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Summary

Since the preparation of the first Bose-Einstein condensate about two decades ago and the
first degenerate Fermi gas following four years later a plethora of fascinating quantum phe-
nomena have been explored. The vast majority of experiments focused on quantum degen-
erate atomic gases with short-range contact interaction between particles.

Atomic species with large magnetic dipole moments, such as chromium, dysprosium, and
erbium, offer unique possibilities to investigate phenomena arising from dipolar interaction.
This kind of interaction is not only long-range but also anisotropic in character and imprints
qualitatively novel features on the system. Prominent examples are the d-wave collapse of
a dipolar Bose-Einstein condensate of chromium atoms realized by the group in Stuttgart,
the spin magnetization and demagnetization dynamics observed by groups in Stuttgart,
Paris, and Stanford, and the deformation of the Fermi surface observed by our group in
Innsbruck.

This thesis reports on the creation and study of the first Bose-Einstein condensate and
degenerate Fermi gas of erbium atoms. Erbium belongs to the lanthanide group of elements
and has a large magnetic moment of seven Bohr magneton. In particular, this thesis describes
the experimental apparatus and the sequence for producing a dipolar quantum gas. There
is an emphasis on the production of the narrow-line magneto-optical trap of erbium since
this represents a very efficient and robust laser-cooling scheme that greatly simplifies the
experimental procedure.

After describing the experimental setup this thesis focuses on several fundamental questions
related to the dipolar character of erbium and to its lanthanide nature. A first set of studies
centers on the scattering properties of ultracold erbium atoms, including the elastic and the
inelastic cross section and the spectrum of Feshbach resonances. Specifically, we observe
that identical dipolar fermions do collide and rethermalize even at low temperatures. The
corresponding elastic cross section predicted by the theory of universal dipolar scattering
scales only with the particle’s mass and its magnetic moment and is temperature indepen-
dent. This represents a dramatic difference compared to non-dipolar fermions, which exhibit
a rapidly vanishing elastic cross section at lower temperatures.

Another distinctive feature of erbium is its spectrum of Feshbach resonances. Using bosonic
erbium we observed an enormous density of resonances exceeding that of alkali metals by at
least a factor of ten. We statistically analyzed the spectrum in terms of the random matrix
theory and demonstrated that the resonances bare a strong correlation to each other. We
identify the origin of this correlation in the highly anisotropic van der Waals interaction
potential of erbium. This is a phenomenon not previously encountered in ultracold quantum
gases.

At the many-body level we observed the d-wave collapse of the Bose-Einstein condensate as
previously observed in the chromium experiment in Stuttgart. With the dipolar Fermi gas
we demonstrated that the Fermi surface deforms into an ellipsoid induced by the action of
the dipole-dipole interaction in momentum space.
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Zusammenfassung

Die Erzeugung des ersten Bose-Einstein-Kondensats vor ungefähr zwei Jahrzehnten sowie
des ersten entarteten Fermigases vier Jahre später, öffnete die Tür zur Erkundung einer
Vielzahl faszinierender Quantenphänomene. Der Großteil dieser Experimente konzentrierte
sich dabei auf quantenentartete atomare Gase mit kurzreichweitiger Kontaktwechselwirkung
zwischen den Teilchen.

Atome mit großem magnetischen Dipolmoment, wie zum Beispiel Chrom, Dysprosium und
Erbium, bieten einmalige Möglichkeiten, durch die Dipolwechselwirkung hervorgerufene Phä-
nomene zu erforschen. Der Charakter dieser Wechselwirkung ist nicht nur langreichweitig
sondern auch richtungsabhängig und prägt dem System qualitativ neue Eigenschaften auf.
Herausragende Beispiele hierfür sind der d-Wellen-Kollaps eines dipolaren Bose-Einstein-
Kondensats aus Chromatomen, realisiert von der Gruppe in Stuttgart, die Spin-Magneti-
sierungs- und Demagnetisierungsdynamik, beobachtet von Gruppen in Stuttgart, Paris und
Stanford sowie eine Deformation der Fermifläche, welche von unserer Gruppe beobachtet
werden konnte.

Die vorliegende Dissertation behandelt die Erzeugung und Untersuchung des ersten Bose-
Einstein-Kondensats und des ersten entarteten Fermigases von Erbiumatomen. Erbium
gehört zur Gruppe der Lanthanoide und besitzt ein großes magnetisches Moment von sieben
Bohr Magnetonen. Diese Arbeit beschreibt im Besonderen die experimentelle Apparatur und
den Ablauf, welcher zur Erzeugung eines dipolaren Quantengases notwendig ist. Das Haupt-
augenmerk liegt dabei auf der Produktion der schmalbandigen magneto-optischen Falle für
Erbium, die eine sehr effiziente und robuste Art der Laserkühlung darstellt und das experi-
mentelle Herstellungsverfahren maßgeblich vereinfacht.

Nach der Beschreibung des experimentellen Aufbaus werden in der Arbeit einige funda-
mentale Fragen bezüglich des dipolaren Charakters von Erbium und seiner Natur als Ele-
ment der Lanthanoiden behandelt. Erste Untersuchungen konzentrieren sich dabei auf die
Streueigenschaften bei ultrakalten Temperaturen, welche den elastischen und inelastischen
Streuquerschnitt sowie das Spektrum von Feshbach-Resonanzen einschließen. Im Speziellen
beobachten wir, dass identische dipolare Fermionen kollidieren und rethermalisieren können,
und dies sogar im tiefen Temperaturbereich. Der damit verbundene elastische Streuquer-
schnitt, welcher im Rahmen der Theorie der universellen dipolaren Streuung berechnet wer-
den kann, hängt nur von der Masse des Teilchens und seinem magnetischen Moment ab
und ist temperaturunabhängig. Dies stellt einen entscheidenden Unterschied im Vergleich
zu nicht dipolaren Fermionen dar, welche einen mit der Temperatur schnell abklingenden
elastischen Streuquerschnitt aufweisen.

Eine weitere markante Eigenschaft von Erbium ist dessen Spektrum von Feshbach-Resonan-
zen. Unter der Verwendung von bosonischem Erbium beobachteten wir eine enorme Dichte
von Resonanzen, welche die bei Alkalimetallen vorhandene Resonanzdichte um mehr als das
Zehnfache übersteigt. Wir führten eine statistische Analyse der Verteilung von Feshbach-
Resonanzen im Sinne der Theorie der Zufallsmatrizen durch und zeigten, dass die Resonanzen
eine starke Korrelation aufweisen. Wir identifizierten den Urprung dieser Korrelation in dem
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hochgradig richtungsabhängigen van der Waals Potential von Erbium, wie es erstmals in
ultrakalten Quantengasen beobachtet werden konnte.

In Bezug auf Mehrkörperwechselwirkungen konnten wir den d-Wellen-Kollaps des Bose-
Einstein-Kondensates beobachten, ähnlich wie im Chrom-Experiment in Stuttgart. Mithilfe
des dipolaren Fermigases demonstrierten wir darüberhinaus die Deformation der Fermifläche
in ein Ellipsoid, welche durch Auswirkungen der Dipolwechselwirkung im Impulsraum zu
erklären ist.
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2.4.2. Landé g-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3. Zeeman splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.4. Hyperfine Zeeman splitting . . . . . . . . . . . . . . . . . . . . . . . . 21

3. Experimental setup 23
3.1. Experimental requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2. Vacuum chamber design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1. High vacuum section . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2. Ultra-high vacuum section . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3. Slow atom beam with high flux . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1. Transversal cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2. Zeeman slower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3. Velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Coil setup at main chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.1. Main coil setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2. Compensation cage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5. Laser light setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1. Blue laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2. Yellow laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3. Optical dipole traps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



4. Ultracold dipolar scattering 53
4.1. Anisotropic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1. Dipole-dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2. Anisotropic dispersion interaction . . . . . . . . . . . . . . . . . . . . . 56

4.2. Dipolar scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1. Universal dipolar scattering . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3. Anisotropy-induced Feshbach resonances . . . . . . . . . . . . . . . . . . . . . 62

5. Random matrix theory 68
5.1. Introduction to RMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1. General idea of RMT . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2. Applications of RMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.3. Symmetry groups and Gaussian ensembles . . . . . . . . . . . . . . . . 70
5.1.4. Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2. Quantum chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1. Bohigas-Giannoni-Schmit conjecture . . . . . . . . . . . . . . . . . . . 76
5.2.2. Sinai billiard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3. Quantum chaos in atomic physics . . . . . . . . . . . . . . . . . . . . . 78

5.3. Ultracold resonant scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6. Publication: Narrow-line laser cooling of erbium 83
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1. Narrow-line cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2. Publication: Narrow-line magneto-optical trap for erbium . . . . . . . . . . . 90
6.3. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.1. Spin polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7. Publication: Bose-Einstein condensation of erbium 98
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1.1. Evaporative cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.2. Dipolar Bose-Einstein condensate . . . . . . . . . . . . . . . . . . . . . 102

7.2. Publication: Bose-Einstein Condensation of Erbium . . . . . . . . . . . . . . 104
7.3. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1. Cross-dimensional rethermalization . . . . . . . . . . . . . . . . . . . . 110
7.3.2. Scattering length mass scaling . . . . . . . . . . . . . . . . . . . . . . 111

8. Publication: Hyperfine structure of fermionic erbium 115
8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.1.1. Hollow-cathode lamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.1.2. Modulation-transfer spectroscopy . . . . . . . . . . . . . . . . . . . . . 117

8.2. Publication: Hyperfine structure of laser-cooling transitions
in fermionic erbium-167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

9. Publication: Degenerate Fermi gas of erbium 127
9.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.1.1. Degenerate dipolar Fermi gas . . . . . . . . . . . . . . . . . . . . . . . 127
9.1.2. Collisions between identical fermions . . . . . . . . . . . . . . . . . . . 128
9.1.3. Evaporative cooling of fermions . . . . . . . . . . . . . . . . . . . . . . 128

v



9.2. Publication: Reaching Fermi degeneracy via universal dipolar scattering . . . 131

10.Publication: Quantum chaos in ultracold erbium 137
10.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

10.1.1. High-resolution Feshbach spectroscopy . . . . . . . . . . . . . . . . . . 138
10.1.2. Statistical analysis of Feshbach resonances . . . . . . . . . . . . . . . . 138

10.2. Publication: Quantum chaos in ultracold collisions of gas-phase erbium atoms 140
10.3. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.3.1. RMT and Feshbach spectroscopy . . . . . . . . . . . . . . . . . . . . . 151
10.3.2. Feshbach resonance width distribution . . . . . . . . . . . . . . . . . . 153

11.Publication: Fermi surface deformation 155
11.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.2. Publication: Observation of Fermi surface deformation

in a dipolar quantum gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

12.Conclusion and outlook 163
12.1. Further investigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.2. Our vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A. Measurement of the natural linewidth of the 401-nm transition 167

B. Erbium high-temperature oven 169
B.2. Erbium vapor pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.3. Oven refilling procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C. Notes on the blue master laser system 177

D. Feshbach resonances data tables of bosonic erbium 179

E. Full level diagram of erbium 182

Bibliography 184

Acknowledgments 200

vi



C
h
a
p
t
e
r

1
Introduction

1.1. Motivation

About 90 years ago Satyendranath Bose and Albert Einstein predicted a novel quantum
state of matter, called Bose-Einstein condensate (BEC). This state of matter is formed
by the macroscopic occupation of a single quantum state with bosonic particles. It took
70 years and major technological advances to produce the first BEC in experiment, see
Refs. [And95, Dav95]. A key development was the advent of laser cooling and atom trapping,
see Ref. [Chu85]. For atomic systems, cooling to ultralow temperatures is necessary to achieve
the BEC, since it requires the thermal de Broglie wavelength to be larger than the mean
distance between particles.

From then on the field of atomic physics experienced an enormous boost in the number of
research groups working on ultracold gases. Some of the early ground-breaking studies on
ultracold atomic systems include the verification of matter-wave interferences, the creation
of vortices in the superfluid, and the realization of an atomic laser, see Ref. [Blo08] for a sum-
mary. Nowadays, the condensation of particles into a BEC is demonstrated not to be limited
to ultracold atomic gases only but is also possible with other bosonic systems like photons or
solid-state quasi-particles as magnons or exciton-polaritons, for which condensation happens
even at room temperature, see Ref. [Den10].

Parallel to the research with bosons, experimental efforts focused on the production of a de-
generate Fermi gas (DFG) to access the other fundamental class of particles. The interest in
fermions is great because they are often found in nature, e. g. within the electron gas of met-
als, as neutrons of heavy stars, or as quarks in plasmas as constituent elements of composite
particles. The production of a DFG has been achieved in the late 1990s, see Refs. [DeM99b],
and it challenged experimentalists for a simple reason: identical alkali fermions do not col-
lide at ultralow temperatures. This stringent property is derived from the Pauli exclusion
principle and the Wigner threshold law. However, experimentalists have found an elegant
way to overcome this fundamental limitation by introducing a second spin state, another
species, or a different isotope, making particle collisions and cooling possible. Beautiful
experiments with fermions include the study of the famous BEC-BCS crossover, the pro-
duction of fermionic mixtures with unequal densities, and the measurement of fundamental
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1.1. Motivation 2

properties of the superfluid in a strongly interacting Fermi gas, see Ref. [Gio08, Ket08] for
an overview.

Several tools exist for ultracold gases to manipulate the interaction between particles and
confine them in various geometries. Tuning the interactions between particles via a Feshbach
resonance (FR) is one of the most prominent example. Dependent on an external magnetic
field, the scattering length can be changed from zero (non interacting) to very large values
(strongly interacting) across a resonance. FRs are further used to associate two ultracold
particles to weakly-bound molecules, which in the next step can be optically transferred into
their rovibrational ground state. A second commonly-used tool are optical lattices, periodic
structures of light mimicking solid-state crystal-like structures. They offer full control over
lattice parameters, e. g. the tunneling rate, and are free of lattice dynamics induced by the
environment.

A trend has developed in atomic physics within the last ten years from exploring degenerate
matter towards the realization of interesting theoretical models like the well-known Bose-
Hubbard model in lattices [Jak98], the superfluid to Mott-insulator transition [Gre02], or
Anderson localization using disorder [Bil08]. It is precisely this trend which marked a turning
point from the mere awareness and observation of quantum effects in ultracold gases to the
possibility of engineering quantum mechanical systems with an unprecedented large degree
of control and flexibility.

Dramatic advances in laser technology and more sophisticated cooling techniques made it
possible to condense elements other than alkali metals. Figure 1.1 shows a periodic table of
elements with those elements, which have been brought to degeneracy to this day, highlighted.
Today, a total of 13 elements are available in ultracold quantum gas experiments, three of
which allow for the study of dipolar systems.

In contrast to conventional atomic gases, dipolar systems add an interaction between parti-
cles, the so-called dipole-dipole interaction (DDI), which is anisotropic and long-range. As
reviewed in Ref. [Bar02a] it is possible to study fundamentally different phenomena in dipolar
systems compared to experiments with alkali metals. Dipolar systems had been proposed for
accessing exotic quantum phases already in the late 1990s. Nowadays, at least three dipolar
systems are experimentally accessible, namely atoms with a large magnetic dipole moment
in the ground state, heteronuclear molecules with an electric dipole moment, and atoms in
highly excited Rydberg states.

Chromium was the first dipolar element to be Bose-Einstein condensed by the group of
T. Pfau in Stuttgart (Germany) about a decade ago, see Ref. [Gri05]. It has a magnetic
moment of 6µB and a total quantum number of three. Several interesting phenomena,
which are purely caused by the DDI, had been realized with chromium, such as the principle
of demagnetization cooling [Fat06], the d-wave collapse of the BEC [Lah08], and the spin
relaxation in an optical lattice [Pas11].

In the last several years, a new class of dipolar atoms from the lanthanide series have come
into play, which posses an even larger magnetic moment than that of chromium. Elements
like dysprosium or erbium have a magnetic moment of up to 10µB and a large total spin
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Figure 1.1.: Periodic table showing Bose-Einstein-condensed elements up to 2014. Initially, only
alkali atoms were brought to degeneracy, but in the last years the interest in alkaline-earth elements
and elements with a large magnetic dipole moment (blue frame) increased significantly. List of
references: Na [Dav95], Rb [And95], Li [Bra95], H [Fri98], He [Rob01], K [Mod01], Cs [Web03], Yb
[Tak03], Cr [Gri05], Ca [Kra09], Sr [Ste09], Dy [Lu11], and Er [Aik12].

quantum number in the ground state, which makes them particularly interesting for ultracold
gas experiments.

Early experimental work on trapping and laser cooling erbium was done by the group of
J.J. McClelland at NIST (USA), see Refs. [McC06b, Ber08]. Different laser-cooling schemes
and magnetic-trapping methods were successfully demonstrated but the atomic sample was
never brought to degeneracy in these experiments. Laser cooling of dysprosium atoms was
soon to follow by the group of B. Lev now in Stanford (USA), see Ref. [Lu10]. The same group
produced the first dysprosium Bose-Einstein condensate [Lu11] and first degenerate Fermi gas
[Lu12]. In our group in Innsbruck we have been able to laser cool erbium using a narrow-line
transition and to create the first Bose-Einstein condensate and the first degenerate Fermi gas
of erbium atoms. This forms a solid basis for future experiments on dipolar quantum gases.
Moreover, thulium [Suk10] and holmium [Mia14] are two more elements from the lanthanide
series, which have been successfully laser cooled. Nowadays, bosonic as well as fermionic
systems (or even mixtures thereof) in combination with a large magnetic dipole moment are
readily available for experimental studies. The success of lanthanides in ultracold atomic
physics can be already observed, as several research groups around the globe are setting up
new experiments on lanthanide atoms at the moment.

Alternatively to magnetic atoms, one can use ultracold diatomic, heteronuclear ground-
state molecules to study dipolar effects. Such molecules can be associated from ultracold
alkali-metal atoms and have a strong electric dipole moment. Commonly used molecules in
current experiments are KRb [Ni08], LiCs [Dei08], or RbCs [Tak14]. Up to date, only gases
of diatomic molecules composed of alkali-metal atoms are available at ultracold temperatures
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Figure 1.2.: Comparison of alkali atoms with magnetic atoms and heternuclear molecules. The
dipole interaction length is plotted in units of the Bohr radius against the dipole moment given in
Debye. Weakly-bound Feshbach molecules are marked with a star. Rydberg atoms have an extremely
high dipole moment of several thousand Debye, which is out of scale for this figure.

but developments in slowing and trapping polyatomic molecules look very promising. Very
recently a magneto-optical trap of SrF molecules has been shown in Ref. [Bar14], which
might have future applications for testing the standard model of particle physics [Hun12] or
for searching for variations of fundamental constants [Chi09].

A relevant quantity to compare the dipolar character of particles with, is the so-called dipole
length, ad. It is defined for magnetic atoms by

ad =
mµ0µ

2

4π~2
, 1.1

and depends on the magnetic moment µ and the mass of a single dipole m. Here, µ0 is the
magnetic constant and ~ the Planck constant divided by 2π. Figure 1.2 shows a plot of the
dipole length as function of the dipole moment for several dipolar systems in comparision
with alkali atoms. The plot includes magnetic atoms, Feshbach molecules from magnetic
atoms, and heteronuclear molecules. Alkali atoms have the smallest dipole moment, whereas
heteronuclear molecules have a very high dipole moment. Magnetic atoms lie in between
these two cases and Feshbach molecules of magnetic atoms, such as weakly bound Er2, have
a dipole length, which is only one order of magnitude smaller than that of polar molecules.
Note that Rydberg atoms have a much higher dipole moment than heteronuclear molecules
and are not shown in Fig. 1.2.

The large magnetic moment of lanthanide atoms is caused by an unfilled 4f electron shell.
The lanthanide electron configuration forms a so-called submerged-shell structure as the 4f
shells are immersed in the outer-lying 6s shell, which is completely filled. This structure
provides a rich atomic energy spectrum with transition linewidths ranging from broad to
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ultra-narrow. Several atomic transitions turn out to be very convenient for implementing
efficient laser-cooling techniques, which makes it surprisingly simple to prepare lanthanide
atoms in ultracold gas experiments.

All these reasons make lanthanide systems to be very suitable candidates for exploring dipolar
quantum phenomena.

1.2. Thesis overview

This thesis describes the production and study of a dipolar quantum gas of ultracold bosonic
and fermionic erbium atoms. In particular, the thesis covers the following achievements:
(I) production of the first Bose-Einstein condensate and (II) the first degenerate Fermi gas of
erbium, (III) observation of Feshbach resonances and chaotic scattering, and (IV) observation
of anisotropic dipolar scattering and the deformation of the Fermi surface.

On a personal note, I joined the erbium team in 2009, when the experiment was still in
its conceptual phase. In the beginning, the design and setup of the vacuum apparatus was
solely undertaken by me under the guidance of Francesca Ferlaino. Once the experiment
approached the point of first measurements, the team quickly enlarged. I actively partic-
ipated in the above mentioned achievements of the experiment. The scope of this thesis
covers many of the technical challenges, so that it might serve as a reference for future PhD
students.

The thesis is structured as follows:

Chapter 2 presents the relevant properties of atomic erbium for ultracold gas experiments.
It contains detailed information on the electron configuration, the magnetic properties, and
the atomic energy spectrum, including the laser-cooling transitions of erbium.

Chapter 3 describes the erbium experimental setup. It is structured in four sections including
the vacuum apparatus, the preparation of a slow atom beam, the main coil system, and the
laser light setup.

Chapter 4 offers an introduction to ultracold dipolar scattering. The aim is to highlight
the difference arising in scattering physics between short- and long-range interactions and
introduce the anisotropic van der Waals interaction. The chapter starts with a discussion
on anisotropic interactions between atoms. Then the theory of universal dipolar scattering
is presented. The last part of this chapter offers an overview of the emergence of Feshbach
resonances in a dipolar quantum gas.

Chapter 5 is devoted to random matrix theory and quantum chaos. A very general intro-
duction is given as many readers of this thesis might be unfamiliar with that topic. The
second part of this chapter draws a connection between quantum chaos and atomic physics
and presents an application of random matrix theory for calculating scattering properties of
complex systems by means of the theory of ultracold resonant scattering.
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The next five chapters present scientific results, which have been published within the scope
of this thesis. Each of these chapters contains one publication. The publications are given in
chronological order and every chapter follows the same structure, with experimental back-
ground information at the beginning, the actual publication in the middle, and further
unpublished work at the end.

Chapter 6 contains our publication on the magneto-optical trap for erbium.
Narrow-line magneto-optical trap for erbium
Albert Frisch, Kiyotaka Aikawa, Michael Mark, Alexander Rietzler, Johannes Schindler, Eric
Zupanič, Rudolf Grimm, and Francesca Ferlaino
Physical Review A 85, 051401(R) (2012). DOI 10.1103/PhysRevA.85.051401
This publication shows the experimental realization of the narrow-line magneto-optical trap
for erbium. Specifically, it addresses the Zeeman slowing process, the physical limitations of
the narrow-line magneto-optical trap and the spin polarization of the atom cloud.

Chapter 7 presents our publication on the first Bose-Einstein condensate of erbium.
Bose-Einstein Condensation of Erbium
Kiyotaka Aikawa, Albert Frisch, Michael Mark, Simon Baier, Alexander Rietzler, Rudolf
Grimm, and Francesca Ferlaino
Physical Review Letters 108, 210401 (2012). DOI 10.1103/PhysRevLett.108.210401
Editor’s suggestion and Viewpoint in physics.
It presents detailed information on evaporative cooling towards a degenerate Bose gas. Fur-
thermore, this chapter contains a measurement of the scattering length for different isotopes
of erbium.

Chapter 8 contains our publication on the hyperfine structure of erbium.
Hyperfine structure of laser-cooling transitions in fermionic erbium-167
Albert Frisch, Kiyotaka Aikawa, Michael Mark, Francesca Ferlaino, Ekaterina Berseneva,
and Svetlana Kotochigova
Physical Review A 88, 032508 (2013). DOI 10.1103/PhysRevA.88.032508
It shows a spectroscopic measurement of the hyperfine structure of fermionic erbium using
a hollow cathode lamp.

Chapter 9 contains our publication on the first degenerate Fermi gas of erbium.
Reaching Fermi degeneracy via universal dipolar scattering
Kiyotaka Aikawa, Albert Frisch, Michael Mark, Simon Baier, Rudolf Grimm, and Francesca
Ferlaino
Physical Review Letters 112, 010404 (2014). DOI 10.1103/PhysRevLett.112.010404
Editor’s suggestion.
The publication sets the path for producing a degenerate Fermi gas using a similar approach
as for bosons. It turns out that evaporative cooling of a single, dipolar fermionic species can
be employed with equal efficiency as in the bosonic case.

http://dx.doi.org/10.1103/PhysRevA.85.051401
http://dx.doi.org/10.1103/PhysRevLett.108.210401
http://dx.doi.org/10.1103/PhysRevA.88.032508
http://dx.doi.org/10.1103/PhysRevLett.112.010404
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Chapter 10 presents our publication on signatures of quantum chaos in erbium.
Quantum chaos in ultracold collisions of gas-phase erbium atoms
Albert Frisch, Michael Mark, Kiyotaka Aikawa, Francesca Ferlaino, John L. Bohn, Constanti-
nos Makrides, Alexander Petrov, and Svetlana Kotochigova
Nature 507, 475–479 (2014). DOI 10.1038/nature13137
Nature News & Views associated article.
It provides a high-resolution Feshbach spectroscopy measurement revealing up to 200 Fesh-
bach resonances at low magnetic fields. A statistical analysis of these resonances indicates
quantum chaos in the collision of erbium atoms.

Chapter 11 contains our publication on the observation of the Fermi surface deformation.
Observation of Fermi surface deformation in a dipolar quantum gas
Kiyotaka Aikawa, Simon Baier, Albert Frisch, Michael Mark, Cornelis Ravensbergen, and
Francesca Ferlaino
Science 345, 1484 (2014). DOI 10.1126/science.1255259
It contains the first experimental realization and observation of the deformation of the Fermi
surface induced by anisotropic interactions. The deformation is a quantum many-body effect
and depends on the temperature of the gas.

Finally, I conclude the thesis in Chapter 12 with an outlook on possible future directions in
the erbium experiment.

http://dx.doi.org/10.1038/nature13137
http://dx.doi.org/doi:10.1126/science.1255259


The rare earth elements perplex us in our re-
searches, baffle us in our speculations, and haunt us
in our very dreams. They stretch like an unknown
sea before us mocking, mystifying and murmuring
strange revelations and possibilities.

(Sir William Crookes 1887)

C
h
a
p
t
e
r

2
Erbium properties

Erbium (Er) is a rare-earth metal belonging to the lanthanide series of the periodic table
of elements. It has an atomic number of Z = 68 and an atomic mass of 167.26 amu, with
1 amu = 1.6605402 × 10−27 kg. Pure solid erbium is a silvery-white metal and needs to be
artificially isolated as it naturally occurs only in chemical compounds on Earth mostly in
oxides with trivalent bonds. As a solid it is a malleable and soft metal.

Erbium can be found in the Earth crust with a concentration of about 3.5 ppm and thus
belongs to the rare-earth metals, see Ref. [Lid10]. It is a very important element for many
technological applications. For example, it is commonly used as dopant in the form of
Er3+-ions in silica-glass fibers for erbium-doped fiber amplifiers. Such laser light amplifiers
are usually operated at wavelengths in ranges from 1525 nm to 1565 nm and 1570 nm to
1610 nm and are nowadays the core elements in optical telecommunication networks. The
same erbium ion has a prominent transition at 2940 nm, which is highly absorbed by water
and thus perfectly suitable for laser surgery and other medical applications. In a very recent
publication the electrical detection of an optical excitation of Er3+ has been demonstrated in
Ref. [Yin13]. This technique might lead to a novel interface between optical-based quantum
computing and common silicon-based semiconductor technologies.

In the 1990s the price for erbium oxide, as well as for other rare-earth elements, dropped
significantly due to the construction of large production facilities in China. Recently, prices
were rising again as up to about 90 % of the worldwide production of rare-earth elements is
now carried out in China. This lead to a global discussion about China’s monopoly in the
production of rare-earth metals and its strong influence on the high-tech industry.

2.1. The discovery of erbium

The erbium element was first mentioned by Carl Gustaf Mosander in 1843, see Ref. [Mos43].
From the mineral gadolinite he was able to separate three fractions of oxides that he called
yttria, erbia, and terbia. Gadolinite was found in large amounts close to the village Ytterby
near Stockholm, Sweden. Eventually also the elements ytterbium, terbium and yttrium were
directly named after this place. Other elements, which were discovered at the same place

8
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isotope 162Er 164Er 166Er 167Er 168Er 170Er

abundance 0.14 % 1.61 % 33.6 % 23.0 % 26.8 % 15.0 %
statistics boson boson boson fermion boson boson

Table 2.1.: Relative abundances and type of quantum mechanical statistics for all stable erbium
isotopes. Isotopes commonly used in the work of this thesis are highlighted.

but later, were named gadolinium (after gadolinite), holmium (after the Latin name for
Stockholm), and thulium (with thule an ancient word for Scandinavia). All together, nearly
half of all elements from the lanthanide series were discovered in Ytterby for the first time.
Many years later it turned out that the originally separated parts of gadolinite were actually
a mixture of several oxides and pure erbium as a solid metal could be isolated by Wilhelm
Klemm and Heinrich Bommer as late as in 1934.

2.2. Basic properties

As many other lanthanides, erbium has a high melting point at 1529 ◦C and boiling point
at 2900 ◦C. It oxidizes and tarnishes slowly under air atmosphere but burns readily to form
erbium(III)-oxide at high temperatures. Thin structures made out of erbium, like foils or
powder, are easily flammable when brought from an inert atmosphere into air. It reacts with
water and produces hydrogen gas. Erbium can be dissolved in dilute sulfuric acid, forming
rose red hydration complexes containing Er3+ ions. Vacuum gettering properties of erbium
in the form of evaporated films are studied in Ref. [Mül72].

Erbium has six stable isotopes, of which five (162Er, 164Er, 166Er, 168Er, and 170Er) are
bosons and one (167Er) is a fermion, see Table 2.1 for a list of all stable erbium isotopes
and their abundances. This thesis focuses mostly on the bosonic isotope 168Er and on the
fermionic isotope 167Er, which both have natural abundances above 20 % as well as convenient
scattering properties for efficient evaporative cooling.

Another basic property of erbium is its large magnetic moment of about 7µB, with µB the
Bohr magneton. Although a large magnetic moment is not common to all elements within
the lanthanide series, some of them have the highest magnetic moment of all elements. This
includes dysprosium and terbium, which both have the largest magnetic moment of 10µB,
and holmium with 9µB. See Table 2.6 for a full list of all lanthanide elements.

2.2.1. Electron configuration

According to the Aufbau principle ground-state erbium has an electron configuration, which
is often referred to as a submerged-shell configuration. Electrons are distributed among
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electron orbitals1 simply as

(1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6) 4f12 6s2 , 2.1

Following the Madelung rule with increasing number of electrons, the 6s orbital is filled up
before the 4f orbitals. Because of this, all orbitals except the 4f orbitals are completely filled
in the electron configuration of erbium. The part of above electron configuration written in
brackets equals the electron configuration of xenon and is often abbreviated as [Xe].

There are seven 4f orbitals available, which can in principle take up to 14 electrons in total.
In case of erbium two electrons are missing in the 4f shells, having an angular momentum
projection quantum number of mℓ = +2 and +3. In both cases the spin projection quantum
number of the missing electrons is ms = −1/2, see Table 2.2. Furthermore, the 4f electron
orbitals are highly anisotropic due to their large angular momentum quantum number of
ℓ = 3, whereas the 6s orbital is spherically symmetric with ℓ = 0. See corresponding figures
in Table 2.2. It has to be noted here, that these anisotropic orbitals result in a highly
anisotropic van der Waals interaction potential between atoms, not yet observed in ultracold
gas experiments so far, see Sec. 4.1.2.

In case of heavy elements the coupling of electrons is more complicated than for light ele-
ments. The reason for this is that the spin-orbit interaction gets comparable or even stronger
than the Coulomb interaction for electrons in higher orbitals. The well-known and simple
spin-orbit (LS) coupling scheme of electrons2 is not applicable any more and the jj-coupling
scheme has to be used. A special case of this is the J1J2-coupling, which is important for
most excited states of lanthanide elements, see Ref. [Wyb07]. In this scheme, all inner elec-
trons, i. e. electrons in the [Xe] configuration including the 4f shells, as well as all outer
electrons in the 6s shell couple independently in a LS-coupling scheme to states with angular
momentum quantum numbers J1 and J2. They then sum up to the overall total angular
momentum J = J1 + J2 with quantum number J , which is denoted as (J1, J2)J .

Erbium in its ground state (g. s.) is in an H-state with an orbital angular momentum
quantum number of L = 5 due to LS-coupling of all electrons3. This angular momentum is
unusually large compared to alkali and alkaline-earth atoms, which have L = 0 in the ground
state. Using S and J as the spin and total electronic angular momentum quantum numbers,
respectively, the ground state of erbium is written as

g. s. : 3H6

L = 5, S = 1, J = 6 .

We take the prominent 401-nm transition in erbium as an example for the electron coupling
of an excited state. Its excited state (e. s.) results from the excitation of an electron from
the 6s orbital into the 6p orbital. Following jj-coupling, first the 6s and 6p electrons couple

1 Using the standard spectroscopic notation, nℓe, with n the principal quantum number, followed by the
orbital quantum number, ℓ (denoted by s = 0, p = 1, d = 2, f = 3, . . . ), and the number of electrons, e,
in each orbital as superscript.

2 The LS-coupling is also known as Russel-Saunders coupling scheme.
3 As shown in Sec. 2.4.2 small corrections on the order of 0.3% have to be made compared to a pure LS-

coupling scheme.
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4f

mℓ −3 −2 −1 0 +1 +2 +3

ms ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↑

6s

mℓ 0

ms ↑ ↓

Table 2.2.: Electron configuration of erbium in the ground state for the 4f and 6s orbitals4. Electrons
are filled into the 6s orbital before the 4f orbitals according to the Aufbau principle. Arrows denote
occupied states with a spin quantum number of ms = +1/2 and −1/2 by |↑⟩ and |↓⟩, respectively.
The two vacancies in the 4f shells with ml = +2,+3 give rise to the large magnetic moment and the
strongly anisotropic van der Waals potential of erbium.

to a 1P1 state and the rest of the inner electrons couple to 3H6 by LS-coupling. Then, these
two states couple to a (J1, J2)J state. The 401-nm excited state is thus written as

401 nm e. s. : [Xe]4f12(3H6)6s6p(
1P1)(6, 1)7

J1 = 6, J2 = 1, J = 7 .

All bosonic isotopes of erbium have a zero nuclear spin quantum number I. On the contrary,
the fermionic isotope has I = 7/2, which leads to hyperfine structure as J couples with the
nuclear spin to give the total angular momentum quantum number F .

164Er, 166Er, 168Er, 170Er : I = 0
167Er : I = 7/2 g. s. : F = 19/2 .

It is interesting to point out that nuclei with an even number of protons and neutrons will
always have zero nuclear spin, whereas odd-even or even-odd nuclei will have half-integer and
odd-odd nuclei an integer nuclear spin, see Ref. [Wyb07]. More details about the hyperfine
structure of fermionic erbium in the ground state is found in Sec. 2.3.2 and Chapter 8.

On the one hand, erbium’s exceptional electron configuration gives rise to its large magnetic
moment, as shown in Sec. 2.4 and on the other hand, it causes a strongly anisotropic van
der Waals potential, see Sec. 4.1.2. In conclusion, the submerged-shell structure of erbium
with two vacancies in the anisotropic 4f orbitals is at the foundations of its exotic scattering
properties, which will be discussed in detail in Chapter 4.

4 The size of the 6s orbital is shown out of scale with respect to the 4f orbitals.
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Figure 2.1.: Energy level scheme of erbium. (a) Levels up to an energy of a wavenumber of
25,000 cm−1. The full level scheme is presented in appendix E. States with even (odd) parity are
shown in red (black). (b) Energy levels of transitions from the ground state to an excited state with
J → J + 1. The two important transitions for the erbium experiment are at a wavelength of 401 nm
(blue) and 583 nm (yellow). The blue transition is used for Zeeman slowing (ZS), transversal cool-
ing (TC), and imaging, whereas the yellow transition is used for creating the magneto-optical trap
(MOT).

2.3. Atomic energy spectrum

The submerged-shell electron configuration of erbium is the reason for its complicated energy
level structure. Figure 2.1(a) shows part of the erbium level scheme up to a wavenumber
of 25,000 cm−1. The full level scheme is presented in appendix E. A comprehensive set of
spectroscopic data of all lanthanide elements can be found in Refs. [Ral11, Mar78]. For
erbium a total of 312 states with odd parity5 and 358 states with even parity are known
up-to-date. Its ground state has even parity.

The natural linewidth of several excited states of erbium was initially determined by mea-
suring the radiative lifetime after excitation by a pulsed laser. These measurements had
been carried out in Ref. [Mar80]. More recent measurements on a slow atom beam of erbium
include many more transition probabilities of excited states, see Refs. [Law10, Har10].

5 The parity refers to the symmetry property of the electronic wave function. Let the parity operator P̂
invert the wave function through the origin. If P̂Ψ(r⃗) = Ψ(−r⃗) the wave function has even parity, if
P̂Ψ(r⃗) = −Ψ(−r⃗) it has odd parity.
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energy wavelength natural excited state
(cm−1) in vacuum (nm) linewidth el. conf. jj-coupling

24943.272 400.91 29.7(6) MHz
[Xe]4f12 (3H6)

-
6s6p (1Po

1)
(6, 1)o7

17157.307 582.84 186(10) kHz
[Xe]4f12 (3H6)

-
6s6p (3Po

1)
(6, 1)o7

15846.549 631.04 28(7) kHz

[Xe]4f11 (4Io13/2)

5d3/2
6s2

(13/2, 3/2)o7

11887.503 841.22 8.0(2) kHz

[Xe]4f11 (4Io15/2)

5d5/2
6s2

(15/2, 5/2)o7

7696.956 1299.21 2.1(1.1) Hz

[Xe]4f11 (4Io15/2)

5d3/2
6s2

(15/2, 3/2)o7

Table 2.3.: Laser-cooling transitions with J → J + 1 of erbium in the ground state. Note the
decreasing natural linewidth of these transitions. The electron configuration (el. conf.) of the excited
state is given. Electrons in the inner shells (up to the 4f shell) first couple via LS-coupling (shown
in brackets) and then couple via jj-coupling with electrons in outer shells. Spectroscopic data is
taken from Refs. [Ban05, Har10, Law10]. The natural linewidth of the 401-nm transition has been
remeasured within the work of this thesis, see Appendix A.

Due to the large number of energy levels it is possible that an excited state decays with a
large probability into a lower-lying state under the constriction of changing the parity of
the electronic wave function. Dependent on the lifetime of the target state it decays further
down and eventually reaches the ground state again. Intermediate states with much longer
lifetimes compared to the lifetime of the initially excited state are also called metastable states
and have to be considered in laser-cooling applications, see Ref. [McC06b]. In principle, a
few metastable states can be actively depleted by using a repumper laser. To reduce large
technical costs, a simple cooling strategy should avoid repumping many metastable states.

2.3.1. Laser-cooling transitions

Electric-dipole transitions are commonly used for laser cooling. In case of erbium, this re-
stricts possible transitions from the ground state to an excited state with J = 5 or 7. A
broad transition allows an efficient operation of the Zeeman slower (ZS), whereas a narrow
transition is better suited for operating a magneto-optical trap (MOT) due to a lower achiev-
able temperature of atoms, see Chapter 3 for the ZS and Chapter 6 for the MOT. To reduce
the number of possible decay channels into metastable states, the excited state should not
have a too high energy as the number of possible decay channels increases with increasing
energy.
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laser cooling parameter
transition

401 nm 583 nm

transition rate Γ (s−1) 1.87 × 108 1.17 × 106

lifetime τ (ns) 5.35 857

natural linewidth ∆ν (MHz) 29.7 0.19

saturation intensity IS (mW/cm2) 60.3 0.13

Doppler temperature TD (µK) 714 4.6

Doppler velocity vD (mm/s) 267 21

recoil temperature Tr (nK) 717 339

recoil velocity vr (mm/s) 6.0 4.1

Refs.
[Har10]

Appendix A
[Har10]
[Law10]

Table 2.4.: Relevant laser-cooling parameters of the 401-nm and 583-nm transition in erbium used
in the present work. See also Appendix A for a recent measurement of the natural linewidth of the
401-nm transition using a sample of cold atoms.

Early work on laser-cooling of erbium atoms have identified several suitable electric-dipole
transitions from the ground state, with J = 6 and even parity, to an excited state, with
J = 7 and odd parity, see Ref. [Ban05]. The linewidths of these transitions range from a
large linewidth, of a few ten MHz, to a very small one, of only a few Hz. In Fig. 2.1(b) these
laser-cooling transitions are highlighted and Table 2.3 gives a summary of their properties.
For laser cooling in the current work only two transitions are relevant, which will be discussed
in more detail below.

The first transition is at a wavelength of 401 nm (blue), where a 6s electron is excited into a
6p state and couples with the second 6s electron to the singlet state 1P1. This transition has
a natural linewidth of 29.7 MHz and is comparable to the broad |S1/2, F = 2⟩ → |P3/2, F = 3⟩
transition of the D2 line in alkali-metal atoms, which are commonly used in ultracold gas
experiments. The large linewidth makes this transition very suitable for Zeeman slowing,
transversal cooling, and imaging purposes. The second transition is at a wavelength of
583 nm (yellow), where the 6s and the excited 6p electron couple to the triplet state 3P1. It
is an intercombination line and has a narrow linewidth of only 190 kHz, which implies several
advantages for operating the MOT on this transition, see Chapter 6.

Table 2.4 gives many laser-cooling parameters of these two transitions. It consists of the
transition rate Γ, the lifetime τ = 1

Γ , the natural linewidth ∆ν = Γ
2π , the saturation intensity

IS = πhcΓ
3λ3 , the Doppler temperature TD = ~Γ

2kB
, the Doppler velocity vD =

√
kBTD
m , the recoil

temperature Tr = ~2k2
2mkB

, and the recoil velocity vr = ~k
m . Here, h is Planck’s constant with

~ = h
2π , kB the Boltzmann constant, m the atomic mass, and k = 2π

λ the wavenumber with
λ the wavelength of the transition.
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level A (MHz) B (MHz) Ref.

ground state -120.487(1) -4552.984(10) [Chi83]

401 nm e.s. -172.70(7) -4457.2(29) [Jin90]

583 nm e.s. -100.1(3) -3079(30) Chap. 8

Table 2.5.: Magnetic dipole, A, and electric quadrupole, B, hyperfine constants in units of frequency
for the ground state and two excited states (e.s.) used for laser cooling of the fermionic isotope 167Er.

2.3.2. Hyperfine structure

Fermionic 167Er has a rich hyperfine structure due to its nonzero nuclear spin of I = 7/2.
This gives a total of eight hyperfine states with quantum numbers ranging from F = J−7/2
to J + 7/2. The relevant A and B constants for the ground state and for the 401-nm and
583-nm excited states are presented in Table 2.5. Using these two coefficients the transition
energy from the ground state to an excited state with hyperfine energies Eg(Fg, Jg, I) and
Ee(Fe, Je, I), respectively, can be calculated by

~ωFeFg = ∆167 + ~ω166 + Ee(Fe, Je, I) − Eg(Fg, Jg, I) , 2.2

with ~ω166 the transition energy of the most abundant isotope 166Er. For 167Er an isotope
shift ∆167 with respect to 166Er is specified by evaluating the ‘center of gravity’ of the full
hyperfine structure, details are presented in Chapter 8. The hyperfine energies, Ei with
i = g, e, are calculated via

Ei(Fi, Ji, I) =
1

2
AiCi +

1

2
Bi

3Ci(Ci + 1) − 4I(I + 1)Ji(Ji + 1)

2I(2I − 1)2Ji(2Ji − 1)
2.3

Ci = Fi(Fi + 1) − Ji(Ji + 1) − I(I + 1) . 2.4

The resulting hyperfine structure of the ground state and the two excited states are shown
in Fig. 2.2 for zero magnetic field.

2.3.3. Isotope shift

Due to a change in the charge distribution of the nucleus for different isotopes the transition
energy changes linearly dependent on the atomic mass. This is known as isotope shift. The
isotope shift between the two nearest bosonic erbium isotopes is about 820 MHz for the 401-
nm transition and 980 MHz for the 583-nm transition, corresponding to a shift per atomic
mass unit of 410 MHz and 490 MHz, respectively.

In Fig. 2.3 the isotope shift is shown for both transitions by plotting data taken from liter-
ature, see Refs. [Jin90, Con10]. The expected linear dependence of the isotope shift on the
atomic mass can be observed for both transitions within the uncertainty of the reference
values. Within the present work, the isotope shift was experimentally verified by using a
hollow-cathode lamp as spectroscopy cell, see Chapter 8.
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Figure 2.3.: Isotope shift for bosonic isotopes 164Er, 168Er, and 170Er with respect to 166Er. The
isotope shift is plotted for the 401-nm transition in circles and for the 583-nm transition in squares.
Lines are a linear fit to the data points. Data is taken from Refs. [Jin90, Con10].

2.4. Magnetic properties

Lanthanides are ferromagnetic metals but they have a Curie temperature, which is below
room temperature. However, they easily form compounds with transition metals like iron,
nickel or cobalt and are frequently used in alloys to create some of the strongest permanent
magnets, known as rare-earth magnets6. Using these magnets it is possible to create perma-
nent magnetic fields of up to 1.2 T. Rare-earth magnets can maintain such large magnetic
fields because electrons in the 4f shells are strongly localized close to the atomic nucleus.
This means that the 4f electrons tend to have no overlap with orbitals of neighboring atoms
within the compound and lanthanide atoms form so-called paramagnetic centers. These para-
magnetic centers prevent a reduction of the magnetic moment of the lanthanide atom, which
would happen in case of overlapping orbitals7. This process explains the large magnetic field
strength of rare-earth magnets, see Ref. [Jen91].

Several elements of the lanthanide series have a magnetic moment, which is amongst the
largest magnetic moments of all elements. The coupling of electrons results in exceptionally
large quantum numbers. Specifically, large values of the total orbital angular momentum L
and total angular momentum J can be found, see Ref. [Mar78].

2.4.1. Magnetic moment

A full comparison of the atomic magnetic moment, µ, of all elements belonging to the
lanthanide series is shown in Table 2.6. The magnetic moment is given in units of the Bohr
magneton8, µB. Elements with the largest magnetic moment are terbium and dysprosium
with µ = 10µB, followed by holmium with 8µB, as well as europium and erbium with 7µB.

6 Neodymium magnets and samarium-cobalt magnets are most commonly available.
7 A single hydrogen atom is paramagnetic, but in the form of molecular hydrogen as H2 it has diamagnetic

properties, because opposite electron spins pair up and the magnetic moment is lost.
8 The Bohr magneton is defined as µB = e~

2me
with e the elementary charge and me the electron mass. It is

convenient to use µB ≈ 1.39962MHz/G.
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element isotopes ground 4fn 5dm has many is highly
symbol bos. ferm. state n m gJ µ (µB) isotopes magnetic

La 1 0 2D3/2 0 1 0.80 1.20

Ce 3 0 1G4 1 1 0.95 3.78
Pr 1 0 4I9/2 3 0 0.73 3.29

Nd 3 2 5I4 4 0 0.60 2.41 X
Pm 0 0 6H5/2 5 0 0.31 0.76

Sa 4 0 7F0 6 0 0 0
Eu 1 0 8S7/2 7 0 1.99 6.98 X
Gd 3 2 9D2 7 1 2.65 5.30 X
Tb 1 0 6H15/2 9 0 1.33 9.94 X
Dy 5 2 5I8 10 0 1.24 9.93 X X
Ho 1 0 4I15/2 11 0 1.20 8.96 X
Er 5 1 3H6 12 0 1.16 6.98 X X
Tm 1 0 2F7/2 13 0 1.14 3.99

Yb 5 2 1S0 14 0 0 0 X
Lu 1 0 2D3/2 14 1 0.80 1.20

Table 2.6.: Number of different isotopes, ground-state electron configuration, and magnetic proper-
ties of all elements belonging to the group of lanthanides in comparison. The number of stable bosonic
(bos.) and fermionic (ferm.) isotopes of each element is given. The electron configuration is written
as the number of electrons in the 4f and 5d shells using the notation [Xe]4fn5dm6s2. Two selection
criteria are included as a guide for the reader. Having many isotopes requires that an element has
more than three stable isotopes, of which at least one is fermionic. Being highly magnetic means that
µ > 6µB. Elements of interest for novel laser-cooling experiments are written in bold. Data is taken
from Ref. [Mar78].

This is in stark contrast to many other atomic species. Alkaline-earth metals and ytterbium
are in a 1S0 state and do not have any magnetic moment at all, whereas alkali-metal atoms
have µ = 1µB in the ground state due to their single electron in the s shell. Chromium, on
the other hand, has a large magnetic moment of 6µB.

The component of the atomic magnetic moment along the direction of an external magnetic
field9 in z-direction can be calculated by

µ = mJgJµB , 2.5

with mJ the magnetic quantum number, i. e. the projection of the total angular momentum
J along the direction of the magnetic field B. Values for mJ range from −J to +J . Fur-
thermore, gJ is the Landé g-factor, which is also known as the gyromagnetic ratio. It can
be calculated and measured in the experiment by observing the Zeeman splitting of energy
levels in presence of a magnetic field. The precise knowledge of gJ is very important for the
experiment and its exact value for erbium will be derived in the following.

9 The homogeneous magnetic field vector points in the vertical z-direction, unless otherwise noted, and gives
the quantization axis of the system.
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ground
state

Landé
value

LS
correction

relativistic
and diamagn.

correction

calc.
gJ

exp.
gJ

3H6 1.1670533 -0.0013345 -0.00192 1.1637985 1.163801(1)

Refs. Eq. 2.6 [Con63] [Jud61] [Con63] [Con63]

Table 2.7.: Landé value gJ for the ground state of bosonic erbium including corrections. The relative
deviation between theoretical and experimental values is only 2 × 10−6.

2.4.2. Landé g-factor

For the calculation of the Landé g-factor, gJ , two different cases have to be taken into account,
which correspond to either LS-coupling or jj-coupling. In the case of simple LS-coupling,
gJ can be calculated according to

gJ = 1 + (gS − 1)
J(J + 1) − L(L+ 1) + S(S + 1)

2J(J + 1)
. 2.6

with gS the gyromagnetic ratio of the electron spin. It is given by

gS = 2
(

1 +
α

2π
+ . . .

)
≈ 2.00232 , 2.7

with α ≈ 1/137 the fine-structure constant. In the case of lanthanides, several corrections
have to be taken into account for an exact calculation of gJ . A theoretical derivation of all
corrections is given in Ref. [Jud61]. The first correction is due to deviations from perfect
LS-coupling. Second, a relativistic correction addresses the fact that high-orbit electrons of
lanthanides posses a relativistic kinetic energy. The third correction is a diamagnetic correc-
tion and depends on the electron density at the core. All corrections and the experimental
value for gJ of bosonic erbium in the ground state are summed up in Table 2.7, see also
Refs. [Cab61, Con63]. The most precise experimental value for gJ of erbium is 1.163801(1)
and thus the magnetic moment of bosonic erbium in the energetically lowest state with
mJ = −6 is

µ = mJgJµB = −6.982806(6)µB ≈ −9.77 MHz/G . 2.8

In the case of jj-coupling, with a total electronic angular momentum quantum number J1
and J2 of the two coupled parts, the gyromagnetic ratio can be calculated by

gJ = gJ1
J(J + 1) + J1(J1 + 1) − J2(J2 + 1)

2J(J + 1)

+ gJ2
J(J + 1) + J2(J2 + 1) − J1(J1 + 1)

2J(J + 1)
.

2.9

Here, gJ1 and gJ2 are the Landé g-factors for each part according to Eq. 2.6. The ex-
cited states of the 401-nm and 583-nm transitions are [Xe]4f12(3H6)6s6p(

1P1)(6, 1)7 and
[Xe]4f12(3H6)6s6p(

3P1)(6, 1)7, respectively. Including above mentioned corrections for LS-
coupling for gJ1 and gJ2 , Eq. 2.9 gives a value of gJ = 1.160 for the excited state of the 401-nm
transition and gJ = 1.195 for the excited state of the 583-nm transition, see Ref. [Mar78].
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Figure 2.4.: Zeeman energy splitting of bosonic erbium in the ground state with J = 6 for all
Zeeman substates. For this magnetic field range, the Zeeman splitting is linear (see text).

In case of fermionic 167Er the total electronic angular momentum J couples with the nonzero
nuclear spin I = 7/2 to form the total angular momentum F = J + I. This splits energy
levels into a hyperfine structure, see Sec. 2.3.2, and the Landé g-factor has to be calculated
according to

gF = gJ
F (F + 1) − I(I + 1) + J(J + 1)

2F (F + 1)
, 2.10

with gJ as given in Table 2.7 for the ground state. The magnetic moment is then given
by µ = mF gFµB. Here, mF is the projection of F on the quantization axis and ranges
from −F to +F . In the energetically lowest state, with F = 19/2 and mF = −19/2,
this results in gF = 0.735032 and the magnetic moment of the fermionic ground state is
µ = −6.982804µB, which equals the magnetic moment of bosons in the ground state, with
J = 6 and mJ = −6.

2.4.3. Zeeman splitting

In presence of an external magnetic field with field strength B each energy level with total
angular momentum quantum number J splits in a total of 2J + 1 Zeeman substates. Each
state has a magnetic quantum number mJ . The Zeeman energy shift, ∆EZ, with respect to
the level at zero magnetic field is given by

∆EZ(B) = mJgJµBB . 2.11

Figure 2.4 shows the Zeeman splitting of bosonic erbium from 0 to 10 G. The energetically
lowest state has mJ = −6. For low magnetic fields the energy splitting between the two
nearest mJ states is linear10 and has a slope of 1.628879 MHz/G. In fact, the range of linear
Zeeman splitting extends to magnetic fields higher than technically achievable in ultracold gas
experiments, due to the unusually large spin-orbit coupling constant of erbium of 2242 cm−1,
see Ref. [Jud61]. Using radio-frequency fields one can drive transitions from mJ → m′

J =
mJ ± 1, see Sec. 6.3. In the experiment measurements of the transition frequency from
mJ = −6 to m′

J = −5 are used to calibrate magnetic fields.

10 We have experimentally verified the linearity of the Zeeman splitting up to a magnetic field of 50G within
an uncertainty of 0.02% using RF spectroscopy of the transition from mJ = −6 to m′

J = −5.
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Figure 2.5.: Zeeman splitting of the hyperfine states of fermionic 167Er in the ground state within an
external magnetic field. (a) Hyperfine states with a total quantum number F split up in 2F + 1 mag-
netic substates with quantum numbers mF . (b) Energy difference, ∆E, between the two energetically-
lowest substates with mF = −19/2 and −17/2 derived from exact calculation (red) compared to the
linear splitting according to Eq. 2.12 (black). The residual between the two curves is shown in (c).

2.4.4. Hyperfine Zeeman splitting

In case of fermionic erbium each hyperfine state F splits in the presence of a magnetic field
B into a manifold of 2F + 1 substates with quantum numbers mF from −F to +F , see
Fig. 2.5. Consequently, the Zeeman energy of the hyperfine substates can be approximated
by

∆EZ(B) = mF gFµBB , 2.12

for magnetic fields below 20 G. Here, gF is the Landé g-factor from Eq. 2.10. For larger mag-
netic fields, a decoupling of J and I becomes apparent, which is also known as Paschen-Back
effect, and the energy splitting deviates form the linear case. In this regime, the hyperfine
energy levels have to be calculated via exact diagonalization of the atomic Hamiltonian, see
Ref. [Smi65].

Figure 2.5(b) shows the deviation of the exact calculation from the linear splitting following
Eq. 2.12. The residual between these two curves is separately shown in Fig. 2.5(c). The
frequency difference of the transitions from mF = −19/2 to m′

F = −17/2 and mF = −17/2
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to m′
F = −15/2 is 65.5 kHz at a magnetic field of 50 G. This separation would be large

enough to prevent a population of the mF = −15/2 state when driving a transition from
mF = −19/2 to m′

F = −17/2 in an ultracold atomic sample using a radio-frequency. This
method allows for the preparation of a spin mixture of fermionic erbium atoms.
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Experimental setup

This chapter focuses on the experimental setup used to produce ultracold fermionic and
bosonic quantum gases of erbium. The design phase of the experiment started in the second
half of 2009. The vacuum chamber and laser system have been installed in 2010 and 2011.
We obtained the first erbium magneto-optical trap in late 2011, the first Bose-Einstein
condensate in early 2012, and the first degenerate Fermi gas in 2013.

In the following, the erbium apparatus will be described in detail. The chapter is structured
in four sections: Section 3.1 reviews the key experimental requirements of the apparatus,
Sec. 3.2 offers an overview of the vacuum chamber including a high-temperature effusion cell,
Sec. 3.4 introduces the coil system for creating magnetic fields and Sec. 3.5 shows the laser
system for laser cooling and trapping.

3.1. Experimental requirements

The erbium machine was designed from scratch with the aim of creating a quantum gas
experiment. Several parts of the vacuum chamber were standard to ultracold atom exper-
iments, while other parts required a more careful design. In designing the apparatus the
following list of guidelines was taken into account:

• The pressure in the vacuum chamber should allow for a long lifetime of the atomic
sample, which corresponds to a collision rate with the background gas below 0.01 s−1.
This requires a pressure below 10−10 mbar, i. e. within the ultra-high vacuum regime.

• Because of the high melting point of erbium a high-temperature oven has to be used
for evaporating the source material at temperatures of up to 1500 ◦C.

• The amount of source material in the oven should allow for an oven lifetime of more
than a year.

• The magneto-optical trap (MOT) should operate on the narrow transition (with wave-
length λ = 583 nm and linewidth ∆ν = 190 kHz) to guarantee temperatures low enough
for direct loading into an optical dipole trap.

23
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• Hot atoms from the oven have to be slowed to velocities below the capture velocity
of the narrow-line MOT. The usage of a Zeeman slower (ZS), operating on a strong
transition (with λ = 401 nm and ∆ν = 30 MHz), ensures a slow atom beam with a
high flux at the center of the main chamber.

• For future experiments with a Er-Li mixture, a lithium oven should be attachable
to the vacuum chamber, allowing for evaporating lithium at a temperature of up to
500 ◦C. The two atom beams should be combined in order to require only one ZS.

• The ZS should be usable for both species simultaneously. In case of erbium the ZS
should capture atoms with velocities as high as possible to maximize the atomic flux
and increase the lifetime of the source material in the oven. This is less critical in case
of lithium.

• It should be possible to create homogeneous magnetic fields up to 400 G for Feshbach
spectroscopy1 and gradient fields above 50 G/cm for MOT operation and Stern-Gerlach
experiments. Additionally, coils should be installed to allow for compensation of ex-
ternal magnetic fields, active reduction of the magnetic field noise, and creation of a
small homogeneous polarizing magnetic field in any spatial direction.

• The stability of the experiment should be as high as possible in order to be able
to carry out measurements over several days/weeks without significant noise. This
includes short-term stability, e. g. by reducing vibrations as well as long-term stability
by stable environmental conditions, like temperature, humidity, and external magnetic
fields.

During the construction of the erbium machine, we could benefit from various technical de-
velopments in other experimental setups in Innsbruck, like the Sr or the FeLiKx experiment,
see Refs. [Ste13] and [Wil09], respectively.

3.2. Vacuum chamber design

Figure 3.1 gives an overview of the main parts of the vacuum apparatus. The apparatus
can be divided into a high vacuum (HV) section and an ultra-high vacuum (UHV) section.
Each individual part of the vacuum chamber will be discussed in the following sections, see
Sec. 3.2.1 for the HV and Sec. 3.2.2 for the UHV section.

• the high vacuum section includes:

– the high-temperature effusion cell for erbium

– the transversal cooling section

– the low-temperature oven for lithium

1 Nothing was known about the Feshbach spectrum of erbium or other lanthanides at the beginning of the
experiment.
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– the atom beam shutter

– a first pumping stage

• the ultra-high vacuum section includes:

– the Zeeman slower

– the main chamber

– a second pumping stage

– the Zeeman slower mirror

A pressure of about 4×10−9 mbar in the HV section and 1×10−11 mbar in the UHV section
has to be maintained for the experiment. A differential pumping tube connects the two
sections and provides a pressure gradient of up to three orders of magnitude. The sections
can be disconnected from each other by an all-metal gate valve. This allows for refilling the
oven without breaking the vacuum in the UHV section.

The center of the vacuum chamber is situated 200 mm above the surface of an optical table,
making the use of two layers of optical setup with a beam height of 75 mm each possible.
Solid aluminum bread boards with a thickness of 25 mm support the upper optical layer.
Stainless-steel supporting structures are placed on various critical points of the vacuum
chamber to suppress mechanical vibrations to a minimum. A welded bellow is introduced
at the gate valve to reduce mechanical stress while baking out the main chamber, which
leads to a thermal expansion of the vacuum chamber. Furthermore, it allows for a rough
alignment of the two sections with respect to each other. This is crucial to point the atom
beam into the center of the main chamber.

3.2.1. High vacuum section

Figure 3.2 shows a section view of the main part of the HV section. It consists of the high-
temperature erbium oven and a transversal cooling stage, connected by a port aligner. The
latter allows for aligning the angle between the axis of the effusion cell and the main axis of
the vacuum chamber. It is primarily used to compensate a slight downward bending of the
inner parts of the high-temperature oven, which was observed within a few years of operation
at high temperatures. For this, the port aligner is oriented such that a single screw changes
the angle of the oven axis with respect to the horizontal plane. Each subsection of the high
vacuum section will be discussed in more detail in the following.

High-temperature oven For heating erbium to the required temperatures, a commercially
available high-temperature oven is used2. The oven consists of two separately controllable
sections, the so-called effusion cell and the hot lip that are heated by two independent heating
filaments. In the former, solid pieces of erbium (about 10 g) are evaporated and in the latter,
a collimated atom beam is formed using a set of apertures. The two heating filaments make

2 model DFC-40-10-WK-2B, from CreaTec Fischer & Co. GmbH
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Figure 3.2.: High-temperature oven and transversal cooling section. For a better view the model is
shown in a section view. The oven crucible (red) contains pieces of erbium and is shown in the inset
with dimensions in mm. Two apertures (AP1 and AP2), the first in shape of a tube (blue) and the
second like a disk (green), create a collimated atom beam directed at the center of the main chamber.
To prevent clogging of the apertures they are heated to a higher temperature than the effusion cell.
A third aperture (AP3) with an inner diameter of 8 mm basically blocks excessive material exiting
the oven and keeps the transversal cooling section clean.

it possible to set the temperature of the aperture setup to a higher value compared to that
of the effusion cell. Typical operating temperatures are as high as 1100 ◦C for the effusion
cell and 1200 ◦C for the hot lip, which results in an atom flux density of 1014 s−1sr−1 at the
position of the transversal cooling section, see Ref. [Sch11].

Effusion cell The effusion cell consists of a tantalum crucible, see inset of Fig. 3.2. Tan-
talum is used due to its high temperature resistivity, inertness to chemical reactions, and
suppression of forming low-melting alloys with erbium3. It is filled with small pieces of nat-
urally occurring erbium4. A filling volume of 7 cm3 must not be exceeded to prevent damage
of the effusion cell due to thermal expansion of the source material. More details about the
oven filling procedure can be found in Appendix B.

Aperture setup A set of three apertures creates a collimated atom beam, two of which are
shown in the inset of Fig. 3.2 (AP1-AP2) and the third aperture (AP3) is located between
the high-temperature oven and the transversal cooling section. Like the oven crucible all

3 Any low-melting alloys will destroy the high-temperature oven as they will easily leak out of the crucible
in horizontal orientation and short-circuit the heating filaments.

4 10 g of erbium distilled dentritic, purchased from Alfa Aesar

www.alfa.com
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apertures are made out of tantalum. The first two apertures are mounted as an inset directly
into the crucible. Tantalum cylinders are used as spacers, which are held in place by twisted
tantalum wires at the front of the crucible setup. More details about the full characterization
of the atom beam and a test of different aperture geometries for optimum collimation of the
atom beam can be found in Ref. [Sch11].

2D transversal cooling section This section allows for laser cooling the atomic beam in
both transversal directions, see left-hand side of Fig. 3.2 and Sec. 3.3 for more details. The
homemade stainless-steel chamber has an octagonal shape and provides optical access in two
orthogonal directions transversally to the atom beam. On top of the transversal cooling
chamber an all-metal aluminum mirror is mounted on a linear translation stage, which can
be lowered to check the alignment of the Zeeman slower laser beam.

Intermediate pumping stage An intermediate pumping stage is connected to the transversal
cooling section to pump off the volume between the high-temperature oven and the optional
lithium oven. Installing the lithium oven setup would strongly reduce the pumping efficiency,
therefor this intermediate pumping stage is necessary. It consists of a 20 l/s ion getter pump5,
a hot-filament ionization gauge6 for pressure readings, and an angled valve for connecting a
pumping station.

Lithium oven After the transversal cooling section for erbium, it is possible to attach a
second oven. It is intended to evaporate lithium, which has a low melting point of 181 ◦C. To
achieve an optimized overlap with the atom beam coming from the high-temperature erbium
oven, an oven with a design similar to Ref. [Wil09] is intended to be used. Here, small micro
tubes with an inner diameter of 200µm create a collimated atom beam. The volume of the
oven is divided into three sections, separated by thin walls. One section contains the micro
tubes, whereas the other two sections are empty and erbium atoms can pass through. This
will create a mixed erbium and lithium atom beam. Currently this oven is not installed but
replaced by a dummy tube.

Pumping stage 1 A 20 l/s ion getter pump5 and a titanium sublimation pump7 are mounted
to the vacuum chamber to provide pressures below 1 × 10−9 mbar. Furthermore, a hot-
filament pressure gauge6 is connected for pressure monitoring and an angled valve for initial
pumping. Due to the large gettering properties of erbium, see Ref. [Mül72], it is not necessary
to bake the high vacuum section in order to reach suitable pressures. This makes a refilling
of the high-temperature oven very convenient and can be achieved within a single week of
pumping, see Appendix B.

5 VacIon Plus 20 Ion StarCell, from Agilent Technologies
6 UHV-24 dual filament gauge, from Agilent Technologies
7 TSP Filament Cartridge CF40, from Agilent Technologies

http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Vacuum-Technologies/Pages/default.aspx
http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Vacuum-Technologies/Pages/default.aspx
http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Vacuum-Technologies/Pages/default.aspx
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Atom beam shutter An atom beam shutter is mounted on the lower flange of the pumping
stage. After loading the MOT is finished the shutter blocks the atom beam and prevents
erbium atoms from entering the UHV section. It consists of a stainless-steel disk with
20 mm diameter and 2 mm thickness, mounted on a homemade wobble stick. The disk can
be operated by a servo motor from outside the vacuum utilizing a welded bellow.

Full-metal gate valve A full-metal gate valve8 separates the HV section from the UHV
section in case of having to break the vacuum in one of the sections.

3.2.2. Ultra-high vacuum section

As is known, collisions with the background gas limit the lifetime of the trapped atomic
gas. Only at an ultra-low pressure the lifetime is long enough for ultracold gas experiments.
At a typical pressure of 1 × 10−11 mbar in the UHV section the measured lifetime of the
trapped atomic gas is longer than 40 s. This lifetime is much longer than the duration of
the experimental cycle. Thus collisions with the background gas can be neglected for the
experiment. The UHV section consists of four subsections including the main experimental
chamber.

Zeeman slower tube The ZS vacuum tube has a total length of 460 mm and an inner
diameter of 24 mm. It contains a single stainless-steel differential pumping tube with a
length of 300 mm and a diameter of 8 mm. The differential pumping tube is welded on a
CF40 flange, mounted between the gate valve and the ZS tube. Any heating of the vacuum
chamber due to an excessive power dissipation of the ZS magnetic field coils would lead to
an increase of the pressure in the main chamber. To prevent this, a second tube with 40 mm
outer diameter encloses the ZS tube, which creates a 5 mm thick cylindrical spacing along
the whole ZS, allowing for water-cooling. The ZS coils are directly mounted onto the outer
tube for most efficient cooling. The principle of operation and the design of the ZS will be
discussed in Sec. 3.3 in more detail.

Main chamber Atoms are trapped, cooled, and manipulated in the main chamber. Figure
3.3 shows the main vacuum chamber in a section view. It provides optical access for loading
atoms into the MOT, employing various optical dipole traps and optical lattices, and imaging
the atoms using CCD cameras. It is an in-house-manufactured stainless-steel9 chamber with
six different optical axes. As the slow atom beam is strongly divergent when it leaves the ZS,
the distance from the end of the ZS to the center of the main chamber has to be minimized
for a high MOT loading efficiency. This distance is about 120 mm in the current chamber and
it was one of the major geometrical restrictions for the design. Two sets of coils are mounted
on top and below the main chamber for creating magnetic fields, which are symmetric around
the z-axis, see Sec. 3.4. The two sets of coils are mounted in water-cooled copper casings.
The height of each casing is 35 mm with an outer diameter of 136 mm.

8 All-metal gate valve, size CF40, Series 481, from VAT Vacuumvalves AG
9 stainless steel code 316LN (after AISI) or 1.4429 (after ESU)

http://www.vatvalve.com/
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Figure 3.3.: Main vacuum chamber and coil setup shown in a section view. The stainless-steel
vacuum chamber (yellow) has a total of ten anti-reflection coated windows for optical access. Addi-
tionally, two CF40 flanges are used to connect the Zeeman slower (right side) and the UHV pumping
stage (left side), not shown here. The vertical dimension of the chamber between the upper and lower
coil casing is only 38 mm. The bores for the atom beam and MOT beams have a diameter of 34 mm.
Both, upper and lower coil sets are identically built and consist of three coils each. (a) For operating
the MOT, two coils (green) produce a magnetic field gradient in all three spatial directions by a
quadrupole field. (b) Two coils in Helmholtz configuration (blue) give a homogeneous magnetic field
for Feshbach spectroscopy. (c) A smaller set of coils (purple) is used to create stable homogeneous
magnetic fields below 4 G. The coils are held in place by a copper casing (brown), which enables
efficient cooling by water flowing through a pocket on the outer side of the casing. For sufficient heat
transport the coils are moulded into the casing with a thermally conductive resin.
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laser beam
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CF63 window
40 mm

Figure 3.4.: Zeeman slower mirror setup in a section view. The ZS light (blue) enters the vacuum
chamber through a CF63 window. It is then reflected by a solid aluminum mirror (orange) and counter
propagates to the atom beam through the whole vacuum apparatus. The usage of an aluminum mirror
prevents coating of the vacuum window by atoms not being slowed by the ZS and not captured in the
MOT. The mirror is mounted on a port aligner that can be moved and tilted for optical alignment.

Pumping stage 2 The UHV pumping stage consists of a 75 l/s ion getter pump10, a pressure
gauge11, an angled valve, and a titanium sublimation pump7. For an optimized pumping
speed the titanium sublimation pump is contained within a large CF100 vacuum tube.

Zeeman slower mirror In many experimental setups the laser light for the Zeeman slower
is brought collinear to the atom beam into the vacuum chamber via a vacuum window. In
the erbium experiment this would result in an irreversible coating of the window with erbium
atoms coming from the atom beam. Compared to alkali and alkali-earth metals, erbium can
not be heated off the window due to its high melting point. The transmittance of such a
coated window would decrease significantly within a short period of time. A solution for
this problem is to use a mirror inside the vacuum and let the laser beam enter the chamber
perpendicular to the atom beam. The mirror will get coated by a thin layer of erbium over
time but its reflectivity will not suffer much from the coating. Therefore, a solid aluminum
mirror12 is mounted on a port aligner at the end of the vacuum chamber, see Fig. 3.4. We
estimated the reduction of the mirror’s reflectivity by coating with a thin layer of erbium
onto a test mirror to be less than 1.3 %.

10 VacIon Plus 75 Ion StarCell, from Agilent Technologies
11 UHV-24p dual filament, from Agilent Technologies
12 diamond fly-cut, optical-grade aluminum mirror, AlMgSi1, manufactured by Kugler GmbH

http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Vacuum-Technologies/Pages/default.aspx
http://www.chem.agilent.com/en-US/products-services/Instruments-Systems/Vacuum-Technologies/Pages/default.aspx
http://www.kugler-precision.com/
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3.3. Slow atom beam with high flux

The preparation of a slow atom beam with high flux in the main chamber is important for
efficient MOT loading. This will result in a larger number of atoms in the MOT, which
is advantageous for further experiments. In the erbium experiment an estimated flux of
slow atoms13 of about 4 × 108 s−1 at the MOT position is achieved by a combination of a
two-dimensional transversal cooling (TC) stage and a Zeeman slower (ZS).

The maximum longitudinal velocity of the erbium atom beam exiting the high-temperature
oven is about 500 m/s, see Sec. B.2 in the appendix. The ZS has to be well designed and
optimized to slow down atoms close to the MOT capture velocity. The capture velocity is
only 5.6 m/s because of the narrow-line character of the 583-nm transition, see Sec. 6.1.1.
The TC reduces the transversal velocity of the atom beam immediately after leaving the
high-temperature oven. Both, ZS and TC, work best on a broad atomic transition, which
has a short lifetime of the excited state. This enables a sufficiently large number of scattered
photons within the time it takes for the atom to fly through the TC section or the ZS tube.
A suitable broad transition in erbium is the blue transition at a wavelength of 401 nm with
a linewidth of 29.7 MHz corresponding to a lifetime of 5.4 ns, see Sec. 2.3.

3.3.1. Transversal cooling

After atoms exit the oven they are cooled in the transversal directions by two elliptical laser
beams. The ellipticity increases the overlap between the laser beam and the atom beam and
maximizes the amount of scattered light. Both laser beams are retro-reflected to form a two-
dimensional optical molasses. Each beam has a total power of about 40 mW and the light
is generated by a slave diode laser, seeded by the blue master laser, see Sec. 3.5.1. The light
has a detuning of −10 MHz to the atomic resonance, which was determined by maximizing
the MOT loading rate. Under optimal conditions, the TC increases the MOT loading rate
by a factor of up to three to four.

3.3.2. Zeeman slower

The ZS reduces the longitudinal velocity of single atoms by exerting a strong light force
in opposite direction of the atom’s direction of propagation. This is achieved by shining a
laser beam in collinear and counter-propagating direction to the atom beam. To keep atoms
resonant with the light during the full slowing process one exploits the Zeeman shift of atomic
energy levels in a magnetic field. The ZS efficiently reduces the atom’s longitudinal velocity
from a maximum velocity, so-called capture velocity, vZSc , down to a final velocity vf . The
capture velocity is given by

vZSc =
√

2aZSx0 , 3.1

13 Here, slow means a velocity close to the capture velocity of the MOT as depicted in Sec. 3.3.3.
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Figure 3.5.: Increasing-field spin-flip Zeeman slower for erbium and lithium. (a) Six separately
controllable coils (inset) are used to create the necessary magnetic field. Utilizing a bias coil (blue)
for creating a homogeneous magnetic field the capture velocity of the ZS can be tuned (see text). The
resulting total magnetic field (red) is calculated and approximates the ideal field (light-red dashed)
well except at the beginning and the end of the ZS. Two compensation coils before and after the main
chamber (comp 1 and comp 2) are used to reduce the residual magnetic field and its gradient to zero
at the position of the MOT (gray dashed). (b) The resulting value for η calculated for erbium (solid
line) using the total magnetic field from (a). Its mean value (dashed line) is as large as 0.34.

where aZS is the actual deceleration acting on the atoms within the ZS and x0 is the total
length of the ZS. The capture velocity predominantly determines the flux of slow atoms
leaving the ZS as it gives the upper velocity bound in the Maxwell-Boltzmann distribution
of the atom beam coming from the high-temperature oven. The thermal velocity distribution
is shown in Fig. B.3 in Appendix B.

The ZS in the erbium experiment is an increasing-field spin-flip ZS with a length of x0 =
360 mm, see Fig. 3.5. It is designed for a vZSc for erbium of about 400 m/s, which is close to the
maximum of the thermal velocity distribution. By using a spin-flip ZS it is possible to have a
large capture velocity with moderately low absolute values of the magnetic field. Currently,
the ZS is operated with vZSc = 325 m/s, which is limited by the available light intensity from
the injection-locked laser, see Sec. 3.5.1. Furthermore, the ZS can be simultaneously used to
slow lithium as a second species. The general principle of operation is similar to existing ZSs
for many other elements, see Refs. [Lis99, Kro02, Har03, Gün04, Wil09]. A major difference
of the ZS in the erbium experiment to other setups is the ability of changing its capture
velocity in a wide range by the utilization of an additional bias field coil. With such a
coil setup the slowing efficiency can be easily optimized to its maximum, see Sec. 3.3.3. A
consequence of changing the bias field is that the position of the zero-crossing of the magnetic
field moves along the axis of the ZS.
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In the following, we will summarize the general working principle of the ZS before we discuss
the coil setup and the operational parameters of the erbium ZS. For a maximum slowing
efficiency atoms with transition frequency ω0 have to be in resonance with the laser light of
frequency ω over the full extension of the ZS. During the slowing process the Doppler shift
of the atom changes as the atom’s velocity, v(x), changes as a function of position x. The
Doppler shift is compensated by a Zeeman shift induced by the external magnetic field B(x).
Thus the resonance condition equals

ω0 − kv(x) +
µ′B(x)

~
= ω . 3.2

Here, µ′ is the difference of the magnetic moment between the ground and excited state given
by µ′ = (geme − ggmg)µB with magnetic quantum numbers mg, me and Landé g-factors gg,
ge, see Sec. 2.4.3. For the blue transition µ′ = 1.13719µB and k = 2π

λ is the wavenumber of
the transition with wavelength λ. The maximum possible deceleration, amax, which is given
by the light force acting on the atom, depends on the transition parameters as

amax =
~kΓ

2m
, 3.3

with Γ the natural linewidth of the transition and m the atomic mass. For erbium this gives
amax = 6.6 × 105 m/s2. A constant deceleration of atoms in the ZS leads to a square-root
dependence of the velocity on the position along the ZS by

v(x) = vZSc

√
1 − x

x0
. 3.4

The necessary ZS magnetic field can therefore be written as

B(x) = Bb +B0

√
1 − x

x0
. 3.5

Here, Bb is a magnetic bias field, which can be understood as a shift of the square-root-like
magnetic field profile, and B0 is the overall height of the profile. Utilizing Eq. 3.2 these two
parameters can be calculated by

Bb =
~δ
µ′

and B0 =
~kvZSc
µ′

, 3.6

where δ = ω − ω0 is the detuning of the ZS laser light. The required total length of the ZS
to slow atoms from vZSc to a final velocity, vf , is simply given by

x0 =
(vZSc − vf )2

2aZS
. 3.7

The number of scattering events needed for the slowing process can be calculated by

Nsc =
m(vi − vf )

~k
, 3.8

with vi the initial velocity, which can be in general smaller than vZSc . This results for the ZS
of erbium in Nsc = 5.4 × 104 for an assumed vf = 5 m/s and vi = vZSc = 325 m/s. Atoms
which enter the slower with vi < vZSc need a smaller number of scattering events.
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According to Eq. 3.3 one wants to have large values of Γ and k, i. e. small values of λ, for
a large maximum deceleration. The broad 4f12 6s2 1S1 - 4f12 6s6p 1P1 transition fulfills both
requirements with λ = 401 nm and Γ = 2π × 29.7 MHz, see Sec. 2.3. At a first glance, the
large number of metastable states in which the excited 4f12 6s6p 1P1 state can decay into,
see Fig. 2.1, might suggest that this transition is not suitable for slowing at all. However, a
careful analysis of the branching ratio of the excited state shows different. The value for the
branching probability into metastable states is 7.7 × 10−6, see Ref. [McC06b]. Comparing
this with the required number of scattering events from Eq. 3.8 shows that on average 1/3
of the atoms in this velocity class decays into metastable states and can not be loaded into
the MOT. For lower initial velocities the loss fraction decreases, e. g. for vi = 150 m/s the
loss fraction is only 18 %. Although this loss fraction seems large it can be easily overcome
by slightly increasing the oven temperature to have a sufficiently large flux of slow atoms for
loading the MOT14.

From the right-hand-side expression in Eq. 3.6 one can easily see that a larger B0 increases
the capture velocity of the ZS and by this also the atom flux. As mentioned earlier, the main
advantage of a spin-flip ZS is the ability to achieve large values of B0 with a moderate set of
coils as the absolute magnetic fields on both ends of the ZS can be smaller than compared to
a non spin-flip ZS. This is achieved by shifting the magnetic field by Bb, see ideal magnetic
field in Fig. 3.5(a). To minimize the light force of the ZS laser beam on atoms which are
already loaded into the narrow-line MOT the detuning of the ZS light should be as large as
possible. Following Eq. 3.6, the detuning δ also fixes the value of Bb. In the experiment, a
detuning of about −530 MHz corresponding to δ = −17.8Γ is used that results in Bb = 333 G
and B0 is tunable by the bias field coil.

If there are too strong deviations from the ideal magnetic field given in Eq. 3.5, it can easily
happen that atoms will not be resonant with the ZS light and are not contributing to the
slowing process any more. It is therefore advisable for the design of the ZS to assume a
deceleration, aZS, not larger than about 2/3 of the maximum possible deceleration15. This
ratio is known as deceleration parameter and is written as

η =
aZS
amax

, 3.9

where 0 ≤ η ≤ 1. If the atomic transition is not fully saturated η has to be chosen even
smaller due to the limited light force acting on the atoms. Its upper limit is then set by
η < s0

1+s0
with the saturation parameter s0 = I

IS
. In the erbium experiment the current

maximum power of the ZS beam is limited to about 90 mW, which gives s0 = 5 for a beam
waist of the ZS laser of 4 mm. This sets the maximum value of η to 0.83. To ensure reliable
slowing at the beginning of the ZS where atoms are fastest the laser beam is slightly focused
to increase the intensity at this point and make a larger η possible. Figure 3.5(b) shows the
dependence of η over the full length of the ZS calculated for the total magnetic field.

The coil setup of the erbium ZS is as follows. In total six independently supplied coils create
the required magnetic field, see Fig. 3.5(a). Most important is the profile coil, which roughly

14 An estimation of the flux of atoms, which can be captured by the MOT, gives a value of 4 × 108 s−1 at
a temperature of the oven effusion cell of 1100 ◦C, see Ref. [Sch11]. Increasing the temperature by 150 ◦C
will increase the flux by one order of magntidue.

15 The factor of 2/3 is chosen from the experience of previous experiments.
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creates a square-root-like magnetic field according to Eq. 3.5. This is achieved by a variable
number of windings dependent on the position along the ZS tube. Secondly, a cylindrical
bias coil provides the homogeneous bias field for shifting the profile magnetic field. Two
additional coils are located at the beginning and at the end of the ZS. They are constructed
such that the magnetic field drops off as fast as possible when moving away from the ZS16.
Another two coils are used to compensate any residual magnetic field and magnetic field
gradient to zero at the MOT position. Figure 3.5(a) shows the magnetic field created by
each of the coils and the total magnetic field for η = 0.35. To tune η the electric current
through each of the six coils has to be changed accordingly, which results in a shift of the
position of the zero crossing. The value of η can thus be changed from 0.1 to 0.5, which
makes the ZS highly versatile.

We wind the ZS coils using standard enameled copper wires with a special coating for high-
temperature resistivity and long-term stability17. This is important as the ZS coils have
been mounted before performing the bake-out of the UHV chamber. This high-grade copper
wire easily withstands the bake-out temperature of 200 ◦C for a time much longer than two
weeks. The electrical isolation of low-grade copper wire would degrade at this temperature
within a few hours and electrical isolation would not be guaranteed anymore.

Next we will estimate the usability of the ZS for two different atomic species and give the
final ZS operating parameters. Equations 3.1, 3.3, and 3.6 can be combined for an expression
of the deceleration parameter, which can be written as

η =
mµ′2B2

0

x0Γ~3k3
. 3.10

An efficient multi-species ZS for two atomic species A and B can be constructed only if η is
similar for both species, see Ref. [Wil09]. This can be estimated by the ratio

ηA
ηB

=
mAµ

′2
Ak

3
BΓB

mBµ′2Bk
3
AΓA

, 3.11

In case of a dual-species ZS for erbium and lithium ηEr/ηLi = 1.091. Thus it is possible to
use the same ZS for both elements and slowing should work efficiently. The final parameters
of the currently operating ZS for erbium are

vZSc = 325 m/s vf = 5 m/s Bb = 333 G B0 = −627 G η = 0.34 δ = −17.8 Γ .

Assuming the same magnetic field parameters, Bb and B0, this would result in the following
parameters for a ZS for lithium with

vZSc = 600 m/s vf = 100 m/s η = 0.31 δ = −83 Γ ,

which is very similar to other slowers used for lithium, see Refs. [Joc04, Wil09].

16 This is achieved by a short coil geometry and utilizing a larger current than that for the other coils.
17 wire class W200, manufactured by Synflex Elektro GmbH

http://www.synflex.com/
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Figure 3.6.: Velocity distribution along probing direction oriented (a) purely transversal and (b)
under an angle of 45◦ with respect to the atom beam (see insets). The measurement was done in the
center of the main chamber using a CCD camera for imaging the fluorescent light. The effect of the
Zeeman slower (ZS) is clearly seen when turned off (left panels) and on (right panels). The center
of the transversal velocity distribution with the ZS switched off is used as a marker for zero-velocity
calibration. With turned-off ZS the velocity distribution in (b) is outside the shown range at much
larger values because the thermal longitudinal velocity of atoms exiting the oven is about 500 m/s.
When the ZS is turned on a distribution of atoms with a maximum at 8.4 m/s can be observed, see
Gaussian fit (dashed line). A second peak is appears at negative velocities, which is caused by atoms
being stopped by the ZS light and being accelerated back in direction of the oven. Note that also
the transversal velocity distribution gets slightly changed and deviates from the Gaussian fit. This is
due to transversal heating when the ZS is turned on.

3.3.3. Velocity distribution

For optimizing the operational parameters of the ZS we measured the velocity distribution of
erbium atoms after the slowing process in the center of the main chamber. Narrow-linewidth
light at a wavelength of 583-nm was shined on the slow atom beam and the fluorescence signal
was recorded on a CCD camera. The signal was achieved by integrating pixel values within
a small region of interest of about 1 × 2 mm2 around the atom beam. Figure 3.6 shows a
sketch of the experimental setup and the measured velocity distributions. We oriented the
probing laser beam either vertically, i. e. under an angle of 90◦ to the atom beam, or within
the horizontal plane under 45◦ with respect to the atom beam, see insets in Fig. 3.6. The
former setup allowed to probe only the velocity component in transversal direction whereas
the latter gave information on both transversal and longitudinal components. The beam
in vertical direction was retro-reflected and used as a zero-velocity marker for calibration
purposes.
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The 401-nm transition in erbium has a linewidth of 29.7 MHz. This is too large to probe
the velocity distribution with a desired small resolution of maximal 1 m/s. The narrow-line
transition at 583 nm provides a better velocity resolution of 0.1 m/s. For this transition the
experienced velocity-dependent Doppler-shift of the atoms, δν, is given by

δν = v
ν0
c

⇒ v

δν
=

c

ν0
= λ = 0.58

m/s

MHz
, 3.12

where ν0 is the transition frequency and c is the speed of light. As the frequency of the
probing laser could only be detuned within ±60 MHz using a non-specialized AOM setup
the velocity distribution could be recorded between −35 m/s and +35 m/s. The velocity
distribution in Fig. 3.6(b) shows a clear effect of the ZS as a fluorescence signal appears only
when the ZS light is turned on. A fitted Gaussian curve gives a center velocity of 8.4 m/s
with a full-width-half-maximum of 13.4 m/s. This nicely covers the capture velocity of the
narrow-line MOT of 5.6 m/s, refer to Sec. 6.1.1 and Eq. 6.6. With the ZS turned off the
velocity of the atoms is too large and the Doppler shift is larger than the tuning-range of
the AOM and thus no signal could be recorded.

The purpose of this measurement was to verify whether atoms with a velocity comparable to
the capture velocity of the MOT are indeed available in the main chamber. An optimization
of the detuning of the slowing light and the magnetic field was carried out. Final fine-tuning
of the ZS was performed by maximizing the atom number and the loading rate of the MOT.
Only a small change of the initial values was necessary. These results were promising for
setting up the first erbium MOT on the narrow-line transition. The setup of the narrow-line
MOT will be described in Chapter 6.

3.4. Coil setup at main chamber

Magnetic fields play a very important role in ultracold gas experiments. Due to the Zeeman
shift of atomic energy levels, see Sec. 2.4.3 and 2.4.4, and a spin-dependent force acting
on atoms in a magnetic field gradient (so-called Stern-Gerlach experiment) atoms can be
conveniently manipulated from outside the vacuum chamber using magnetic fields. At the
same time this implies that atoms with a large magnetic moment are very sensitive to
unwanted but persistent magnetic field noise.

In particular, three major coil setups are used in the erbium experiment:

• Zeeman slower coils for operating the ZS, see previous description in Sec. 3.3.2.
Regarding the main chamber there are two coils utilized to compensate the magnetic
field and its gradient generated by the ZS at the center position of the main chamber.

• Main coil setup consisting of gradient coils for creating a magnetic field gradi-
ent, e. g. during MOT operation and Stern-Gerlach experiments, as well as low- and
high-field coils for a homogeneous magnetic field, e. g. for Feshbach spectroscopy, see
Sec. 3.4.1.
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• Compensation cage for compensating the Earth’s magnetic field as well as other
external magnetic fields, e. g. from the static magnets of ion getter pumps. Further-
more, it can be used to rotate the magnetic field with the possibility of leaving its
absolute value constant, see Sec. 3.4.2.

The main chamber and attached parts are made of stainless steel with extremely low magnetic
permeability18. This prevents any residual magnetic stray fields generated by the vacuum
chamber after ramping between high and low magnetic fields. The largest amount of periodic
magnetic field noise is introduced by the mains electricity with a characteristic frequency
of 50 Hz and higher harmonics. Other strong non-periodic noise sources come mostly from
neighboring experiments and a mechanical workshop close-by. This magnetic field noise
easily turns into a major technical problem especially if the magnetic field should be reduced
to very small values close to zero. In this case, an active feedback loop with an ultra-low-
noise magnetic field sensor19 has to be used. Furthermore, a high relative magnetic field
stability on the order of 10−4 even at large absolute values of the magnetic field is desired for
Feshbach spectroscopy. This is achieved by using an actively stabilized current source, which
relies on a homemade analog feedback loop with an ultra-stable current transducer20.

3.4.1. Main coil setup

The main coil setup is used to create homogeneous magnetic fields as well as gradient fields by
a set of three coil pairs. Each pair of coils consists of an upper and lower coil. Figure 3.3 shows
a schematic overview of the coil geometries and Fig. 3.7 gives a plot of the corresponding
magnetic fields, i. e. the total magnetic field Btot(ri) and its gradient ∂iBtot = ∂Btot/∂ri
with i = x, y, z, calculated for a unit current of 1 A. All three sets of coils are made up of
enameled copper wire21 placed in a copper casing. For thermal conductivity, the coils are
vacuum moulded into the casing using thermally conductive resin22.

The main coil system is cooled by a water pocket around the perimeter of the copper casing,
see Fig. 3.3. Temperature sensors are placed inside and outside the coils as well as inside
the copper casing for monitoring purposes. An automatic safety system, the so-called inter-
lock system, switches off the coil power supplies when the coil temperature exceeds a given
threshold.

The magnetic fields created by the gradient and the high-field coils can be switched off
in a short time by high-current IGBT switches23. We measured the switch-off-time of the
magnetic field utilizing a pick-up coil. The time is limited to about 5 − 6 ms due to eddy
currents in the steel chamber. Every pair of wires supplying a single coil is twisted as tight
as possible and positioned symmetrically with the other pair of wires of the opposite coil

18 µr < 1.005, see Ref. [Lee05], for stainless steel code 316LN (after AISI) or 1.4429 (after ESU)
19 model Mag-03-MS-70, three-axis magnetic field sensor, noise < 10 pT/

√
Hz, from Bartington Instruments

20 ITN 12-P, 12.5A measuring range, 0.0509% accuracy, from LEM
21 2.50× 1.00mm2 W200 copper wire, outer dimension 2.96× 1.22mm2, from Synflex Elektro GmbH
22 type RAKU-POX 22-G110/7-7, two-component electro casting resin, from RAMPF Holding GmbH & Co

KG
23 dual IGBT module 2MBI100U4A-120-50, Ic = 100A and Uce = 1200V, from Fuji Electric

http://www.bartington.com/mag-03-three-axis-magnetic-field-sensor.html
http://www.lem.com/
http://www.synflex.com/
http://www.rampf-gruppe.de/en/companies-and-products/rampf-taicang-co-ltd/electro-casting-resins/
http://www.rampf-gruppe.de/en/companies-and-products/rampf-taicang-co-ltd/electro-casting-resins/
http://www.fujielectric.com/
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Figure 3.7.: Magnetic field strengths generated by the main coil system. The absolute values of the
total magnetic field Btot(ri) (left) and its gradient ∂iBtot = ∂Btot/∂ri with i = x, y, z (right) along
the x-, y-, and z-direction (colors) for a unit current of 1 A are shown. (a) Magnetic field generated
by the gradient coils (grad) for MOT operation and Stern-Gerlach experiments. (b) Homogeneous
magnetic field induced by a set of coils in Helmholtz configuration for high-field Feshbach (FB)
spectroscopy. (c) Magnetic field of low-field coils (lf) usable up to a maximum field of 4.5 G. Zero
position corresponds to the center of the main chamber.
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3.4. Coil setup at main chamber 41

in respect to the center of the main chamber. Doing so, the magnetic field created by the
current running into the coil cancels with that of the current returning from the coil. This
is intended to reduce any residual magnetic fields created by the power supply wires.

Gradient coils Two coils in anti-Helmholtz configuration create a magnetic field gradient
in every spatial direction, i. e. by creating a quadrupole magnetic field. In this configuration
the gradient in x- and y-direction is half as large as the one in z-direction. Each coil is made
up of six layers with 14 windings each, which makes it possible to use a power supply24 at a
moderate output current, i. e. below 50 A reducing thermal heating. The conversion factor
for the magnetic gradient field is about 2.698 G/cm

A in z-direction. The maximum gradient is
about 80 G/cm, which is limited by thermal heating at a maximum current of 30 A. The total
resistance of the gradient coils is 440 mΩ. At maximum current the gradient coils dissipate
a total power of 400 W in form of heat, which is removed by the water-cooling system.

Feshbach coils The high-field coils are capable of creating a homogeneous magnetic field of
up to 500 G. Due to its Helmholtz configuration the spatial homogeneity of the magnetic field
is better than 0.2 mG/mm at the center of the main chamber, see inset of Fig. 3.7(b). The
calculated conversion factor for the Feshbach coil is 14.290 G/A. The maximum current is
limited to 35 A and the total resistance is 430 mΩ. This corresponds to a dissipated power of
about 530 W. At maximum current the temperature at the center of the coil stack increases
to about 40 ◦C but due to the water-cooling system the temperature of the copper casing does
not exceed 25 ◦C. We measured the frequency response of the high-field coils revealing a cut-
off frequency of about 500 Hz. High-current relays25 make it possible to switch between two
different power supplies, one for a high and one for a low current operation. The first power
supply26 is capable of driving the maximum current whereas the second power supply27 is
limited to about 5 A giving a maximum magnetic field of 70 G. In both cases the current is
actively stabilized using a current transducer28 and a PID control loop to achieve a relative
short-term stability of the magnetic field of better than 2 × 10−4 for the low-current power
supply. The magnetic field of the Feshbach coils was calibrated using atomic radio-frequency
(RF) transitions from mJ = −6 to −5. The average magnetic field noise is estimated to be
40 mG for the high-current power supply and 5 mG for the low-current power supply. In both
cases the main contribution comes from the power supply itself, which could be replaced by
lead-acid batteries for further noise reduction.

Low-field coils A pair of two small coils consisting of two layers with four windings each
creates a magnetic field of up to 5 G. The conversion factor is 477.22 mG

A and the maximum
current should not exceed 10 A. Although they are not in perfect Helmholtz configuration
the coils have a calculated homogeneity of about 0.9 mG/mm. For a typical cloud size of
20µm this would in principle give a spatial deviation of less than 18µG, which is much less

24 switching power supply, model SM 18-50, from Delta Elektronika
25 model G9EA-1-B-24VDC, for 60A and 400VDC, from Omron Corporation
26 switching power supply, model SM 15-200 D, from Delta Elektronika
27 linear power supply, model EA-PS 1032-10 B, from Elektro-Automatik
28 IT 60-1000 S (high current) and ITN 12-P (low current), from LEM

http://www.delta-elektronika.nl/
http://omron.com/
http://www.delta-elektronika.nl/
http://www.elektroautomatik.de/
http://www.lem.com/
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than the magnetic field noise. The low-field coils are supplied by a linear power supply27 with
low noise but an active stabilization of the current is not implemented yet. RF-calibration
yields a total magnetic field noise of about 600µG. A high precision feedback loop would be
necessary for performing low-field experiments below 100µG.

3.4.2. Compensation cage

Three sets of rectangular-shaped coils forming a rectangular cage are used to compensate any
residual magnetic field in x-, y-, and z-direction. An external field is for instance generated
by Earth and the permanent magnets of the ion pumps. The geometric size of the cage is
1200×1200×850 mm3. The center of the cage overlaps with the center of the main chamber
in x- and y-direction but is shifted by 250 mm in positive z-direction. The coils are composed
of 40 windings in x- and y-direction and 30 windings in z-direction. This results in a total
inductance of about 15 mH for each set of coils.

Additionally, the compensation cage can be used to change the direction of the magnetic
field even while keeping the value of the absolute magnetic field constant. Such a magnetic
field rotation is limited to absolute magnetic fields smaller than 1.2 G. In the experiment
this allows for changing the polarization direction of the magnetic dipoles with respect to
the trapping geometry by rotating the orientation of the magnetic field. Due to the large
inductance of the coils the frequency response function shows a high-frequency cut-off at
about 1 kHz. This limits the maximum speed, at which the magnetic field can be rotated,
to about 15 ◦/ms.

3.5. Laser light setup

For the production of quantum gases of erbium we use laser light at a wavelength of 401 nm
(blue light, see Sec. 3.5.1) for ZS, TC, and imaging and light at 583 nm (yellow light, see
Sec. 3.5.2) for magneto-optical trapping. Additionally, for optical dipole traps we employ
far-off-resonance laser light at a wavelength of 1064 nm and 1570 nm, see Sec. 3.5.3.

3.5.1. Blue laser system

For the 401-nm light we use a master laser and two slave lasers. Figure 3.8 illustrates the
optical setup for the master laser whereas Fig. 3.10 shows the optical setup for the slave lasers.
The master laser is utilized for the locking setup, seeding the slave lasers, and imaging atoms
in the experiment. It is a commercial laser29. The light of a diode laser operating at 802 nm
is first tapered-amplified and then frequency-doubled in a bow-tie ring cavity. The maximum
output power of the master laser is 210 mW from which 80 mW are needed for operating the
experiment, see Appendix C. For the ZS- and TC-light injection-locked slave lasers provide

29 TA-SHG-pro system, from Toptica Photonics AG

http://www.toptica.com/
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a high optical power on the experiment table. They are seeded by light coming from the
master laser through optical fibers. The master laser is locked by the modulation-transfer
technique to a spectroscopy cell in form of a hollow-cathode lamp (HCL). We observe about
40 % absorption in the HCL for typical operating parameters of a voltage of 110 V at a
discharge current of 6 mA. The spectroscopy signal contains a clear signal of the transitions
of all bosonic isotopes as well as features coming from the hyperfine structure of the fermionic
isotope. The modulation-transfer technique creates a signal, which can be conveniently used
for laser locking. It is described in Sec. 8.1.2.

In total, five acousto-optic modulators30 (AOMs) are used to shift the laser light frequency to
the desired values, see Fig. 3.8. The master laser is locked on the laser frequency necessary for
the ZS. This is achieved by shifting the light used for the spectroscopy cell with one AOM in
double-pass (DP) configuration by an amount equal to the ZS-light detuning of −530 MHz.
For fermions the spectroscopy signal of the hyperfine transition mF = −19/2 → −21/2
is weak and sits on top of the broad background signal of the bosonic isotope 166Er, see
Chapter 8. Therefore we lock the laser on the bosonic transition and use an additional DP
AOM31 to shift the light by another +150 MHz for experiments with fermionic 167Er.

Because the laser is locked away from the atomic resonance another DP AOM can be used
for shifting the light back on or close to resonance with a variable detuning. This is done
to prepare light for TC, which needs to have a detuning of about −10 MHz with respect
to the atomic transition. The final value of the detuning was determined empirically by
maximizing the improvement of the MOT loading rate when TC is switched on. The light
for absorption imaging is shifted close to resonance in a similar way with a detuning suitable
for the current experiment32. Finally, for selectively removing atoms from an atom-molecule
mixture a weak blowing (or pushing) beam is prepared. It is tuned exactly on resonance
with the atomic transition to have a largest possible light-force acting on the atoms during
the blowing sequence. Usually a pulse with a duration of 1µs and a beam power of 2 mW
giving an intensity on the order of the saturation intensity is sufficient to remove all atoms
from the sample.

Injection-locked lasers

Two injection-locked diode lasers are used as slave lasers on the experiment table, see
Fig. 3.10. Both slave lasers are homemade and share a similar setup. Each one of them
delivers 80 mW of laser light after seeding them with about 2 mW from the master laser.
The first slave laser is used for the ZS and the second one for TC. In this setup only a low
power has to be carried via optical fibers from the laser table to the experiment table. This
makes high-power fibers unnecessary resulting in a larger long-term stability of the laser
system.

30 For the blue laser system mostly AOMs, model BRI-TEF-270-100-401, from Brimrose Corporation are
used, which have a center frequency of fc = 270MHz and a 3 dB-bandwidth of B = 100MHz.

31 model BRI-TEF-80-20-583, with fc = 80MHz and B = 20MHz, from Brimrose Corporation
32 Off-resonant light is used for imaging optically thick atomic clouds to prevent saturation effects.

http://www.brimrose.com
http://www.brimrose.com
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For the slave laser a wavelength-selected single-mode laser diode33 is stabilized in tempera-
ture34 and is powered by a constant current source up to 120 mA. For suppressing unwanted
back-reflections into the laser diode the light passes a polarization-dependent optical iso-
lator35, which is simultaneously used to couple in the light coming from the master laser.
To ensure single-mode operation of the slave laser some light is picked-off and sent to a
homemade wavemeter.

In the case of the ZS the laser beam from the slave laser is first expanded using two telescopes
to a diameter of more than 30 mm before a single lens with a focal length of 1000 mm focuses
the light into the vacuum chamber. Here, the focus is situated at the high-temperature oven.
A standard quarter-wave plate sets the polarization of the beam to circularly polarized.

For TC the laser beam is first elongated to an aspect ratio of about 10 : 1 using cylindrical
lenses before it is split into two beams. The large aspect ratio maximizes photon scattering
by simultaneously having a high intensity and a long interaction time with the atom beam.
Each laser beam is retro-reflected to form the two-dimensional optical molasses.

Imaging setup

Absorption imaging of the atom cloud can be done either in the horizontal or the vertical
direction, see Fig. 3.11. The imaging laser light from the blue laser setup is either sent into the
vacuum chamber through a CF16 flange for horizontal imaging or is recoupled into another
fiber for vertical imaging. The second fiber carries the light below the vacuum chamber
before it enters the vacuum chamber through the lower CF40 window. In both cases the
light is circular polarized by quarter-wave plates in front of the windows.

For horizontal imaging an objective with a magnification of 1.9 creates an image on the
CCD sensor36. The numerical aperture is limited by the geometric size of the CF16 flange to
about 0.1 giving a theoretical resolution limit of 2.5µm. The objective for vertical imaging
has a magnification of 2.5 and creates an image on a second CCD sensor37. In this case the
numerical aperture is determined by the objective and has a value of about 0.08.

3.5.2. Yellow laser system

We use a continuous-wave ring-cavity dye laser38 with rhodamine 6G as an active medium
for a laser light source for the MOT operating at a wavelength of 583 nm. The dye laser is

33 model NDV4313 from Nichia Corporation
34 by the temperature controller WTC3243, from Wavelength Electronics
35 model IO-5-405-LP, from Thorlabs
36 scientific camera model iXon3 897, back-illuminated AR-coated EMCCD, with 512× 512 pixel resolution,

16× 16µm2 pixel size, 14 bit digitization, from Andor Technology
37 scientific camera model Luca R 604, AR-coated EMCCD in OEM housing, with 1004×1002 pixel resolution,

8× 8µm2 pixel size, 14 bit digitization, from Andor Technology
38 CW ring dye laser, from Radiant Dyes

http://www.nichia.co.jp
http://www.teamwavelength.com/
http://www.thorlabs.de/
www.andor.com
www.andor.com
http://www.radiant-dyes.com/
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pumped by a 10 W solid-state laser39 at 532 nm. The bare dye laser has a maximum output
power of 1 W, a linewidth of about 1 MHz, and a frequency drift of 100 MHz/h.

For MOT operation the linewidth has to be decreased below 200 kHz, which is given by the
natural linewidth of the yellow transition, and a frequency-drift lower than a few kHz/h has
to be achieved. The reduction in linewidth is accomplished by introducing an electro-optical
modulator (EOM) into the cavity of the dye laser for a fast feedback-loop with a response
frequency of up to a few MHz. The error signal is generated from a low-finesse cavity
using the Pound-Drever-Hall (PDH) method. We improve the frequency-drift and long-term
stability by locking the low-finesse cavity to an ultra-low expansion (ULE) cavity. The ULE
cavity consists of a ULE spacer40 and two fused silica mirrors, which are optically contacted
to the spacer. The cavity has a finesse of 1865(6) and a free spectral-range of 998.69(2) MHz,
which is similar to the isotope frequency shift of erbium. This turns out to be convenient for
locking to different isotopes of erbium. To achieve sufficiently high stability the ULE cavity
is put under vacuum and shielded from outside temperature fluctuations by two aluminum
shields. The temperature of the ULE spacer is stabilized to its zero-expansion temperature
of −5.65(9) ◦C using four Peltier elements. Utilizing this locking setup the linewidth of the
dye laser could be decreased to 45.0(5) kHz within 10 ms and the drift was measured to be
580(70) Hz/h over a timescale of 40 days. A full description of the locking procedure and
ULE cavity setup can be found in Ref. [Rie12].

Figure 3.9 shows the optical setup of the yellow laser-system. It consists of the dye laser,
the locking setup including the low-finesse and ULE cavities, two DP AOMs for shifting the
frequency of the MOT light and yellow blow light, and the MOT distribution setup. The
output of the dye laser can be monitored on a wavelength-meter and a power-meter. The
dye laser has to be realigned whenever the dye needs to be exchanged. This realignment
would lead to a misalignment of the full optical setup. For convenient realignment a short
fiber is placed between the dye laser and the rest of the optical setup.

Error signals from the low-finesse and ULE cavities are generated by a standard PDH method
using EOMs for sideband creation. The error signal of the ULE cavity is fed to the piezo
crystal of the low-finesse cavity controlling the length of the low-finesse cavity. The error
signal of the low-finesse cavity is then split up in three signals of different frequency ranges
feeding three optical elements inside the dye laser cavity. The low-frequency part, which
goes up to a few 100 Hz, drives a Brewster plate, the mid-frequency part, up to several kHz,
controls a cavity mirror mounted on a Piezo crystal, and higher frequencies up to a few MHz
are applied to the intra-cavity EOM. As the length of the ULE cavity is fixed the frequency
of the laser light used for locking has to be shifted by two DP AOMs41 such that the light
generated by the dye laser is on resonance with the atomic transition. The lock-shift setup
was designed for a frequency tuning range covering at least the free spectral-range of the
ULE cavity of about 1 GHz. One of the two AOMs is used for stabilizing the intensity to
about 100µW. This ensures a constant and small heat input to the ULE cavity. The shifted
light is then carried to the cavity lock setup using an optical fiber and is modulated by
another EOM for the PDH technique.

39 Verdi V10, from Coherent
40 ULE premiumgrade, length 150mm and diameter 60mm, from Hellma Optics
41 model AOMO 3200-125 with fc = 200MHz from Crystal Technology, Inc. (now Gooch & Housego)

http://www.coherent.com/
http://www.hellma-optics.com
http://www.goochandhousego.com/


λ/2

w
av

em
et

er

λ/2

po
w

er
m

et
er

1000

λ/2

λ/2λ/2λ/2

E
O

M

300

λ/4

PD

λ/2

λ/2

lock shift

MOT distr.

λ/2

AOM
DP

MOT

80MHz

λ/4

A
O

M
D

P

bl
ow

80
M

H
z

λ/4

ye
llo

w
 b

lo
w

λ/2

Verdi-V10

dy
e 

la
se

r
rh

od
am

in
e 

6G

583 nm
> 600 mW

532 nm
5.6 W

cavity lock

λ/2

λ/2

E
O

M
31

M
H

z

λ/2λ/4

PD

cavity lock

ULE cavity

lo
ck

 s
hi

ft

λ/2

A
O

M
D

P

lo
ck

20
0M

H
z

λ/4

λ/2

A
O

M
D

P

lo
ck

20
0M

H
z

λ/4

cavity lock

λ/2

lock shift

M
O

T 
di

st
r.

PD

λ/2λ/2λ/2

λ/2λ/2λ/2

M
O

T 
ve

rt
.

M
O

T 
ho

r. 
1

M
O

T 
ho

r. 
2

MOT distribution

low-finesse
cavity
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linewidth of the atomic transition an intra-cavity electro-optical modulator (EOM) is utilized (not
shown). The laser is locked to a low-finesse cavity, which length is locked to an ultra-low-expansion
(ULE) cavity using the Pound-Drever-Hall technique.
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The frequency of the MOT light can be detuned by an AOM42 in double-pass configuration.
Afterwards, the light is carried to the MOT distribution board in a single fiber. After the
fiber a photo-diode monitors the light intensity for intensity stabilization utilizing the AOM.
The light is then split up in three beams, which are carried to the experiment table in
three separate fibers. Two beams are used for the horizontal MOT direction and the third
for the vertical direction. On the experiment table each beam is increased to a diameter
of more than 20 mm using a telescope. This increases the capture velocity of the MOT
according to Eq. 6.6. The enlarged beams are then brought close to the vacuum chamber
using periscopes, see Fig. 3.10. All beams are circularly polarized by achromatic true zero-
order quarter-wave plates43 before entering the vacuum chamber and are retroreflected on
the opposite side of the chamber. The minimum total output power of the dye laser has to
be at least 600 mW otherwise the intensity of the MOT beams is not high enough for MOT
operation. Typically intensity values at the vacuum chamber are as high as 12 IS for each
beam with IS = 0.13 mW/cm2 the saturation intensity of the transition.

3.5.3. Optical dipole traps

After laser cooling atoms in the MOT they are usually loaded into a red-detuned optical
dipole trap (ODT) comprising of various trap geometries and laser wavelengths. A so-called
scanning setup was implemented to achieve a highly efficient loading from the MOT into
the ODT. In this setup the laser beam is deflected in the horizontal, transversal direction
by an AOM with a frequency much larger than any trapping frequencies. This creates a
time-averaged optical potential, which can be changed by tuning the amplitude and speed of
deflection. Using the scanning system the ODT can be increased in size to have a good spatial
overlap between atoms in the MOT and the ODT. This optimizes the loading efficiency to
about 35 %. Furthermore, the scanning system can be used to adiabatically change the
aspect ratio of the ODT, i. e. the ratio of the trapping frequencies in two directions, from 1.5
to 15. A comprehensive description of the scanning system is presented in Ref. [Bai12a].

As soon as atoms are loaded into the ODT further cooling is done via evaporative cooling in a
crossed beam setup, which consists of a horizontal and a vertical trapping beam. A detailed
description of the evaporation procedure can be found in Sec. 7.1.1 for cooling bosons and in
Sec. 9.1.3 for cooling fermions.

In case of fermions the lifetime in the ODT operating at a wavelength of 1064 nm turned out
to be too short for evaporative cooling and further measurements. Due to that restriction
fermions are loaded from the 1064 nm trap into an ODT at 1570 nm. In this trap the lifetime
is about 40 s, which is sufficiently long. The reason for this reduced lifetime of the fermions
in the 1064-nm ODT is not understood so far.

The current ODT setup in the erbium experiment consists of five different beams; two beams
in horizontal and three in vertical direction. The setup is shown schematically in Fig. 3.11.
Each ODT beam is briefly discussed in the following.

42 model BRI-TEF-80-20-583, from Brimrose Corporation
43 model APAW, usable from 500− 750 nm, 40mm diameter, from Astropribor

http://www.brimrose.com
http://astropribor.com/
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Figure 3.11.: Overview of the laser setup for absorption imaging (blue) and optical dipole-trap
(ODT). The main chamber is shown from the front (left side) and from the top (right side). Imaging
the atomic cloud can be done in horizontal or vertical direction. The laser light for the horizontal
dipole trap and the one-dimensional optical lattice is derived from a single-mode master oscillator
power amplifier (MOPA) at 1064 nm (light red). For the vertical dipole trap a Yb fiber laser is utilized
operating at 1064 nm. Additionally, a second horizontal and vertical dipole trap from an Er-doped
fiber laser at 1570 nm is used for trapping fermions (dark red).
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Horizontal 1064 nm ODT The laser light for this ODT has a wavelength of 1064 nm and
is generated by a high-power, single-mode, ultra-narrow linewidth laser44. Light with a total
power of 42 W is sent through a high-power AOM45. The zeroth-order beam is used for the
vertical lattice, see later. For the above mentioned scanning system the first-order beam
is deflected by the AOM. This deflection can be translated into a parallel displacement by
putting the AOM in the focal point of a lens, see Ref. [Bai12a]. The beam is then collimated
by a second lens with a focal length of 250 mm before it is focused into the main chamber
by a third 150 mm lens. This results in a beam waist of wx = 16.1µm and wy = 24.2µm
without scanning. The beam waist in the x-direction can be increased with the scanning
system by up to a factor of ten. Using this ODT with a maximum power of up to 20 W
traps with potential depths of more than kB × 1 mK can be created without scanning and
kB×180µK with maximum scanning. The largest scanning is very suitable for loading atoms
from the MOT into the ODT because of two reasons. First, the large trap provides a good
spatial overlap with the MOT and second, atoms in the MOT have an initial temperature of
15µK, which is one order of magnitude smaller than the trap depth. A minimum trap depth
of a factor of ten higher than the initial MOT temperature is required for a high loading
efficiency.

Vertical 1064 nm ODT This trap is created by light coming from a broadband Yb fiber
laser46 operating at 1064 nm with a maximum output power of 10 W. The vertical beam is
focused by a 400 mm lens and has waists of wx = 224µm and wy = 140µm.

Horizontal 1570 nm ODT A second horizontal trapping beam is created by light from a
single-mode, Er-doped fiber laser47 at 1570 nm. The light is split up using an AOM and
carried to the vacuum chamber by high power, polarization-maintaining fibers48. The first
diffraction order from the AOM is used for the horizontal beam, which is overlapped with
the horizontal 1064 nm trapping beam using dichroic mirrors.

Vertical 1570 nm ODT The light for this beam is taken from the zeroth diffraction order
from the AOM in the horizontal 1570 nm setup. The light is frequency-shifted by a second
AOM to prevent interference with the horizontal beam. The same AOM is used to control
and stabilize the laser power. The beam is then focused into the chamber by a 300 mm
lens.

Vertical 1D lattice with 1064 nm light For confining atoms in a quasi-2D geometry a one-
dimensional optical lattice with a lattice constant of 532 nm can be created in the erbium
experiment. An array of pancake-shaped traps is formed by retro-reflecting the lattice beam.
Light coming from the zeroth order of the AOM of the horizontal 1064 nm trap is sent through

44 model Mephisto MOPA, 42W at 1064 nm, from Innolight (now Coherent)
45 model 3110-197, numerical aperture of 3mm, from Crystal Technology, Inc. (now Gooch & Housego)
46 model PYL-10-1064-LP, 10W at 1064 nm, from IPG Photonics
47 model Koheras Boostik HPA C15, System PM Pzt, 10W at 1570 nm, from NKT Photonics GmbH
48 LMA-PM-15, from NKT Photonics GmbH

http://www.coherent.com
http://www.goochandhousego.com/
http://www.ipgphotonics.com/
http://www.nktphotonics.com/
http://www.nktphotonics.com/
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a second AOM for detuning the frequency with respect to the horizontal beam preventing
unwanted interference effects. Furthermore, an intensity stabilization is implemented using
the AOM. The light is then coupled into a high-power fiber for mode-cleaning. It is brought
above the vacuum chamber before it is focused into the chamber by a 400 mm lens. On the
other side of the chamber the beam is collimated again and retro-reflected forming an optical
standing wave. Monitoring the amount of laser light traveling in backward direction through
the fiber is a convenient method for optimizing the quality of retro-reflection. In the final
setup the lattice beam has a waist of 250µm and gives a trap frequency of up to 31 kHz in
the direction of strong confinement for a power of 8 W. The radial trap frequencies in the
lattice are as low as 33 Hz.
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Ultracold dipolar scattering

Since the very first experiments on ultracold quantum gases have been carried out the scat-
tering properties of particles were of fundamental importance. The reason for this is the fact
that scattering properties reveal explicit information on the interaction between particles.
At small collision energies, which are only achievable with ultracold gases, one can explore
the regime of lowest partial waves. In this regime, the contact interaction between two par-
ticles has been extensively studied during the last years. It is an isotropic and short-range
interaction and can be described by a collision of two hard spheres.

The dipole-dipole interaction (DDI) fundamentally changes the scattering properties of par-
ticles. Its long-range and anisotropic character has strong influences on the scattering cross
section at ultracold temperatures. A new length scale, which is set by the dipole moment of
the particle and its mass, comes into play, the so-called dipole length. The stronger the DDI,
the larger its contribution to the particle interaction is, up to a point, where it becomes the
dominant interaction in the system. A convenient method exists in ultracold gas experiments
to tune the relative strength between contact interaction and DDI. This tunability is induced
by the existence of Feshbach resonances.

One of the most striking features of the DDI is that the anisotropic nature of the dipole
potential causes the elastic scattering cross section not to vanish for decreasing collision
energies. This is the case for contact interaction, except for the well-known s-wave scattering
of bosons. But with DDI, the contribution of higher partial waves can not be neglected,
even in case of identical fermions. Here, the scattering length will rather converge for lower
collision energies to a universal value, which is independent of temperature. These novel
scattering properties are summarized under the term universal dipolar scattering.

In this chapter, we will discuss the scattering physics of dipoles at low collision energies. The
first section is dedicated to anisotropic interactions, i. e. the dipole-dipole interaction and the
anisotropic dispersion interaction between atoms. Then the theory of dipolar scattering is
presented in Sec. 4.2 with the aim of developing a framework for universal dipolar scattering.
Finally, anisotropy induced Feshbach resonances are subject for discussion in Sec. 4.3.
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4.1. Anisotropic interactions

The interaction potential U of two dipolar atoms separated by a distance r has two main
contributions. On the one hand, there is the dipole-dipole interaction Udd and on the other
hand, the van der Waals interaction UvdW.

U(r) = Udd(r) + UvdW(r) 4.1

Here, higher order interactions, like quadrupole-quadrupole or dipole-quadrupole, have been
neglected. The DDI is intrinsically anisotropic as the sign and the strength of interaction
depends on the orientation of the two dipoles. The van der Waals interaction is isotropic for
simple atoms, like alkali metals, but it can also be anisotropic for atoms with complex elec-
tronic structure, like for lanthanides. Both interactions will be discussed in the following.

4.1.1. Dipole-dipole interaction

The dipole-dipole interaction is an anisotropic and long-range interaction. Its anisotropic
nature makes the DDI dependent on the geometry the system. Due to these reasons, it
gained large interest in the field of atomic physics within the last few years. The interaction
potential Udd between two dipoles of identical dipole moment pointing in directions e1 and
e2, see Fig. 4.1(a), can be described in a general form by

Udd(r) =
Cdd

4π

(e1 · e2)r2 − 3(e1 · r)(e2 · r)

r5
. 4.2

Here, r = |r| is the distance between the two dipoles and Cdd the dipolar coupling constant.
The coupling constant is given by µ0µ

2 for particles with a permanent magnetic dipole
moment µ, as in case of magnetic atoms, and Cdd = d2/ϵ0 for particles with an electric
dipole moment d, e. g. for heteronuclear molecules. The magnetic constant µ0 and the electric
constant ϵ0 are used here. The magnetic dipole moment is usually expressed in units of µB,
whereas an electric dipole moment is given in units of Debye1, D, due to convenience. The
conversion factor2 between magnetic and electric dipole moments is 1µB ≈ 9.274×10−3 D.

The dipolar coupling constant for electric dipoles with a dipole moment of 1 D is much
larger than that for magnetic dipoles with a dipole moment of 1µB. This becomes obvious
by expressing the magnetic and electric dipole moments by the fundamental definitions of
µB and the Bohr radius3, a0. The ratio of magnetic to electric coupling constant is given
by

µ0µ
2

d2/ϵ0
≈ α2

1.6
≈ 3 × 10−5 , 4.3

1 A Debye is defined in SI units as 1D = 1
c
10−21 C/m, with c the speed of light.

2 The conversion factor can be calculated by setting d2/ϵ0 = µ0µ
2 and using

√
ϵ0µ0 = 1/c, which gives for

d = 1D and µ = 1µB the following relation 1
cD

µB = 1021 e~
2me

≈ 9.274× 10−3.
3 The Bohr radius is defined as a0 = 4πϵ0~2

mee2
≈ 0.529 × 10−10 m ≈ 0.05 nm, with me the electron rest mass

and e the elementary charge.
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Figure 4.1.: Dipole-dipole interaction (DDI) between two dipoles. Schematic view of the geometry
of two interacting dipoles (a) in the unpolarized case and (b) in the polarized case. (c) Interaction
strength of the DDI, showing its anisotropic character. Regions where two dipoles repel each other
are shown in red (positive potential) and where they attract one another are shown in blue (negative
potential). The central white region is an artifact coming from a cutoff in the interaction strength
used for plotting. It directly shows the d-wave angular symmetry. Dashed lines depict the angle at
which the DDI is zero.

with α the fine-structure constant4. From now on, we will focus on atomic magnetic dipoles
unless otherwise stated.

In presence of an external magnetic field, the dipoles will align along the direction of the
field such that the atomic sample gets polarized, see Fig. 4.1(b). For two aligned dipoles,
Eq. 4.2 simplifies to

Udd(r, θ) =
µ0µ

2

4π

1 − 3 cos2 θ

r3
. 4.4

Here, θ is the angle between the orientation of the dipoles with respect to the interatomic
axis and r denotes the distance between two dipoles. At θm ≈ 54.7 ◦ the DDI vanishes.
When changing θ from 0 to π/2 the interaction changes its sign. For angles smaller than θm
the potential is negative and dipoles attract each other, whereas above θm the potential is
positive, which leads to a repulsion between dipoles. The term 1−3 cos2 θ ranges from −2 to 1,
i. e. maximum attraction is twice as large as maximum repulsion. A configuration with θ = 0,
is called a head-to-tail configuration and with θ = π/2 a side-by-side configuration of dipoles.
It is interesting to note that the angular symmetry of the DDI equals the Legendre polynomial
P2(cos θ) of second order and the interaction is thus d-wave symmetric, see Fig. 4.1(c).

The classification of the DDI as a long-range interaction is subtle as it depends on the
dimensionality of the system. Following an approach in Ref. [Ast08], a classification can be
done by checking whether the interaction energy of a system is extensive or intensive. An
extensive energy is given when the integral of the interaction potential U(r) converges,

∞∫

r0

U(r)dDr , 4.5

with D the dimensionality of the system and r0 some short-distance cutoff parameter. If the
integral does not converge, one speaks of an intensive energy. For a system with extensive
energy the chemical potential µ depends only on the particle density n with µ = µ(n). In

4 The fine-structure constant is given by α = ~
meca0

≈ 1
137

.



4.1. Anisotropic interactions 56

contrast, for a system with intensive energy the chemical potential also depends on the total
number of particles N and such µ = µ(N,n). This difference is used in the following to
classify short-range and long-range potentials. For interaction potentials decaying as 1/ri

at large distances, the integral in Eq. 4.5 converges if D < i. This means that the DDI
with i = 3 has long-range character in three dimensions and the chemical potential is an
extensive property of the system. In one and two dimensions the DDI has to be considered
as short-range. As shown later, the van der Waals interaction has i = 6 and such it can be
fully considered as a short-range interaction, even in three dimensions.

4.1.2. Anisotropic dispersion interaction

In the simplest case the attractive electronic interaction of two atoms is given by the disper-
sion potential5, also known as van der Waals potential,

Udisp(r) = −C6

r6
, 4.6

where r is the internuclear distance and C6 is a constant called the van der Waals coefficient.
The potential is attractive, drops off with r−6 and is usually spherically symmetric. It
is a short-range interaction and is caused by the interaction of the electrons of the two
atoms. Its exact shape can be calculated from spectroscopic data, especially in case of
alkali, alkali-earth, and alkali-earth-like atoms. For this, the well-known Born-Oppenheimer
(BO) approximation is applied, in which the electronic part is decoupled from the nuclear
part of the molecular wave function. Solving the full interaction Hamiltonian with the BO
approximation gives the full electronic interaction potential, known as Born-Oppenheimer
potential.

For lanthanide atoms, the dispersion interaction is anisotropic and the calculation of the BO
potentials is more difficult than for alkali atoms as the electronic structure of the ground
state is very complex and has many energy levels. Nevertheless, the group of S. Kotochigova
at Temple University (USA) pioneered in calculating the dispersion potential for dyspro-
sium atoms, see Ref. [Kot11]. The same approach was also applied to erbium atoms, see
Ref. [Kot14].

Due to the strong spin-orbit coupling of lanthanide atoms in the ground state, their electron
spin S is coupled to their electron orbital angular momentum L, such that the total atomic
electron angular momentum j is formed. In the following, two colliding atoms with a total
angular momentum j1 and j2 are investigated. Due to the strong magnetic field created by
each of the atoms during a collision, j1 and j2 precess around the internuclear axis and give
rise to the magnetic quantum numbers m1 and m2, see Fig. 4.2(a).

The collisional state is defined by the total angular moment J = j1 + j2, its projection M
along the magnetic field, and its projection Ω along the internuclear axis, see Fig. 4.2(b).
Values of Ω range from 0, 1, . . . , J . Each projection of J onto the internuclear axis gives rise

5 The dispersion interaction, also known as London dispersion, describes only the attractive part of the
Lennard-Jones potential. Its repulsive part becomes important at very small values of r and is not consid-
ered in Eq. 4.6
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J odd → ungerade BO potential
J even → gerade BO potential

Figure 4.2.: Total angular moments j1 and j2 of two colliding atoms (shown as black dots) in an
external magnetic field B. The internuclear axis is shown as gray dashed line. (a) The projection of
j1 and j2 onto the nuclear axis is labeled with m1 and m2. (b) Both angular moments are coupled and
form J, which precesses around the internuclear axis and results in the projection Ω. Its projection
in the direction of the magnetic field is called M . (c) Different values of Ω for J = 12 and 10. Even
values of J give rise to 49 gerade Born-Oppenheimer (BO) potentials and odd values to 42 ungerade
BO potentials (see text).

to a separate BO potential, see Fig. 4.2(c). Only the projections on the internuclear axis are
good quantum numbers during a collision process, see Ref. [Kot11]. The quantum numbers
m1 and m2 can change in a collision to m′

1 and m′
2 as long as Ω = m1 +m2 = m′

1 +m′
2 stays

conserved.

For two erbium atoms, having j = j1 = j2 = 6 and J = 12, there are (2j + 1) − Ω different
potentials with gerade and ungerade parity for each value of Ω. This results in a total of 91
BO potentials for Er2. There are 49 potentials with gerade and 42 potentials with ungerade
symmetry. Gerade BO potentials correspond to even values of J and ungerade potentials to
odd values.

In case of colliding bosons with the same value of ji, only gerade states have to be considered.
Using atomic spectroscopy data, the BO potentials have been calculated within an ab initio
relativistic, multi-reference configuration-interaction method developed in Ref. [Kot97]. This
results in a matrix of van der Waals coefficients, C6, dependent on the quantum numbers
m1, m2, m

′
1, and m′

2. Using this matrix, the dispersion potential has be written as

Udisp(r) = −C6(m1m2,m
′
1m

′
2)

r6
, 4.7

with r the separation between the atoms. The dispersion coefficients are calculated by
evaluating the coupling from the initial state |j1m1, j2m2⟩ to the final state |j1m′

1, j2m
′
2⟩

by coupling through all possible electronic states |najama, nbjbmb⟩ of intermediate electron
configurations a and b. Here, n denotes the main quantum number of the electronic states.
This calculation can be formally written as, see Ref. [Kot11],

⟨j1m1, j2m2|Udisp |j1m′
1, j2m

′
2⟩ =

∑

najama
nbjbmb

1

(E1 + E2) − (Enaja + Enbjb)

× ⟨j1m1, j2m2|Udd |najama, nbjbmb⟩
× ⟨najama, nbjbmb|Udd |j1m′

1, j2m
′
2⟩ ,

4.8
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Figure 4.3.: Van der Waals C6 coefficients of erbium. (a) Different values of the C6 coefficients of
the 49 gerade BO potentials of Er2 dependent on Ω. The red arrows show the orientation of J , when
the internuclear axis is taken to be along the horizontal direction. (b) Born-Oppenheimer potential
minima dependent on the internuclear distance r. In this graph, the different potential depth of all
49 gerade BO potentials is shown. Both graphs are taken from Ref. [Kot14].

with Enaja and Enbjb the energies of the electron configuration a and b, and E1 and E2 the
ground state energies of the colliding atoms. The coupling between two electronic states is
induced by the electric dipole-dipole interaction as

Udd(r) =
1

4πϵ0

d1 · d2 − 3d1d2
r3

. 4.9

Here, di are the electric dipole operators and di their projection along the internuclear axis.

Figure 4.3 shows the values of all calculated C6 coefficients of the 49 gerade BO potentials of
erbium dependent on the quantum number Ω. Note, that for different values of Ω a different
number of C6 coefficients exist, as shown in Fig. 4.2(c). The spread of the coefficients is
caused by the anisotropic electric dipole interaction between electrons according to Eq. 4.9,
which is in case of lanthanide atoms due to electrons in the 4f shell. It is often referred to
as anisotropic dispersion interaction (ADI). The amount of anisotropy in the C6 coefficients
can be characterized by introducing ∆C6. Results of the calculation for erbium atoms are
C6 = 1723 a.u. and ∆C6 ≈ 350 a.u., see Ref. [Kot14].

Figure 4.4 gives an overview of relevant interaction terms for the collision of two erbium
atoms. For comparison, the energy of the Zeeman splitting for a typical magnetic field
of B = 1 G and 100 G is shown additionally. Spin-changing collisions can only occur at
internuclear distances where the anisotropic interaction terms, i. e. magnetic dipole-dipole
interaction and anisotropic dispersion interaction, become larger than the Zeeman splitting,
which is the case for distances of r < 170 a0 at B = 1 G but r < 45 a0 at B = 100 G.

One of the most important consequences of anisotropic interactions, namely both DDI and
ADI, is the fact, that they provide a coupling between electronic degrees of freedom and
molecular rotation. The DDI couples rotational states with ∆ℓ = 2 and the ADI with
∆ℓ = 4, see Ref. [San03b]. This means, that during a collision, the m quantum numbers can
change as long as the total projection quantum number Mtot = m1+m2+mℓ stays conserved.
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Figure 4.4.: Comparison of interaction potentials U in atomic units (a. u.) of two colliding erbium
atoms dependent on the interparticle distances r. Here, we compare the magnetic dipole-dipole in-
teraction C3

r3 (solid red), the electrostatic quadrupole-quadrupole interaction C5

r5 (dash-dotted green),

the isotropic dispersion interaction C6

r6 (dashed blue), and the anisotropic dispersion interaction ∆C6

r6

(solid purple). The quadrupole-quadrupole interaction can be neglected due to its small value. The
long-range character of the dipole-dipole interaction can be observed, whereas at short-distances the
dispersion interaction dominates. Taken from Ref. [Kot14].

This will be of importance, when we discuss the emergence of Feshbach resonances induced
by anisotropic interactions, see Sec. 4.3.

In conclusion, the peculiar electron configuration of lanthanides leads to a highly anisotro-
pic dispersion interaction potential. In combination with the DDI, these two interactions
effectively couple atomic electronic states with molecular rotational states.

4.2. Dipolar scattering

The scattering process of two particles can be in the simplest case described by writing the
total wave function as the sum of an incoming plane wave and an outgoing scattered wave.
From the knowledge of the scattering amplitude, f(θ), one can calculate the differential
cross section, i. e. the cross section per unit solid angle. The amplitude of the outgoing wave
depends on the angle θ with respect to the incoming wave. The differential cross section is
defined by

dσ

dΩ
= |f(θ)|2 . 4.10

The scattering cross section can then be calculated by integration, giving

σ =
4π

k2

∞∑

ℓ=0

(2ℓ+ 1) sin2 δℓ , 4.11
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with k the wave number of the incoming wave and δl the phase shift at r → ∞ between the
incoming and outgoing wave with an angular momentum quantum number6 ℓ. The collision
energy is given by

E =
~2k2

2mr
. 4.12

Here, mr is the reduced mass with mr = m1m2
m1+m2

for two particles of mass m1 and m2, which
simplifies to mr = m

2 for particles with identical mass m.

In case of an anisotropic interaction potential, a multichannel description of the scattering
process has to be used, because the scattering problem can not be reduced to only one single
channel, see Ref. [Mar98]. This would usually be the s-wave channel with ℓ = 0 for colliding
bosons. A calculation of the total elastic cross section between identical particles can then
be carried out by

σ
el B(F )

= 8π
∑

ℓ,ℓ′=
even
(odd)

∑

mℓ,m
′
ℓ

|tℓ
′m′

ℓ
ℓmℓ

|2 , 4.13

for bosons (B) and fermions (F ), respectively. Here, mℓ is the projection of the angular

quantum number and t
ℓ′m′

ℓ
ℓmℓ

= T
ℓ′m′

ℓ
ℓmℓ

/k are the reduced T -matrix elements, which contains
the asymptotic phase shift, δℓ, of each partial wave. Note, that in the limit of spherically
symmetric collisions, i. e. without any dipole-dipole interaction potential, the matrix reduces

to t
ℓ′m′

ℓ
ℓmℓ

= −asδℓ0δℓ′0δmℓ0δm′
ℓ0

, with δij the Kronecker delta.

In the case of a short-range potential, the phase shift changes as δℓ ∝ k2ℓ+1 for small k
according to the Wigner threshold law. Assuming an interaction potential varying like r−i

at large distances this is only true for partial waves with ℓ < i−3
2 . For higher partial waves

δℓ ∝ ki−2, see Refs. [Lan77, Pet02]. The scattering phase shift for partial waves can be
written as

tan δℓ ∝ Ak2ℓ+1 +Bki−2 , 4.14

with constants A and B, which are determined by the interaction potential. The first term
describes the action of the short-range potential, whereas the second is due to long-range
scattering taking place outside the centrifugal barrier, see Ref. [Sad00].

For a van der Waals interaction potential with i = 6, this argument implies that all phase
shifts of partial waves other than the s-wave become negligible small as k → 0. In this case,
the s-wave scattering cross section σs is only determined by the s-wave scattering length,
as, and the phase shift can be written as δ0 = −kas. From Eq. 4.11 and also from Eq. 4.13
follows by approximation the well-known result for identical bosons7 of

σel B = σs =
8π

k2
δ20 = 8πa2s . 4.15

The fact that the s-wave scattering length is one of the most important parameters for
collisions in the ultracold regime can be described by the following. Due to the large size of
the thermal de Broglie wavelength, given by λdB = h/

√
2πmkBT , at low temperatures T the

6 The notation of partial waves follows the usual rule for labeling an angular momentum quantum number
using s, p, d, f, g, . . . for ℓ = 0, 1, 2, 3, 4, . . ..

7 For bosons, Eq. 4.11 has to be multiplied by two due to the symmetrization of the wave function.
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inner-lying small-scale structure of the interaction potential can not be resolved anymore.
Therefore, the shape of the potential does not matter as long as it gives the same value for
the scattering length and such it can be replaced by a simpler model with the same effective
interaction. This is known as the so-called hard-core model describing the contact interaction
between particles.

In presence of DDI the picture of the scattering process changes fundamentally, see Ref.
[Mar98]. Its long-range character dropping off as r−3 implies, that for all partial waves, the
phase shift δℓ ∼ k for small k and thus the phase shift does not vanish. It is explicitly shown
in Ref. [Deb01], that the reduced T -matrix elements from Eq. 4.13 stay non-zero for k → 0.
This means that all partial waves contribute to the scattering amplitude and the scattering
cross section contains a sum over phase shifts of all higher partial waves.

A direct consequence arising from dipolar scattering can be nicely observed using a Fermi
gas in a single spin state. Namely, the scattering cross section of identical, dipolar fermions
does not vanish at low temperatures. It rather approaches a constant, nonzero value when
going to zero temperature as will be shown in the following. This is in stark contrast to
the ordinary situation without DDI, for which σel F = 0 for T → 0. The consequence of the
nonzero value is that scattering can be used to accomplish evaporative cooling of a single-
state dipolar Fermi gas, which had been predicted by theory and was recently experimentally
shown, see Ref. [Mar98] for theory and Chapter 9 for the experimental results.

4.2.1. Universal dipolar scattering

Dipolar scattering theories predict an energy-independent elastic scattering cross section
in the regime of low energies, see Refs. [Lan77, Sad00, Bar08]. In this regime, σel takes a
constant value, which is for fermions purely determined by the strength of the dipole-dipole
interaction and the particle mass, whereas for bosons the s-wave contribution from contact
interaction has to be added. When the DDI becomes the dominant interaction, i. e. when the
scattering process is insensitive to short-range interactions, the emergence of an universal
behavior can be observed, see Ref. [Tic08]. This causes different dipolar systems, bosonic
as well as fermionic ones, to show basically the same scattering behavior. According to
Ref. [Boh09], a universal scaling law can be found in two distinct regimes. The first regime
is at low collision energies with a constant scattering cross section, whereas the second one is
found at large collision energies. To estimate the transition point between these two regimes,
it is important to compare the collision energy from Eq. 4.12 with the energy scale set by
the DDI as

ED =
Cdd

4πa3D
=

16π2~6

m3
rµ

2
0µ

4
. 4.16

Here, aD is a typical length scale for characterizing two colliding dipoles8. This gives

aD =
mrCdd

4π~2
, 4.17

8 It can be obtained by equating the centrifugal energy EZ = ~2
mra

2
D

with the dipolar energy ED. Its definition

is similar to the dipole length, ad, with the only difference that for two colliding dipoles the reduced mass
has to be considered.
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which results for two colliding 168Er atoms in aD = 99.4 a0. Taken this into account, the
dipolar energy of 168Er is ED = kB×209µK and for fully polarized KRb as low as kB×83 nK.
Temperatures below this energy belong to the ultracold and above to the cold regime. Only
in the ultracold regime, purely elastic threshold scattering can be observed, whereas in the
cold regime inelastic collision have to be taken into account.

The second universal behavior can be observed for collisional energies larger than the dipolar
energy, i. e. outside the threshold region. In this cold regime, the cross section scales as
σ ∼ aD/k. Here k is the wave number of relative motion of the two collision partners and
thus σ drops off as 1/

√
E. At even higher temperatures, the collision becomes semiclassical.

By applying the Born approximation to the scattering of dipoles one can calculate expressions
for the elastic cross section in the ultracold limit with a collision energy E < ED. The Born
approximation assumes that the incoming scattering wave is not substantially changed by the
interaction potential, which is true for long-range scattering outside the centrifugal barrier,
see Refs. [Sha72, Gao99, Gao08]. The result for the total elastic cross section, σel, depends
on whether scattering occurs in even or odd partial waves with

σeel = σeBorn + σs =
16π

45
a2D + 4πa2s , even (i. e. for bosons)

σoel = σoBorn =
16π

15
a2D , odd (i. e. for fermions) .

4.18

For even partial waves the second term gives the contribution coming from the contact
interaction characterized by the s-wave scattering length as. For indistinguishable particles
both cross sections in Eq. 4.18 have to be multiplied by two. For distinguishable particles in
different partial waves both cross sections of even and odd partial waves have to be added.
In case of s-wave scattering of identical bosons the elastic cross section reads

σel B =
32π

45
a2D + 8πa2s , 4.19

whereas for identical fermions colliding in p-wave the cross section reads

σel F =
32π

15
a2D . 4.20

It is remarkable that σel only depends on the dipole length aD and on as for bosons, but is
independent of energy and temperature. The universal behavior of the scattering length was
studied in detail with a deeply degenerate Fermi gas of 167Er for the first time, see Chapter 9.
Signatures of this effect have been observed in an experiment using 161Dy, see Ref. [Lu12].

4.3. Anisotropy-induced Feshbach resonances

Feshbach resonances (FR) are well-studied in collisions of alkali-metal atoms, see Ref. [Chi10]
for a review. They are used in many applications in ultracold-gas experiments and have de-
veloped to a standard tool within the last decade. The existence of FR allows for example
to tune the particle’s scattering length and convert a weakly interacting gas into a strongly
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interacting gas of atoms. Alternatively, the scattering length can be tuned to zero, which
essentially turns off interactions and an ideal Bose or Fermi gas can be prepared. FRs had
also been the key element in observing the crossover from a molecular BEC to a degenerate
Fermi gas, the so-called BEC-BCS crossover [Bar04]. Furthermore, two particles can be as-
sociated to a weakly-bound molecule using a FR [Köh06], which is the first step in creating
ultracold polar molecules in its rovibronic ground state by transferring them with the help
of the stimulated Raman adiabatic passage (STIRAP) technique [Dan08, Lan08, Tak14]. As
a last example, FRs make it possible to study three-body Efimov physics [Kra06, Fer11].
In most applications, FRs are either induced magnetically/electrically by an external mag-
netic/electric field or optically by a light field. The method of using a magnetic field is
commonly implemented because of its ease of use in the experiment and will be the focus of
this thesis.

The exotic interaction properties of erbium give rise to a very rich Feshbach spectrum, see
Ref. [Kot14]. It is instructive to compare FRs in erbium with those in ordinary alkali metals.
In the latter case, FRs are induced by a different magnetic moment of different molecular
hyperfine states. For bosonic erbium, FRs occur due to the coupling of rotational bound
states because hyperfine structure is missing here. The coupling is achieved by the anisotropic
dispersion potential as well as the anisotropic dipole-dipole interaction, see Ref. [San03b].
Calculations have shown that both interactions give significant contributions to the Feshbach
spectrum, see Ref. [Pet12] and Fig. 4.6. The very same argument also applies to the collision
of dysprosium atoms, but does not apply to chromium atoms, as in this case anisotropic
dispersion interaction is absent.

FRs can be studied only at ultracold temperatures, where losses due to inelastic three-body
collisions are suppressed. In case of bosonic erbium, all atoms are prepared in the lowest
Zeeman sublevel with a total atomic angular momentum of j1 = j2 = 6 and its projection
along the magnetic field mj1 = mj2 = −6. There is no hyperfine structure for bosons due to
zero nuclear spin quantum number. For collisions of atoms in this stretched state exists only
one collision channel with zero relative nuclear orbital angular momentum quantum number
ℓ, resembling a s-wave collision. FRs only appear due to the coupling to bound states with
ℓ ̸= 0, see Ref. [Pet12]. The Hamilton operator describing the collision can be written as

Ĥ = − ~2

2mr

d2

dr2
+

ℓ̂
2

2mrr2
+ gjµB(mj1 +mj2)B + V̂ (r, τ) , 4.21

with mr the reduced mass and B a homogeneous magnetic field along the z-direction. Here
the first two terms give the relative kinetic and rotational energies of the collisional state and
the third term denotes the Zeeman interaction energy, with gj the g-factor. The electronic
Hamiltonian, V̂ (r, τ), is anisotropic and depends on the orientation and separation between
the two atoms, with an electronic configuration labeled by τ . It consists of the magnetic
dipole-dipole and quadrupole-quadrupole interaction as well as the anisotropic dispersion
interaction. As shown in Sec. 4.1.2, the anisotropic dispersion interaction is caused for lan-
thanides by electrons distributed in the 4f shells. These shells lie deep within the atom’s
electron cloud and do not overlap with the electron cloud of the nearby atom. Thus, the
bonding of lanthanide molecules is mainly due to an overlap of the outer-lying isotropic 6s
shells.
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Figure 4.5.: Anisotropy-induced Feshbach resonances of bosonic erbium atoms. The molecular
potential, which depends on the internuclear distance r, is shown only for selected values of ℓ. In
principle, 49 different BO potentials are present for every value of ℓ, as in Fig. 4.3(b), but for simplicity
only the molecular potential for Ω = 12 is plotted. The red lines show rotational states up to ℓ = 40 in
steps of ten for the energetically lowest magnetic state with mJ = −12. The Zeeman splitting EZ(B)
for a magnetic field of 50 G is only visible after scaling the gray shaded area of the plot, see inset.
Here, the open channel is shown as a solid black line, and closed channels by dotted lines. States with
different magnetic quantum numbers mJ are coded in color. As the Zeeman splitting depends on B,
the energy of each bound state is tunable with B (indicated by arrows). A FR appears, whenever
the energy of a bound state crosses the threshold of the open channel making ∆E = 0. Due to the
large number of magnetic states and the coupling of rotational states up to ℓ ≈ 50, the density of
accessible closed channels is extremely high. This large density can’t be observed with alkali metals.

As shown in Ref. [Pet12], coupled-channel (CC) calculations can be performed in the basis
|(j1j2)jmj , ℓmℓ⟩ = Yℓm(θ, φ) |(j1j2)jmj⟩, with Yℓm(θ, φ) the spherical harmonic functions and
the angles θ and φ give the orientation of the internuclear axis with respect to the magnetic
field. The Hamiltonian of Eq. 4.21 conserves Mtot = mJ +mℓ and is invariant under parity
operation, so that only even or odd ℓ states are being coupled with each other. In case of
homonuclear collisions only basis states with even J + ℓ exist and for s-wave collisions of
erbium atoms it gives Mtot = −12.

Figure 4.5 shows the magnetic tunability of molecular potentials, which is a necessary premise
for the existence of magnetic FRs. States with a rotational quantum number up to ℓ = 40
are shown in the figure. A change of ℓ is possible due to strong anisotropic interactions
between the two atoms, which couples rotational states with ∆ℓ = ±2. Atoms collide in an
incoming or open channel and can be resonantly transferred into a bound molecular state or
closed channel, when the energies of both channels are degenerate. The separation between
the two channels, ∆E, is tunable by an external magnetic field B via the Zeeman shift.

Early CC calculations of the scattering length have revealed many FRs at magnetic fields
below 200 G already when taking only up to ℓ = 10 partial waves into account, see Fig. 4.6.



4.3. Anisotropy-induced Feshbach resonances 65

0 50 100 150 200
-2000

-1000

0

1000

2000

3000

magnetic field (G)

sc
at

te
rin

g 
le

ng
th

 (
a 0)

no ∆C6  

all interactions 

Figure 4.6.: Preliminary calculated scattering length of 168Er dependent on the magnetic field to
show the important role of the anisotropic dispersion interaction. When neglecting the anisotropic
dispersion interaction (red), the number of FRs is strongly decreased compared to the case, in which
all interactions are taken into account (blue). Only rotational states up to ℓ = 10 have been considered
for coupled-channel calculations. This calculation was carried out for a temperature of 30 nK and
zero collision energy. Taken from Ref. [Kot].

A qualitative analysis showed that more resonances appear as more and more partial waves
were included in the calculations. Recent measurements verified a number of resonances
corresponding to a density of about three per Gauss, see Refs. [Bau14, Pfa] for dysprosium
and Chapter 10 for erbium. An estimation using a random quantum defect theory approach
suggests that up to ℓ ≈ 50 partial waves need to be included for describing the experimental
results.

Within the coupled-channel calculations, not only the density of resonances changes with
increasing values of ℓ but also the position of a resonance shifts significantly. The position
converges within a few Gauss for a partial wave number being four larger than the partial
wave number at which the resonance has initially appeared. This behavior with increasing ℓ
and the strong coupling of rotational states can not be observed in ultracold gas experiments
with alkali-metal atoms or chromium. Moreover, it even requires a new way of labeling
FRs. It was suggested in Ref. [Pet12] to use the specific ℓ value at which a FR appears
in calculations for labeling purposes. Recent work has shown that measuring the magnetic
moment of the bound state might be utilized to assign rotational quantum numbers for
specific FRs, see Refs. [Aik14a, Kot].

As mentioned earlier, a FR occurs when the energy of the closed state, Ec = ∆E, is equal
to the energy of the open channel, such that Ec = δµ(B−Bc) = 0. Here, δµ is the magnetic
moment of the molecular state with respect to the magnetic moment of the atomic threshold
and Bc is the magnetic field, at which the uncoupled closed channel crosses the threshold.
Then the bound state is strongly coupled to the open channel and the scattering length
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Figure 4.7.: Scattering length (red) and binding energy (blue) close to a Feshbach resonance of
168Er. The scattering length diverges at the position of the resonance B0 and has a zero crossing at
Bzero, which is characterized by the resonance width ∆. The resonance position is shifted by δB due
to coupling between open and closed channels. The bound state energy, Eb, varies quadratically close
to the resonance, whereas the energy of the bare, uncoupled closed channel, Ec, depends linearly and
crosses the threshold at Bc.

depends on the magnetic field like, see Ref. [Chi10],

a(B) = abg

(
1 − ∆

B −B0

)
, 4.22

where ∆ = |Bzero − B0| is the width and B0 is the position of the resonance, see Fig. 4.7.
Here Bzero is the magnetic field at which a = 0. The background scattering length abg
characterizes the scattering length away from the resonance. The position of the FR, B0,
at which a diverges, is shifted away from the position without coupling, which is denoted
by Bc, due to the coupling between the closed and open channel. The shift is given by
δB = −δE/δµ, which results in B0 = Bc + δB.

Note that in case of alkali atoms only the van der Waals interaction determines abg, whereas
for dipolar systems an additional dipolar contribution to the scattering length has to be
considered. See Sec. 7.3.1 for a measurement of the scattering length of different erbium
isotopes via the cross-dimensional rethermalization method.

Close to the FR the energy of the bound state depends quadratically on the magnetic field
with

Eb = − ~2

2mra2
. 4.23

Further away from the FR, the energy of the closed channel Ec varies linearly with the
magnetic field as

Ec = −δµB . 4.24

The binding energy of the closed channel can be measured relative to the two-atom threshold
energy by magnetic field modulation spectroscopy. In the erbium experiment, this technique
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was recently used to measure the magnetic moment of five different molecular states at
FRs below 2.5 G. The values of the measured molecular magnetic moments range from
µ = 7.96µB to 11.8µB, see Ref. [Aik14a].

In principle, for higher magnetic fields the magnetic moment of the molecular state can be
any combination of the magnetic moment of two atoms in some mJ states. The maximum
magnetic moment would be twice the magnetic moment of atoms in mJ = −6, which results
in a maximum magnetic moment of 13.96µB for the Er2 molecule. This molecular state lies
parallel to the atomic threshold and is difficult to prepare by ramping the magnetic field
because it has to be entered utilizing another molecular state with lower magnetic moment.
But preparing such a molecular state will be interesting in future, as this gives a maximally
large dipole length four times as large as that for atoms making Er2 molecules competitive
to current experiments using polar heteronuclear molecules.



What is here required is a new kind of statistical
mechanics, in which we renounce exact knowledge
not of the state of a system but of the nature of the
system itself.

(Freeman J. Dyson 1961)
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5
Random matrix theory

Random matrix theory (RMT) was introduced by Wigner in the 1950s, see Refs. [Wig51a,
Wig51b]. RMT was developed to describe statistical properties of neutron scattering spec-
tra. This approach was necessary as the recorded nuclear spectra revealed unprecedented
complexity and an exact theoretical description was not possible. Early experiments in the
1930s revealed numerous narrow resonances in the neutron scattering on light nuclei, see
Refs. [Fer34, Fri36]. It was the insight of Bohr that these spectra could only be explained by
a nucleus of great complexity with strongly interacting constituents, see Ref. [Boh36]. Later
this idea led to the discovery of the nuclear shell model in 1949.

The main advantage of RMT is that one can describe generic spectral properties without the
knowledge of the Hamiltonian governing the system’s behavior. This is done by substituting
the real Hamiltonian by an ensemble of randomly generated Hamiltonians, whose matrix el-
ements obey a certain probability distribution, hence the name random matrices. According
to the symmetry of the underlying system these Hamiltonians belong to a specific ensemble,
e. g. real and symmetric matrices in the case of time-reversal symmetry. A comprehensive
theory of the statistical properties of RMT was developed in the 1960s by Dyson and Mehta,
see Refs. [Dys62a, Dys62b, Dys62c, Dys63, Meh63]. Such statistical properties include the
character of spectral fluctuations, which are revealed by spacing distributions and number
variances.

It was speculated in Ref. [Bro81] that the study of spectral fluctuations in complicated sys-
tems can be applied to other many-body systems outside nuclear physics. In 1984 a behavior
according to RMT was found in a classical scattering experiment as well as in its quantum-
mechanical analog, see Ref. [Boh84b]. This led to a strong connection between quantum
physics and classical chaos theory by the formulation of the so-called Bohigas-Giannoni-
Schmit (BGS) conjecture. The field of studying spectral fluctuations and correlations in
quantum few- and many-body systems is today known as quantum chaos and has since the
BGS conjecture acquired much attention.

In the following section we will give a short introduction to the theoretical formalism of
RMT. Secction 5.2 presents the connection between classical chaos and quantum chaos and
Sec. 5.3 provides an application of RMT to ultracold scattering processes.

68
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Figure 5.1.: Six different level spectra for various types of level correlations but with the same mean
level density. In (a) the levels are fully uncorrelated (Poisson), whereas in (c) (neutron scattering on
166Er atoms) and (d) (Sinai billiard, see Sec. 5.2) the level distribution follows the GOE prediction.
In (f) all levels are uniformly distributed. Taken from Ref. [Boh84a].

5.1. Introduction to RMT

5.1.1. General idea of RMT

Trying to tackle a complex system either from the experimental or the theoretical point of
view can be very difficult, especially if the exact Hamiltonian of the system is unknown in
the first place. Applying RMT to these problems can certainly not provide an exact solution,
e. g. predicting the position of individual resonances, but what it can do is offering a first
insight into ‘global’ properties of the system. There exists a strong similarity between RMT
and thermodynamics in the sense that only a few global properties define a rather complex
system. This implies some sort of universality in the application of the random matrix
approach, which allows it to be used in many different fields, see Refs. [Ros60, Guh98]. The
most intriguing consequence of RMT is that levels or eigenstates of the system are correlated.
This correlation is revealed by a characteristic fingerprint in several of the system’s statistical
properties.

Providing an example for this correlation Fig. 5.1 shows different sets of level spectra from
the fully uncorrelated case, to level distributions according to RMT, to uniformly distributed
levels. These sets have all the same level density but they are distinguishable by analyzing
the degree of correlation between levels.
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5.1.2. Applications of RMT

Above mentioned universality makes the RMT applicable to many different fields beyond
its origin in nuclear physics. The general predictions of RMT were found in many complex
systems ranging from analyzing financial correlation matrices [Lal99, Bou09], to wireless
multiuser communication techniques [Tul04, Mül13], electric grid topology planning [Mar10],
neural networks [Raj06], to RNA folding theories [Orl02], just to name a few.

5.1.3. Symmetry groups and Gaussian ensembles

RMT classifies systems by their symmetry properties, see Ref. [Wei09]. A system with N
correlated energy levels is described by a Hamiltonian H of size N×N with entries Hnm. All
entries are randomly chosen according to a Gaussian distribution. As defined in Ref. [Dys62a]
there are three possible Gaussian symmetry classes available within RMT. These symmetry
classes are labeled by the Dyson index β. In the case of time reversal and rotational symmetry
(e. g. when the system has integer spin) the matrix H is real symmetric (β = 1). For half-
integer spin rotational symmetry is broken and H is self-dual with quaternionic entries
(β = 4). For a non time-reversal symmetric system all Hnm are complex numbers (β = 2).

Diagonalizing the random matrix H = U−1xU gives N eigenvalues x = diag(x1, . . . , xN ).
The diagonalizing matrix U belongs to the orthogonal group O(N) for β = 1, to the unitary
group U(N) for β = 2, and to the unitary-symplectic group USp(2N) for β = 4. Due to
the use of a Gaussian distribution for constructing the random Hamiltonian the ensembles
are therefore called Gaussian orthogonal (GOE), unitary (GUE), and symplectic ensemble
(GSE) for β = 1, 2, 4, respectively.

Each entry of H is chosen randomly from a Gaussian distribution with a probability density

function P(β)
N (H). It has a zero mean value and a variance fixed by λ. The probability

density is given as

P(β)
N (H) = C

(β)
N exp

(
−Nβ

4λ2
trH2

)
. 5.1

Here, the constant λ sets the energy scale, which is defined by the level density, see Eq. 5.3,

and the constant C
(β)
N ensures normalization. Note that no basis set had to be chosen for

constructing P(β)
N (H) and thus H only depends on its eigenvalues, for which P(β)

N (H) =

P(β)
N (x) holds.

The mean level density of a spectrum, ρ(x), is defined as

ρ(x) =
∑

i

δ(x− xi) , 5.2

with i an index over individual levels at position xi, δ the delta function, and the bar denoting
an average value. It is equivalent to the density of states of the system and is for Gaussian
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Figure 5.2.: Histogram of the calculated mean level density ρ(x), for 10,000 individual random
matrices of size 10,000 × 10,000 (blue). Spectrum according to Eq. 5.3 (red line). The semicircular
shape of the spectrum is clearly visible.

ensembles given by

ρ(x) =

{
N

2πλ2

√
4λ2 − x2 if |x| ≤ 2λ

0 if |x| > 2λ .
5.3

This equation is known as the semicircle law, which was found by Wigner, see Refs. [Wig57a,
Wig58]. The spectrum of ρ(x) has the shape of a semicircle with radius 2λ and a mean level
density at the center of the semicircle of ρ(0) = N

πλ , see Fig. 5.2. Usually the limit N → ∞
has to be taken to suppress cutoff effects in the spectrum. In reality almost no physical
system has a bound spectrum in shape of a semicircle as one can always observe resonances
at larger values of x and thus ρ(x) is not zero even for x

2λ > 1, see Ref. [Guh98]. But for
small values of x

2λ the semicircle is a good approximation.

The mean level spacing between consecutive levels is defined by

d(x) =
1

ρ(x)
. 5.4

It tends to zero as N → ∞ for constant λ because N eigenvalues have to fit into a finite
energy interval from −2λ to +2λ. For x = 0 the mean level spacing equals d(0) = πλ

N .

5.1.4. Statistical properties

RMT was developed to describe the statistical properties of energy spectra recorded in nu-
clear scattering experiments, see Ref. [Wei09]. There exists a great number of tools for
analyzing these statistical properties. A comprehensive description of most relevant observ-
ables can be found in Refs. [Bro81, Wei09]. More recently developed methods include for
example analyzing the 1/f noise of quantum chaotic spectra, see Ref. [Rel02], or the usage of
maximum likelihood methods for correcting possibly missed levels, see Ref. [Mul11]. Only a
small selection of the most important measures of RMT is discussed in the following. Some
quantities show the short-range correlations, like the nearest-neighbor spacing probability,
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Figure 5.3.: Simulated staircase function of uncorrelated levels (Poisson) and levels according to
a Gaussian orthogonal ensemble (GOE), both assuming a density of resonances of unity. The inset
emphasizes the integer nature of the staircase function. Note the larger fluctuations of levels in
the case of a Poisson distribution compared to levels following a GOE, which are visible as larger
deviations from a line with unity slope.

whereas others probe the long-range correlation of the spectrum, e. g. the number variance
and the two-gap correlation function. For applying these methods to Feshbach spectra we
will redefine all necessary statistical properties in terms of a dependence on the magnetic
field B.

It is common in the RMT data analyzing process to first plot the position of resonances in
the so-called staircase function, see Ref. [Wei09]. This step-like function counts the number
of resonances up to some magnetic field value. It is defined as

N (B) =

B∫

0

dB′
∑

i

δ(B′ −Bi) , 5.5

with δ being the delta function and Bi the position of the i-th resonance. Figure 5.3 shows
the staircase functions for two randomly generated sets of data of uncorrelated and correlated
resonances with a density of one per unit. It can easily be seen that the staircase function of
correlated resonances deviates less from a line with unity slope than the staircase function
of uncorrelated resonances.

One of the central observables to discriminate uncorrelated from correlated resonances in a
spectrum is to calculate the nearest-neighbor spacing (NNS) distribution P (s), see Fig. 5.4(a).
Here, s is the actual spacing between levels in units of the mean level spacing d̄. As shown
in Refs. [Ber77, Bro81] the probability distribution of a system with uncorrelated classical
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Figure 5.4.: (a) Nearest-neighbor spacing distribution for uncorrelated levels (Poisson) and levels
according to a Gaussian orthogonal ensemble (GOE). Lines show the distributions given by Eq. 5.6
and 5.7. Points are calculated from a randomly generated dataset of 100,000 levels assuming a Poisson
or Wigner-Dyson distribution, respectively. (b) Number variance of levels according to a Poisson and
Wigner-Dyson distribution. Lines show the theoretical values from Eq. 5.12 and 5.13 and points show
calculated values of the generated dataset.

dynamics is simply given by the Poisson distribution

PP(s) = exp(−s) . 5.6

An exact expression for the spacing distribution of a Gaussian orthogonal ensemble can not
be written down in a simple form but according to the Wigner surmise, see Ref. [Wig57b], a
good approximation is provided by the Wigner-Dyson distribution

PWD(s) =
π

2
s exp(−πs2/4) . 5.7

Note that both distributions are not only normalized with
∫
dsP (s) = 1 but they have

also the same mean value as
∫
ds sP (s) = 1. What makes them differ strongly from each

other is their variance. For the Poisson distribution it is
∫
ds (s− 1)2PP(s) = 1 whereas for

the Wigner-Dyson distribution the variance is 0.5224, see Ref. [Gut90]. This difference in
variances can be easily probed by analyzing the local fluctuations of levels, i. e. analyzing
the level correlations.

Regarding the NNS distribution the properties of the other two Gaussian ensembles, i. e. GUE
and GSE, differ from the GOE as P (s) shows a dependence on s, which is proportional to
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sβ for small values of s. This means that for a GOE P (s) shows a linear increase, see
Fig. 5.4(a), whereas for a GUE it increases quadratically, and for a GSE it increases with
the fourth power. This implies that the eigenvalues of a GUE and a GSE are even stronger
correlated and repel each other more than in the GOE case. Uncorrelated levels show no
repulsion at all and are often referred to by β = 0.

In Ref. [Bro73] an empirical function was introduced to interpolate between PP and PWD.
It is called the Brody distribution and has a single fitting parameter η. It quantifies the
tendency (but not the degree of chaoticity) of the observed distribution to be more Poisson-
like (η = 0) or more Wigner-Dyson-like (η = 1). The Brody distribution is defined by

PB(s) = Asη exp(−αsη+1) 5.8

A = (η + 1)α 5.9

α =

[
Γ

(
η + 2

η + 1

)]η+1

, 5.10

where Γ denotes the Gamma function.

To calculate the NNS probability distribution P (s) from a measured spectrum a histogram of
level spacings has to be constructed using an appropriate bin size or number of bins Nbin for
distinguishing between the two distributions. There is no fixed rule for choosing an optimum
bin size for an arbitrary histogram, see Ref. [Tay97]. Using a number of bins of Nbin =

√
Nres

where Nres is the number of observed resonances usually provides reasonably good results.
A too small bin size increases the error on each value of the histogram and a too large bin
size makes it difficult to differentiate between different distributions.

For a reliable statistical analysis following RMT one has to make sure that the staircase
function increases linearly over a large range. If this is not the case a so-called unfolding
procedure has to be carried out before further analysis to artificially ‘linearize’ the staircase
function, see Ref. [Bro81]. A reliable unfolding procedure requires knowledge on the average
density of resonances over a large range of the spectrum, see Refs. [Wei09, Mor11]. In the case
of a Feshbach spectrum of ultracold erbium atoms there is no physical model available up
to now, describing the density of resonances. Due to this limitation an unfolding procedure
can not be carried out in the present case. Luckily, the staircase function of erbium is indeed
linear above a magnetic field of 30 G and the problem of unfolding can be circumvented by
only considering resonances above that value for further analysis.

A second statistical quantity of interest is the number variance Σ2, representing the variance
of number of resonances within a certain range of the spectrum. The number variance
depends on long-range correlations between resonance spacings within an interval ∆B and
is defined by

Σ2(∆B) = n2(B0,∆B) − (n(B0,∆B))2 , 5.11

with n(B0,∆B) = N (B0 + ∆B) − N (B0) giving the number of resonances in the interval
[B0, B0 + ∆B] and the bar denotes the mean value over all possible B0. It follows for a
Poisson distribution that

Σ2
P = ∆B . 5.12
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In contrast, for a spectrum according to the GOE one expects for large ∆B

Σ2
WD =

2

π2

(
ln(2π∆B) + γ + 1 − π2

8

)
5.13

≈ 2

π2
ln(∆B) + 0.442 , 5.14

where γ = 0.5772... is Euler’s constant, see Ref. [Dys63]. Figure 5.4(b) shows a plot of Σ2

for the Poisson and GOE case. The fact that Σ2
WD ∝ ln(∆B) shows that there are only very

small fluctuations around an average number of resonances within a given interval of size
∆B. This suppression of fluctuations is often referred to as spectral rigidity. Compared to
the NNS distribution the number variance is more suitable to probe long distances in the
spectrum including many resonances. A clear signature of level repulsion on the one hand
and a large spectral rigidity on the other hand are central properties of strong correlations
between levels.

In contrast to analyzing the NNS distribution and number variance an unfolding independent
method was developed in Refs. [Oga07, Kol10]. This method consists of calculating the ratio
of two consecutive gaps between resonances. The so-called two-gap correlation function is
defined by

0 ≤ ri =
min(di, di−1)

max(di, di−1)
≤ 1 , 5.15

with di the spacing between two neighboring resonances. As long as the density of states
does not vary on the scale of the mean level spacing an unfolding procedure is not needed for
calculating this quantity. A Poisson distribution of resonances shows a two-gap correlation
distribution following P (r) = 2/(1 + r)2 with a mean value of ⟨r⟩P = 2 ln 2 − 1 ≈ 0.386. In
contrast, the mean value of a Wigner-Dyson distribution can be calculated to be ⟨r⟩WD ≈
0.53(1), see Ref. [Kol10]. Utilizing the mean values of both distributions we can introduce a
quantity ηr which is proportional to the proximity to either a Poisson distribution (ηr = 0),
a Wigner-Dyson distribution (ηr = 1), or any intermediate value by

ηr =
⟨r⟩ − ⟨r⟩P

⟨r⟩WD − ⟨r⟩P
. 5.16

In general, a larger sample size increases the significance of statistical observables. Since the
early years of RMT the number of nuclear resonances in the ‘Nuclear Data Ensemble’ has
increased to several thousands, see Refs. [Haq82, Guh98]. Also theoretical simulations offer
a much greater number of resonances, e. g. the Sinai billiard, as shown in Sec. 5.2.2, or the
zeros of the Rieman zeta function, see Ref. [Tim06].

5.2. Quantum chaos

Following Bohr’s correspondence principle a quantum mechanical system in its macroscopic
limit shows coinciding behaviors with a classical system. This might easily suggest that
signatures of classical chaos can be found in quantum mechanical systems as well. But
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Figure 5.5.: The nearest-neighbor spacing distribution of eigenmodes of the Sinai billiard (histogram)
follows a Wigner-Dyson distribution (solid line) instead of a Poisson distribution (dashed line). The
inset shows the actual form of the billiard walls; it has a triangular shape with one rounded corner.
Note that the normalized level spacing is denoted by x instead of s. Taken from Ref. [Boh84b].

one of the central properties of classical chaotic systems namely the strong dependence
of the system’s state on initial parameters is not present in quantum mechanical systems.
Despite its probabilistic nature and the fundamental limit of the uncertainty principle in
quantum mechanics an analog to the classically extremely sensitive evolution in time caused
by uncertainties adding up exponentially can not be found in quantum mechanical systems.

But it turns out that there exist quantum mechanical systems, for which the corresponding
classical Hamiltionian indeed exhibits chaotic behavior. The field of studying and describing
such systems is referred to as the field of quantum chaos. Since its origin in the middle
of the 1980s various experiments confirmed quantum chaotic systems with high precision.
One of the most intriguing examples is the study of resonances in two-dimensional microwave
resonators, commonly known as Sinai billiard. These experiments are described in Sec. 5.2.2.
A nice introduction into the subject of quantum chaos can be found in Refs. [Pec84, Jen92].

5.2.1. Bohigas-Giannoni-Schmit conjecture

The origin of quantum chaos can be traced back to the publication of the Bohigas-Giannoni-
Schmit (BGS) conjecture, see Ref. [Boh84b]. The eigenmodes of a classical particle in a flat
triangular-shaped billiard, depicted as Sinai billiard system, had been calculated. From this
spectrum the NNS probability distribution and the number variance had been derived and
both were found to comply with the predictions of RMT for the case of a GOE. Figure 5.5
shows the calculated NNS distribution and the billiard system. Within the quantum mechan-
ical viewpoint the classical particle can be described by a wavefunction with the Schrödinger
equation giving the evolution in time.

This result has lead to the formulation of the BGS conjecture, conveying two central mes-
sages. First, the level fluctuations of a quantum mechanical system with a corresponding
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classical Hamiltonian showing chaotic behavior can be described using RMT. Second, these
fluctuation laws are universal for complex single-, few-, and many-body quantum systems.

Recently the BGS conjecture was formally proven for the special case of time-reversal invari-
ant graphs in Refs. [Plu13, Plu14]. Although a general proof is not yet found the conjecture
is by now numerically well established. There are also strong theoretical efforts to prove the
conjecture following a semiclassical approach in Refs. [Sie01, Mül04] based on the Gutzwiller’s
periodic orbit theory, see Ref. [Gut90].

5.2.2. Sinai billiard

An extensively studied example of a single-body quantum system, showing chaotic behavior
in the corresponding classical limit, is the case of Sinai billiard (SB). After the theoretical
investigation, which built the foundation of the BGS conjecture, experimentalists realized
such a system and measured the absorption spectrum of a microwave field confined in a
flat superconducting resonator of irregular shape, see Refs. [Grä92, Alt95]. The recorded
spectrum shows several thousand absorption dips and its statistical properties fully comply
with the description by RMT. It is possible to access two regimes with SB-type experi-
ments. The first one is the regime of non-overlapping resonances and the second one is the
regime of weakly overlapping resonances where Ericson fluctuations start to be prominent,
see Refs. [Die08, Mit10]. In a recent study a hexagonal structure inside the superconducting
resonator, mimicking the structure of graphene, makes it possible to study quantum chaos
with a relativistic time evolution given by the Dirac equation, see Ref. [Bit12].

After injecting an electromagnetic field, which is tunable in the GHz range, at one site of
the resonator, the amplitude and phase at another site is measured using a vector network
analyzer. By varying the frequency of the input microwave and recording the spectrum
with high resolution one can reconstruct the full scattering matrix of the superconducting
resonator SB system including the phase shift between incoming and outgoing waves. The
position of input and output sites are kept fixed during measurements. Such a resonator,
having an entrance as well as an exit port for the microwave, models a scattering system of
two particles with an incoming and outgoing channel, e. g. a system of a neutron colliding
with a compound nucleus, see Ref. [Mit10], or colliding ultracold particles as it is the case in
the present thesis.

In the following we will outline the analogy of the classical SB-type experiment and a quan-
tum mechanical particle with boundary conditions. As described in Ref. [Ber81] theories and
measurements of SB-type experiments determine the energy eigenvalues En of the stationary
Schrödinger equation

∆Ψn +
2mEn

~2
Ψn = 0 , 5.17

with Ψn the wave function. For convenience the wave number kn and the rescaled energy En
is defined by

k2n =
2mEn

~2
= 4π2En . 5.18
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Dirichlet boundary conditions are assumed as the wave function has to vanish at the walls
of the resonator. The classical limit of the Schrödinger equation corresponds to the limit
~ → 0 and this leads to kn → ∞ and En → ∞. By this, Eq. 5.17 can be rewritten to

∆Ψn + k2nΨn = 0 , 5.19

which resembles the Helmholtz equation of a static microwave field in the resonator. It was
shown that this classical system reveals chaotic properties and thus its quantum mechanical
analog can be called quantum chaotic.

5.2.3. Quantum chaos in atomic physics

First hints to quantum chaos in the field of atomic physics were given in Ref. [Ros60]. Here,
the repulsion of energy levels for the complex atomic spectra of atoms with strong spin-
dependent forces, such as Hf, Ta, W, Re, Os, and Ir, were investigated and the fingerprints
of Wigner-Dyson distributions were found. The study of quantum chaos in many-electron
atoms is described in Ref. [Con97] and a more recent measurement of energy levels in singly
ionized thorium can be found in Ref. [HS13].

Another system showing quantum chaos was found in Ref. [Has89] by studying the dia-
magnetic Kepler problem, which can be mimicked by highly-excited Rydberg atoms in a
homogeneous magnetic field as realized in Ref. [Jia96]. In particular, quantum chaos was
observed measuring the Stark spectrum of atomic lithium in Ref. [Cou95]. A transition to
chaos can be driven by increasing the electric field, responsible for the Stark splitting. This
is in contrast to the regular Stark system of hydrogen. A possible explanation for this dis-
crepancy is offered by the scattering of electrons into many trajectories when passing the
nucleus and thus is able to explore the full phase space. These multiple scattering processes
are known as so-called closed-orbit recurrences.

5.3. Ultracold resonant scattering

Complex systems such as lanthanide atoms and atom-dimer or dimer-dimer mixtures sup-
port a large number of Feshbach resonances (FR). In particular, for lanthanide atoms this
originates from the strong anisotropic interaction between two atoms, mixing higher an-
gular momentum states, see Sec. 4.3 and Refs. [Kot11, Pet12]. For atom-dimer and dimer-
dimer mixtures the large number of FRs is due to the additional ro-vibrational structure
of molecules. Applying RMT to ultracold collision processes allows for deriving statistical
properties of these complex Feshbach spectra, which can be compared with experimental val-
ues. Specifically, theoretical calculations were carried out for atom-dimer and dimer-dimer
mixtures in Refs. [May12, May13] and first experimental signatures of RMT were found for
erbium atom-atom collisions within the present work of this thesis, see Chapter 10.

Due to the strong coupling between rotational molecular states many of these states can be
explored by the collision constituents within a single collision process. During this time of
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‘exploration’ the constituents are quasi-bound and form the so-called collision complex. The
dissociation of this complex is described by the Rice-Ramsberger-Kassel-Marcus (RRKM)
theory, see Ref. [Lev05]. The mean rate of dissociation, kRRKM, of a particular configuration
of the complex is expressed as

kRRKM =
1

2π

Na

~ρE
. 5.20

Here, ρE denotes the density of states with respect to energy and Na is the number of all
available quantum states, which can be explored during the collision. Following Ref. [May12]
the mean lifetime of the collision complex, τ , can be calculated by

τ =
2π~ρE
No

. 5.21

Here, No is the number of open channels, available for outgoing collision products after the
collision process. In the ultracold regime No can be as small as one, resulting in a lifetime of
the complex on the order of a few µs and in the case of two colliding dimers on the order of
1–10 ms. During this long lifetime collisions with other particles become probable, ultimately
leading to a loss of complexes. This loss process has to be considered in experiments with
ultracold molecules.

For low-energy atom-dimer collisions it was just recently shown in Ref. [Cro14] that a fractal-
like structure can be observed in the lifetime of the collision complex dependent on the angle
between the interatomic axis of the dimer and the collision direction of the two collision
partners. An extensive study of the fractal dimension versus collision energy suggests a
transition from a classical to a chaotic collision process when energies are smaller than about
kB×400 K. Thus, ultracold gases are supposed to be deep in the regime of chaotic collisions.
For these calculations only the van der Waals coefficient C6 and the well depth De of the
Lennard-Jones potential need to be taken into account.

In Ref. [May12] a multichannel quantum defect theory (MQDT) approach is utilized to derive
the scattering matrix Sphys for alkali atom-dimer collisions. A set of parameters is required
for MQDT. Once this set of parameters is acquired for a given class of molecular potentials it
gives a direct connection between the short-range reactance matrix Ksr, valid for distances
R < Rm, and Sphys, valid for R → ∞, see Fig. 5.6. Here, Rm is a characteristic distance,
splitting the interaction range into a short-range and long-range part. In the short-range
region forms the collision complex at R < Rm and incomming channels a are strongly
mixed with each other. In the long-range region the scattering channels are assumed to be
independent. The long-range interaction is of the form

Va(R) = −C6

R6
+

~2La(La + 1)

2mrR2
+ Ea(B) , 5.22

where C6 denotes the isotropic van der Waals coefficient and mr is the reduced mass of the
scattering partners. Here, Ea(B) is the energy threshold, which depends on some external
magnetic field B, and La is the angular momentum of channel a.

The wavefunction of a scattering process from the incoming channel a into the outgoing
channel a′ can be written as

Ψ
(a)
a′ (R) = δa′af

−
a (R) − Sphys

a′a f+a′ (R) , 5.23
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Figure 5.6.: MQDT approach to resonant scattering of alkali atom-dimer collisions. The MQDT
treatment connects the short-rage K matrix Ksr, containing information about the ro-vibrational
resonances, to the physical scattering matrix Sphys at long ranges, where only hyperfine channels
are taken into account. From Sphys elastic and inelastic cross sections can be deduced, which are
observable in the experiment. For R → ∞ the number of energetically closed and open channels is
given by Nc and No, respectively. The collision complex forms at distances R < Rm. Taken from
Ref. [May12].

with

f±a =

√
2mr

π~2ka
e±i(kaR−Laπ/2) , 5.24

the incoming (+) and outgoing (-) spherical waves.

For a given number of hyperfine channels Na at short ranges there are only No open channels
at long ranges available for scattering products to exit to infinity as the energy is above
threshold with Ea > E. The remaining Nc = Na − No channels are energetically closed.
Closed channels have to be removed within the MQDT formalism by eliminating them. For
accomplishing this Ksr is partitioned in a first step into

Ksr =

(
Ksr

oo Ksr
oc

Ksr
co Ksr

cc

)
. 5.25

Then a closed-channel MQDT parameter β is introduced and the modified reactance matrix
K̃ is defined by

K̃ = Ksr
oo −Ksr

oc(K
sr
cc + tanβ)−1Ksr

co . 5.26

The modified reactance matrix can be transformed into an energy-normalized long-range
representation by

K = A
1
2 K̃(1 + GK̃

−1
)A

1
2 . 5.27

A, G, η, and β are diagonal matrices containing the relevant MQDT parameters. The
physical scattering matrix Sphys is finally achieved by

Sphys = eiη(1 + iK)(1 − iK)−1eiη . 5.28

The MQDT has been extensively used for describing resonant scattering processes at ul-
tracold temperatures in Refs. [Bur98, Mie00, Gao05, Gao08]. The reason for the success of
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MQDT lies within the fact that at a matching radius of R = Rm classically closed states at
R → ∞ become open. Thus the reactance matrix K exhibits only a weak dependence on
the energy and complex spectra can be described. The connection to the scattering matrix
Sphys can then be established by the use of MQDT.

In the case of atom-atom collisions of lanthanides or atom-dimer collisions of alkali-metal
atoms the exact details about the interaction potential as in Eq. 5.22 are not known and
thus the short-range reactance matrix Ksr can not be determined. A possible solution to
this problem is to use a fully statistical K matrix according to RMT.

As shown in Refs. [May12, Mit10] in great detail such a statistical K matrix can be received
by writing

Ksr
a,b = −π

N∑

µ=1

W aµW µb

E − Eµ
, 5.29

with W an energy-independent coupling-matrix, representing the coupling between short-
range resonances. Here, a and b are the asymptotic channels and µ denotes intermediate
states. A mean coupling strength of channel a to short-range resonances can be written as

R(0)
a =

π

2
ρEΓa , 5.30

where ρE is the density of states at incident energy E and

Γa =
2π

N

N∑

µ=1

|W µa|2 5.31

the partial width of channel a.

As Ksr is expressed in the frame, where the corresponding Hamiltonian is diagonal, the
coupling W becomes a random process and can be constructed as a random matrix, where
its elements have a zero mean value and a variance of ν2a , see Ref. [Mit10] and Sec. 5.1.3. With
Γa = 2πν2a the variance is only defined by the density of states ρE and the mean coupling

strength R
(0)
a by

ν2a =
R

(0)
a

ρEπ2
. 5.32

According to Ref. [May12] it can be assumed that R
(0)
a = 1 as this gives a transmission

coefficient of Ta = 1 between short-range and long-range channels by

Ta =
4R

(0)
a(

1 +R
(0)
a

)2 . 5.33

In fact, R
(0)
a can be left as a fitting parameter to some real spectra, giving more information

on short-range physics of complex collision processes. The expression of W by a random
matrix directly leads to a distribution of energy levels with a NNS distribution, resembling
a Wigner-Dyson distribution as shown in Eq. 5.7.
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An estimation of the density of states for atom-dimer collisions for various combinations of
alkali-metal atoms can be found in Ref. [May12]. Much higher density of states, like on the
order of 103 per Gauss, are predicted for dimer-dimer collisions, e. g. 87Rb133Cs + 87Rb133Cs
or 40K87Rb + 40K87Rb, see Ref. [May13]. In this regime resonances start to overlap and can
not be individually resolved any more. This leads to strong and random fluctuations of the
scattering cross section, which are known as Ericson fluctuations, see Ref. [Eri60].
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Publication: Narrow-line laser
cooling of erbium

6.1. Introduction

Narrow-line magneto-optical traps (MOTs) are a very powerful tool to reach low tempera-
tures. The Doppler temperature, TD, directly depends on the natural linewidth, Γ, of the
laser-cooling transition with TD = ~Γ

2kB
. For comparison, an ordinary MOT of alkali atoms,

operating on the D2 transition with a linewidth, ∆ν = Γ/(2π), of a few MHz, provides typical
temperatures of 150µK. Multi-valence-electron species have a richer energy structure than
alkali atoms and offer a number of different opportunities for laser cooling. For instance, a
MOT of ytterbium atoms is realized with a narrow-line transition, i. e. an intercombination
line with ∆ν = 200 kHz resulting in TD = 4.8µK, and an narrow-line MOT, with ∆ν of a few
kHz and TD as low as a few hundred nK, has been realized with strontium, see Ref. [Kat99].
In case of ytterbium, atoms from a Zeeman slowed atom beam are directly captured by the
MOT, while in the case of strontium the narrow-line MOT acts as a second cooling stage
within a two-stage MOT setup.

Although the electron structure of lanthanides is much more complicated than compared
to ytterbium it is possible to implement a narrow-line MOT with erbium. To provide an
overview, typically achievable temperatures in the presented erbium MOT are as low as 10µK
with a maximum atom number of a few 108 atoms. This narrow-line cooling of erbium is
presented in the following.

Magnetic lanthanides have several broad and narrow transitions usable for laser cooling as
discussed in Chapter 2. One difference to simple systems, like alkali, alkaline-earth, and
alkaline-earth-like elements, is the existence of many metastable states, in which an excited
state can decay into, see Fig. 2.1. In general, the number of possible decay channels increases
the shorter the transition wavelength is. However, pioneering work with erbium by the group
of J.J. McClelland at NIST (USA) demonstrated a MOT operating on the open transition
at a wavelength of 401 nm. Similar results have been obtained in later experiments with
dysprosium, see Ref. [Lu10]. Atoms participating in the cooling cycle are trapped and cooled
in the MOT. Part of these atoms decay into some metastable state, become dark, and do not
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scatter the MOT light anymore until they return into the ground state again via relaxation.
But due to the large atomic magnetic moment atoms in metastable states stay trapped in
the magnetic gradient field of the MOT. The dynamics of such a MOT with a reservoir of
magnetically trapped atoms was studied in Ref. [McC06b]. In a later experiment erbium
atoms were then loaded from this broad-line MOT into a narrow-line MOT operating at a
wavelength of 841 nm. Typical final temperatures after this two-stage erbium MOT were as
low as 2µK, see Ref. [Ber08].

We use a different approach with erbium, inspired by the successful demonstration of the yt-
terbium MOT, see Ref. [Kuw99]. The transition 4f12 6s2 1S1 - 4f12 6s6p 3P1 has a wavelength
of 583 nm and a linewidth of 190 kHz, which is very similar to the transition in ytterbium.
It was not fully clear from the beginning, whether this cooling approach would work out
because of two issues. First, there are two metastable states below the excited 4f12 6s6p 3P1

state of erbium, into which the excited state can decay. However, the calculated branching
ratio into these two states is negligible small. Second, the narrow linewidth of this transition
results in a small capture velocity of the MOT of 5.6 m/s, which makes loading the MOT
with an atom beam from a high-temperature oven a delicate issue. As shown in Sec. 3.3.2
one can indeed prepare a slow atom beam with a velocity smaller than the capture velocity
of this narrow-line transition. This makes it possible to load the narrow-line erbium MOT
directly from the ZS. The erbium narrow-line cooling strategy is very simple and robust.
The final temperature of the atoms in the MOT is as low as 10µK and the peak density is
1.5×1011 cm−3, which corresponds to a phase-space density of 1.2×10−5. Another advantage
of our narrow-line MOT approach is an automatic spin-polarization of the atoms without
the need of optically repumping them into their lowest spin state. We successfully realized
the directly-loaded narrow-line MOT for erbium atoms in our group for the first time in late
2011 and the group in Stuttgart just recently used a similar idea for dysprosium atoms, see
Ref. [Mai14].

In the following, we describe the creation of a narrow-line MOT operating on the 583-nm
transition for different erbium isotopes. In Sec. 6.1.1 we discuss its relevant experimental
parameters and then we show a measurement of the spin purity of atoms in the MOT
measured by a Stern-Gerlach experiment in Sec. 6.3.1.

6.1.1. Narrow-line cooling

The narrow-line MOT for the bosonic isotopes 164Er, 166Er, 168Er, and 170Er and the
fermionic isotope 167Er operates on the yellow 583-nm transition. The natural linewidth
of this transition is ∆ν = Γ

2π = 190 kHz, which results in a Doppler temperature of 4.6µK,
see Sec. 2.3.1. Figure 6.1 shows two real-color photographs of the fluorescence of trapped
atoms. Figure 6.2 summarizes the experimental sequence for the MOT, e. g. the light de-
tuning and intensity, the magnetic gradient field, and the homogeneous magnetic field. In
the following we will first describe the erbium MOT loading procedure and then discuss the
theory of narrow-line cooling.

The ZS laser beam travels in collinear direction with the atom beam through the vacuum
chamber and overlaps with the center of the MOT. Schemes that combine a broad transition
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far-detuned MOT compressed MOT

(a) (b)

Figure 6.1.: Real-color photographs of the narrow-line erbium MOT. (a) The typical bowl-shaped
MOT is due to the narrow-line laser-cooling transition in combination with a large detuning and the
gravitational sag. In this picture the cloud contains approximately 107 atoms. (b) After finishing
loading the MOT the atomic cloud is compressed into the center of the trap and gets spherically
symmetric. The much smaller volume of the MOT enables one to load atoms efficiently into an
optical dipole trap for further experiments.

for ZS and a narrow transition for MOT potentially suffer from an undesired light force,
acting on atoms from the ZS light during the MOT loading1. To avoid this effect we spatially
separate the MOT from the ZS laser beam by the use of a large detuning of the MOT laser
light in combination with the proper magnetic field gradient. This shifts the atoms out
of the trap center and effectively prevents any light force of the ZS laser beam acting on
the atoms. For erbium a detuning as large as δ = −7.6 MHz ≈ −40 ∆ν and a gradient of
∂zB = ∂B

∂z = 2.6 G/cm is needed, see Fig. 6.2. At such a large detuning compared to the
natural linewidth atoms in the MOT will not feel a homogeneous light force over the full
volume of the MOT but will rather be resonant with the light on an ellipsoid of constant
magnetic field. Adding the gravitational potential the trapped atoms will accumulate at
the lower part of this ellipsoid. Figure 6.3 gives a schematic view of this MOT working
principle. The so-called gravitational sag will create a characteristic ‘bowl-shaped MOT’,
see Fig. 6.1(a). Dependent on the laser detuning, ∆ = 2πδ, the position of the cloud in
z-direction, z0, will adjust itself such that the effective detuning ∆−µ∂zBz0 stays constant,
see Ref. [Lof04]. Here, µ is the atomic magnetic moment. An important consequence of the
narrow-line MOT is that the damping and diffusion coefficients of atoms in the MOT are
independent of the laser light detuning. This is in contrast to broad-line MOTs and strongly
affects the equilibrium temperature in the MOT as it will be shown below.

After loading sufficiently many atoms into the MOT the ZS light and ZS magnetic field
are switched of and the atom beam is blocked by a shutter. Atoms are then being shifted
towards the center position, which creates a nearly-symmetric compressed MOT (cMOT), see
Fig. 6.1(b). The cMOT is achieved by ramping the laser-light detuning closer to resonance,
decreasing the light intensity, and reducing the magnetic field gradient2. This is achieved
in a sequence of two linear ramps. During the first ramp, which has a duration of only

1 The ZS light gives a scattering force on the atoms, which is two orders of magnitude larger than for the
MOT light. This estimation is based on the actual experimental parameters for light intensity and detuning
for the blue and yellow transition, respectively.

2 It has to be noted here that this is in contrast with most other schemes for MOT compression, in which
the gradient is usually increased.
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Figure 6.2.: Relevant parameters for MOT loading and compressing. The MOT loading is shown for
a loading time of 5 s, which is varied dependent on the specific isotope or experimental needs whereas
the cMOT ramping procedure is kept unchanged. (a) After switching off the Zeeman slower (ZS)
a two-stage ramp is used to compress the MOT (cMOT). (b) This involves changing the detuning,
(c) the intensity (in units of the saturation intensity, IS), and (d) the gradient field (in z-direction).
After an additional holding time of 200 ms a final temperature of as low as 10µK can be achieved in
the cMOT. The atoms are then loaded into an optical dipole trap (ODT) for further experiments.
(e) A homogeneous magnetic field is ramped up within 10 ms at the beginning of the cMOT stage,
to keep the atomic sample fully spin-polarized.
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Figure 6.3.: Working principle of the narrow-line MOT. (a) Position-dependent detuning in the
MOT, shown in one direction for a simplified MOT with a J = 0 → J ′ = 1 transition. Due to the
small linewidth trapped atoms fulfill the resonance condition only in a small region far outside the
center of the gradient field (yellow regions). The distance from the center is set by the detuning (see
text). (b) In three dimensions atoms are resonant on an ellipsoid. The gravitational force pulls the
atoms to the lower part of the ellipsoid, where they preferably scatter σ−-polarized light from the
lower MOT beam and the sample automatically gets spin polarized.

10 ms, the laser beam peak intensity is ramped to 4 IS with IS the saturation intensity and a
homogeneous magnetic field of 0.9 G is introduced. Within the second ramp with a duration
of 390 ms the magnetic field gradient is changed to 1.4 G/cm, the light intensity to 0.02 IS
and the detuning to −1.8 MHz. In the following holding time of 200 ms the atoms are further
cooled in the cMOT until they reach their final temperature. To achieve low temperatures
the peak intensity of the cooling laser beams has to be chosen small, see Fig. 6.4. Figure 6.2
shows a full list of necessary parameters for loading the MOT and ramping to the cMOT.

A very convenient consequence of a narrow-line MOT, operated with a large detuning, is its
ability to intrinsically spin-polarize the atoms. In such a narrow-line MOT the lower vertical
laser beam3 supports the atoms against gravity and atoms predominantly scatter light from
this beam as demonstrated in Fig. 6.3(b). This beam happens to be σ−-polarized, which
successively transfers all atoms into the energetically lowest Zeeman sublevel mJ = −6.
As long as they do not scatter light from the upper vertical beam they stay polarized in
this stretched spin state. A homogeneous magnetic field during compressing the MOT and
loading it into the optical dipole trap (ODT) preserves the spin polarization, see Fig. 6.2(e).
The degree of spin polarization in the ODT is verified by a Stern-Gerlach measurement,
which is presented in Sec. 6.3.1.

Now we will discuss the theory of narrow-line MOT cooling. The total force along the
z-direction, acting on atoms with velocity vz at position z in the MOT, is given by, see
Ref. [Lof04],

FMOT(vz, z) = Fsc + Fg =
~kΓ

2

[
s

1 + s′ + 4(∆−kvz−µ∂zBz)2

Γ2

]
−mg . 6.1

The first term is due to light scattering whereas the second term gives the gravitational
force with m the atomic mass and g the gravitational acceleration. The scattering force, Fsc,

3 For perfect spin polarization it is very important that the vertical MOT axis is oriented along the direction
of gravity.
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depends on the transition linewidth Γ, the laser light detuning ∆ = 2πδ, and ∂zB. Here,
k = 2π

λ , s = I
IS

is the saturation parameter, s′ ≥ s takes care of saturation effects induced
by beams in other directions, and I is the single-beam peak intensity. We will now derive
an expression for the damping coefficient in the narrow-line MOT from which the capture
velocity and the equilibrium temperature of the MOT can be calculated.

Dependent on the detuning of the MOT light one has to distinguish between two regimes
in which the MOT dynamics turn out to be completely different, see Ref. [Lof04]. For
a detuning, being larger than the power-broadened natural linewidth ΓE = Γ

√
1 + s and

|∆| > ΓE , atoms can be treated in a free flight picture with hard walls as boundaries
induced by the MOT. This regime is called regime (I). The hard walls are located far outside
the MOT center where atoms are resonant with the cooling light and experience a strong
light force, see Fig. 6.3. Including the gravitational potential atoms will sag to the lower
part of the trap and scatter mostly the lower beam. This applies during the erbium MOT
loading procedure as well as in the cMOT, as for both stages ∆ ≈ −10 ΓE. The regime (II)
is reached for small detunings when |∆| < ΓE . In this case atoms experience a radiative
force over the full volume of the trap. The resulting restoring force changes linearly with the
position in the trap, which is described by damped harmonic motion, see Ref. [Xu02]. This
is usually the case, e. g. for a MOT of alkali-metal atoms and lanthanides, where the MOT
is operated on a broad transition.

Atoms in the MOT experience a cooling power, Pcool, which is proportional to the square of
their velocity, v, see Refs.[Let89, Sch03]. The power can be written as

Pcool =

(
dE

dt

)

cool

= Fscv = −αv2 , 6.2

where Fsc = −αv is the friction force in the MOT given by Eq. 6.1 with (∂Fsc/∂v) = α
evaluated at vz = 0, z = z0. Here, α is the damping coefficient. Accordingly, the kinetic
energy of the atoms, E = 1

2mv
2, will decrease exponentially with a time constant τ , the

so-called thermal equilibration time. Utilizing Eq. 6.2 the cooling rate in the MOT can be
calculated by

1

τ
= −Pcool

E
=

2α

m
6.3

The thermal equilibration time has to be considered when optimizing the MOT ramping
parameters. As shown in Ref. [Lof04] α is given in regime (I) by

α =
2~k2

√
Rs− s′ − 1

R2s
, 6.4

with R = ~kΓ
2mg . Note that in this regime α depends on the atomic mass, m. Using this result

the equilibration time for the erbium MOT is about 78 ms and for the cMOT τ = 3.6 ms.
For completeness, in regime (II) α is according to ordinary Doppler theory given by, see
Ref. [Xu02],

α =
4

3
~k2

It
IS

|∆|
Γ

(
1 +

It
IS

+ 4
∆2

Γ2

)−2

, 6.5

where It is the total intensity of all six MOT beams.
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Figure 6.4.: Equilibration temperature of 168Er in the MOT (solid line). Note that the equilibration
temperature is independent of the detuning and only depends on the saturation parameter, s, in a
square-root-like behavior for large values of s, according to Eq. 6.8. The lower temperature limit is
set by the Doppler temperature (dashed line).

Utilizing the result for α one can estimate the capture velocity of the MOT, vc, which is
the maximum velocity that atoms can have when entering the MOT and they will still be
captured by the MOT. The capture velocity is given by

vc =
2dα

m
, 6.6

and depends on the size of the capture volume of the MOT, which is simply set by the beam
diameter d. A Value for vc for the narrow-line transition of erbium is 5.6 m/s for d = 25 mm.
This result is important for the design of the Zeeman slower as depicted in Sec. 3.3.2.

From Eq. 6.1 an expression for the diffusion coefficient in regime (I) can be derived as, see
Ref. [Lof04],

Dp =
~2k2Γ

2R
. 6.7

Using this expression one can calculate the equilibrium temperature Teq as the ratio between
diffusion and damping coefficient. The former results in an effective heating process whereas
the latter cools the atomic sample. Equilibrium is reached when both heating and cooling
balance each other. Taking the damping coefficient from Eq. 6.4 the equilibrium temperature
in the narrow-line MOT is thus,

Teq =
Dp

kB|α|
=

~Γ
√
s

2kB

R

2
√
R− s′/s− 1/s

. 6.8

Note, that Teq is independent on the detuning of the MOT light put is a function of s.
Figure 6.4 shows the dependence of Teq on the laser-beam intensity. During the erbium
MOT loading stage this gives Teq = 126µK for s = s′ = 12 and in the cMOT the theoretical
equilibrium temperature is as small as 5.7µK for s = s′ = 0.02, which is close to the Doppler
temperature of TD = ~Γ

2kB
= 4.6µK.

Utilizing this simple and efficient approach to a narrow-line MOT we could successfully
demonstrate a directly loaded MOT with up to 2 × 108 erbium atoms at a temperature of
10µK and a peak density of 1.5×1011 cm−3, corresponding to a phase-space density of about
1.2 × 10−5.
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T = 15 μK. This simple scheme provides better starting conditions for direct loading of dipole traps as compared

to approaches based on the strong cooling transition alone, or on a combination of a strong and a narrow kHz

transition. Our results on Er point to a general, simple, and efficient approach to laser cool samples of other

lanthanide atoms (Ho, Dy, and Tm) for the production of quantum-degenerate samples.
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Laser cooling of non-alkali-metal atoms has become a

very active and challenging field of research. The great

appeal of unconventional atomic systems for experiments on

ultracold atomic quantum gases stems from the possibility

of engineering complex interactions and of accessing rich

atomic energy spectra. Both features are at the foundation of a

number of novel and fascinating phenomena. For instance,

the energy spectra of two-valence-electron species, such

as alkaline-earth-metal and alkaline-earth-metal-like atoms,

feature narrow and ultranarrow optical transitions, which are

key ingredients for ultraprecise atomic clocks [1], efficient

quantum computation schemes [2], and novel laser cooling

approaches, as demonstrated in experiments with Sr, Yb, and

Ca [3–5].

As a next step in complexity, multivalence-electron atoms

with a non-S electronic ground state such as lanthanides are

currently attracting increasing experimental and theoretical

interest. Among many, one of the special features of lan-

thanides is the exceptionally large magnetic dipole moment

of atoms in the electronic ground state (e.g., 7μB for Er and

10μB for both Dy and Tb), which provides a unique chance

to study strongly dipolar phenomena with atoms. Highly

magnetic atoms interact with each other not only via the

usual contact interaction but also via an anisotropic and long-

range interaction, known as the dipole-dipole interaction [6].

Chromium was the first atomic species used for experiments

on atomic dipolar quantum gases [7,8], and the even more

magnetic lanthanides are nowadays in the limelight thanks to

laser cooling experiments on Er and Tm [9,10] and to the

recent realization of quantum-degenerate Dy gases [11,12].

Similarly to Yb and the alkaline-earth-metal atoms, the

atomic energy spectra of magnetic lanthanides include broad,

narrow, and ultranarrow optical transitions. This collection

of lines is reflected in a wide choice of possible schemes

for laser cooling experiments. However, all experiments on

Zeeman slowing and cooling in a magneto-optical trap (MOT)

with magnetic lanthanides so far have relied on an approach

that is essentially based on the strongest cycling transition

[9,10,13]. This broad transition typically lies in the blue
between 400 and 430 nm and has a linewidth on the order of

few tens of MHz. As a consequence, the Doppler temperature

is close to 1 mK. Such a high temperature makes direct loading

from a MOT into a dipole trap difficult and inefficient, even

when sub-Doppler mechanisms take place [14,15]. To further

decrease the temperature of atoms prior to the dipole trap

loading, an additional MOT stage based on an ultranarrow

kHz-linewidth transition was applied in Refs. [11,13], making

the whole experimental procedure more involved.

Taking advantage of the rich atomic spectrum of lan-

thanides, we identify a different transition to be the most

suitable one for MOT operation toward production of a

quantum-degenerate gas. This transition, which for Er lies

at 583 nm and has a linewidth of 190 kHz, represents an

intermediate case between the broad (blue) and the ultranarrow

(red) transitions available in the lanthanide spectra and has

very similar properties to the Yb intercombination line [16,17].

Based on this narrow yellow line, we demonstrate a MOT of

2 × 108 Er atoms at a temperature as low as 15 μK. Our

approach, inspired by Yb experiments [4], provides better

starting conditions for direct loading into a dipole trap than

the conditions achieved in other experiments with magnetic

lanthanides [11].

Erbium is a heavy rare-earth element of the lanthanide

series. It has six stable isotopes, among which the three bosonic

isotopes 166Er (34%), 168Er (27%), and 170Er (15%) and the

fermionic isotope 167Er (23%) have a high natural abundance.

The Er electronic configuration is characterized by a xenonlike

core, an inner open 4f shell, and an outer closed 6s shell,

[Xe]4f 126s2. The electron vacancies in the inner f shell are a

common feature of all the lanthanides (with the exception of

Yb) and are at the origin of the strong magnetism as well as

various interesting collisional effects [18–20].

The atomic level spectrum of Er is shown in Fig. 1.

In the ground state, Er has a highly anisotropic electronic

density distribution with a large orbital angular momentum

L = 5 (H state) and a total electronic angular momentum

J = 6. The bosonic isotopes have zero nuclear spin (I = 0)

and consequently do not exhibit a hyperfine structure. On

the contrary, the fermionic isotope 167Er has a nuclear spin

I = 7/2, leading to eight hyperfine levels, from F = 5/2 to

F = 19/2, in the electronic ground state.

In Ref. [22], five different J → J + 1 laser cooling

transitions were identified with linewidths ranging from tens

of MHz to a few Hz. Here we focus on the blue and

051401-11050-2947/2012/85(5)/051401(5) ©2012 American Physical Society
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FIG. 1. (Color online) Energy levels of atomic erbium up to

25 000 cm−1 for different total electronic angular momentum quan-

tum numbers J [21]. States with odd (even) parity are indicated

by black (red/gray) horizontal lines. The two relevant laser cooling

transitions at 401 and 583 nm are indicated by arrows [22].

the yellow transition at 401 and 583 nm, respectively; see

the arrows in Fig. 1. The corresponding excited levels are

the singlet 1P1 and triplet 3P1 states coming from the transition

of an s electron into a p shell. The strong blue transition

at 401 nm has a linewidth of Ŵ401/2π = 27.5 MHz [23],

corresponding to a Doppler temperature of h̄Ŵ401/(2kB) =

660 μK. We use the blue light for both Zeeman slowing

and transversal cooling of the Er atomic beam. The MOT

operates on the narrow yellow transition at 583 nm, which has a

natural linewidth of Ŵ583/2π = 190 kHz and a corresponding

Doppler temperature of 4.6 μK. The line may exhibit weak

leaks from the excited level into two intermediate levels

with very low calculated leakage rates (0.017 and 0.0049

s−1) [22]. Note that we find these losses irrelevant for all

practical purposes. For 167Er the hyperfine structure in the

401- and 583-nm excited states gives rise to eight levels

ranging from F ′
= 7/2 to F ′

= 21/2. For the 583-nm line,

the hyperfine constants are known [26]. On the contrary

the hyperfine constants for the 401-nm line are currently

unknown, making the operation of the fermionic MOT more

challenging.

We generate the blue light from two independent blue diode

lasers injection locked to a master laser. The master laser

light is produced by frequency doubling methods based on

a tapered amplified diode laser at 802 nm. The blue light from

the master laser is locked to a hollow-cathode discharge lamp

[4] via modulation transfer spectroscopy. With this setup we

spectroscopically resolve the lines of the four most abundant

bosonic isotopes as well as the hyperfine structure of the

fermionic isotope 167Er. Since the hyperfine constants of the

excited level at 401 nm are unknown, we could not assign

the absorption features to specific hyperfine transitions. We

derive the yellow light from a dye laser operating with

Rhodamin 6G. By using an intracavity electro-optic modulator

(EOM) and an external reference cavity, we stabilize the laser

to a linewidth of about 50 kHz. By additionally locking the

laser to an ultralow-expansion cavity, we achieve a long-term

stability better than 30 kHz within a day [27].

Our experimental procedure is as follows. We load the Zee-

man slowed atomic beam from an effusive, high-temperature

oven directly into the narrow-line MOT. Our commercial oven

typically operates at a temperature of 1300 ◦C, which is about

200 ◦C below the Er melting point. Two 3-mm apertures,

separated by 50 mm, provide a geometrical collimation of the

atomic beam. In addition, the atomic beam is further collimated

and transversally cooled by a two-dimensional (2D) optical

molasses, working on the broad 401-nm transition with a total

power of about 100 mW. The beams are elliptically shaped

to increase the interaction time between the atoms and the

light. Thanks to the transversal cooling stage, we increase the

loading flux by almost an order of magnitude.

The atomic beam then enters the Zeeman slower (ZS).

Because of the limited capture velocity (a few m/s) imposed

by the narrow cooling transition used for the MOT, it is

crucial to design a ZS that provides enough atomic flux at

low velocities [4]. We build a 360-mm-long spin-flip Zeeman

slower, which can slow the atoms from 500 to about 5 m/s. The

ZS light is focused at the oven position and has a total power

of about 60 mW. At the MOT position, we estimate a beam

diameter of about 11 mm, corresponding to an intensity of

about one Is,401, where Is,401 = 56 mW/cm2 is the saturation

intensity. Our ZS operates with light detuned by about −20Ŵ401

(−540 MHz) from the unshifted resonance.

The narrow-line MOT is operated in a standard six-

beam configuration with retroreflected beams. To increase

the capture velocity of the MOT, we use large MOT beam

diameters of about 30 mm. Typical MOT loading parameters

include a magnetic field gradient B ′ (along the symmetry

axis) of 4 G/cm, a laser intensity of 12Is,583 per beam with

Is,583 = 0.13 mW/cm2, and a detuning δ583 from the atomic

transition of −50Ŵ583 (−9.5 MHz). To measure the number of

atoms in the MOT after loading, we optically compress the

MOT by reducing δ583 to −0.5Ŵ583 and we apply standard

absorption imaging on the blue transition.

A special feature of our narrow-line MOT is the large

detuning of the MOT light (typically −50Ŵ583) needed for

optimal loading. At this detuning, we observe a very strong

effect of gravity on the position and shape of the atom cloud [3].

The atoms are located well below the center of the magnetic

quadrupole field, and the cloud takes the form of a large

semishell. To elucidate the reason for the large detuning, we

monitor the loading dynamics and the lifetime of the MOT;

see Fig. 2. Our measurements focus on the 166Er isotope, but

we have observed the same qualitative behavior also for the

other isotopes.

Figure 2(a) shows the atom number in the MOT as a

function of the loading time for different values of δ583. We

fit our data by using a standard loading rate equation [28],

which includes a capture rate R and a decay rate γ ; the

latter accounts for both collisions between trapped atoms

and collisions with the background gas. For a detuning of

−50Ŵ583 the atom number approaches its steady state in about

10 s with Nss ≈ 2 × 108. For a lower value of the detuning

051401-2



RAPID COMMUNICATIONS

NARROW-LINE MAGNETO-OPTICAL TRAP FOR ERBIUM PHYSICAL REVIEW A 85, 051401(R) (2012)

FIG. 2. (Color online) Loading (a) and decay (b) of the narrow-

line MOT with 166Er atoms for δ583 = −50Ŵ583 (circles) and δ583 =

−32Ŵ583 (triangles). (a) Atom numbers are plotted as a function of

the MOT loading time. The solid lines are fits to the data using

N (t) = Nss(1 − e−γ t ) with Nss = R/γ . From the fits we obtain

γ = 0.137(2) s−1, R = 2.6(4) × 107 s−1, and γ = 0.200(4) s−1,

R = 1.1(1) × 107 s−1 for −50Ŵ583 and −32Ŵ583, respectively. The

inset shows the atom number after 10-s loading time as a function of

the MOT detuning. (b) Atom numbers are plotted as a function of the

holding time in the MOT in presence (open symbols) and absence of

the ZS light (solid symbols). The solid lines are fits to the data using

a double-exponential function; see text.

to −32Ŵ583 we observe a substantial decrease of the atom

number to Nss ≈ 5 × 107. This behavior is clearly shown in

the inset, where we monitor the number of atoms Nss for a fixed

loading time of 10 s as a function of the MOT light detuning.

For detunings exceeding δ583 = −30Ŵ583 we observe a rapid

increase in the atom number. When further increasing the

detuning, Nss first stays constant and then rapidly decreases.

We believe that the large detuning of the MOT light serves

to minimize the detrimental effects of off-resonant pumping

processes driven by the ZS light. According to the Zeeman

shift in the quadrupole field of the MOT, we observe a

spatial displacement of the atomic cloud with δ583 of about

1.4 mm/MHz [29]. For large detunings, this shift becomes so

large that the atoms can no longer be kept in the MOT. For

intermediate detunings in the range from −40 to −55Ŵ583,

the cloud displacement is advantageous for MOT operation

since the atoms become spatially separated from the region of

interaction with the ZS light. For small detunings, the ZS light

leads to substantial losses of atoms.

The effect of the ZS light also shows up in lifetime

measurements, where we monitor the number of atoms in the

MOT as a function of the holding time with the ZS light being

present or absent; see Fig. 2(b). For these measurements we

switch off the ZS magnetic field and the atomic beam after

10 s of MOT loading. For large detuning (δ583 = −50Ŵ583) the

evolution of the atom number is not affected by the ZS light. In

both cases, i.e., with the ZS light on and off, we observe faster

losses in the earlier stage of the decay, which we attribute to

inelastic two-body collisional processes, and a slower decay at

a later time, which is finally limited by background collisions.

For simplicity we use a double-exponential fit function to

estimate the time constants [30]. We extract time constants of

19(3) and 80(20) s for the fast and slow dynamics, respectively.

At lower MOT detuning (−32Ŵ583), the ZS light strongly

affects the decay. When the blue light is turned off, our

observations are qualitatively similar to the ones at −50Ŵ583

while with the blue light turned on the atomic loss dramatically

increases. In this case the decay curve is well described by a

single exponential function with a time constant τ = 9.0(1)

s. This decay time is consistent with a simple estimate of

pumping losses. By considering the absorption rate Ŵa of the

401-nm light at the actual intensity and detuning [31] and

the branching ratio b for decay from the excited state to all

the possible metastable states [9], we estimate a decay rate

1/τ = bŴa of the order of 0.1 s−1.

We could also demonstrate trapping of all the other Er

isotopes, with the exception of the rare 162Er (0.1% natural

abundance). For all the bosonic isotopes we used about the

same values for the detuning of the ZS and the MOT light.

Figure 3(a) shows the atom number in the MOT for the

different isotopes as a function of their natural abundance.

For a long loading time of 20 s we observe similar atom

numbers exceeding 108 for the three most abundant bosonic

isotopes, indicating that saturation effects might apply. For a

short loading time of 5 s, the atom number increases with the

natural abundance. However, we observe a more complicated

FIG. 3. (Color online) Behavior of different Er isotopes. (a) MOT

atom number for the four most abundant bosonic isotopes as well

as for the 167Er fermionic isotope is plotted as a function of the

natural abundance for 20-s (squares) and 5-s (circles) loading times.

(b) Spectroscopy signal of the blue transition shows the isotope shifts

for the bosonic isotopes and the HF structure of 167Er. The arrow

indicates the locking point used for the ZS light to produce the 167Er

MOT.
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behavior than the expected linear growth. This might be due

to slight differences in the optimal MOT parameters, but may

also point to differences in scattering and collisional properties

among the different isotopes.

For the fermionic isotope 167Er we observe a MOT with

atom number of about 3 × 107, which is substantially lower

than the numbers measured for the bosonic isotopes. A simple

explanation of this behavior can be that we decelerate and

cool only atoms in the F = 19/2 hyperfine state, which has a

statistical weight of about 20%. Note that a similar behavior

has been observed with the fermionic 161Dy MOT, which also

shows lower atom numbers than the ones of bosonic MOTs

[13]. An additional complication stems from the unknown

hyperfine splitting of the 401-nm line. From the spectroscopic

signal we could not identify a priori where to lock the Zeeman

slower light to be resonant with the desired F = 19/2 → F ′
=

21/2 hyperfine transition. To produce the 167Er MOT, we had to

proceed blindly by first locking the 583-nm MOT light on the

cooling transition and then by trying different locking points

for the ZS light until the MOT was visible. We finally succeed

in creating a MOT by locking the ZS light to the spectroscopic

line located 150 MHz below the blue transition frequency of

the 166Er isotope; see the arrow in Fig. 3(b).

After loading the MOT we apply a stage of compression to

reduce the temperature of the atomic cloud and to achieve

good starting conditions for direct loading of an optical

dipole trap. With the optimized parameters δ583 = −0.5Ŵ583,

I = 0.16Is,583, and B ′
= 0.8 G/cm, we measure a temperature

of 15 μK via time-of-flight experiments. In addition, Stern-

Gerlach experiments indicate that atoms in the compressed

MOT phase are naturally pumped in the lowest Zeeman

sublevel mJ = −6 by the MOT light. This can be explained by

considering a combined effect of the narrow cooling transition

used for the MOT and of gravity. The latter pushes the atoms

downward, creating an effective imbalance in the trap and

leading to a preferential absorbtion of the σ− polarized light

from the lower vertical beam. For 2 × 108 atoms at T = 15 μK

we estimate a peak number density of the polarized sample

of 1.5 × 1011 cm−3, corresponding to a phase-space density

of about 4 × 10−6. These values are similar to the ones

observed in Yb experiments using the intercombination light

[4]. Compared to other experiments on magnetic lanthanides,

such as Dy [11], our much simpler approach based on a single

cooling light for the MOT provides higher atom numbers and

similar final temperatures. We suggest that this scheme can

be successfully implemented with Dy, Ho, and Tm, using

the 626-nm (Ŵ/2π = 135 kHz) [32], the 598-nm (Ŵ/2π =

146 kHz) [33], and the 531-nm (Ŵ/2π = 370 kHz) [34]

transitions, respectively.

In conclusion, we have demonstrated an efficient and simple

approach for an Er MOT based on a single narrow-line

transition. Our scheme works with all abundant Er isotopes

and allows for direct loading of an optical dipole trap. In

first experiments we were able to load up to 107 Er atoms

into the dipole trap in a single focused-beam configuration.

Optimization of the dipole trap loading and evaporative

cooling experiments are under way in our laboratory.
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6.3. Further work

6.3.1. Spin polarization

As pointed out earlier an advantage of the narrow-line MOT with large detuning is that
the atomic sample gets spin-polarized without the need for an extra repumping laser1. This
effect is related to the gravitational sag in the MOT, which causes the atoms to preferably
scatter the lower MOT beam, see Fig. 6.3(b). Dependent on the polarization of the lower
beam atoms get pumped into a stretched Zeeman state, which is in case of σ−-polarized light
for the lower beam the energetically lowest mJ = −6 state of erbium.

The polarization of the spin state happens already during MOT loading. By applying an
homogeneous magnetic field of 855 mG at the beginning of the cMOT stage, see Fig. 6.2(e),
the spin-polarization can be easily maintained also when one turns off the magnetic field
gradient for loading into the ODT. The degree of spin-polarization was checked by performing
a Stern-Gerlach-type experiment. Atoms are first loaded from the cMOT into the ODT where
forced evaporation was performed. This results in a final temperature of 140 nK. To separate
different mJ states a magnetic field gradient of about 5 G/cm was applied for 4 ms after
switching off the trap. The magnetic field gradient leads to a spin-dependent force, which
spatially separates different spin states. Further separation happens during a subsequent
time-of-flight of another 16 ms such that different spin components can be separately imaged
on the CCD.

Figure 6.5(a) shows the result of this measurement. The spin-purity is determined by the
ratio between the area of a Gaussian fit to mJ = −6 and the overall area enclosed by the
data points. This gives a spin purity of 99(1)%. By driving a radio-frequency transition
in resonance with the energy of the Zeeman splitting energetically higher mJ -states can
be intentionally populated, see Fig. 6.5(b-d). This was done in presence of a homogeneous
magnetic field of 855 mG.

1 Due to a finite branching ratio into unwanted spin states in case of alkali metals and unwanted electric
states in case of alkali-earth metals during the MOT loading, repumping lasers have to be used to bring
atoms into the desired spin state at the end of MOT loading.
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Figure 6.5.: Population of Zeeman sub-states in an ultracold thermal sample measured in a Stern-
Gerlach-type experiment. (a) When no radio-frequency (RF) is applied only the lowest spin state is
populated and thus spin polarization of the atomic sample is verified. (b) When applying a RF for
90µs at a power of 23 dBm energetically higher-lying Zeeman states are populated. (c) After 210µs
mostly states with mJ ≥ 0 are populated. (d) For even longer RF durations the atoms are distributed
equally in all Zeeman sub states. (e) Integrated atom number from (d) is fitted by Gaussian peaks
for each mJ state (line). Small deviations in the spacing between different mJ -peaks are due to a
spatial inhomogeneity of the magnetic gradient field.
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7
Publication: Bose-Einstein
condensation of erbium

7.1. Introduction

The successful demonstration of narrow-line laser cooling using the transition at a wavelength
of 583 nm was important to further proceed with achieving a Bose-Einstein condensate (BEC)
of erbium atoms for the first time. After preparing the compressed MOT (cMOT), atoms
are loaded into an optical dipole trap (ODT) where they undergo forced evaporative cooling.
Regarding dipolar lanthanide atoms, the approach of forced evaporation has been also applied
to prepare a dipolar BEC of dysprosium atoms, published in Ref. [Lu11].

Since the atomic polarizability of erbium was not known in the beginning a first crossed
ODT was set up using two fiber-amplified lasers operating at a wavelength of 1064 nm and
1070 nm. The first laser was used to create a trapping beam in horizontal direction whereas
the second one was used in vertical direction. Atoms had been loaded with an efficiency of
about 10 % from the cMOT into the ODT within the first 150 ms with only a small heating
of up to a temperature of 42µK. After a total loading time of 600 ms forced evaporative
cooling was performed. Initial experiments on 166Er showed insufficient thermalization rates.
Later it was found out that this isotope has only a small background scattering length.
Changing the isotope to 168Er lead directly to the observation of a bimodal distribution
at low temperatures1, which is the smoking gun of the appearance of a condensed phase.
An onset of condensation was seen at a temperature of about 400 nK with 2 × 105 atoms.
Finally, a pure BEC was achieved with 6.8 × 104 atoms by further evaporation, showing
its characteristic Thomas-Fermi density distribution and an inversion of the aspect ratio
after releasing it from the trap. A Feshbach scan at magnetic fields below 3 G revealed up
to six Feshbach resonances and gave important information about the scattering properties
for optimizing the evaporation procedure. The BEC was mutually brought to collapse by
ramping from above closer and closer to a prominent Feshbach resonance at 914 mG. This
revealed the tunability of the s-wave scattering length as well as the presence of dipole-dipole
interaction by the observation of an anisotropic d-wave pattern in the absorption image.

1 The first observation of the erbium BEC was made on the 8th of March 2012, about two years after starting
to design and set up the experiment.
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In the following section an improved evaporation procedure will be described. Section 7.2
contains the publication on the erbium BEC. In Sec. 7.3 further additional work is presented.
In the first half of that section the cross-dimensional rethermalization method used for mea-
suring the scattering length for various isotopes of erbium is discussed. In the second half
the mass dependence of the s-wave scattering length for various isotopes is shown and fitted
by a theoretical model.

7.1.1. Evaporative cooling

Due to the small phase-space density in the MOT atoms need to be evaporatively cooled in
the ODT to produce a degenerate quantum gas, see Ref. [Ket99]. The phase-space density2

of a quantum gas is defined as
PSD = n0λ

3
dB , 7.1

where n0 is the peak number density of the gas and λdB the thermal de Broglie wavelength,
which is proportional to 1/

√
T . The transition into the condensed phase happens when

a macroscopically large number of bosons occupy the ground state and the phase-space
density3 approaches a value of 2.6. A large value of the phase-space density requires both
low temperature and high density of the gas. In a harmonic trapping potential with trap
frequencies ωi with i = x, y, z in the three spatial directions and geometrical mean trap
frequency ω = (ωxωyωz)1/3 the peak number density can be calculated as

n0 = Nω3

(
m

2πkBT

) 3
2

, 7.2

with N being the total atom number. The phase-space density can be expressed by using
this equation as

PSD = Nω3

(
~
kBT

)3

. 7.3

Increasing the PSD by evaporative cooling is based on actively truncating the thermal
Maxwell-Boltzmann distribution by removing only hot particles from the system and let-
ting the residual atoms rethermalize via elastic collisions. In dipolar systems the elastic
cross section arises from the long-range dipole-dipole interaction (DDI). Refer to Sec. 4.2.1
and Eqs. 4.19 and 4.20 for expressions of the elastic cross section of bosons and fermions,
respectively. Note that for bosons the DDI gives an additional contribution to the contact-
interaction cross section whereas for fermions it causes the cross section to be nonzero in
contrast to non-dipolar fermions. This opens the possibility to evaporatively cool of indis-
tinguishable fermions, see Chapter 9. In both cases the truncation of hot particles can be
easily achieved by adiabatically lowering4 the potential depth of the ODT. Increasing the
phase-space density by evaporative cooling relies on a favorable ratio of elastic to inelastic

2 The phase-space density relates the mean particle distance, expressed by n0, to the extension of the particle,
given by λdB = h/

√
2πmkBT .

3 For a 3D gas in a harmonic trapping potential, one would expect the onset of condensation at a critical
phase-space density of PSD = 1.2, see Ref. [Pet02], but it can be shown that for kBT ≪ ~ω the critical
phase-space density is 2.6, see Ref. [Cas01].

4 It is crucial to lower the potential depth adiabatically because of two reasons. First, the gas has to have
enough time to rethermalize and second, excitations in the trap have to be avoided.
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Figure 7.1.: Evaporation trajectory after loading 168Er into the ODT. Parameters of each ramp
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(2).
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collision rates. The former is needed to provide efficient rethermalization between atoms
within a reasonable time whereas the latter leads to losses especially at high densities and
should therefore be small.

A major improvement of the loading from the cMOT into the ODT was made by replacing
the initially used multi-mode fiber laser in the horizontal direction by a single-mode diode-
pumped solid state laser5 and implementing the scanning system for the horizontal trapping
beam, see Ref. [Bai12a] and Sec. 3.5.3. By deflecting the trapping beam in a fast way using
an accusto-optical modulator a time-averaged potential is created. This lets one optimize
the spatial overlap between the cMOT and the ODT and improves the loading efficiency
from 10% to 35%. Furthermore, it allows for a dynamical change of the aspect ratio of the
ODT during the experiment.

For efficient evaporation it is important to find an optimum set of parameters for an adiabatic
ramp of the potential depth. Lowering the trapping potential depth is done by decreasing
the trapping laser power. As described in Sec. 3.5.3 atoms are initially loaded from the
cMOT into a single horizontal trapping laser beam. Typical conditions at this stage are
1.2 × 106 atoms at a temperature of 22µK, which corresponds to a PSD of 3.1 × 10−4. The
power of the horizontal laser beam is decreased in an exponential-like piecewise linear ramp
consisting of a total of ten steps. Figure 7.1 presents the important ramp parameters for
every evaporation step, including the laser power, trap frequencies, homogeneous magnetic
field, atom number, and phase-space density. During the first two ramps the aspect ratio of
the horizontal beam is lowered from a value of ten, used for loading from the MOT, to two,
see inset in Fig. 7.1. This spatially compresses the sample before evaporation is performed.
At the fourth step the power of the vertical beam6 is ramped up, which gives a much stronger
confinement in the axial direction of the horizontal beam and thus a strong increase of the
density as well as the phase-space density is observed, see Fig. 7.1(e). The magnetic field is
usually changed to 0.4 G after the third ramp, which gives a more favorable scattering length
during evaporation of about 240 a0. As shown in Fig. 7.1(c) there is a Feshbach resonance
(FR) located at 914 mG. For special applications, which require to be at a magnetic field
above the FR, like for driving the dipolar collapse or creating Er2 molecules via magneto-
association, we jump back above the FR to 1.2 G for the last two evaporation stages, see
Fig. 7.1(c). After completing the full evaporation ramp up to 2 × 105 atoms are prepared in
an almost pure BEC within 7 s. Final laser powers are 0.3 W for the horizontal and 0.7 W
for the vertical trapping beam, giving trap frequencies of (ωx, ωy, ωz) = 2π × (35, 98, 31) Hz.
An in-detail description of the evaporation process and its optimization can be found in
Ref. [Bai12a].

The evaporation efficiency equals the order of magnitude increase of the phase-space density
at the expense of an order of magnitude of atom number, see Ref. [Ket96]. It is given by

γ = −d(ln PSD)

d(lnN)
. 7.4

The evaporation efficiency can be easily determined by plotting the phase-space density
against the atom number in a log-log plot, as seen in Fig. 7.2. The slope of a linear fit gives

5 model Mephisto MOPA, 42W at 1064 nm, from Innolight (now Coherent)
6 created by a fiber laser, model PYL-10-1064-LP, 10W at 1064 nm, from IPG Photonics

http://www.coherent.com
http://www.ipgphotonics.com/
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Figure 7.2.: Evaporation efficiency of cooling 168Er. The increase of the phase-space density is
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an increasing phase-space density, indicated by the arrow. The slope of the linear fit following Eq. 7.4
(solid line) gives an overall efficiency of the evaporation process of γ = 3.4. For the final evaporation at
small atom numbers the efficiency is about two (upper dashed line), which is similar to the efficiency
at the beginning of evaporation (lower dashed line).

the overall evaporation efficiency, which is in case of 168Er evaluated to be γ = 3.4. The
sudden increase of the phase-space density is caused by the ramping of the vertical trapping
beam during the fourth evaporation ramp. This evaporation efficiency is among the highest
efficiencies available in modern quantum gas experiments and is usually achievable by using
a so-called dimple technique or other more elaborate techniques. For non-dipolar systems in
a simple crossed dipole trap, like in the presented case, typical values for γ range from about
one up to two.

7.1.2. Dipolar Bose-Einstein condensate

At the many-body level the s-wave contact interaction is given by the contact potential

Ucont(r) =
4π~2as
m

δ(r) = gδ(r) , 7.5

with δ the delta function and g = 4π~2as
m the coupling constant. The contact interaction

can be changed by tuning the s-wave scattering length as. The s-wave scattering length can
be compared to the dipolar scattering length, aD, see Eq. 4.17, by calculating the dipolar
constant ϵdd as

ϵdd =
2

3

aD
as

. 7.6

It is important that ϵdd is non negligible if dipolar effects should be observable in a system
of ultracold particles. Some numerical values of aD and ϵdd for magnetic and electric dipolar
systems are summarized in Table 7.1.

A Bose-Einstein condensate with contact and dipole-dipole interaction is described by the
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species dipole moment aD (a0) ϵdd
87Rb 1µB 1.1 0.007
52Cr 6µB 24 0.2
168Er 7µB 99 0.3
164Dy 10µB 196 0.7
KRb 0.6 D 3.0 × 103 20
HCN 3.0 D 3.6 × 104 240

Table 7.1.: Dipolar scattering length aD and dipolar constant ϵdd for different systems in comparison.
To observe dipolar effects at ultracold temperatures ϵdd should be non-negligible. Most of the data
was taken from [Lah09].

following Gross-Pitaevskii equation,

i~
∂ψ

∂t
= − ~2

2m
∆ψ +

(
Uext + g|ψ|2 + Φdd

)
ψ , 7.7

with ψ the many-body wave function, Uext an external trapping potential, and Φdd the
dipolar contribution. The dipolar contribution can further be written as

Φdd(r, t) =

∫
|ψ(r′, t)|2Udd(r− r′)d3r′ , 7.8

with Udd the dipole-dipole interaction potential, see Eq. 4.2. In case of a spherically sym-
metric cloud of radius R = Ri with i = x, y, z trapped in an ODT with trapping frequency
ω = ωi the dipolar contribution Φdd can be written to first order in ϵdd as, see Ref. [Gio02],

Φdd(r) = ϵdd
mω2

5
(1 − 3 cos2 θ)

{
r2 if r < R
R5

r3
if r > R .

7.9

Thus the dipolar mean-field potential has the shape of a saddle with two minima along the
direction of the dipole orientation. This means that the cloud will be elongated in that
direction because it is energetically more favorable.

The elongation is the most obvious example for an effect of the DDI in a harmonically
confined BEC. The effect is often called magnetostriction and was predicted in Ref. [San00].
The first observation of this effect was made using a BEC of 7Li atoms in spite of its small
magnetic moment of 1µB, see Ref. [Pol09]. Magnetostriction stems from magnetic forces
within the cloud, which change the cloud’s shape and volume.

A second effect of the DDI is the emergence of a d-wave pattern when the BEC collapses.
The numeric factor in Eq. 7.6 is chosen such that a BEC will become unstable with ϵdd ≥ 1.
The contact interaction can be tuned in a broad range by an external magnetic field using
a Feshbach resonance and thus also ϵdd can be changed. Utilizing this tunability a stable
condensate can be mutually brought to collapse. This demonstration of a collapse is used
as a smoking gun for a tunable and dipolar quantum gas and was first demonstrated by
the group of T. Pfau in Stuttgart (Germany) in Ref. [Lah08] for a gas of chromium atoms.
A confirmation of the erbium BEC collapse is given within the publication in the following
section.
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We report on the achievement of Bose-Einstein condensation of erbium atoms and on the observation of

magnetic Feshbach resonances at low magnetic fields. By means of evaporative cooling in an optical dipole

trap, we produce pure condensates of 168Er, containing up to 7� 104 atoms. Feshbach spectroscopy reveals

an extraordinary rich loss spectrum with six loss resonances already in a narrow magnetic-field range up to

3 G. Finally, we demonstrate the application of a low-field Feshbach resonance to produce a tunable dipolar

Bose-Einstein condensate and we observe its characteristic d-wave collapse.

DOI: 10.1103/PhysRevLett.108.210401 PACS numbers: 03.75.Nt, 37.10.De, 51.60.+a, 67.85.Hj

Ultracold quantum gases have proven to be ideal

systems for observing spectacular many- and few-body

quantum effects. The large majority of these phenomena

rely on the high degree of control over the interparticle

interaction achieved with ultracold atoms. In the widely

used alkalis, ultracold atoms interact isotropically via a

short-range contact potential. A novel exciting frontier in

quantum gas experiments is to access unexplored physical

scenarios based on the anisotropic and long-range dipole-

dipole interaction (DDI) [1,2]. A dipolar quantum gas is

expected to exhibit fascinating phenomena, including

novel many-body quantum phases [3–6]. The DDI acts

in systems having sizable electric or magnetic dipole

moments [1].

In the context of ultracold atomic quantum gases,

pioneering experimental work on strong DDI has been

carried out with chromium atoms [7–9]. Magnetic lantha-

nides offer new possibilities for dipolar physics. In such

systems, the combination of a large magnetic moment and

a large atomic mass leads to a particularly strong dipolar

character. The demonstration of the first magneto-optical

trap of erbium atoms [10] stimulated growing interest in

such species for quantum gas experiments. Very recently, a

Bose-Einstein condensate (BEC) and a degenerate Fermi

gas of dysprosium have been produced [11,12]. We choose

erbium as a promising candidate for experiments on dipo-

lar quantum gases. This species has a number of very

appealing features, including a large magnetic moment �
of 7 times the Bohr magneton, several stable isotopes, a

rich energy level scheme [13] with a non-S electronic

ground state [14], and interesting cold collisional

phenomena [15,16].

In strongly magnetic atoms, the competition between the

DDI and the contact interaction is very important and gives

rise to many intriguing phenomena. The contact interaction

is determined by the s-wave scattering length a and can be

often tuned with external magnetic fields via Feshbach

resonances [17]. Tuning of a also controls the balance of

these two interactions. In the case of a novel species in

quantum gas experiments, Feshbach resonances and scat-

tering lengths are a priori unknown. Magnetic lanthanides

such as erbium with their large magnetic moments and

their non-S electronic ground states present a completely

unexplored terrain in ultracold scattering physics. Here the

anisotropic interaction is expected to give rise to novel

scattering scenarios, which are not accessible with alkali

atoms [18,19].

In this Letter, we report on the attainment of

Bose-Einstein condensation of erbium atoms and on the

observation of Feshbach resonances in the region of low

magnetic fields. We obtain pure optically trapped BECs of
168Er containing 7� 104 atoms. The remarkably high

efficiency of evaporative cooling in a standard optical

dipole trap indicates favorable scattering properties of the
168Er isotope. In addition, the magnetic Feshbach spectros-

copy provides first valuable information on the scattering

behavior of submerged-shell atoms at ultralow tempera-

tures. Moreover, we demonstrate low-field Feshbach tun-

ing of the contact interaction in our strongly dipolar BEC.

Our experimental procedure to create a BEC of Er

follows a simple and straightforward scheme, inspired by

work on Yb atoms [20,21]. Our starting point is the

narrow-line yellow magneto-optical trap (MOT) described

in our very recent work [22]; it operates on the 583 nm line

(natural linewidth 190 kHz). We choose this approach

because narrow-line MOTs permit us to obtain samples

with a large number of atoms at temperatures in the lower

microkelvin region. This allows a direct and efficient

transfer of atoms into optical dipole traps without the

need for additional cooling stages [20,21]. Our MOT gives

about 108 atoms at a temperature of 15 �K [23].

An additional very advantageous feature of our approach

is that the MOT light automatically pumps the atoms into

the lowest Zeeman sublevel mJ ¼ �6, where mJ is the

projection quantum number of the total electronic angular

momentum J ¼ 6. This effect results from the interplay

between gravity and weak radiation pressure, which leads

to a spatial down shift with respect to the zero of the
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magnetic quadrupole field [24] and thus to a preferential

absorption of the vertical MOT beam with �� polarization

[22]. The polarization of the sample is confirmed by

Stern-Gerlach-type measurements.

Our optical dipole trap geometry follows the concepts

originally applied in experiments with Yb BEC [20]. The

trap is created by crossing a tightly confining horizontal

beam (y axis) and a less focused vertical beam (z axis). The
basic idea is that initially the atoms are predominantly

trapped by the horizontal beam, whereas the vertical

beam provides confinement relevant in the final stage of

evaporation. The horizontal beam is derived from a 100 W

broadband Yb fiber laser operating at 1075 nm and has an

initial power of 10 W. The beam has an elliptic cross

section with a waist of 30ð40Þ �m along the vertical

(horizontal) direction. The vertical beam is produced by

a 10 W Yb fiber laser source at 1064 nm and has an initial

power of 8 W. The beam profile is elliptic with a waist of

55ð110Þ �m along (perpendicular to) the axis of the hori-

zontal beam.

We load the dipole trap during the MOT compression

phase. We observe that the time period in which the com-

pressed MOTand dipole trap coexist is crucial for efficient

loading. The number of atoms in the optical dipole trap

exponentially approaches its maximum value with a time

constant of about 150 ms. After 600 ms of loading, we turn

off the MOT beams and the quadrupole magnetic field, and

we switch on a weak homogeneous magnetic field of about

300 mG along the vertical direction to preserve the spin

polarization of the sample. We obtain 2:6� 106 atoms at a

temperature of 42 �K in the optical dipole trap. At this

point, the atoms are mainly trapped by the horizontal

beam. We measure oscillation frequencies ð�x; �y; �zÞ ¼

ð1:3; 0:016; 1:95Þ kHz; the potential depth is estimated to

be 560 �K. The peak density and the peak phase-space

density are 1:7� 1013 cm�3 and 1:6� 10�4, respectively.

These are our starting conditions for the evaporative

cooling process.

Forced evaporative cooling is performed by reducing the

power of the trapping beams in a nearly exponential ramp.

The overall evaporation sequence has a duration of 5.5 s

[25]. We then turn off the trapping beams and let the atomic

cloud expand before applying standard absorption imag-

ing. For imaging, we illuminate the atomic cloud with a

50-�s probe beam pulse [26]. The probe beam propagates

horizontally at an angle of 14� with respect to the propa-

gation axis (y axis) of the horizontal trapping beam.

The phase transition from a thermal cloud to BEC mani-

fests itself in a textbooklike bimodal distribution in the time-

of-flight absorption images. Figure 1 shows the absorption

images and the corresponding linear density profiles for

different final temperatures, i.e., for different stages of the

evaporation. At higher temperatures the atomic distribution

is thermal with the expected Gaussian profile resulting

from the Maxwell-Boltzmann distribution; see Fig. 1(a).

By cooling the atomic sample below the critical tempera-

ture, we clearly observe that the atomic density distribution

has a bimodal profile with a narrower and denser peak at the

center, which represents the BEC (b). By further evaporating

the sample, the BEC fraction continuously increases

(c) until the thermal component is not anymore discernible

and an essentially pure BEC is formed with 7� 104

atoms (d).

To analyze our data, we fit a bimodal distribution to the

integrated time-of-flight absorption images. This distribu-

tion consists of a Gaussian function, which accounts for the

thermal atoms, and an inverted integrated parabolic func-

tion for the BEC component in the Thomas-Fermi limit.
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FIG. 1 (color online). Absorption images and integrated

density profiles showing the BEC phase transition for different

evaporation times. The absorption images are an average of four

images taken after 24 ms of expansion. The color bar shows the

optical density. The solid lines are fits to the data using

Gaussian (a), bimodal (b) and (c), and Thomas-Fermi (d)

distribution. The dotted lines represent the Gaussian part of

the bimodal fit, describing the thermal atoms. From the fit

we extract: N ¼ 3:9� 105, T ¼ 1100 nK (a), N ¼ 2:1� 105,
T ¼ 408 nK (b), N ¼ 1:6� 105, T ¼ 222 nK (c), N ¼
6:8� 104 (d), where N is the total atom number. For (b) and

(c), we extract a condensate fraction of 5% and 20%, respectively.
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Just after the onset of quantum degeneracy (BEC fraction

�5%), we measure trap frequencies of ð�x; �y; �zÞ ¼

ð208; 70; 299Þ Hz, atom number of N ¼ 2:1� 105, and a

temperature of T ¼ 408 nK. The critical temperature of

417 nK as calculated from standard BEC theory (without

interaction shift) is consistent with this observation.

The evaporation efficiency is found to be remarkably

high as 3.5 orders of magnitude in phase-space density are

gained by losing a factor of 10 in atom number. This

observation already points to favorable scattering parame-

ters of the 168Er isotope. First evaporative cooling experi-

ments on the most abundant 168Er isotope reveal a lower

efficiency in the final stage of evaporation, suggesting that

a different strategy might be needed to reach BEC.

To gain insight into the ultracold collisional properties

of erbium we perform Feshbach spectroscopy [17] at low

magnetic fields. This measurement is done in a way that

allows us to identify both the poles and zero crossings of

Feshbach resonances [27,28]. The basic idea here is to

prepare the system at a variable target value of the mag-

netic field and then to rapidly (50 ms) decrease the depth of

the optical dipole trap by almost a factor of 2. The sample

stays near thermal equilibrium with an effective tempera-

ture of 2:2 �K but features a truncated energy distribution.

We then let the system evolve at a constant trap depth

for 250 ms, during which plain evaporative cooling and

inelastic losses can occur depending on the scattering

length. We finally switch off the trap and take time-of-

flight images to determine the temperature and number of

the atoms. The measurement is then repeated for variable

magnetic-field values. Such a Feshbach scan shows reso-

nance poles as loss features and zero crossings as tempera-

ture maxima.

Figure 2 shows the loss spectrum and the corresponding

temperatures in the low magnetic-field range up to 3.2 G

[29]. Already in this narrow magnetic-field range, the loss

spectrum is very rich. We identify six pronounced resonant

minima in the atom number that we interpret as being

caused by Feshbach resonances. For convenience, we de-

termine the resonance positions with Gaussian fits, yield-

ing 0.72, 0.91, 1.51, 2.16, 2.48, and 2.85 G. The loss

features show different strengths and widths. For the three

broader resonances at 0.91, 2.16, and 2.48 G, we also

observe the appearance of temperature maxima to the right

of the loss minima (arrows in Fig. 2). These temperature

maxima mark the zero crossings of the scattering length.

The other loss features are too narrow to provide clear

signatures of the zero crossing. From the difference in

positions between the minima in the atom number and

the maxima in temperature we estimate the widths � of

the resonances. We find � ¼ 65, 60, and 180 mG for the

resonances at 0.91, 2.16, and 2.48 G, respectively.

In a strongly dipolar atomic gas, universal dipolar scat-

tering is present [30–32], so that the total cross section for

elastic scattering does not vanish at the zero crossings of

the scattering length. For Er, a minimum cross section

�dip ¼ 8�ð30a0Þ
2 results from universal dipolar scatter-

ing, where a0 is the Bohr radius. The fact that we observe
temperature maxima near the zero crossings suggests a

dominant role of s-wave scattering and not of dipolar

scattering. Preliminary cross-dimensional thermalization

measurements indeed point to a scattering length between

150 and 200a0.
The existence of Feshbach resonances at low magnetic

fields makes the manipulation of the contact interaction in

the Er BEC very convenient and straightforward. As a

proof-of-principle experiment, we explore the controlled

d-wave collapse of the BEC, following the procedure

successfully applied by the Stuttgart group [7]. We first

produce a pure BEC by evaporative cooling at 1.2 G, which

is above the position of the first broad Feshbach resonance

(0.91 G). Here we obtain 3� 104 atoms in the BEC,

indicating that forced evaporation at this magnetic field is

slightly less efficient. We then ramp down the magnetic

field within 2 ms to a variable target value and let the

sample evolve for 2 ms before switching off the trap. The

magnetic field is kept constant at its target value during the

first stage of the expansion (15 ms), where the main

dynamics happens. We then set the magnetic field along

the y axis and we image the atomic cloud after an addi-

tional 11 ms of expansion. Our results are summarized in

Fig. 3, where we show time-of-flight absorption images for

different values of the target magnetic field. We observe a

dramatic change in the shape of the condensate when the

FIG. 2 (color online). Observation of Feshbach resonances in

Er-Er collisions. The measured temperature (a) and atom

number (b) are plotted as a function of the magnetic field. The

minima in the atom number indicate the Feshbach resonance

poles, marked by the thin vertical lines. The maxima in the

temperatures to the right of the three stronger loss features

(arrows) are attributed to the respective zero crossings of the

scattering length. The varying background in the atom number is

presumably due to ramping effects caused by the sweep of the

magnetic field across the resonances.
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magnetic field is reduced towards the zero crossing of

the scattering length. At the magnetic field of evaporation,

the aspect-ratio of the cloud is close to the one observed at

zero magnetic field; see Fig. 3(a). By changing the mag-

netic field to lower target values, the BEC shows a more

and more anisotropic shape (b) and (c). Below a critical

magnetic-field value, the BEC develops a complicated

cloverleaf pattern (d)–(f) which is the striking signature

of the d-wave collapse in a dipolar BEC [7].

In conclusion, we have demonstrated the first BEC of

Er atoms and the tunability of its interparticle interaction

via Feshbach resonances. Our scattering data provide first

sensitive input to understand the complex collisional

behavior of submerged-shell atoms. The observation of

the d-wave collapse is very encouraging in view of future

experiments dedicated to the rich phenomena expected in

strongly dipolar quantum gases.
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7.3.1. Cross-dimensional rethermalization

The cross-dimensional rethermalization method is a powerful method for determining the
scattering length of an atomic sample at ultracold temperatures, see Ref. [Mon93]. For this
the atomic cloud has to be in thermal equilibrium before it is brought out of equilibrium in
one spatial direction. This can be achieved by increasing the temperature in one direction via
a sudden compression of the cloud. When the cloud is placed in a crossed ODT this compres-
sion can be easily realized by increasing the power of the vertical trapping beam. To reduce
systematic errors care has to be taken that only one direction is affected and no collective
oscillations are excited by this compression. The temperature increase in the direction of
compression will eventually be distributed in the other directions as the kinetic energy of the
particles will be ‘distributed’ by elastic collisions and the gas will reach thermal equilibrium
again, i. e. a rethermalization process happens across different spatial dimensions.

The timescale of the rethermalization can be conveniently measured in the experiment by
observing the change of the size of the atomic cloud in the direction orthogonal to the direc-
tion of excitation. In the experiment the cloud is usually excited in the horizontal direction
(y-direction) and the rethermalization is observed in the vertical direction (z-direction).
Figure 7.3 shows the increase of the vertical size after compression. It is described by an ex-
ponential function with time constant τ , which equals the thermalization time of the cloud.
It is inversely proportional to the elastic scattering cross section, σel, with

τ =
α

nσelv
. 7.10

Here, the term nσelv gives a collision rate with the mean number density

n =
n0√

8
, 7.11

where n0 is the peak density in a harmonic trapping potential, see Eq. 7.2 and Ref. [Sch03],
and the mean relative thermal velocity, v, at temperature T with reduced mass mr is given
by

v =

√
8kBT

πmr
. 7.12

In Eq. 7.10 the dimensionless constant α has been introduced, which is often referred to
as the number of collisions necessary for rethermalization. It can be computed from the
known differential cross section and depends on the probability of two horizontally colliding
particles to exit the collision in the vertical direction. It has been shown theoretically by
Monte-Carlo simulations and also experimentally that for alkali-metal atoms α = 2.7 and
α = 4.17 for s- and p-wave collisions, respectively, see Refs. [Mon93, DeM99a]. For particles
with a large dipole moment the scattering amplitude is anisotropic and thus α depends
on the angle θ between the excitation direction and the orientation of the dipoles set by a
polarizing magnetic or electric field, see Ref. [Boh14]. This angular dependence of α has been
demonstrated in a cross-dimensional rethermalization measurement using a dipolar Fermi
gas of 167Er atoms, see Ref. [Aik14b]. Surprisingly, α can be as small as one for θ = 45◦ for
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Figure 7.3.: A typical cross-dimensional rethermalization measurement for isotopes 168Er (blue
circles) and 170Er (red triangles). The time constant for thermalization is extracted by an exponential
fit (solid lines).

fermions, which makes rethermalization extremely efficient. The angle dependence is quite
different for bosons. In this case the minimum of α can be found at an angle of 90◦ with a
value of about two whereas in the fermionic case it is largest at exactly this angle with α = 4.
In both fermionic and bosonic cases α further depends on the initial degree of temperature
anisotropy Ty/Tz, which is being induced by the trap compression and is usually as large as
two, see Ref. [Boh14].

The cross-dimensional rethermalization method was used to determine the total elastic scat-
tering cross section, σel, away from Feshbach resonances for various bosonic isotopes of
erbium. Atoms were trapped in the crossed ODT and a holding time of 500 ms ensured
thermal equilibrium. Then the power of the vertical beam was ramped from 1.6 W to 8.0 W
within 5 ms in a parabolic way to prevent collective oscillations. Typical final trap frequen-
cies were (ωx, ωy, ωz) = 2π×(61, 35, 260) Hz. The angle was set to θ = 90◦ which corresponds
to a value for α = 2. Two examples of a measurement of the cloud size in z-direction versus
the waiting time after compression in the y-direction can be found in Fig. 7.3.

By using Eqs. 4.17 and 4.19 one can estimate a value for the s-wave scattering length, as, by
subtracting the contribution of the dipole-dipole scattering length, aD, from the measured
scattering length, a. Using the expression for the elastic cross section σel = 8πa2 we get

as =

√
a2 − 2.234

8π
a2D . 7.13

Experimental values of the scattering length for the bosonic isotopes 164Er, 166Er, 168Er, and
170Er are measured via the cross-dimensional rethermalization method and are summarized
in Table 7.2.

7.3.2. Scattering length mass scaling

The scattering length depends on the atomic mass of different isotopes in a tangent-like
manner. This was derived and supported by measurements using ytterbium in Ref. [Kit08]
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isotope magn. field scattering length
(amu) (G) a (a0) aD (a0) as (a0)

164 0.8, 1.0 86(10) 97.0 81(10)
166 0.4, 0.7 78(12) 98.2 72(13)
168 0.4 202(23) 99.4 200(23)
170 0.4, 0.5 223(22) 100.5 -221(22)

Table 7.2.: Homonuclear scattering lengths for four bosonic erbium isotopes determined by the
cross-dimensional rethermalization method. The measured scattering length is given by a, the dipole
length is aD, and the s-wave scattering length by as. The values for the scattering length are averaged
over a few measurements at different magnetic fields far away from Feshbach resonances. The values
of the magnetic field at which measurements were taken are given. The sign of a for 170Er was
determined by locating the zero crossing of the scattering length on the left-hand side of the nearest
Feshbach resonance, which was found at 0.858 G.

and strontium in Ref. [Ste13]. The mass scaling is given by a simple expression as

a = ā
[
1 − tan

(
Φ − π

8

)]
, 7.14

with the characteristic length ā, which is associated to the van der Waals potential by

ā = 2−3/2

[
Γ(3/4)

Γ(5/4)

](
2mrC6

~2

)1/4

. 7.15

Here, Γ is the gamma function and mr = m/2 the reduced mass. The semiclassical phase Φ
in Eq. 7.14 is defined by

Φ =

√
2mr

~

∞∫

r0

√
−U(r)dr , 7.16

where U(r) is the adiabatic Born-Oppenheimer interaction potential between two atoms and
r0 is the inner classical turning point at zero energy. By knowing Φ one can calculate the
number of bound states N by, see Ref. [Fla99],

N =

[
Φ

π
− 5

8

]
+ 1 . 7.17

The brackets denote taking only the integer part. Given these relations the scattering length
for different isotopes can be derived by the knowledge of a and N of one single isotope.
Figure 7.4 shows a plot of the values for as for four bosonic isotopes of erbium together with
a fit of the mass scaling following Eq. 7.14. For fitting the value for C6 was assumed to be
1723 a.u., see Ref. [Kot14]. The value for Φ is extracted from the fit, which yields for the
number of bound channels N = 142(1).

In initial experiments, the thermalization of 166Er was insufficiently working, which can be
understood by its small scattering length of 78(12) a0. A BEC of erbium atoms was finally
successfully produced using the isotope 168Er. Its scattering length of a = 202(23) a0 made
the evaporative cooling very efficient. After knowing the scattering lengths and Feshbach
resonance spectra of isotopes 166Er and 170Er it was possible to evaporatively cool these two
isotopes to a BEC using slightly modified evaporation procedures.
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Figure 7.4.: Mass scaling of the scattering length. Measurements of the scattering length for four
bosonic isotopes have been carried out by cross-dimensional rethermalization measurements away
from Feshbach resonances (blue circles). A tangent function according to Eq. 7.14 with a fixed value
for C6 = 1723 a.u. (solid red line) is fit to the data.

Identifying the s-wave scattering length, as, with the background scattering length, abg, and
combining this with the Feshbach resonance properties, like positions and widths, we can
estimate the scattering length dependent on the magnetic field. Figure 7.5 shows a plot of
this dependence from 0 to 5 G for the isotopes 166Er, 168Er, and from 0 to 1.6 G for 170Er.
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Figure 7.5.: The s-wave scattering length, as, dependent on the magnetic field for the three bosonic
isotopes 166Er (a), 168Er (b), and 170Er (c). These plots are intended as a rough estimation of the scat-
tering length due to the large error of the background scattering length in Table 7.2. The plots were
generated using Eq. 4.22 for multiple resonances assuming a constant background scattering length
over the full plotting range. Positions and widths of Feshbach resonances are given in Appendix D.
For 170Er the Feshbach scan was only carried out between 0 and 1.6 G.
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8
Publication: Hyperfine structure
of fermionic erbium

8.1. Introduction

In contrast to bosonic erbium the fermionic isotope has a nonzero nuclear spin of I = 7/2.
This gives rise to the hyperfine structure of the ground and excited states. Knowledge of the
hyperfine energy structure is fundamental for laser cooling experiments. For erbium only
poor knowledge exists of its hyperfine structure. The hyperfine coefficients of the excited
state of the 401-nm transition have not been known at all, which made a determination with
spectroscopic measurements necessary. In the presented publication the hyperfine structure
and isotope shifts for the 401-nm and 583-nm transitions were recorded using modulation
transfer spectroscopy. We carried out a fitting of the measured spectra using a theoretical
model in order to assign quantum numbers to the spectral features and extract values for
the hyperfine A and B coefficients.

In the following section the spectroscopic setup utilizing a hollow-cathode lamp is described
and the technique of modulation-transfer spectroscopy is briefly discussed. In Sec. 8.2 the
publication is presented.

8.1.1. Hollow-cathode lamp

Hollow-cathode lamps (HCLs) have been used extensively in spectroscopic setups as a spec-
tral line source since the 1960s. In such setups the plasma, which is created in the HCL, is
used as an emitter of incoherent light that can be used as a frequency reference. Nowadays,
hollow-cathode lamps are commonly utilized as spectroscopy cells in ultracold gas experi-
ments also for elements other than erbium, like calcium [Han05], chromium [Chr09], and
ytterbium [WL11].

Figure 8.1 shows a photograph and a schematic view of a HCL. The working principle of a
HCL is the following: the hollow cathode is formed by a metallic cylinder with a center bore
in axial direction. It can be either made of a solid piece of the desired metal or its surface
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Figure 8.1.: (a) The photograph of the hollow-cathode lamp shows the cathode (1), the two anodes
(2), the electrical connections via feedthroughs (3), the glass body (4), and the lamp holder (5). (b)
The schematic view highlights the mechanical construction and shows the optical axis (dotted line).
The lamp is filled with an Ar-gas at a pressure of 4 mbar. Electric isolation between the cathode and
anodes is achieved by thin mica insulator disks (orange) and ceramic tubes (gray).

can be coated with the desired metal. In the latter case, the lifetime of the HCL will be
much shorter because of the small layer thickness. Two anodes are mounted on each side
next to the cathode. The full setup is inside a glass cell, which is filled with a buffer gas at a
pressure of a few millibar. Nobel gases are best suited as a buffer gas. In our case the lamp
is filled with argon at a pressure of 4 mbar. A high voltage of 110 V is applied between the
cathode and the anodes. This creates a plasma discharge by electric-field ionization of atoms
in the buffer gas. Positively charged ions are then accelerated into the center of the hollow
cathode. When an argon ion with sufficient kinetic energy hits the surface of the cathode
neutral atoms are emitted. This is known as a so-called sputtering effect, which was studied
in Ref. [Mus62]. Electrical isolation between the two electrodes is realized by two thin mica
insulator disks. This is important to direct the plasma into the center of the cathode and
maximize the number of target atoms along the optical axis.

Hollow-cathode lamps can be acquired from a manufacturer with almost any metallic element
forming the cathode. This broad availability was the reason to use such lamps as spectroscopy
cells instead of light sources. In the beginning spectroscopy was done in a setup taking
advantage of the optogalvanic effect, see Ref. [Bar90]. Later HCLs were slightly modified as
see-through HCLs such that they can be used in Doppler-free absorption spectroscopy setups,
see Ref. [Law81]. A major drawback of the HCL is given by the large pressure of the buffer
gas, which broadens the natural linewidth by several MHz. The usage of HCLs as frequency
references has been nowadays surpassed by modern optical frequency standards, like high-
finesse cavities and frequency combs. But its simple operation makes it advantageous for
providing a source of elements for spectroscopic setups. This saves the construction of a high-
temperature oven in case of elements with high melting point. Lasers for broad transitions
can be reliably stabilized on the spectroscopy signal coming from a HCL whereas narrow
transitions suffer from line broadening effects.

The electrical current, at which the plasma discharge is operated, should not exceed 20 mA
to prevent arc discharges inside the lamp. Typical values of the discharge current for its
purpose as a spectroscopy cell are below 10 mA. A too high current will reduce the lifetime
of the lamp significantly. The current can be controlled by changing the applied voltage.
When turning on the lamp it requires a higher voltage of about 400 V for ignition of the
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plasma discharge. Typical guaranteed lifetimes are specified to be around 1000 hrs but it
was observed that even after 3 years of daily use in the lab, which corresponds to about
15.000 operating hours, spectroscopy still works well. However, strong signs of degradation
are already visible, like a deposition of black metallic vapor on the inside of the lamp as well
as an increase of the plasma discharge volume.

8.1.2. Modulation-transfer spectroscopy

Compared to other spectroscopic methods, e. g. saturated absorption spectroscopy, modu-
lation-transfer spectroscopy (MTS) produces a Doppler-free signal with a flat background,
which can be directly used for laser-locking purposes. One of the main advantages of MTS
is that it directly gives dispersive-shaped curves with zero crossings at the frequencies of
atomic transitions.

The optical setup consists of a high-power pump beam, which is aligned through the center of
the atomic vapor in the center of the HCL1, and a weaker probe beam in counter-propagating
direction. Both laser beams are derived from the same laser source. The pump beam is phase-
modulated via an electro-optical modulator (EOM) and thus contains additional sidebands
in the frequency spectrum. These sidebands are transfered onto the probe beam when the
laser frequency is close to resonance with an atomic cycling-transition. The modulation-
transfer happens due to an optical four-wave mixing process in a sufficiently nonlinear gas,
see Ref. [Shi82]. The probe beam is recorded using a photodiode (PD) and its sidebands are
detected by mixing the signal of the PD with a local oscillator (LO) from which also the
initial modulation frequency is derived. Dependent on the phase delay between signal and
LO a signal proportional to either the dispersion or the absorption of the atomic gas can be
recorded, i. e. it is sensitive to either the in-phase or quadrature component.

For laser-locking the dispersion signal is used. This signal can be optimized to largest
steepness around a spectroscopic feature and a maximum signal-to-noise ratio (SNR) by
choosing the right modulation frequency, fmod, see Refs. [Ebl07, McC08]. The optimum is
found when fmod equals half of the natural linewidth of the atomic transition to be probed.
In case of the 401-nm transition of erbium this sets fmod ≈ 15 MHz. Strongest contributions
in the spectroscopy signal come from the bosonic isotopes of erbium, which makes locking
to these features convenient and reliable. But also the hyperfine structure of the fermionic
isotope is observed as presented in the publication in the next section. The shape of features
in the dispersion signal equals the expected shape of a differentiated Lorentzian curve.

The spectroscopy signal from MTS is Doppler-free but can be affected by other broadening
effects, like pressure and power broadening. This has to be considered when using MTS in
combination with a HCL as spectroscopy cell. Due to the large background pressure the
collisional broadening can be as large as 8.2 MHz. Because of the small erbium atom number
density inside the HCL it is difficult to achieve a sufficiently large SNR for stable locking.
For a large signal the intensity of the pump laser has to be chosen quite large, leading to a
significant power broadening. Typical broadening factors are as large as

√
1 + I/IS = 2.3

1 see-through HCL 3QQAYEr, from Heraeus Noblelight

http://www.heraeus-noblelight.com/de/products_1/optikanalytik_1/hollow_cathodelamps.aspx
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with I the total intensity of pump and probe beam and IS the saturation intensity of the
transition. These two effects broaden the natural linewidth from 30 MHz to about 81 MHz.
Nevertheless, the steepness of the spectroscopy signal is estimated to be 2 MHz/V, which
allows for reliable laser-locking with a sufficiently high stability.

In summary, modulation transfer spectroscopy on a hollow-cathode lamp is a very reliable
and easy-to-use spectroscopic technique, which can be used for direct laser-locking on atomic
transitions with a natural linewidth of several MHz. For narrower transitions, like the 583-
nm transition with a linewidth of 190 kHz, a signal can only be observed if the intensity of
the laser beam is strongly increased. This causes a significant broadening of the transition
of up to a factor of 100, making laser locking impossible.

As shown, locking a laser on a broad transition using a HCL can be done even for elements,
which would otherwise require a high-temperature oven for spectroscopy or different spec-
troscopic techniques, like locking to a reference cavity. A setup, which is very similar to the
one described above is presented in Ref. [Bra12] but the spectroscopy signal suffers from an
unusually high discharge current of 70 mA at an applied voltage of 1.3 kV. Here, the HCL is
operated at a lower pressure of 1 mbar intended to increase the signal amplitude and SNR
to a usable magnitude.
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Hyperfine structure of laser-cooling transitions in fermionic erbium-167
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We have measured and analyzed the hyperfine structure of two lines, one at 583 nm and one at 401 nm,

of the only stable fermionic isotope of atomic erbium as well as determined its isotope shift relative to the

four most-abundant bosonic isotopes. Our work focuses on the J → J + 1 laser cooling transitions from the

[Xe]4f 126s2(3H6) ground state to two levels of the excited [Xe]4f 126s6p configuration, which are of major

interest for experiments on quantum degenerate dipolar Fermi gases. From a fit to the observed spectra of the

strong optical transition at 401 nm we find that the magnetic dipole and electric quadrupole hyperfine constants

for the excited state are Ae/h = −100.1(3) MHz and Be/h = −3079(30) MHz, respectively. The hyperfine

spectrum of the narrow transition at 583 nm, was previously observed and accurate Ae and Be coefficients

are available. A simulated spectrum based on these coefficients agrees well with our measurements. We have

also determined the hyperfine constants using relativistic configuration-interaction ab initio calculations. The

agreement between the ab initio and fitted data for the ground state is better than 0.1%, while for the two excited

states the agreement is 1% and 11% for the Ae and Be constants, respectively.

DOI: 10.1103/PhysRevA.88.032508 PACS number(s): 32.10.Fn, 32.30.Jc, 37.10.De

I. INTRODUCTION

The field of ultracold quantum gases has historically

heavily relied on alkali-metal atoms. Only recently, the use

of non-alkali-metal atoms has gained attention as a means

to explore fascinating quantum phases of matter that are not

accessible with alkali-metal species. Species with multiple

unpaired valence electrons have rich atomic energy spectra

and exhibit various types of coupling between the electronic

angular momentum �J and the nuclear spin �I of the atom.

For instance, fermionic alkaline-earth-metal atoms have J = 0

and I �= 0 and the electronic and nuclear angular momenta

decouple. This decoupling is at the center of proposals for

efficient quantum simulation [1–3] and quantum magnetism

[4–7]. Recently, degenerate Bose and Fermi gases of Ca [8],

Sr [9–11], and the alkaline-earth-metal-like Yb atoms [12,13]

have been realized.

Lanthanides with submerged 4f -shell electrons are a novel

class of atoms that attract attention in the field of ultracold

quantum physics. Lanthanide atoms can have an exceptionally

large electronic angular momentum �J resulting from the

alignment of the angular momenta of the submerged elec-

trons. Consequently, these species can have strong magnetic

moments μ as large as 10μB , where μB is the Bohr magneton.

The mutual interaction is dominated by long-range magnetic

dipole-dipole forces. Their dipolar character can be one

hundred times larger than that for alkali-metal atoms. This key

property makes lanthanides prime candidates for the study of

atomic dipolar physics [14–16]. Dy [17,18] and Er [19], with

μ = 10μB and 7μB, respectively, have been recently brought

to quantum degeneracy, while others are under investigation

[20–22].

*Present address: Division of Quantum Mechanics, St. Petersburg

State University 198904, Russia.

The success of quantum-degenerate-gas experiments relies

on a precise understanding of the atomic properties, such as

energy levels, hyperfine structures, and atomic polarizabil-

ities. However, for unconventional atomic species, such as

lanthanides, the available knowledge is in many instances

insufficient for laser-cooling and trapping purposes. Therefore,

dedicated experiments need to be conducted en route to

quantum degeneracy [21,23–25].

In this paper, we present a combined experimental and

theoretical investigation of the hyperfine structure of the

only stable fermionic erbium isotope, 167Er. In particular,

we obtain the magnetic dipole, A, and electric quadrupole,

B, hyperfine structure constants for the ground and two

electronically excited states of 167Er, which are relevant for

laser-cooling experiments [23,26]. The two electronic excited

states investigated are the one at a wavelength of 582.67 nm

[corresponding to photon energy E/(hc) = 17 157.307 cm−1]

and one at 400.796 nm [E/(hc) = 24 943.272 cm−1] from the

ground state [27]. Here h is Planck’s constant and c is the speed

of light. In addition to the study of the hyperfine constants,

we also obtained the isotope shift of 167Er relative to the

most-abundant bosonic isotopes. Our work provides important

information for future experiments on quantum-degenerate

Fermi gases of strongly dipolar Er atoms.

In a previous work, we used the optical transitions at about

401 nm and 583 nm for Zeeman slowing (ZS) and magneto-

optical trapping (MOT) applications [26]. We demonstrated

efficient laser cooling for five Er isotopes, including the

fermionic one. However, the realization of a MOT of fermionic

Er isotope was challenging, since only the hyperfine structure

of the ground and the 583-nm-excited state were known

[28,29], while the one of the state at 401 nm was unknown

prior to this work. To operate the Zeeman slower and the

transversal cooling stage we had in fact to proceed empirically

and try different locking points for the light at 401 nm before

being able to produce a MOT of fermions.

032508-11050-2947/2013/88(3)/032508(7) ©2013 American Physical Society
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FIG. 1. (Color online) Energy levels of atomic Er up to E/(hc) =
25000 cm−1 for different electronic angular momentum quantum

numbers J [27,30]. States with odd (even) parity are indicated by

black (red) horizontal lines. The two relevant laser-cooling transitions

at 401 nm and 583 nm are indicated by arrows.

Figure 1 shows the atomic level scheme of Er. The elec-

tronic ground state belongs to the [Xe]4f 126s2 configuration

and has a large orbital angular momentum quantum number

L = 5 (H state) and a total electronic angular momentum

quantum number J = 6. The excited states at 401 nm and

583 nm belong to the [Xe]4f 126s6p configuration and have

singlet 1P1 and triplet 3P1 character for the outer two valence

electrons, respectively. Both excited states have a total electron

angular momentum J = 7. Erbium has six stable isotopes

with natural abundance being 33.6% for 166Er, 26.8% for
168Er, 23.0% for 167Er, 14.9% for 170Er, 1.61% for 164Er, and

0.14% for 162Er. 167Er is the only stable fermionic isotope.

The bosonic isotopes have zero nuclear spin (I = 0), while

the fermionic one has I = 7/2 and shows hyperfine structure.

All three electronic states of 167Er have eight hyperfine

levels ranging from F = J − 7/2 to F = J + 7/2, where
�F = �J + �I .

This paper is structured as follows. Section II describes our

experimental methods to investigate the hyperfine structure

of the relevant states. Section III reports on our least-squares

fitting procedure to obtain the hyperfine constants and isotope

shifts from the measured spectra. Section IV describes our

ab initio relativistic configuration-interaction calculations and

compares the ab initio hyperfine constants with the fitted

values. We present our conclusions in Sec. V.

II. ATOMIC SPECTROSCOPY

We measure the hyperfine structure of the 167Er isotope us-

ing modulation-transfer spectroscopy [31]. The spectroscopy

is performed on an atomic Er vapor created with a hollow cath-

ode discharge lamp (HCL). The HCL, based on a sputtering

process, has the advantage of providing atomic vapors without

the need of a high-temperature atomic source.

We use a commercially available HCL, which is filled with

an argon gas at a fixed pressure of 4 mbar [32]. By applying

a high voltage on the electrodes, the argon gas is ionized and

accelerated into the center of the Er-coated cathode. When

hitting the surface the kinetic energy of the Ar ions is high

enough to free neutral erbium atoms by sputtering processes

[33]. We typically operate the HCL with a voltage of 110 V,

giving a discharge current of 9.2 mA.

We perform a Doppler-free modulation-transfer spec-

troscopy in the HCL [34,35]. The laser beam is split into a

pump and a probe beam, as shown in Fig. 2(a). The pump

light is modulated with an electro-optical modulator (EOM)

driven by a local oscillator (LO) at a frequency of 14.2 MHz

and with a power of 23 dBm [36]. A four-wave mixing process

transfers the sidebands from the modulated pump beam onto

the counterpropagating probe beam [37]. We acquire the

pump

probe

from

laser

PBSPBS HCL

EOM

spectroscopy signal

LO 14.2MHz

PD
λ/2

HV 9.2mA 110V

(b)

(a)

(c)

. .

.

.

.

.

. . . . . .

. . . . .

FIG. 2. (Color online) Modulation transfer spectroscopy of Er for

the 401 nm and 583 nm transitions. (a) Laser setup for spectroscopy on

a hollow cathode discharge lamp (HCL); see text. The pump (probe)

light has a power of 3.3 mW (0.6 mW) for the 401 nm transition

and 20 mW (1 mW) for the 583 nm transition. (b), (c) Obtained

spectroscopy signals for the 401 nm and the 583 nm transitions of

different isotopes. Signals related to the hyperfine structure of 167Er

are indicated by arrows. The relative amplitudes of the observed

signals reflect the natural isotope abundances.
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spectroscopy signal by mixing the LO signal with the probe

beam signal detected by a photodiode (PD). By setting the LO

and the signal either in phase or shifted by π , one can obtain a

signal proportional to the dispersion or to the absorption of the

atomic sample, respectively. In our setup we use the dispersion

signal.

In a first set of experiments, we measure the hyperfine

structure and the isotope shift of the excited state at 401 nm,

with a natural linewidth of 2π × 29.7(5) MHz [38–40]. A

frequency-doubled diode laser is used for the spectroscopy.

Figure 2(b) shows the dispersive spectroscopy signal for this

transition. The signal is averaged over 16 scans with a scanning

speed of 2.4 GHz/s [41].

Our measurement reveals the full hyperfine structure for

the fermionic 167Er. The discussion and the assignment of the

observed spectral features are given in Sec. III. In addition,

we determine the isotope shifts for the bosonic isotopes

relative to 166Er. We measure a shift of −1681(14) MHz for
170Er, −840(14) MHz for 168Er, and +849(17) MHz for
164Er, which is in good agreement with Ref. [42]. The

linewidths are extracted by fitting the derivative of a Lorentzian

curve to the data. This gives an averaged value of 2π ×
88(8) MHz, corresponding to about three times the natural

linewidth. This broadening of the transition can be explained

as a combined effect of collisional and power broadening.

For a number density of about 1017 cm−3 and an argon

background pressure of 4 mbar, we calculate a collisional

broadening of 2π × 8.2 MHz. Considering a total intensity

of the pump and probe beams of I = 250 mW/cm2, we

estimate a power broadening of a factor of
√

1 + I /I0 = 2.3

with I0 = 60.3 mW/cm2 being the saturation intensity.

Combining the two contributions, we estimate a broadened

linewidth of 2π × 81 MHz, which is in agreement with the

observed value.

In a second set of measurements, we focus on the hyperfine

structure of the excited state at 583 nm, with a linewidth of

2π × 186 kHz [43]. The spectroscopy is performed with a dye

laser, which is frequency stabilized to an ultralow expansion

cavity within 30 kHz [26]. We use a spectroscopy setup

similar to the one described above for the 401 nm transition.

Figure 2(c) shows the corresponding spectroscopy signal.

Despite the narrow-line nature of the transition, we could

observe five features related to the hyperfine structure of the

fermionic isotope and three features for the bosonic ones.

The discussion of the hyperfine structure is given in Sec. III.

We measure an isotope shift of −975(15) MHz for 168Er and

−1966(14) MHz for 170Er relative to 166Er, respectively. These

values are in good agreement with Ref. [29].

For this transition, we extract an averaged value for the

linewidth of 2π × 23(5) MHz, corresponding to about 120

times the natural linewidth. This large broadening can again

be explained in terms of collisional and power broadening.

Considering the saturation intensity of I0 = 0.13 mW/cm2

and our total intensity of I = 1.3 × 103 mW/cm2, we calcu-

late a power broadening of a factor of 100. Adding the effect

of collisional broadening, we obtain an overall linewidth of

2π × 19.3 MHz, which is in agreement with the measured

value. Because of this large broadening, we could operate the

modulation-transfer spectroscopy at the same LO frequency

as the one used for the 401 nm transition.

III. ANALYSIS OF HYPERFINE STRUCTURE

In this section we describe our fitting procedure to the

observed spectra of the five most abundant Er isotopes and we

present the resulting hyperfine-structure constants Ae and Be

for 167Er. The bosonic features are easily assigned as shown

in Fig. 2. The remaining weaker features, which sometimes

overlap with those from the bosonic isotopes, are due to 167Er.

We start with the definition of the transition energies

between the ground and an excited state of 167Er including

hyperfine interactions [44]

h̄ωFeFg
= �167 + h̄ω166 + Ee(Fe,Je,I ) − Eg(Fg,Jg,I ), (1)

where �167 is the 167Er isotope shift relative to the transition

energy h̄ω166 of the bosonic 166Er atom, the most abundant

isotope, and Ee(Fe,Je,I ) and Eg(Fg,Jg,I ) are hyperfine

energies of the excited and ground state, respectively. The

quantum numbers Fi and Ji with i = e or g are the total

atomic and electronic angular momentum of the excited and

ground state, respectively, and

Ei(Fi,Ji,I ) =
1

2
AiCi

+
1

2
Bi

3Ci(Ci + 1) − 4I (I + 1)Ji(Ji + 1)

2I (2I − 1)2Ji(2Ji − 1)
,

(2)

where Ci = Fi(Fi + 1) − Ji(Ji + 1) − I (I + 1). Finally, the

transition energies �A + h̄ω166 define the isotope shift for

bosonic Er isotopes with atomic number A.

In addition to the resonance positions, we can calculate the

line shape of the fermionic spectral features S(ω) by noting

that the signal is well approximated by

S(ω) ∝ −
∑

FeFg

QFe,Fg

d

dω
L(ω − ωFeFg

,γ ) (3)

as a function of laser frequency ω, where the sum is over all

(Fg,Fe) hyperfine lines, and L(ω,γ ) is a Lorentzian centered

around zero with linewidth γ [45]. Consequently, for an

isolated line the resonance occurs when the signal is zero.

The fluorescence line strength QFe,Fg
is

QFe,Fg
=

∑

MeMgq

|〈(JgI )FgMg|d1q |(JeI )FeMe〉|
2

= F̂gF̂eĴg

(

Fg Fe 1

Je Jg I

)2

|〈Jg||d||Je〉|
2, (4)

where the Mi are magnetic quantum numbers, d1q is the

electric dipole-moment operator, and we have assumed equal

population for all hyperfine states FeMe of the electronic

excited state. Finally, F̂ = 2F + 1, (
···
···

) is a six-j symbol, and

〈Jg||d||Je〉 is a reduced dipole matrix element independent of

Fg and Fe.

We use a nonlinear least-squares fit to the experimental

spectra to determine the hyperfine constants and isotope

shift �167 of the excited states. The fit is based on six

resolved hyperfine features for the 401 nm line and five

resolved features for the narrow 583 nm line. In our anal-

ysis, we hold the hyperfine constants for the ground state

to the literature values of Ag/h = −120.487(1) MHz and
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FIG. 3. (Color online) Spectroscopy signal and hyperfine assign-

ment of the 401 nm transition of the fermionic 167Er. The black

solid line is the recorded line. The red line is a simulated line shape

obtained using a nonlinear fit to the line positions and a linewidth

of γ /(2π ) = 90 MHz. The simulated line shape is a sum of the first

derivative of several Lorentzians, one for each hyperfine transition,

whose relative strength is given by a theoretical estimate of the line

strength. We scaled the overall size of the simulated line shape to

fit to the experiment. The assignment of the P -branch transitions

(Fg → Fe = Fg + 1) is shown by vertical lines and pairs (Fg,Fe). The

hyperfine coefficients of the excited state are Ae/h = −100.1 MHz

and Be/h = −3079 MHz.

Bg/h = −4552.984(10) MHz [28], which have significantly

lower uncertainties than those for the excited states.

Figures 3 and 4 are the results of our fit for the 401 nm

and 583 nm line, respectively. We observe remarkable agree-

ments between the simulated and experimental spectra. For

the excited 401 nm level, we extract the best value for the

hyperfine coefficients to be Ae/h = −100.1(3) MHz and

Be/h = −3079(30) MHz. Using these coefficients and those

for the ground state, we obtain resonance positions that

agree to better than 11 MHz with the experimental values.

For the excited 583 nm level, we fit the line shape of the

spectral features while the resonance positions are calculated

by using the hyperfine constants of the excited states, Ae/h =
−172.7 MHz and Be/h = −4457.2 MHz, from Ref. [29].

We note that the additional structure in the experimental

data, which is not fitting to the theoretical curve, originates

from a slightly misadjusted phase of the local oscillator

in the spectroscopy setup. Table I compares the theoretical

and experimental hyperfine energies �167 + Ee(Fe,Je,I ) +
Ee(Fg,Jg,I ) for the 583 nm and 401 nm transitions in 167Er

and lists the corresponding quantum numbers of Fg and Fe.

Table II and Fig. 5 show the resulting isotope shifts �A as a

function of the mass number A relative to the energy of the
166Er isotope.

IV. ab initio HYPERFINE CONSTANTS

In conjunction with the experimental measurements and

fits, we have performed extensive ab initio electronic structure
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FIG. 4. (Color online) Spectroscopy signal and hyperfine assign-

ment of the 583 nm transition of the fermionic 167Er. The solid black

line is the experimental spectrum, while the red line is a simulated

line shape using a linewidth of γ /(2π ) = 20 MHz. The P -branch

transitions (Fg → Fe = Fg + 1) are assigned by pairs (Fg,Fe).

Three P -branch resonances and several Q-branch (Fg → Fe = Fg)

resonances are predicted to lie outside of the measurement range.

The simulated line shape is a sum of the first derivative of several

Lorentzians, one for each hyperfine transition, whose relative strength

is given by a theoretical estimate of the line strength. We scaled the

overall size of the simulated line shape to fit to the experiment. The

hyperfine coefficients of the excited state are Ae/h = −172.7 MHz

and Be/h = −4457.2 MHz.

calculations of the magnetic dipole A and electric quadrupole

B hyperfine constants. They describe the coupling of the

nuclear spin �I to the total electron angular momentum �J , due

to the magnetic dipole and electric quadrupole interaction,

respectively. The latter originates from the electric-field

gradient created by the electrons at the nuclear location. We

TABLE I. Observed and calculated hyperfine energies �167 +
Ee(Fe,Je,I ) + Ee(Fg,Jg,I ) for the 583 nm and 401 nm lines in 167Er.

The theoretical values are based on the hyperfine coefficients Ae/h =
−172.7 MHz and Be/h = −4457.2 MHz [29] for the 583 nm line

and our values Ae/h = −100.1 MHz and Be/h = −3079 MHz for

the 401 nm line.

Obs. Calc. (Fg,Fe) Obs. Calc. (Fg,Fe)

energy energy energy energy

(MHz) (MHz) (MHz) (MHz)

583 nm 401 nm

−2011 −2011 (19/2, 21/2) −761 −762 (15/2, 17/2)

−1449 −1454 (17/2, 19/2) −757 (13/2, 15/2)

−820 −834 (15/2, 17/2) −589 −580 (11/2, 13/2)

−200 −203 (13/2, 15/2) −498 −498 (17/2, 19/2)

393 396 (11/2, 13/2) −325 −315 (9/2, 11/2)

941 (9/2, 11/2) −31 (7/2, 9/2)

1369 (7/2, 9/2) 150 150 (19/2, 21/2)

1709 (5/2, 7/2) 220 220 (5/2, 7/2)
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TABLE II. Observed isotope shift of the Er isotopes for the

583 nm and 401 nm lines. The transition energy for the bosonic

isotope 166Er is taken as energy reference. The isotope shift of the

center of gravity of fermionic 167Er was obtained from fitting.

Isotope Obs. Calc. Obs. Calc.

energy energy energy energy

(MHz) (MHz) (MHz) (MHz)

583 nm 401 nm

170 −1966(14) −1681(14)

168 −975(15) −840(14)

167 −337(11) −297(6)

166 0 0

164 +849(17)

were interested to reproduce the known constants for the

Er ground state as well as those of the excited state at the

583 nm line obtained by Refs. [28,29]. We can then confirm

our measurement of the unknown constants of the excited level

at the 401 nm line.

The ab initio calculations of the hyperfine structure con-

stants have been performed using a relativistic multiconfig-

uration Dirac-Fock (MCDF) method [46]. In this method

we perform an all-electron calculation of the wave function

leading to an accurate description of the electron-spin density

near the nucleus. The eigenfunctions are superpositions of

nonorthogonal many-electron determinants of one-electron

Dirac-Fock functions for the core and valence orbitals and

Sturm functions for virtual orbitals. Both types of one-electron

orbitals are optimized for either the 4f 126s2 ground or

4f 126s6p excited-state reference configurations.

The hyperfine splittings of atomic levels are due to interac-

tions between electrons and nuclear multipole moments. In the

configuration-interaction picture and using atomic units the A

164 166 168 170
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FIG. 5. (Color online) Isotope shifts for the 583 nm and 401 nm

lines of the isotopes 164Er up to 170Er as a function of mass number

where the transition energy for the bosonic isotope 166Er is taken as

energy reference. The isotope shift of the bosonic isotopes falls on a

single straight line, with the isotope shift of the center of gravity of

the fermionic 167Er isotope, green cross and green square, is slightly

displaced from this linear dependence.

and B constants are given by

A(J ) =
gIμN

MJ

〈�,JMJ |
∑

i

[�ri × �αi]00

r3
i

|�,JMJ 〉, (5)

B(J ) =
2Q

MJ

√

2J (2J − 1)(2J + 1)

(2J + 2)(2J + 3)

×〈�,JMJ |
∑

i

Y20(r̂i)

r3
i

|�,JMJ 〉, (6)

where the sum i is over all electrons with positions �ri with

respect to the nucleus, Yℓm(r̂) are spherical harmonics, and �αi

is the Dirac matrix for electron i. Furthermore, gI is the nuclear

g factor, μN is the nuclear magneton in atomic units, and Q

is the nuclear quadrupole moment. The relativistic electronic

eigenfunctions |�,JMJ 〉 =
∑

β cβ |φβ,JMJ 〉, obtained from

the configuration-interaction calculations with relativistic de-

terminants |φβ,JMJ 〉 and CI coefficients cβ , have total angular

momentum J and projection MJ .

When an atom has open or unfilled electron shells, it leads

to an unbalanced electron-spin density near the location of

the nucleus. As hyperfine constants are proportional to the

difference in electron-spin densities this leads to nonzero A

and B coefficients. To account for this effect we use a model,

where the single-electron orbitals differ for each spin direction

or more precisely for each spinor of the Dirac-Fock equation.

Alternatively, this implies different exchange potentials for

electrons with spin up or down.

We use three restricted active spaces (RAS) to classify the

electron Dirac-Fock and Sturm orbitals, ensuring an efficient

and compact CI expansion that, nevertheless, remains accurate.

The first group of orbitals, RAS1, contains the occupied

spinors of the relevant reference configuration. We have

studied convergence of the hyperfine structure constants as

the active set of orbitals was systematically increased. For our

most-precise Er atom calculation RAS1 includes the occupied

1s2,2s2,2p2
1/2,2p4

3/2, . . ., and 4f 6
5/2 shell electrons. We allow

up to one electron to be excited out of RAS1 into the two

other active spaces. The second group, RAS2, contains the

open-shell 4f 6
7/2, 6s2

1/2, and 6p1/2,6p3/2 spinors, while the

third group, RAS3, contains spinors that are unoccupied in

the reference configuration. These latter virtual Sturm orbitals

are the high-lying s-wave spinors from 7s up to 13s, p-wave

spinors from 7p up to 11p, and the 5d spinor. For both RAS2

and RAS3 we allow up to two electrons to enter or leave.

With this basis our finite-nuclear-size and finite-nuclear

mass corrected ab initio values of the A and B hyperfine

constants are −120.42 MHz and −4554 MHz for the ground-

state level, −174 MHz and −4057 MHz for the excited level at

583 nm, and −100 MHz and −3424 MHz for the excited level

at 401 nm, respectively. Consequently, the ab initio A constants

agree with experimentally determined values to better than 1%,

whereas the B constants differ by up to 11% for the two excited

states. For the ground state the agreement for the B constant

is also better than 1%.

V. CONCLUSIONS

We have used laser modulation-transfer spectroscopy on

atomic Er as well as performed ab initio electronic structure

032508-5
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TABLE III. Summary of the relevant hyperfine A and B constants

for ground and excited states (e.s.) usable for laser cooling of 167Er.

State J A/h (MHz) B/h (MHz) Ref.

Ground state 6 −120.487(1) −4552.984(10) [28]

Ab initio −120.42 −4554 This work

583 nm e.s. 7 −172.70(7) −4457.2(29) [29]

Ab initio −174 −4057 This work

401 nm e.s. 7 −100.1(3) −3079(30) This work

Ab initio −100 −3424 This work

calculations of Er to obtain the magnetic dipole and electric

quadrupole constants for the only stable fermionic isotope,
167Er. We focused on transitions from the 4f 126s2 (J = 6)

ground state to two J = 7 levels within the excited 4f 126s6p

configuration. A least-squares algorithm applied to the experi-

mentally measured hyperfine-structure energies gives accurate

values for the two constants as well as values for the isotope

shift of five isotopes. The ab initio calculation is based on

a multiconfiguration Dirac-Fock method where we allow no

more than two electrons to be excited from and between

the active spaces. The method has no further adjustable

parameters.

Our results are summarized in Table III and Fig. 6. We

find that the ab initio A coefficients for all three states

and the B coefficient for the ground state agree to better

than 1% with the experimental values, which is in a sur-

prisingly good agreement considering the complex electron-

shell structure of the Er atom. We note that the ab initio
electric quadrupole constants B for the two excited states

exhibit a larger deviation from the experimental values. This

might be a consequence of missing key configurations: the

excited states have three open shells, 4f 12, 6s, and 6p, from

which more than two electrons might need to be excited.

In addition, Sternheimer shielding (e.g., distortions in the

electron shells by the nuclear quadrupole moment), which is

not considered in our MCDF theory, might cause significant

corrections.

167Er

4f126s2 3H
6
 g.s.

11/2
9/2

13/2
7/2
5/2

15/2
17/2
19/2

F

69.1MHz
234MHz
44.5MHz
354MHz
468MHz
1.65GHz
2.69GHz

9/2
11/2
7/2

13/2
15/2
17/2
19/2
21/2

F’

5.84MHz
98.2MHz
97.3MHz
479MHz
872MHz
1.39GHz
2.04GHz

4f126s6p (1P
1
)

9/2
7/2
11/2
13/2
15/2
17/2
19/2
21/2

4f126s6p (3P
1
)

25.8MHz
135MHz
463MHz
902MHz
1.50GHz
2.27GHz
3.25 GHz

F’’

401 nm

583 nm

FIG. 6. (Color online) Hyperfine levels of the ground (g.s.) and

two excited states of 167Er with particular interest for laser cooling.

The level splitting was calculated using A and B constants given

in Table III for the respective transitions. The arrows depict two

laser-cooling transitions. The transition at 401 nm used for Zeeman

slowing is shown in blue and the transition used for magneto-optical

trapping at 583 nm is shown in yellow.
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9
Publication: Degenerate Fermi
gas of erbium

9.1. Introduction

In 1999 the group of D. Jin at JILA (USA) produced a degenerate Fermi gas (DFG) of
neutral atoms for the very first time, see Ref. [DeM99b]. The atomic species chosen in this
pioneering experiment was potassium, one of the two fermionic species available in the series
of alkali-metal atoms. Since then many experiments on DFGs have been built all around the
world and many spectacular effects have been observed.

Prior to our work the only fermionic species, which had been brought to quantum degeneracy
were potassium and lithium from the alkali metals, ytterbium and dysprosium from the
lanthanide series, strontium from the alkali-earth metals and helium. The latter opened
the fascinating possibility to study dipolar effects with fermions, which could not be done
with chromium before. Above mentioned experiments use sympathetic cooling of fermions
with either another spin state or a second species. In case of fermions with a large dipole
moment elastic collisions between identical fermions driven by dipolar interactions are not
suppressed at low temperatures, see Sec. 4.2. This offers the new approach in preparing a
degenerate Fermi gas with high densities and low temperatures by direct evaporative cooling.
Additionally to erbium this idea has been recently applied for Dy [Lu12] and RbK [Ye]. With
erbium we demonstrated very efficient direct evaporative cooling down to deep degeneracy
for the first time.

9.1.1. Degenerate dipolar Fermi gas

Quantum degeneracy in Fermi gases arises as a smooth crossover when the thermal energy,
kBT , reaches the Fermi energy, EF . The associated Fermi temperature reads

TF =
EF

kB
=

~ω(6N)1/3

kB
, 9.1

127
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for harmonically trapped atoms with ω the mean trap frequency and N the number of
particles. At T = 0 the Fermi energy equals the energy of the highest occupied level. For
temperatures T < TF the gas is said to be quantum degenerate. In the current erbium
experiment temperatures of down to 0.11(1)TF are usually achieved with an atomic sample
consisting of 3 × 104 particles with TF = 1.06(5)µK, see Ref. [Aik14b]. From EF the Fermi
wave number can be derived via

kF =

√
2mEF

~2
=

√
2mω(6N)1/3

~
. 9.2

The Fermi wave number resembles the radius of the Fermi surface in reciprocal space and
relates to the Fermi momentum by pF = ~kF. In a recent experiment we observe a defor-
mation of the Fermi surface caused by the strong magnetic DDI, see Chapter 11. This is a
purely many-body quantum effect and vanishes for high temperatures around TF.

9.1.2. Collisions between identical fermions

As shown in Eq. 4.20 the elastic scattering cross section for dipolar fermions is energy inde-
pendent. Its non-zero value causes identical fermions to collide even at low temperatures.
At temperatures below TF collisions get more and more suppressed by the Pauli exclusion
principle. Although the DDI reduces the p-wave barrier the effective barrier height for er-
bium, which is about kB × 7µK, is still much larger than the collision energy. This prevents
atoms from getting close and efficiently suppresses losses induced by three-body collisions,
requiring short-range interactions.

These two features, namely the non-vanishing elastic scattering and a suppression of losses
by three-body collisions, make a fermionic gas of dipolar atoms to make an ideal candidate
for preparing a strongly-correlated degenerate Fermi gas.

9.1.3. Evaporative cooling of fermions

Observing elastic collisions between identical fermions opens the possibility of employing
evaporative cooling of a single spin-component Fermi gas. This strongly simplifies the prepa-
ration of a degenerate Fermi gas. We cool the fermionic sample like in the bosonic case by
loading atoms from the magneto-optical trap (MOT) into an optical dipole trap (ODT) and
applying evaporative cooling in a straightforward way.

We drive direct evaporative cooling in a crossed ODT, consisting of a horizontal and a vertical
beam. Both beams are operated at a wavelength of 1570 nm. See Sec. 3.5.3 for the optical
setup. The setup is similar to the one used for bosons but the trapping beams have smaller
waists to increase the particle density for a more efficient evaporation. The horizontal beam
has a waist of 15µm and the vertical beam of 33µm.

Figure 9.1 summarizes the parameters of our evaporation procedure starting from the MOT.
As we are using a tightly focused ODT for evaporation we have to introduce an intermediate
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Figure 9.1.: Evaporative cooling of a 167Er Fermi gas in an ODT operated at 1570 nm. (a) Atoms
are initially loaded from the MOT into a single-beam ODT at 1064 nm and after initial compression
within 300 ms into the horizontal beam at 1570 nm (see inset). This intermediate step makes loading
from the MOT more efficient. Forced evaporation is accomplished by ramping down the horizontal
trapping beam (orange) in an exponential manner and ramping up the vertical trapping beam to
compress the trap in x- and y-direction and preserve a large density. Typical trapping frequencies at
the end of evaporation are (νx, νy, νz) = (398, 282, 304) Hz. (b) At the beginning the magnetic field
is changed to 0.59 G. The positions of Feshbach resonances are highlighted by gray lines. (c) Atom
number and (d) temperature of the cloud are measured at the end of every evaporation step.
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Figure 9.2.: Comparison between evaporation trajectories of fermionic 167Er (red) and bosonic
168Er (blue). (a) Temperature and (b) phase-space density are shown in dependence on the atom
number. In both panels the path of evaporation is from right to left (arrow). The overall evaporation
efficiencies, given by a linear fit in the log-log plot (lines), are roughly equal for both isotopes. We
determine the efficiency for the fermionic isotope to be 3.5.

step by loading the atoms first from the MOT into the horizontal ODT operating at 1064 nm.
Then we compress the cloud by decreasing the aspect ratio of the ODT with the scanning
system before we can load the sample into the 1570-nm ODT. This intermediate loading
step is done within the first 300 ms. In the 1570-nm ODT the power of the horizontal beam
is then reduced in a piecewise exponential-like manner and the power of the vertical beam
is stepwise ramped up. Note that due to the high density of Feshbach resonances it is not
easy to find a suitable spot for evaporation. We change the magnetic field after 520 ms to
0.59 G for a better evaporation efficiency. The full evaporation procedure usually takes up
to 11 s to achieve temperatures of 0.11 TF with 3 × 104 atoms.

Atom number and temperatures are measured at each evaporation step, see Fig. 9.1(c-d).
These values are used to compare the evaporation trajectory of fermionic 167Er with the
one of bosonic 168Er, see Fig. 9.2. A linear fit to the log-log plot of the phase-space density
versus atom number gives the evaporation efficiency, γ, similar as in Sec. 7.1.1. Remarkably,
we observe that fermions can be cooled just like bosons with an efficiency of γ = 3.5.
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We report on the creation of a degenerate dipolar Fermi gas of erbium atoms. We force evaporative
cooling in a fully spin-polarized sample down to temperatures as low as 0.2 times the Fermi temperature.
The strong magnetic dipole-dipole interaction enables elastic collisions between identical fermions even in
the zero-energy limit. The measured elastic scattering cross section agrees well with the predictions from
the dipolar scattering theory, which follow a universal scaling law depending only on the dipole moment
and on the atomic mass. Our approach to quantum degeneracy proceeds with very high cooling efficiency
and provides large atomic densities, and it may be extended to various dipolar systems.

DOI: 10.1103/PhysRevLett.112.010404 PACS numbers: 03.75.Ss, 37.10.De, 51.60.+a, 67.85.Lm

Identical fermions with short-range interaction do not
collide at very low temperatures [1]. According to the rules
of quantum mechanics, the requirement of antisymmetry of
the fermionic wave function causes the scattering cross sec-
tion to vanish in the ultracold regime. This makes ultracold
fermions special in many respects. For instance, they real-
ize perfectly noninteracting quantum systems, which can
serve for sensitive interferometers [2] and ultraprecise
atomic clocks [3]. From another point of view, the absence
of collisions means that direct evaporative cooling
cannot work.
The inapplicability of direct evaporative cooling to fer-

mions challenged scientists to develop alternative strate-
gies. The common solution is to use mixtures of two
distinguishable atomic components [4]. In this scheme, fer-
mions are sympathetically cooled through elastic s-wave
collisions with fermions in other spin states [4–8], with
atoms belonging to a different isotope [9–13], or with
atoms of a different chemical element [14–17].
The scenario is completely different in the presence of

the long-range dipole-dipole interaction (DDI). While
the effect of the short-range van der Waals interaction still
freezes out at low temperatures, as it does for nondipolar
fermions, the DDI prevents the elastic cross section
between identical fermions from vanishing. The corre-
sponding Wigner threshold law, governing the threshold
behavior of two-body scattering, gives a finite and
energy-independent elastic cross section [18–20]. As a
key consequence, identical dipolar fermions can collide
even in the zero-temperature limit.
Ultracold dipolar scattering is currently attracting a

renewed interest in connection with recent experiments
on polar molecules [21,22] and strongly magnetic atoms
[13,23,24]. Early theoretical work on H atoms and atoms
in electric fields suggested that dipolar scattering could pro-
vide an elastic cross section that is large enough for direct
evaporative cooling of identical fermions [25–28]. Recent

theoretical work has elucidated the universal character of
the dipolar scattering [29–31] and found that the elastic
dipolar cross section is determined only by the mass and
the dipole moment of the particles [30]. Recent experiments
on fermionic ground-state polar KRb molecules have tested
this prediction and have obtained evidence for the aniso-
tropic character of the DDI [21]. Experiments on using
dipolar scattering for evaporative cooling have been
reported for fermionic Dy [13] and KRb molecules [32],
both reaching temperatures on the order of the Fermi tem-
perature TF.

In this Letter, we report on the creation of a quantum
degenerate dipolar Fermi gas of 167Er atoms. We demon-
strate a powerful approach in which the underlying cooling
mechanism relies solely on dipolar scattering between spin-
polarized fermions. We observe a remarkably high cooling
efficiency, leading to very dense Fermi gases with typically
6.4 × 104 atoms at a temperature of T=TF ¼ 0.2 and a peak
density of 4 × 1014 cm−3. Finally, we confirm the predic-
tion of the universal dipolar scattering theory [29,30] by
measuring the Er elastic cross section in spin-polarized fer-
mions via cross-dimensional thermalization [33]. Our work
opens up a conceptually novel pathway to quantum degen-
eracy in dipolar systems that can be generalized not only to
other strongly magnetic atoms but also to ground-state
polar molecules, for which the implementation of sympa-
thetic cooling might be difficult.
The strong dipolar character of Er originates from its

large magnetic moment μ of 7μB, where μB is the Bohr
magneton, and its large mass [20,34]. Among the six stable
isotopes, Er has one fermionic isotope, 167Er, with a large
natural abundance of 23%. While the bosonic isotopes
have no hyperfine structure, 167Er has a nuclear spin
I ¼ 7=2, giving rise to a manifold of eight hyperfine levels
and 104 magnetic sublevels in the electronic ground state
[35]. In spite of the much more complex energy structure of
the fermionic isotope, our approach to quantum degeneracy
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is very similar to the one we have successfully used to con-
dense the bosonic isotope 168Er [24,36]. It consists of a
laser cooling stage followed by direct evaporative cooling
in an optical dipole trap (ODT). The fundamental differ-
ence with respect to the bosonic case is that the thermal-
ization between spin-polarized fermions proceeds solely
through dipolar elastic collisions. In the present work,
we focus on spin-polarized fermions in the lowest hyper-
fine sublevel jF ¼ 19=2; mF ¼ −19=2i, where F is the
total spin quantum number and mF is its projection along
the quantization axis.
Our laser cooling scheme relies on a Zeeman slower

operating at 401 nm and on a magneto-optical trap
(MOT) based on a narrow line at 583 nm [36]. Both light
fields act on transitions with quantum numbers
F ¼ 19=2 → F0 ¼ 21=2, which are sufficiently closed
for laser cooling. In our scheme, fermions in the MOT
are naturally spin-polarized into the lowest magnetic sub-
level j19=2;−19=2i because of a combined effect of grav-
ity and the MOT light [36]. We typically capture 1 × 107

atoms at T ¼ 7 μK in the MOT. All measurements in the
present work are performed by absorption imaging on the
401-nm transition.
For evaporative cooling, we first transfer the atoms from

the MOT into a single-beam large-volume ODTat 1064 nm
and then into a tightly focused ODT at 1570 nm. The first
trap is used as an intermediate step to increase the transfer
efficiency from the MOT. It consists of a single horizontal
beam with a power of 20 W and elliptical focus. The beam
waists are approximately 20 and 200 μm in the vertical and
horizontal direction, respectively. The corresponding trap
depth is roughly 100 μK. From the large-volume trap,
the atoms are loaded into a tightly focused ODT at
1570 nm. This second trap is made of a single horizontal
beam, which is collinear to the large-volume trapping beam
and has a waist of 15 μm. The initial power of the 1570-nm
beam is 1.8 W, corresponding to trap frequencies of
ðνx; νy; νzÞ ¼ ð2147; 51; 2316Þ Hz and a trap depth of
about kB × 190 μK. Here, z is the direction of gravity.
At this stage, we have 1.5 × 106 atoms at T=TF ¼ 4.4 with
T ¼ 28 μK and a peak density of about 1.2 × 1014 cm−3.
The Fermi temperature is defined as TF ¼ hν̄ð6NÞ1=3=kB,
where ν̄ is the geometric mean of the trap frequencies and h
is the Planck constant. We force evaporation by reducing
the power of the horizontal beam in a near-exponential
manner. When TF is reached, we introduce a vertical beam
at 1570 nm to confine the fermions into the crossed region
created by the two beams and to preserve the atomic den-
sity. Its power is gradually increased and reaches 1.2 W at
the end of the evaporation. The vertical beam has a beam
waist of 33 μm. During evaporation, we apply a homo-
geneous guiding magnetic field to maintain the spin polari-
zation in the system. At high temperature, the magnetic
field value is about 1.7 G, which is large enough to avoid
any thermal excitation into higher spin states. For

temperature below 3.2TF, we decrease the value of the
magnetic field to 0.59 G, where we observe a slightly better
evaporation efficiency. After 10 s of forced evaporation, we
obtain a deeply degenerate Fermi gas.
Figure 1 shows a typical time-of-flight (TOF) absorption

image of a degenerate dipolar Fermi gas of N ¼ 6.4 × 104

and a peak density of n0 ¼ 4 × 1014cm−3 at T=TF ¼
0.21ð1Þ with TF ¼ 1.33ð2Þ μK. At this point, our trap
frequencies are (470,346,345) Hz. Fermi degeneracy
reveals itself in a smooth change of the momentum distri-
bution from a Maxwell-Boltzmann to a Fermi-Dirac distri-
bution [37]. Correspondingly, the atomic density profile is
expected to change its Gaussian shape into a polylogarith-
mic one. A fit to TOF images reveals that at temperatures
above ≈0.5TF the Gaussian and polylogarithmic function
are hardly distinguishable from each other and both
describe the data well. By further decreasing the tempera-
ture, we observe a gradually increasing deviation from the
Gaussian shape. This deviation is evident in Fig. 1, which
shows a density profile at T=TF ¼ 0.21ð1Þ. A Gaussian fit
to the outer wings of the cloud, i.e., outside the disk with
radius w, with w being the 1=e diameter of the Gaussian fit
to the entire cloud, clearly overestimates the population at
the center of the cloud. This is a fingerprint of Fermi degen-
eracy, meaning that the population of low-energy levels is
limited by the Pauli exclusion principle.
In all our measurements, we extract T=TF from fits to the

density profiles by using either a polylogarithmic or a
Gaussian function. In the former case, the fit gives both
the fugacity ζ and the parameter σ characterizing the
width of the distribution. The fugacity directly gives
T=TF ¼ ½−6 × Li3ð−ζÞ�−1=3, with Lin being the nth-order
polylogarithmic function [7,9]. The parameter σ is related
to the atomic temperature by T ¼ mσ2=ðkBt2TOFÞ, where
tTOF is the time of flight and m is the mass of 167Er,
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FIG. 1 (color online). Time-of-flight absorption image of a de-
generate Fermi gas of Er atoms at T=TF ¼ 0.21ð1Þ after tTOF ¼
12 ms of expansion (a) and its density distribution integrated
along the z direction (upper panel) and x direction (lower panel)
(b). The observed profiles (circles) are well described by fitting a
polylogarithmic function to the data (solid lines), while they sub-
stantially deviate from a fit using a Gaussian distribution to the
outer wings of the cloud, i.e., w (dashed lines). The absorption
image is averaged over six individual measurements.
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and together with TF, calculated from N and ν̄, gives a
more indirect value for T=TF. We determine T=TF by using
both methods, which show well consistent results.
To get deeper insights into the evaporation process and

the underlying collisional properties, we study the evapo-
ration trajectory. Figure 2 summarizes our results. We
observe that the evaporation first proceeds with high effi-
ciency down to temperatures well below TF and then pla-
teaus at about T=TF ¼ 0.2. The latter behavior suggests
that further cooling is limited by Pauli blocking [4,6,7,9]
and that more thoroughly optimized evaporation ramps
might be needed to reach even lower temperatures. The
deepest degeneracy we attained is T=TF ¼ 0.19ð1Þ with
N ¼ 4.0 × 104. From the slope of the evaporation trajec-
tory, we obtain the efficiency parameter γ. This parameter
quantifies the gain in phase-space density (PSD) at the
expense of the atom number and can be written as
γ ¼ −dðln PSDÞ=dðln NÞ ¼ −3 × dðln T=TFÞ=dðln NÞ.
From a linear fit to the data down to T=TF ¼ 0.2, we find
γ ¼ 3.5ð2Þ. This remarkably large number is in the league
of the best evaporation efficiencies observed in experiments
with ultracold atoms based on s-wave scattering, including
our experiments with the bosonic 168Er [24] and experi-
ments on strongly interacting two-component Fermi gases
[5,38,39].
Our interpretation of the cooling process in terms of

dipolar scattering relies on the full spin polarization of
the sample. Another spin state being present would lead
to s-wave collisions in the sample. Therefore it is important
to make sure that we do not have any other spin state
present. For this reason, we carry out a dedicated set of
Stern-Gerlach-type measurements at various stages of the
evaporation. During the whole evaporation sequence, we
never observe any population in spin states different from

the mF ¼ −19=2 state. Figure 3 show the relevant portion
of the TOF image, where atoms are observed. To identify
unambiguously the spatial positions of the different spin
components, we intentionally prepare a spin mixture by
radio-frequency (rf) transfer; see Fig. 3. It is worth men-
tioning that we observe fast spin relaxation when a multi-
component mixture is prepared [40].
The effectiveness of our evaporative cooling scheme

suggests a very favorable ratio of the elastic scattering
rate to the inelastic one. We explore elastic scattering by
measuring the elastic dipolar cross section σel in our
spin-polarized fermionic sample via cross-dimensional
thermalization experiments [33]. We compress the system
in one spatial direction by increasing the power of the ver-
tical beam by about a factor of 3. We then monitor the time
evolution of the temperature in the other direction, as
shown in the inset in Fig. 4. The time constant τ for
cross-dimensional thermalization is directly connected to
σel through the relation τ ¼ α=ðn̄σelvÞ, where α is the num-
ber of collisions required to thermalize, n̄ is the mean den-
sity, and v ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=ðπmÞp

is the mean relative velocity. A
delicate point of our analysis is the estimation of α, which
depends on the underlying scattering mechanism. We
employ α ¼ 4.1, which has been numerically calculated
for nondipolar p-wave collisions and has been applied to
KRb polar molecules [21]. Although p-wave collisions
are expected to be the leading term in dipolar scattering
of identical fermions, more detailed calculations of αmight
be needed to fully account for the mixing of partial waves
resulting from the DDI [41].
In this way, we explore elastic scattering over a wide

range of atom numbers from 3 × 104 to 1.1 × 105 and
for various final temperatures ranging from 300 to
600 nK. Our findings at 0.59 G [42] are shown in
Fig. 4. In the nondegenerate regime (T ≳ TF), we obtain
a constant elastic cross section with a mean value of
2.0ð5Þ × 10−12 cm2, corresponding to ½2.7ð3Þ × 102a0�2,
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FIG. 2 (color online). Evaporation trajectory to Fermi degen-
eracy. (a) Temperature evolution during the evaporation ramp
and (b) corresponding T=TF versus N. The ratio T=TF is ob-
tained from the width σ of the distribution (triangles) and from
the fugacity (circles); see the text. The error bars originate from
statistical uncertainties in temperature, number of atoms, and
trap frequencies for the width measurements and the standard
deviations obtained from several independent measurements
for the fugacity. The solid line is a linear fit to the data for
0.2 < T=TF < 4.
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FIG. 3 (color online). Absorption images of the atomic cloud
with a Stern-Gerlach separation of the spin components. A mag-
netic field gradient of about 40 G=cm is applied during the ex-
pansion for about 7 ms. (a)–(e) Along the entire evaporative
cooling sequence, atoms are always spin-polarized in the lowest
hyperfine sublevel jF ¼ 19=2; mF ¼ −19=2i. T=TF of the
atomic samples are indicated in each panel. In (f), the image
is obtained right after rf mixing of the spin states for the sample
at T=TF ¼ 0.33ð1Þ. The three clouds correspond to the magnetic
sublevels mF ¼ −19=2, −17=2, and −15=2 from bottom to top.
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where a0 is the Bohr radius. The error bar is mainly due to
systematic uncertainties in trap frequencies, temperature,
and number of atoms. Below TF, the effect of quantum
degeneracy becomes visible through a suppression of scat-
tering events caused by Pauli blocking. In this regime, we
can interpret our measurements in terms of an effective
elastic cross section, which also includes the Pauli suppres-
sion factor. As expected, we observe a substantial decrease
of the effective σel for decreasing T=TF, similarly to the
case of s-wave collisions between fermions in different spin
states [44].
Dipolar scattering theories predict an energy-independent

elastic cross section for identical fermions in the low-energy
regime [18–20]. The cross section is predicted to follow a
universal scaling law that is fully determined by a single
parameter—the dipolar length D [30]—and it reads as

σel ¼ 6.702 ×D2; (1)

where D ¼ 2π2d2m=h2 with d2 ¼ μ0μ
2=ð4πÞ and μ0 being

the vacuum permeability. This equation shows a clear anal-
ogy to the ordinary s-wave scattering, where D plays the
role of the scattering length. For the Er parameters, the uni-
versal theory predicts σel ¼ 1.8 × 10−12 cm2, which is in
reasonable agreement with the measured value. The small
deviation might be due to the chosen value for α, to system-
atic errors, or to a residual effect of the short-range physics,
which is not included in the theory.

Our observations suggest that inelastic losses are very
weak. Since the atoms are fully polarized in the lowest spin
state, inelastic losses can be caused only by collisions with
the background gas and by three-body decay. To investigate
this more quantitatively, we carry out atom-decay measure-
ments by recording the number of atoms as a function of the
hold time in an ODT initially loaded with N ≃ 1 × 105

atoms at T=TF ≃ 0.47. In spite of the very high peak
density of 3 × 1014 cm−3, we find the atom number to
decay in a purely exponential manner (time constant
40 s) without showing any signature of three-body proc-
esses. From this observation we can derive an upper limit
for the three-body recombination rate constant as low
as L3 ≤ 3 × 10−30 cm6=s.
The remarkable efficiency of evaporative cooling in a

single-component Fermi gas of Er and the exceptionally
high densities together with low inelastic collision rates
can be understood in terms of a very favorable combination
of the DDI with the p-wave barrier. While DDI is strong
enough to provide us with a sufficient cross section for elas-
tic collisions, it is weak enough to preserve a substantial
repulsive barrier for any alignment of the colliding dipoles.
Even for the case of maximum dipolar attraction (head-to-
tail configuration), the effective potential, given by the
interplay between the p-wave barrier and the DDI, features
a repulsive barrier with a maximum height VðrmaxÞ ¼
2ℏ2=ð27mD2Þ at rmax ¼ 3D. For Er, the barrier height
still exceeds kB × 7 μK, which is much larger than all col-
lision energies in the final evaporation stage. This prevents
atoms from getting close to each other, and three-body
decay, which requires short-range interactions, is strongly
suppressed.
In conclusion, we produce a degenerate dipolar Fermi

gas of 167Er atoms. We demonstrate direct evaporative cool-
ing of identical fermions via universal dipolar scattering.
Our method provides two key advantages: feeble inelastic
losses and exceptionally high attainable densities. The for-
mer aspect is favorable for reaching low values of T=TF,
which are ultimately limited by the so-called hole-heating
mechanism caused by inelastic losses [45,46]. The latter
aspect has important consequences for dipolar physics.
The relevant energy scale for dipolar phenomena at the
many-body level is given by n0d2 [20,34]. Given the high
densities achieved here, our degenerate Fermi gas of Er cur-
rently is the most dipolar quantum gas available in experi-
ments, with n0d2 being 0.92% of the Fermi energy. We
speculate that even much higher densities than the ones
here attained may be achieved, since we do not see any lim-
iting process. This may open a way for observing p-wave
pairing in dipolar gases and for the creation of an aniso-
tropic Fermi superfluid [47,48].
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Publication: Quantum chaos
in ultracold erbium

10.1. Introduction

In the presented publication the correlation and distribution of Feshbach resonances (FR)
in the collision of atomic erbium were studied by performing high-resolution Feshbach spec-
troscopy. A total of 190 FRs were found for each of the two bosonic isotopes 168Er and 166Er
in the magnetic field range from 0 to 70 G. This corresponds to a density of about three
resonances per Gauss. For the fermionic isotope 167Er 115 resonances have been observed
up to 4.5 G, resulting in a density of about 25 resonances per Gauss. Compared to alkali
atoms, which typically have one resonance each ten Gauss, the density of FRs in erbium is
tremendously high.

Feshbach spectroscopy is a commonly used technique to study collisional properties of various
atomic species at ultracold temperatures, as outlined in Sec. 4.3. The level of control over the
particle interaction and the energy resolution of the collision energy are unprecedentedly high
compared to other spectroscopic techniques, e. g. neutron scattering experiments. Ultracold
physics is currently about to enter a new regime where far more complex atomic species like
magnetic lanthanide atoms or even molecules are being studied.

Instead of following a microscopic approach based on coupled-channel calculations, as is
routinely done with alkali atoms, we analyzed the Feshbach spectrum using statistical tools.
Coupled-channel calculations are not easy to carry out in case of erbium because of the
large number of scattering parameters of the 49 gerade Born-Oppenheimer potentials and
the anisotropic interaction potential, see Sec. 4.1.2. The statistical analysis of FRs is a
novel approach in ultracold atom experiments. The characteristic measures provided by the
random matrix theory could be confirmed within this analysis of the Feshbach spectrum
of erbium. This suggests that quantum chaotic scattering controls the supposedly ‘simple’
collision process of two erbium atoms. Consequently, a strong coupling between individual
molecular states is expected as outlined in Sec. 10.3 and Ref. [Kot].

137
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10.1.1. High-resolution Feshbach spectroscopy

Feshbach resonances are an important tool for understanding the scattering properties of a
system. The first observation of FRs in a sample of lanthanide atoms had been made by our
group, see Chapter 7. Already in these early experiments we observed an unusually large
density of resonances. In the present publication we extended the magnetic field scanning
range from 0 to 70 G. Compared to the density of FRs of other atomic samples, like alkali
atoms as 133Cs [Chi04], dipolar atoms as 52Cr [Wer05] or mixtures of alkali atoms as K+Rb
[Ino04, Fer06] and Rb+Cs [Pil09], the density of resonances in the case of erbium is one to
two orders of magnitude larger.

For the high-resolution Feshbach scan we have chosen a magnetic-field resolution of 20 mG.
The experimental procedure consisted of preparing an ultracold sample of 168Er or 166Er in
the energetically lowest Zeeman sublevel mJ = −6 at a temperature of 330 nK, which was
just before the onset of condensation. We then changed the magnetic field to a target value
and kept the atoms at this field for 400 ms. After switching of the trap and recording the
atom number the procedure was repeated for the next value off the magnetic field. For a high
reproducibility the electric current for creating the magnetic field was actively stabilized by
a feedback loop at the same time ensuring a fast but smooth change of the current to the
target value within a few ms. The maximum ramp speed of the magnetic field was limited
by eddy currents in the vacuum chamber. The trap-loss spectroscopy scan was performed
successively with a step size of 20 mG for ranges of 1 G. If a trap-loss feature was found in
this range it was rescanned with a smaller step size down to 5 mG. Before continuing the
scan for the next region the stability of the atom number was confirmed by repeating the
measurement for several previously measured magnetic field values. Scanning the magnetic
field from 0 to 70 G for both isotopes required 13,200 individual measurements lasting for
about 20 s each.

Recently a Feshbach scan of four different isotopes of dysprosium was reported in Ref. [Bau14].
A similar density of roughly 3.5 resonances per Gauss was observed in the atom-loss spectra
of bosons in the range from 0 to 6 G at similar temperatures as in the erbium case. For
this set of measurements the total number of resonances was not large enough to perform a
statistical analysis of the resonance spacings and correlations for dysprosium.

10.1.2. Statistical analysis of Feshbach resonances

We analyzed the distribution of FRs using the statistical methods introduced by random
matrix theory, see Chapter 5. First, the position of maximum atom loss was determined.
For simplicity this was done by fitting a Gaussian to the loss maxima. Then the staircase
function of Feshbach resonances was created, see Sec. 5.1.4. The staircase function has a
similar dependence on the magnetic field for 168Er, 166Er, and 167Er. After a non-linear
increase at low magnetic field values up to about 20 G follows a linear increase up to the
maximum measured field. For the fermionic isotope 167Er the linear dependence already sets
in at about 1.5 G and the density of resonances is about a factor of five higher than for the
bosons.
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The density of resonances, ρ(B), is derived by calculating the slope of the staircase function.
The mean density of resonances, ρ, and the mean width, Γ, are important statistical values
for comparisons with theoretical coupled-channel calculations. In the presented trap-loss
spectroscopy the width of the resonances can be derived either by locating the zero crossing
of the scattering length or by determining the width of a Gaussian fit to the loss feature. The
former method is very reliable, but is only possible if a local maximum of the atomic cloud
size can be observed, whereas the second method is only to be taken as a rough estimate of
the resonance width. A complete set of extracted resonance positions and widths for 168Er
and 166Er is given in Appendix D.
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Atomic and molecular samples reduced to tem-
peratures below 1 microkelvin, yet still in the gas
phase, a�ord unprecedented energy resolution in
probing and manipulating how their constituent
particles interact with one another. As a result
of this resolution, atoms can be made to scatter
resonantly at the experimenter's whim, by pre-
cisely controlling the value of a magnetic �eld
[1]. For simple atoms, such as alkalis, scatter-
ing resonances are extremely well-characterized
[2]. However, ultracold physics is now poised
to enter a new regime, where far more complex
species can be cooled and studied, including mag-
netic lanthanide atoms and even molecules. For
molecules, it has been speculated [3, 4] that a
dense forest of resonances in ultracold collision
cross sections will likely express essentially ran-
dom �uctuations, much as the observed energy
spectra of nuclear scattering do [5]. According
to the Bohigas-Giannoni-Schmit conjecture, these
�uctuations would imply chaotic dynamics of the
underlying classical motion driving the collision
[6, 7]. This would provide a paradigm shift in ul-
tracold atomic and molecular physics, necessitat-
ing new ways of looking at the fundamental inter-
actions of atoms in this regime, as well as perhaps
new chaos-driven states of ultracold matter.

In this report we provide the �rst experimen-
tal demonstration that random spectra are indeed
found at ultralow temperatures. In the experi-
ment, an ultracold gas of erbium atoms is shown
to exhibit many Fano-Feshbach resonances, for
bosons on the order of 3 per gauss. Analysis of
their statistics veri�es that their distribution of
nearest-neighbor spacings is what one would ex-
pect from random matrix theory [8]. The density
and statistics of these resonances are explained
by fully-quantum mechanical scattering calcula-
tions that locate their origin in the anisotropy of
the atoms' potential energy surface. Our results
therefore reveal for the �rst time chaotic behavior
in the native interaction between ultracold atoms.

In the common perception, atoms are regarded as sim-

ple systems in sharp contrast to complexmolecules, whose
behavior is dictated by many (rotational and vibrational)

degrees of freedom. The recent realization of dipolar
Bose-Einstein condensates and Fermi gases of magnetic
lanthanides [9�12] made available a novel class of atoms
in the ultracold regime. These exotic species, such as er-
bium (Er), allow to bridge the enormous conceptual gap
between simple atoms and molecules, potentially provid-
ing a natural testbed to explore complex scattering dy-
namics in a controlled environment. The rich scattering
behavior of lanthanides has been pointed out in pioneer-
ing experiments at millikelvin temperatures [13, 14] and
theoretical work on cold collisions of atoms with non-zero
angular momenta [15, 16].

A wealth of intriguing properties in Er, which is the
focus of this paper, originates from its exotic electronic
con�guration. Er is a submerged-shell atom with elec-
tron vacancies in the inner anisotropic 4f12 shell, which
lies beneath a �lled 6s2 shell. As a consequence, it not
only has a large magnetic moment of 7 Bohr magnetons
(µB) but also has a large electronic orbital (total) angular
momentum quantum number of L = 5 (J = 6); note that
for bosonic (fermionic) isotope the nuclear angular quan-
tum number is I = 0 (I = 7/2). Large values for L and
J are sources of anisotropy in the interatomic interac-
tion. Moreover, the two-body scattering is controlled by
as many as 91 electronic Born-Oppenheimer (BO) inter-
action potentials, each potential accounting for a speci�c
orientation of J with respect to the internuclear axis.
All BO potentials are anisotropic and include at large in-
ternuclear separations a strong dipole-dipole interaction
(DDI) and anisotropic van der Waals dispersion poten-
tials. This situation is in contrast to that of conven-
tional ultracold atoms, such as alkali-metal atoms, where
the scattering is determined mainly by the isotropic sin-
glet and triplet BO potentials [2]. Recent theoretical
work predicted the existence of anisotropy-induced Fano-
Feshbach resonances in magnetic lanthanides [17]. This
greater complexity brings signi�cant new challenges in
understanding and exploiting scattering processes.

Our experimental study is based on high-resolution
trap-loss spectroscopy of Fano-Feshbach resonances in an
optically-trapped ultracold sample of Er atoms in the
energetically lowest magnetic Zeeman sublevel. We pre-
pare the ultracold sample by following a similar cooling
and trapping approach to that described in Ref. [11] for
bosons and Ref. [12] for fermions (Method Summary).
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Figure 1 | Fano-Feshbach spectrum of 168Er and 166Er from 0 to 70 G. The trap-loss spectroscopy is performed
in an optically trapped sample of Er atoms in the energetically lowest Zeeman sublevel mJ = −6 at a temperature of
330 nK. The atom number is measured after a holding time of 400 ms. a, We observe 190 Fano-Feshbach resonances
for 168Er and b, 189 resonances for 166Er. Resonance positions are extracted by �tting a Gaussian shape to individual
loss features; a full list is given in the Supplementary Information.

After the preparation procedure, the ultracold sample
typically contains about 105 atoms at a temperature
around 400 nK. High-resolution trap-loss spectroscopy
consists of many experimental cycles. In each cycle, we
ramp the magnetic �eld to a target value B and hold the
atoms for 400 ms in the optical dipole trap, during which
they undergo elastic and inelastic collisions. To probe the
loss of atoms from the trap, we record the atom number
by applying standard time-of-�ight absorption imaging
at zero magnetic �eld. In the next experimental cycle,
we vary the magnetic �eld value from 0 to 70 G with step
sizes of a few mG and repeat the measurement. Fig-
ure 1 shows the loss spectra for 168Er and 166Er. For
both isotopes, we observe an enormous number of res-
onant loss features, which we interpret as being caused
by Fano-Feshbach resonances [2]. We identify 190 res-
onances for 168Er and 189 resonances for 166Er, mean-
ing that we observe about 3 resonances per gauss. We
performed similar spectroscopic measurements with the

fermionic isotope 167Er, revealing a much higher density
of resonances that exceeds 20 resonances per gauss (Ex-
tended Data Fig. 1). The fermionic case is complicated
by its additional hyper�ne structure and detailed studies
will be subject of future work.

The immense density of resonances in Er is without
precedent in ultracold quantum gases. For comparison,
the density of resonances observed in experiments with
ultracold alkali-metal atoms or even mixtures is about
two orders of magnitude lower than Er (c. f. Ref. [18, 19]).
In Er, it is unclear whether a quantitative mapping of
the observed resonances is possible at all. In principle
there are at least 91 unknown parameters, correspond-
ing to the phase shifts introduced by the BO potentials
[17]. Instead, we focus our theoretical analysis on fun-
damental questions, such as: Can the observed density
of resonances be reproduced by microscopic calculations?
Do our results imply the presence of highly anisotropic
interactions, which call into play resonant states of high



3

orbital momentum? We answer these questions in the
a�rmative using full coupled-channel (CC) calculations,
supported by an analytical model.

We construct a �rst-principle CC model for Er+Er
scattering to calculate the spectrum of Fano-Feshbach
resonances for the experimental conditions. Following
Ref. [17], our model uses the atomic basis set and Hamil-
tonian (Methods) that includes the radial kinetic and ro-
tational energy operators, the Zeeman interaction, and
the 91 anisotropic BO potentials. For small interatomic
separations R, the BO potentials are calculated using
the ab initio relativistic multi-reference con�guration-
interaction method [20]. At intermediate to large R, the
BO potentials are expressed as a sum of multipolar in-
teraction terms. The van der Waals dispersion interac-
tion potentials (∝ 1/R6) are determined from experimen-
tal data on atomic transition frequencies and oscillator
strengths [21, 22]. An important point is that the dis-
persion potentials have both isotropic and anisotropic
contributions. The latter comes from the non-S state
character of the Er electronic ground state. The BO po-
tentials induce thus either isotropic (` and m` conserv-
ing) or anisotropic (` or m` changing) couplings. Here,
` and m` are the partial wave quantum number and its
projection on the magnetic-�eld quantization axis.

We perform CC calculations for bosonic 168Er, consid-
ering s-wave (` = 0) collisions and couplings to molecular
states with even ` up to Lmax = 20. We calculate the elas-
tic collisional rate coe�cient as a function of magnetic
�eld to obtain the Fano-Feshbach resonance spectrum.
For Lmax = 20, we observe a very dense resonance spec-
trum with about 1.5 resonances per gauss, which qual-
itatively reproduces our experimental observation (Ex-
tended Data Fig. 2). To get deeper insight into the role
of the anisotropy of the potentials, we calculate the mean
density of resonances ρ from our CC calculations for dif-
ferent values of the maximum partial wave Lmax (Fig. 2).
For Lmax up to 20, we observe that ρ increases with Lmax

in a quadratic manner. This dependence stands in stark
contrast to alkali-metal atoms, where high-partial-wave
resonances tend to be too narrow to be observed.

Since our limited computational resources do not al-
low us to perform calculations for Lmax > 20, it is worth
estimating the density of resonances in a simpler way,
based on the separated atom quantum numbers [3]. The
key ideas of our model are the following. For each chan-
nel |j1mJ,1, j2mJ,2, `m`〉 we de�ne the long-range poten-
tial −C6/R

6 + ~2`(`+ 1)/(2µR2) + gµB(mJ,1 +mJ,2)B,
with the isotropic van der Waals C6 coe�cient of the
BO potentials. Here µ is the reduced mass, g is the
atomic g-factor, and for ground state Er C6 = 1723
a.u.. Fano-Feshbach resonances in our open (mJ,1 =
−6) + (mJ,2 = −6) channel are due to couplings to the
most-weakly bound rovibrational level of closed chan-
nels. For a van der Waals potential [2, 23] this bound
state has a binding energy that must fall within the `-
dependent energy window [−∆`, 0] with ∆` > 0. The
short range potentials are not accurately known and,
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Figure 2 | Mean resonance density for bosonic
Er as a function of largest included partial wave
Lmax. CC calculations for Lmax up to 20 (circles) and
RQDT calculation (solid line) for a magnetic-�eld region
from 0 G to 70 G. For calculations a collision energy of
E/kB = 360 nK is assumed. The mean densities of reso-
nances measured in the experiment are shown for 168Er
(dashed line) and for 166Er (dash-dotted line) with one-
sigma con�dence bands (shaded areas).

for each closed channel, there is a probability dEb/∆`

of �nding a bound state with a binding energy between
Eb and Eb + dEb. From Ref. [23] and numerical simula-
tions we �nd ∆`/EvdW ≈ 38.7 + 25.5` + 3.17`2, where

EvdW = ~2/(2µx2vdW) and xvdW = 4
√

2µC6/~2/2. Each
closed channel contributes gµBδm/∆` to the mean reso-
nance density, where gµBδm > 0 is the magnetic-moment
di�erence of the closed and open channels and δm is
their di�erence in molecular projection quantum num-
bers. Adding the contributions for the closed channels
gives ρ. This counting technique, which we here name
random quantum defect theory (RQDT), yields the mean
density of states shown in Fig. 2. For Lmax 6 20, the re-
sults of our analytic RQDT agrees very well with the
exact CC calculations. For larger Lmax, the density of
resonances keeps growing and eventually saturates to a
value comparable to the one observed in the experiment.
RQDT shows that at least 40 partial waves need to be
considered to reproduce the experimental observations.

Our microscopic models reproduce well the qualitative
behavior of the system. However, given the complexity
of the scattering, the analysis of ultracold collision data
can not and should not aim anymore at the assignment
of individual resonances and the fundamental question of
how to tackle complex scattering naturally arises. Histor-
ically, spectra of great complexity have been understood
within the framework of random matrix theory (RMT),
as originally developed by Wigner to describe heavy nu-
clei containing a very large number of degrees of freedom
[24]. This is an alternative view of the quantum mechan-
ics of complex systems, where individual energy levels
and resonances are not theoretically reproduced one-by-
one, yet their statistics can be described [25]. RMT char-
acterizes spectra by �uctuations of their energy levels and
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classi�es their statistical behavior in terms of symmetry
classes, e. g. the Gaussian-orthogonal ensemble (GOE) in
the case of a system with time-reversal symmetry, such
as neutral atoms.
Following RMT, the distribution of spacings between

neighboring levels (or resonances) characterizes the spec-
tral �uctuations of the system and re�ects the absence
or the presence of level correlations in terms of a di-
mensionless parameter, s, i. e. the actual spacing be-
tween neighboring levels in units of the mean spacing,
d = 1/ρ. Whereas the nearest-neighbor spacing (NNS)
distribution P (s) of non-interacting levels is Poissonian,
PP = exp(−s), strongly interacting levels obey a totally
di�erent distribution which, in the case of GOE statis-
tics, is known as the Wigner-Dyson (WD) distribution or
Wigner surmise [25]

PWD =
π

2
s exp(−πs2/4), (1)

which shows a strong level repulsion for small s,
PWD(0) = 0. The �eld of application of the WD distri-
bution is so vast as to make it a universal feature of very
complex systems, such as heavy nuclei, disordered con-
ductors, zeros of the Riemann function in number theory,
and even risk management models in �nance [5]. Re-
markably, the Bohigas-Giannoni-Schmit conjecture fur-
ther enriched the �eld of applications of GOE statistics
[6], showing that it applies generally to chaotic systems,
such as Rydberg atoms in strong magnetic �elds or Sinai
billiards, where only few degrees of freedom are relevant,
but where motion in these degrees of freedom occurs on a
highly anisotropic potential energy surface [7]. Recently,
it has been speculated that even cold and ultracold atom-
molecule collisions will show essential features of GOE
statistics [3, 4].
Inspired by these works, we statistically analyze both

the experimental and calculated Fano-Feshbach spectrum
according to RMT. To obtain the NNS distribution of
resonances, we �rst derive ρ and the mean spacing be-
tween resonances, d, by constructing the so-called stair-

case function [7]. This step-like function counts the num-
ber of resonances below a magnetic �eld value B and is

de�ned as N (B) =
B∫
0

dB′
∑
i

δ(B′−Bi), with δ being the
delta function and Bi the position of the i-th resonance.
For our experimental data (Fig. 3a) the staircase function
shows an increase of the number of resonances with B,
which proceeds linearly at large B and �attens out to-
wards lower magnetic-�eld values (Fig. 3b). The density
of resonances is given by the derivative of the staircase
function. We evaluate ρ in the region above 30 G, where
the staircase function shows a linear progression (Sup-
plementary Information) and we obtain ρ = 3.0(3) G−1

and d = 0.33(3) G. We perform a similar analysis with
166Er and �nd ρ = 3.3(3) G−1 and d = 0.31(3) G (Ex-
tended Data Fig. 3). For CC-calculation data, we �nd
ρ = 3.3(3) G−1 for Lmax = 20 (Fig. 2). We �nally de-
rive the NNS distribution for the experimental and CC-
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Figure 3 | Loss-maxima position and staircase
function for 168Er. a, Positions of the measured loss
maxima of Fig. 1 are shown as vertical lines. b, The stair-
case function shows a linear dependence on the magnetic
�eld at large values. A linear �t to the data above 30 G
is plotted in light colors. The inset shows a magni�ca-
tion of the data to emphasize the step-like nature of the
staircase function.

calculated data by constructing a histogram of resonance
spacings. We choose a number of bins on the order of√
N , with N being the number of Fano-Feshbach reso-

nances used for analysis [26]. We then rescale the his-
togram in terms of the dimensionless quantity s = B/d
and normalize the distribution in order to obtain P (s).
Figure 4 is the main result of our statistical analy-

sis for 168Er. The plot shows the NNS distribution of
the experimental and the CC-calculated Fano-Feshbach
resonances together with the parameter-free Poisson and
Wigner-Dyson distributions (Eq. 1). We see an impres-
sive agreement between the experimental result and the
CC calculations. Remarkably, both follow a distribution
much closer to the WD than to the Poissonian one. To
quantify the agreement with the GOE statistics, we eval-
uate the reduced chi squared, χ̃2, between our data and
the Poisson and WD distribution. We �nd χ̃2

WD = 0.9
and χ̃2

P = 2.3 for our experimental data and χ̃2
WD = 0.8

and χ̃2
P = 3.0 for the data of the CC calculations. The

fact that χ̃2
WD 6 1 con�rms that our data are well de-

scribed by a WD distribution. Similar results are found
for 166Er (Extended Data Fig. 4).
To further investigate the spectral correlations, we an-

alyze our data in terms of other statistical quantities,
such as the number variance and the two-gap distribution
function (Supplementary Information) [27]. The number
variance Σ2(∆B) measures the �uctuations of the num-
ber of resonances in a magnetic-�eld interval ∆B (Meth-
ods) [7] . For non-correlated (Poissonian-distributed)
levels, Σ2 = ∆B, indicating large �uctuations around
a mean value. For quantum chaotic systems, the correla-
tions are strong and the �uctuations are thus less spread
out. In this case, Σ2 ∝ ln(∆B). This slower increase
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Figure 4 | NNS distribution and number vari-
ance. a, 168Er NNS distribution above 30 G with a bin
size of 160 mG. The plot shows the experimental data
(circles) with the corresponding Brody distribution (solid
line), the Brody distribution for the CC calculation with
Lmax = 20 (dotted line), and the parameter free distri-
butions PP (dashed line) and PWD (short-dashed line).
The Brody distribution is given in the Methods section.
For the error bars in the experimental data, we assume
a Poisson counting error. b, Number variance for the
experimental data (solid line) with a two-sigma con�-
dence band (shaded area), the CC-calculation data (dot-
ted line), PP (dashed line), and PWD (short-dashed line).

of the number variance is regarded as a strong spectral

rigidity of the system [7]. Our observations clearly devi-
ate from the Poissonian behavior showing that Σ2 tends
to the WD case (Fig. 4b) and con�rm the presence of
correlations in our system.
To conclude, our observations reproduce the salient

features predicted by GOE statistics for chaotic systems,
the level repulsion and the spectral rigidity. This implies
a degree of complexity in Er+Er cold collisions unprece-
dented in any previous ultracold scattering system. Our
results bring the powerful analytical tools of quantum
chaos to bear [7]. In particular, these approaches connect
the large-scale structure of the spectra to simple features
such as the shortest closed classical orbits in the poten-
tial energy surface, where these connections are made by
the Gutzwiller trace formula [28]. Identifying the most
important closed orbits will then shed light on the poten-
tial energy surface itself, providing a route to describing
ultracold collisions that is complementary to the elabo-
rate close-coupling calculations that will be di�cult to
connect in detail with the data.

Erbium represents the �rst occasion where statistical
analyses and chaotic behavior are important to ultra-
cold collisions, but they will not be the last. Speci�-
cally, much experimental e�ort is being exerted toward
producing ultracold molecular samples, which also enjoy
highly anisotropic potential energy surfaces. Learning to
read complex spectra, by acknowledging their essentially
chaotic nature, represents a turning point in how the �eld
will consider ultracold collisions in the future and provide
new inroads into ultracold chemistry.

METHODS SUMMARY

Sample preparation. For bosonic sample prepa-
ration we follow the approach of Ref. [11]. We obtain
about 3 × 105 optically-trapped atoms at a density of
3×1013 cm−3. The trap-loss spectroscopy is performed in
a trap with frequencies of (νx, νy, νz) = (65, 26, 270) Hz.
The temperature of the cloud is measured by time-of-
�ight imaging at 0.4 G and gives T168 = 326(4) nK and
T166 = 415(4) nK, respectively. We ramp the magnetic
�eld within 10 ms to a probe value between 0 and 70 G,
and hold the atomic cloud for 400 ms in the optical dipole
trap. We observe an increase of the temperature up to
560 nK at a magnetic �eld of about 50 G due to the ramp-
ing over many Fano-Feshbach resonances. For fermionic
sample preparation we follow the approach of Ref. [12].
We obtain about 1.2× 105 fermionic atoms at a density
of 2 × 1014 cm−3 and at a temperature of 0.4TF, where
TF = 1.0(1)µK is the Fermi temperature. The trap fre-
quencies are (427, 66, 457) Hz.
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METHODS

Experimental procedures. For bosonic sample
preparation we follow the approach of Ref. [11]. In brief,
after the magneto-optical trap [29], we load the atoms
in an optical dipole trap composed of two laser beams
in horizontal (1,064 nm, 0.4 W, single-mode) and ver-
tical direction (1,064 nm, 4.0 W, broadband Yb �ber-
laser). In the trap, we force evaporation by ramping
down the power of both trapping laser beams within
6.2 s, in the presence of a homogeneous magnetic �eld
of 0.4 G to prevent spin-�ips to other Zeeman states.
We stop evaporative cooling before the onset of Bose-
Einstein condensation. Our �nal trap has frequencies of
(νx, νy, νz) = (65, 26, 270) Hz and contains about 3× 105

atoms at a density of 3× 1013 cm−3. The temperature of
the atomic cloud is measured by time-of-�ight imaging
for both isotopes at 0.4 G and gives T168 = 326(4) nK
and T166 = 415(4) nK. We ramp the homogeneous mag-
netic probe �eld up to 70 G within 10 ms and hold the
atomic cloud for 400 ms in the optical dipole trap. The
magnetic �eld is suddenly (< 5 ms, limited by eddy cur-
rents) switched o� and the atom number and size of the
cloud is measured via absorption imaging after a time of
�ight of 15 ms. We observe an increase of the tempera-
ture up to 560 nK at a magnetic �eld of about 50 G due
to ramping over many Fano-Feshbach resonances. For
fermionic sample preparation we follow the approach of
Ref. [12]. We obtain about 1.2×105 fermionic atoms at a
density of 2× 1014 cm−3 and at a temperature of 0.4TF,
where TF = 1.0(1)µK is the Fermi temperature. The
trap frequencies are (427, 66, 457) Hz.
Magnetic-�eld control. An analog feedback loop

stabilizes the current for the homogeneous magnetic-�eld
coils with a relative short-term stability of better than
2×10−4. Calibration of the magnetic �eld is done by driv-
ing a radio-frequency transition between Zeeman states
mJ = −6 and mJ = −5. Trap-loss spectroscopy is car-
ried out in steps of 20 mG (out of resonance) and 5 mG
(on resonance). The long-term o�set stability of the mag-
netic �eld was observed during the data recording period
to be better than 4 mG within one week.
Coupled-channel calculations. We perform ex-

act CC calculations for Er+Er scattering in the basis
|j1mJ,1, j2mJ,2, `m`〉 ≡ Y`m`

(θ, φ)|j1mJ,1〉|j2mJ,2〉, where
~ja=1,2 are the atomic angular momenta with space-�xed
projection mJ,a=1,2 along the magnetic-�eld direction,
the spherical harmonics Y`m`

(θ, φ) describe molecular ro-

tation with partial wave ~̀, and where the angles θ and φ
orient the internuclear axis relative to the magnetic �eld.
For a closed-coupling calculation of the rovibrational

motion and of the scattering of the atoms we need all elec-
tronic potentials dissociating to two ground-state atoms.
There are 91 BO potentials for Er2, of which 49 are
gerade and 42 are ungerade potentials. For collisions
of bosons in the same Zeeman state only gerade states
matter. These potential surfaces have been obtained us-
ing an ab initio relativistic multi-reference con�guration-

interaction method (RMRCI) [20], and converted into a
tensor operator form with R-dependent coe�cients. Ex-
amples of tensor operators are the exchange interaction
Vex(R)~j1 ·~j2 and the anisotropic quadrupole-rotation op-

erator VQ(R)Y2(R̂) · [~j1 ⊗ ~j1]2 coupling the quadrupole

operator [~j1 ⊗~j1]2 of one atom with angular momentum
j1 to the rotation of the molecule. See [17] for other
operators.

Collisions of submerged 4f-shell atoms at low temper-
atures also depend on the intermediate to long-range
isotropic and anisotropic dispersion, magnetic dipole-
dipole and quadrupole-quadrupole interatomic interac-
tions. The van der Waals dispersion potentials for
two ground-state atoms are obtained using the transi-
tion frequencies and oscillator strengths [21, 22]. The
quadrupole moment of Er is calculated using an unre-
stricted atomic coupled-cluster method with single, dou-
ble, and perturbative triple excitations uccsd(t) [30] and
shown to be small at Q = 0.029 a.u..

We use a �rst-principle coupled-channel model to
calculate anisotropy-induced magnetic Fano-Feshbach-
resonance spectra of bosonic Erbium. The model treats
the Zeeman, magnetic dipole-dipole, and isotropic and
anisotropic dispersion interactions on equal footing. The
Hamiltonian includes

H = − ~2

2µ

d2

dR2
+

~̀2

2µR2
+HZ + V (~R, τ) ,

where ~R describes the orientation of and separation be-
tween the two atoms. The �rst two terms are the ra-
dial kinetic and rotational energy operators, respectively.
The Zeeman interaction is HZ = gµB(j1z + j2z)B, where
g is an atomic g-factor and jiz is the z component of the
angular momentum operator ~i of atom i = 1, 2. The in-

teraction, V (~R, τ), includes the Born-Oppenheimer and
the magnetic dipole-dipole interaction potentials, which
are anisotropic, and τ labels the electronic variables. Fi-
nally, µ is the reduced mass and for R → ∞ the inter-

action V (~R, τ) → 0. Coupling between the basis states

is due to V (~R, τ), inducing either isotropic (` and m`

conserving) or anisotropic (` or m` changing) couplings.
The Hamiltonian conservesMtot = mJ,1 +mJ,2 +m` and
is invariant under the parity operation so that only even
(odd) ` are coupled. In the atomic basis set, the Zeeman
and rotational interaction are diagonal.

NNS probability distribution. As the density of
resonances is not constant below 30 G we restrict our
analysis to resonances appearing from 30 to 70 G. We
plot a histogram of spacings between adjacent resonances
given by di = Bi+1 − Bi. For this an appropriate num-

ber of bins is chosen on the order of
√
N , with N be-

ing the total number of Fano-Feshbach resonances ob-
served up to 70 G. This ensures a bin size at least an
order of magnitude larger than the mean resolution of
the trap-loss spectroscopy scan. For every bin a sta-
tistical counting error according to a Poisson distribu-
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tion is assigned. Next, the magnetic-�eld axis of the his-
togram is divided by the mean spacing of resonances to
get the dimensionless quantity s = B/d. To calculate
the NNS probability distribution P (s) the histogram has

to be normalized such that
∞∫
0

dsP (s) = 1. As shown

in Ref. [27], the probability distribution of uncorrelated
random numbers is simply given by the Poisson distribu-
tion PP(s) = exp(−s). A theoretical spacing distribution
of random matrices can not be written in a simple form
but, according to the Wigner surmise, an excellent ap-
proximation is given by the Wigner-Dyson distribution
PWD(s) = π

2 s exp(−πs2/4). A way of discriminating be-
tween these two distributions is to �t the so-called Brody

distribution to the NNS distribution [8]. It is an empirical
function with a single �tting parameter η, which interpo-
lates between PWD and PP and quanti�es the tendency
(and not the degree of chaoticty) of the observed distri-
bution to be more Poisson-like (η = 0) or more Wigner-
Dyson-like (η = 1). It is de�ned by

PB(s) = Asη exp(−αsη+1)

A = (η + 1)α

α =

[
Γ

(
η + 2

η + 1

)]η+1

,

where Γ denotes the Gamma function. From a least-
squares �t to the experimental data, we obtain η168 =
0.66(10) for 168Er and η166 = 0.73(18) for 166Er, and a
�t to the CC-calculation data gives ηCC = 0.72(18).
Number variance. The number variance Σ2 is a

quantity that depends on long-range correlations between
resonance spacings within an interval ∆B. It is de�ned
by

Σ2(∆B) = n2(B0,∆B)− (n(B0,∆B))2 ,

with n(B0,∆B) = N (B0 + ∆B) − N (B0) giving the
number of resonances in the interval [B0, B0 + ∆B]
and the bar denotes the mean value over all B0.
For a Poisson distribution, Σ2 = ∆B. By con-
trast, for a spectrum according to RMT one expects
Σ2 = 1/π2

(
ln(2π∆B) + γ + 1− π2/8

)
, for large ∆B and

where γ = 0.5772... is Euler's constant [25]. This behav-
ior re�ects that there are only very small �uctuations
around an average number of resonances within a given
interval of size ∆B (spectral rigidity). Compared to the
NNS distribution the number variance is more suitable to
probe long distances in the spectrum. A clear signature
of level repulsion on the one hand and a large spectral
rigidity on the other are central properties of strong cor-
relations between levels according to RMT [27].
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spectroscopy is performed in an optically trapped sample of fermionic Er atoms at a temperature of 0.4TF, where
TF = 1.0(1)µK is the Fermi temperature. The atoms are spin-polarized in the lowest Zeeman sublevel, mF = −19/2.
We keep the atomic sample at the magnetic probing �eld for a holding time of 100 ms. We observe 115 resonances
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coe�cient as a function of magnetic �eld assuming a collision energy of E/kB = 360 nK. Partial waves ` up to 20 are
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Extended Data Figure 3 | Statistical analysis of high-density Fano-Feshbach resonances of isotope
166Er. a, Position of the resonances are marked with vertical lines. b, The staircase function shows a similar behavior
to 168Er (Fig. 3). A linear �t to the data above 30 G is plotted in light colors. From the staircase function we
calculate a mean density of resonances of ρ = 3.3(3) G−1, which corresponds to a mean distance between resonances
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Extended Data Figure 4 | NNS distribution and number variance. a, 168Er NNS distribution above 30 G
with a bin size of 140 mG. For the error bars we assume a Poisson counting error. The plot shows the experimental
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the Wigner-Dyson distribution. b, Number variance Σ2 for the same experimental data (solid line) with a two-sigma
con�dence band (shaded area). The number variance from experimental data shows a clear deviation from the number
variance of a Poisson distribution.
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10.3. Further work

10.3.1. RMT and Feshbach spectroscopy

To gain a deeper insight into the coupling between molecular states we developed a toy model,
which allows to calculate the binding energy of a random set of coupled molecular states
dependent on the magnetic field. Utilizing this model we can then determine the position,
at which the states cross the threshold at zero energy and derive a ‘simulated Feshbach
spectrum’. We analyze the NNS distribution of these artificial Feshbach resonances for
different coupling strengths and observe a Wigner-Dyson distribution only for strong coupling
strengths. The energy dependence was derived by diagonalizing the model’s Hamiltonian

H = H0 +Hcpl − µmolB , 10.1

where H0 gives the energy of the states at zero magnetic field B, Hcpl contains the coupling
strengths between different states in the off-diagonal elements, and the last term gives the
Zeeman shift of the states. For simplicity, the magnetic moment of the simulated molecular
states, µmol, is chosen randomly from all possible combinations of mJ states of two erbium
atoms. Furthermore, a representative density of resonances of about three per Gauss, like
observed in the experiment, was assumed. The coupling strength between two molecular
levels are randomly chosen from a Gaussian distribution with a given variance of ν2a , see
Fig. 10.1.

Figure 10.2 shows the magnetic-field dependence of the simulated binding energy of coupled
molecular states for different values of ν2a . For larger values of the coupling avoided crossings
of states become visible. As the slope of the state changes with the magnetic field when
moving over an avoided crossing, its magnetic moment changes accordingly. For stronger
coupling strengths this effect leads to a more homogeneous distribution of magnetic moments
of states, as seen in Fig. 10.2(c-d).
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Figure 10.1.: Random Gaussian-distributed coupling strength for the molecular state coupling sim-
ulation shown in Fig. 10.2. The histogram (blue) plots the occurrence of coupling matrix elements
with zero mean and a variance of (a) ν2a = 10−4 and (b) ν2a = 10−2, respectively. Each histogram
contains 124,750 matrix elements, which are needed for a coupling matrix Hcpl of size 500×500. The
solid line (gray) shows a Gaussian fit to the histogram.
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Figure 10.2.: Magnetic field dependence of the energy of simulated molecular states (blue) with
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Gaussian distributed coupling strengths with (b) ν2a = 10−4, (c) ν2a = 10−3, and (d) ν2a = 10−2.
The slope of the states equals their magnetic moment. Additionally, the crossing of a state with the
threshold, i. e. the position of a Feshbach resonance, (E = 0) is marked with red circles and the energy
of the state at zero magnetic field (B = 0) is shown by green squares. Avoided crossings appear when
a coupling between states is present.

The strong coupling between molecular states leads to a significant change of the distribution
of FR positions, as shown in Fig. 10.3. The molecular states are assumed to be distributed
according to a Wigner-Dyson distribution with respect to energy. The distribution of FRs
changes from uncorrelated resonances (without coupling) to strongly correlated resonances
(for coupled molecular states) following a Wigner-Dyson distribution.

Contrary to a simple system of, e. g. alkali-metal atoms, where coupled-channel calculations
can be easily performed and the Feshbach spectrum fully assigned [Chi10], lanthanide atoms
are challenging for theorists. Due to the unprecedented high density of FRs and strongly
coupled molecular states, the way of describing a Feshbach spectrum by employing random
matrix theory seems to be the most fruitful at the moment.
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Figure 10.3.: NNS distribution P (s) of molecular states (a-c) along the magnetic field axis and (d)
along the energy axis. P (s) dependent on the magnetic field is shown for non-coupled states (a) and
Gaussian-distributed coupling strengths with (b) a variance of ν2a = 10−4 and (c) with ν2a = 10−2. (d)
In all three cases the energy of the states at zero magnetic field are assumed to be randomly distributed
according to a Wigner-Dyson distribution. The solid line shows a Wigner-Dyson distribution and the
dashed line a Poisson distribution. A total of 500 states was used to derive the NNS distributions.
Panel (e) shows only a small region of the magnetic field dependence of states as in Fig. 10.2 for a
coupling strength of ν2a = 10−2.

10.3.2. Feshbach resonance width distribution

It was shown in Ref. [Por56] that widths from nuclear reactions can be described by a chi-
squared (χ2) distribution. This distribution is defined as

Pχ2(s) =
1

Γ(n)
(ns)n−1e−nsn , 10.2

where Γ is the Gamma function and ν = 2n is the so-called degree of freedom. For ν = 2
this gives Pχ2(s) = exp (−s), being an exponential distribution.

Widths of resonances in nuclear spectra were best fitted by a distribution with one degree
of freedom. Figure 10.4 shows the distribution, P (s), of erbium Feshbach resonance widths.
The histogram was created by binning the width data from trap-loss spectroscopy into a
histogram with a bin size of 25 mG. Normalizing the width is done by s = Γred/Γred,
with Γ being the arithmetic mean of widths. This results in P (s), which is compared with
chi-squared distributions of different degrees of freedom. We observe that it fits best by
a χ2-distribution with one degree of freedom. Following Ref. [Por56] this corresponds to a
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Figure 10.4.: Normalized width distribution of Feshbach resonances in 168Er (red circles) and 166Er
(blue squares) above 30 G. The χ2-distributions with degrees of freedom (DOF) of one, two, and
three are plotted in gray colors for comparison. The data points agree best with the χ2-distribution
with DOF = 1. Error bars result from statistical uncertainties from creating the histogram. The
error is taken to be

√
N with N the number of counts per bin.

single outgoing channel No, which is as expected by the preparation of erbium atoms in their
energetically lowest Zeeman state.
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Publication: Fermi surface
deformation

11.1. Introduction

Dipolar many-body effects in atomic Fermi gases are a rather unexplored field. This is due to
the fact that only recently suitable fermionic systems have become available. The magnitude
of dipolar effects is given by the ratio nd2

EF
, which is typically much smaller than unity. Here,

EF is the Fermi energy, n the peak number density, and d2 the coupling constant of the

dipole-dipole interaction (DDI), being for magnetic dipoles µ0µ2

4π .

A first dipolar many-body effect should be noticeable in a deformation of the Fermi sur-
face. The Fermi surface deformation (FSD) is predicted in many theoretical works, see
Refs. [Miy08, Fre09, Bai12b], but has not been experimentally observed before. In the pre-
sented publication we confirm the deformation of the Fermi surface in a degenerate Fermi
gas of erbium atoms. Furthermore, we demonstrate that it is indeed a many-body effect.
The FSD in the erbium system is caused by the anisotropy of the magnetic DDI. The DDI
induces two additional contributions in the total energy of the system. The first one is the
Hartree direct term and the second one is the Fock exchange term, see Ref. [Miy08]. In case
of isotropic contact interaction these two terms cancel each other and the Fermi surface is
always isotropic.

The amount of deformation for the parameters of our experiment is expected to be very small,
just on the order of a few percent, which makes the detection of the FSD very difficult. We
have shown that the amount of deformation depends on the Fermi energy of the system as
it increases for higher Fermi energies, clearly showing the quantum many-body nature of
the FSD. Furthermore, the direction of the FSD follows the orientation of the polarizing
magnetic field. In time-of-flight images, revealing the momentum distribution of the cloud,
it was possible to visualize the FSD by an anisotropic shape of the atom cloud.

This first experimental verification of the FSD might lead to further investigations on col-
lective excitations and anisotropic superfluid pairing, see Ref. [Bar02b].
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Observation of Fermi surface deformation in a dipolar gas: a quantum nematic phase in the
ultracold regime

K. Aikawa,1 S. Baier,1 A. Frisch,1 M. Mark,1 C. Ravensbergen,1, 2 and F. Ferlaino1

1Institut für Experimentalphysik and Zentrum für Quantenphysik,
Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

2Institut für Quantenoptik und Quanteninformation,Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria
(Dated: May 8, 2014)

The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum
phases with broken symmetries. Understanding these phases, which play crucial roles in a wealth of systems, is a
major challenge in condensed matter physics. Here, we report on the observation of a Fermi surface deformation
in a quantum gas of erbium atoms. The deformation is triggered by the strong magnetic dipole-dipole interaction
among erbium atoms. We demonstrate that the Fermi surface deformation is tunable via an external trapping
potential. Our work shows that the ground state of a dipolar Fermi gas is a nematic phase and that a dipolar
Fermi gas provides an ideal clean system for exploring a nematic phase in a highly controlled manner.

PACS numbers: 03.75.Ss, 37.10.De, 51.60.+a, 67.85.Lm

The Fermi-liquid theory, formulated by Landau in the late
50’s, is one of the most powerful tools in modern condensed
matter physics [1]. It captures the behavior of interacting
Fermi systems in the normal phase, such as electrons in metals
and liquid 3He [2], and provides the basis for understanding
Cooper pairing in conventional superconductors. Within this
theory, the interaction is accounted by dressing the fermions
as quasi-particles with effective mass and effective interac-
tion, and with an isotropic Fermi surface (FS) in momen-
tum space. In strongly correlated electron systems, however,
the electron-electron (Coulomb) interaction can violate the
Fermi-liquid picture and give rise to a deformed FS, which
breaks the symmetry of the system. The deformation of a FS
is often referred to as a Pomeranchuk instability of a normal
Fermi liquid [3]. The simplest realization of such a situation,
where the rotational symmetry of the FS is broken, is a quan-
tum nematic phase, which is named in analogy with liquid
crystal phases [4]. Symmetry-breaking FSs in solids have at-
tracted enormous attention for their potential impact on pseu-
dogap phases in high-transition-temperature superconductors
and quantum criticality [5–7]. Recent experimental work re-
ported on signatures of such a phenomenon in transport, me-
chanical, and surface properties of various materials, includ-
ing superconductors such as cuprates [8–11] and iron pnic-
tides [12–14]. However, the direct observation of sponta-
neously deformed Fermi surfaces in solids remains an elusive
goal since a FS is strongly affected by disorders, impurities,
and underlying crystalline structures [15, 16].

A completely distinct approach to quantum nematic phases
is to explore ultracold Fermi gases with strong dipole-dipole
interaction (DDI) [17–20], as realized with ultracold polar
molecules and magnetic atoms [21–23]. Differently from s-
wave interaction that can entail an isotropic broadening of the
always-spherical FS [24, 25], the anisotropic DDI is predicted
to impact the momentum distribution of fermions in a pro-
found and subtle way, giving rise to a permanent deformation
of the FS [19, 20, 26–28]. The realization of such a quantum
nematic phase in experiments would strengthen the role of ul-

β

FIG. 1: (color online) AR of an expanding dipolar Fermi gas as a
function of the angle β . The sample contains 7×104 atoms at a typ-
ical temperature of T/TF = 0.18. In this measurement, the trap fre-
quencies in three directions are ( fx, fy, fz) = (579,91,611)Hz. The
data are taken at tTOF = 12ms. The error bars are standard errors
of more than 20 independent measurements. For comparison, the
calculated values are also shown for 0◦ and 90◦ (squares). The inset
schematically illustrates the geometry of the system. Gravity is along
the z direction. The atomic cloud is imaged with an angle of 28◦ with
respect to the y axis. The magnetic field orientation is rotated on the
plane with an angle of 14◦ with respect to the xz plane. Schematic
illustrations of the imaged atomic cloud emphasizing the anisotropy
are also shown above the panel.

tracold matters as an excellent quantum simulator for exotic
condensed matter phenomena.

In this paper, we report on the direct observation of a
Fermi surface deformation (FSD) in a dipolar quantum gas
of fermionic 167Er atoms. The large DDI among the fermions
results from the large Er magnetic moment µ of 7 Bohr mag-
neton. We demonstrate that the magnitude and the orientation
of the FSD can be controlled with external fields. The defor-
mation vanishes at high temperatures of around TF , where TF
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FIG. 2: (color online) Time evolution of the AR of the atomic cloud
during the expansion. Measurements are performed for two dipole
angles, β = 0◦ (squares) and β = 90◦ (circles) under the same con-
ditions as in Fig. 1. The error bars are standard errors of more than
20 independent measurements. The theoretical curves show the full
numerical calculations (solid lines), which include both the FSD and
the NBE effects, and the calculation in the case of ballistic expan-
sions (dashed lines), i. e. in the absence of the NBE effect. For com-
parison, the calculation for a non-interacting Fermi gas is also shown
(dot-dashed line).

is the Fermi temperature, pointing to the quantum-mechanical
nature of the observed effect. Our observations are in very
good agreement with calculations based on Refs. [26–28].
This work constitutes the first observation of a many-body
quantum effect in a dipolar Fermi gas in three-dimensions
and provides direct evidence that the ground state of a dipolar
Fermi gas is a nematic phase.

Our starting point is a single-component quantum degen-
erate dipolar Fermi gas of 167Er atoms [23] (Supplementary
Materials). The ultracold sample is confined in a three-
dimensional harmonic trap consisting of two laser beams in
a crossed-beam configuration. We control the orientation of
the atoms’ dipole moment with an external polarizing mag-
netic field; see inset Fig. 1.

To explore the impact of the DDI on the momentum dis-
tribution, we study the expansion dynamics of the gas when
released from the trap. Such a time-of-flight (TOF) exper-
iment is extremely powerful to probe properties of trapped
gases and many-body phenomena [24, 25], providing, for in-
stance, the early ”smoking-gun” evidence for Bose-Einstein
condensation [29, 30]. The crucial point of this method is that
for a long expansion time, the size of the atomic cloud is dom-
inated by the velocity dispersion and, in the case of ballistic
(free) expansions, the TOF images purely reflect the momen-
tum distribution in the trap. In our experiment, we release the
degenerate Fermi gas from an optical dipole trap (ODT) and
image the sample after a long expansion time tTOF. We then
analyze the aspect ratio (AR) of the cloud, i. e. the vertical-to-
horizontal ratio of the observed radii (Supplementary Materi-
als).

Figure 1 shows the AR of the Fermi gas for various dipole
orientations β , where β is defined as the angle of the magnetic
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FIG. 3: (color online) Deformation ∆ for various trap geometries.
The calculations consider a cigar-shaped trap with fx = fz and show
separately the behavior of the FSD (dashed lines) and the NBE (dot-
ted lines) as a function of the trap anisotropy

√
fx fy/ fz at f̄ = 400Hz

(A) and as a function of f̄ at
√

fx fy/ fz = 5 (B). (C) Experimentally
observed deformations at tTOF = 12ms are plotted as a function of η ,
together with the full calculation (solid line) and the calculation con-
sidering only FSD (dashed line). The sample contains 6×104 atoms
at a typical temperature of T/TF = 0.15. The error bars represents
standard errors of about 15 independent measurements. The varia-
tion of the trap anisotropy in the experiment is indicated in the top
axis. (D) Visualized FSD for the observed TOF image at η = 0.14.
(E) Visualized FSD for the fitted image at η = 0.14.

field orientation with respect to the z axis (see inset Fig. 1). We
observe a clear deviation of the AR from unity, corresponding
to an ellipsoidal distribution with cloud elongation along the
orientation of the polarizing magnetic field. For vertical polar-
ization, we estimate a cloud anisotropy of about 3%. Remark-
ably, we observe that the ellipticity of the Fermi gas rotates
with the magnetic field orientation, keeping the major axis of
the ellipse always aligned with the dipole orientation. This be-
havior clearly shows that the DDI is the origin of the observed
anisotropy and stretches the FS along the orientation of the
dipoles. Subsequently, we investigate the expansion dynam-
ics for two dipole orientations by following the time evolution
of the AR (Fig. 2). At short tTOF, AR rapidly changes as a
consequence of the radial expansion (acceleration). Eventu-
ally, for tTOF > 10ms, it plateaus for both angles, revealing
the momentum distribution of the sample.

The one-to-one mapping between the initial momentum
distribution of the trapped Fermi gas and the position distri-
bution of the expanding cloud after long tTOF strictly holds
only in the case of pure ballistic (i. e. free) expansions. In our
experiments, the DDI is acting even during the expansion and
could potentially mask the observation of the FSD. To eval-
uate the effect of the non-ballistic expansion (NBE), we per-
form numerical calculations based on a Hartree-Fock mean-



3

field theory in the zero temperature limit [26–28] (Supplemen-
tary Materials). In Fig. 2, we compare the experimental data
with the parameter-free theoretical curves, which include both
the FSD and the NBE effects. We observe an excellent overall
agreement between the experiment and the theory, showing
that our model accurately describes the behavior of our sys-
tem. In addition, we plot the numerical simulations in the
case of pure ballistic expansions. The comparison between
the ballistic and non-ballistic expansion reveals that the latter
plays a minor role in the final AR, showing that the observed
anisotropy dominantly originates from the FSD. For the sake
of completeness, Fig. 2 also shows the calculation for a non-
interacting Fermi gas, whose FS is spheric.

The FSD is a quantum phenomena that comes from the an-
tisymmetrization of many-body fermion wavefunctions. It has
been predicted that its magnitude increases with the Fermi en-
ergy and the dipole moment and that. In the limit of weak
DDI, the magnitude of the FSD is linearly proportional to a
dimensionless parameter [26, 27]

η = ACdd
√

EF (1)

Here, A = c0m3/2/h3 is a numerical factor with c0 =
8π36−1/6 ' 184, m the mass of 167Er, and h the Planck con-
stant, Cdd = µ0µ2/(4π) denotes the dipolar coupling constant
with µ0 vacuum permeability, and EF = kBTF = h f̄ (6N)1/3

is the Fermi energy for a non-interacting Fermi gas in a har-
monic trap with kB the Boltzmann constant, f̄ = ( fx fy fz)

1/3

the mean trap frequency, and N the number of atoms. In-
tuitively, this scaling is interpreted as follows: a larger EF ,
resulting in a higher number density and thus in a smaller in-
terparticle spacing, gives rise to larger DDI in a Fermi gas.
These arguments open up the possibility of tuning the FSD
by changing EF , i. e. the external trapping potential and the
number density.

We explore the dependence on the external trapping poten-
tial in experiment and substantiate the experimental results by
calculations. For convenience, we define the deformation fac-
tor, ∆, as ∆ = 1−AR. We first simulate how ∆ varies when
the trap anisotropy,

√
fx fz/ fy, (Fig. 3A) and/or f̄ (Fig. 3B) are

varied. In the calculations, we keep the FSD and the NBE con-
tributions separated. Our theoretical results clearly convey the
following information: (i) the FSD gives the major contribu-
tion to ∆ and is truly independent from the trap anisotropy,
while it increases with f̄ , (ii) the NBE effect is reminiscent of
the trap anisotropy and vanishes for a spherical trap [27].

In the experiment, we explore the dependence of ∆ on the
trap geometry for β = 0◦ by keeping the axial frequency ( fy)
constant and vary the radial frequencies ( fx = fz within 5%)
(Fig. 3C). This leads to a variation in the trap anisotropy, in
f̄ , and thus in η . We observe a linear dependence of ∆ on
η in agreement with Refs. [26, 27] and our numerical calcu-
lations. The excellent agreement between experiments and
theory shows that our system is a clean sample allowing us to
investigate a nematic phase under a highly controlled environ-
ment.
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FIG. 4: (color online) Deformation as a function of the temperature
of the cloud. Measurements are performed for two dipole angles,
β = 0◦ (squares) and β = 90◦ (circles) under the same conditions
as in Fig. 2. The experimental data are taken at tTOF = 12ms. The
plot shows the numerically calculated values at zero temperature for
β = 0◦ (solid line) and β = 90◦ (dashed line).

In analogy with a study on nematicity in a superconduct-
ing material [31], we graphically emphasize the FSD in the
measurements at η = 0.14 by subtracting the TOF absorption
image taken at β = 90◦ from the one at β = 0◦ (Fig. 3D). The
resulting image shows a clover-leaf-like pattern, visualizing
that the momentum spread in the orientation of the dipoles is
larger than in the other direction. For comparison, the same
procedure is applied for images obtained by a fit to the ob-
served cloud (Fig. 3E). At η = 0.14, the trap anisotropy is so
small that the NBE effect is negligibly small. Therefore, the
deformation visualized here is almost purely the FSD.

Finally, we investigate the temperature dependence of ∆
(Fig. 4). We prepare samples at various temperatures by stop-
ping the evaporative cooling procedure at arbitrary points [32].
The final trap geometry is kept constant. By reducing the
temperature of the Fermi gas, we observe the emergence of
the FSD which becomes more and more pronounced at low
temperature and eventually approaches the zero-temperature
limit. The observed temperature dependence qualitatively
agrees with a theoretical result at finite temperatures [33]. Our
observation clearly shows the quantum many-body nature of
the FSD.

The observation of a deformed Fermi surface sets the ba-
sis for future investigations on quantum many-body dipo-
lar phenomena, including dipolar collective excitations [27,
28, 34, 35], and exotic phases in strongly correlated dipolar
gases [18, 19]. Taking advantage of the wide tunability of cold
atom experiments, dipolar Fermi gases are ideally clean sys-
tem for exploring an exotic and topological phases in a highly
controlled manner.

We are grateful to A. Pelster, M. Ueda, M. Baranov,
R. Grimm, and T. Pfau for fruitful discussions. This work is
supported by the Austrian Ministry of Science and Research
(BMWF) and the Austrian Science Fund (FWF) through a
START grant under Project No. Y479-N20 and by the Eu-
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ropean Research Council under Project No. 259435. K. A. is
supported within the Lise-Meitner program of the FWF.

Supplementary Materials

Experimental setup

We obtain a quantum gas of fermionic 167Er atoms via laser
cooling in a narrow-line magneto-optical trap [36] followed
by evaporative cooling in an ODT [23]. During the entire ex-
perimental procedure, the fermions are fully polarized into the
lowest hyperfine sublevel |F = 19/2,mF =−19/2〉, where F
is the total angular momentum quantum number and mF is its
projection along the quantization axis. The sample is trapped
in a crossed ODT consisting of a horizontally (y axis) and a
vertically (z axis) propagating beam at 1570nm. The beam
waist of the horizontal beam is kept constant to be 15 µm,
while that of the vertical beam can be tuned from 20 µm to
90 µm. By controlling the power of the two beams and the
beam waist of the vertical beam, we are able to vary the
trap geometry from a nearly spherical shape to a cigar shape.
The magnetic field amplitude is always kept constant to be
0.58G where we do not see any influence of Feshbach reso-
nances [37]. The magnetic field orientation is controlled with
two sets of coils. During evaporative cooling, the magnetic
field is vertically oriented (β = 0◦).

Imaging and fitting procedure

We measure the deformation of the cloud shape in the
TOF absorption image by applying the conventional poly-
logarithmic fit for an ideal Fermi gas [38–40]. The fit has
six free parameters: the positions and sizes in two direc-
tions, the fugacity, and the optical depth. The fugacity ζ
is directly connected to T/TF through the relation T/TF =
[−6 × Li3(−ζ )]−1/3, with Lin being the n-th order poly-
logarithmic function. The optical depth is proportional to N.
Although the optical depth is related to ζ through N and TF
by TF = h f̄ (6N)1/3/kB, we leave both free in the fitting pro-
cedure and confirm that they are consistent with each other.
Here, we assume that the cloud has a constant fugacity over
the entire cloud because the momentum deformation is small.
Rigorously speaking, TF is anisotropic and T is constant over
the cloud, and thus ζ should be anisotropic. Dealing with such
a distribution is beyond the scope of the present work.

Errors in AR

By taking the average of more than 20 independent mea-
surements, we are able to determine the AR with a typical
precision of 0.1%, corresponding to the standard error of
multiple measurements. In addition, there are five possible

sources of systematic errors in the measured AR. (a) Varia-
tion in the pixel sizes. The variation in pixel sizes over the
area of the cloud can introduce a systematic error in deforma-
tion. There is no measured data available for our CCD camera
(Andor, iXon3). (b) Residual interference fringes. Interfer-
ence fringes, arising from dusts on the imaging optics, can
produce a fixed background pattern on the image. From the
TOF measurements shown in Fig. 2, where the position of the
atomic cloud varies with TOF by a free fall, we estimate the
combined effect of (a) and (b) to be within ±0.5%. (c) Error
in the fitting procedure. Although our fitting procedure as-
suming a constant fugacity may give rise to a systematic error
in deriving the AR, it is difficult to quantitatively estimate it
owing to the lack of an appropriate model. Investigating this
effect will be an important future work. (d) Fluctuations in
the magnetic field. The effect of the fluctuation in magnetic
field, which results in a fluctuation in the dipole orientation,
is negligibly small at β = 0◦ and β = 90◦ (< 0.05% in defor-
mation). (e) Tilt of the camera. Assuming that the camera is
aligned perpendicular to the imaging beam path within 1◦, we
infer that the influence of the tilt of the camera on the AR is
negligible (< 0.02%).

Calculation of the deformation

In the present work, the collision rate associated with uni-
versal dipolar scattering [23, 41] is lower than the lowest
trap frequency. Therefore, our sample is in the collisionless
regime, where the mean free path is longer than the size of
the cloud [42]. We describe the trapped dipolar Fermi gas in
the collisionless regime in the zero temperature limit with an
ansatz that the Wigner distribution function is given as an el-
lipse

g(r,k, t) = Θ

(
1−

3

∑
j=1

r2
j

R2
j
−

3

∑
j=1

k2
j

K2
j

)
(2)

where Θ denotes the Heaviside’s step function, and r, k, and
t denote coordinate, wave vector, and time, respectively. The
parameters R j and K j represent the Thomas-Fermi radius and
the Fermi momentum in the jth direction. These parameters
are numerically determined by minimizing the total energy in
the presence of the DDI. The validity of this approach was
numerically confirmed [43]. At equilibrium, the parameters
K j include the information of the anisotropic FS.

The expansion dynamics is calculated using the Botzmann-
Vlasov equation for the Wigner distribution function under the
scaling ansatz [44–46]. The scaling parameters, representing
variations from the equilibrium condition, are described by
a set of coupled time-dependent differential equations. The
NBE effect is naturally included in this framework. We nu-
merically solve the equations for the general triaxial geome-
try, where the trap frequencies in three directions are different
and the dipoles are oriented in the direction of one of the trap
axes. This reflects our experimental situation at β = 0◦ and
β = 90◦.
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We calculate the sizes of the cloud on the image plane, tak-
ing into account the angle of 28◦ between the imaging axis
and the y axis (see inset Fig. 1). In all our measurements, we
observe an asymmetry between β = 0◦ and β = 90◦, i. e. |∆| is
larger at β = 0◦ than at β = 90◦. We observe this asymmetry
also in the subtracted images in Fig. 3D and Fig. 3E as a higher
contrast in the vertical direction than in the horizontal direc-
tion. This asymmetry is well reproduced by our calculation
and is understood as follows. At β = 0◦, the major axis (x)
of the ellipse is oriented to the z direction and is fully imaged.
By contrast, at β = 90◦, the major axis is not perpendicular to
the imaging plane and we observe a combined size between
the major and minor (y) axis of the ellipse. Therefore, the ob-
served deformation at β = 90◦ is always smaller than that at
β = 0◦.

Image subtraction for Fig. 3D,E

The image shown in Fig. 3D is obtained in the following
procedure. The TOF absorption images from 18 independent
measurements are averaged and binned by 2× 2 pixels to re-
duce background noise. This procedure is applied for the mea-
surements at β = 0◦ and β = 90◦, yielding two images. We
subtract the image at β = 90◦ from the one at β = 0◦. This
image subtraction is very sensitive to the relative position of
the clouds on the two images down to a sub-pixel level. We
obtain accurate positions of the center of the cloud from the
fit and shift the coordinate of the image at β = 90◦ such that
the center positions of two images exactly agree. We then ap-
ply spline interpolation for the image at β = 90◦ to estimate
the optical depth of the cloud at each pixel position in the im-
age β = 0◦. Unlike the procedure used in Ref. [31], where the
anisotropy is extracted by rotating a single image by 90◦ and
subtracting it from the original image, our procedure with two
images at two dipole orientations allows us to extract only the
anisotropy originating from the DDI.
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Any sufficiently advanced technology is indistin-
guishable from magic.

(Arthur C. Clarke)
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Conclusion and outlook

This thesis describes the creation and study of bosonic and fermionic degenerate quantum
gases of erbium atoms. It documents setting up the experimental apparatus from a com-
pletely empty lab to a fully working experiment. We had to face the challenge of designing
an apparatus for an atomic species, which was unknown to quantum gas experiments and not
well characterized in its relevant atomic properties. In the planning phase, our greatest con-
cerns included, whether the chosen narrow-line laser-cooling approach using erbium would
turn out to work as good as expected, where Feshbach resonances would be located, and
whether the lifetime of the atomic sample in the optical dipole trap would be long enough,
i. e. not limited by light-assisted collisions or off-resonant absorption. The reported results
after the successful demonstration of the narrow-line magneto-optical trap of erbium were
beyond our expectations. Not only that this experiment allowed for the first production of
degenerate gases of erbium, but also the number of further investigations is vast.

The slow transformation from an idea to a room-filling experiment took place in many small
steps, each of which brought us closer to exploring interesting physics. Many more steps
will be made using the erbium machine to continue studying ultracold dipolar gases. Some
of these steps are under preparation and undertaken right now or will be done in the near
future. These further developments will be briefly listed in the following section. Other
steps lie in the more distant future and are difficult to predict as they strongly depend on
the direction in which the experiment will go. Nevertheless, some of the long term goals for
the erbium experiment are presented in Sec. 12.2.

12.1. Further investigations

Weakly-bound molecules Weakly-bound molecules can be created using the magneto-as-
sociation technique across by ramping over a Feshbach resonance, see Ref. [Chi10]. This
standard technique can also be applied to erbium associating two atoms to a Er2 molecule.
Dependent on how the individual total angular moments of both atoms add up, the molecule
can have a magnetic moment of up to about 14µB. The combination of such a large magnetic
moment and the large mass of Er2 makes this system regarding its dipolarity competitive to
current experiments using polar heteronuclear molecules, like KRb [Ni08] or RbCs [Tak14].

163



12.1. Further investigations 164

We have conducted preliminary measurements with 168Er, in which we utilized a Feshbach
resonance at 912(1) mG with a width of 39(2) mG to prepare up to 2× 104 Er2 molecules at
a temperature of 300 nK and a molecule density of 8× 1011 cm−3. The simple preparation of
weakly-bound molecules is the first step towards experiments with deeply-bound molecules
possessing an exceptionally large magnetic dipole moment.

Molecular binding energy The binding energy of a weakly-bound molecule depends on the
magnetic field. A sinusoidal modulation of the constant magnetic field in the vicinity of a
Feshbach resonance drives a resonant conversion of atoms into a weakly-bound molecule, only
if the modulation frequency equals the binding energy of the molecule, see Ref. [Tho05]. This
so-called wiggling technique is often used to measure the binding energy at different values
of the magnetic field. Very close to the Feshbach resonance the binding energy changes
quadratically with the magnetic field, whereas further away from the resonance a linear
dependence is given, see Sec. 4.3. From the linear dependency the magnetic moment of the
molecular state with respect to the magnetic moment of two free atoms can be derived. In
the erbium experiment this technique was recently used to measure the magnetic moment
of five different molecular states at Feshbach resonances below 2.5 G. The values of the
magnetic moments range from µ = 7.96µB to 11.8µB, see Ref. [Aik14a]. In the near future
wiggling measurements at Feshbach resonances above 3 G are important to characterize the
spectrum of molecular states in more detail. First theoretical efforts show that in contrast to
alkali atoms one single molecular state of lanthanide atoms turns out to posses a magnetic
moment, which is a linear combination of magnetic moments of different Zeeman sublevels.

Observation of the roton minimum It has been theoretically shown that a so-called roton
minimum should emerge in the excitation spectrum of an ultracold Bose gas with short-
range two-body interaction. This roton minimum can be observed as a local minimum in
a non-trivial energy dispersion relation and is known from condensed matter systems, like
superfluid helium, where the roton resembles an elementary excitation of rotation. More
recently, the roton spectrum of a quasi-two-dimensional dipolar Bose-Einstein condensate
has been theoretically studied in Ref. [San03a]. Dipolar atoms like 52Cr, 164Dy, or 168Er in
current experiments are expected to reveal the roton spectrum when the atom cloud is tightly
confined in the polarization direction of the dipoles, see Ref. [Bla12]. The roton minimum
can then be measured in the ultracold gas using Bragg spectroscopy. We plan to pursue
this route towards the roton minimum with erbium atoms in an array of two-dimensional
trapping potentials. We will carry out Bragg spectroscopy with both 1064 nm and 532 nm
light, which enables us to measure the excitation spectrum and observe signatures of the
roton minimum.

Exotic optical potentials By carefully engineering optical potentials of larger complexity,
like honeycomb, triangular, or dimer potentials, it is possible to explore condensed-matter
phenomena in a highly flexible way using ultracold atoms. For example, it has been exper-
imentally demonstrated in Ref. [Tar12] that so-called Dirac points can be created using a
Fermi gas in a honeycomb lattice. As in this experiment the massless electrons of graphene
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are mimicked, it is often referred to as artificial graphene. What makes an important differ-
ence to experiments in condensed-matter physics is the high degree of tunability in ultracold
atomic systems. Adding long-range interactions between atoms in such a honeycomb poten-
tial would open the opportunity to study strong correlation effects, which are not accessible
in the field of condensed-matter physics. As a first approach we are working on creating
a three-dimensional optical lattice using standing waves of 532-nm light in two directions
and 1064-nm light in the third direction. This gives a twice as large lattice constant in one
direction than in the other two. It is speculated, that in a dipolar system the superfluid
to Mott-insulator transition will be modified dependent on the orientation direction of the
dipoles with respect to the optical lattice. Theoretical calculations also predict a modifi-
cation of the Mott lobes by the dipole-dipole interaction, see Ref. [CS10]. We are in close
collaboration with the group of P. Zoller from Innsbruck to investigate the parameter range,
which will be accessible with this lattice setup in the current erbium experiment.

12.2. Our vision

LiEr molecules From the beginning the erbium experiment has been designed such that
lithium can be added as a second species in the distant future. A lithium oven can be mounted
between the erbium transversal cooling stage and the atom beam shutter, which will form a
combined Er/Li atom beam. The Zeeman slower was designed to operate with both species
simultaneously and should allow an efficient loading of an erbium and a lithium magneto-
optical trap during a single experimental cycle. After cooling both elements to ultracold
temperatures via forced evaporation one can think of many interesting experiments and
measurements with such a heteronuclear mixture. For example, three-body bound states,
so-called Efimov states could be investigated, or a two-species superfluid mixture of fermions
could be created. In both cases the extreme mass imbalance between erbium and lithium and
the magnetic moment of erbium makes this combination favorable compared to mixtures of
alkali atoms. One could further think of associating a lithium and erbium atom to a weakly-
bound LiEr molecule via the magneto-association technique. Then, in principle, a STIRAP
(Stimulated Raman adiabatic passage) process could transfer the molecule into its ground
state, where the two atoms will be strongly bound. This process creates a stable polar
molecule with both large magnetic and electric dipole moments. The electric dipole moment
is tunable via an external electric field and allows for the full control of the electric dipole-
dipole interaction strength. This might open the field of so-called ultracold chemistry, which
focuses on studying reaction dynamics and was mentioned in Ref. [Hut10]. With the erbium
experiment the reaction dynamics between molecules and atoms or molecules and molecules
in three or lower dimensions can then be explored. An early experimental study was done
by letting KRb molecules collide with K or Rb atoms, respectively, see Ref. [Osp10]. Very
recently, it was theoretically found that quantum entanglement plays an important role for
activating and driving an ultracold chemical reaction towards its dynamical equilibrium, see
Ref. [Ric14].

Spin-orbit coupling Atoms with large magnetic moments are promising to study the physics
of spin-orbit (SO) coupling in ultracold gases, which was first demonstrated in a BEC of ru-
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bidium atoms, see Ref. [Lin11]. SO coupling, i. e. an interaction between a particle’s spin
and its angular momentum, is important in condensed-matter systems for elucidating the
spin-Hall effect in semi conductors [Kat04], topological insulators [Has10], and Majorana
fermions [Sau10]. Furthermore, SO coupling can be accomplished with non-dipolar gases
using artificial gauge fields, which have been realized within optical lattices, see Ref. [Aid11].
Dipolar atoms with a large magnetic dipole moment are favorable for these kind of experi-
ments due to their intrinsic SO coupling induced by anisotropic interaction. This manifests
itself in expected large dipolar relaxation rates, see Ref. [Nas13].

Topological superfluids Utilizing strong spin-orbit coupling in a dipolar system one might
be able to prepare topological superfluids. They are considered to be exotic states of matter
and are of major interest since the discovery of topological insulators and superconductors,
see Refs. [Has10, Qi11]. The fascinating thing about topological superfluids is the fact that
their fundamental properties can only change if the system passes through a quantum phase
transition, i. e. the properties are ‘topologically protected’. In Ref. [Nas13] the implementa-
tion of a topological superfluid using lanthanide atoms is proposed. Here, the experimental
setup consists of a one-dimensional Fermi gas, which is placed in the proximity of a two-
dimensional superfluid made of condensed Feshbach molecules. For creating a topological
superfluid the Fermi gas has to be trapped in a spin-dependent optical dipole potential,
which is difficult to create for fermionic alkali atoms due to large heating rates induced by
spontaneous emission. The reason for this heating is because of the small fine-splitting of
the excited P-state of alkali atoms in comparison to the large linewidth of the laser-cooling
transition. This problem should be overcome by using optical lattices with wavelengths
closely tuned to the narrow-line transitions in 161Dy or 168Er, which makes it possible to
create strong spin-dependent potentials with small heating rates. According to the proposal,
lanthanide atoms should enable the study of topological superfluids. We do not know yet,
whether these will be realistic experiments in our setup. However, topological superfluids
represent an interesting research direction, which deserve further investigation.



A
p
p
e
n
d
i
x

A
Measurement of the natural
linewidth of the 401-nm
transition

The natural linewidth of the 401-nm transition was measured by absorption imaging of an
atomic sample in a magneto-optical trap (MOT) for three different isotopes of erbium. Figure
A.1 shows the results of this measurement. A comparison between values of the linewidth
found in literature and the result of the present work is found in Table A.1. The temperature
of the atomic sample was determined by time-of-flight absorption imaging to be 11.1µK for
166Er, 13.9µK for 168Er, and 14.6µK for 170Er. Typical atom numbers ranged between 1 and
2.5×107. Due to the low temperature of the atomic sample the thermal Doppler broadening
is as small as 60 kHz. Collisional broadening of the natural linewidth is estimated to be
about 52 kHz for a peak number density of 8 × 109 cm−3. Both broadening effects are one
order of magnitude smaller than the systematic and statistic error and are thus neglected.

166Er 29.2(2) MHz
168Er 30.3(4) MHz
170Er 29.7(2) MHz
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Figure A.1.: Linewidth measurement of the 401-nm transition for three different bosonic isotopes
166Er, 168Er, and 170Er. A Lorentzian fit is applied to the data points and the natural linewidth
is given for each isotope with a statistical error. Averaging these three values and considering the
systematic error (see text) the value for the natural linewidth is ∆ν = 29.7(6) MHz, which is in very
good agreement with a lifetime measurement of the excited state in Ref. [Har10].
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linewidth (MHz) measurement method Ref.

27.5(2.8) lifetime of excited state [Mar80, Ral11]

35.6(1.2) laser-induced fluorescence [McC06a]

29.5(1.5) lifetime of excited state [Har10, Law10]

29.7(6) absorption measurement this work

Table A.1.: Comparison of natural linewidth measurements of the erbium 401-nm transition using
various methods found in literature and the one presented in this work.

After preparing the atomic sample in the MOT absorption imaging was applied using 401-nm
laser light with variable detuning from −60 to +60 MHz with respect to the atomic transi-
tion frequency. Absorption imaging gives a two-dimensional image of the optical density of
the atomic cloud. The total atom number is then found by separately integrating the opti-
cal density along both image axes, fitting a Gaussian-shaped curve to the one-dimensional
density distribution, and integrating this Gaussian fit. The assumption of a Gaussian den-
sity distribution is valid for a purely thermal atom cloud, which is the case in the present
measurement. This imaging procedure is commonly used as a standard absorption imaging
technique.

Deriving the optical density from an absorption image needs knowledge of the detuning of
the imaging light and of the natural linewidth of the transition. If the linewidth is unknown,
it can be measured by setting the detuning to zero in the calculation of the optical density.
Measuring the total atom number dependent on the detuning reveals the natural linewidth,
see Fig. A.1. Note, that this method can only be applied if at least a small amount of atoms
can be detected, otherwise determining the atom number from the absorption image will not
work properly. In spite of this restriction, the measurable range is sufficiently large to apply
a Lorentzian fit to the data points and determine the linewidth.

The imaging laser light was detuned using an accusto-optical modulator (AOM) in double-
pass configuration. It is driven by a radio frequency produced by a voltage controlled oscil-
lator (VCO). The nonlinearity of the VCO gives a systematic error of the detuning of about
0.6 MHz over the full range of detuning.

Considering this systematic error and measuring the linewidth for three bosonic isotopes,
see Fig. A.1, we determine the natural linewidth of the 401-nm transition of erbium to be
∆ν = Γ

2π = 29.7(6) MHz. This agrees with some of the most recent measurements found in
literature, see Table A.1.
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B
Erbium high-temperature oven

The erbium high-temperature oven1 creates a roughly collimated atom beam by evaporating
solid pieces of erbium. It consists of two separate heating filaments. The first filament
heats the erbium source material contained in a tantalum crucible, in the so-called effusion
cell, and the second filament heats the aperture setup used for collimation in the hot lip
section. The temperature of both filaments can be independently controlled, but due to heat
radiation and heat conduction by the crucible itself, the temperature difference can not be
larger than about 250 ◦C. Usually the temperature of the aperture setup is 100 ◦C higher
than the temperature of the effusion cell to prevent a blockage of the apertures by excessive
source material. Typical operating temperatures are 1100 ◦C for the effusion cell and 1200 ◦C
for the aperture setup.

The heating filaments are made of tantalum wires. The wires are held in place by boron
nitride (PBN) ceramic insulator disks. The insulator disks have a thickness of about 2 mm
and are very fragile. Furthermore, they support the crucible setup in the center of the
oven. Close to each filament a thermoelectric temperature sensor2 is placed for temperature
measurements and stabilization via a PID controller3. The controller allows for a temperature
stability4 of about ±0.1 ◦C. The filaments are connected to two independent power supplies
delivering up to a power of 700 W each with a maximum output current of 13 A. According
to the manufacturer the maximum achievable temperature of the crucible is 1600 ◦C. For
erbium a temperature of not more than 1500 ◦C is advisable to prevent melting the source
material. The current of the heating filaments should not exceed 3.5 A for the effusion cell
and 6.1 A for the hot lip.

To prevent excessive heating of the vacuum chamber, several temperature shields are im-
plemented within the high-temperature oven. First, three layers of tantalum foil provide
a passive shielding of heat radiation. Second, an outer tube enclosing the oven provides
water cooling. A flow rate of at least 2 l/min must be guaranteed during oven operation. If
this is not the case, the power supplies of the oven will be switched off automatically by a

1 dual-filament effusion cell, model DFC-40-10-WK-2B with control unit CU-3504-S2-DC
from CreaTec Fischer & Co. GmbH
Effusion cells are commonly used for molecular beam epitaxy systems.

2 thermocouple type C, usable up to 2300 ◦C
3 model 3504, from Invensys Eurotherm Ltd
4 at temperatures below 500 ◦C the PID regulator tends to oscillate within ±20 ◦C
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Figure B.1.: Heating power needed for operating the high-temperature oven over the timespan of
about two years. The temperature of the effusion cell and aperture setup is 1100 ◦C and 1200 ◦C,
respectively. Lines are shown as a guide to the eye.

water watch dog. Furthermore, the cooling water circuit must not be tightly switched-off
to prevent any high pressure from building up, in case the residual cooling water starts to
boil and steam needs to escape. This is achieved by a one-way gate valve in the back-flow
of the cooling water circuit. Due to the multi-stage temperature shielding the vacuum tube
containing the oven usually has a temperature of 40 ◦C on the outer side. Strong heat radi-
ation in front of the oven, which is not effectively shielded, heats those parts of the vacuum
chamber to about 120 ◦C.

The oven must not be operated at pressures larger than 10−5 mbar, otherwise the heating
filaments can be damaged easily. Temperature ramps for heating and cooling from 5 to
30 ◦C/min are standard. If the temperature is ramped up too fast, thermal stress can break
the ceramic insulators. When the experiment is out of operation, the oven is ramped down
to a standby temperature of typically 700 ◦C for the effusion cell and 800 ◦C for the hot lip.
This increases the lifetime of the source material significantly. Lower standby-temperatures
are not advisable, as the crucible might slightly deform over many ramping cycles due to
thermal stress. In case of strong deformation, the crucible can’t be extracted from the oven
easily any more, which might cause some of the ceramic insulator disks to break5.

The crucible has a total length of 150 mm and an inner diameter of 12 mm, see Fig. 3.2 for
further dimensions. This corresponds to a volume capacity of 17 cm3. After the aperture
inset is mounted inside the crucible, a volume of about 7 cm3 remains for the source material.
The crucible is usually filled with up to 10 g of erbium, which turns out to be enough for more
than 5200 hours of operation6 and continuing, at an effusion-cell temperature of 1100 ◦C.

5 In the case of oven damage, the manufacturer offers a full refurbishment of the oven.
6 The source material in the crucible was not yet emptied at the time this thesis was written.
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Figure B.2.: Vapor pressure for various elements. Chromium, dysprosium and erbium have a similar
vapor pressure and require a high-temperature oven. Cesium is shown for comparison as an element
with a low melting point of only 28 ◦C, whereas lithium and ytterbium have an intermediate vapor
pressure. The region of a suitable vapor pressure for ultracold gas experiments is indicated by the
gray shaded area.

B.2. Erbium vapor pressure

The high melting point of erbium at a temperature of 1529 ◦C makes the construction of an
oven for evaporating atoms technically difficult. In general, the saturated vapor pressure of
an element, pvap, is the figure of merit for choosing a suitable type of oven for the experimental
setup. By the precise knowledge of its temperature dependence one can estimate the flux
of an atom beam and thus the loading time of the magneto-optical trap in the further
experiment, see Chapter 6. The temperature dependence of pvap is accurately described by
the Antoine equation

pvap(T ) = 10A− B
C+T , B.1

with A, B, and C being empirical material constants without any units. A full set of vapor
pressure data for various elements and chemical compounds can be found in Ref. [Gra72]. A
nonlinear least-squares fit to the vapor pressure data of erbium using Eq. B.1 gives AEr =
7.103(4), BEr = 12170(20), and CEr = 100(2) for T in units of ◦C and p in units of mbar.
Figure B.2 shows the vapor pressure pvap for a broad selection of elements commonly used
in ultracold gas experiments.

Having an expression for pvap we can roughly estimate the atom flux in dependence on the
temperature of the oven. For this the longitudinal velocity distribution, fem, of atoms with
mass m is calculated from the Maxwell-Boltzmann distribution by

fem(v, T ) =

(
πDem

2

)2 pvap(T )

kBT

(
m

2πkBT

) 3
2

v3 exp

(
− mv2

2kBT

)
sin2(θem) , B.2

see also Refs. [Ram05, Chi07]. Here, atoms are assumed to escape the oven through a disk-
shaped aperture of diameter Dem under a solid angle θem and kB is the Boltzmann constant.
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Figure B.3.: (a) Velocity distribution for four different oven temperatures typically used in the
experiment. The position of the maximum shifts only a small amount from 443 m/s for a temperature
of 1050 ◦C to 468 m/s for 1200 ◦C. The maximum Zeeman slower capture velocity of 400 m/s is shown
as a dotted line. (b) Estimated atom flux into the main chamber for an oven aperture with Dem =
3 mm, θem = 0.03 , and a Zeeman slower capture velocity of 400 m/s. A typical oven temperature of
1100 ◦C is highlighted by the dashed line.

The velocity distribution has its maximum located at vmax =
√

3kBT
m ≈ 450 m/s for a typical

temperature of 1100 ◦C in the case of erbium, see Fig. B.3(a). By integrating fem up to
the Zeeman slower capture velocity, vc, the atom flux, Φ, which will be available after the
Zeeman slower, can be estimated as

Φ(T ) =

vc∫

0

fem(v, T )dv ∝ pvap(T )√
T

. B.3

Figure B.3(b) shows the atom flux into the main chamber, which increases more than five
orders of magnitude when the oven temperature is raised from 800 ◦C to 1400 ◦C.

B.3. Oven refilling procedure

A depletion of the source material in the erbium oven can be detected easily by a rapid
decrease of the atom number in the magneto-optical trap (MOT) within the timespan of
a few days. During this time, the MOT loading rate shows the following characteristic
signature. After reaching operational temperature of the oven, the atom number in the
MOT first seems to be as usual but after one to two hours of operation it drops significantly
to less than half of its original value. Furthermore, the fluorescence of erbium atoms in the
transversal cooling section gets weaker. In such a case the oven crucible has to be refilled.
The refilling procedure is described in the following and takes at least ten days until the
experiment can be continued.

Erbium source material can be purchased in various shapes from different suppliers7. We
have made good experiences with erbium pieces, which are distilled dendritic, although the

7 usually 25 g of 99.9% pure erbium, distilled dendritic, purchased from Alfa Aesar

http://www.alfa.com/
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(a) (b)

Figure B.4.: Cleaning the high-temperature oven from old source material. (a) A thin erbium foil
is deposited on the aperture before the transversal cooling section. Peeling off foils under air can
lead to a spontaneous ignition of the erbium foil. (b) Heating filaments are kept in place by ceramic
spacers (arrow). After a long time of operation the degraded heat shield of the oven has to be cleaned
to avoid direct contact with the crucible.

price per gram is twice as large as compared to normal pieces. Dendritic pieces have the
advantage that they can be easily cut into smaller pieces fitting better into the crucible.
Normal, solid pieces of erbium would need much rougher handling.

Refilling the high-temperature oven consists of two major tasks. First, the oven has to be
dismounted from the vacuum chamber and old source material has to be removed. In case
of a damage of the oven, it has to be repaired or even replaced. Because of excessive erbium
material deposited in the aperture setup, the crucible can usually not be dismounted. A
new crucible setup has to be ordered and prepared beforehand. Then follows the second
task, which consists of filling the crucible with new source material, mounting the oven, and
restoring the vacuum again.

Removing old source material

This task includes flooding the oven chamber with argon gas, dismounting the oven from the
vacuum chamber, removing the crucible, and cleaning the crucible and oven. The task will
be presented in the following steps.

1. Tightly close the gate valve between the UHV section and the oven section.

2. Switch off the oven power supply and close the cooling water cycle.

3. Prepare a needle valve with a pressure monitor mounted on a CF40 T-piece for flooding
the oven chamber with argon gas. A simple latex glove acting as a balloon suits
perfectly as a pressure monitor.

4. Mount the T-piece to the angled valve of the oven chamber.

5. Connect a scroll pump to the third flange of the T-piece.
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6. Clean the T-piece by repeatedly pumping off and slowly flooding with argon through
the needle valve.

7. Disconnect the pumping station and close the T-piece with a blind flange.

8. Switch off the ion getter pump and pressure gauge mounted on the high vacuum part
of the vacuum chamber.

9. Carefully open the angled valve, while keeping the T-piece filled with argon at a pres-
sure slightly above ambient pressure. The glove should always be filled like a small
balloon.

10. As the angled valve is very slowly opened, adjust the needle valve to keep the T-piece
and the balloon slightly over-pressurized at all times.

11. When the oven chamber is fully flooded with argon, the high-temperature oven can
be unmounted between the CF40 port aligner and the oven vacuum tube. Remove
also the port aligner and the additional aperture disk from the transversal cooling
vacuum chamber. Close the transversal cooling section with a CF40 blind flange again
to prevent argon gas from leaking out.

12. During operation of the oven thin foils of erbium are deposited inside the port aligner,
see Fig. B.4. Take care as they can spontaneously ignite and burn when brought from
the inert argon atmosphere into air. DO NOT put burning pieces of erbium into water!
Erbium produces hydrogen gas when put in water! Erbium foil and other small pieces
can be safely contained in paraffin oil, which reduces the risk of ignition.

13. Clean the aperture and the port aligner from deposited erbium material.

14. Carefully take out the crucible from the oven tube. Due to slight expansion of the
crucible it might get stuck easily. Try to carefully rotate the crucible setup before
pulling it out slowly.

15. Inspect the ceramic isolators inside the oven. They might easily break during handling
of the crucible. If the heating filaments can not be kept safely in place anymore, the
oven has to be refurbished by the manufacturer.

16. Try to disassemble the crucible. Erbium deposited in the aperture setup makes this
step difficult or even impossible. If it can not be disassembled a new crucible setup has
to be used for refilling.

17. Make sure the oven is clean. Remove any loose pieces of the heat shield as it might get
dissolved at high temperatures over longer times, see Fig. B.4(b).

Filling with new source material

Filling the oven is done in the following steps including preparing erbium pieces, assembling
the crucible setup, mounting the oven on the vacuum chamber, and pumping off the oven
chamber.

1. An accurate scale is needed to measure the amount of erbium filled into the crucible.
Properly clean all tools needed with isopropyl alcohol before continuing.

2. Prepare all necessary parts for the crucible setup. Clean the parts in an ultrasonic
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(a) (b)

Figure B.5.: Refilling the crucible with source material. (a) Preparing small pieces of erbium.
Distilled dendritic pieces of erbium can be easily cut using cutting pliers. (b) The crucible setup is
assembled. Tantalum wires (arrow) fix the aperture setup on the crucible tube.

bath, first using acetone, then isopropyl alcohol, about 15 min each is sufficient.

3. Dendritic erbium is usually shipped in 5 mm thick disks. Remove small pieces from the
disk using cutting pliers, see Fig. B.5(a). The pieces should not be larger than 5 mm
to easily fit into the crucible.

4. Fill about 10 g of erbium pieces into the crucible. Slightly compress the erbium pieces
to the back part of the crucible by tapping the crucible carefully on the table.

5. Assemble the crucible setup according to the oven’s manual, see also Fig. B.5(b).

6. Slide the crucible setup into the oven and ensure a snug fit.

7. First mount the additional aperture and the port aligner on the transversal cooling
vacuum chamber.

8. Mount the oven onto the port aligner on the vacuum chamber.

9. Start pumping off the vacuum chamber.

10. After reaching less than 10−7 mbar switch on the ion getter pumps of the oven chamber.

11. Switch on the oven power supply and cooling water.

12. When the pressure is below 10−8 mbar the oven can be heated slowly up to 200 ◦C
using a ramp of 10 ◦C/min.

13. Observe the vacuum pressure during the heat up. When the pressure again drops below
10−7 mbar, continue heating up the oven to standby temperature in steps of 100 ◦C.

14. Heat the oven to operating temperature and try to observe a fluorescence signal in the
transversal cooling stage using the TC laser light.

15. Ramp the oven back to room temperature and switch it off.

16. Flash the titanium sublimation pump in the oven chamber for 180 s with 42 A.

17. If the total pressure reaches less than 10−8 mbar, close the angled valve, switch off the
pumping station. Disconnect the pumping station.

18. Open the gate valve between the UHV section and the oven section.
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19. Continue with the experiment.

Note, that no extra baking of the oven vacuum chamber is necessary to achieve a pressure
suitable for the experiment due to the getter properties of erbium, see Ref. [Mül72]. After
a few heat-up cycles of the oven to operating temperatures the pressure should be low
enough for continuing with the experiment. Typical values for the total pressure are 6 ×
10−9 mbar when the oven is at room temperature and 2×10−8 mbar when it is at an operating
temperature of 1100 ◦C one day after the refilling has been completed. The pressure at high
temperature of the oven should drop to a value of 1×10−9 mbar after some days of operation
and the experiment can be continued.
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Notes on the blue master laser
system

The blue laser system, which is presented in Sec. 3.5.1, ultimately relies on the stable op-
eration of the blue master laser1. Its working principle and the most important operating
parameters will be described in the following. For further details, please refer to the guide-
lines and datasheets provided by the manufacturer.

The master laser works as follows. It amplifies the light coming from a diode laser by
a tapered amplifier (TA) and then doubles its frequency by second harmonic generation
(SHG). The diode laser comprises of an external-cavity diode laser (ECDL), which operates
at 802 nm and delivers about 44 mW output power. The laser-diode current is actively
stabilized by a PID control loop to 92 mA and the temperature is set to 22.3 ◦C. About
10 mW of the laser power exits the system at this point and is used for monitoring on a
wavelength meter2 as reference. The remaining power is then amplified by the TA to about
635 mW. The TA-chip is usually operated with a current of 1780 mA at a temperature of
20.3 ◦C. After passing some mode-matching lenses the light enters the SHG cavity, which is
locked to the wavelength of the master laser using the Pound-Drever-Hall (PDH) technique.
The required sidebands for this locking technique are generated by modulating the laser-
diode current with a radio-frequency signal at a frequency of about 20 MHz.

The laser light frequency is doubled in the SHG cavity by a non-linear crystal. The tem-
perature of the crystal has to be precisely controlled to 39.4 ◦C for optimal phase matching
between the fundamental light and the frequency-doubled light. The temperature is chosen
high to prevent dust from sticking to the surfaces of the crystal. The maximum doubling
efficiency is about 33 %. In this setup a lithium triborate (LBO) crystal is used for frequency-
doubling. An early version of this SHG cavity suffered from strong degradation of the crystal
due to large light intensities over a timespan of a few weeks. The output power dropped by
about 25 % within one week. Shifting the crystal by a few 10µm recovered the doubling effi-
ciency. This optimization had to be done every few weeks. Finally, the doubling cavity was
refurbished by the manufacturer and the crystal was replaced. The new cavity shows a loss
of output power of less than 1 % over the timespan of a week. After the frequency-doubling

1 TA-SHG-pro system, from Toptica Photonics AG
2 model WS7-R MC, from HighFinesse GmbH

177

http://www.toptica.com/
http://www.highfinesse.com/
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stage a total of 209 mW of light at 401 nm is available at optimum conditions in the new
setup. An output power of at least 80 mW is necessary for the experiment.
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Feshbach resonances data tables
of bosonic erbium

The Feshbach resonance positions, Bres, and widths, ∆, are determined from high-resolution
Feshbach spectroscopy as described in Chapter 10. For convenience, the loss features are
reported in ascending order with respect to their positions and labeled with index i. The
error in brackets gives one standard deviation. ∆ is determined either from a Gaussian fit
as the half-width at 1/e2 (method G) or by measuring the zero crossing of the resonance,
Bzero, being ∆ = |Bres − Bzero| (method Z). Feshbach resonance data for isotope 168Er can
be found in Table D.1 and for isotope 166Er in Table D.2.
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Table D.1.: Feshbach resonance data for isotope 168Er.

i Bres ∆ meth. i Bres ∆ meth. i Bres ∆ meth.

(G) (mG) (G) (mG) (G) (mG)

1 0.912(1) 39(2) Z 65 28.643(1) 21(3) G 129 49.735(1) 31(1) Z

2 2.167(1) 36(1) Z 66 28.737(1) 19(1) G 130 50.019(1) 15(3) G

3 2.436(3) 14(9) G 67 29.233(1) 17(1) G 131 50.113(1) 104(4) Z

4 2.476(1) 153(6) G 68 29.448(1) 32(2) Z 132 50.325(1) 18(2) G

5 2.838(9) 16(2) G 69 29.797(1) 25(2) Z 133 50.788(1) 15(2) G

6 3.778(1) 22(2) G 70 30.057(1) 26(2) G 134 51.624(1) 15(1) G

7 4.481(1) 23(2) G 71 30.541(1) 15(1) Z 135 51.651(1) 12(2) G

8 6.558(1) 29(5) G 72 31.369(1) 19(2) G 136 52.110(1) 18(1) G

9 6.594(1) 22(9) G 73 31.602(1) 18(1) G 137 52.552(2) 66(3) Z

10 6.674(5) 217(10) Z 74 31.903(1) 16(2) G 138 52.835(1) 14(1) G

11 7.048(5) 343(8) Z 75 32.243(1) 25(2) Z 139 53.082(1) 13(2) G

12 7.725(1) 15(2) G 76 32.556(1) 25(2) G 140 53.195(1) 33(5) G

13 8.549(7) 900(16) Z 77 32.753(2) 283(5) Z 141 53.245(1) 14(3) G

14 8.909(1) 18(2) G 78 33.245(1) 17(1) G 142 53.299(1) 33(4) Z

15 9.311(1) 13(2) G 79 33.703(1) 21(1) G 143 53.738(1) 31(3) G

16 9.946(1) 18(2) G 80 33.903(1) 61(2) Z 144 53.925(1) 19(1) G

17 11.004(1) 17(1) G 81 34.206(1) 13(1) G 145 54.272(2) 20(5) Z

18 11.274(1) 17(1) G 82 34.340(1) 21(1) G 146 54.404(1) 12(1) G

19 11.329(1) 11(1) G 83 34.647(1) 16(1) G 147 54.763(4) 57(4) Z

20 11.807(1) 22(1) G 84 34.939(1) 53(1) Z 148 55.035(1) 18(2) G

21 11.913(1) 18(1) G 85 35.524(1) 17(2) Z 149 55.239(1) 18(3) G

22 12.250(1) 18(1) G 86 35.713(1) 45(1) Z 150 55.692(1) 300 G

23 12.873(1) 11(1) G 87 35.836(1) 15(1) G 151 56.314(1) 109(3) Z

24 13.029(1) 15(1) G 88 36.148(1) 132(4) Z 152 56.436(1) 15(3) G

25 13.968(1) 16(1) G 89 36.399(1) 13(3) G 153 57.06(2) 3531 Z

26 14.614(1) 20(1) G 90 37.015(1) 83(1) Z 154 57.612 89(1) Z

27 14.711(1) 14(1) G 91 37.105(1) 4(1) G 155 58.167(2) 13(2) Z

28 15.126(1) 14(1) G 92 37.137(1) 17(2) G 156 58.426(1) 14(2) G

29 15.336(1) 19(1) G 93 37.198(1) 54(2) Z 157 58.528(1) 7(1) Z

30 15.851(1) 11(1) G 94 37.856(1) 178(24) G 158 58.795(2) 27(4) Z

31 17.180(1) 23(1) G 95 37.944(1) 152(1) Z 159 59.078(1) 55(2) Z

32 17.450(1) 21(2) G 96 38.362(1) 17(2) G 160 59.609(1) 16(2) G

33 17.808(3) 207(4) Z 97 38.416(1) 18(2) G 161 59.875(3) 85(10) Z

34 18.229(1) 18(1) G 98 38.728(1) 19(2) G 162 60.585(1) 51(3) G

35 18.566(1) 19(2) G 99 38.895(1) 23(2) G 163 60.646(1) 8(2) G

36 18.948(1) 20(1) G 100 39.075(1) 16(1) G 164 61.241(1) 22(1) G

37 19.258(1) 21(2) G 101 39.458(1) 16(3) G 165 61.759(1) 13(1) G

38 19.469(1) 145(1) Z 102 39.739(8) 1722 Z 166 62.271(1) 15(1) G

39 19.66(1) 171(13) Z 103 39.919(1) 16(3) G 167 62.510(1) 52(3) Z

40 20.138(1) 16(1) G 104 40.252(6) 202(7) Z 168 63.174(1) 9(2) Z

41 20.627(1) 18(2) G 105 40.772(2) 106(4) Z 169 63.367(1) 6(2) G

42 20.884(1) 20(2) G 106 40.901(1) 17(2) G 170 63.398(1) 18(3) Z

43 20.965(1) 25(2) Z 107 42.429(1) 20(1) G 171 63.727(1) 17(3) G

44 21.588(1) 47(2) Z 108 43.019(1) 20(2) G 172 63.985(3) 348(7) Z

45 21.934(1) 43(2) Z 109 43.078(1) 13(1) G 173 64.374(4) 76(5) Z

46 22.146(1) 16(1) G 110 43.969(1) 23(1) Z 174 64.522(1) 16(1) G

47 22.34(1) 190(13) Z 111 44.404(1) 44(4) G 175 64.889(1) 17(1) G

48 22.960(1) 159(2) Z 112 44.731(1) 109(7) Z 176 64.985(1) 20(1) G

49 23.224(1) 21(1) G 113 44.823(1) 18(2) G 177 65.302(1) 37(1) Z

50 23.413(1) 21(2) G 114 45.165(1) 27(4) G 178 65.671(1) 33(3) Z

51 23.953(1) 67(3) Z 115 45.571(1) 156(8) Z 179 65.989(1) 46(2) Z

52 24.40(2) 48(15) Z 116 45.772(1) 19(3) G 180 66.401(1) 58(2) Z

53 24.549(1) 73(3) Z 117 45.851(1) 88(4) Z 181 66.475(1) 51(1) Z

54 24.649(1) 14(3) G 118 46.343(1) 89(3) Z 182 66.790(1) 118(3) Z

55 24.908(2) 100(5) Z 119 46.815(1) 20(2) G 183 67.103(1) 497 Z

56 25.117(1) 42(3) Z 120 46.900(1) 12(3) G 184 67.354(1) 18(2) G

57 25.265(1) 17(2) G 121 47.284(3) 58(10) G 185 67.767(1) 12(1) G

58 25.925(1) 26(3) G 122 47.485(7) 1193 Z 186 68.240(1) 113(3) Z

59 26.202(1) 12(1) G 123 48.035(1) 141(7) Z 187 68.810(1) 26(1) Z

60 26.534(1) 19(1) G 124 48.082(1) 7(2) G 188 68.895(1) 16(4) G

61 26.877(1) 99(4) Z 125 48.207(1) 21(2) G 189 69.046(1) 347(3) Z

62 27.098(1) 18(1) G 126 48.473(1) 98(3) Z 190 69.727(1) 19(2) G

63 27.447(1) 20(1) G 127 48.842(2) 138(5) Z

64 28.070(1) 23(1) G 128 49.251(1) 14(2) G
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Table D.2.: Feshbach resonance data for isotope 166Er. Four loss features, at positions 121 mG,
244 mG, 366 mG, and 490 mG, which have been reported in the extended data of Ref. [Fri14], have
been caused by a technical problem and are not due to Feshbach resonances.

i Bres ∆ meth. i Bres ∆ meth. i Bres ∆ meth.

(G) (mG) (G) (mG) (G) (mG)

1 3.056(2) 124(4) Z 63 31.683(1) 33(2) G 125 50.119(1) 56(10) G

2 4.012(5) 23(1) G 64 32.106(1) 16(2) G 126 50.249(1) 24(4) G

3 4.955(1) 9(2) G 65 32.145(1) 13(2) G 127 50.32(1) 483(30) G

4 6.546(1) 38(2) Z 66 32.656(1) 17(2) G 128 51.321(1) 65(3) G

5 6.768(1) 23(2) G 67 32.909(1) 14(2) G 129 51.684(1) 48(3) Z

6 6.884(1) 26(2) G 68 33.166(1) 13(2) G 130 52.04(1) 161(11) Z

7 8.053(1) 29(2) G 69 34.309(1) 15(1) Z 131 52.395(1) 27(4) G

8 8.553(1) 20(2) G 70 34.408(1) 77(4) Z 132 52.435(1) 76(2) Z

9 9.910(1) 47(5) Z 71 34.734(1) 19(1) G 133 52.795(1) 235(15) G

10 10.228(3) 116(6) Z 72 34.824(1) 13(1) G 134 53.114(2) 55(5) Z

11 11.108(1) 52(6) Z 73 35.345(1) 15(1) G 135 53.267(1) 19(1) G

12 11.623(1) 27(1) Z 74 35.463(1) 18(1) G 136 53.863(4) 88(10) G

13 12.978(1) 14(2) G 75 35.784(1) 14(1) G 137 54.207(2) 101(5) Z

14 13.278(1) 34(1) Z 76 36.006(1) 18(1) G 138 54.488(1) 19(2) G

15 13.426(2) 92(7) Z 77 36.876(1) 14(2) G 139 54.932(1) 17(1) G

16 13.686(1) 16(2) G 78 37.077(1) 49(5) Z 140 55.263(1) 17(2) G

17 14.177(1) 19(2) G 79 37.253(1) 17(2) Z 141 55.431(1) 35(2) Z

18 14.801(1) 17(2) G 80 37.662(1) 45(3) Z 142 55.974(1) 131(13) G

19 14.835(1) 13(1) G 81 38.048(1) 23(1) G 143 56.062(1) 144(33) G

20 15.077(1) 18(2) G 82 38.145(1) 190(5) Z 144 56.456(1) 149(4) Z

21 15.371(1) 70(2) Z 83 38.573(1) 39(3) Z 145 56.668(1) 121(3) Z

22 15.726(1) 68(2) Z 84 38.788(1) 12(2) G 146 56.740(3) 4(4) Z

23 16.107(1) 19(2) G 85 38.888(1) 84(5) Z 147 56.768(1) 29(3) G

24 16.187(1) 38(2) Z 86 39.354(1) 11(2) Z 148 57.556(1) 15(1) G

25 17.053(1) 25(2) G 87 39.563(2) 52(2) Z 149 57.753(1) 21(1) G

26 17.977(1) 17(3) G 88 39.652(1) 110(5) Z 150 57.978(1) 33(2) G

27 18.961(1) 20(3) G 89 40.099(1) 13(1) G 151 58.135(1) 19(2) G

28 19.152(1) 22(1) G 90 40.459(1) 87(4) Z 152 58.239(1) 31(2) G

29 19.239 20(1) G 91 41.649(1) 27(1) Z 153 58.987(1) 13(1) G

30 19.543(1) 21(3) Z 92 41.756(1) 36(2) Z 154 59.179(1) 18(1) G

31 19.82(1) 158(12) Z 93 41.926(1) 17(2) G 155 59.718(2) 77(6) G

32 20.539(4) 417(18) G 94 42.003(1) 18(3) G 156 59.890(1) 21(1) G

33 21.047(2) 63(8) Z 95 42.040(1) 14(1) G 157 60.111(2) 97(7) G

34 21.803(1) 21(2) G 96 42.229(7) 473(29) G 158 60.637(1) 45(2) G

35 21.922(1) 22(2) G 97 42.817(1) 53(4) G 159 61.104(1) 24(2) G

36 22.068(1) 50(5) Z 98 42.906(1) 19 G 160 61.522(1) 8(1) G

37 22.350(1) 27(2) G 99 43.146(1) 14(1) G 161 61.667(1) 33(2) Z

38 23.055(1) 17(2) G 100 43.273(1) 14(1) G 162 61.829(1) 53(5) Z

39 23.345(1) 19(2) Z 101 43.716(1) 26(1) Z 163 62.348(3) 156(12) G

40 23.585(1) 72(3) G 102 43.844(1) 47(1) Z 164 62.600(2) 97(33) G

41 23.725(1) 15(4) G 103 43.922(1) 23(1) G 165 62.804(1) 16(2) Z

42 23.898(1) 15(2) G 104 44.436(1) 16(1) G 166 63.126(1) 16(1) G

43 24.272(1) 12(1) G 105 44.589(1) 19(6) G 167 63.500(1) 5(1) Z

44 24.924(1) 14(2) G 106 44.737(1) 12(1) G 168 63.524(1) 21(1) G

45 25.272(1) 19(1) G 107 44.961(1) 15(1) G 169 64.078(1) 18(1) G

46 26.036(1) 17(1) G 108 45.111(1) 20(2) G 170 64.535(1) 17(2) G

47 26.206(1) 13(2) G 109 45.168(1) 40(2) Z 171 65.089(1) 5(2) G

48 26.621(1) 10(2) G 110 45.405(1) 16(1) G 172 65.334(1) 16(1) G

49 26.915(1) 19(1) G 111 45.850(1) 29(1) Z 173 66.287(1) 14(2) G

50 27.324(1) 30(1) Z 112 45.989(1) 22(1) G 174 66.375(1) 18(1) G

51 27.681(1) 23(1) G 113 46.359(2) 63(7) G 175 66.898(1) 12(1) G

52 28.488(1) 31(1) Z 114 46.664(4) 311(5) Z 176 67.186(1) 15(1) G

53 28.726(1) 25(1) Z 115 46.803(1) 10(4) G 177 67.333(1) 20(2) Z

54 29.024(1) 14(1) G 116 47.282(1) 16(2) G 178 67.519(2) 72(6) G

55 29.357(1) 25(1) Z 117 47.478(8) 366(36) G 179 67.776(1) 6(3) Z

56 29.515(1) 16(1) G 118 47.851(1) 27 G 180 68.243(1) 38(4) G

57 30.023(1) 44(2) Z 119 47.962(6) 238(23) G 181 68.426(1) 17(1) G

58 30.319(1) 21(2) G 120 48.873(1) 17(1) G 182 68.642(1) 13(1) G

59 30.508(1) 31(1) Z 121 49.384(1) 90(3) Z 183 68.875(1) 16(1) G

60 30.703(1) 16(4) G 122 49.676(2) 105(4) Z 184 69.200(1) 35(2) G

61 30.810(2) 154(4) Z 123 49.793(1) 15(3) G 185 69.728(2) 97(5) G

62 31.220(2) 95(10) G 124 50.072(1) 90(4) G

181



A
p
p
e
n
d
i
x

E
Full level diagram of erbium

Figure E.1 shows all known energy levels of neutral erbium (ErI) according to Ref. [Ral11],
which uses [Mar78] as a primary data source. In total, 312 states with odd and 358 states
with even parity are known up-to-date. Transition energies range from 5035.1 cm−1 to
46,970.8 cm−1 from the ground state. The ionization energy of erbium is, according to
Refs. [Wor78, Mar78],

E = 49,262(5) cm−1 = 6.1078(6) eV ≈ 203 nm . E.1
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Figure E.1.: Full energy spectrum of erbium. Levels have a total angular momentum quantum
number J ranging from one to twelve. States with even (odd) parity are shown in red (black). The
data is taken from Ref. [Ral11].
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[Chi04] C. Chin, V. Vuletić, A. J. Kerman, S. Chu, E. Tiesinga, P. J. Leo, and C. J.
Williams, Precision Feshbach spectroscopy of ultracold Cs2, Phys. Rev. A 70,
032701 (2004).

[Chi07] R. Chicireanu, Studies of cold chromium atoms in magnetic and optical traps,
Ph.D. thesis, Institut Galilée; Université Paris-Nord (2007).
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thesis, École Normale Supérieure, Paris (2004).

[Gut90] M. Gutzwiller, Chaos in classical and quantum mechanics, Springer, 1990.

[Han05] D. Hansen and A. Hemmerich, Doppler-free spectroscopy of metastable calcium in
a discharge heat pipe, Phys. Rev. A 72, 022502 (2005).

[Haq82] R. U. Haq, A. Pandey, and O. Bohigas, Fluctuation properties of nuclear energy
levels: Do theory and experiment agree? , Phys. Rev. Lett. 48, 1086 (1982).

[Har03] M. L. Harris, Design and construction of an improved Zeeman slower, Ph.D. thesis,
Department of Physics, Trinity College, Duke University (2003).

[Har10] E. A. D. Hartog, J. P. Chisholm, and J. E. Lawler, Radiative lifetimes of neutral
erbium, J. Phys. B 43, 155004 (2010).

[Has89] H. Hasegawa, M. Robnik, and G. Wunner, Classical and quantal chaos in the
diamagnetic Kepler problem, Progr. Theor. Exp. Phys. 98, 198 (1989).

[Has10] M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82, 3045
(2010).

[HS13] O. A. Herrera-Sancho, N. Nemitz, M. V. Okhapkin, and E. Peik, Energy levels of
Th+ between 7.3 and 8.3 eV , Phys. Rev. A 88, 012512 (2013).

[Hun12] L. R. Hunter, S. K. Peck, A. S. Greenspon, S. S. Alam, and D. DeMille, Prospects
for laser cooling TlF , Phys. Rev. A 85, 012511 (2012).

[Hut10] J. M. Hutson, Ultracold chemistry , Science 327, 788 (2010).

[Ino04] S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin, Obser-
vation of heteronuclear Feshbach resonances in a mixture of bosons and fermions,
Phys. Rev. Lett. 93, 183201 (2004).

[Jak98] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Cold bosonic
atoms in optical lattices, Phys. Rev. Lett. 81, 3108 (1998).

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://link.aps.org/doi/10.1103/PhysRevLett.94.160401
http://link.aps.org/doi/10.1103/PhysRevLett.94.160401
http://www.sciencedirect.com/science/article/pii/S0370157397000884
http://www.sciencedirect.com/science/article/pii/S0370157397000884
http://link.aps.org/doi/10.1103/PhysRevA.72.022502
http://link.aps.org/doi/10.1103/PhysRevA.72.022502
http://link.aps.org/doi/10.1103/PhysRevLett.48.1086
http://link.aps.org/doi/10.1103/PhysRevLett.48.1086
http://stacks.iop.org/0953-4075/43/i=15/a=155004
http://stacks.iop.org/0953-4075/43/i=15/a=155004
http://ptps.oxfordjournals.org/content/98/198.abstract
http://ptps.oxfordjournals.org/content/98/198.abstract
http://link.aps.org/doi/10.1103/RevModPhys.82.3045
http://link.aps.org/doi/10.1103/PhysRevA.88.012512
http://link.aps.org/doi/10.1103/PhysRevA.88.012512
http://link.aps.org/doi/10.1103/PhysRevA.85.012511
http://link.aps.org/doi/10.1103/PhysRevA.85.012511
http://www.sciencemag.org/content/327/5967/788.short
http://link.aps.org/doi/10.1103/PhysRevLett.93.183201
http://link.aps.org/doi/10.1103/PhysRevLett.93.183201
http://link.aps.org/doi/10.1103/PhysRevLett.81.3108
http://link.aps.org/doi/10.1103/PhysRevLett.81.3108


Bibliography 191

[Jen91] J. Jensen and A. Mackintosh, Rare earth magnetism: Structures and excitations,
International series of monographs on physics, Clarendon Press, 1991.

[Jen92] R. V. Jensen, Quantum chaos, Nature 355, 311 (1992).

[Jia96] H. Jiao, Experimental and theoretical aspects of quantum chaos in Rydberg atoms
in strong fields, Ph.D. thesis, Massachusetts Institute of Technology (1996).

[Jin90] W. G. Jin, T. Horiguchi, M. Wakasugi, and Y. Yoshizawa, Hyperfine structure and
isotope shift in Er I by the atomic-beam laser spectroscopy , J. Phys. Soc. Jpn. 59,
3148 (1990).

[Joc04] S. Jochim, Bose-Einstein condensation of molecules, Ph.D. thesis, Faculty of
Mathematics, Computer Science and Physics of the University of Innsbruck (2004).

[Jud61] B. R. Judd and I. Lindgren, Theory of Zeeman effect in the ground multiplets of
rare-earth atoms, Phys. Rev. 122, 1802 (1961).

[Kat99] H. Katori, T. Ido, Y. Isoya, and M. Kuwata-Gonokami, Magneto-optical trapping
and cooling of strontium atoms down to the photon recoil temperature, Phys. Rev.
Lett. 82, 1116 (1999).

[Kat04] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of
the spin Hall effect in semiconductors, Science 306, 1910 (2004).

[Ket96] W. Ketterle and N. Van Druten, Evaporative cooling of trapped atoms, Adv. At.
Mol. Opt. Phys. 37, 181 (1996).

[Ket99] W. Ketterle, D. S. Durfee, and D. M. Stamper-Kurn, Making, probing and under-
standing Bose-Einstein condensates, ArXiv cond-mat/9904034 (1999).

[Ket08] W. Ketterle and M. W. Zwierlein, Making, probing and understanding ultracold
Fermi gases, ArXiv 0801.2500 (2008).

[Kit08] M. Kitagawa, K. Enomoto, K. Kasa, Y. Takahashi, R. Ciury lo, P. Naidon, and
P. S. Julienne, Two-color photoassociation spectroscopy of ytterbium atoms and
the precise determinations of s-wave scattering lengths, Phys. Rev. A 77, 012719
(2008).
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[Mor11] I. O. Morales, E. Landa, P. Stránský, and A. Frank, Improved unfolding by de-
trending of statistical fluctuations in quantum spectra, Phys. Rev. E 84, 016203
(2011).

[Mos43] G. Mosander, Philosophical magazine, p. 241, Taylor & Francis., 1843.

[Mül72] J. Müller, B. Singh, and N. A. Surplice, The gettering action of evaporated films
of titanium and erbium, J. Phys. D: Appl. Phys. 5, 1177 (1972).

http://link.aps.org/doi/10.1103/PhysRevA.85.062712
http://link.aps.org/doi/10.1103/PhysRevA.85.062712
http://link.aps.org/doi/10.1103/PhysRevA.87.012709
http://link.aps.org/doi/10.1103/PhysRevA.87.012709
http://link.aps.org/doi/10.1103/PhysRevA.73.064502
http://link.aps.org/doi/10.1103/PhysRevA.73.064502
http://link.aps.org/doi/10.1103/PhysRevLett.96.143005
http://link.aps.org/doi/10.1103/PhysRevLett.96.143005
http://stacks.iop.org/0957-0233/19/i=10/a=105601
http://stacks.iop.org/0957-0233/19/i=10/a=105601
http://scitation.aip.org/content/aip/journal/jmp/4/5/10.1063/1.1704009
http://scitation.aip.org/content/aip/journal/jmp/4/5/10.1063/1.1704009
http://link.aps.org/doi/10.1103/PhysRevA.89.041401
http://link.aps.org/doi/10.1103/PhysRevA.89.041401
http://link.aps.org/doi/10.1103/PhysRevA.62.012708
http://link.aps.org/doi/10.1103/PhysRevA.62.012708
http://link.aps.org/doi/10.1103/RevModPhys.82.2845
http://link.aps.org/doi/10.1103/RevModPhys.82.2845
http://link.aps.org/doi/10.1103/PhysRevA.77.061603
http://link.aps.org/doi/10.1103/PhysRevA.77.061603
http://www.sciencemag.org/content/294/5545/1320.abstract
http://link.aps.org/doi/10.1103/PhysRevLett.70.414
http://link.aps.org/doi/10.1103/PhysRevE.84.016203
http://link.aps.org/doi/10.1103/PhysRevE.84.016203
http://stacks.iop.org/0022-3727/5/i=6/a=324
http://stacks.iop.org/0022-3727/5/i=6/a=324


Bibliography 195

[Mül04] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Semiclassical foundation
of universality in quantum chaos, Phys. Rev. Lett. 93, 014103 (2004).

[Mul11] D. Mulhall, Maximum likelihood method to correct for missed levels based on the
∆3(L) statistic, Phys. Rev. C 83, 054321 (2011).

[Mül13] R. R. Müller, G. Alfano, B. M. Zaidel, and R. de Miguel, Applications of large
random matrices in communications engineering , ArXiv e-prints 1310.5479 (2013).

[Mus62] T. Musha, Cathode sputtering in hollow cathode discharges, J. Phys. Soc. Jpn. 17,
1440 (1962).

[Nas13] S. Nascimbène, Realizing one-dimensional topological superfluids with ultracold
atomic gases, J. Phys. B 46, 134005 (2013).

[Ni08] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Peér, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, A high phase-space-density
gas of polar molecules, Science 322, 231 (2008).

[Oga07] V. Oganesyan and D. A. Huse, Localization of interacting fermions at high tem-
perature, Phys. Rev. B 75, 155111 (2007).

[Orl02] H. Orland and A. Zee, RNA folding and large N matrix theory , Nucl. Phys. B 620,
456 (2002).

[Osp10] S. Ospelkaus, K.-K. Ni, D. Wang, M. H. G. de Miranda, B. Neyenhuis,
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// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard and be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts in
//      the 3D scene. Parts which have been selected with the mouse can be
//      moved around and rotated like the cross section as described above, as
//      well as scaled using the s and S keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
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//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';
  for(var i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    var meshUTFName = '';
    for (var j=0; j<mesh.name.length; j++) {
      var theUnicode = mesh.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      meshUTFName += theUnicode;
    }
    var end=mesh.name.lastIndexOf('.');
    if(end>0) var meshUserName=mesh.name.substr(0,end);
    else var meshUserName=mesh.name;
    respart='  PART='+meshUserName+'\n';
    respart+='    UTF16NAME='+meshUTFName+'\n';
    defaultvals=true;
    if(!mesh.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(mesh.opacity<1.0){
      respart+='    OPACITY='+mesh.opacity+'\n';
      defaultvals=false;
    }
    currender=defaultrender;
    switch(mesh.renderMode){
      case scene.RENDER_MODE_BOUNDING_BOX:
        currender='BoundingBox';break;
      case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
        currender='TransparentBoundingBox';break;
      case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
        currender='TransparentBoundingBoxOutline';break;
      case scene.RENDER_MODE_VERTICES:
        currender='Vertices';break;
      case scene.RENDER_MODE_SHADED_VERTICES:
        currender='ShadedVertices';break;
      case scene.RENDER_MODE_WIREFRAME:
        currender='Wireframe';break;
      case scene.RENDER_MODE_SHADED_WIREFRAME:
        currender='ShadedWireframe';break;
      case scene.RENDER_MODE_SOLID:
        currender='Solid';break;
      case scene.RENDER_MODE_TRANSPARENT:
        currender='Transparent';break;
      case scene.RENDER_MODE_SOLID_WIREFRAME:
        currender='SolidWireframe';break;
      case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
        currender='TransparentWireframe';break;
      case scene.RENDER_MODE_ILLUSTRATION:
        currender='Illustration';break;
      case scene.RENDER_MODE_SOLID_OUTLINE:
        currender='SolidOutline';break;
      case scene.RENDER_MODE_SHADED_ILLUSTRATION:
        currender='ShadedIllustration';break;
      case scene.RENDER_MODE_HIDDEN_WIREFRAME:
        currender='HiddenWireframe';break;
      //case scene.RENDER_MODE_DEFAULT:
      //  currender='Default';break;
    }
    if(currender!=defaultrender){
      respart+='    RENDERMODE='+currender+'\n';
      defaultvals=false;
    }
    if(!mesh.transform.isEqual(origtrans[mesh.name])){
      var lvec=mesh.transform.transformDirection(new Vector3(1,0,0));
      var uvec=mesh.transform.transformDirection(new Vector3(0,1,0));
      var vvec=mesh.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +mesh.transform.translation.x+' '
               +mesh.transform.translation.y+' '
               +mesh.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  for(i=0; i<scene.nodes.count; i++){
    if(
       scene.nodes.getByIndex(i).name == '$$$$$$' ||
       scene.nodes.getByIndex(i).name == 'Clipping Plane'
    ) {
      clip=scene.nodes.getByIndex(i);
    }
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+='  END\n';
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected mesh node;
var mshSelected=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected && e.node.constructor.name=="Mesh"){
    mshSelected=e.node;
  }else{
    mshSelected=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  for(i=0; i<scene.nodes.count; i++){
    if(
       scene.nodes.getByIndex(i).name == '$$$$$$' ||
       scene.nodes.getByIndex(i).name == 'Clipping Plane'
    ) {
      runtime.removeCustomMenuItem("csection");
      runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
    }
  }
}
runtime.addEventHandler(cameraEventHandler);

//key event handler for moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var target=null;
  var backtrans=new Matrix4x4();
  if(mshSelected){
    target=mshSelected;
    var trans=target.transform;
    var parent=target.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    try {
      target=scene.nodes.getByName("Clipping Plane");
    }catch(e){
      var ndcnt=scene.nodes.count;
      target=scene.createClippingPlane();
      if(ndcnt!=scene.nodes.count){
        target.remove();
        target=null;
      }
    }
  }
  if(!target) return;
  switch(e.characterCode){
    case 30://tilt up
      tiltTarget(target, -Math.PI/900);
      break;
    case 31://tilt down
      tiltTarget(target, Math.PI/900);
      break;
    case 28://spin right
      spinTarget(target, -Math.PI/900);
      break;
    case 29://spin left
      spinTarget(target, Math.PI/900);
      break;
    case 120: //x
      translateTarget(target, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(target, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(target, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(target, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(target, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(target, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      scaleTarget(target, 1, e);
      break;
    case 83: //shift + s
      scaleTarget(target, -1, e);
      break;
  }
  if(mshSelected)
    target.transform.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

function tiltTarget(t,a){
  var centre=new Vector3();
  if(mshSelected) {
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
  }else{
    centre.set(t.transform.translation);
  }
  var rotVec=t.transform.transformDirection(new Vector3(0,1,0));
  rotVec.normalize();
  t.transform.translateInPlace(centre.scale(-1));
  t.transform.rotateAboutVectorInPlace(a, rotVec);
  t.transform.translateInPlace(centre);
}

function spinTarget(t,a){
  var centre=new Vector3();
  var rotVec=new Vector3(0,0,1);
  if(mshSelected) {
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
    rotVec.set(t.transform.transformDirection(rotVec));
    rotVec.normalize();
  }else{
    centre.set(t.transform.translation);
  }
  t.transform.translateInPlace(centre.scale(-1));
  t.transform.rotateAboutVectorInPlace(a, rotVec);
  t.transform.translateInPlace(centre);
}

//translates object by amount calculated based on Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.transform.translateInPlace(d.scale(scale));
}

//scales object by amount calculated based on Canvas size
function scaleTarget(t, d, e){
  if(mshSelected) {
    var bbox=t.computeBoundingBox();
    var diag=new Vector3(bbox.max.x, bbox.max.y, bbox.max.z);
    diag.subtractInPlace(bbox.min);
    var dlen=diag.length;

    var cam=scene.cameras.getByIndex(0);
    if(cam.projectionType==cam.TYPE_PERSPECTIVE){
      var scale=Math.tan(cam.fov/2)
                *cam.targetPosition.subtract(cam.position).length
                /dlen
                /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
    }else{
      var scale=cam.viewPlaneSize/2
                /dlen
                /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
    }
    var centre=new Vector3();
    centre.set(t.transform.transformPosition(t.computeBoundingBox().center));
    t.transform.translateInPlace(centre.scale(-1));
    t.transform.scaleInPlace(1+d*scale);
    t.transform.translateInPlace(centre);
  }
}

function addremoveClipPlane(chk) {
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(mshSelected){
      //local to parent transformation matrix
      var trans=mshSelected.transform;
      //build local to world transformation matrix by recursively
      //multiplying the parent's transf. matrix on the right
      var parent=mshSelected.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      //get the centre of the mesh (local coordinates)
      centre.set(mshSelected.computeBoundingBox().center);
      //transform the local coordinates to world coords
      centre.set(trans.transformPosition(centre));
      mshSelected=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    clip.remove();
  }
}

//function to store current transformation matrix of all mesh nodes in the scene
function getCurTrans() {
  var nc=scene.meshes.count;
  var tA=new Array(nc);
  for(var i=0; i<nc; i++){
    var cm=scene.meshes.getByIndex(i);
    tA[cm.name]=new Matrix4x4(cm.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<tA.length; i++){
    var msh=scene.meshes.getByIndex(i);
    msh.transform.set(tA[msh.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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