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Abstract
This thesis reports on the construction of an Erbium-fiber frequency comb. The

laser system consist of a mode-locked Erbium-fiber laser and an Erbium-fiber ampli-
fier. The laser system emits ultrashort light pulses with a duration of 45 fs, a repetition
rate of 100 MHz and an average power of 250 mW. By coupling those pulses into a
highly nonlinear fiber, we try to broaden the spectrum to reach a width of more than
an octave. Additionally, we report on a setup with which we are able to characterize
ultrashort laser pulses.

Furthermore, we present results of the numerical simulation of the nonlinear
Schrödinger equation, which describes the spectral broadening inside the highly non-
linear fiber.
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Zusammenfassung
Im Rahmen dieser Arbeit wird der Aufbau eines Erbium-Faser Freqenzkamms

beschrieben. Das Lasersystem, bestehend aus einem modengekoppelten Erbium-
Faser Laser und einem Erbium-Faser Verstärker, erzeugt Lichtpulse mit einer Dauer
von 45 fs, einer Wiederholfrequenz von 100 MHz und einer Ausgangsleistung von
250 mW. Diese ultrakurzen Lichtpulse werden anschließend in eine hochgradig nicht-
lineare Glasfaser eingekoppelt, in welcher versucht wird das Spektrum auf eine Bre-
ite von über einer Oktave zu erweitern. Zusätzlich wird der Aufbau eines FROG-
Analysators, welcher zur Charakterisierung ultrakurzer Lichtpulse dient, beschrieben.

Weiters wurden im Rahmen dieser Arbeit numerische Simulationen der nichtlin-
earen Schrödingergleichung durchgeführt. Ergebnisse dieser Simulationen, welche die
spektrale Verbreiterung in der hochgradig nichtlinearen Glasfaser beschreiben, werden
präsentiert.
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Chapter 1

Introduction

In the past, spectroscopy experiments have relied on the measurement of wavelength
rather than frequency. The measurement of wavelength with interferometers is funda-
mentally limited by unavoidable wavefront distortions to a few parts in 1010 [Ude02].
To reach higher accuracy a direct measurement of the frequency is desired. The first
approach to measure an absolute optical frequency were the so-called harmonic fre-
quency chains. Those use a well defined microwave frequency (Cs-clock transition),
which is transfered into the optical frequency range by generating higher harmonics.
This known frequency can then be compared with the unknown optical frequency. The
drawbacks of this method are clearly the huge technical challenge, the cost and the
fact that one specific frequency chain has to be designed for every frequency that one
desires to measure. In an impressive effort Schnatz et al. used this method to measure
the 40 Ca 3P1 −

1 S 0 transition and reached a relative standard uncertainty of less than
10−12 [Sch96].

A groundbreaking development was the use of a mode-locked laser for the mea-
surement of optical frequencies [Rei99]. A mode-locked laser emits a pulse train with
a fixed repetition rate f rep as shown in Fig. 1.1. If one looks at the pulse train in the
frequency domain, which is connected to the time domain by the Fourier transform,
this corresponds to a comb of equally spaced delta functions. The absolute frequency
of all comb lines is well defined by two radio frequencies, the repetition rate f rep and
the carrier-envelope offset (CEO) frequency f CEO, which gives the offset of the first
comb line to zero. The repetition rate can easily be measured by monitoring the pulse
train, for example with a fast photodetector. The measurement and the control of the
CEO frequency is less straight forward. In 1997 Theodor W. Hänsch wrote a proposal
for a universal optical frequency comb synthesizer, in which he describes the tech-
nique of the f-2f interferometer to measure the f CEO [Hän06]. He partly received the
nobel price in 2005 for this invention. The requirement for the f-2f interferometer is a
comb spectrum that spans at least an optical octave, thus a factor of two in frequency.
The principle is shown in Fig. 1.2. By frequency doubling light from the lower fre-
quency end of the spectrum in a nonlinear crystal and measuring the heterodyne radio
frequency beat with the higher frequency end of the spectrum one gets exactly the
offset frequency f CEO. The first experimental realization was done by Diddams et al.
[Did00].
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Figure 1.1: Top: The pulse train emitted by the mode-locked laser in the time domain. The
pulses are separated by T rep. The relative phase between the envelope and the electric field is
given by ∆φ = 2π f CEO

f rep
. Bottom: The Fourier transform of the field in time domain leads to the

frequency comb. The comb is well defined by the two radio frequencies f rep and f CEO.

To measure an optical frequency with the frequency comb one just superimposes
the comb light with the unknown laser light on a photo detector and measures the beat
signal. One will observe the difference frequency between the laser frequency and the
closest comb-line.

The first frequency combs have been realized by using mode-locked Ti:sapphire
lasers [Ude99]. The output spectrum of such a laser typically spans up to 45 THz and
is centered around 380 THz. To achieve an octave-spanning continuum, a so-called
supercontinuum, the nonlinear spectral broadening in a microstructured silica fiber is
usually used [Ran00].

In the early nineties also mode-locked fiber lasers were developed [Tam93]. In
contrast to the bulky nature of mode-locked Ti:sapphire laser, fiber lasers have the
advantages of less critical alignment, lower cost and more stable long term operation.
But in terms of optical phase noise and output power, the Ti:sapphire laser used to be
the better choice. More recently it has been shown that mode-locked fiber lasers can
also compete in those areas. Schibli et al. have reached an average output power of
more than 10 W and a relative linewidth in the submillihertz region with an Ytterbium-
fiber comb [Sch08].

Since the development of the optical frequency comb technique there have
been numerous applications. The applications range from precision spectroscopy
[Hol00, Nie00, Rei00] to the development of optical atomic clocks [Did01, Ros08].
This new generation of clocks has reached relative uncertainties of 10−17. The preci-
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Figure 1.2: Schematic of the f-2f interferometer. Light from the lower end of the spectrum
with frequency f1 = f CEO +m1 · f rep is frequency doubled in a nonlinear crystal. The frequency
doubled light with the frequency f d = 2 · f CEO + 2 · (m1 · f rep) is superimposed on a photodiode
with light from the higher end of the spectrum with the frequency f2 = f CEO + m2 · f rep.
For m2 = 2 · m1, the observed beat note f beat = fd − f2 is exactly the carrier-envelope offset
frequency f CEO.

sion has enabled measurements of the drift of fundamental constants [Biz03] and a test
of general relativity [Cho10].

Our group at the University of Innsbruck is engaged in the study of ultracold atomic
and molecular quantum gases. On the one hand, we are interested in using the fre-
quency comb technique to precisely measure optical frequencies. On the other hand,
we are using the technique to generate phase coherent radiation for a coherent state
transfer of ultracold molecules.

Ultracold molecules offer numerous opportunities for interesting experiments in
the context of precision measurements, quantum simulation, quantum information pro-
cessing and cold controlled chemistry [Car09]. In particular, molecules that have a
permanent electric dipole moment promise the realization of dipolar quantum gas sys-
tems [Gór02]. Many of these experiments, in particular the latter uses, require control
over all the degrees of freedom of the molecules on the level of single quantum states.
Control over the external degree of freedom implies that the sample should be close or
even at quantum degeneracy. Thus far it has not been possible to directly cool mole-
cules down to quantum degeneracy. One can achieve that by starting with a quantum
degenerate sample of atoms. Via a Feshbach resonance these atoms can be associ-
ated to so-called "Feshbach molecules". A Feshbach molecule is an extremely weakly
bound molecule, corresponding to the highest vibrational level right below the con-
tinuum. For reasons of collisional stability and to achieve a permanent electric dipole
moment for heteronuclear molecules, it is necessary to transfer the molecules into the
absolute ground state. It is mandatory to maintain control over the internal degrees of
freedom i.e. the electronic, vibrational, rotational states of the molecules.

In the experiment, the molecules are coherently transfered from the highly excited
vibrational state |a〉 into the rovibrational ground-state |g〉 via the Stimulated Raman

11
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Figure 1.3: Molecular potentials and vibrational levels for transfer of Cs2 Feshbach molecules
into the absolute ground-state. Initially the weakly bound Feshbach molecules are in state
|ν = 155〉. The transfer is achieved by a double STIRAP. The lasers L1 and L2 couple the
Feshbach level |ν = 155〉 with the deeper bound level |ν = 73〉. L3 and L4 couple |ν = 73〉 to
the vibrational and rotational ground state |ν = 0〉 of the singlet X1Σ+

g potential. Figure taken
from [Dan10].

Adiabatic Passage (STIRAP) technique (Fig. 1.3). The transfer is achieved by coupling
to a third excited level, as indicated in Fig. 1.4. The STIRAP technique relies on
the existence of a dark state |d〉 = cos Θ · |g〉 − sin Θ · |a〉 whereas Θ is given by
tan Θ = Ω1(t)/Ω2(t). Ω1 and Ω2 are the time dependent Rabi frequencies of laser 1,
which couples the initial molecular state |a〉 to an excited state |e〉, and laser 2, which
couples |g〉 to |e〉.

By applying a counterintuitive pulse sequence, shown in Fig. 1.4, the population is
adiabatically transfered from state |a〉 to state |g〉 without ever populating the excited
state |e〉. In theory, an efficiency of 100% is possible. The "intuitive" counterpart, for
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Figure 1.4: (a) A simplified levels scheme for the STIRAP process. Initially the molecules
are in state |a〉 and are then transfered to state |g〉. (b) The Rabi frequencies of the two lasers.
Counterintuitively, laser 2 is turned on earlier. (c) The state population during the process.
Note that the excited state |e〉 is never populated.

which the population is pumped into state |e〉 and from there pumped down to state |g〉,
would reach only 33%.

A crucial point during STIRAP transfer is the requirement for adiabaticity. The
criterion for the adiabaticity is τ p ·Ω

2 >> (2π)2 ·Γ, where Ω ≈ Ω1 ≈ Ω2, τ p the transfer
time and Γ the decay rate from the excited state |e〉 [Ber98]. The Rabi frequencies
have to be sufficiently high, and the time during which the Rabi frequencies overlap
has to be long enough. This criterion puts stringent requirements on the STIRAP laser
performance, especially on the relative phase noise between the two lasers. The energy
difference between state |a〉 and state |g〉which corresponds to the frequency difference
between laser 1 and laser 2, is on the order of 100 THz. To achieve low phase noise
between the STIRAP lasers, it is on the one hand possible to lock them independently
to a cavity. Otherwise it is possible to stabilize the relative phase noise by referencing
both of them to the same frequency comb.

By locking the STIRAP lasers to a Ti:sapphire frequency comb, the group of D.
S. Jin and J. Ye has produced ultracold dense samples of KRb ground-state molecu-
les [Ni08]. In Innsbruck, Danzl et al. have locked the STIRAP lasers to a cavity for
short term stability and also referenced them to an Erbium-fiber frequency comb for
long term stability and reproducibility and so produced ultracold dense samples of Cs2

ground-state molecules [Dan08, Dan10]. Lang et al. have created Rb2 triplet molecu-
les close to degeneracy without a frequency comb by Pound-Drever-Hall locking the

13
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STIRAP lasers to a single cavity [Lan08]. More recently Aikawa et al. have transfered
initially photoassociated KRb molecules into the absolute ground-state also by locking
the STIRAP lasers to a cavity [Aik10].

The goal of this thesis is to build an Erbium-fiber frequency comb and to establish
the technical know-how at the University of Innsbruck. This kind of laser system is
also commercially available e.g. from Menlo Systems∗ and Toptica†. The laser system
consists of an Erbium-fiber laser, an Erbium-fiber amplifier and a highly nonlinear
fiber for supercontinuum generation [Tau03, Tau04b]. The advantage of being able
to produce homebuilt lasers is clearly the lower cost and the opportunity to adjust the
performance and all significant parameters, e.g. the comb spectrum, to be suitable for
a specific experiment.

This thesis is structured as follows. It starts with a theoretical section that reviews
the physics of ultrashort laser pulses and the propagation of pulses in optical fibers.
It includes a numerical simulation of the propagation equation, which is used for the
simulation of the spectral broadening in a highly nonlinear fiber. Afterwards follows a
chapter that describes the experimental work that has been done. It describes the setup
and the performance of the Erbium-fiber ring oscillator and the subsequent amplifier.
Afterwards the results of the spectral broadening in a piece of highly nonlinear fiber
are presented. An additional part describes the setup of FROG, a device to characterize
ultrashort laser pulses.

∗http://www.menlosystems.com
†http://www.toptica.com
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Chapter 2

Theoretical Background

This chapter reviews the essential physics of mode-locked fiber lasers. It starts with a
mathematical description of ultrashort lasers pulses. The following section describes
the physical phenomena in optical fibers. It covers the optical losses, the chromatic
dispersion and the nonlinearities. Afterwards follows a derivation of the propagation
equation and a description of one method to solve this equation numerically. The
propagation equation, also known as nonlinear Schrödinger equation, describes the
propagation of short light pulses inside an optical fiber. The chapter concludes with
the theory of ultrashort pulse measurement. The deliberations in this chapter are based
on two great books, one on nonlinear fiber optics by G. P. Agrawal and the other one
on ultrashort pulse measurement by R. Trebino [Agr89, Tre02].

2.1 What is an Ultrashort Laser Pulse?
Simply put, it is a really short burst of electro-magnetic energy. Mathematically one
can describe such a pulse like any other electro-magnetic wave by the electric field
E(x, y, z, t). For a cw-laser the electric field would just be sinusoidal in time. For
an ultrashort pulse it is a product of a sine wave and a pulse-envelope function. An
example is shown in Fig. 2.1.∗

E(t) =
1
2

( √
I(t) · exp(i(ω0t − φ(t))) + c.c.

)
, (2.1)

where I(t) and φ(t) are the time dependent intensity and the phase of the pulse and
t is the time. ω0 is the carrier angular frequency, it is on the order of 1015 s−1. For
convenience one can define a complex amplitude of the pulse

E(t) =
√

I(t) · exp(−iφ(t))), (2.2)

where the intensity of the pulse is given by

I(t) = |E(t)|2 (2.3)

and the temporal phase is given by

φ(t) = − arctan
(

Im
(
E(t)

)
Re

(
E(t)

) ). (2.4)

∗and let us ignore the vector character of the electric field and the spatial portion of the field



2 Theoretical Background

One can also describe the pulse in frequency domain, which is related to the time
domain via Fourier transform:

Ẽ(ω) =

∫ ∞

−∞

E(t) exp(−iωt)dt. (2.5)

To go back to the time domain one has to perform an inverse Fourier transform

E(t) =
1

2π

∫ ∞

−∞

Ẽ(ω) exp(iωt)dω. (2.6)

Analogous to the function in time domain one can write the function Ẽ(ω) as

Ẽ(ω) =
√

S (ω) · exp(−iϕ(ω))), (2.7)

where S (ω) is the intensity in frequency domain, commonly known as the spectrum,
and ϕ(ω) is the spectral phase. So what are the temporal and the spectral phase and
how can we think about them? One can simply expand the phase in a taylor series and
look at the terms in detail. Pulses with different phase distortions are shown in Fig.
2.2.

φ(t) = φ0 + φ1 · t +
1
2
· φ2 · t2 +

1
6
· φ3 · t3 + . . . (2.8)

Let us consider a pulse with only zeroth-order phase, meaning that the temporal phase
is a constant function of t. Due to Fourier transform this automatically implies that the
spectral phase is a constant function of ω. A pulse like this is called a fourier-limited
pulse. That is because for a certain spectrum there is a minimum pulse duration and
the pulse cannot be any shorter than that. There is a quantity called the time-bandwidth
product (TBP).

TBP = ∆t · ∆ f (2.9)

where ∆t and ∆ f are the FWHM in time and frequency domain. In general one can
say that a higher TBP indicates a more complex pulse. For a fourier-limited gaussian
pulse the TBP is 0.44.

If we consider a first-order phase in time, the consequence is a shift of the spectrum.
And of course a linear term in the spectral phase shifts the pulse in time, which is
something one does not really care about. For a train of pulses it does not really matter
if these pulses arrive a little sooner or later.

A second-order phase is commonly known as linear chirp. As an example let
us consider a pulse with constant phase. As this pulse travels through a medium it
will develop a quadratic phase in time and frequency space due to the different phase
velocities. The spectrum does not change, but the temporal pulse envelope broadens.
The electric field oscillates with the carrier frequency at the center of the pulse. The
leading (trailing) edge will oscillate at higher (lower) frequencies, depending on the
sign of the chirp. The TBP is now larger than 0.44.

In materials with higher order dispersion also third order spectral phase distortions
can happen. In this case the carrier frequency is on one side of the pulse and the higher

16



2.2 Physical Phenomena in Optical Fibers

and lower frequencies are at the other end. Those frequencies beat with each other
and produce intensity fluctuations. And of course there are even higher order phase
distortions. The phase of a real laser pulse is usually a combination of all orders of
phases.
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Figure 2.1: This plot shows the fast oscillating electric field, the amplitude and the intensity of
a gaussian pulse with a constant temporal phase.

2.2 Physical Phenomena in Optical Fibers

2.2.1 Optical Losses
The optical loss is modeled by an exponential decay

PT = P0 · exp(−αL), (2.10)

where PT is the transmitted power, P0 the power that is launched into the fiber, α the
attenuation constant and L the fiber length. α depends on the wavelength and has a
minimum of about 0.2 dB/km at 1.55 µm but can be as high as 10 dB/km at visible
wavelengths. The loss is dominated by material absorption and Rayleigh scattering.
However, optical losses are an important issue in telecommunications. For fiber lasers,
as discussed here, optical loss is usually not really relevant and can be neglected.

2.2.2 Chromatic Dispersion
Every kind of oscillator has a different response to different driving frequencies. This
is also true for the bound electrons of a dielectric medium, which interact with electro-
magnetic radiation. For that reason the refractive index n(ω) is frequency dependent.
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Figure 2.2: Gaussian pulses with different phase distortions. (a) Fourier limited pulse. The
phase (dashed) is constant in time and frequency domain. The frequency of the electric field
does not change over the length of the pulse. (b) Linear phase in frequency domain. The pulse
is shifted in time domain. (c) Positive linear chirp, the phase is quadratic. The frequency of the
electric field changes over the length of the pulse. (d) Cubic phase in frequency domain. The
carrier frequency is located at the left side of the pulse, the higher and lower frequency com-
ponents are located on the right side. The beat between them causes the intensity fluctuations.
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2.2 Physical Phenomena in Optical Fibers

The speed of light in a medium (phase velocity) is given by c/n(ω), so different wave-
lengths travel with different speeds. For pulses that are a superposition of multiple
frequencies chromatic dispersion has the effect of pulse broadening.

The refractive index dependence on ω can be modeled by the empiric Sellmeier
equation

n2(ω) = 1 +

m∑
i=1

Biω
2
i

ω2
i − ω

2
. (2.11)

The Sellmeier equation can also be written in the more common wavelength de-
pendent form

n2(λ) = 1 +
B1λ

2

λ2 −C1
+

B2λ
2

λ2 −C2
+

B3λ
2

λ2 −C3
, (2.12)

where Bi and Ci are the experimentally determined Sellmeier coefficients.
For a mathematical description it is useful to define a mode-propagation constant

β (also used in Eq. 2.36 below) and perform a Taylor series around the frequency ω0.

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

1
2
β2(ω − ω0)2 + · · · , (2.13)

where

βn =

(
dnβ

dωn

)
ω=ω0

. (2.14)

The reason why one wants to do this Taylor expansion is that those coefficients βn

have illustrative physical interpretations.
β1 is related to the group velocity of the pulse by the relation vg = 1

β1
. The group

velocity is the velocity with which the envelope of the pulse travels.
β2 causes a quadratic phase distortion in frequency domain, it chirps the pulse

(Fig. 2.2(c)). For an initially unchirped pulse this has the effect of temporal broadening.
β2 is often called the group-velocity dispersion (GVD) parameter.

β3 causes a cubic phase distortion of a pulse. The pulse develops intensity fluctua-
tions at the leading or the trailing edge, dependent on the sign of β3 (Fig. 2.2(d))

For fiber laser applications β1 and β2 usually dominate and in the case of β2 ' 0,
β3 has to be taken into account. Higher orders can be neglected in this work.

Instead of β2 one can also define the dispersion parameter D, which is often used
in fiber-optics literature.

D =
dβ1

dλ
= −

2πc
λ2 β2 (2.15)

One can distinguish between two regimes. A fiber is said to have normal dispersion
when β2 > 0, which means that the red components of a pulse travel faster than the blue
components. The other regime where β2 < 0 is called anomalous-dispersion regime.
A formula that is useful and easy to remember is the dispersion length

LD =
T 2

0

|β2|
. (2.16)
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2 Theoretical Background

T0 is the half-width at the 1/e-intensity point, for a gaussian pulse TFWHM ≈ 1.665 · T0.
LD is the length where dispersion starts to matter, more precisely this is the distance
after which a gaussian pulse has temporarily broadened by a factor of

√
2.

2.2.3 Nonlinear Effects
Nonlinear effects appear if the induced polarization ~P responds nonlinearly to the elec-
tric field ~E

~P = ε0

(
χ(1) · ~E + χ(2) : ~E ~E + χ(3)... ~E ~E ~E + · · ·

)
(2.17)

where ε0 is the vacuum permittivity and χ(i) is the ith order susceptibility. Second order
susceptibility is responsible for nonlinear effects such as second-harmonic generation
(SHG) and sum-frequency generation. Typically second-order effects do not occur in
fibers because χ(2) vanishes for silica glasses.

So the lowest-order nonlinear effects that happen in fibers are caused by the
third-order susceptibility χ(3). Basically one distinguishes between third-harmonic-
generation (THG), optical Kerr-effect (nonlinear refraction) and four-wave-mixing.
THG and four-wave-mixing are usually not efficient in optical fibers because phase
matching between driving field and generated field is not preexisting.

The most important nonlinear effect for this work is nonlinear refraction. This ef-
fect describes the intensity dependence of the refractive index, which can be expressed
by

n̄(ω, |E|2) = n(ω) + n2|E|2 (2.18)

where n is the linear index of refraction and n2 is the nonlinear-index coefficient, which
is proportionally related to χ(3). This intensity dependence causes interesting effects
such as self-phase modulation (SPM) and cross-phase modulation (XPM).

SPM is an effect where the pulse itself induces a varying index of refraction. The
center of the pulse causes a higher change in the index than the edges of the pulse.
This varying index of refraction shifts the leading edge of the pulse to lower frequen-
cies and the trailing edge to higher frequencies. Those generated frequencies cause a
broadening in the spectrum of the pulse, but do not effect the temporal envelope of the
pulse. Similar to the dispersion length a nonlinear length can be defined.

LNL =
1

γ · P0
, (2.19)

where P0 is the peak intensity and γ the nonlinearity coefficient which is given by

γ =
n2 · ω0

c · Aeff

, (2.20)

where Aeff is known as the effective core area. For gaussian fiber modes it can be
written as

Aeff = π · w2, (2.21)
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2.2 Physical Phenomena in Optical Fibers

where w is the half width of the gaussian mode and depends on the fiber parameters.
With LD and LNL one can easily determine which effects dominate within a certain

fiber length and for a certain pulse. If LD and LNL are both small compared to the total
fiber length the interplay between dispersion and non-liniarity can lead to a different
behavior than one of this effects on its own. For the case β2 < 0 optical solitons can
occur.

Optical Solitons

An optical soliton is a wave packet that is able to travel for a long distance without
distortion. Solitons can be investigated by solving the propagation equation (Eq. 2.49
below) with the inverse scattering method [Agr89], or by doing a numerical simulation
of the propagation equation e.g. with the split-step Fourier method.

Simply put, for a certain ratio of LD and LNL the phases from SPM and GVD cancel
each other, and the wave packet travels undistorted. This happens for integer numbers
of N whenever

N2 =
LD

LNL
. (2.22)

Let us consider a hyperbolic secant pulse:

P(t) = P0 · sech2
(

t
τ

)
(2.23)

where P0 is the peak power and τ is the width, tFWHM = 1.76 · τ. The condition for the
pulse to evolve as a fundamental (N=1) soliton is

P0 = P(N=1) =
|β2|

γT 2
0

(2.24)

to support a higher-order soliton (N = 2, 3, 4, . . . ), the peak power has to be higher
(can easily be calculated with Eq. 2.22). Higher order solitons evolve in a periodic
pattern, they go through an initial narrowing phase and recover to their old shape after
one soliton period. Fig. 2.3 shows the evolution of a second order soliton.
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Figure 2.3: Result of the simulation of a second-order optical soliton plotted for one soliton
period z0. The simulation was done with the Matlab source code from App. A. Choosen fiber
parameters: β2 = −2 · 10−26 s2/m, β3 = 0, γ = 1 · 10−3 /W/m. Initial hyperbolic secant pulse
parameters: P0 = 31867 W, τ = 50 fs. After one soliton period the pulse is exactly the same
as in the beginning. (a) Evolution of the pulse in time domain. (b) Evolution of the pulse
spectrum.

2.3 Pulse-Propagation in Optical Fibers

2.3.1 The Propagation Equation
To understand and simulate the physical processes and phenomena of pulses in optical
fibers it is useful to create a mathematical formalism. Basically, the whole problem is
described by Maxwell’s equations of a dielectric media without free charges and free
currents:

∇ × ~E = −
∂~B
∂t
, (2.25)

∇ × ~H =
∂~D
∂t
, (2.26)

∇ · ~D = 0, (2.27)

∇ · ~B = 0, (2.28)

where ~E and ~H describe the electric and the magnetic field and ~D and ~B are the corre-
sponding flux densities.

~D = ε0 ~E + ~B, (2.29)

~B = µ0 ~H + ~M, (2.30)
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2.3 Pulse-Propagation in Optical Fibers

where ε0 is the vacuum permittivity, µ0 the vacuum permeability, ~P the induced electric
polarization and ~M the induced magnetic polarization.

Maxwell’s equations can be used to obtain the wave equation

∇ × ∇ × ~E = −
1
c2

∂2 ~E
∂t2 − µ0

∂2~P
∂t2 . (2.31)

As ~P (phenomenologicaly described in Eq. 2.17) is not linear in ~E, one way is to treat
~PNL the nonlinear part of ~P as a pertubation and first solve the equation for ~PNL = 0.

With this assumption and after transforming to frequency space Eq. 2.31 has the form:

∇ × ∇ × ~̃E(~r, ω) = −ε(ω)
ω2

c2
~̃E(~r, ω). (2.32)

ε(ω) is in general a complex number where the real part is related to the index
of refraction and the imaginary part is related to the absorption coefficient. As the
absorption is small enough one can replace ε(ω) by n2(ω). With the identity

∇ × ∇ × ~E = ∇(∇ · ~E) − ∇2 ~E (2.33)

and Eq. 2.27 one obtains

∇2 ~̃E(~r, ω) = −n2(ω)
ω2

c2
~̃E(~r, ω). (2.34)

Now, because of the symmetry of the fiber it is convenient to write the equation in
cylindrical coordinates:

∂2 ~̃E
∂ρ2 +

1
ρ

∂ ~̃E
∂ρ

+
1
ρ2

∂2 ~̃E
∂φ2 +

∂2 ~̃E
∂z2 + n2k2

0
~̃E = 0, (2.35)

with k0 = ω/c. One can then separate the radial and the axial part using the ansatz:

Ẽ(~r, ω) = A(ω)F(ρ) exp(imφ) exp(iβz)) (2.36)

with the normalization constant A, the radial field F, an integer number m and the
propagation constant β. So the radial equation is given by

d2F
dρ2 +

1
ρ

dF
dρ

+ (n2k2
0 − β

2 −
m2

ρ2 )F = 0. (2.37)

For a step index fiber with core radius a the refractive index is n1 for ρ 5 a and n2 for
ρ > a. The solutions of this equation are in principle Bessel and Neumann functions.
By solving this equation one can also see that the number of transversal modes that
are supported by the fiber are given by the parameters a, n1 and n2. It shows that for
a small core radius the fiber supports just one single mode. One can define the fiber
parameter

V = k0 · a
√

n2
1 − n2

2. (2.38)
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For V < 2.405 a fiber is a single mode fiber. In this project only single mode fibers are
used. For convenience this mode can be approximated by a gaussian function. There
is a relation† between the width of the gaussian and V which can be useful to estimate
for example Aeff from Eq. 2.21.

To describe the propagation of pulses as they appear in an Erbium-fiber laser the
nonlinearity can not be neglected. One has to include that in the propagation equation.
By splitting the polarization ~P into a linear and a nonlinear part, Eq. 2.31 can be written
as

∇2 ~E −
1
c2

∂2 ~E
∂t2 = −µ0

∂2 ~PL

∂t2 − µ0
∂2 ~PNL

∂t2 . (2.39)

To solve this equation one has to make some simplifying assumptions. PNL has to
be small compared to PL, the width of the spectrum ∆ω is small compared to ω0 which
implies that the temporal pulse width is not shorter than 0.1 ps. It is useful to write the
electric field as a product of a slowly varying part Ē and a fast oscillating part. This is
called the Slowly Varying Envelope Approximation (SVEA), for which one assumes
that the envelope is varying slowly compared to the oscillations of the electric field.

~E(~r, t) =
1
2
~ex(Ē(~r, t) exp(−iω0t) + c.c.) (2.40)

Now one needs a relation for PNL. In general PNL is described by this complicated
integral, but if one assumes that the response of χ(3)(t) is instantaneous one can write

~PNL(~r, t) = ε0χ
(3)... ~E(~r, t)~E(~r, t)~E(~r, t). (2.41)

Eq. 2.40 plugged into Eq. 2.41 shows that the nonlinear polarization oscillates at ω0

and at 3ω0. One can typically ignore the third-harmonic generation as this process is
not phase-matched and not effective. Again one can do the SVEA and get the following
expression for the slowly varying part.

P̄NL ' ε0εNLĒ(~r, t) (2.42)

with

εNL =
3
4
χ(3)|Ē(~r, t)|2. (2.43)

Now, one can substitute Eq. 2.42 and an expression for PL into Eq. 2.39. Again
one can go to frequency domain, but now there is the problem that εNL is intensity
dependent, which makes the equation nonlinear. One possibility is to assume that εNL

is a constant, it is small anyway. With this trick one finds the equation for the slowly
varying envelope in frequency space.

∇2Ẽ + ε(ω)k2
0Ẽ = 0 (2.44)

†this relation can be found on page 35 in [Agr89]
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2.3 Pulse-Propagation in Optical Fibers

with
ε(ω) = 1 + χ(1)(ω) + εNL (2.45)

and Eq. 2.44 can again be solved by separating the variables using the ansatz

Ẽ(~r, ω − ω0) = F(x, y)Ã(z, ω − ω0) exp(iβ0z). (2.46)

This leads again to two equations for the radial and the axial function.

2iβ0
∂Ã
∂z

+ (β̄ − β2
0)Ã = 0 (2.47)

β̄ can be evaluated from the radial equation. After performing an inverse Fourier trans-
formation one ends up with the propagation equation.

∂A
∂z

+ β1
∂A
∂t

+
i
2
β2
∂2A
∂t2 = iγ|A|2A (2.48)

Further, it is convenient to go to the moving frame of the pulse as one cares about the
evolution of the pulse. The β1-term is responsible for the group velocity. With the
transformation T = t − β1z one transforms to the moving frame of the pulse. So the
equation is

∂A
∂z

+
i
2
β2
∂2A
∂T 2 = iγ|A|2A. (2.49)

This equation contains the β2-term that describes the GVD, and the nonlinear term
on the right side. The absorption term has been dropped. This equation is an exam-
ple of the nonlinear Schrödinger equation (NLSE). With z and T interchanged, it is
essentially the Gross-Pitaevskii equation of matter wave physics [Gro61].

In the next chapter this equation is used for some simulations, whereas for pulses
that are shorter than 100 fs some of the assumptions made are questionable. In that
case it is more precise to use the generalized propagation equation [Liu07, Mus05].

∂A
∂z

+
i
2
β2
∂2A
∂T 2 −

1
6
β3
∂3A
∂T 3 = iγ

(
|A|2A +

2i
ω0

∂

∂T
(|A|2A) − TRA

∂|A|2

∂T

)
(2.50)

This equation contains three additional terms. The β3-term describes third order dis-
persion, the second term on the right side is responsible for self-steepening and the
third term for a self-frequency shift (TR ≈ 5 fs).

2.3.2 Numerical Methods
To perform a simulation of Eq. 2.49 one can use the split-step Fourier method (SSFM)
[Agr89]. Eq. 2.49 can be rearranged in the following way

∂A
∂z

= (D̂ + N̂)A, (2.51)
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where D̂ = − i
2β2

∂2

∂T 2 stands for the dispersion operator and N̂ = iγ|A|2 for the nonlinear
operator. In reality those two operators act together all the time, for numerical simu-
lations one can assume that for a very short interval h nonlinearity and dispersion act
independently. So one can write

A(z + h) ≈ exp(hN̂) exp(hD̂)A(z). (2.52)

Further, it is convenient to let the dispersion operator act in frequency space, because
the time derivative just becomes a multiplication with iω. An improved version of this
method is the so called symmetrized split-step Fourier method where the nonlinearity
acts in the middle of each step, and not at the end.

A(z + h) ≈ exp(h/2D̂) exp(hN̂) exp(h/2D̂)A(z) (2.53)

For even more accuracy the operator exp(hN̂) can be replaced by exp(
∫ z+h

z
N̂(z′)dz′)

which has to be calculated by an iterative process, as N̂(z + h) is not known.
The Matlab source code that runs a simulation of the NLSE with the symmetrized

SSFM can be found in App. A. The simulation uses Eq. 2.49 but with the additional
third-order dispersion term taken into account. The Fast Fourier Transform (FFT)
algorithm is used to perform the Fourier transformations.

2.4 Measurement of Ultrashort Laser Pulses
The measurement of ultrashort pulses is an important topic when building a mode-
locked laser. It is absolutely necessary to be able to precisely characterize the pulses
coming out of the laser. The problem in measuring really short pulses is the lack of
a really fast detector. To measure a time event one has to resolve it somehow with a
faster time event. To take a picture of some object the resolution of the optics has to
be higher than the smallest features of the object to resolve them properly. The pulses
that occur in this project are as short as 45 fs. This is the shortest event in our lab. So
let us use the shortest event that exists in the lab to measure the pulse, which is the
pulse itself.

2.4.1 Autocorrelation
There are different ways to measure the autocorrelation of a pulse. The technique
described here measures the so-called interferometric autocorrelation (IAC). In Fig.
2.4 it is shown how this technique is realized experimentally. The pulse is sent into a
Michelson interferometer and at the output there is an SHG-crystal and a photodiode
which measures intensity of the frequency-doubled light. The signal on the photodiode
can be written as

IPD(τ) ∝
∫ ∞

−∞

|(E(t) + E(t − τ))2|2dt. (2.54)
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2.4 Measurement of Ultrashort Laser Pulses

τ is the delay between the pulses. Examples for interferometric autocorrelations are
shown in Fig. 2.5.

SHG-Crystal

Beam-Splitter

Mirror

Mirror

∆x

τ =̂
∆x

c

Photodiode

Figure 2.4: Interferometric Autocorrelation Setup: The beam splitter splits the pulse up into
two replicas. One replica is delayed with respect to the other. Both replicas are send through
an SHG crystal. The photodiode detects the generated second harmonic.

So what exactly does the IAC measure? Clearly it contains information about the
length of the pulse. For a gaussian pulse the FWHM of the IAC is by a factor

√
2 larger

than the FWHM of the pulse. It also includes some phase information. For a linearly
chirped pulse the wings of the IAC do not have oscillations (the different frequencies
in the leading and the trailing edge of the pulse do not cause interference fringes), but
there is no way to measure the sign of the chirp. In general one can say that the more
complicated a pulse is, the harder it is to characterize it from its IAC. So it is really
worth it to build some better apparatus to measure ultrashort pulses, for example a
SHG-FROG-setup.

2.4.2 FROG: Frequency-Resolved Optical Gating

The FROG-Setup is shown in Fig. 2.6. There are many different FROG-geometries
[DeL96], here we choose a second-harmonic-generation FROG (SHG-FROG) because
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Figure 2.5: Pulses and their calculated interferometric autocorrelations. (a) A fourier-limited
pulse. (b) A chirped pulse. (c) A pulse with third order phase distortion.

it is the most suitable to also measure pulses with low intensities‡. To convert the IAC
setup into a SHG-FROG setup one has to do some simple modifications. There is one
additional mirror to separate the two beams going into the SHG crystal. The beams
are spatially overlapped inside the SHG crystal by an additional lens. The photodiode
is replaced by an optical spectrometer that is able to measure the sum frequency of the
incoming pulses. This apparatus measures the spectrogram (more precisely the auto-
spectrogram) of the pulse, which is called FROG trace. A spectrogram is a picture that
represents the spectral density versus time. One measures the FROG trace by scanning
the delay line and by recording the corresponding spectra. Mathematically, the FROG
trace is given by

ISHG(ω, τ) =
∣∣∣∣ ∫ ∞

−∞

E(t)E(t − τ) exp(−iωt)dt
∣∣∣∣2 (2.55)

A measured FROG trace is shown in Fig. 2.7. Now one has to extract the complex-
valued electric field from the FROG trace. Sadly, there is no known solution to ana-
lytically invert Eq. 2.55. But as this problem is known in the literature as the "2d
phase-retrieval problem", there are many algorithms to retrieve the complex electric
field. The software used in this thesis to retrieve pulses is FROG 3.2.2 from Femtosoft
Technologies, which uses an algorithm known as generalized projections [DeL94].

‡SHG-FROG uses the second-order nonlinearity, whereas all the other geometries are using third-
order nonlinearity, which is much weaker
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Spectrometer

τ =̂
∆x

c

∆x

SHG-Crystal
Beam-Splitter

Mirror

Lens

Figure 2.6: FROG setup: The beam splitter splits the pulse up into two replicas. One replica
is delayed with respect to the other and displaced. The two beams are focused by a lens (or a
spherical mirror). The focus, where the two beams spatially overlap, is in the center of a thin
nonlinear crystal. Only the sum frequency is detected with the spectrometer.

The software calculates the complex electric field to which the FROG trace (the "re-
trieved" FROG trace) is as close as possible to the measured FROG trace. The FROG
error, which is the root mean square difference between the FROG traces, indicates
how large the difference is.

The SHG-FROG also has some ambiguities, but fortunately a lot less than IAC.
First, the absolute phase can not be determined. As the arrival time of the pulses is not
measured there is no information about the linear phase in the frequency domain (see
Fig. 2.2). Second, the SHG-FROG trace is symmetrical with respect to delay, so there
is an ambiguity with the direction of time. The retrieved pulse in time domain might
as well be time-reversed.

An alternative to a FROG device might be the GRENOUILLE (Grating-eliminated
no-nonsense observation of ultrafast incident laser light e-fields) [Akt04, Gu04]. Tech-
nically, the GRENOUILLE is a much simpler device. It gets along without a delay line
and without a spectrometer. The delay line, the beam splitter and the beam combining
optics are replaced by one Fresnel prism. Instead of the thin nonlinear crystal and the
spectrometer a thicker crystal and a CCD camera are used. Once the GRENOUILLE
is built, the alignment is easier and the sensitivity is better compared to FROG. More
details can be found in [Tre02].
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Figure 2.7: (a) A measured FROG trace of a rather complicated pulse. (b) The retrieved
FROG trace. This trace was retrieved from (a) with the software FROG 3.2.2., the FROG
error is 0.015. (c) The pulse corresponding to the retrieved FROG trace. The plot shows the
normalized intensity (solid) and the phase (dashed). (d) The spectrum corresponding to the
retrieved FROG trace. The plot shows the normalized intensity (solid) and the phase (dashed).
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Chapter 3

Experimental Setup

This chapter describes the whole experimental setup, which consist of three major
parts.

The core of the frequency comb is the Erbium-doped fiber laser. It generates the
train of ultrashort pulses with a rate around 100 MHz and an average power of 10-
20 mW. The length of the pulses is on the order of 100 fs, the optical spectrum is about
60 nm wide.

After the fiber laser follows an Erbium-doped fiber amplifier. It amplifies the pulse
train to an average power of 250-300 mW, further shortens the pulses, and broadens
the spectrum. The laser and the amplifier are shown in Fig. 3.1.

To generate an octave spanning supercontinuum, the pulses are coupled into a
highly nonlinear fiber, which broadens the optical spectrum to range from 1 µm to
more than 2 µm.

Additionally, we provide technical details of the FROG setup.

3.1 The Erbium-Fiber Laser

3.1.1 Mode-Locking
The heart of the frequency comb is a mode-locked Erbium-fiber laser, which is built
up as it is shown in Fig. 3.2. The important parts are the gain medium (Erbium-doped
fiber), the pump diode, the ring resonator, and the mode-locking mechanism. The
gain spectrum is broad enough, so that the laser is in principle able to generate short
pulses around 100 fs. To really ensure the pulsed operation of the fiber laser a mode-
locking mechanism is necessary [Ipp94, Hau91]. The term mode-locking comes from
the description in frequency domain. The mode-locking makes sure that there is a fixed
phase relation between all the amplified frequencies. In time domain that means that
there are points of destructive and constructive interference, whereas the latter are the
desired pulses.

There are many different mode-locking mechanisms [Ipp94]. The one that is used
in this project is called polarization additive-pulse mode locking (P-APM). It uses the
fact that due to the nonlinear refraction of the fiber, different intensities see a different
index of refraction. For elliptically polarized radiation the consequence is polariza-
tion rotation. Fig. 3.3 illustrates how the P-APM mechanism works. A pulse with a
strongly elliptic polarization is sent into a Kerr-medium. Dependent on the intensity
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(3)(3)(3)
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Figure 3.1: Experimental laser setup: (a) Erbium-fiber laser: (1) free-space path with mode-
locking elements, (2) 600 mW pump diode, (3) Erbium-doped gain fiber, (4) monitoring pho-
todiode. (b) Erbium-fiber amplifier: (5) 600 mW pump diodes, (6) Erbium-doped gain fiber,
(7) polarization controller, (8) fiber isolator, (9) output.

there will be more or less polarization rotation. Combined with a polarizer which only
transmits the rotated part (higher intensity) this acts as a "pulse-shortener". The mode-
locking elements are located in the free-space path of the fiber laser. The polarizer
is represented by a polarizing beam-cube and a Faraday-isolator. The quarter-wave
plate (QWP) right behind the isolator makes the polarization elliptical, the other two
waveplates change the polarization to maximize the transmission at pulsed operation.
The mode-locking is self starting, meaning that the pulse builds up from initial cw-
fluctuations.

3.1.2 Repetition Rate and Total Dispersion

The repetition rate of the pulses is given by the optical-path length losc of the ring cavity
by frep = c/losc. The cavity is built up from positive and negative GVD fiber, the pulse
is periodically stretched and shortened. This kind of laser is a so-called stretched-pulse
laser, which has been described in [Tam93].
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Figure 3.2: Erbium-fiber laser setup: QWP: quarter-wave plate, HWP: half-wave plate, PBS:
polarizing beam splitter, FI: Faraday Isolator, WDM: wave division multiplexer.
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Figure 3.3: Scheme for polarization additive-pulse-mode locking (P-APM) [Ipp94]. The po-
larization of a weak pulse or cw-radiation is not effected by the nonlinearity, so it does not go
through the polarizer. For a strong pulses, the peak is transmitted through the polarizer, and the
wings are cut off.
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The overall dispersion of the ring oscillator is dominated by the positive disper-
sion of the Erbium-doped gain fiber and the negative dispersion of the standard fiber
(SMF-28), the optical components in the free-space path can be neglected. The overall
dispersion should be close to zero for a minimum temporal pulse width [Tam94].

3.1.3 Technical Details
The pump diode is a BOOKHAM LC96AA74-20R, which runs at 974 nm. The current
for which mode-locking occurs is between 700 mA and 950 mA and provided by a
WAVELENGTH ELECTRONICS MPL2500 driver. The pump power at 950 mA is
600 mW although there is a rather large splice loss (10-15%) at the splice from the
diode to the wave divison multiplexer (WDM). The reason is the very different fiber
types. The polarization maintaining fiber from the pump diode has a different mode-
field diameter and is made from different material than the SMF-28 from the WDM.
The WDM is a SIFAM FFC-5C31P2210.

The diode is temperature stabilized to 25 oC by the integrated peltier element. The
temperature controller is a homebuilt device.

The length of the gain fiber (OFS-EDF80) is 50 cm, the length of the standard
fiber (Corning SMF-28) is 107 cm. The length of the free-space path is 19.5 cm. For
coupling in and out of the fiber two fiber coupled collimation lenses are used (PHOTOP
KFCL-A-250S-1550-Y-200-C-N). The corresponding repetition rate is 108 MHz. This
could be easily adjusted to 100 MHz if necessary.

The light is coupled out by a 85/15 coupler. After the coupler follows a fiber
polarizer (Thorlabs PLC-900) and a polarization dependent fiber isolator (OZ OPTICS
FOI-21-11-1550-9/125-S-50-XX-0.25-1-40). The reason for not using polarization
independent isolators is that they have a much higher polarization mode dispersion.

After the isolator the light is split up by a 50/50 fiber coupler. One port is going to
the amplifier, the other port can be used for monitoring or could e.g. be used to seed
another amplifier.

The 85/15 output coupler is placed right after the gain fiber where the pulses have
a positive chirp. This chirp is compensated by an output lead of SMF-28 fiber. The
shortest pulses are found after 175 cm of compensation fiber and are shown in Fig. 3.5.
The pulse train has an average power of 16 mW.

The wave plates in the free-space path are telecom zero-order wave plates (Thor-
labs WPQ501 and WPH501), the cube is a standard 3mm PBS. The isolator is a
ISOWAVE mini single stage isolator. For monitoring the repetition rate a photo diode
(InGaAs) with a resistor in parallel is placed next to the beamcube.

3.1.4 Practical Mode-Locking Concerns
After assembling an Erbium-doped fiber laser the mode-locking has to be done by ba-
sically rotating the three wave plates into the right position. For our setup, the strategy
to mode-lock the laser in the beginning was the following.
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We turned up the pump diode to full power (950 mA). With our setup it was eas-
ier to achieve mode-locking at higher pump powers. In the beginning the laser was
emitting cw-light. The wavelength of the output light was monitored with an optical
spectrum analyzer. It was at around 1533 nm and 1556 nm or both, depending on the
position of the wave plates. The signal from the monitoring photodiode was observed
with a spectrum analyzer (Fig. 3.4). There we could observe a peak at the repetition
rate and some smaller side-peaks at a distance of a couple of 100 kHz (dependent on
the position of the wave-plates). At certain wave plate settings fringes could be ob-
served around the frep-peak, this is shown in Fig. 3.4(b). With that wave plate setting,
the laser was already close to mode-locking. With careful further adjustment of the
wave-plates mode-locking could be achieved.

Montag, 13. Dezember 2010

(a) (b) (c)

Figure 3.4: Measured spectra from the monitoring photodiode signal. Center: 108 MHz, Span
1.8 MHz, horizontal scale: 180 kHz/div, vertical scale: 10 dB/div Bandwidth 30 kHz. (a) far
away from mode-locking, (b) closer to mode-locking, (c) The laser is mode-locked, the peak
at 108 MHz represents the repetition rate of the pulses. The corresponding pulse and optical
spectrum are shown in Fig. 3.5

3.2 The Erbium-Fiber Amplifier
The small output power of the fiber laser and especially the goal to create a supercon-
tinuum make it necessary to add an amplifier. For the creation of a supercontinuum
in a highly nonlinear fiber (HNLF), as it will be described in the next section, it is
necessary to have a short, stable, and intense pulse.

In principle the design of a fiber amplifier is easy. It is shown in Fig. 3.6. Such
amplifiers are widely used for long range telecommunication systems. The amplifica-
tion with this kind of fiber amplifier can be higher than 10 dB [Des87]. The difficulty
arrises from the amplification of an ultrashort pulse without temporarily broadening or
even destroying the pulse.

On the one hand, as the pulse becomes more and more amplified, nonlinear ef-
fects, especially SPM start to play an important role. The effect broadens the spectrum
but can also destroy the stable shape of the pulse. On the other hand, as the gain
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Figure 3.5: Output pulse of the fiber laser characterized with SHG-FROG. The plot shows the
normalized intensity (solid) and the phase (dashed). The pulse is measured after a 175 cm long
output lead of SMF-28 fiber. This fiber compensates for the positive chirp the pulse exhibits
after the Erbium-doped fiber. The temporal FWHM is 96 fs, the spectrum FWHM is 66 nm.
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Figure 3.6: Experimental setup of the Erbium-fiber amplifier. WDM: wave division multi-
plexer. The seed pulses from the Erbium-fiber laser (Fig. 3.2) are pre-stretched inside the
SMF-28 fiber and afterwards amplified and compressed inside the Erbium-doped fiber.
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3.2 The Erbium-Fiber Amplifier

spectrum of the Erbium-doped fiber is narrower than the spectrum of the input pulse,
gain-narrowing occurs. Dispersion also plays an important role, it temporally broadens
the pulse, or can lead to solitonic effects, in case of an anomalous dispersion fiber.

One solution to address those problems is the so-called "stretched pulse amplifier"
[Tau04b, Tau03, Tau04a]. The idea is to stretch the pulse in a standard fiber with
anomalous dispersion so that it goes into the the gain fiber with negative chirp. The
gain fiber has normal dispersion, so that the pulse is re-compressed and amplified after
the gain fiber. This scheme reduces the nonlinear effects, because the pulse is stretched
and so the peak intensity is lower. It has also been shown in [Tam96] that in a normal
dispersion fiber amplifier (NDFA) a pulse with parabolic shape evolves and further that
those pulses can resist optical wave breaking.

Fig. 3.7 shows measurement of output pulses for different length of stretcher fiber.
With a long stretcher fiber the pulse has a large negative chirp as it goes into the
amplifier. The output spectrum is narrower than the input spectrum (Fig. 3.5) due to
gain narrowing and SPM. SPM is normally associated with spectral broadening but for
pulses with a strong negative chirp it has been shown that SPM causes narrowing in
the spectrum [Obe93]. With a stretcher fiber of ls = 620 cm a pulse spectrum with a
FWHM of only 5 nm was measured.

With a shorter stretcher fiber the pulse has less negative chirp. The spectrum broad-
ens inside the amplifier. The output pulse usually exhibits some amount of linear chirp
(Fig. 3.7). It was not possible to totally remove the chirp from the output pulse by
adjusting the stretcher fiber to various values. Even if the dispersion of the anomalous
stretcher fiber (SMF-28: β2 = −0.023 ps2/m) and the dispersion of the Erbium-doped
gain fiber (OFS EDF-80: β2 = 0.057 ps2/m) cancel out, there was still a chirped pulse
at the output.

To generate a short pulse and hence a high peak intensity, this chirp has to be
compensated. There is the possibility to use a prism compressor [For84] or to compress
the pulse in an anomalous dispersion fiber [Nic04]. The latter is known as soliton-
effect compressor [Agr89].

3.2.1 Soliton-Effect Compression in Anomalous Dispersion Fiber
Higher order solitons have a periodic evolution pattern (Fig. 2.3). This kind of com-
pression uses the fact that solitons go through an initial narrowing phase. If the com-
pression fiber is chosen in the right length, the compression factor can be on the order
of the soliton order N.

The disadvantage of this method is that the pulse develops wings where part of the
energy is contained. The physical origin of this is that in the initial narrowing phase
the evolution is dominated by SPM. The phase that comes from SPM has a gaussian
shape, leading to a chirp that is only linear in the center of the pulse. The result of this
is that only the central part of the pulse is compressed by the GVD.

Finding the right length of compression fiber can either be done by simulation,
or just by splicing a long fiber at the output of the amplifier and cutting it piece by
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Figure 3.7: Output pulses and spectra characterized after the amplifier with SHG-FROG for
different length of stretcher fiber ls. The plot shows the normalized intensities (solid) and the
phases (dashed). (a) ls = 415 cm, (b) ls = 305 cm, (c) ls = 145 cm. The pumps were both
running with a current of 950 mA. The length of the output lead was 18 cm, the length of the
gain fiber 160 cm. Those pulses have a linear chirp that can be compensated with additional
fiber at the output or with a prism compressor.

piece. As the fiber parameters are usually not precisely known, and the measurement
of the pulse right after the amplifier might also have some errors, the right fiber length
was found by trial and error. Fig. 3.8 shows that the strongly chirped output pulse
from the amplifier with tFWHM = 680 fs was compressed to a short intense pulse with
tFWHM = 45 fs by using 100 cm of SMF-28 fiber. The simulation predicts the best
compression after 80 cm.

3.2.2 Prism Compressor

Another possibility to compress the pulse is to use a prism compressor [Zha99]. In
App. B calculations for SF-10 prisms are presented. The prism compressor was not
implemented in the experiment, because the dispersion that could have been achieved
with reasonable prism distance and reasonable angle of incidence was not high enough
to compensate for the chirp of 400 fs2/cm. Also one loses power because of reflections.
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Figure 3.8: (a) Intensity and spectrum of the pulse characterized after a 75 cm long SMF-
28 output lead. The plot shows the normalized intensity (solid) and the phase (dashed). The
pulse has a FWHM of tFWHM = 680 fs. This measurement was done with a stretcher fiber of
ls = 255 cm and a gain fiber of 160 cm. The pulse has a strong positive chirp of 400 fs2/cm.
(b) The measured (solid) compressed pulse after a 175 cm long output lead of SMF-28 fiber.
The FWHM is 45 fs, 66% of energy is contained in the center-peak, the rest is in the wings.
The simulation (dash dotted) shows good agreement, although the simulation predictes the
shown pulse after 155 cm of output fiber. This discrepancy might come from the fact that
the nonlinearity coefficient γ for the SMF-28 fiber was not precisely known and chosen to be
1/W/km. The measured spectrum of the output pulse clearly shows further spectral broadening
due to SPM.
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3.2.3 Technical Details

The pump diodes are BOOKHAM LC96AA74-20R and BOOKHAM LC96AA76-
20R which are running at 974 nm and 976 nm. The advantage of two different colors
is that the injection into the other diode is less likely [Adl07]. The diodes are driven
by two WAVELENGTH ELECTRONICS MPL2500 and are temperature stabilized to
25 oC with a homebuilt device. The pump light is coupled into the gain fiber with
two WDM (SIFAM FFC-5C31P2210). The length of the gain fiber (OFS-EDF80) is
160 cm for which a maximum output power of up to 300 mW could be found.

3.3 Supercontinuum Generation
By coupling a short intense pulse (Fig. 3.8(b)) into a highly nonlinear fiber (HNLF)
the spectrum can be broadened. The goal is a spectrum that spans more than a factor
of two, a so-called supercontinuum.

The highly nonlinear fiber (HNDS1614AB-9-2-2-1) that is used in this project is
manufactured by Sumitomo Electric. This fiber has an extremely high nonlinear coef-
ficient (γ = 30 /W/km) and a zero dispersion wavelength that is shifted to 1.545 µm,
a wavelength close to the center wavelength of the pulse.

The strong spectral broadening can not be explained with SPM alone, other effects
such as the break up of the pulse into solitons, and four-wave mixing are involved
[Hus02, Tau04a]. Fig. 3.9 shows a result of the simulation of the spectral broadening
inside the HNLF. The input pulse for this simulation is the pulse from Fig. 3.8(b). The
simulation was done by numerically solving the propagation equation (Eq. 2.49) with
the split-step Fourier method. For that purpose the Matlab code from App. A was used.

3.3.1 Coupling the Pulses into the Highly Nonlinear Fiber

The HNLF has a very small mode-field diameter (MFD) compared to standard fibers.
The transverse mode of the incoming laser beam has to be matched to the mode of the
HNLF to get a reasonable good coupling efficiency.

In the experimental setup (Fig. 3.1), the output beam from the amplifier, coming
out of the SMF-28 compression fiber, is collimated with an aspheric lens (f=8.0 mm,
NA=0.5). The SMF-28 fiber has a MFD of 10.4 µm. The HNLF (SUMITOMO
HNDS1614AB-9-2-2-1) has an approximate MFD of 3.3 µm. This number was calcu-
lated from effective area Aeff = 8.6 µm given in the data sheet with Eq. 2.21. To couple
the beam into the HNLF an aspheric lens (f=2.75 mm, NA=0.55) is used. This lens
combination leads to a beam diameter of 3.57 µm at the fiber core. The best coupling
efficiency that has been achieved with this setup was about 75%.

Another possibility is to splice the HNLF directly onto the SMF-28 output lead of
the amplifier. For this setup a so-called mode-field adapter (MFA) would be necessary.
The MFA can be produced by thermal core expansion. The thermal core expansion
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Figure 3.9: Result of a simulation of the spectral broadening inside an 8 cm long HNLF (SUM-
ITOMO HNDS1614AB-9-2-2-1). The relevant fiber parameters are: β2 = −1.28 · 10−28 s2/m,
β3 = 3.11 · 10−41 s3/m, γ = 30 · 10−3 /W/m. The simulation was done with the input pulse
from Fig. 3.8(b) with a pulse energy of 1.39 nJ which corresponds to a peak intensity of 19 kW
and an average power of 150mW.

can in principal be performed with the Vytran fusion fiber splicer FFS-2000 that has
been used in this work. The idea is to thermally expand the core of the HNLF fiber to
match the MFD to the SMF-28 fiber [Wan09]. With this method the coupling losses
could be further decreased.

3.3.2 Experimental Results

Fig. 3.10 shows the measured spectrum after 7 cm of HNLF (SUMITOMO
HNDS1614AB-9-2-2-1). The average power after the HNLF is 155 mW which corre-
sponds to a coupling efficiency of 66%.

To measure the spectrum, a fiber coupled optical spectrum analyser was used. The
optical spectrum analyser can measure up to a wavelength of 1.75 µm. The beam was
collimated after the HNLF and coupled into 2 m of SMF-28 fiber that was connected
to the optical spectrum analyser. The exact shape of the measured spectrum was de-
pendent on the coupling into the SMF-28 fiber. The coupling was optimized to have
as much amplitude as possible in the lower wavelength end of the spectrum.

It has also been investigated how the length of the HNLF effects the output spec-
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Figure 3.10: Supercontinuum generation in a HNLF. The pulse from Fig. 3.8(b) was coupled
into 7 cm of HNLF (SUMITOMO HNDS1614AB-9-2-2-1) with an average power of 155mW.
After the HNLF, the beam was coupled into a SMF-28 fiber and the spectrum was measured
with a fiber coupled ANDOR optical spectrum analyser, which can measure up to a wave-
length of 1.75 µm. (a) shows the spectrum before and after the HNLF. (b) shows the measured
spectrum and the corresponding result of the simulation.
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trum. The output spectra, that have been measured with several length of highly non-
linear fibers from 10 cm down to 2.5 cm, did not show a significant qualitative differ-
ence. This behavior can also be seen in the result of the simulation in Fig. 3.9.

Clearly, the result of the simulation and the measured spectrum in Fig. 3.10 do not
agree very well. That can have many reasons. It has been mentioned further above,
that the measurement of the spectrum is only qualitatively right. This could explain
why the distribution of the amplitude differs from the measurement to the result of the
simulation. Another reason for the difference is the polarization of the input pulse.
The simulation treats the electric field of the pulse as a scalar field and completely
neglects the polarization. In the experiment, it could be seen that the spectrum after
the HNLF is strongly dependent on the polarization of the input pulse. To measure the
spectrum shown in Fig. 3.10 a quarter-wave plate and a half-wave plate were placed
prior the HNLF. The polarization of the beam was optimized for maximum spectral
broadening. Other uncertainties are the fiber parameters. Perhaps a better agreement
could be achieved by slightly adjusting the fiber parameters for the simulation.

3.4 FROG Setup

The SHG-FROG-SETUP is shown in Fig. 3.11. There is an iris at the entrance which
is convenient for guiding the beam into the device at the right height, and also for at-
tenuating the beam if necessary. In the center there is a pellicle beamsplitter (Thorlabs
BP245B3), which is used to split up the beam. The reason why there is no standard
beamsplitter is that one wants to have as little dispersion as possible. The mirror in
one arm (all mirrors in this setup are gold mirrors) just sends the beam back at con-
stant height. The mirror in the other arm displaces the beam vertically by 23 mm
and also sends it back onto the beamsplitter. This mirror is mounted on a motorized
translation stage (Thorlabs MT1/M-Z8), which is operated by a Thorlabs TDC001
controller. For the translation stage it is important that the range and the resolution is
large enough. For this work the longest pulses that occurred needed a range of more
than 3 ps (Fig. 2.7) which corresponds to 450 µm∗. The smallest resolution used in this
work was on the order of 20 fs =̂3 µm .

A two inch mirror is used as a folding mirror and a spherical mirror (f=200 mm)
focuses the beams into the nonlinear crystal. The nonlinear crystal (Castech BBO,
L = 100 µm, B x H = 5 x 5 mm, phase-matched for 1550 nm) is mounted on a rotation
mount. To achieve uniform phase matching for the whole bandwidth of the pulse,
it is necessary to use a very thin crystal. On the other hand the second-harmonic
conversion efficiency scales with the square of the crystal length. The crystal used is
a good compromise, it is thick enough to measure pulses with a couple of mW. The
phase-matching bandwidth is huge with δλ = 10.57 µm, so it is quite uniform around
the center wavelength.

∗due to the folding of the path it is half the value of 3 ps · c
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Figure 3.11: SHG-FROG setup: (a) Iris, (b) Pellicle beam splitter, (c) Gold mirror, (d) Delay
line: a motorized translation stage with two gold mirrors that displace the beam vertically.
(e) Folding mirror, (f) Spherical mirror, (g) BBO crystal, (h) Spectrometer, (i) a laptop with a
Labview software that is connected to the spectrometer and the motorized translation stage via
USB port.

After the SHG-crystal there is a spectrometer (Mightex HRS-BD1-025) that is
mounted on a two dimensional translation stage to make the alignment easier.

For building the FROG setup, it is important that the beams spatially overlap in-
side the crystal. The beam that is coming from the delay should not change its position
while moving the translation stage. If the spatial overlap is good enough, it is use-
ful to place a photodiode right after the SHG-crystal, scan the delay line, and try to
temporarily overlap the pulses by looking for an increasing signal on the photodiode.
If that is done one can put the spectrometer in and try to measure the spectrum. It is
important to make sure that the measured spectrum is the spectrum of the sum of the
two beams, and not the frequency doubled spectrum of one single beam. This is easily
checked by blocking the one beam and then the other, the measured spectrum has to
disappear in both cases.

To record a FROG trace a LabView program was designed. Both, the TDC001
controller and the Mightex spectrometer have a USB connector. With this software it
is possible to adjust all the important parameters, and save the FROG trace in a file that
is compatible with FROG 3.2.2.
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Chapter 4

Conclusion and Outlook

This master thesis describes the construction of a mode-locked Erbium-fiber laser and
an Erbium-fiber amplifier. We could show that the laser system produces ultrashort
laser pulses with durations down to 45 fs, a repetition rate of 100 MHz and an average
output power of more than 240 mW.

To accomplish a working laser system it was necessary to build a setup for the
characterization of ultrashort laser pulses. For this purpose an SHG-FROG setup has
been built, which is able to characterize the pulses from the mode-locked Erbium-fiber
laser as well as the pulses from the Erbium-fiber amplifier. The construction of the
FROG setup involved the assembling of the setup on the table and the programming of
a software to record and save the measured data. The FROG setup is an indispensable
tool for the optimization of the laser output.

Further, simulations of the propagation equation (nonlinear Schrödinger equation)
were presented. On the one hand, the simulations were helpful for the understanding of
pulse propagation in optical fibers. Especially chromatic dispersion, nonlinear effects
and their interplay, leading to physical phenomena like solitons, can be investigated
with the simulation. On the other hand, the possibility to take a characterized pulse
and to let it propagate through various fibers (as long as the fiber parameters are known)
was helpful for the understanding of the pulse compression after the amplifier.

The simulation also made it possible to investigate the spectral broadening of an
ultrashort laser pulse in a highly nonlinear fiber. The results show that it is theoretically
possible to create an octave spanning supercontinuum with the pulse from our laser
system.

We have also tried to experimentally realize a supercontinuum and proof the ex-
istence by measuring the carrier-envelope offset frequency with a f-2f interferometer.
It has been investigated that the spectrum barely spans a factor of two, but it was not
enough to detect a carrier-envelope offset frequency beat above the noise.

To continue this project several tasks have to be addressed. The supercontinuum
generation has to be further optimized to reach an octave spanning spectrum with suffi-
cient power to measure the carrier-envelope offset frequency. It will further be possible
to lock the carrier-envelope offset frequency to desired values by control of the fiber
laser pump current.

Additionally, for locking the repetition rate, the length of the ring resonator has to
be controlled. This could be done by controlling the free-space path length. In most
conventional systems, this is achieved by mounting one coupling lens onto a piezo
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crystal.
Once the laser system is stabilized, it will be applicable in our experiments. With

a spectral range of about 1 µm to 2 µm the Erbium-fiber laser system is especially in-
teresting for experiments that focus on the generation of Cs2 ground-state molecules
[Dan08, Dan10]. For the four photon STIRAP transfer from the weakly bound Fesh-
bach molecules to the molecules in the rovibrational ground state, four lasers with
wavelengths between 1003 nm and 1351 nm are used. Those wavelengths are covered
by an Erbium-fiber frequency comb.

To cover a different wavelength range it is on the one hand possible to extend
the comb spectrum by generating second harmonics of the Erbium-fiber frequency
comb [Wid99]. On the other hand, it would be possible to use a different gain fiber.
Ytterbium-fiber combs have a center wavelength of 1064 nm and a spectral range from
about 670 nm up to 1500 nm [Sch08].
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Appendix A

Matlab Source Code: Simulation of the Nonlinear
Schrödinger Equation

%Symmetrized split−step Fourier Method
%Simulation of the NLSE

clear all

cspeed=299792458 ; % speed of ligth m/s
lambda0=1550e−9 ; % center wavelength in m

%sumitomo HNLF parameters
D=0.1e−6 ; % dispersion s/m^2
D_slope=0.019e3 ; % disp. slope s/m^3
b2=−(D*lambda0^2)/2/pi/cspeed % beta−2 coefficient s^2/m
b3=(D_slope*lambda0^4)/...

4/pi^2/cspeed^2−lambda0/pi/cspeed*b2 % beta−3 coeff. s^3/m
y=30e−3; % nonlinear coeff /W/m

dt=2e−15; %time vector spacing
df=1/dt; %frequency vector spacing
dw=2*pi*df; %angular frequency vector
L=2^nextpow2(4000); %vector length
t = (−L/2:1:L/2−1)*dt; %time vector
f = (−L/2:1:L/2−1)*−df/L; %frequency vector
w = 2*pi*f; %angular frequency vector

fabs=f+cspeed/lambda0;
lambda =cspeed./fabs*1e6; %wavelength vector
wabs=2*pi*f;

%input pulse field(aini) and spectrum(afini)
tfwhm = 80e−15;
peakp=10000 %peakpower in W
aini=sqrt(peakp)*sech(1/tfwhm*t);
afini=1/df/sqrt(2*pi)*fftshift(fft(aini));

fiberlength=0.07 ; % in m
h=0.0003; % step size in m
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iterations=3 % number of iterations
i=sqrt(−1);

figure(1)

%symmetrized split−step fourier method
a=aini;
for j = 1:1:fiberlength/h

anew=a;
for itcount=1:iterations

%dispersion 1
af0=1/df/sqrt(2*pi)*fftshift(fft(fftshift(a)));
af1=af0.*exp((h/2)*(+i/2*b2*wabs.^2−i/6*b3*wabs.^3));
a1=1/dt*sqrt(2*pi)*ifftshift(ifft(ifftshift(af1)));

%nonlinearity
atrapz=1/2*(a+anew);
a2=exp((i*y*h*(atrapz.*conj(atrapz)))).*a1;

%disperion 2
af2=1/df/sqrt(2*pi)*fftshift(fft(fftshift(a2)));
af3=exp((h/2)*(+i/2*b2*wabs.^2−i/6*b3*wabs.^3)).*af2;
a3=1/dt*sqrt(2*pi)*ifftshift(ifft(ifftshift(af3)));

anew=a3;
end
a=anew;

specpic(j,:)=1/df/sqrt(2*pi)*fftshift(fft(fftshift(a)));

%plotting...
lp=350;
lm=350;
plot(t(L/2−lm:L/2+lp),1/max(abs(a3).^2).*abs(a3(L/2−lm:L/2+lp)).^2,...
t(L/2−lm:L/2+lp),1/max(abs(aini).^2).*abs(aini(L/2−lm:L/2+lp)).^2,...
t(L/2−lm:L/2+lp),1/max(angle(a3))*angle(a3(L/2−lm:L/2+lp)),'red')

axis([min(t(L/2−lm:L/2+lp)) max(t(L/2−lm:L/2+lp)) 0 2])
xlabel('TIME (s)')
ylabel('INTENSITY (a.u.)')
title('Puls in time domain')
subplot(3,1,3)

plot(f,1/max(abs(af3)).*abs(af3),f,1/max(abs(afini)).*abs(afini))
xlabel('FREQUENCY (Hz)')
ylabel('INTENSITY (a.u.)')
title('Puls spectrum')
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subplot(3,1,2)

lp=L/2;
lm=L/2−1;
lambda_plot=lambda(L/2−lm:L/2+lp);
plot(lambda_plot,1/max(abs(af3).^2).*abs(af3(L/2−lm:L/2+lp)).^2,...
lambda_plot,1/max(abs(afini).^2).*abs(afini(L/2−lm:L/2+lp)).^2,...
lambda_plot,1/max(angle(af3)).*angle(af3(L/2−lm:L/2+lp)),'red')
axis([min(0.8) max(2.6) 0 1.1])
xlabel('WAVELENGTH (\mum)')
ylabel('INTENSITY (a.u.)')
title('Puls spectrum')
subplot(3,1,1)

drawnow
end

lp=500;
lm=900;
figure(2)
contourf(lambda(L/2−lm:L/2+lp),...

1:fiberlength/h,abs(specpic(:,L/2−lm:L/2+lp)),100,'LineStyle','none')
xlabel('WAVELENGTH (\mum)')
ylabel('FIBER POSITION (a.u.)')

figure(3)
lambda_plot=lambda(L/2−lm:L/2+lp);
plot(lambda_plot,1/max(abs(afini).^2).*abs(afini(L/2−lm:L/2+lp)).^2,...

lambda_plot,1/max(abs(af3).^2).*abs(af3(L/2−lm:L/2+lp)).^2)
xlabel('WAVELENGTH (\mum)')
ylabel('INTENSITY (a.u.)')
title('Puls spectrum')

figure(4)
lp=200;
lm=200;
plot(t(L/2−lm:L/2+lp),abs(a3(L/2−lm:L/2+lp)).^2,...

t(L/2−lm:L/2+lp),abs(aini(L/2−lm:L/2+lp)).^2)
ylabel('INTENSITY (W)')
title('Puls in time domain')
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Appendix B

Calculation for SF-10 Prism Compressor

The following calculations were done to estimate the total group delay dispersion
(GDD) of a pair of equilateral prisms made from SF-10 glass in terms of prism sepa-
ration l and angle of incidence φ. The analytic formula was taken from [Zha99]. The
setup of the compressor is shown in Fig. B.1. The incident pulse is dispersed at the
first prism and collimated with the second prism. The mirror sends the pulse back on
the same path. Longer wavelengths have a shorter path-length through the compressor,
so the compressor has an overall negative dispersion.

l

φ

β

Figure B.1: Prism compressor setup. The prisms are made from SF-10 glass. The incoming
beam is dispersed by the first prism and collimated by the second prism. The folding mir-
ror sends the beam back on the same path. The pick-off mirror guides the beam out of the
compressor.

The optical path length through the prism pair is given by

P = 2l · cos β (B.1)

where l is the prism separation. β is shown in Fig. B.1. By calculating the second
derivative of the path length with respect to λ one gets the GDD. The derivatives of
the index of refraction can be calculated from the Sellmair equation (Eq. 2.11). The
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Sellmair coefficients for SF-10 are given in Table B.1. The results of the calculation
are shown in Fig. B.2.

B1 B2 B3 C1 C2 C3
1.6162597 0.2592293 1.0776231 0.0127534 0.0581939 116.60768

Table B.1: Sellmair coefficients for SF-10 glass
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Figure B.2: left: GDD versus incidence angle φ at different prism separation l. right: GDD
versus prism separation at a 45◦ angle of incidence.
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