
Bardeen-Cooper-Schrieffer (BCS) theory, de-
veloped at about the same time, showed that
two electrons in the degenerate Fermi sea can
be coupled by an effectively attractive interac-
tion and will form a delocalized, composite
particle with bosonic character. BCS theory
predicted that the gap in the low-temperature
limit is proportional to the critical temperature
Tc for the phase transition, in agreement with
the experimental measurements. In general, the
physics of superconductivity and superfluidity
go far beyond the weak-coupling limit of BCS
theory. In the limit of strong coupling, paired
fermions form localized bosons, and the system
can undergo Bose-Einstein condensation
(BEC). The BCS limit and the BEC limit are
connected by a smooth BCS-BEC crossover,
which has been a subject of great theoretical
interest for more than three decades (2–5). The
formation of pairs generally represents a key
ingredient of superfluidity in fermionic sys-

tems, and the gap energy is a central quantity to
characterize the pairing regime.

The rapid progress in experiments with
ultracold degenerate Fermi gases (6) has
opened up a unique testing ground to study
phenomena related to pairing and superfluid-
ity at densities typically a billion times below
the ones in usual condensed-matter systems.
In cold-atom experiments, magnetically
tuned scattering resonances (Feshbach reso-
nances) serve as a powerful tool to control the
two-body coupling strength in the gas (7). On
the basis of such a resonance, a strongly
interacting degenerate Fermi gas was recently
realized (8). A major breakthrough then fol-
lowed, with the creation of Bose-Einstein
condensates of molecular dimers composed
of fermionic atoms (9–13), which corre-
sponds to the realization of a BEC-type su-
perfluid in the strong coupling limit. By vari-
ation of the coupling strength, subsequent
experiments (12, 14–18) began to explore the
crossover to a BCS-type system. This BEC-
BCS crossover is closely linked to the pre-
dicted “resonance superfluidity” (19–22) and
a “universal” behavior of a Fermi gas with
resonant interactions (23, 24). The observa-
tion of the condensation of atom pairs (15,
16) and measurements of collective oscilla-
tions (17, 18) support the expected superflu-
idity at presently attainable temperatures in
Fermi gases with resonant interactions.

We prepared our ultracold gas of fermionic
6Li atoms in a balanced spin-mixture of the two
lowest sub-states |1� and |2� of the electronic 1s2

2s ground state, employing methods of laser

cooling and trapping and subsequent evapora-
tive cooling (9). A magnetic field B in the range
between 650 to 950 G was applied for Feshbach
tuning through a broad resonance centered at
the field B0 � 830 G. In this high-field range,
the three lowest atomic levels form a triplet of
states |1�, |2�, and |3�, essentially differing by
the orientation of the nuclear spin (mI � 1, 0,
�1, where mI is the nuclear magnetic quantum
number). In the resonance region with B � B0,
the s-wave scattering length a for collisions
between atoms in states |1� and |2� is positive.
Here, two-body physics supports a weakly
bound molecular state with a binding energy
Eb � �2/(ma2), where � is Planck’s constant h
divided by 2� and m is the atomic mass. Mol-
ecules formed in this state can undergo BEC
(9–13). At B � B0, the two-body interaction is
resonant (a3�	), corresponding to a vanish-
ing binding energy of the molecular state. Be-
yond the resonance (B 
 B0), the scattering
length is negative (a � 0), which leads to an
effective attraction. Here, two-body physics
does not support a weakly bound molecular
level, and pairing can only occur because of
many-body effects.

Our experimental approach (9, 14) facili-
tated preparation of the quantum gas in var-
ious regimes with controlled temperature,
Fermi energy, and interaction strength. We
performed evaporative cooling under condi-
tions (25) in which an essentially pure mo-
lecular Bose-Einstein condensate containing
N � 4 � 105 paired atoms could be created as
a starting point for the experiments. The final
laser power of the evaporation ramp allowed
us to vary the temperature T. The Fermi
energy EF (Fermi temperature TF � EF/kB,
with Boltzmann’s constant kB) was controlled
by a recompression of the gas, which we
performed by increasing the trap laser power
after the cooling process (25). We then varied
the interaction strength by slowly changing
the magnetic field to the desired final value.
The adiabatic changes applied to the gas after
evaporative cooling proceeded with con-
served entropy (14). Lacking a reliable meth-
od to determine the temperature T of a deeply
degenerate, strongly interacting Fermi gas in
a direct way, we characterized the system by
the temperature T� measured after an isen-
tropic conversion into the BEC limit (25). For
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a deeply degenerate Fermi gas, the true tem-
perature T is substantially below our observ-
able T� (25, 26), but a general theory for this
relation is not yet available.

Radio-frequency (RF) spectroscopy has
been introduced as a powerful tool to study
interaction effects in ultracold Fermi gases (27–
29). Molecular binding energies have been
measured for 40K atoms (29), for which the
potential of the method to observe fermionic
pairing gap energies has also been pointed out.
RF spectroscopy has been applied to 6Li atoms
to study interaction effects up to magnetic fields
of 750 G (28). One important observation was
the absence of mean-field shifts in the strongly
interacting regime. This effect can be attributed
to the fact that, in the relevant magnetic-field
range, all s-wave scattering processes between
6Li atoms in the states |1�, |2�, and |3� are
simultaneously unitarity-limited. This property
of 6Li is very favorable for RF spectroscopy
because it suppresses shifts and broadening by
mean-field effects.

We drove RF transitions from state |2� to the
empty state |3� at �80 MHz and monitored the
loss of atoms in state |2� after weak excitation
by a 1-s RF pulse, using state-selective absorp-
tion imaging (14). Our experiment was opti-
mized to obtain a resolution of �100 Hz, cor-
responding to an intrinsic sensitivity to interac-
tion effects on the scale of �5 nK, which is
more than two orders of magnitude below the
typical Fermi temperatures.

We recorded RF spectra for different de-
grees of cooling and in various coupling re-
gimes (Fig. 1). We realized the molecular re-
gime at B � 720 G (a � �120 nm). For the
resonance region, we examined two different
magnetic fields, because the precise resonance
location B0 is not exactly known. Our two
values B � 822 G (16) and 837 G (13, 18) may
be considered as lower and upper bounds for
B0. We also studied the regime beyond the
resonance with a large negative scattering
length at B � 875 G (a � �600 nm). Spectra
taken in a “hot” thermal sample at T � 6TF

(where TF � 15 �K) show the narrow atomic
|2�3 |3� transition line (Fig. 1, top) and serve
as a frequency reference. We present our spec-
tra as a function of the RF offset with respect to
the bare atomic transition frequency.

Spectral signatures of pairing have been
theoretically considered (30–34 ). A clear
signature of the pairing process is the emer-
gence of a double-peak structure in the
spectral response as a result of the coexist-
ence of unpaired and paired atoms. The
pair-related peak is located at a higher fre-
quency than the unpaired-atoms signal, be-
cause energy is required for pair breaking.
For understanding of the spectra, both the
homogeneous line shape of the pair signal
(31, 33) and the inhomogeneous line broad-
ening due to the density distribution in the
harmonic trap need to be taken into account

(34 ). As an effect of inhomogeneity, fer-
mionic pairing due to many-body effects
takes place predominantly in the central
high-density region of the trap, and un-
paired atoms mostly populate the outer re-
gion of the trap where the density is low
(34–36 ). The spectral component corre-
sponding to the pairs thus shows a large
inhomogeneous broadening in addition to
the homogeneous width of the pair-break-
ing signal. For the unpaired atoms, the
homogeneous line is narrow and the effects
of inhomogeneity and mean-field shifts are
negligible. These arguments explain why
the RF spectra in general show a relatively
sharp peak for the unpaired atoms together
with a broader peak attributed to the pairs.

We observed clear double-peak structures
already at T�/TF � 0.5, which we obtained
with moderate evaporative cooling down to a
laser power of P � 200 mW (Fig. 1, middle,
TF � 3.4 �K). In the molecular regime B �
720 G, the sharp atomic peak was well sep-
arated from the broad dissociation signal
(29), which showed a molecular binding en-
ergy of Eb � h � 130 kHz � kB � 6.2 �K.
For B 3 B0, the peaks began to overlap. In
the resonance region [822 G and 837 G (Fig.
1)], we still observed a relatively narrow
atomic peak at the original position together
with a pair signal. For magnetic fields beyond
the resonance, we could resolve the double-
peak structure for fields up to �900 G.

For T�/TF � 0.2, realized with a deep
evaporative cooling ramp down to an optical

trap power of P � 3.8 mW, we observed the
disappearance of the narrow atomic peak in
the RF spectra (Fig. 1, bottom, TF � 1.2 �K).
This shows that essentially all atoms were
paired. In the BEC limit (720 G), the disso-
ciation line shape is identical to the one
observed in the trap at higher temperature and
Fermi energy. Here the localized pairs are
molecules with a size much smaller than the
mean interparticle spacing, and the dissocia-
tion signal is independent of the density. In
the resonance region [822 G and 837 G (Fig.
1)], the pairing signal shows a clear depen-
dence on density (Fermi energy), which be-
comes even more pronounced beyond the
resonance (875 G). We attribute this to the
fact that the size of the pairs becomes com-
parable to or larger than the interparticle
spacing. In addition, the narrow width of the
pair signal in this regime (Fig. 1, bottom, B �
875 G) indicates a pair localization in mo-
mentum space to well below the Fermi mo-
mentum �kF � �2mEF and thus a pair size
exceeding the interparticle spacing.

To quantitatively investigate the crossover
from the two-body molecular regime to the
fermionic many-body regime, we measured the
pairing energy in a range between 720 and 905
G. The measurements were performed after
deep evaporative cooling (T �/TF � 0.2) for two
different Fermi temperatures, TF � 1.2 �K and
TF � 3.6 �K (Fig. 2). As an effective pairing
gap, we defined �� as the frequency difference
between the pair-signal maximum and the bare
atomic resonance. In the BEC limit, the effec-

Fig. 1. RF spectra for various magnetic fields and different degrees of evaporative cooling. The RF
offset (kB � 1 �K � h � 20.8 kHz) is given relative to the atomic transition |2� 3 |3�.
The molecular limit is realized for B � 720 G (first column). The resonance regime is studied for
B � 822 G and B � 837 G (second and third columns). The data at 875 G (fourth column) explore
the crossover on the BCS side. Top row, signals of unpaired atoms at T� � 6TF (TF � 15 �K); middle
row, signals for a mixture of unpaired and paired atoms at T� � 0.5TF (TF � 3.4 �K); bottom row,
signals for paired atoms at T� � 0.2TF (TF � 1.2 �K). The true temperature T of the atomic Fermi
gas is below the temperature T�, which we measured in the BEC limit. The solid lines are introduced
to guide the eye.
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tive pairing gap �� simply reflects the molec-
ular binding energy Eb (Fig. 2, solid line) (25).
With an increasing magnetic field, in the BEC-
BCS crossover, �� shows an increasing devia-
tion from this low-density molecular limit and
smoothly evolves into a density-dependent
many-body regime where h�� � EF.

A comparison of the pairing energies at the
two different Fermi energies (Fig. 2, inset) pro-
vides further insight into the nature of the pairs.
In the BEC limit, �� is solely determined by Eb

and thus does not depend on EF. In the universal
regime on resonance, EF is the only energy scale,
and we indeed observed the effective pairing gap
�� to increase linearly with the Fermi energy.
We found a corresponding relation h�� � 0.2
EF. Beyond the resonance, where the system is
expected to change from a resonant to a BCS-
type behavior, �� was found to depend more
strongly on the Fermi energy and the observed
gap ratio further increased. We interpret this in
terms of the increasing BCS character of pairing,
for which an exponential dependence h�� /EF �
exp(��/2kF�a�) is expected.

In a further series of measurements (Fig.
3), we applied a controlled heating method to
study the temperature dependence of the gap
in a way that allowed us to keep all other
parameters constant. After production of a
pure molecular Bose-Einstein condensate (T�
� 0.2TF) in the usual way, we adiabatically
changed the conditions to B � 837 G and
TF � 1.2 �K. We then increased the trap
laser power by a factor of nine (TF increased
to 2.5 �K), using exponential ramps of dif-
ferent durations. For fast ramps, this recom-
pression was nonadiabatic and increased the
entropy. By variation of the ramp time, we
explored a range from our lowest tempera-
tures up to T�/TF � 0.8. The emergence of the
gap with decreasing temperature is clearly
visible in the RF spectra (Fig. 3). The marked
increase of �� for decreasing temperature is

in good agreement with theoretical expecta-
tions for the pairing gap energy (5).

The conditions of our experiment were
theoretically analyzed for the case of resonant
two-body interaction (34). The calculated RF
spectra are in agreement with our experimen-
tal results and demonstrate how a double-
peak structure emerges as the gas is cooled
below T/TF � 0.5 and how the atomic peak
disappears with further decreasing tempera-
ture. In particular, the work clarifies the role
of the “pseudo-gap” regime (5, 22), in which
pairs are formed before superfluidity is
reached. According to the calculated spectra,
the atomic peak disappears at temperatures
well below the critical temperature for the
phase-transition to a superfluid. A recent the-
oretical study of the BCS-BEC crossover at
finite temperature (36) predicted the phase-
transition to a superfluid to occur at a tem-
perature that on resonance is only �30%
below the point where pair formation sets in.

We have observed fermionic pairing already
after moderate evaporative cooling. With much
deeper cooling applied, the unpaired atom sig-
nal disappeared from our spectra. This obser-
vation shows that pairing takes place even in
the outer region of the trapped gas where the
density and the local Fermi energy are low. Our
results thus strongly suggest that a resonance
superfluid is formed in the central region of the
trap (34). Together with the observations of res-
onance condensation of fermionic pairs (15, 16)
and weak damping of collective excitations (17,

18), our observation of the pairing gap provides a
strong case for superfluidity in experiments on
resonantly interacting Fermi gases.
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Fig. 2. Measurements of the effective pairing
gap �� as a function of the magnetic field B
for deep evaporative cooling and two differ-
ent Fermi temperatures, TF � 1.2 �K (solid
symbols) and 3.6 �K (open symbols). The
solid line shows �� for the low-density limit,
where it is essentially given by the molecular
binding energy (25 ). Inset: The ratio of the
effective pairing gaps measured at the two
different Fermi energies.

Fig. 3. RF spectra measured at B � 837 G and
TF � 2.5 �K for different temperatures T� adjust-
ed by controlled heating. The solid lines are fits
to guide the eye, using a Lorentzian curve for the
atom peak and a Gaussian curve for the pair
signal. The vertical dotted line marks the atomic
transition, and the arrows indicate the effective
pairing gap ��.
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Collective Excitations of a Degenerate Gas at the BEC-BCS Crossover
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2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

(Received 29 March 2004; published 19 May 2004)

We study collective excitation modes of a fermionic gas of 6Li atoms in the BEC-BCS crossover
regime. While measurements of the axial compression mode in the cigar-shaped trap close to a
Feshbach resonance confirm theoretical expectations, the radial compression mode shows surprising
features. In the strongly interacting molecular BEC regime, we observe a negative frequency shift with
increasing coupling strength. In the regime of a strongly interacting Fermi gas, an abrupt change in the
collective excitation frequency occurs, which may be a signature for a transition from a superfluid to a
collisionless phase.

DOI: 10.1103/PhysRevLett.92.203201 PACS numbers: 34.50.–s, 05.30.Fk, 32.80.Pj, 39.25.+k

The crossover from a Bose-Einstein condensate (BEC)
to a Bardeen-Cooper-Schrieffer (BCS) superfluid has for
decades attracted considerable attention in many-body
theory [1]. Bose-Einstein condensates of molecules
formed by fermionic atoms of 6Li and 40K [2–5] provide
a unique system to experimentally explore this BEC-BCS
crossover. In such ultracold gases magnetically tuned
scattering resonances, known as Feshbach resonances,
allow one to control and vary the interaction strength
over a very broad range. Recent experiments have entered
the crossover regime and yield results on the interaction
strength by measuring the cloud size [6] and expansion
energy [5]. Moreover, two experiments [7,8] have dem-
onstrated the condensed nature of fermionic atom pairs in
the crossover regime.

Important questions are related to superfluidity in the
crossover regime [9].When a molecular BEC is converted
into an ultracold Fermi gas [6], one can expect ultralow
temperatures and superfluidity to extend far into the
Fermi gas regime [10]. Detection tools to probe super-
fluidity in this regime are therefore requested. The inves-
tigation of collective excitation modes [11] is well
established as a powerful method to gain insight into
the physical behavior of ultracold quantum gases in dif-
ferent regimes of Bose [12] and Fermi gases [13]. A
recent paper [14] points out an interesting dependence
of the collective frequencies in the BEC-BCS crossover of
a superfluid Fermi gas. Superfluidity implies a hydrody-
namic behavior which can cause substantial changes in
the excitation spectrum and in general very low damping
rates. However, in the crossover regime the strong inter-
action between the particles also results in hydrodynamic
behavior in the normal, nonsuperfluid phase. Therefore
the interpretation of collective modes in the BEC-BCS
crossover in terms of superfluidity is not straightforward
and needs careful investigation to identify the different
regimes.

In this Letter, we report on measurements of funda-
mental collective excitation modes in the BEC-BCS
crossover for various coupling strengths in the low-

temperature limit. In Ref. [2], we have already presented
a first measurement of the collective excitation of a mo-
lecular BEC in the limit of strong coupling. As described
previously [2,6], we work with a spin mixture of 6Li
atoms in the two lowest internal states. For exploring
different interaction regimes, we use a broad Feshbach
resonance, the position of which we determined to
837(5) G [15]. The different interaction regimes can be
characterized by the coupling parameter 1=�kFa�, where
a represents the atom-atom scattering length and kF is the
Fermi wave number. Well below the Feshbach resonance
(B< 700 G), we can realize the molecular BEC regime
with 1=�kFa� � 1. On resonance, we obtain the unitarity-
limited regime of a universal fermionic quantum gas with
1=�kFa� � 0 [16]. An interacting Fermi gas of atoms is
realized beyond the resonance where 1=�kFa�< 0.

The starting point of our experiments is a cigar-shaped
molecular BEC produced by evaporative cooling in an
optical dipole trap in the same way as described in
Ref. [6]. Radially the sample is confined by a 35-mW
laser beam (wavelength 1030 nm) focused to a waist
of 25 �m. The radial vibration frequency is !r � 2
�
750 Hz. The axial vibration frequency is !z�2
�
�601B=kG�11�1=2 Hz, where the predominant contribu-
tion stems from magnetic confinement caused by the
curvature of the Feshbach tuning field B, and a very small
additional contribution arises from the weak axial optical
trapping force.

For exploring collective excitations in the BEC-BCS
crossover regime, we ramp the magnetic field from the
evaporation field of 764 G, where the molecular BEC is
formed, to fields between 676 and 1250 G within 1 s. In
previous work [6], we have shown that the conversion to
an atomic Fermi gas proceeds in an adiabatic and re-
versible way, i.e., without increase of entropy. From the
condensate fraction in the BEC limit, for which we
measure more than 90% [6], we can give upper bounds
for the temperature in both the BEC limit and the non-
interacting Fermi gas limit of T < 0:46TBEC and T <
0:03TF [10], respectively. Here TBEC (TF) denotes the
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critical temperature (Fermi temperature). With a total
number of atoms N � 4� 105 (free atoms and atoms
bound to molecules) and a geometrically averaged trap
frequency at 837 G of �!!��!2

r!z�
1=3�2
�230Hz, we

calculate a Fermi energy EF � �h2k2F=2m � �h �!!�3N�1=3 �
kB � 1:2 �K for a noninteracting cloud, where m is the
mass of an atom and kB is Boltzmann’s constant.

To excite the axial compression mode at a given mag-
netic field, we increase the optical confinement in a 10-ms
time interval by a factor of 1.5. The laser power is varied
slow enough for the radial motion to follow adiabatically,
but fast enough to induce axial oscillations. The relative
amplitude of the resulting axial oscillation is kept small,
typically �10%. We observe the oscillation by in situ
imaging of the cloud [6] after a variable hold time t at
constant trap parameters. To determine the collective
oscillation frequency �z and the damping rate �z, we fit
a damped harmonic oscillation z�t�� z0�Azexp�	�zt��
sin��zt��z� to the observed time evolution of the cloud
size, where z0, Az, and �z are additional fit parameters.

The measured oscillation frequencies and damping
rates are shown in Fig. 1. The data are normalized to
the axial trap frequency !z, as determined by excitation
of the axial sloshing mode. We point out that the axial
confinement is harmonic because of the dominant mag-
netic trapping, and we can measure !z with a 10	3

precision. In the BEC limit, the measured collective fre-

quencies are in agreement with the expected �z=!z ���������
5=2

p
� 1:581 [11,17]. With increasing magnetic field,

we observe a decrease in the collective excitation fre-
quency until a minimum is reached at about 900 G, i.e.,
in the regime of a strongly interacting Fermi gas where
1=�kFa� � 	0:5. With further increasing magnetic field
and decreasing interaction strength, we then observe a
gradual increase of the collective frequency toward
�z=!z � 2. The latter value is expected for a collision-
less degenerate Fermi gas, where the elastic collision rate
is strongly reduced by Pauli blocking. Because of the
large damping rates in the transition regime between
hydrodynamic and collisionless behavior, the excitation
frequencies cannot be determined with high accuracy.
The observed axial damping is consistent with a gradual
transition between these two regimes [18].

The insets of Fig. 1 show a zoom-in of the data for the
resonance region between 750 and 900 G. The collective
frequency that we measure on resonance exhibits the
small 2% down-shift expected for the unitarity limit
(�z=!z �

�����������
12=5

p
� 1:549) [14]. For the damping rate,

we observe a clear minimum at a magnetic field of
815(10) G, which is close to the resonance position. It is
interesting to note that this damping minimum coincides
with the recent observation of a maximum fraction of
condensed fermionic atom pairs in Ref. [18]. For the
minimum damping rate, we obtain the very low value
of �z=!z � 0:0015, which corresponds to a 1=e damping
time of �5 s.

To excite the radial compression mode, we reduce the
optical confinement for 50 �s, which is short compared
with the radial oscillation period of 1.3 ms. In this short
interval the cloud slightly expands radially, and then
begins to oscillate when the trap is switched back to the
initial laser power. The relative oscillation amplitude is
�10%. To detect the radial oscillation, we turn off the
trapping laser after various delay times t and measure the
radial size r�t� after 1.5 ms of expansion. The measured
radial size r�t� reflects the oscillating release energy.
From the corresponding experimental data, we extract
the excitation frequency �r and damping �r by fitting
the radial cloud size to r�t�� r0�Arexp�	�rt�sin��rt�
�r�, where r0, Ar, and �r are additional fit parameters.
Typical radial oscillation curves are shown in Fig. 2.

The magnetic-field dependence of the radial excitation
frequency �r and the damping rate �r is shown in Fig. 3.
Here we normalize the data to the trap frequency !r,
which we obtain by measuring the radial sloshing mode
at the given magnetic field [19]. This normalization sup-
presses anharmonicity effects in the measured compres-
sion mode frequency to below 3% [21]. For low magnetic
fields, the measured frequency ratio approaches the BEC
limit [11,22] (�r=!r � 2). With increasing magnetic
field, i.e., increasing interaction strength, we observe a
large down-shift of the frequency. On resonance (B �
837 G), we observe �r=!r � 1:62�2�. Above resonance,
i.e., with the gas entering the strongly interacting Fermi

FIG. 1 (color online). Measured frequency �z and damping
rate �z of the axial compression mode, normalized to the trap
frequency !z. In the upper graph, the dashed lines indicate
the BEC limit of �z=!z �

��������
5=2

p
and the collisionless Fermi

gas limit with �z=!z � 2. The insets show the data in the
resonance region. Here the vertical dotted line indicates the
resonance position at 837(5) G. The star marks the theoreti-
cal prediction of �z=!z �

�����������
12=5

p
in the unitarity limit. In

the lower inset, the dotted line is a third-order polynomial fit
to the data.
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gas regime, the oscillation frequency further decreases
until a maximum shift of almost 30% [�r=!r � 1:42�5�]
is reached at B � 890 G . With further increasing mag-
netic field, i.e., decreasing interaction strength, an abrupt
change to �r=!r � 2 is observed. For B > 920 G our
data are consistent with a Fermi gas in the collisionless
regime. The damping of the radial compression mode is
small in the BEC limit and reaches a minimum close to
the unitarity regime. At B � 910 G, where the abrupt
change occurs, we observe very strong damping (see
also middle trace in Fig. 2).

We have performed further experiments to check our
data on the radial compression mode for systematic ef-
fects. We have repeated the measurements after recom-
pressing the trap to 9 times higher trap laser power

(!r � 2:4 kHz). The corresponding data confirm all our
observations in the shallower trap. In particular, the
negative frequency shift and the sudden change in the
collective frequency show up in essentially the same
way. The recompressed trap also allows us to eliminate
a small residual anharmonicity shift from our measure-
ment of the collective frequency at 837 G, and we obtain
�r=!r � 1:67�3� for the harmonic trap limit. We have
also checked that the frequency of the compression mode
in the resonance region does not depend on the way we
prepare the ultracold gas. Direct evaporation at a fixed
magnetic field, without starting from a molecular BEC,
leads to the same collective frequency. Preliminary mea-
surements at higher temperatures, however, show a trend
towards smaller frequency shifts in the radial compres-
sion mode and to smoother changes of the collective
frequency.

Our measurements on the radial compression mode
show three surprises. The corresponding features, which
we discuss in the following, cannot be explained on the
basis of available theoretical models and suggest new
physics in the BEC-BCS crossover regime.

Surprise one.—For a strongly interacting BEC,
Ref. [23] has predicted up-shifts of the collective fre-
quencies with increasing coupling strength based on be-
yond mean-field theory corrections [24]. Applying these
predictions to a molecular BEC in the crossover regime,
the collective excitation frequencies should follow
��i=�i � ci

������������
nma3m

p
(i � z; r), where nm is the peak mo-

lecular number density and am � 0:6a [25] is the
molecule-molecule scattering length. For our highly elon-
gated trap geometry, the numerical factors are cr �
5cz � 0:727. In contrast to these expectations, we observe
a strong frequency down-shift in the radial direction.
Using the above formula to fit the first four data points,
we obtain a negative coefficient of cr � 	1:2�3�. For the
axial oscillation we obtain cz � 	0:04�5�. Note that a
substantial down-shift in radial direction is observed
even at the low magnetic field of 676 G where the mo-
lecular gas parameter is relatively small (nma3m � 0:001).
Apparently, the beyond mean-field theory of a BEC is not
adequate to describe the transition from a molecular BEC
to a strongly interacting gas in the BEC-BCS crossover.

Surprise two.—The universal character of the strongly
interacting quantum gas on resonance suggests a simple
equation of state for which one expects �z=!z ������������
12=5

p
� 1:549 and �r=!r �

�����������
10=3

p
� 1:826 for the

collective excitation frequencies [14].While our measure-
ments confirm the predicted axial frequency, we obtain a
different frequency in the radial direction of �r=!r �
1:67�3�.

Surprise three.—The abrupt change of the excitation
frequency and the large damping rate are not expected in
a normal degenerate Fermi gas, where the collective ex-
citation frequency is expected to vary smoothly from the
hydrodynamic regime to the collisionless one. Further-
more, for the damping rate of the radial mode in the

FIG. 3 (color online). Measured frequency �r and damping
rate �r of the radial compression mode, normalized to the trap
frequency (sloshing mode frequency) !r. In the upper graph,
the dashed line indicates �r=!r � 2, which corresponds to
both the BEC limit and the collisionless Fermi gas limit. The
vertical dotted line marks the resonance position at 837�5� G.
The star indicates the theoretical expectation of �r=!r ������������
10=3

p
in the unitarity limit. A striking change in the excitation

frequency occurs at �910 G (arrow) and is accompanied by
anomalously strong damping.

FIG. 2 (color online). Oscillations of the radial compression
mode at different magnetic fields in the strongly interacting
Fermi gas regime. The solid lines show fits by damped har-
monic oscillations.
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transition regime, a maximum value of �r=!r � 0:09 is
calculated in Ref. [18]. Our measured damping rate of
�r=!r � 0:5 is clearly inconsistent with this prediction
for the normal (nonsuperfluid) hydrodynamic regime.
However, both the sudden change of the collective fre-
quency and a strong damping are expected for a transition
from the superfluid to the normal phase [26].

In conclusion, our experiments demonstrate that the
collective modes of a degenerate gas in the BEC-BCS
crossover region show a pronounced dependence on the
coupling strength and thus provide valuable information
on the physical behavior of the system. For the axial
compression mode, the frequency shift observed in the
unitarity limit confirms theoretical expectations. How-
ever, the radial compression mode reveals a surprising
behavior. In the strongly interacting BEC regime, the
observed frequency shifts have an opposite sign as com-
pared to expectations from beyond mean-field theory and
the frequency shift on resonance is even larger than
expected. The most striking feature is an abrupt change
of the radial collective frequency in the regime of a
strongly attractive Fermi gas where 1=�kFa� � 	0:5.
The transition is accompanied by very strong damping.
The observation supports an interpretation in terms of a
transition from a hydrodynamic to a collisionless phase.
A superfluid scenario for the hydrodynamic case seems
plausible in view of current theories on resonance super-
fluidity [9] and the very low temperatures provided by the
molecular BEC [10]. A definite answer, however, to the
sensitive question of superfluidity requires further careful
investigations, e.g., on the temperature dependence of the
phase transition.

We warmly thank S. Stringari for stimulating this work
and for many useful discussions. We also thank W. Zwer-
ger and M. Baranov for very useful discussions. We ac-
knowledge support by the Austrian Science Fund (FWF)
within SFB 15 (project part 15) and by the European
Union in the frame of the Cold Molecules TMR Network
under Contract No. HPRN-CT-2002-00290. C. C. thanks
the FWF for financial support.

Note added.—A recent paper by John Thomas’ group
[27] reports on measurements of the radial compression
mode in the resonance region, which show much weaker
frequency shifts than we observe. This apparent discrep-
ancy needs further investigation.
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Chapter 7

Summary and Outlook

Controlling ultracold gases on the quantum level has now become reality
through the work of many theoretical and experimental groups around the
world. In this compilation I have presented a number of experiments where
my collaborators and I have contributed to this development. We have
learned to control bosonic as well as fermionic atoms with respect to their in-
ternal and external degrees of freedom. We can bring ensembles of atoms, be
it a BEC or a degenerate Fermi gas, into their quantum mechanical ground
state. Phase imprinting makes it possible to shape the BEC wavefunction,
and we were able to create solitons, non-linear waves. Using Bragg diffraction
we built various atom interferometers which could be used to map out the
phase distribution on a condensate. Loading a BEC into an optical lattice we
enter the realm of solid state physics. We demonstrated how to populate par-
ticular Bloch states and how to coherently transfer population between the
bands. By accelerating the lattice we observed generalized Bloch-oscillations,
and an accelerator for BEC was constructed. We have learned to control the
interaction between atoms via magnetically and optically tunable Feshbach
resonances. Using these Feshbach resonances or photoassociation we were
able to produce excited and ground state molecules in well defined quantum
states. Further, we managed to produce the first molecular BEC starting
from a Fermi gas of atoms. Controlling the coupling of these fermionic
atoms with the help of a Feshbach resonance, we could explore the BEC-
BCS crossover and an interesting universal regime. Studying collective os-
cillations and performing radio-frequency spectroscopy we could investigate
these regimes and found evidence for pairing of fermions and superfluidity in
a degenerate Fermi gas.

In spite of all the recent developments and exciting achievements, the field
of ultracold atoms is not coming to a halt but appears to progress faster. One
reason for this is that research with ultracold atoms is not confined any longer
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to the field of quantum optics. It contributes already actively to several dis-
ciplines like statistical physics, condensed matter physics, solid state physics,
plasma physics, many-body physics, ultra-cold chemistry, physics of chaos,
metrology, non-linear physics phenomena and quantum information process-
ing. The high degree of control on the quantum level and the versatility of
the cold atom technology allows us to build ‘toy’ model systems to inves-
tigate physics problems from all different physics branches. For example,
cold atoms can be used as a testing ground for fundamental theories or as
quantum simulators for complex physical model systems. Finally, combining
the cold atom know-how with the developed technologies of other fields of
physics could help to solve physics problems for which we long to have deeper
understanding.
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