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Abstract

Many-body quantum systems with strong interactions give rise to some of the most in-
triguing phenomena in physics. This is especially true when the system’s dimensionality is
reduced and when quantum correlations dominate the system’s behavior. Ultracold atoms
in optical lattices present a model system to study many-body physics. They offer control
over almost all system parameters, they provide clean external potentials and they allow for
a direct detection process. In particular, ultracold atoms in optical lattice potentials permit
the study of quantum physics in low-dimensional geometry.

This thesis presents a series of experiments that study a quantum gas of strongly inter-
acting cesium atoms in one-dimensional (1D) geometry. We employ optical lattice potentials
to confine a Bose-Einstein condensate to an array of 1D tubes. Within each tube the confining
potential “freezes out” any transversal motion of the particles, and thus creates a quasi 1D
system. Furthermore, the confinement strongly affects the atomic scattering process along
the tubes, giving rise to a new type of scattering resonance, called confinement induced res-
onance (CIR). We observe CIRs by an increase in particle loss and heating. They allow us
to tune interparticle interactions in 1D geometry and to access regimes with strong particle
correlations.

For increasing interactions we access the regimes of a non-interacting gas, the 1D Thomas
Fermi regime and we approach the limit of a Tonks-Girardeau (TG) gas, i.e. a gas of impene-
trable bosons. Quickly crossing a CIR preserves and even strengthens the correlations of the
many-body state from one side of the resonance to the other. As a result an excited, strongly-
correlated phase is formed, called the super Tonks-Girardeau (STG) gas, which is metastable
despite strong attractive interactions. The interaction regimes and the existence of the STG
phase are verified by observing characteristic changes in hydrodynamic properties of the
gas.

We add a shallow lattice potential along the axis of the 1D systems and drive a phase
transition from a TG gas to a Mott insulator. For commensurate density, i.e. for an average
density of one atom per lattice site, and for sufficiently large repulsive interactions an ar-
bitrarily small periodic perturbation “pins” the atoms immediately. This so-called “pinning
transition” is driven by tuning interactions. We observe the appearance of an energy gap in
the excitation spectrum and a change in the transport properties of the gas. The complete
phase diagram of the Mott insulator transition is determined all the way from vanishingly
small lattice depth to the tight binding regime. As a result, we connect the physics of two im-
portant models of condensed-matter physics, the Bose-Hubbard model and the sine-Gordon
model.





Zusammenfassung

Quantenmechanische Vielteilchensysteme mit starker Teilchenwechselwirkung zeigen
erstaunliche Effekte. Besonders deutlich wird dies in Systemen mit reduzierter räumlicher
Dimensionalität und in Systemen deren Eigenschaften stark von Teilchenkorrelationen do-
miniert werden. Ultrakalte Atome in optischen Gittern bilden ein ideales Testsystem, um
diese Effekte der Vielteilchenphysik zu untersuchen. Fast jeder Parameter kann hier frei
gewählt werden. Sie ermöglichen komplexe, externe Potentiale, und sie erlauben einen di-
rekten Detektionsprozess der Atome. Insbesondere ermöglichen sie es, quantenmechanische
Effekte in niedrigen Dimensionen zu untersuchen.

Diese Arbeit diskutiert eine Reihe von Experimenten zu eindimensionalen (1D) Quanten-
gasen aus stark wechselwirkenden Cäsium Atomen. Die eindimensionalen Systeme werden
dabei mit Hilfe eines optischen Gitters erzeugt, das die Atome entlang eines röhrenförmigen
Potentials einschließt und die transversale Bewegung der Teilchen komplett “ausfriert”. Wir
transferieren ein Bose-Einstein Kondensat in diese Anordnung aus 1D Fallen und unter-
suchen die atomaren Streuprozesse innerhalb der 1D Systeme. Der starke Einschluss mo-
difiziert dabei die Wechselwirkung zwischen den Atomen und möglicht uns über die Be-
obachtung von Teilchenverlusten und Heizeffekten den Nachweis einer sogenannten Ein-
schlussresonanz. Diese Resonanz kann dazu verwendet werden, die Wechselwirkung der
Teilchen zu kontrollieren und stark korrelierte Systeme zu erzeugen.

Wir untersuchen die hydrodynamischen Eigenschaften eindimensionaler Quantengase
mit unterschiedlich starker Wechselwirkung. Für repulsive Wechselwirkung werde drei Re-
gime beobachtet: nicht wechselwirkende Teilchen, das von Wechselwirkungen dominierte
Thomas-Fermi Regime und im Grenzfall starker Wechselwirkung das sogenannte Tonks-
Girardeau Gas. Ein schneller Wechsel von repulsiver zu attraktiver Wechselwirkung mit
Hilfe der Einschlussresonanz erzeugt einen angeregten, stark korrelierten Zustand. Dieser
sogenannte super Tonks-Girardeau Zustand ist trotz starker attraktiver Wechselwirkung
zwischen den Teilchen metastabil.

Ein zusätzliches schwaches optisches Gitter ermöglicht uns, einen Phasenübergang vom
Tonks-Girardeau Gas zu einem Mott Isolator zu untersuchen. Stimmt der mittlere Abstand
der Atome mit dem Gitterabstand überein, reicht ein beliebig schwaches Gitterpotential, um
die Atome zu lokalisieren. Wir treiben diesen sogenannten ”Pinning-Übergang“mit Hilfe
der Wechselwirkung und weisen den Mott Isolator Zustand über eine Energielücke im An-
regungssprektrum und über das Transportverhalten der Atome nach. Wir bestimmen das
komplette Phasendiagram des Mott Isolator Übergangs von schwachen zu tiefen Gitterpo-
tentialen und verbinden somit zwei wichtige Modelle der Physik der kondensierten Materie,
das Bose-Hubbard Model und das sine-Gordon Model.
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CHAPTER 1

INTRODUCTION

“... Place a penny on the middle of one of your tables in space; and leaning over it, look down
upon it. It will appear a circle. But now, drawing back to the edge of the table, gradually lower
your eye - thus bringing yourself more and more into the condition of the inhabitants of Flatland
- and you will find the penny becoming more and more oval to your view, and at last ... the penny
will then have ceased to appear oval at all, and will have become, so far as you can see, a straight
line.” Flatland, Edwin A. Abbott

In 1884, E. A. Abbott pictured in his novel “Flatland” a two-dimensional (2D) world that
is inhabited by various geometrical objects. Partially due to the constrained perception and
partially due to the rigid social structure, the inhabitants of this world show a complete ig-
norance towards scientific progress and a lack of insight. Despite the fact that Abbott mainly
allegorized and criticized the social hierarchy of Victorian culture in the 19th century, he vi-
sualized the consequences of a change of dimensionality. Our everyday life is based on one
temporal and three spatial dimensions - but what would it be like with one, two or four
spatial dimensions? Of course, there are recent theories that employ higher dimensions to
introduce additional physical quantities, e.g. [Kle26], but usually, those theories provide a
particular process of dimensionality reduction that allows to associate 3+1 of these dimen-
sions with our familiar space-time structure [Tip86].

E. A. Abbot’s novel is a writers answer to the question: “How do our physical laws
change with the number of spatial dimensions?” This question has a long history, dating
back to the Greek philosophers [Tip86], and has generated valuable insight to our physical
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laws. In modern physics Immanuel Kant was one of the first who commented on the role
of dimensionality in physical laws. He realized a connection between the inverse square
law of gravity and the number of spatial dimensions [Han79]. In 1917, Ehrenfest published
a famous article “In what way does it become manifest in the fundamental laws of physics that
space has three dimensions?” [Ehr17]. He demonstrated that the existence of stable planetary
orbits, the stability of atoms and molecules, and the properties of wave operators depend
on exactly three dimensions. A more recent quantum mechanical treatment of a generalized
d-dimensional hydrogen atom [Gur71] indicates that no stable orbits for bound electrons
can exist for d larger than three, which places an upper bound on the number of spatial di-
mensions of a life-supporting universe. A lower bound, on the other hand, is given by the
necessity to construct complex, connected objects in two dimensions. For example, a neu-
ral network in two dimensions allows to connect only four nerve cells without intersecting
the joins [Whi59]. There are countless examples that demonstrate that our physical laws are
unique in three spatial dimensions [Tip86].

Since we live in a three-dimensional (3D) world with unique physical properties, why is
it important to study systems with a different dimensionality? One reason is exactly the
aforementioned strong dependence of physical laws on dimensionality. A change of the
number of dimensions is particularly well suited to test theoretical models, especially since
many models get much simpler in reduced dimensionality. Another reason is the frequent
occurrence of objects that behave as if they existed in a system with a different dimensional-
ity. Whereas it is probably not possible to increase the number of spatial dimensions, there
are numerous examples of objects in a reduced dimensionality. Typically their motion is
restricted by an external constraint or confinement, e.g. the one-dimensional (1D) flow in
a water pipe or the 2D spreading of oil on a water surface. There is an important differ-
ence between these “quasi” low-dimensional systems and the mathematical concept of low-
dimensionality. In our world, low-dimensionality is always just an approximation. For ex-
ample, in classical physics, the dimensionality of a model depends strongly on the observed
length scale. The trip of a sailboat on the ocean can be modeled in two dimensions, but in
rough weather and with high waves the sailor himself will be strongly effected by the third
dimension. For quantum systems this approximation of a reduced dimensionality improves
strongly. The trapping of a quantum mechanical object along one direction provides a set
of discrete energy levels and it provides an absolute length scale. If the energy of the ob-
ject is insufficient to bridge the gap to the next trap level, the motion of the object along the
trapped direction will effectively be “frozen out”. But even in low-dimensional quantum
systems reminiscent 3D effects are usually present as will be demonstrated later. The term
“quasi” low-dimensional system has as strict denotation in the context of ultracold atoms.
It is assigned to a gas that is confined along one or two directions with the particle motion
“cooled down” to the lowest trap level [Ols98]. In the context of condensed matter physics
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the definition is less stringent. There, the term quasi low-dimensional is already used when
particles are confined to a length scale that is comparable to the de Broglie wavelength of
the particle, and when the motion along the confined direction is influenced by quantum
mechanics [Bar01, Kan95].

This work studies the motion of quantum objects in 1D geometry. Here, atoms that are
cooled down to quantum degeneracy by means of laser cooling and by forced evaporation
move in 1D geometry, which is provided by optical lattice potentials. Of course, the motion
of a single atom along a straight line is not particularly elucidating, but the 1D motion of sev-
eral interacting atoms shows intriguing many-body effects, which have been at the center of
interest for decades [Gia03]. The understanding of these many-body effects in low dimen-
sions is crucial to explain the transport of electrons in certain materials, e.g. to understand
the phenomenon of high temperature superconductivity [Tin96] or the conduction in carbon
nanotubes [Tan01]. In real solids those transport phenomena are extremely complex. The
band structure of allowed energy states, the Coulomb interaction of electrons, the disorder
and defects of the crystal lattice and lattice vibrations, have to be accounted for. Unlike in
solid state physics, ultracold atoms in optical lattices offer the possibility to tune almost any
system parameter, including the external potential and particle interactions. This makes ul-
tracold atoms in optical lattices an ideal tool to study yet unobserved concepts and theories
that were originally developed in condensed matter physics [Gre08].

This thesis contains a collection of articles, which were published in the framework of
this doctoral work. The main results are the observation of an excited quantum many-body
phase, called the super Tonks-Girardeau (STG) phase (chapter 3), and the demonstration of
the “pinning” quantum phase transition, which connects a Tonks-Girardeau (TG) gas and a
Mott insulator (chapter 4). The first chapter is intended as a broad introduction to ultracold
atoms in low-dimensional systems. It introduces important methods and parameters that
are employed in the following articles. Although a brief summary of the results of each pub-
lication is provided, it is the main intent of this chapter to supply background information
and concepts that are not included in the articles.

Optical lattice potentials can be employed to confine the motion of a particle to one di-
mension, but the actual interparticle scattering process maintains a 3D character. This combi-
nation of 1D motion and 3D scattering induces a new type of scattering resonance, a so-called
confinement induced resonance (CIR), which was observed and studied in [Hal09, Hal10b]
(chapter 2,3). CIRs allow tuning of particle interactions in 1D geometry, and, in particular,
approaching the limit of a TG gas, i.e. a gas of impenetrable bosons. Quickly crossing a
CIR preserves some properties of a many-body state from one side of the resonance to the
other. As a result, the strongly correlated STG phase is formed, which is metastable despite
strong attractive interactions. The existence of the STG phase is verified by the observation
of a change in the hydrodynamic properties of the gas [Hal09] (chapter 3). In chapter 4 we
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add a shallow lattice potential along the axis of the 1D system. This additional potential is
employed to drive a phase transition from the TG gas to a Mott insulator. We determine the
complete phase diagram of this Mott insulator transition ranging from shallow lattice poten-
tials, described within the framework of the sine-Gordon model, to the tight binding regime,
covered by the Bose-Hubbard model. In the chapters 5 to 7 the atomic motion in a 1D lattice
potential is studied as a result of an external driving force. Here, as opposed to the previous
chapters, the atoms are just weakly confined in the transversal direction. We study the effect
of interparticle interactions on Bloch oscillations and, for a periodically modulated driving
force, we observe a novel type of oscillations, so-called super Bloch oscillations (sBOs).

During the time of this thesis, the second experimental objective of our team was the cre-
ation of a BEC of Cs2 molecules in the rovibronic ground state. Starting from a BEC of single
Cs atoms, a Mott insulator state with a maximum of two atoms per lattice site is formed. We
associate the atoms on a magnetic Feshbach resonance to weakly bound molecules, and we
transfer the atoms to the rovibronic ground state by means of a two-step Stimulated Raman
Adiabatic Passage (STIRAP) technique. Chapter 8 lists our publications that are connected
to this second experimental branch.

1.1 Quantum gases in 3D geometry

With the development of laser cooling and trapping of atoms during the 1980s [Met99]
atomic gases became available at ultracold temperatures on the order of microkelvin. At
sufficiently low temperatures the description of collisions between atoms simplifies greatly
and two-body interactions are completely characterized by a single parameter, the s-wave
scattering length a3D. Magnetic Feshbach resonances (FBR), which were first observed in
[Ino98], allow for the control of a3D by external fields [Chi10]. Especially the heaviest stable
alkali atom, cesium (Cs), offers very favorable scattering properties and magnetic FBRs at
low magnetic field strengths [Chi04].

In 1995, a combination of laser cooling and evaporative cooling led to the formation
of the first Bose-Einstein condensate (BEC) [And95, Dav95]. This novel state of matter is
a result of quantum statistics and energy quantization at low temperatures. For overlap-
ping wave functions, bosonic particles will show an effective ”bunching“ that eventually
leads to a macroscopic occupation of the energetic ground state [Bos24, Ein25]. BECs consti-
tute macroscopic quantum objects, which can be employed to verify fundamental ideas of
quantum mechanics. Outstanding achievements are the observation of macroscopic mat-
ter wave interference [And98] and the creation of vortices [Mat99, Mad00] and solitons
[Bur99, Den00, Kha02].

Especially Cs atoms offer a rich structure of magnetic FBRs and provide a magnetic tun-
ability of the interaction strength. The first Cs BEC was formed in 2002 in Innsbruck [Web03].
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Cs atoms have been employed to generate a degenerate gas of Feshbach molecules [Her03].
It has been possible to observe collisions between Cs2 dimers as a function of magnetic field
strength, thus indicating a molecular Feshbach resonance [Chi05]. Recently, Cs trimer states,
so called Efimov states, were detected [Kra06] and evidence for universal four-body states
was reported [Fer09].

1.2 Low-dimensional systems

There are surprisingly many examples for low-dimensional systems in our everyday life. In
classical physics, they usually originate from a separation of length scales and time scales,
which allows to model the motion of objects in reduced dimensions. This is different in
quantum mechanics. The main motivation for studying low-dimensional quantum many-
body effects with ultracold atoms stems from the interest in electron gases in condensed
matter physics. An improved understanding of the conduction process in solid states physics
could result in the design and fabrication of novel materials with far-reaching technological
impact, for example superconductors at room temperature.

1.2.1 Examples of low-dimensional systems

Two-dimensional systems. The class of 2D systems that is most common in nature are sur-
faces. The study of the interface between two phases of matter constitutes a whole subcat-
egory of condensed matter physics and chemistry, called surface science. Topics of current
interest are for example chemical reactions at interfaces, transport processes across and be-
tween the phases and surface excitations [Zan88]. Surfaces often facilitate a direct experi-
mental test on the dependence of a theoretical model on dimensionality, since many phe-
nomena in bulk materials provide surface counterparts, such as surface superconductivity
[Fos04] and surface magnetism [Kan90].

For bulk materials, an important class of 2D systems is given by an electron gas in semi-
conductors or metals. Here, the electron motion can be confined to a 2D band structure,
either naturally, due to the crystal structure as exemplified by graphite [Rot95], or artificially
due to the manufacturing process. Recent advances in semiconductor growth and process-
ing techniques, such as molecular beam epitaxy, render it possible to “grow” composition-
ally graded semiconductors [Bar01]. Sublimated elements, for example gallium and arsenic,
slowly condense on a substrate and form thin layers of varying composition. Such semi-
conductor heterostructures provide the building blocks for low-dimensional nanostructures.
They allow the design of spatially varying electronic conduction bands and to construct po-
sition dependent potentials with length scales that are comparable to the de Broglie wave-
length of the electron. 2D nanostructurs and superlattices [Esa70] can be generated by a stack
of several heterostructures.
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Figure 1.1: Examples of low-dimensional systems. (a) Crystal structure of the 123 superconductor
YBa2Cu3O7. Oxygen is represented as small red spheres and Cu as small black spheres. Y and Ba
are represented by large gray spheres. The 123 superconductor shows both one-dimensional systems
(vertical chains of corner-shared CuO4 squares) and two-dimensional systems (two layers of CuO2

planes in close proximity). Figure adapted from Ref. [Cav00]. (b) Scanning electron microscope image
of a carpet of multiwall carbon nanotubes on a silicon substrate. Figure from Ref. [wik09].

An important example of 2D electron gases is provided by high-temperature supercon-
ductors. In 1986 it was discovered that certain oxide ceramics show exceptionally high super-
conducting transition temperatures [Bed86]. The first compound with a transition tempera-
ture above the temperature of liquid nitrogen (77 K) was the 123 superconductor YBa2Cu3O7.
The crystal structure of this superconductor shows both the existence of 2D and 1D systems
Fig. 1.1a [Cav00]. It contains two 2D layers of CuO2 planes as well as 1D chains of corner-
shared CuO4 squares. The 2D planes are separated by additional layers that control the num-
ber of electrons in the CuO2 planes. It is currently believed that those so-called “charge reser-
voir layers” hold the key to the understanding of superconductivity in the 2D planes and to
the determination of the superconducting transition temperatures [Cav00].

One-dimensional systems. 1D systems result from a strong confinement in two direc-
tions and allow free motion along the third direction. Typically, the confinement is either
determined by the external geometrical shape of the object, e.g. carbon nanotubes, or by the
alignment of atoms and atomic bounds that can form very elongated chains, e.g. conducting
polymers. A taxonomy of one-dimensional systems in solid states physics can be found in
Ref. [Rot95].

Carbon nanotubes are an example for a 1D system that has received tremendous atten-
tion during the last two decades. They were observed in 1991 in the carbon soot of graphite
electrodes during an arc discharge [Iij91]. Nowadays they are usually grown by chemical
vapor deposition [Rot95]. Carbon nanotubes are hollow cylinders of graphite and can be
described as a single cylindrical carbon molecule or as a carbon crystal with translational
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symmetry. It is possible to form single wall or multi-walled tubes and to form bundles or ar-
rays of tubes, Fig. 1.1b. Carbon nanotubes are among the strongest and stiffest materials ever
discovered in terms of tensile strength and elastic modulus [Yu00]. They present a promising
candidate for miniaturizing electronics, in particular since they can exhibit superconductiv-
ity [Tan01, Tak06].

1.2.2 Optical lattice potentials

To model the transport of electrons in real carbon nanotubes or in the 2D planes of the 123
superconductor one has to account for a multitude of effects, such as Coulomb interactions
between electrons, lattice defects, lattice vibrations and complicated band structures of al-
lowed energy states. In general, real condensed matter systems require a “top-down” ap-
proach in complexity. It is challenging to separate those effects experimentally and to de-
duce simplified theoretical models. On the other hand, optical lattices in combination with
ultracold atoms constitute a “bottom-up” approach [Gre08]. They provide the possibility to
start from an experimental model system, i.e. with a well known band structure and free
of lattice defects, and then to increase the complexity of the system step by step. In a way,
optical lattices represent a realization of Richard Feynman’s idea of a “quantum simulator”,
a quantum system that can be used to model other quantum systems [Fey82, Gre08].

Optical lattice potentials rely on the interaction between an induced atomic dipole mo-
ment and an external electric field. The alternating electric field of a laser beam induces an
ac-stark shift of the electronic ground state of the atom. This shift in potential energy depends
on the intensity of the laser beam and can be used to trap cold atoms [Gri00]. In optical lat-
tices atoms move towards the intensity maxima or minima of the interference pattern formed
by the laser beams. A multitude of lattice configurations can be realized depending on the
number, the orientation, the relative polarization and the relative phase of the laser beams.
The standing wave of two counter propagating beams, a so-called 1D lattice configuration,
generates a series of pancake like 2D systems. Two standing waves at an angle of 90o, a 2D
lattice configuration, form a potential of an array of elongated tubes, which confine atoms
to 1D systems. Other beam configurations allow for more complicated lattice structures like
Bravais lattices [Pet94] or Kagomé lattices [San04].

Even before ultracold atoms became readily available, optical lattice potentials have been
used in various experiments in atomic physics, e.g. Bragg scattering of atoms on lattice
beams [Mar88] and the Kapitza-Dirac effect [Gou86]. Direct cooling in an optical lattice po-
tential is possible by means of Raman sideband cooling [Vul98, DeP99, Ker00, Han00]. How-
ever, up to now quantum degeneracy of the complete atomic cloud has not been reached
by Raman sideband cooling alone. Instead, BECs are usually first formed by evaporative
cooling techniques and later transferred into the optical lattice potential [Gre02]. Starting
with a BEC allows to adiabatically transfer the atoms to the lowest energy band of the lattice
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potential. Once loaded to the lattice potential, the atoms are said to be confined to a low-
dimensional system if both kinetic energy and potential energy are insufficient to transfer
the atoms to excited energy levels [Ols98]. Along the strongly confined direction the atoms
are in the potential ground state and usually show a gaussian density distribution. Any mo-
tion along this direction is effectively frozen out. Following this idea, it has been possible
to create both 1D and 2D systems with ultracold atoms. Systems with a strong transver-
sal confinement in elongated traps have been created with a quantum degenerate mixture
of 6Li/7Li [Sch01] and with 23Na [Gör01]. Both experiments probed the 3D/1D crossover
regime. The 1D condition was first fulfilled in [Gre01] by loading a BEC of Rb87 atoms into
a 2D lattice potential. In the same year, a stack of 2D systems were created in a 1D lattice
potential [Orz01].

1.2.3 Scattering resonances

Even if the motion of a particle is confined to a low-dimensional system, there are usually
some particle properties that rely on independent length scales and that can preserve 3D
character. For example, in case of an 1D electron gas in a metal, several 1D systems are
positioned in parallel and are thus coupled by means of long range Coulomb interaction
or by electron tunneling between the systems [Geo00]. Ultracold neutral atoms interact by
short range contact interaction, and the tunneling between the 1D tubes can be suppressed
by sufficiently deep lattice potentials. However, ultracold atoms show a reminiscence of 3D
scattering physics for collisions within the 1D system.

For bosons, only waves without orbital angular momentum, so called s-waves, con-
tribute to low energy scattering . In this regime, the scattering process can usually be de-
scribed by a single parameter, the s-wave scattering length a3D. There are two additional
length scales, the confinement length a⊥, which for a harmonic confinement is given by the
harmonic oscillator length, and the effective range Re of the scattering potential. Both length
scales are indicated in Fig. 1.2. The effect of the confining potential on the scattering process
can be neglected if a⊥ is much larger than both the Re and a3D. This is typically the case
for scattering of ultracold atoms in 3D systems, i.e. in magnetic traps or single beam dipole
traps. If on the other hand a⊥ is of the same order as Re, the actual shape of the scattering
potential will be altered by the confinement and the original 3D scattering length becomes
meaningless [Kim05]. The experiments described in publications 1 and 2 are in an interme-
diate regime, Re � a3D ≈ a⊥, in which case the confinement provides a type of boundary
condition for the scattering process but the important region of the scattering potential is not
altered [Kim05].

During the scattering process two atoms, both of them in the transversal ground state,
approach each other along the axis of the 1D system. Within a certain radius the spherical
symmetry prevails and the actual 3D scattering process can be described by means of the
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Figure 1.2: Effect of a confining potential on the scattering process. In a collision of ultracold atoms
the 3D scattering potential (black dashed line) can be sufficiently described by two parameters, the
effective range of the potential Re and the s-wave scattering length a3D. An additional confining
potential (red solid line) allows to introduce a third length scale, the confinement length a⊥. The
ratios of a⊥, Re and a3D determine the scattering regime and the effect of the confinement. As a
result of strong confinement the zero energy of two colliding atoms, i.e. the energy of the two particle
ground state, is shifted.

3D scattering length a3D. After the collision, the departing particles are again “stabilized” by
the confinement to the transversal ground state [Ols98, Kim05]. Although higher transversal
modes are forbidden for a single particle, during the collision process virtual excitations may
occur and coupling to transversally excited molecular states is possible. Similar to 3D Fesh-
bach resonances (FBRs) [Chi10], those states allow for tuning the 1D interaction strength.

A theoretical model describing atomic scattering under strong transversal confinement
was developed by M. Olshanii in 1998 [Ols98]. Analogous to the scattering process in three
dimensions, he introduced an effective contact potential with a 1D scattering length and a 1D
coupling constant. This coupling constant displays a resonance-like divergence at a3D ≈ a⊥,
which was called a confinement induced resonance (CIR). Its close connection to 3D FBRs
was suggested in [Ber03]. M. Olshanii’s original model was supported by further theoretical
studies [Tie00, Blu02, Ber03, Kim05, Yur05, Nai07, Blo08]. It is possible to extend the model to
a two component gas of ultracold atoms [Pea05, Sae08], to include non-zero collision energy
[Mel07] and to include an anharmonicity in the trapping potential [Kes10]. Furthermore,
CIRs are predicted to exist in 2D geometry [Pet00, Pet01, Nai07, Blo08] and in 0D geometry
[Fed04, Büc10].

First experimental evidence for a change of scattering properties close to a magnetic FBR
in 1D systems was observed in 2005 in the group of T. Esslinger [Gün05, Köh05, Mor05]. For
a degenerate gas of fermions, a shift of the zero energy due to transversal confinement was
observed in 1D and 2D geometry. This shift in energy is indicated by a shift of the position of
a p-wave FBR [Gün05]. In [Köh05], the fraction of atoms that are transferred to excited bands

9



Introduction

during a magnetic field ramp across a magnetic FBR was studied in a 3D lattice. Maximum
transfer efficiency was reached for ramps with a final magnetic field value that was larger
than the pole position of the 3D FBR. In [Mor05], the binding energy of molecules in 1D
geometry was determined by radio-frequency spectroscopy. Contrary to molecules in free
space, these bound states exist irrespective of the sign of the 3D scattering length. This fact
was indicated by the term “confinement induced molecules”.

In chapter 2 and 3 we report on the observation of CIRs in form of atomic loss resonances.
A BEC of cesium atoms is loaded into a 1D or 2D lattice, and the properties of CIRs are stud-
ied by measuring particle loss and heating. In 1D systems, the observed position of the CIR
agrees well with theoretical predictions [Ols98] and can be shifted by changing the strength
of the confinement or by changing a3D. A transversal anisotropy in the trapping potential
can be introduced by changing the relative power of the laser beams, which form the 2D
lattice. We observe a second loss minimum, which we attribute to the creation of a second
CIR. The formation of such a double resonance can be explained by the loss of degeneracy of
the energy levels of the transversal confining potential. For strongly anisotropic confinement
and for positive values of a3D we observed a broad spectrum of loss resonances. One of these
loss resonances even persists in the limit of a 2D system. This is surprising, since CIRs in 2D
geometry are predicted to require attractive interactions [Pet01, Nai07].

Recently, it was demonstrated that the concept of CIRs can be extended to scattering in
mixed dimensions [Lam10, Nis08]. Species-selective dipole potentials allow confining one
species, here 41K, to 2D geometry while having a negligible effect on the other, 87Rb. The
confinement shifts the zero energy of both Rb atoms and RbK molecules. As a result, it is
possible to control the position of the interspecies resonance and to observe a series of ad-
ditional resonances. Furthermore, fermionic Efimov physics is predicted to exist in a 1D-3D
system for a 40K and 6Li mixture [Nis09].

1.3 Quantum physics in low-dimensional systems

1.3.1 Quantum degeneracy and interaction regimes

In quantum physics, the properties of a system strongly depend on its dimensionality. Most
striking is the absence of a true BEC in a uniform 1D Bose gas with contact interaction. Since
all transverse degrees of freedom are effectively frozen out, fluctuations can only propagate
along a single dimension. As a result the effect of fluctuations is greatly enhanced and no
long range order can exist in the thermodynamic limit, not even at zero temperature [Caz04].
An intuitive explanation, given in many textbooks [Pit03, Pet07], is based on the energy
scaling of the density of states ρ(E) ∼ Ed/2−1, with dimensionality d and total energy E.
A macroscopic occupation of the ground state occurs if the number of atoms exceeds the
number of states available. Thus, in a uniform 3D system with ρ(E) ∼

√
E, Bose-Einstein
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condensation is a direct consequence of the reduction of E. However, ρ(E) is constant in
two dimensions and even diverges in one dimension and the phenomenon of condensation
is absent. Fortunately, this is not the end of the story.

W. Ketterle, and N. van Druten pointed out that the arguments above only apply in the
thermodynamic limit [Ket96]. With a finite atom number and with a confining potential,
Bose Einstein condensation is possible in 1D systems. In a way, the finite size of the sample
provides a low-momentum cut-off for phase and density fluctuations and it reduces the
influence of fluctuations as compared to the uniform case [Pet07]. The discrete structure
of trap levels allows for a sharp cross-over to a BEC. However, this sharp crossover can
be smeared out by particle interactions, which broaden the structure of energy levels. As a
result, a sharp crossover to a BEC in 1D systems requires weak interactions and low particle
numbers [Pet00].

A gas of bosons in one dimension, interacting via a repulsive contact-potential, was stud-
ied by Lieb and Liniger in 1963. In particular, the ground state energy and the excitation
spectrum were calculated in [Lie63b, Lie63a]. The only free parameter in this model is called
the Lieb-Liniger γ-parameter and can be used to characterize the interparticle interaction
strength. The particles are non-interacting for γ = 0 and get impenetrable for γ →∞. In this
limit of infinitely strong interactions the system can be described by M. D. Girardeau’s model
of hard-core bosons [Gir60], the so-called Tonks-Girardeau (TG) gas. For ultracold atoms in
one dimension the γ-parameter is given by γ = mg/(~2n) [Pet00], where m, g and n cor-
respond to the particle mass, the 1D coupling parameter and the 1D density, respectively.
For weak interactions, γ can be interpreted as the ratio of the interaction energy and the
kinetic energy of the gas. The concept of a parameter that relates interaction energy and ki-
netic energy is not restricted to bosons in 1D systems, but can be applied to interacting gases
in general. For example, in plasma physics the coupling parameter Γ relates the Coulomb
interaction energy to the kinetic energy [Ich04].

Interpreting the γ-parameter as a ratio of energies is correct within the mean field regime,
but it fails for a strongly correlated gas as, for example, the TG gas. This failure is particu-
larly evident for g →∞. For diverging repulsive interactions, i.e. γ →∞, one would expect
that the ratio of interaction energy to kinetic energy diverges as well. Instead, the energy of
the system “saturates” at a finite value [Gan03]. An intuitive explanation is provided by the
fact that the interaction energy depends on both the interaction strength and the overlap of
the single particle wave functions. The two-particle correlation function g2 scales for γ � 1

with 1/γ2 [Gan03], which indicates a vanishing particle overlap for large γ-values. A differ-
ent interpretation of the γ-parameter is provided in [Pet07]. Repulsive interactions between
the particles reduce the extend of their relative wave function, called the interaction length
rg = ~2/(mg). Thus, the γ-parameter can be interpreted as the ratio of the mean interparticle
separation 1/n to rg, i.e. 1/γ corresponds to the average number of particles per interaction
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Figure 1.3: Interaction regimes in 1D. Increasing both the γ-parameter (uniform system) or the α
parameter (harmonic potential) correspond to an increase of interactions. For T = 0 there are three
interaction regimes: an ideal BEC with a gaussian density profile for α = 0, a TG gas in the limit
α → ∞ and a Thomas-Fermi regime with a parabolic density profile in between. Figure adapted
from Ref. [Pet07].

length. For a BEC with weak interactions this number is large as rg is of the same order of
magnitude as the size of the BEC, but it is small in the limit of a strongly interacting TG gas.

Although the γ-parameter is just defined for uniform 1D systems, it is commonly ap-
plied to systems with a harmonic trapping potential [Kin04, Kin06, Stö04, Hal09]. A con-
servative estimate for the γ-value can be calculated by approximating the constant density
of the uniform system by the center density of a trapped atom cloud. For particles in a 1D
system with a harmonic potential a complementary parameter α can be defined as the ra-
tio of the harmonic oscillator length a|| and the previously introduced interaction length rg,
with α = mga||/~2. Since the system is finite, it is necessary to state both α and the total
atom number N to determine the interaction regime. A third interaction parameter A is in-
troduced in [Men02, Ast04]. The parameter A includes both the total atom number and the
harmonic confinement and is defined for attractive and repulsive interactions. It is related
to α by A2 = 4~2N/α2. In chapter 3 we employ the parameters γ and A to allow for a direct
comparison with the theoretical predictions [Men02, Ast04].

For a harmonically trapped Bose gas at T = 0 fluctuations are small and the system
is described by the Gross-Pitaevskii equation [Pet07]. Fig. 1.3 shows three different inter-
action regimes for a varying α-parameter at zero temperature. Similar to a 3D system, a
true condensate with a gaussian density profile can form for sufficiently weak interactions
with α � 1. In a harmonic trap this requires that the mean field interaction energy is much
smaller than the spacing of the energy levels, i.e. N � 1/α [Pet07]. For sufficiently large
atom number and interaction strength the kinetic energy can be omitted and the system
is in the Thomas-Fermi regime with a parabolic density distribution. For α � 1 and low
atom numbers, i.e. N � α2, the system is strongly interacting and forms a TG gas. Here,
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the system can be mapped to a gas of free fermions with the corresponding density profile
[Gir60, Ols98].

A TG gas of ultracold atoms was first created in 2004 with 87Rb atoms [Kin04]. The
strongly interacting regime was reached by tight transversal confinement and by low atomic
densities. For an increasing interaction strength a saturation of the expansion energy and of
the spatial extend of the cloud was observed. In [Par04] a lattice potential was added along
the 1D system to enhance the effective particle mass and thereby to increase the γ-parameter.
Taking the previously discussed interpretation, which is restricted to weak interactions, an
effective γ-value was determined as the ratio of the on-site interaction energy U to the tun-
neling energy J . Effective γ-values up to γ ≈ 200 were reached.

In chapter 3 we tune interactions by means of a CIR. As originally suggested in [Ols98],
the CIR allows us to increase the interaction strength and to reach γ-values up to 500. We
probe those three interaction regimes by measuring the oscillation frequency of two col-
lective modes. A collective “sloshing” motion of all atoms can be initiated by applying a
small magnetic force for a short amount of time. The oscillation frequency ωD of this mode
is independent of interactions and matches the trap frequency. An interaction quench or
a fast change of the trap frequency can excite a “breathing” mode of the atoms. The fre-
quency of this mode ωC increases with interactions as the system gets “stiffer”. The ratio
of both frequencies, ωD/ωC , is independent of trap properties and can be calculated ana-
lytically for certain interaction regimes [Men02]. This experimental technique was demon-
strated for weakly interacting atoms in [Mor03a]. In chapter 3 we determine ωD/ωC in the
non-interacting regime, in the Thomas Fermi regime and in the TG regime and find excellent
agreement with theoretical predictions [Men02].

1.3.2 Quantum liquids

Within the last 100 years a set of phenomenological theories was developed to describe in-
teracting and non-interacting quantum gases [Pin66]. These theories do not provide exact,
microscopic solutions but describe a fluid with few excitations close to an equilibrium state.
Models of a free gas of non-interacting particles were successfully employed to study elec-
trons in metals. The Drude model describes conductivity, the Lorentz model comprises a
temperature dependence and quantized free electron theories include the Fermi-Dirac statis-
tics and Pauli’s exclusion principle [Bla04]. This success was surprising since all of these the-
ories completely neglect interactions between the electrons. An explanation was offered in
the 1950s by Landau who introduced the idea of a Fermi liquid [Lan57, Lan59].

Non-interacting fermions at zero temperature will occupy all momentum states that are
available within the Fermi surface. Removing or adding a fermion close to the Fermi surface
will result in elementary excitation of either a hole or a particle on the corresponding side of
the surface. For an interacting Fermi gas this picture does not change much. Due to interac-
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Figure 1.4: Overview of quantum liquid theories. For 1D systems the Fermi liquid theory, which is
usually employed to model interacting quantum gases, fails due to geometry arguments. Instead the
theory of Luttinger liquids, developed by Luttinger, Tomonaga and Haldane, describes fermions and
bosons in 1D systems.

tions an additional particle will distort the surrounding density distribution. Those particles,
dressed by density fluctuations, provide elementary excitations of the interacting system and
are called quasiparticles. They behave as fermions, they possess an effective mass and they
scatter with each other [Pin66]. Landau realized that an adiabatic “turn on” of interactions
can lead to a one-to-one correspondence between the eigenstates of the non-interacting and
the interacting system. Interactions between quasiparticles can be described by Landau pa-
rameters [Pin66]. In 3D and 2D systems the lifetime of those quasiparticles diverges close to
the Fermi surface and, for sufficiently low temperatures, quasiparticles can be regarded as
well-defined, long-lived free excitations of the system [Gia04, Pin66].

Landau’s theory of Fermi liquids fails in 1D geometry. One reason is illustrated in Fig.
1.4. For interacting particles in a 1D system the motion of a single particle is not possible
without pushing its neighbors [Gia04]. Excitations are no longer given by local quasiparticles
but correspond to a collective motion of the particles. Sound wave-like excitations of the
density (or charge) and spin wave-like excitations are possible, called holons (chargons) and
spinons. Those excitations possess bosonic particle character and are free to separate [Gia03,
Gia04]. In analogy to Fermi liquids, interacting 1D gases of bosons or fermions that show
gapless collective spin or charge excitations are called Tomonaga-Luttinger liquids [Hal81,
Gia03, Voi08]. This concept of describing an interacting gas by bosonic quasiparticles in the
framework of quantum field theory is called ’bosonization’. The corresponding Hamiltonian
of the system, as given in Fig. 1.4, consists of two terms: the first term is proportional to K
and accounts for the kinetic energy whereas the second term is related to the interaction
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Figure 1.5: (a-c) Sketch of the wave function of two particles in a harmonic potential. The dotted,
dashed and solid lines indicate zero, medium and infinitely strong interactions. (a) Bosons with re-
pulsive interactions in the ground state of the harmonic potential. (b) Fermions with attractive inter-
actions in the ground state. (c) Bosons with attractive interactions in the excited state. (d) Sketch of
the momentum distribution of bosons (solid line) and fermions (dashed line). kF is the Fermi mo-
mentum. Figure (d) adapted from [Ols98].

energy. The velocity v of the excitations and the parameter K completely characterize the
macroscopic properties of the system for low energies. The dimensionless parameter K is
called Luttinger parameter and depends on the interaction strength. For fermions a K-value
of one corresponds to non-interacting particles, whereasK < 1 signals repulsive interactions
and K > 1 attractive interactions.

A surprising property of 1D systems is the absence of a well defined concept of statistics.
Bosons exhibit fermion-like properties and vice versa [Caz04]. This Bose-Fermi mapping is
illustrated in Fig. 1.5 by means of the two-particle wave function ψ(r) in a harmonic po-
tential. Non-interacting bosons exhibit a symmetric, gaussian wave function (a, dotted line),
which develops a characteristic kink for increasing repulsive interactions (a, dashed line).
The absolute value of the wave function of bosons in the limit of infinitely strong repul-
sive interaction (a, solid line) matches to the absolute value of the wave function of non-
interacting fermions (b, dotted line). Similarly, the absolute value of the wave function of
fermions with infinitely strong attractive interaction (b, solid line) corresponds to the wave
function of non-interacting bosons (a, dotted line). In 1D systems, the Bose-Fermi mapping
works well for the spatial distribution of the atoms, whereas it fails for the momentum dis-
tribution, see Fig. 1.5d.

The Lieb-Liniger parameter γ can be connected to the Luttinger liquid parameter K.
K = 1, representing non-interacting fermions, corresponds to a diverging parameter γ →∞,
whereasK →∞, representing fermions with infinitely strong attractive interaction, matches
γ = 0 for non-interacting bosons, see Fig. 1.6. Even a bosonic analogue for repulsively inter-
acting fermions exists. The super Tonks-Girardeau phase in chapter 3 exhibits aK-parameter
smaller than one.

An important result of the theory of Luttinger liquids are the correlation functions of the
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Figure 1.6: Relation between γ and K. Particle interactions in 1D systems can be quantified by the
Luttinger liquid parameter K, in case of fermions, and by the γ-parameter in case of bosons. Both
parameters are related due to the Bose-Fermi mapping and a common description in LL theory. In
particular, the correlation functions of both, bosons and fermions, are identical for corresponding
interaction regimes.

system. For example, the density correlation function 〈n(x)n(0)〉 can be described by a series
of harmonics of a momentum p. In case of fermions, p is given by the Fermi momentum and
in case of bosons p is πn0, where n0 denotes the equilibrium density. The first important term
of this series scales with ∼ cos(2πp x)/x2K , i.e. correlations show a power law decay with
an exponent 2K. As a result, strongly attractive fermions (non-interacting bosons) are not
correlated and non-interacting fermions (strongly repulsive bosons) show a 1/x2 decay of the
correlation function. Surprisingly, bosons in the STG regime (repulsive fermions withK < 1)
show long range correlations. How is this possible for bosons with a contact potential?

The STG phase is created with a trick [Ast05]. The system is not in the ground state but in
an excited, quantum many-body state with attractive interactions. Intuitively, N attractively
interacting atoms in the ground state form a N-body cluster state or a bright soliton [Tem08].
Possible excited states can have hybrid character, i.e. they contain some clusters and some
free atoms, or they consist of free atoms only. The STG state corresponds to the energetically
lowest gas-like state, i.e. a state of free atoms [Ast05]. It is prepared by quickly crossing a CIR,
thus switching from strongly repulsive to strongly attractive interactions. This preparation
process does not destroy the correlations present in a TG gas (∼ 1/x2), but even strengthens
them (∼ 1/xm, m < 2). The many-body wave function and the correlation function of a
STG gas are calculated in [Tem08, Gir09] and the energy and the stability of a STG state are
estimated in [Ast05]. The relative wave function of two non-interacting bosons in an excited
state is illustrated in Fig. 1.5c, dotted line. With increasing attractive interactions, the center
node of the wave function develops a characteristic kink. For infinitely strong attraction the
wave function of bosons in the excited state matches the wave function of strongly repulsive
bosons in the ground state. It is this correspondence of the wave functions that allows us to
smoothly connect the ground state to the excited state by crossing the CIR. In chapter 3, we
determine the frequency ratio ωC/ωD in the STG regime and demonstrate that it increases
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beyond the value of 2 [Ast05]. This increase is a clear experimental signature of the STG
regime since the frequency ratio of strongly correlated bosons (non-interacting fermions) is
limited to 2 in a TG gas [Men02].

1.3.3 Quantum phase transitions

The physics of phase transitions is particularly effected by the system’s dimensionality. In
general, transitions between phases, i.e. between states of matter with essentially uniform
physical properties, play an important role in our every day life. Well known examples
are the boiling of water, the melting of ice or the ferromagnetic to paramagnetic transition
of iron. Even the universe itself evolved in a succession of phase transitions, as the high-
temperature plasma formed by the Big Bang cooled down [Voj03].

During a phase transition the common characteristics of a system change qualitatively
as a result of the variation of an external control parameter. Phase transitions can be classi-
fied into first-order and continuous transitions. A typical example for a first-order transition
is the melting of ice. Here, both phases co-exist at the transition point and the system ab-
sorbs a certain amount of energy, the latent heat, at a fixed transition temperature. Contin-
uous transitions on the other hand show a gradual change in the macroscopic order when
approaching the transition point. This change can be characterized by an order parameter,
which is a thermodynamic quantity that is zero in the disordered phase and non-zero in
the ordered phase [Sac00, Voj03]. For example, an order parameter for the ferromagnetic to
paramagnetic transition of iron is the magnetization. Above the Curie temperature of 770◦ C,
thermal fluctuations destroy the regular ordering of the magnetic moments of the spins and
the magnetization vanishes. Usually, the loss of order is accompanied by a gain in symme-
try. In the example of a ferromagnetic system, the Hamiltonian shows a rotational symmetry
in spin-space, which, in the disordered phase, results in the lack of any preferred direction
for the magnetic moments. Below the Curie temperature the magnetic moments orientate
themselves in a common but arbitrary direction and the symmetry of the system is said to
be spontaneously broken [Bel00].

Any system in thermodynamic equilibrium shows local variations of the thermodynamic
variables around equilibrium values, in particular it shows variations of the order parame-
ter. In the previous example, it is a local fluctuation of the magnetization or of the spin
orientation, which is driven by thermal energy. It is those fluctuations, which allow for a
reordering of the system close to the transition point. They appear on a length scale that
can be quantified by the spatial correlation function of the order parameter and they occur
on a time scale, which is given by the equilibration time τc. Close to the critical point of a
continuous phase transition, both, correlation length and equilibration time, diverge and the
system effectively averages over all length scales that are smaller than the correlation length
[Sac00, Voj03]. Due to the divergence of the correlation length, microscopic details of the
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Figure 1.7: Quantum phase transitions. Phase transitions connect ordered and disordered states of
matter. A classical and a quantum phase transition are indicated by the red arrows 1 and 2. Exper-
iments usually probe the quantum critical region close to the quantum critical point QCP. Figure
adapted from Ref. [Voj03].

system can be neglected and universal classes of continuous phase transitions can be intro-
duced. Each universality class provides a set of so-called critical exponents, which describe
the scaling of thermodynamic variables, like the order parameter or the susceptibility, close
to the transition point. Usually, the universality class of a system is determined by the basic
symmetries of the underlying Hamiltonian and by the spatial dimensionality of the system
[Voj03].

The origin of the fluctuations of the order parameter is not necessarily thermal. Quan-
tum fluctuations or zero point motion are a direct consequence of Heisenberg’s uncertainty
principle and lead to the reordering of the system. For example, they result in a certain prob-
ability for a spin to flip its orientation or for a non-zero particle momentum. Phase transitions
that are driven by quantum fluctuations are called quantum phase transitions and occur at
at temperature of zero. Quantum mechanics will dominate the system as long as the energy
scale of those fluctuation, determined by the equilibration time τc, exceeds the thermal en-
ergy. Close to the transition point, τc diverges and any phase transition at finite temperatures
can be described classically [Voj03]. A generalized phase diagram with classical and quan-
tum phase transitions is shown in Fig. 1.7. Here, the horizontal dashed line indicates that
for sufficiently low temperatures a universal description is applicable, since the correlation
length exceeds any microscopic length scales of the system. Within a certain range of the
control parameter r, it is possible to drive a classical phase transition from a thermally disor-
dered to an ordered phase by lowering the temperature (red arrow 1). At T = 0, a quantum
phase transition from an ordered phase to a quantum disordered phase is driven by increas-
ing the control parameter across a critical value rc at the quantum-critical point (QCP) (red
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arrow 2). For temperatures that are finite but close to zero, the system is in the quantum-
critical region. Here, the system is effected by both types of fluctuations and shows thermal
excitations of the quantum-critical ground state [Voj03]. It is this quantum-critical region that
is usually probed in experiments, e.g. in chapter 4.

Classical and quantum phase transitions exhibit a generic mapping to the same univer-
sality class. Usually, for classical systems the kinetic part and the potential part of the Hamil-
tonian commute and thus allow for a time-independent descriptions of phase transitions.
This is usually not the case for a quantum mechanical Hamilton operator, for which stat-
ics and dynamics are coupled. It is often possible to map a quantum phase transition in d

spatial dimensions to a classical transition in (d+z) dimension, where z is the dynamical crit-
ical exponent of the transition [Bel00]. However, despite this mapping, it is still necessary to
develop an additional theory of quantum phase transitions. This is mainly due to the dif-
ficulty of obtaining realtime dynamics within the (d+z) dimensional mapping [Sac00] and
due to the need to include quantum effects that lack a classical counterpart, as for example
the phase coherence time [Voj03].

1.3.4 Metal-insulator transitions

In chapter 4 we probe a specific type of phase transition, which belongs to the class of “metal-
insulator transitions”. The term “metal-insulator transition” usually refers to a quantum
phase transition that connects an electrically conducting phase in a metal to an insulating
phase. Several effects exist that influence the transport of electrons in crystals: electrons can
interact with the potential of the ions, they can interact with other electrons or they are af-
fected by external fields. Usually, the insulating behavior relies on an energy gap in the
excitation spectrum either of single electrons or, in case of interacting systems, of the quasi-
particles discussed previously.

Figure 1.8 lists typical metal-insulator transitions. It is possible to distinguish between
insulators that rely on single electron effects and on many-body electron effects. A typical
example of a single electron insulator is the Bloch-Wilson insulator. Due to the periodic ion
potential, the electron motion is confined to certain energy bands. Depending on the filling
and the overlap of the bands the material is either conducting, semiconducting or insulating.
In case of a Bloch-Wilson insulator, the valence band and the conduction band are disjunct
and the energy gap for an electron-hole excitation prevents conduction [Geb97]. In the cal-
culation of the band structure the position of the ions, which create the lattice potential, is
usually assumed to be constant. For real materials with an electron-ion interaction, the elec-
trons will induce a static lattice deformation and a new lattice periodicity, called the Peierls
effect. These static lattice deformations can lower the total energy of lattice and electrons
and may result in an excitation gap. At a temperature, corresponding to this gap energy, a
thermodynamic phase transition from a metal to an insulator can occur, called the Peierls

19



Introduction

Figure 1.8: Examples of metal-insulator transitions. For details see text.

transition [Geb97]. The third metal-insulator transition mentioned in Fig. 1.8 is the Ander-
son transition. In lattices with strong structural disorder or with strong impurity scattering
a coherent scattering of electron waves can result in the localization of electrons. Anderson
localization was recently observed in cold atom experiments [Roa08, Bil08].

In 1949, N. F. Mott suggested that many-body effects and interactions can cause an in-
sulating behavior [Mot49]. On the one hand, repulsive electron-electron interactions tend to
keep electrons apart from each other and lead to localization. On the other hand, the kinetic
energy “tries” to spread the electrons over the whole crystal. This competition between inter-
action energy and kinetic energy can result in a quantum phase transition between a metal
and an insulator [Geb97]. A simplified model that assumes local interactions and considers
only a single lattice band was introduced by J. Hubbard [Hub63]. The Hubbard model was
originally intended to describe fermions, but in 1989 M. Fisher and co-workers extended it to
a much simpler model for spinless bosons [Fis89]. Within this Bose-Hubbard model tunnel-
ing between lattice sites results in a delocalization of the particles and in a reduction of phase
fluctuations, while repulsive interactions tend to localize the particles and to reduce density
fluctuations. The resulting continuous phase transition connects a superfluid (SF) phase and
a Mott insulating (MI) phase, Fig. 1.9a. In 1998, D. Jaksch and co-workers suggested to ex-
perimentally realize the Bose-Hubbard model by means of ultracold atoms in deep optical
lattice potentials [Jak98]. Here, neutral atoms move in the lowest band of the lattice potential
and the control parameter is given by the ratio between the on-site interaction energy U and
the kinetic energy J . Since U/J increases exponentially with the lattice depth, it is possible
to drive the phase transition experimentally by changing the laser power in the optical lat-
tice beams. For commensurate density, e.g. on average one atom per lattice site, the SF-MI
transition falls into the universality class of a (d+1)-dimensional XY model [Fis89].
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Figure 1.9: Sketch of the Mott insulator phase transition. (a,b) Schematic density distributions
(grey) in the presence of a periodic potential (red solid line). (a) For weak interactions the system
is still superfluid at finite lattice depth (top), and the Mott-Hubbard-type phase transition to the in-
sulating state is induced by increasing the lattice depth (bottom). (b) The sine-Gordon-type phase
transition exists for a system with strong interactions. In the absence of any perturbation, the sys-
tem is a strongly correlated superfluid (top). An arbitrarily weak perturbation by a lattice potential
commensurate with the system’s granularity induces the transition to the insulating Mott state (bot-
tom). (c) Sketch of the phase diagram. The red arrows 1 and 2 indicate the Mott-δ or commensurate-
incommensurate transition and the Mott-U or pinning transition, respectively. Figure (c) adapted
from [Gia03]

In the context of ultracold atoms the SF-MI transition was first observed in 2002 with
87Rb atoms in a 3D optical lattice potential [Gre02]. Later experiments used the tight con-
finement, provided by optical lattice beams, to demonstrate the SF-MI transition in 1D ge-
ometry [Stö04] and in 2D geometry [Spi07]. Various properties of the SF-MI transition have
been probed experimentally. The loss of phase coherence as the system enters the MI phase
was observed via the matter wave interference pattern of the particles after release from the
optical lattice [Gre02]. The MI phase shows a gapped excitation spectrum while the spectrum
is continuous in the SF phase. The existence of the gap was experimentally demonstrated by
applying a potential gradient [Gre02], by amplitude modulation spectroscopy [Stö04] and by
Bragg spectroscopy [Fab09]. The energy gap in the excitation spectrum causes the insulating
properties and the incompressibility of the MI phase [Gem09, Hun10].

In real experimental setups important modifications from the original phase diagram of
a uniform system are necessary due to the external trapping potential. In a uniform system
the SF-MI phase transition can only be driven by the control parameter J/U if the atom den-
sity is commensurate with the lattice spacing. For a finite size system this would require
an experimental control of the atom number down to the level of single atoms. Luckily, the
confining potential of the external trap alleviates this restriction by allowing for a locally
varying chemical potential [Gre03]. As a result both SF and MI phases can be present at the
same time and spare atoms are “taken up” by the SF phase. In the limit J/U → 0 the su-
perfluid fraction vanishes and the remaining MI phase shows regions with a varying integer
occupation number per lattice site. The resulting “shell structure” of the density profile was
predicted in [Jak98] and was experimentally demonstrated in [Föl06, Cam06, Gem09].
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The Bose-Hubbard model follows a microscopic approach to describe bosons in a deep
lattice potential. This constraint to the tight-binding regime is necessary since the model re-
lies on the localization of particles at certain lattice sites, on the occupation of the lowest
energy band and on a well defined tunneling energy J and interaction energy U . The Mott
insulator transition itself is not restricted to deep lattice potentials, but does also exists for
shallow lattice depths in 1D systems [Gia97]. In a way, strong interactions and correlations
can replace the lattice potential Fig. 1.9b. Interacting quantum liquids in 1D systems can be
described by the theory of Luttinger liquids, as introduced in section 1.3.2. The approach to
model Luttinger liquids with an additional lattice potential differs for fermions and bosons.
However, the resulting Hamilton operators agree with each other as expected from the Bose-
Fermi mapping. For fermions close to the Fermi surface only collisions that include an ex-
change of momentum with the lattice potential can lead to a finite resistivity [Gia04]. Similar
to other collective excitations, these so-called Umklapp processes can be expressed in terms
of bosonic operators and result in an additional term in the system’s Hamiltonian [Gia91].
For bosons the shallow lattice potential can be treated as a perturbation. Both approaches
result in a Hamiltonian that maps to the sine-Gordon model [Büc03b, Gia03]. The corre-
sponding phase diagrams are discussed in [Gia97, Gia04, Gia03]. Figure 1.9c shows a sketch
of the phase diagram for bosons as a function of the chemical potential and interactions. The
dotted lines correspond to commensurate filling with one boson per site and per two sites,
respectively. Two types of Mott insulator transitions are indicated by red arrows. Adding
or removing particles drives the system away from commensurability and is called Mott-δ
transition or commensurate-incommensurate transition, red arrow 1. For commensurate fill-
ing, a change of the interaction strength drives a Mott-U transition or pinning transition, red
arrow 2. This is the Mott insulator transition that was observed in the publication in chapter
4. We perform modulation spectroscopy and transport measurements to map out the phase
diagram. Our data in the strongly interacting regime agrees well with the predictions from
the sine-Gordon model [Büc03b]. We trace the phase boundary all the way from the strongly
interacting to the weakly interacting regime where we find good agreement with the predic-
tions of the 1D Bose-Hubbard model.

1.4 Single particle motion in periodic potentials

Unlike chapters 3 and 4, which study static properties of strongly interacting bosons, chap-
ters 5 to 7 focus on the aspect of dynamics. Here, we examine the motion of interacting
bosons in a 1D lattice as a result of a driving force. Usually, bosons in a 1D lattice do not
fulfill the definition of a 1D quantum system as introduced in section 1.2.2. They are not re-
stricted to the transverse ground state of the lattice potential, but they rather form a quantum
liquid with transversal excitations and density fluctuations. However, if the transversal mo-
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tion of the particles can be neglected, it is possible to reduce the transversal density profile
to a single parameter, and to describe the axial dynamics with an effective 1D wave equation
[Sal02]. In this respect, chapters 5 to 7 study 1D Bloch oscillations of bosons with repulsive
interactions within the mean field description.

The concept of Bloch oscillations was first introduced by Bloch and Zener [Blo28, Zen34],
who describe the motion of a single electron in an effective periodic lattice potential, which is
formed by ionic cores and by the background distribution of other electrons. Assuming that
the eigenstates of such a system are periodic in space, it is possible to solve the Schrödinger
equation directly. The energy of the electron is no longer continuous, as in the case of a free
particle, nor is it discrete, as expected for a particle trapped in a potential well. But instead the
possible eigenenergies are grouped in bands, which are separated by forbidden energy gaps.
These Bloch bands form the basis for a multitude of effects in solid state physics ranging from
the transport of electrons in conductors, semiconductors or insulators to optical properties
of metals [Ash76].

One surprising consequence of the band theory is the existence of Bloch oscillations
[Blo28, Zen34]. When a particle in a lattice potential is subject to an external force, it will
not be accelerated towards infinity, but rather start to oscillate both in position and in mo-
mentum space. Bloch oscillations are directly linked to the Bloch state’s spatial periodicity,
which limits the possible values of the quasi-momentum to the first Brillouin zone [Bri30].
According to Bloch’s acceleration theorem, a particle will get accelerated until it reaches
the maximum quasi-momentum at the edge of the first Brillouin zone. It is then Bragg scat-
tered [Bra12] by the lattice potential and acquires a quasi-momentum of opposite value. This
process repeats itself periodically thus resulting in a saw-tooth like time evolution of the ve-
locity and a spiked oscillation in position space. Counterintuitive, constant acceleration in a
periodic potential leads to the localization of the particle and the suppression of transport
[Kan95, Wac02].

Bloch oscillations have not been observed until 1993 [Was93]. This is mostly due to the
fact that the motion of an electron in a metal is strongly dominated by scattering processes.
Elastic scattering on lattice defects or electrons and inelastic scattering on lattice phonons
interrupt the Bloch cycle of the electron. In bulk metals the electric field, which is necessary
to reduce the value of the Bloch period below the scattering time, exceeds the break down
field of a crystal. In 1970, Esaki and Tsu suggested that superlattice structures can be realized
by the periodically repeated deposition of alternate layers from different semiconductor ma-
terials [Esa70]. In superlattices, with a spacing much larger than the lattice constant of each
constituent, minibands are formed and the Bloch period is reduced. Bloch oscillations in su-
perlattices were observed by transient four-wave mixing [Fel92], by the observation of THz
emission [Was93] and by directly measuring the dipole shift induced by the oscillating elec-
trons [Lys97]. Since the original proposal by Esaki and Tsu, one of the main goals has been
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Figure 1.10: Stability diagram. A BEC in an optical lattice potential under a constant force F can
show a dynamically instable time evolution. Depending on the system parameters, like tunneling
energy J , chemical potential µ, force F and the lattice spacing d, there are stable and unstable regions
[Zhe04]. The parameter space used in the chapters 5-7 is indicated by numbers.

to build amplifiers and oscillators that operate at THz frequencies [Ale05]. Unfortunately,
due to dephasing processes and charge domain formation, only transient signals have been
observed so far [Wac02].

An interesting alternative approach to observe and study Bloch oscillations comprises
ultracold atoms in optical lattice potentials. In optical lattices dissipation is essentially ab-
sent and decoherence can be well-controlled. Essentially all relevant system parameters are
tunable, e.g. lattice depth and spacing, particle interaction strength, and external force. An
important difference between Bloch oscillations of electrons and neutral atoms is the ab-
sence of the long range Coulomb interaction. For ultracold atoms with contact-interactions,
magnetic Feshbach resonances can be employed to tune the interaction strength while avoid-
ing complicated, self-energizing many-body effects like charge domain formation [Wac02].
Furthermore, ultracold atoms yield a well-defined, narrow momentum distribution, which
can be imaged directly. Bloch oscillations have been observed for thermal samples [Ben96,
Bat04, Fer06], for atoms in weakly-interacting BECs [And98, Mor01, Gus10], for ensem-
bles of non-interacting quantum-degenerate fermions [Roa04], and for non-interacting BECs
[Gus08, Fat08].

In case of an interacting BEC, a rapid broadening of the momentum distribution in the
first Brillouin zone was observed. For typical atomic densities, this “smearing out” of the mo-
mentum width reduces the number of observable Bloch cycles and thereby limits possible
applications of Bloch oscillations in metrology. It is possible to identify two classes of in-
stabilities that broaden the momentum distribution of particles in lattice potentials: Landau
instabilities and dynamical instabilities [Mor06]. In references [Wu01, Phy03], it is demon-
strated that Bloch states close to the edge of the Brillouin zone are dynamically unstable and
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small perturbations grow exponentially with time. However, the stability of the system can
be increased by adding a force F that drives Bloch oscillations. Depending on the system
parameters, there are stable and unstable regions [Zhe04]. Figure 1.10 illustrates these re-
gions and indicates the parameter regimes that correspond to the measurements in chapter
5 to 7. The experiment in chapter 5 is based on the absence of dynamical instabilities for
vanishingly small interactions, while the experiment in chapter 6 relies on the existence of
a stable region for deep lattice potentials and strong forces. Despite the fact that experiment
in chapter 7 is clearly carried out in an unstable region, we observe a strong suppression of
dynamical instabilities. This effect, which is related to an additional periodic modulation of
the driving force, still has to be explained.

In chapter 5 we tune the s-wave scattering length by means of a broad magnetic FBR
and we demonstrate a reduction of the rate of interaction induced dephasing by several
orders of magnitude. A clear minimum of the dephasing can be identified, which allows us
to determine the zero-crossing of the s-wave scattering length with high precision. At the
interaction minimum, more than 2 × 104 oscillations can be observed with high contrast,
thus surpassing the formerly achieved record value of 4000 Bloch oscillations of a thermal
cloud of 89Sr atoms [Fer06]. For non-zero interactions, we quantify the dephasing of Bloch
oscillations and find excellent agreement with the predictions in [Wit05].

Bloch waves and the acceleration theorem are well suited to model the atomic motion in
a shallow lattice potential with a weak force. For deep lattices and large forces it is advanta-
geous to introduce a new basis of localized eigenstates, called Wannier-Stark states [Kan95].
A large force shifts the harmonic oscillator energy levels of the lattice sites and forms an array
of independent BECs. Within this model, Bloch oscillations are a result of the matter wave in-
terference of independent BECs, where the phase evolution at each site is driven by the local
potential. Matter wave interference was first observed as a single particle effect for electrons
[Dav27], neutrons [Hal36], atoms and molecules [Est30]. More than half a century later it
was possible to demonstrate matter wave interference of macroscopic objects by means of
two independent atomic BECs [And98]. Matter wave interferometers [Ber97, Cro09, Har07],
in particular for precision measurements, are typically operated in the dilute single parti-
cle limit [Wic02, Cla06a, Fix07] to avoid particle-particle interactions. Atom interferometers
based on BECs are expected to benefit from the extremely low momentum spread, the excep-
tional brightness, and the low spatial extent of the BEC [Gup02], but they enter the nonlinear
matter wave regime as a result of the interaction-induced mean field potential. While chap-
ter 5 offers a possible solution by operating the interferometer in the non-interacting limit,
we demonstrate in chapter 6 that a BEC-based multipath atom interferometer is possible,
where the dynamics is dominated by interaction-induced phase shifts. In addition to the
linear phase shift due to the lattice tilt, which leads to Bloch oscillations, there are phase
shifts caused by interactions and by the external trapping potential. We observe a charac-
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teristic time-evolution and revivals of the interference pattern, which are closely connected
to the theory of quantum carpets [Kap00] and Talbot effects [Ber97, Den99]. The ability to
tune interactions allows us to reverse the nonlinear phase evolution and thereby to refocus
the wave function of the BEC in momentum space. By means of the external potential we
cancel the dominant mean field contribution to the phase evolution and we become sensi-
tive to beyond-mean field effects. Recently, coherent phase shifts due to interparticle inter-
actions have been observed in Ramsey interferometry experiments with a two-component
BEC [And09].

Bloch oscillations result from a constant force, but what is the effect of a periodically
forced driving? The amplitude, frequency and phase of the driving force effect the evolution
of the particle’s wave function both in position and momentum space. Important effects,
already observed in solid state superlattices, constitute dynamic localization and resonant
tunneling [Kea95]. Dynamic localization occurs for certain values of the driving amplitude,
when an initially localized wave packet remains perpetually localized [Eck09]. It has been
observed for matter waves in optical lattices [Lig07] and can be employed to drive a su-
perfluid to Mott insulator like phase transition [Zen09]. The frequency of the drive can be
used to control the probability of tunneling between lattice sites showing certain resonance
frequencies [Eck05]. This effect of resonant tunneling of matter waves in optical lattices has
been observed between nearest and next nearest neighboring sites [Iva08] and in form of
a two-phonon resonance [Sia08]. There is a close analogy to photon-assisted tunneling in
microwave-driven superconducting Josephson junctions [Eck05, Kea95]. In chapter 8 we ex-
tend the observation tunneling resonances up to the 16th-phonon resonance to the nearest
and up to the 5th-phonon resonance to the next nearest neighboring site.

Unlike references [Lig07, Iva08, Sia08, Alb09], which study the broadening of an atomic
cloud due to periodic driving, in chapter 7 we focus on the center-of-mass motion of a
weakly-interacting atomic BEC in a tilted lattice potential. We demonstrate that harmonic
driving can lead to a directed center-of-mass motion. If the modulation frequency of the
driving force is close but not equal to the Bloch frequency, we observe giant matter-wave os-
cillations that extend over hundreds of lattice sites. These super Bloch oscillations result from
a beat between the usual Bloch oscillations and the drive, and they represent rescaled Bloch
oscillations in position space. We study the dependence of sBOs on lattice depth, modula-
tion amplitude, and modulation frequency and find excellent agreement with the theoretical
prediction in [Kol09]. It is commonly assumed that Bloch oscillations or Wannier-Stark lo-
calization prevent transport on a single particle level [Kan95] and that additional dissipative
effects such as scattering from lattice defects or lattice phonons are necessary to ensure con-
ductance [Ash76]. We demonstrate that super Bloch oscillations provide two mechanisms
to circumvent localization and to induce coherent transport in an otherwise insulating con-
text [Hal10a]. Recently, a different method to achieve dissipationless transport was demon-
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strated, which relies on the ability to shape and to control the lattice potential [Sal09]. A
sawtooth-like optical lattice potential with a periodically modulated amplitude resembles
the quantum analog of a ratchet, and it allows for directed motion of the atoms.

1.5 Outlook

All experiments within this thesis rely on contact-interactions. The scattering potential of
contact-interactions can be approximated by a δ-function, it is isotropic in space and, not
surprisingly, of short range. How do the properties of a gas in 1D geometry change for a
different type of scattering potential?

Especially dipole-dipole interactions are a promising candidate to answer this question
with experiments in the near future. Atoms with a large magnetic dipole moment, like
chromium [Gri06], allow adjusting the relative strength of the contact potential and the
dipole potential via magnetic FBRs. For finite scattering length quantum degeneracy can be
reached via evaporative cooling, whereas magnetic dipole interactions dominate at a scatter-
ing length close to zero [Lah07]. A different approach is taken for polar molecules. Usually,
only molecule-molecule collisions in the rovibronic ground state preserve the internal state
and they allow for sufficient stability of the sample. Here, unbound atoms are first brought
to quantum degeneracy by conventional cooling methods, they are then converted to Fesh-
bach molecules [Her03] and finally transferred to the rovibronic ground state by means of a
STIRAP technique [Dan08, Ni08]. It is suggested to tune the dipole interaction strength with
a combination of DC and AC microwave fields [Mic07]. In Innsbruck a quantum gas of Cs2

molecules in the rovibronic ground state has been realized [Dan10], and recently polar RbCs
Feshbach molecules have been created. The expected dipole moment of ground state RbCs
molecules is 1.25 D. An experiment with Erbium atoms with an effective dipole moment of
0.065 D is currently set up.

A dipole potential adds two new aspects to many-body physics in low-dimensional sys-
tems. The dipole-dipole interaction is not spherically symmetric in space but depends on
the relative orientation of both dipole moments. Secondly, the scattering potential shows a
spatial r−β dependence, with β = 3 to 5 depending on the relative orientation of the dipoles.
Due to its “slow” decay, the scattering potential it is often called long range. There are sev-
eral definition of the term “long range”. Often a potential is called long range if the resulting
chemical potential is an extensive quantity, i.e. more than local particles contribute towards
the interaction energy. It follows immediately from this definition that β must be smaller or
equal to the dimensionality of the system [Ast08]. As a result the dipole potential is long
range in 3D geometry, but it is short range in 1D systems.

Most of the concepts introduced in this chapter still hold for dipolar interactions. The
theory of Luttinger liquids is introduced phenomenologically and it is not based on the exact
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shape of the interaction potential. For β > 1 the power law scaling of the interaction potential
changes the Luttinger parameter K, but the correlations and the hydrodynamic properties
of the system are set for a particular value ofK . A relation between β andK can be found in
[Dal10]. For both, fermions and bosons, a dipole potential with β = 3 results in 1 ≥ K > 0,
where K = 1 corresponds to non-interacting fermions and K = 0 corresponds to a system
with long range order. In this respect, dipolar systems provide direct access to the super
Tonks Girardeau regime. No CIR and no preparation trick is necessary as it is the true ground
state of the system. The frequency of the breathing mode is calculated in [Ast08] and it shows
similar properties as demonstrated in chapter 3.

Effects of the dipole potential become apparent if another potential with a comparable
length scale is introduced, e.g. an optical lattice potential. Here, several Mott insulating
phases are possible, which differ in the filling fraction. In fact, a filling with q atoms dis-
tributed over p sites results in Mott phases for any rational fraction ν = q/p. For each phase
the system is stable over a finite interval of the chemical potential µ, with a dependence
µ(ν). This monotonically increasing function, which exhibits steps at each rational num-
ber, is called devil’s staircase or cantor function [Bur09]. As a result, the phase diagram is
strongly enriched. Already for singly occupied lattice sites, it contains an infinite number of
Mott-insulating lobes for various filling factors. A further increase of complexity is possible
by allowing for double occupancy [Bur09].
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We report on the observation of confinement-induced resonances in strongly interacting
quantum-gas systems with tunable interactions for one- and two-dimensional geometry.
Atom-atom scattering is substantially modified when the s-wave scattering length ap-
proaches the length scale associated with the tight transversal confinement, leading to char-
acteristic loss and heating signatures. Upon introducing an anisotropy for the transversal
confinement we observe a splitting of the confinement-induced resonance. With increasing
anisotropy additional resonances appear. In the limit of a two-dimensional system we find
that one resonance persists.
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Confinement-induced resonances in low-dimensional quantum systems

2.1 Introduction

Low-dimensional systems have recently become experimentally accessible in the context of
ultracold quantum gases. For a two-dimensional (2D) geometry, the Berezinskii-Kosterlitz-
Thouless (BKT) transition has been observed [Had06], and in one dimension the strongly-
correlated Tonks-Girardeau (TG) [Gir60, Kin04, Par04, Sya08, Hal09] and super-Tonks-Girar-
deau (sTG) gases [Hal09] have been realized. In these experiments steep optical potentials
freeze out particle motion along one or two directions and restrict the dynamics to a plane
or to a line. Such quasi-2D or quasi-1D systems can be realized with ultracold gases when
the kinetic and the interaction energy of the particles are insufficient to transfer the particles
to transversally excited energy levels. Whereas the confinement removes motional degrees
of freedom, it also provides an additional structure of discrete energy levels that can be used
to modify scattering along the unconfined direction and by this to effectively control the in-
teraction properties of the low-dimensional system [Ols98, Pet00, Ber03]. In this Letter, we
investigate the few-body scattering processes that give rise to the capability to tune interac-
tions and hence to drastically alter the properties of low-dimensional many-body quantum
systems [Hal09].

In three-dimensional (3D) geometry magnetically-induced Feshbach resonances
(FBRs) [Chi10] allow tuning of the inter-particle interaction strength. A FBR occurs when
the scattering state of two atoms is allowed to couple to a bound molecular state. Typi-
cally, scattering state and bound state are brought into degeneracy by means of the mag-
netically tunable Zeeman interactions. For particles in 1D and 2D geometry a novel type of
scattering resonance occurs. Coupling between the incident channel of two incoming par-
ticles and a transversally excited molecular bound state generates a so-called confinement-
induced resonance (CIR) [Ols98, Pet00, Ber03, Tie00, Yur05, Mel07, Sae08, Kim05, Nai07]. A
CIR occurs when the 3D scattering length a3D approaches the length scale that character-
izes the transversal confinement, i.e. the harmonic oscillator length a⊥ =

√
~/(mω⊥) for

a particle with mass m and transversal trapping frequency ω⊥. This causes the 1D cou-
pling parameter g1D = 2~2a3D

ma2⊥

1
1−Ca3D/a⊥

to diverge at a⊥ = Ca3D, where C = 1.0326 is a
constant [Ols98, Ber03]. The CIR allows tuning of interactions from strongly repulsive to
strongly attractive and thus represents a crucial ingredient for the control of interactions
in a low-dimensional system. Modification of scattering properties due to confinement has
been measured near a FBR for fermions [Gün05], and, recently, a CIR has been observed
for a strongly-interacting 1D quantum gas of bosonic Cs atoms and was used to drive the
crossover from a TG gas with strongly repulsive interactions to an sTG gas with strongly
attractive interactions [Hal09]. Here, for an ultracold quantum gas of Cs atoms with tunable
interactions, we study the properties of CIRs by measuring particle loss and heating rate
and, in particular, confirm the resonance condition a⊥ = Ca3D for symmetric 1D confine-
ment. For the case of transversally anisotropic confinement we find that the CIR splits and,
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Figure 2.1: (color online) (a) Illustration of the mechanism responsible for a CIR, see Ref.[Ber03] and
text for details. The energy levels near a scattering resonance are plotted as a function of 1/a3D. The
CIR occurs for Ca3D = a⊥ when scattering atoms are allowed to couple to transversally excited
bound states. (b) indicates the shift and splitting for anisotropic confinement characterized by ∆ω.
(c) Experimental configuration. Two laser beams create an optical lattice that confines the atoms to
an array of approximately 3000 independent, horizontally-oriented elongated 1D tubes. (d) Tuning
of a3D is achieved by means of a FBR with a pole at B = 47.78(1) G [Lan09].

to our surprise, persists for positive a3D even when the anisotropy reaches the limit of a 2D
system.

2.2 Confinement induced resonances

Figure 2.1(a) reviews the basic mechanism that causes a CIR for zero collisional energy in 1D
[Ber03]. It is assumed that in 3D the scattering potential supports a single universal bound
state for strong repulsive interactions (dotted line) [Chi10]. The point where the incoming
channel of two colliding atoms and the universal dimer state are degenerate marks the po-
sition of a 3D FBR (triangle). In 1D, strong transversal confinement shifts the zero-energy
of the incoming channel (middle dashed line) and introduces a transversally excited state
(upper dashed line). As a result of the strong confinement, the universal dimer state with
binding energy EB (lower solid line) exists also for attractive interactions [Mor03a] whereas
the original 3D FBR has disappeared. Instead, there is a CIR (star) when the incoming scat-
tering channel becomes degenerate with the transversally excited molecular bound state
(upper solid line). It is assumed that the binding energy of this state is also EB, shifted by
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Figure 2.2: (color online) Particle loss and heating rates in the vicinity of a CIR. (a) The number N of
remaining atoms after τ = 200 ms shows a distinct drop (“edge”) when B is scanned across the CIR.
A clear shift of the position of the edge to lower values for B can be observed when the transversal
confinement is stiffened, ω⊥ = 2π × (0.84, 0.95, 1.05) × 14.2(2) kHz (circles, squares, triangles). (b)
Position of the edge (circles) as determined from the intersection point of a second-order polynomial
fit to the minimum for N and the initial horizontal baseline as shown in (a), converted into values for
a3D. For comparison, the position of the minimum (triangles) is also shown. The solid line is given
by Ca3D = a⊥. (c) Heating rates near the CIR (circles). For comparison, N is also shown (triangles).
Here, ω⊥ = 2π × 12.0(2) kHz. All error bars reflect 1σ statistical uncertainty.

2~ω⊥[Ols98]. In more detail, as depicted in Fig. 2.1(b), we assume that the energy levels of
non-interacting atoms, as a result of cylindrically symmetric transversal confinement, can be
approximated by those of a 2D harmonic oscillator withEn1,n2 = ~ω⊥(n1 +n2 +1) and quan-
tum numbers n1 and n2 belonging to the two Cartesian directions. Scattering atoms [Sep] in
the transversal ground state (0, 0) can couple to the excited states (n1, n2) if the parity of the
total wave function is preserved [Kim05]. The energetically lowest allowed excited states
are threefold degenerate with an energy E = 3~ω⊥ and with quantum numbers (1, 1), (2, 0)

and (0, 2). For the transversally symmetric confinement, they contribute towards a single
CIR [Ber03]. However, the contribution of the state (1,1) is negligible due to the zero contact
probability of the atoms and the short-range character of the interatomic interaction. Un-
equal transversal trapping frequencies ω1 and ω2 = ω1 + ∆ω lift this degeneracy and shift
the energy levels according to En1,n2 = ~ω1(n1 + n2 + 1) + ~∆ω(n2 + 1/2). One thus expects
a splitting of the CIR.
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2.3 Experimental procedure

We start from a tunable Bose-Einstein condensate (BEC) of 1.0 to 1.4 × 105 Cs atoms in the
energetically lowest hyperfine sublevel [Kra04] confined in a crossed-beam optical dipole
trap and levitated against gravity by a magnetic field gradient of |∇B| ≈ 31.1 G/cm. Tun-
ability of a3D is given by a FBR as shown in Fig. 2.1(d) with its pole at B0 = 47.78(1) G and
a width of 164 mG [Kra04, Lan09]. The BEC is produced at a3D ≈ 290 a0. We load the atoms
within 300 ms into an optical lattice, which is formed by two retro-reflected laser beams at
a wavelength of λ = 1064.49(1) nm, one propagating vertically and one propagating hor-
izontally as illustrated in Fig. 2.1(c). These lattice beams confine the atoms to an array of
approximately 3000 horizontally oriented, elongated 1D tubes with a maximum occupation
of 60 atoms at a linear peak density of approximately n1D ≈ 2/µm. Weak longitudinal con-
finement results from the Gaussian-shaped intensity distribution of the beams. We raise the
lattice to a depth of typically V = 30 ER, where ER = h2/(2mλ2) is the photon recoil energy.
At this depth, the resulting transversal and longitudinal trap frequencies are ω⊥ = 2π× 14.5

kHz and ω‖ = 2π × 16 Hz and we then have a⊥ ≈ 1370 a0. After loading we slowly ramp
down |∇B| in 50 ms and adiabatically increase a3D to 915 a0 in 100 ms to create a TG gas
with well-defined starting conditions near the CIR [Hal09]. To detect the CIR as a function
of B, manifested by a loss resonance, we quickly set B in less than 200 µs to the desired
value, wait for a hold time of typically τ = 200 ms, and then measure the number N of
remaining atoms by absorption imaging. For this, we re-levitate the atoms, ramp down the
lattice beams adiabatically with respect to the lattice band structure, and allow for 50 ms of
levitated expansion and 2 ms time-of-flight. Note that τ is chosen to be much longer than the
lifetime of the sTG phase [Hal09].

2.4 Transversally symmetric confinement

We observe the CIR in the form of an atomic loss signature as shown in Fig. 2.2. We at-
tribute the loss near the resonance to inelastic three-body collisions [Web03], which lead to
molecule formation and convert binding energy into kinetic energy, causing trap loss and
heating, similar to the processes observed near a FBR [Chi10]. In Fig. 2.2(a) the CIR can be
identified as a distinct “edge” for the atom number N . Initially, in the TG regime losses are
greatly suppressed, but increase rapidly on the attractive side of the CIR. N drops to a min-
imum when B is increased and then recovers somewhat. A clear shift of the loss signature
to lower values for B and hence lower values for a3D can be discerned when the confine-
ment is stiffened. When we identify the position of the edge with the position of the CIR,
we find good agreement with the analytical result Ca3D = a⊥ as shown in Fig. 2.2(b). As we
have no theoretical description of the detailed shape of the loss resonance, we also plot, for
comparison, the position of the minimum, which is shifted accordingly.
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Figure 2.3: (color online) Splitting of a CIR for a 1D system with transversally anisotropic confine-
ment. (a) As the horizontal confinement is stiffened, ω2/ω1 = 1.00, 1.10, 1.18 (circles, diamonds, trian-
gles) for ω1 = 2π× 13.2(2) kHz, the CIR splits into CIR1 and CIR2. (b) Position of CIR1 (a3D,1, circles)
and CIR2 (a3D,2, squares) as a function of the frequency ratio ω2/ω1. (c) Binding energy difference
∆EB as determined from the implicit equation (see text) in comparison to the expectation from the
simple harmonic oscillator model (solid line).

In Fig. 2.2(c) we juxtapose the loss and the heating rate that we measure in the vicinity
of the CIR. For this, we measure the increase of the release energy within the first 100 ms.
After holding the atoms for time τ at a given value of B, we decrease a3D back to 250 a0 in
20 ms, switch off the lattice potential and determine the release energy in the direction of the
tubes from the momentum distribution in free space expansion. We observe an increase for
the heating rate when the CIR is crossed. From a low value of 10 nK/s in the TG regime it
rises to a maximum of approximately 150 nK/s and then drops to settle at some intermediate
value. The position of the maximum agrees well with the maximum for atom loss. We check
that the system’s increase in energy is sufficiently small so that its 1D character is not lost.
The release energy, even at maximal heating, remains below kB × 30 nK, which is far below
the energy spacing of the harmonic oscillator levels, ~ω⊥ ≈ kB × 600 nK.
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2.5 Transversally asymmetric confinement

We now examine 1D systems with transversally anisotropic confinement. Starting from a
lattice depth of V = 25 ER along both transversal directions, yielding ω⊥ = ω1 = ω2 = 2π ×
13.2(2) kHz, we increase the horizontal confinement to frequencies up to ω2 = 2π × 16.5(2)

kHz, corresponding to a lattice depth of 39 ER, while keeping the depth of the vertical con-
finement constant. Fig. 2.3(a) shows a distinct splitting of the original CIR into two loss
resonances, CIR1 and CIR2. The splitting increases as the anisotropy is raised. In Fig. 2.3(b)
we plot the 3D scattering length values a3D,1 and a3D,2 that we associate with the positions
of CIR1 and CIR2 as a function of the frequency ratio ω2/ω1. For this, as it becomes difficult
to assign an edge to both of them, we simply determine the associated atom number min-
ima and subtract a constant offset of 88(7) a0 as determined from the measurement shown
in Fig. 2.2(b). One of the resonances, CIR2, exhibits a pronounced shift to smaller values for
a3D as the horizontal confinement is stiffened. The second resonance, CIR1, shows a slight
shift towards higher values for a3D. We now use the lifting of the degeneracy for the en-
ergy levels as indicated in Fig. 2.1(b) to model the observed splitting of the CIR. We assume
that the implicit equation ζ(1/2,−EB/(2~ω⊥) + 1/2) = −a⊥/a3D for the binding energy EB

[Ber03] remains approximately valid for sufficiently small ∆ω, taking ω⊥ = ω1. Here, ζ is the
Hurwitz zeta function. We translate the scattering length values a3D,1 and a3D,2 into bind-
ing energies and calculate the energy difference ∆EB = EB(a3D,1) − EB(a3D,2), shown in
Fig. 2.3(c). While this model does not explain the upward deviation seen for CIR1, the differ-
ence ∆EB is in reasonable agreement with the expected energy shift caused by the shifts of
the excited harmonic oscillator states (E0,2−E2,0) = 2~∆ω (solid line in Fig. 2.3(c)). We thus
attribute CIR2 to the stiffened confinement along the horizontal direction and hence to state
(0, 2), while CIR1 corresponds to the unchanged confinement along the vertical direction
and hence to state (2, 0).

2.6 Limit of a 2D-system

We observe the appearance of additional structure in the measured loss curves when we in-
crease the transversal anisotropy by weakening the confinement along one axis, here along
the vertical direction. Fig. 2.4(a) shows the atom number after τ = 300 ms for trapping fre-
quency ratios ω1/ω2 from 0.67 to 0.45. Multiple loss resonances appear close to the position
of CIR1. The number of resonances increases and the positions shift continuously as the
confinement is weakened. We speculate that those resonances are a result of a coupling to
additional excited states, resulting in a multi-channel scattering situation. Also the weaken-
ing of the confinement could induce sufficient anharmonicity to allow for violation of the
parity rule [Pea05].

Surprisingly, we find that one of the CIRs persists in the limit of a 2D system. Previous
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Figure 2.4: (color online) (a) Appearance of additional structure in the vicinity of CIRs for strongly
anisotropic transversal confinement. The trap frequencies are ω2 = 2π × 16.6(2) kHz and ω1/ω2 =
0.67, 0.60, 0.53, 0.49, 0.45 from top to bottom. (b) Transition from 1D to 2D confinement. As the hor-
izontal lattice is ramped down, CIR2 shifts and persists, while CIR1 disappears (ω1 = 2π × 13.0(2)
kHz and ω2/ω1 = 0.58, 0.42, 0.00 for squares, circles, and triangles). (c) Scaling of the CIR’s position
in 2D, in analogy to the 1D case shown in Fig. 2.2(b). The position of the CIR as determined from the
edge (circles) and, alternatively, from the minimum in atom number (triangles) shifts to lower values
for a3D as the confinement is stiffened and a⊥,2D is reduced. The solid line is a linear fit according to
C2Da3D = a⊥,2D with C2D = 1.19(3).

theoretical studies on 2D systems have predicted the appearance of a CIR for negative a3D,
but not for positive a3D [Pet01, Nai07]. In the experiment, we reduce the horizontal con-
finement while keeping the vertical confinement constant to probe the transition from the
array of tubes to a stack of pancake-shaped, horizontally-oriented 2D systems. Trapping in
the horizontal direction is still assured, now by the Gaussian profile of the vertically prop-
agating laser beam, for which ω2 = 2π × 11 Hz. Fig. 2.4(b) shows that the CIR associated
with the tight confinement shifts to lower values for B and hence for a3D as the horizontal
confinement is weakened. In the limit of 2D confinement, one of the CIRs, and in fact all
the additional structure observed above, have disappeared, but one resonance persists. To
check that the observed resonance is indeed the result of the 2D confinement, we vary the
confinement along the tight vertical direction. Fig. 2.4(c) plots the positions of edge and min-
imum of the loss signature as a function of a⊥,2D, the confinement length associated with
this direction. When we again associate the edge with the pole of the resonance, we obtain
C2Da3D = a⊥,2D with C2D = 1.19(3), where C2D is a scaling factor similar to C for the 1D
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case. Further scattering experiments are needed to elucidate the energy dependence of this
2D scattering resonance.

In summary, we have investigated the properties of CIRs, which appear in low-dimensional
quantum systems as a result of tight confinement and which replace “conventional” 3D Fes-
hbach resonances to tune the effective atomic interaction strength. We observed a splitting of
the CIR for anisotropic transversal confinement, the appearance of multiple resonances for
strongly anisotropic confinement, and the survival of one resonance for positive a3D in the
limit of 2D confinement. We expect that CIRs will not only be used in 1D geometry to tune
the effective interaction strength as recently demonstrated [Hal09], but also in 2D geometry
and mixed dimensions [Lam10] for the study of strongly-interacting quantum systems.
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Ultracold atomic physics offers myriad possibilities to study strongly correlated many-
body systems in lower dimensions. Typically, only ground state phases are accessible. Us-
ing a tunable quantum gas of bosonic cesium atoms, we realize and control in one di-
mensional geometry a highly excited quantum phase that is stabilized in the presence
of attractive interactions by maintaining and strengthening quantum correlations across
a confinement-induced resonance. We diagnose the crossover from repulsive to attractive
interactions in terms of the stiffness and the energy of the system. Our results open up the
experimental study of metastable excited many-body phases with strong correlations and
their dynamical properties.
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3.1 Introduction

In many-body quantum physics the interplay between strong interactions and confinement
to a low-dimensional geometry amplifies the effects of quantum fluctuations and correla-
tions. A remarkable example in one dimension is the Tonks-Girardeau (TG) gas, where
bosons with strong repulsive interactions minimize their interaction energy by avoiding
spatial overlap and acquire fermionic properties [Gir60, Lie63b]. Evidence for this ground
state phase was found using Bose-Einstein condensates (BEC) loaded into optical lattices
[Par04, Kin04]. While many-body quantum systems are usually found in their ground state
phases, long-lived excited state phases are responsible for some of the most striking physical
effects, examples ranging from vortex lattices in superfluids to subtle topological excitations
in spin liquids [Ale06]. However, the experimental realization of excited phases is difficult,
as these usually quickly decay by intrinsic effects or by coupling to the environment. In this
context, cold atoms [Pet00, Mor03a, Par04, Kin04, O’H04, Pet07, Hof07, Sya08, Blo08] may
provide unique opportunities for the realization of long-lived, strongly interacting, excited
many-body phases due to the excellent decoupling from the environment and the tunability
of interactions via, for example, Feshbach resonances.

For an ultracold one-dimensional (1D) system of bosons, we prepare a highly-excited
many-body phase known as the super-Tonks-Girardeau (sTG) gas [Ast05]. In this highly-
correlated quantum phase, interactions are attractive, and rapid decay into a cluster-type
ground state is in principle possible. However, a surprising property of this many-body
phase is its metastability. Attractive interactions strengthen correlations between particle
positions and ensure, similar to an effective long-range repulsive interaction, that particles
rarely come together. To realize this exotic phase, we observe and exploit a 1D confinement-
induced resonance (CIR) [Ber03, Ols98]. This resonance allows us to first enter deeply into
the repulsive TG regime to establish strong particle correlations and then to switch interac-
tions from strongly repulsive to strongly attractive. The frequency ratio of the two lowest-
energy collective modes [Men02] provides accurate diagnostics for the crossover from the
TG to the sTG regime. In particle loss and expansion measurements we study the time evo-
lution of the system through the crossover.

3.2 Scattering in 1D systems

We tune the strength of the interaction as characterized by the three-dimensional (3D) scat-
tering length a3D by means of a magnetically-induced Feshbach resonance [Ino98]. For a 1D
system, a CIR arises and strongly modifies the 1D scattering properties when a3D approaches
the harmonic oscillator length a⊥ =

√
~/(mω⊥) of the transversal confinement with trap fre-

quency ω⊥ [Ols98, Ber03]. Here, m is the mass of the particles and ~ is Planck’s constant
divided by 2π. More precisely, the coupling constant g1D of the 1D δ-function contact poten-
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tial U1D(z) = g1Dδ(z) behaves as [Ber03]

g1D = − 2~2

ma1D
=

2~2a3D

ma2
⊥

1

1− C a3D/a⊥
, (3.1)

where a1D is the 1D scattering length defined by this equation and C = 1.0326 is a constant.
Thus, the CIR allows tuning of g1D. For values of a3D less but close to a⊥/C (a3D . a⊥/C) the
coupling parameter g1D is large and positive, and for a3D & a⊥/C it is large and negative,
leading to an effectively attractive interaction. For homogenous systems with g1D > 0, it
is customary to characterize the strength of interactions by the Lieb-Liniger parameter γ =

g1Dm/(~2n1D), where n1D is the linear 1D density of the system [Lie63b, Pet00]. The TG gas
corresponds to the limit γ � 1 or g1D→∞. As interactions are increased, the system becomes
strongly correlated and is fully dominated by its kinetic energy. In previous experiments,
without the capability to tune a3D, a maximum of γ ≈ 5.5 was achieved [Kin04], while
an effective strength γeff ≈ 200 was reached with an additional shallow lattice potential
along the longitudinal direction [Par04]. In the former experiment, a saturation for the size
and energy of the 1D system was observed, and in the latter experiment the momentum
distribution was studied.

But what happens in the case of strong attractive interactions g1D→−∞, i.e. a1D & 0? The
ground state for a system ofN attractively interacting bosons in 1D is a cluster state [McG65,
Tem08], which one would expect, in a cold atom system, to decay quickly via molecular
channels. However, by crossing the CIR from the TG side, i.e. switching interactions from
g1D = +∞ to g1D = −∞, an excited gas-like phase, the sTG gas, should be accessible [Ast05].
Is this excited phase stable, i.e. does it exist at all? The expectation is that the large kinetic
energy inherited from the TG gas, in a Fermi-pressure like manner, prevents the gas from
collapsing [Bat05]. This stability can most simply be inferred from a Bethe-ansatz solution to
the Lieb-Liniger model with attractive interactions [Ast04, Bat05]. This ansatz yields for the
energy per particle E/N ≈ ~2π2n2

1D/[6m(1−n1Da1D)2], corresponding to the energy of a gas
of hard rods [Gir60], for which a1D represents the excluded volume. This results in a positive
inverse compressibility and also in an increased stiffness of the systems as long as n1Da1D is
sufficiently small. Interestingly, in this phase the density correlations are even stronger than
in the TG gas, as they show a power-law decay that is slower than for a TG gas [Ast05],
indicating an effective long-range interaction.

We realize the crossover all the way from a non-interacting gas via the 1D mean-field
Thomas-Fermi (TF) regime to a TG gas and then to a sTG gas. We exploit the fact that our 1D
systems possess weak harmonic confinement along the axial direction characterized by the
confinement length a‖. Whereas the frequency ωD of the lowest dipole mode depends only
on the confinement, the frequency ωC of the lowest axial compressional mode is sensitive
to the various regimes of interaction [Men02]. For the non-interacting system one expects
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Figure 3.1: (color online) A, Experimental setup. The lattice potential is created by two retro-reflected
laser beams confining the atoms to an array of one-dimensional tubes with equipotential surfaces
shown in red. B, Along each tube (left) we excite the lowest compressional mode (center) and com-
pare its frequency to the dipole mode (right). C, The strength of the interatomic interaction is adjusted
by tuning the s-wave scattering length a3D. The background scattering length rises gently from 0 to
1240 a0 when the magnetic field B is tuned from 17 to 76 G. Further tuning is possible near a Fesh-
bach resonance at 47.78(1) G to absolute values beyond 4000 a0. The dashed line indicates a⊥/C for a
transversal trap frequency of ω⊥ = 2π × 13.1 kHz. D and E present typical data sets for the compres-
sional mode in the TG and sTG regime at a3D = 875(1) a0 and a3D = 2300(200) a0, respectively. The
upper panels show the atom number, the lower panels show the 1/e-cloud-width after time-of-flight.
The solid lines in the lower panels are sinusoidal fits (see online material), yielding the oscillation
frequencies ωC = 2π × 30.6(3) Hz and ωC = 2π × 241(1) Hz, respectively.
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R ≡ ω2
C/ω

2
D = 4. This value then changes to R = 3 for weakly repulsive interactions in a

1D TF regime [Mor03a]. For increasing positive interaction strength, R is expected to change
smoothly to 4 when entering the TG regime as the system becomes fermionized and hence
effectively non-interacting. A rise beyond the value of 4, after crossing the CIR, would then
constitute clear evidence for the sTG regime [Ast05]. As a1D is further increased, the system
will finally become unstable and R is expected to turn over and drop towards zero. For a
harmonically confined system, the point of instability is reached when the overall length of
the system of hard rods, Na1D, becomes of the order of the size

√
Na‖ for the wave function

of N non-interacting fermions, i.e. A ≡ Na1D/(
√
Na‖) ≈ 1. We use A2 as an alternative

parameter to γ to characterize the strength of the interaction as it accounts for the harmonic
confinement.

3.3 Experimental procedure

We start from a 3D Bose-Einstein condensate (BEC) with up to 2 × 105 Cs atoms with no
detectable thermal fraction in a crossed-beam dipole trap with magnetic levitation [Web03].
Depending on the interaction regime to be studied, we then set the number of atoms in the
BEC to values in the range of (1− 4)× 104 by means of forced radio-frequency evaporation.
To confine the atoms in 1D, i.e. to freeze out transversal motion, we use a two-dimensional
optical lattice [Blo08], which forms an array of vertically oriented elongated tubes with an
aspect ratio that we set to values between 100 and 1000 (Fig. 3.1A). We occupy between
3000 − 6000 independent tubes with 8-25 atoms in the center tube. The interaction strength
g1D is controlled by magnetic tuning of a3D by means of a combination of a broad and a
narrow Feshbach resonance (Fig. 3.1C) with poles at B = −11.1(6) G and B = 47.78(1) G
and widths of about 29.2 G and 164 mG, respectively [Lan09]. The broad resonance provides
a slow variation of a3D, allowing us to gently tune a3D from 0 a0 near 17.119 G to about 1240

a0 near 76 G, while the narrow resonance allows us to tune a3D to absolute values beyond
4000 a0 given our magnetic field control. We convert the applied magnetic field B into a3D

using the fit formula of Ref. 23. A magnetic field gradient, used to levitate the atomic sample
[Mat], introduces a small spread in the value of a3D across the sample.

To determine the oscillation frequencies ωC and ωD of the fundamental modes (Fig. 3.1
B), we excite each mode separately at a given value of the magnetic field B [Mat] and let
the atoms evolve for a varying amount of hold time. The distribution is then imaged in
momentum space by taking an absorption picture after release and expansion. To avoid
possible broadening effects due to interaction during the initial expansion, a3D is set to zero
near B = 17.119 G at the moment of release. To extract the frequency, we determine for each
hold time the axial 1/e-width of the distribution and then fit a damped sinusoid with linear
offset to this data. Typical measurements of ωC are shown in Fig. 3.1 D and E. Whereas
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Figure 3.2: (color online) Transition from the non-interacting regime via the mean-field TF regime
into the TG regime. The squared frequency ratio R = ω2

C/ω
2
D of the lowest compressional mode with

frequency ωC and the dipole mode with frequency ωD serves as an indicator for the different regimes
of interaction. For increasing interactions from γ = 0 to γ ≈ 500 the system passes from the ideal
gas regime (R = 4) to the 1D TF regime (R ≈ 3) and then deeply into the TG regime (R = 4). The
inset shows the transition from the non-interacting regime to the mean-field regime in more detail.
The vertical error bars refer to standard error and the horizontal error bars reflect the uncertainty in
determining a1D and n1D (see online material). The horizontal error bar on the data point at γ = 0
(not shown in the inset) is ±0.03 a0 .

the atom number remains constant for g1D > 0, we observe some atom loss and a slight
broadening of the distribution for attractive 1D interactions. In all parameter regimes, the
1D system is sufficiently stable to allow a reliable measurement of ωC .

3.4 Transitions between the mean field, TG and STG regimes

First, we show that we can tune the system from the non-interacting regime deeply into the
repulsive TG regime (Fig. 3.2). In agreement with expectations, the value for R = ω2

C/ω
2
D

first drops from 4 to 3 and then increases back to 4 as γ is tuned by means of the gently-
varying background scattering length. We find that the TG regime is fully reached for γ > 50.
A further increase to values up to γ ≈ 500 does not lead to changes for R. Note that, as a3D

approaches a⊥, the divergence of g1D according to Eq. 1 has to be taken into account when
determining γ [Mat]. Heating of the system can be excluded as we can return to a 3D BEC
without significant thermal background when ramping down the lattice potential.

The attractive regime is entered by crossing the CIR on the low-field wing of the 47.78 G
Feshbach resonance. a1D is now small and positive. The central results of this work are sum-
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marized in Fig. 3.3A and compared to the theoretical work of Ref. 13. We plot R = ω2
C/ω

2
D

as a function of the interaction parameter A2. For reference, Fig. 3.3B plots a3D, a1D, and g1D

in the vicinity of the Feshbach resonance as a function of the magnetic field B. As the CIR is
crossed and A2 is increased, R rises beyond the value of 4. This provides clear evidence for
the sTG regime as R = 4 is the maximal value for bosons with repulsive contact interaction.
This increase is expected from the model of a gas of hard rods, and our data initially follows
the prediction from this model. However, asA2 is increased,R reaches a maximum and then
starts to drop. The maximum of about 4.5 is reached for A2 ≈ 3× 10−2. The existence of the
maximum is in qualitative agreement with the results obtained from Monte-Carlo simula-
tions [Ast05]. The theoretical prediction, however, underestimates the measured R. This is
probably due to the local density approximation, which may not be applicable to our system
with low particle numbers. For comparison, the results from Fig. 3.2 for γ ≥ 1 are shown.
Note that γ ≈ 500 corresponds to small values of A2 ≈ 10−4. For this data, at higher particle
numbers, there is excellent agreement with the theoretical prediction (solid line) in the entire
crossover from the mean-field regime to the TG regime[Men02].

3.5 Losses and heating

We study the stability of the system in the crossover from the TG to the sTG regime and find
further evidence for the existence of the CIR by recording particle loss and measuring the
axial width of the atomic cloud after release from the tubes. The axial width is a measure
for the kinetic energy of the system as interactions are instantly switched off upon release.
Similar conditions are used as for the measurements on the sTG regime presented in Fig.
3.3. The TG regime is entered adiabatically to avoid the excitation of collective modes. The
system is prepared at a3D = 887(1) a0 at a magnetic field of B = 42.77(2) G with about
11 atoms in the central tube. The magnetic field is then ramped to a specific value within
0.2 ms and the sample is held at this value for a variable hold time τ from 10 to 200 ms.
a⊥ is set to 1523(6) a0. The results (Fig. 3.4) for different hold times τ in the tubes show
that, for τ = 10 ms, corresponding to the timescale of the measurements in the sTG regime
shown in Fig. 3.3, the transition from the TG to the sTG regime appears very smooth. There
is essentially no particle loss when the system is deep in the TG regime and close to the
CIR. The loss gradually increases in the attractive regime as one moves to larger values of B
and towards the pole for a1D. Correspondingly, the width of the sample exhibits a smooth
behavior across the CIR, showing a slight increase for larger B. This behavior is consistent
with the expectation of an increased energy in the sTG regime [Ast05].

For longer hold times, the data for the atom number and the sample width develop dis-
tinct features at the calculated position of the CIR. Evidently, the system is in a transient
state. For τ = 50 ms, the number of remaining atoms shows a dip that correlates with a peak
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‖. The squares show the measurements in the attractive regime (g1D < 0), providing

evidence for the super-Tonks-Girardeau gas. The circles show the transition from the TF to the TG
regime (g1D > 0, same data as in Fig. 3.2 for γ > 1). The solid (dashed) line presents the theoretical
data for g1D > 0 (g1D < 0) by Astrakharchik et al.[Ast05]. The dotted line corresponds to the model of
hard rods. For reference, the measurements for g1D < 0 are numbered. Data points 1c to 6 are taken
at ωD = 2π × 115.6(3) Hz. For data points 1a and 1b the trap frequency is ωD = 2π × 22.4(1) Hz
and ωD = 2π × 52.3(1) Hz, respectively. For all measurements in the sTG regime a⊥ = 1346(5) a0.
B, The parameters a3D (dashed-dotted), a1D (solid), and g1D (dashed) are plotted in the vicinity of
the Feshbach resonance (FR) at 47.78(1) G. The horizontal dotted line indicates the value of a⊥/C.
The pole of the CIR is at 47.36(2) G. a1D has a pole (P) at 47.96(2) G. The bell-shaped curve at the
bottom left indicates the atomic distribution as a function of the magnetic field determined from
high-resolution microwave spectroscopy.

48



Realization of an Excited, Strongly-Correlated Quantum Gas Phase

in the kinetic energy of the sample. Both features become more prominent and asymmetric
for longer hold times (τ = 100 and 200 ms). Note that, in comparison, no pronounced effects
are visible at the pole of the Feshbach resonance for a3D. Our results must be connected to
the fact that the energy spectrum of the system changes dramatically across the CIR, from
the TG to the sTG regime [Tem08]. The system acquires a deeply lying ground state together
with a family of lower lying many-body excited states, potentially opening up new decay
channels. Also, the CIR strongly modifies the two-body scattering problem, making forma-
tion of confinement-induced molecules in transversally excited trap states [Ber03] possible.

3.6 Summary

The non-trivial time evolution observed in this system raises intriguing questions on possi-
ble coupling and decay mechanisms for strongly interacting excited many-body systems, in
particular in the context of integrability of 1D systems [Kin06]. Our results offer an example
of the counter-intuitive effects that occur in many-body systems, and open up the possibility
to study the dynamical properties of strongly-correlated systems with effective long-range
interactions [Boc99, Ste08] under conditions where all parameters are tunable and, in fact,
can be changed dynamically. Similar to magnetic Feshbach resonances in atomic scattering,
we expect the confinement-induced resonance demonstrated here to serve as a general tool
to tailor interactions in 1D and possibly also in 2D systems [Pet00], allowing for the further
investigation of strongly correlated phases in the context of cold atomic gases.
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ory curves shown in Fig. 3.3A. We are indebted to R. Grimm for generous support and
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Figure 3.4: (color online) Stability and kinetic energy in the TG and sTG regimes. A, relative number
of atoms remaining and B, relative 1/e-width along the axial direction after 10 ms expansion, after
a hold time τ = 10, 50, 100, and 200 ms (circles, triangles, squares, and diamonds, respectively) at a
given magnetic fieldB. The position of the CIR, the pole of the Feshbach resonance (FR), and the pole
for a1D (P) are as indicated. For these measurements a⊥ = 1523(6) a0 and ωD = 2π × 115.6(3) Hz.
The atom number is normalized to the initial value of 1.7(1)× 104 and the width is normalized to the
initial value in the TG regime.
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3.7 Materials and Methods

3.7.1 Lattice loading

We produce a BEC of Cs atoms in the lowest hyperfine sublevel with hyperfine quantum
numbers F = 3 andmF = 3 in a crossed beam dipole trap with trap frequencies ωx,y,z = 2π×
(15, 20, 13) Hz, where z denotes the vertical direction. The BEC is adiabatically transferred
from the dipole trap to the array of tubes by exponentially ramping up the power in the
lattice laser beams with waists∼ 350 µm within 500 ms. The repulsive interaction causes the
atoms to move radially outwards during the initial phase of the lattice loading in response to
the strong local compression. We use this effect to vary the total number of tubes loaded and
hence the atom number per tube by setting a3D for the loading process to values between 40

a0 and 350 a0. For the data set in the repulsive regime (Fig. 3.3A, circles), we exponentially
ramp down the crossed beam dipole trap during the loading process and reach longitudinal
and transversal trap frequencies of ωD = 2π × 15.4(1) Hz and ω⊥ = 2π × 13.1(1) kHz
with a transversal confinement length a⊥ = 1440(6) a0. Here, depending on the regime of
interaction to be studied, the number of atoms in the central tube is set to values between 8
and 25. For the data set in the sTG regime (Fig. 3.3A, squares) we increase ωD to 2π×115.6(3)

Hz to reduce the vertical extent of the sample and hence the variation of the magnetic field
across the atom cloud, see below. For this, we keep the depth of the crossed beam dipole trap
constant during the loading process and then ramp up the power in one of the beams within
100 ms. In this regime we choose ω⊥ = 2π × 15.0(1) kHz, corresponding to a⊥ = 1346(5) a0.
The number of atoms in the central tube is set to values between 8 and 11.

3.7.2 Array of 1D tubes

The atom number per tube becomes fixed once tunneling is suppressed during the loading
process and can be determined by integrating a Thomas-Fermi profile along the tubes (1).
The number of atoms in tube (i, j) is given by

Ni,j = N0,0

[
1−

(
i
dlat

Rx

)2

−
(
j
dlat

Ry

)2
]3/2

with N0,0 =
5Ntotd

2
lat

2πRxRy
,

where Ntot is the total atom number, N0,0 is the occupation of the central tube, dlat = λ/2

is the lattice spacing at a wavelength λ = 1064.5 nm, and Rx,y are the Thomas-Fermi radii
in the horizontal directions. To calculate the effective atom number per tube N , we average
over the tubes, weighting each tube by its atom number. This procedure accounts for the fact
that we measure an averaged frequency ωC , as ωC is expected to slightly vary from tube to
tube. The result for ωC should be dominated by the more heavily occupied tubes close to the
center of the array.
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3.7.3 Magnetic levitation

To hold the (F = 3, mF = 3) atoms in the vertically oriented tubes, magnetic levitation
by means of a magnetic field gradient of 31.1 G/cm is applied. The gradient introduces a
small field spread over the atomic sample. This sets our precision to tune the interaction
strength. For the measurements in the sTG regime the distribution has a full width at half
maximum (FWHM) of 30 mG. We measure the atom distribution in the magnetic field by
driving a magnetic-field-dependent microwave transition. A typical distribution is shown
in the bottom left corner of Fig. 3.3B.

3.7.4 Excitation of collective modes

We use two different methods to excite the lowest compressional mode. For a measurement
in the mean-field regime, we use a rapid change of the interaction strength to excite the
oscillation. For this, we ramp the scattering length adiabatically in 100 ms to a value that is
approximately 50 a0 from the desired final value and then perform the last part of the ramp
non-adiabatically. For a measurement in the sTG regime, we use an analogous method. We
simply ramp sufficiently quickly, within about 5 ms, all the way from the mean-field across
the TG into the sTG regime. For the TG regime, we chose to excite the mode by compressing
the cloud adiabatically with an additional dipole trap laser beam, starting the motion by
rapidly ramping down the power of this beam. In all cases, we adjust the ramp speeds so that
the measured oscillation amplitude is within 10-20% of the initial cloud size. To excite the
dipole mode at frequency ωD, we adiabatically lower the levitating magnetic field gradient
and hence displace the cloud along the vertical direction. Quickly readjusting the gradient
back to full levitation leads to excitation of the dipole oscillation.

3.7.5 Determination of γ

We make a conservative estimate to determine the Lieb-Liniger interaction parameter γ

γ =
mg1D

~2 n1D
=

2

n1D |a1D|
.

To take into account that the atom number varies according to Ni,j , we first calculate γi,j
for every tube separately. We calculate the center density for each tube both in the mean-
field and in the TG regime and use the larger value to determine γi,j . We then take γ as the
weighted average over γi,j . The error in determining γ largely comes from the determination
of a1D, reflecting the magnetic field distribution across the sample.
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Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

One of the most remarkable results of quantum mechanics is the fact that many-body
quantum systems may exhibit phase transitions even at zero temperature [Sac00]. Quan-
tum fluctuations, deeply rooted in Heisenberg’s uncertainty principle, and not thermal
fluctuations, drive the system from one phase to another. Typically, the relative strength
of two competing terms in the system’s Hamiltonian is changed across a finite critical
value. A well-known example is the Mott-Hubbard quantum phase transition from a su-
perfluid to an insulating phase [Jak98, Gre02], which has been observed for weakly inter-
acting bosonic atomic gases. However, for strongly interacting quantum systems confined
to lower-dimensional geometry a novel type of quantum phase transition may be induced
for which an arbitrarily weak perturbation to the Hamiltonian is sufficient to drive the
transition [Gia03, Gog98]. Here, for a one-dimensional (1D) quantum gas of bosonic cae-
sium atoms with tunable interactions, we observe the sine-Gordon quantum phase transi-
tion from a superfluid Luttinger liquid to a Mott-insulator [Büc03b, Pok79]. For sufficiently
strong interactions, the transition is induced by adding an arbitrarily weak optical lattice
commensurate with the atomic granularity, which leads to immediate pinning of the atoms.
We map out the phase diagram and find that our measurements in the strongly interacting
regime agree well with a quantum field description based on the exactly solvable sine-
Gordon model [Col75]. We trace the phase boundary all the way to the weakly interacting
regime where we find good agreement with the predictions of the 1D Bose-Hubbard model.
Our results open up the experimental study of quantum phase transitions, criticality, and
transport phenomena beyond Hubbard-type models in the context of ultracold gases.

4.1 Introduction

Ultracold atomic gases are a versatile tunable laboratory system for the investigation of com-
plex many-body quantum phenomena [Blo08]. The study of quantum phases and quantum
phase transitions is greatly enriched by the possibility to independently control the kinetic
energy and the interactions. In deep optical lattice potentials the many-body dynamics for
a weakly interacting gas is, to a very good approximation, governed microscopically by a
Hubbard Hamiltonian [Jak98] with a local onsite interaction energy U and kinetic energy
J , which corresponds to tunneling of atoms from one lattice site to the next. Experiments
with Bose-Einstein condensates (BEC) of Rb atoms have demonstrated the quantum phase
transition from a superfluid phase for large J to an insulating Mott-Hubbard (MH) phase
[Gre02]. The transition between these two phases was obtained by quenching J in a lattice
of finite depth. Recent experiments with fermionic atoms have demonstrated the presence
of a fermionic MH insulating state [Jör08, Sch08], potentially opening the way to the study
of high-temperature superconductivity in proximity of the MH phase in 2D.

While the focus in the study of quantum phase transitions in the context of ultracold
atoms has so far been on Hubbard-type physics in the weakly interacting regime, novel
quantum phenomena occur in lower dimensions, where the effects of quantum fluctuations
and correlations are enhanced. In a 1D bosonic gas, strong repulsive interactions lead to the

54



Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons

Bose-Hubbard Sine-Gordon

ba
in

cr
ea

se
 la

tt
ic

e 
d

ep
th

ad
d

 c
o

m
m

en
su

ra
te

p
er

tu
rb

at
io

n

Figure 4.1: Comparing two types of superfluid-to-Mott-insulator phase transitions in 1D.
Schematic density distributions (grey) in the presence of a periodic potential (red solid line). a, Mott-
Hubbard type quantum phase transition for weak interactions [Gre02]. The system is still superfluid
at finite lattice depth (top). The transition to the insulating state is induced by raising the lattice depth
above a finite critical value (bottom). b, Sine-Gordon type quantum phase transition for strong inter-
actions [Büc03b]. In the absence of any perturbation, the system is a strongly correlated superfluid
(top). For sufficiently strong interactions, not necessarily infinitely strong, an arbitrarily weak pertur-
bation by a lattice potential commensurate with the system’s granularity induces the transition to the
insulating Mott state (bottom).

formation of a Tonks-Girardeau (TG) gas, where bosons minimize their interaction energy
by avoiding spatial overlap and acquire fermionic properties [Gir60, Kin04, Par04, Hal09].
The addition of an arbitrarily weak lattice potential commensurate with the atomic density,
i.e. n ∼ 2/λ, where n is the linear 1D density and λ/2 is the lattice periodicity, is expected to
lead to a novel kind of quantum phase transition [Gia03, Büc03b]: the strongly correlated 1D
gas is immediately pinned by the lattice and the superfluid TG phase is turned into an in-
sulating, gapped phase. Figure 4.1 contrasts the Hubbard-type superfluid-to-Mott-insulator
transition to this pinning transition. Given the universality of 1D quantum physics, the pin-
ning transition will occur for interacting bosons as well as for fermions in 1D and has been
discussed with respect to a variety of quantum models in low dimensions [Gia03].

4.2 The pinning transition

The pinning transition is described by the (1+1) quantum sine-Gordon (sG) model, which
is an exactly solvable quantum field theory, extensively studied in high energy, condensed
matter, and mathematical physics [Gog98]. The sG Hamiltonian reads

H =
~vs
2π

∫
dx[(∂xθ)

2 + (∂xφ)2 + V cos(
√

4Kθ)]. (4.1)

Here, ∂xθ and ∂xφ are the fluctuations of the long-wavelength density and phase fields θ
and φ, respectively, of the hydrodynamic description of the 1D liquid with commutation
relation [∂xθ(x), φ(y)] = iπδ(x − y), vs is the velocity of the soundlike excitations of the 1D
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Figure 4.2: Transport measurements on the 1D Bose gas. Center-of-mass displacement x0 as a func-
tion of a3D for different values of V (V = 9.0(5)ER (diamonds), V = 5.0(3)ER (squares), V = 2.0(1)ER
(circles)). We extrapolate the linear slope at small values for a3D and associate the transition point
with the axis intercept. For the data with V = 2.0(1)ER transport is not fully quenched as the condi-
tion of commensurability is not fulfilled for all atoms. All errors are the 1σ statistical error. The inset
plots the mesured critical ratio (U/J)c at the transition point as a function of lattice depth V . The
dashed line indicates the theoretical result (U/J)c ≈ 3.85 for the 1D Bose-Hubbard regime [Rap99].

gas, V = V nπ/(~vs) is proportional to the depth V of a weak lattice [Gia03, Büc03b], and
~ is Planck’s constant h divided by 2π. For vanishing lattice V = 0, Eq. (4.1) describes a
Luttinger liquid, where the strength of interactions is parameterized by the dimensionless
parameter K = ~πn/(mvs), which determines the long-distance power-law decay of the
correlation functions, e.g. 〈n(x)n(x′)〉 ∼ n2 + cK/(x − x′)2 + c′ cos(2πn ∗ (x − x′))/(x −
x′)2K + ... , with c and c′ constants and m the atomic mass. The sG model with a weak
but finite lattice predicts a quantum phase transition of the Berezinskii-Kosterlitz-Thouless
(BKT) type between a superfluid state for K > Kc = 2, where the shallow lattice is an
irrelevant perturbation, to an insulating Mott phase for K < Kc, for which the spectrum is
gapped for any value of V .

While in general K is a phenomenological parameter, in the case of a 1D bosonic gas it
can be microscopically related to the Lieb-Liniger parameter γ = mg/(~2n), which charac-
terizes interactions in a homogenous 1D system [Lie63b] (see Methods). Here, g ' 2~ω⊥a3D

is the coupling constant of the 1D δ-function interaction potential U(x) = gδ(x), where ω⊥
is the frequency of transverse confinement and a3D is the 3D scattering length. The strength
of interactions, and thus K, can be tuned by varying a3D near a Feshbach resonance [Chi10].
The TG regime corresponds to γ � 1. Using the relation between K and γ, Büchler and
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coworkers [Büc03b] have shown that particles are pinned for experimentally accessible val-
ues of γ > γc ' 3.5 in the limit of a vanishingly weak lattice. The pinning transition is
expected to continuously transform into the MH-type quantum phase transition, which oc-
curs for the weakly interacting gas when the lattice depth becomes sufficiently large. Here,
using a quantum gas of caesium (Cs) atoms with tunable interactions confined to an array of
independent 1D tubes (see Methods), we drive the superfluid-to-Mott-insulator phase tran-
sition by varying γ and determine the phase boundary all the way from the strongly to the
weakly interacting regime using modulation spectroscopy and measurement of transport.
For shallow lattices under conditions of commensurability, we observe immediate pinning
of the particles for strong interactions when γ > γc.

4.3 Experimental procedure

We first discuss our experiments in the strongly interacting regime. We start with a 3D Bose-
Einstein condensate (BEC) of typically 1.3×105 Cs atoms without detectable thermal fraction
in a crossed-beam dipole trap with magnetic levitation [Kra04] and initialize our system by
creating a conventional 3D MH-state in a deep 3D lattice at U/(6J) ≈ 75 with precisely
one atom per lattice site [Gre02]. We find, by reversing the loading, that the procedure does
not lead to heating of the sample. The array of 1D tubes is obtained by reducing the lattice
depth V along one direction. Our procedure ensures that a majority of tubes has a near-
commensurate number density (see Methods). A Feshbach resonance allows us to control
a3D with a precision of 3 a0 limited by the presence of the magnetic field gradient. Here, a0

is Bohr’s radius. For the case of the shallow lattice, we probe the state of the system by am-
plitude modulation spectroscopy [Stö04, Iuc06]. We determine the presence of an excitation
gap Eg by testing whether energy can be deposited into the 1D system at a given excitation
frequency f . The lattice depth V is modulated at f by 25% to 45% for 40 − 60 ms. After
ramping down the lattice beams adiabatically with respect to the lattice band structure and
after a levitated expansion time of 40− 60 ms [Kra04], we detect the atoms by time-of-flight
absorption imaging. We determine the spatial width of the atomic sample from a gaussian
fit to the absorption profile and obtain the change δ of the spatial width compared to the
unmodulated case as a function of f . Two typical measurements are shown in Fig. 4.3(a),
one in the superfluid phase and one deep in the 1D Mott phase at the same value for the
lattice depth, V = 1.5(1)ER, where ER = h2/(2mλ2) is the photon recoil energy. For weak
interactions the system exhibits a linear increase for δ as a function of f , which we attribute
to the superfluid character of the gas. For strong interactions, the increase, after a slow rise,
shows a clear kink. We attribute the initial slow rise to excitation of residual superfluid por-
tions of our inhomogeneous system and the sudden change in slope to the presence of an
excitation gap. We associate the axis intercept fg obtained from a linear fit to the steep part
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of the spectrum with the frequency of the gap. To determine the phase transition from the
1D Mott state to the superfluid state, we repeat this measurement for a given depth V as
we scan γ by changing a3D. A typical result is shown in Fig. 4.3(c). The gap closes as γ is
reduced. For values V ≤ 2.0ER, the transition point is identified with the abrupt step, i.e. we
determine the critical value γc,V at which the transition happens by an error-function fit to
the data. Note that we always observe some small residual value for fg of about 120 Hz for
weak interactions. In general, we find that the measured value for the frequency of the gap is
robust against variations of modulation amplitude, while the slope increases with stronger
modulation.

For comparison, we present in Fig. 4.3(b) and (d) excitation spectra for an intermediate
value of the lattice depth and for the case of a deep lattice, respectively. For V = 3.0(2)ER

the spectrum shows additional structure for high frequencies as band structure comes into
play. We find that for V > 2.0ER the gap opens up approximately linearly as a function
of γ beyond a critical γc,V , see inset to Fig. 4.3(c). For deep lattices and for comparatively
weak interactions the spectrum exhibits a broad distribution characteristic of a superfluid.
For stronger interactions we recover the discrete excitation spectrum of the Mott phase in the
Hubbard regime [Gre02, Stö04] with a pronounced peak at f = 1.0 U/h. Additional peaks
[Cla06b] can be found at f = 0.5 U/h and above f = 1.5 U/h.

For the case of a deep lattice, we find that the state of the system is very sensitively
probed by transport measurements [Fer05, Mun07]. A characteristic property of the Mott
state is the inhibition of particle motion. In our experiment with the capability to tune inter-
actions we expect the phase transition to manifests itself, at fixed V , through a strong sup-
pression of transport when the strength of the interaction is raised above a certain critical
value. Essentially, we test whether momentum can be imparted to the 1D system as a func-
tion of interaction strength. For a given V we apply a weak axial magnetic force for a brief
time to the interacting system, chosen such that the imparted momentum would be approx-
imately 0.2~k if the system were non-interacting. Then, as a function of a3D, we determine
the center-of-mass displacement x0 of the sample after a fixed time of flight. Fig. 4.2 shows
that x0 decreases monotonically with a3D. For the case of a deep lattice with V = 9.0(5)ER

the quenching of transport is abrupt. At a certain critical value for a3D transport is fully
inhibited [Alt05, Sch10]. We find the critical a3D by a linear fit to the decreasing data and
by determining the axis intercept and derive from this a critical γc,V . Reducing the lattice
depth to V = 5.0(3)ER and V = 2.0(1)ER leads to a less abrupt quenching of transport. For
stronger interactions, the decrease starts to level off. Nevertheless, the initial decrease is still
linear, allowing us to determine the critical γc,V by an extrapolation of the initially linear
decrease to zero. The inset to Fig. 4.2 shows the measured critical ratio (U/J)c determined
by our transport method as a function of lattice depth V . When we compare our results with
the predicted value [Rap99] of (U/J)c ≈ 3.85 for the transition in 1D, we find a slight sys-
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tematic overestimation of the transition point. This, however, is expected in view of e.g. the
spatial inhomogeneity of the sample and the BKT-type nature of the transition in a finite size
system.

4.4 Phase diagram

We summarize our results in Fig. 4.4, where we present the phase diagram as a function
of 1/γ and V . The set {γc,V } defines the phase boundary between the 1D Mott insulator
and the 1D superfluid. The measurements based on modulation spectroscopy cover a range
from V = 4ER down to 0.5ER (circles), while the transport measurements extend from V =

2ER to 10ER (squares). In the weakly interacting regime, 1/γ > 2, our data are in good
agreement with the prediction of the MH model (dashed line). In the strongly interacting
regime, 1/γ < 1, the measured phase boundary extrapolates to a finite critical value 1/γc

for the Lieb-Liniger parameter as the lattice depth V is reduced to zero. Our results are
in excellent quantitative agreement with the theory for a commensurate system based on
the sine-Gordon model (solid line, see Methods), for which γc = 3.5. We also find good
agreement between our two types of measurement techniques in the intermediate regime
(V = 2ER to 4ER). Our results demonstrate the striking consequence of strong interactions
in 1D geometry in the presence of a lattice: Beyond a critical value γc, an insulating Mott
state exists for vanishingly small lattice depth V . The particles are immediately pinned by
the lattice.

We measure a finite gap energy Eg for γ > γc in the regime of a shallow lattice. In the
limit of γ → ∞ and V → 0 one would expect the simple relation Eg = V/2 as the bosonic
system has become fully fermionized and the lattice effectively induces a band insulator of
fermions [Büc03b]. In the inset to Fig. 4.4 we plot the measured Eg as a function of V at fixed
γ = 11(1). For V < 1ER our data is in good agreement with the analytical result for the
gap energy at finite γ (see Methods). Note that, for V ≥ 1ER, we observe a deviation for Eg

away from the predicted values. This deviation occurs at rather shallow lattices. However,
one does expect the curve to have a reduced slope for deeper lattices, for which Eg becomes
of order U and is only weakly dependent on V .

Our results are a benchmark realization of quantum field theory models with tunable
parameters in cold atomic systems. These results open up the experimental study of the
out-of-equilibrium properties of sine-Gordon-type models. In particular, thermalization in
integrable models beyond the Luttinger liquid model, quenches across quantum phase tran-
sitions, and their relations to the breakdown of the adiabatic theorem in low dimensions can
now be investigated with full tunability of system parameters.
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4.5 Methods Summary

4.5.1 Sample preparation.

We begin with a BEC with no detectable thermal fraction of typically 1.3 × 105 Cs atoms
in the |F = 3,mF = 3 > hyperfine ground state in a crossed-beam dipole trap with mag-
netic levitation. Details of the BEC preparation are presented elsewhere [Kra04]. The BEC
is adiabatically transferred to the 3D lattice by exponentially ramping up the power in the
lattice laser beams within 300 ms. We create a 3D Hubbard-type Mott insulator with pre-
cisely one atom per site in the central region of the trap by adjusting the external dipole trap
confinement prior to loading into the lattice. The array of vertically oriented tubes is cre-
ated by ramping down the power in the vertically propagating beam pair. Typical trapping
frequencies for the tubes are ωr,z = 2π × (12300(200), 21.9(3)) Hz along the transversal and
longitudinal directions, respectively.

It is not necessary to strictly adhere to the commensurate density condition to observe
the pinning transition at very weak lattices [Büc03b]. However, we prepare our sample such
that the commensurability condition is on average best fulfilled over the inhomogeneously
populated array of tubes. We find this optimal configuration when the total atom number is
chosen such that the peak density of the center tube is approximately 1.2 nc, where nc = 2/λ

is the commensurate 1D density. Typically there are about 60 atoms in the center tube.

4.5.2 Phase transition line.

For the case of a 1D Bose gas in a weak optical lattice the effective sine-Gordon Hamiltonian
Eq. (4.1) is realized. In this regime, the BKT transition line between the superfluid and the
Mott-insulating phases can be derived in terms of V and γ = γc,V as

V

ER
= 2

(
π√

γ − γ3/2/(2π)
− 2

)
.

When the system is weakly interacting, γ � 1, and for deeper lattices, V � 1ER, the system
can be described by the Bose-Hubbard Hamiltonian [Jak98]. In this regime, the quantum
phase transition between a superfluid and a MH state occurs at [Rap99] (U/J)c ≈ 3.85,
which determines a transition line in the (V, γ) - plane via

4V

ER
= ln2

[
2
√

2π

γ

(
U

J

)
c

√
V

ER

]
.

Here, J is the hopping energy, andU is onsite interaction energy of the Bose-Hubbard model.
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Figure 4.3: Modulation spectroscopy on bosons in 1D. a, b, d, Excitation spectra for low, intermedi-
ate, and high lattice depth V . The change δ of the spatial width after amplitude modulation is plotted
as a function of the modulation frequency f for different values of γ. a, Characteristic spectra for
V = 1.5(1)ER in the superfluid (squares, a3D = 115(2) a0, γ = 1.0(1)) and in the Mott regime (circles,
a3D = 261(2) a0, γ = 3.1(2)). The solid lines are linear fits to the high-frequency part of the spectrum.
We determine the axis intercept fg as indicated. b, Spectra for V = 3.0(2)ER. The system is superfluid
at γ = 0.51(6) (squares), while it exhibits a gap for γ = 1.6(1) (triangles) and γ = 4.1(3) (circles). c,
Determination of the transition point for the case of the shallow lattice with V = 1.5(1)ER. The fre-
quency fg is plotted as a function of γ. The solid line is an error-function fit to the data. The inset plots
fg as a function of γ for V = 3.0(2)ER. d, Spectra for V = 9.0(5)ER for weak (squares, γ = 0.10(3))
and strong (circles, γ = 8.1(4)) interactions in the superfluid (SF) and Mott insulator (MI) regimes.
Here, f is in units of U . Modulation parameters and errors bars are discussed in the Methods.
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4.6 Methods

4.6.1 1D Bose gas in a weak optical lattice.

In the absence of the optical lattice, V = 0, the Luttinger liquid parameter K can be ex-
pressed in terms of the Lieb-Liniger parameter γ = gm/(~2n) for all strengths of interactions
[Lie63b, Caz04]. For γ ≤ 10 and γ � 10 one getsK ' π/

√
γ − γ3/2/(2π) andK ' (1+2/γ)2,

respectively. The addition of a weak but finite commensurate optical lattice with V ≤ 1ER

realizes the effective sine-Gordon Hamiltonian Eq. (4.1). Using a perturbative renormaliza-
tion group approach, the BKT transition line between the superfluid and the Mott-insulating
phases can be derived in terms of V and γ = γc,V as

V

ER
= 2

(
π√

γ − γ3/2/(2π)
− 2

)
.

For small lattice depths, the integrable structure of the sine-Gordon model [Zam79, Zam95]
allows one to derive the following analytical expression for the dependence of the spectral
gap Eg on V and K

Eg

ER
=

8Γ[ πK
2(2−K) ]

√
πΓ[1

2
2+K(π−1)

2−K ]

[(
K2V

16ER

)
Γ[1− K

2 ]

Γ[1 + K
2 ]

] 1
2−K

.

Here, Γ is the gamma function. For strong interactions K ' 1, the dependence of the gap on
V is linear, and Eg approaches the free fermion value Eg = V/2. In the vicinity of K = 2, the
gap closes exponentially approaching the BKT transition line.

4.6.2 Deep lattice: the Bose-Hubbard model.

In the weakly interacting regime γ � 1, for V � 1ER, when all atoms occupy the lowest
vibrational state in each potential well of the lattice, the system can be described by the
following Bose-Hubbard model [Jak98]

H = −J
∑
i

(b†ibi+1 + h.c.) +
U

2

∑
i

b†ib
†
ibibi.

Here, bi (b†i ) is the operator destroying (creating) a bosonic particle at the position of the ith-
well, J = 4ER(V/ER)

3
4 exp[−2

√
V/ER]/

√
π is the hopping energy, andU =

√
2πg(V/ER)1/4/λ

is onsite interaction energy. The quantum phase transition between a superfluid and a MH
state occurs at [Rap99] (U/J)c ≈ 3.85, which determines a transition line in the (V, γ) - plane
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via
4V

ER
= ln2

[
2
√

2π

γ

(
U

J

)
c

√
V

ER

]
.

4.6.3 Magnetic Feshbach resonance

The strength of interaction can be tuned by means of a broad magnetic Feshbach resonance
with a pole at−11.7 G and with a zero crossing for the scattering length near 17 G [Kra04]. To
hold the atoms in the vertically oriented tubes, magnetic levitation by means of a magnetic
field gradient is applied. For a cesium atom in the hyperfine state |F = 3,mF = 3〉 a magnetic
field gradient of 31.1 G/cm cancels the gravitational force.

4.6.4 Lattice loading and array of 1D tubes.

We create a 3D optical lattice by interference of 3 pairs of counterpropagating dipole trap
laser beams at wavelength λ = 1064.5 nm with 1/e2 beam waists of ∼ 350 µm. The atomic
BEC, initially trapped in a crossed-beam dipole trap, is adiabatically transferred to the 3D lat-
tice by exponentially ramping up the power in the lattice laser beams within 300 ms. At the
same time we increase the interaction strength by linearly raising the magnetic field strength
and finally reach a 3D Hubbard-type Mott insulator with precisely one atom per site in the
central region. The array of vertically oriented tubes is created by linearly ramping down
the power in the vertically propagating beam pair in 100 ms reaching lattice depths from
10 to 0.5 ER. At the same time we linearly reduce the magnetic field strength to set a3D.
Typical trapping frequencies for the tubes are ωr,z = 2π × (12300(200), 21.9(3)) Hz along
the transversal and longitudinal directions, respectively. The depth of the lattice along the
tubes is calibrated by the pulsed Raman-Nath technique [Gou86]. The transversal trapping
frequencies of the tubes are determined by parametric heating measurements. The distribu-
tion of the atom number per tube can be directly determined from the density distribution
in the Mott-insulating phase and shows an occupation of about 60 atoms in the center tube.
Here, we assume a constant filling factor of one atom and no thermal or superfluid compo-
nents. In view of our inhomogeneous system we calculate γ, for a given tube, by assuming
a 1D Thomas-Fermi distribution and taking the center density. The reported γ is a weighted
average over all tubes.

4.6.5 Commensurability.

To observe the pinning transition it is not necessary to fulfill the condition of commensura-
bility precisely [Büc03b]. A finite commensurability parameter Q = 2π(n− nc) corresponds
to a shift δµ of the chemical potential. Here, nc = 2/λ is the commensurate 1D density. The
system stays locked to the Mott insulating phase as long as δµ remains smaller than the
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energy necessary to add another atom. When Q rises beyond a critical value Qc(γ, V ), the
system develops finite density excitations, which destroy the long range order of the Mott
insulator. We find that, for the array of 1D tubes, the commensurability condition in the su-
perfluid regime is fulfilled best when the total atom number is chosen in such a way that the
peak density of the center tube is approximately 1.2 nc.

4.6.6 Modulation parameters and error bars.

For the data in Fig. 4.3 a, b, d we chose the following modulation times and amplitudes:
a 40 ms, 35%, b 40 ms, 30%, d 30 ms, 35% for the superfluid phase and 25% for the Mott
phase. In Fig. 4.3 a, b, d, the error bars for δ reflect the 1σ statistical error. In Fig. 4.3 c, the
error bars for fg are derived from the 1σ error on the fit parameters. The error for γ results
from the 1σ statistical error of the independent input variables and the spread of γ due to the
distribution of tubes. For the data in Fig. 4.4 the error in γ is derived from the 1σ error of the
fit parameters for the modulation measurements. For the transport measurements, the error
in γ results from the 1σ statistical error of the independent input variables and the spread of
γ due to the distribution of tubes.

66



CHAPTER 5

PUBLICATION

Control of Interaction-Induced Dephasing
of Bloch Oscillations
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We report on the control of interaction-induced dephasing of Bloch oscillations for an
atomic Bose-Einstein condensate in an optical lattice under the influence of gravity. When
tuning the strength of the interaction towards zero by means of a Feshbach resonance, the
dephasing time is increased from a few to more than twenty thousand Bloch oscillation
periods. We quantify the dephasing in terms of the width of the quasi-momentum distri-
bution and measure its dependence on time for different values of the scattering length.
Minimizing the dephasing allows us to realize a BEC-based atom interferometer in the
non-interacting limit. We use it for a precise determination of a zero-crossing for the atomic
scattering length and to observe collapse and revivals of Bloch oscillations when the atomic
sample is subject to a spatial force gradient.

5.1 Introduction

Ultracold atomic systems have initiated a revolution in the field of precision measurements.
Laser cooled thermal samples are used for ultra-high resolution laser spectroscopy [Did04],
they are at the heart of modern atomic fountain clocks [Biz05, Boy07], and they allow the
realization of matter-wave interferometers for high-precision inertial sensing [Pet80] and
high-precision determination of fundamental constants [Cla06a]. Atomic Bose-Einstein con-
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densates (BEC), the matter-wave analoga to the laser, combine high brightness with narrow
spatial and momentum spread. In general, the resolution is limited only by the quantum
mechanical uncertainty principle, and BECs could thus serve as ideal sources for precision
measurements and in particular for matter wave interferometers [Gup02]. Atom-atom in-
teractions, however, have to be taken into account, as they lead to collisional dephasing
and give rise to density dependent mean-field shifts in the interferometric signal. It is thus
advisable to either operate a BEC-based atom interferometer in the dilute density limit, pos-
sibly sacrificing a high signal-to-noise ratio, or to find ways of reducing or even nulling the
strength of the interaction altogether. Precisely the latter is feasible in the vicinity of magneti-
cally induced Feshbach resonances where the atomic s-wave scattering length and hence the
strength of the atom-atom contact interaction go through a zero crossing [Köh06]. It is thus
possible to experimentally investigate the reduction and even disappearance of interaction-
induced effects on the interferometric signal as the scattering length is tuned towards zero
by means of an externally controlled magnetic field.

A paradigm atom interferometric effect is the well-known phenomenon of Bloch oscilla-
tions [Ben96]. Bloch oscillations for the mean quasi-momentum are the result of single atom
interference as the atomic wavepacket, subject to a constant force, is Bragg reflected in the
presence of a periodic optical lattice potential. They have been observed for ultracold ther-
mal samples [Ben96, Bat04, Cla06a, Fer06], for atoms in interacting BECs [Mor01, Roa04],
and for ensembles of non-interacting quantum-degenerate fermions [Roa04]. For the case
of the interacting BEC, strong dephasing is found as evidenced by a rapid broadening and
apparent smearing out of the momentum distribution in the first Brillouin zone, limiting the
observation of Bloch oscillations to a few cycles for typical atomic densities in a BEC. In addi-
tion, the measured initial width of the momentum distribution is comparable to the extent of
the Brillouin zone, as interaction energy is converted into kinetic energy upon release of the
BEC from the lattice potential, thus greatly reducing the contrast of the oscillations [Roa04].

In this Letter, we report on the control of interaction induced dephasing of Bloch oscilla-
tions for a BEC in a vertically oriented optical lattice under the influence of gravity. Control
is obtained by means of a zero crossing for the atomic s-wave scattering length a. We ob-
serve the transition from an interacting BEC to a non-interacting BEC by measuring the rate
of dephasing, given by the change of the width of the momentum distribution, as a func-
tion of a. We identify a clear minimum for the dephasing which we associate with the zero
crossing for a. At the minimum more than 2×104 oscillations can be observed with high con-
trast, and the zero crossing can be determined with high precision. For our measurements
at non-zero scattering length, we greatly reduce broadening of the momentum distribution
by rapidly switching the interaction strength to zero upon release from the lattice potential.
Our measurements indicate that BECs can indeed be used as a source for precision atom in-
terferometry, as effects of the interaction can be greatly reduced. For a non-interacting BEC,
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(a)

(c)

(b)

1 cycle 1000 cycles

10000 cycles 20000 cycles

(d)
0.58 ms 575.38 ms

5.7538 s 11.5076 s

Figure 5.1: Long-lived Bloch oscillations for a non-interacting BEC with Cs atoms in the vertical lat-
tice under the influence of gravity. Each picture shows one Bloch cycle in successive time-of-flight
absorption images corresponding to the momentum distribution at the time of release from the lat-
tice. Displayed are the first (a), the 1000th (b), the 10000th (c), and the 20000th (d) Bloch cycle for
minimal interaction near the zero crossing for the scattering length.

we intentionally induce dephasing by means of a weak optical force gradient and observe
collapse and revivals of Bloch oscillations.

5.2 Experimental procedure

The starting point for our experiments is an essentially pure BEC with typically 1×105 Cs
atoms in the |F = 3,mF = 3〉 hyperfine ground state sublevel confined in a crossed-beam
dipole trap generated by one vertically (L1, with 1/e2-beam diameter 256 µm) and one more
tightly focused horizontally (L2, with diameter 84 µm) propagating laser beam at a wave-
length near 1064 nm. We support the optical trapping by magnetic levitation against gravity
[Web03]. For BEC preparation, we basically follow the procedure described in Ref. [Web03,
Kra04]. The strength of the interaction can be tuned by means of a broad Feshbach reso-
nance, which causes a zero crossing for the scattering length a near an offset magnetic field
value of 17 G with a slope of 61 a0/G [Jul]. Here, a0 denotes Bohr’s radius. The lattice poten-
tial is generated by a vertically oriented standing laser wave generated by retro-reflection,
co-linear with L1, but with much larger diameter of 580 µm. This allows independent control
of lattice depth and radial (i.e. horizontal) confinement. The light comes from a home-built
single-mode fiber amplifier [Lie03] seeded with highly-stable light at λ = 1064.4946(1) nm.
We turn on the optical lattice potential exponentially to a depth of 7.9 ER within 1000 ms,
where ER = h2/(2mλ2) = kB×64 nK is the photon recoil energy and m is the mass of the Cs
atom. The slow ramp assures that the BEC is adiabatically loaded into the lowest Bloch band
of the lattice. We load between 40 to 65 lattice sites, depending on the initial vertical extent of
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Figure 5.2: (color online). Position of the strongest peak in the momentum distribution as a function of
the numberN of Bloch oscillations (dots). More than 20000 cycles can be followed with high contrast.
A fit to the data (solid curve) yields a Bloch period of 0.5753807(5) ms.

the BEC. We then reduce the power in L2 to zero within 300µs. Subsequently, the magnetic
field gradient needed for levitation is ramped down and a bias magnetic field is tuned to the
desired value within 100µs. For the present experiments, we adjust a in the range from −2

to 300 a0 with magnetic bias fields from 17 to 23 G. We control the average bias field to about
1 mG. The confinement of the BEC in the lattice as given by L1 gives horizontal trapping
frequencies in the range of 5 to 10 Hz. We then let the atoms evolve in the lattice under the
influence of the gravitational force for variable hold time T . Finally, we switch off the hori-
zontal confinement and ramp the lattice depth adiabatically to zero within 300µs to measure
the momentum distribution by the standard time-of-flight technique, taking an absorption
picture on a CCD camera. For some of the data we turn on the magnetic levitation field to
allow for longer expansion times up to 100 ms. To minimize broadening of the distribution
as a result of interaction we switch the scattering length to zero during the release and the
initial time-of-flight.

5.3 Bloch oscillations with weak interactions

We observe persistent Bloch oscillations when minimizing the effect of interactions at a mag-
netic field value of 17.12 G (see below). Fig. 5.1 (a)-(d) show the evolution of the momentum
distribution during the first, the 1000th, the 10000th, and the 20000th Bloch cycle. Initially, the
momentum distribution exhibits narrow peaks. Their full width ∆p [Wid] is as narrow as
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about 0.15 ~k, where k=2π/λ. Very little broadening along the vertical direction is seen after
the first 1000 cycles. Initial excitation of horizontal motion as a result of ramping the power
in L2 and switching the scattering length leads to some horizontal spreading. After 20000
cycles the distribution has started to spread out noticeably along the vertical direction.

Fig. 5.2 highlights the high number of Bloch oscillations, which we can observe for the
case of minimal interaction strength. It shows how the strongest peak of the momentum dis-
tribution cycles through the first Brillouin zone with the typical sawtooth behavior [Ben96].
More than 20000 cycles can easily be followed. From a fit to the data we determine the Bloch
period to 0.5753807(5) ms. Assuming that no additional forces act on the sample, the local
gravitational constant is g = 9.804450(9) m/s2.

5.4 Interaction induced dephasing

In order to quantify the dephasing of Bloch oscillations we determine for each Bloch period
the width ∆p of the momentum distribution at the instant in time when the peak of the dis-
tribution is centered at zero momentum, i.e. for the central picture of each series shown in
Fig. 5.1. Fig. 5.3 (a) displays ∆p up to the 300th Bloch cycle for different interaction strengths
ranging from 0 to 300 a0. For minimal interaction strength (a≈0 a0), we see no broadening of
the distribution. Broadening can clearly be seen for a=25 a0, and the rate of broadening then
increases with increasing interaction strength. For a≥50 a0 the width ∆p saturates within the
chosen observation time to a value of about 1.3 ~k as the momentum distribution completely
fills the first Brillouin zone [Str]. To a good approximation, we find that ∆p initially increases
linearly with time. In Fig. 5.3 (b) we plot ∆p as a function of interaction strength for various
fixed numbers of Bloch cycles. ∆p appears to scale with the square root of the interaction
strength. Both observations agree well with a simple model for the dephasing of Bloch oscil-
lations, which predicts ∆p∝

√
a×T [Wit05] for sufficiently short times T . In order to verify

this model, we have performed numerical calculations solving the one-dimensional Gross-
Pitaevskii equation in the presence of an optical lattice under the influence of gravity for
the typical parameters of our experiment according to the method detailed in Ref. [Sme03].
Via Fourier transform of the spatial wave function we determine the momentum distribu-
tion and its width. As shown in Fig. 5.3 (solid lines) we find very good agreement with our
measurements with no adjustable parameters when we add a constant offset of 0.1 ~k to all
the numerical curves. This offset takes into account residual interactions during release from
the lattice as a result of the finite magnetic switching speed, which leads to some artificial
broadening of the distribution. We attribute the systematic discrepancy for the N = 50 data
in Fig. 5.3 (b) to the horizontal motion which leads to modulations in the density that adds a
modulation onto ∆p also seen in Fig. 5.3 (a).

To find the value for the magnetic field that gives minimal broadening we measure ∆p
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Figure 5.3: (color online). Width ∆p of the momentum distribution for different interaction strengths.
(a) Evolution of ∆p as a function of the numberN of Bloch cycles for different values of the scattering
length (a=0, 25, 50, 100, and 300 a0 from bottom (full circles) to top (full diamonds). The solid curves
are derived from a numerical model calculation, see text. (b) Width ∆p for a fixed number of cycles
N=1 (full circles), 25 (full squares), 50 (full diamonds), 100 (open circles), 150 (open squares), and 200
(open diamonds) as a function of scattering length. The solid line represents the model calculation. All
error bars correspond to ± one standard deviation resulting from 7 measurements. The data and the
simulations correspond to the following parameters: lattice depth: 7.9 ER, scattering length during
lattice loading: 210 a0, trapping frequencies in L1 and L2: 10 and 8 Hz, atom number in the BEC:
5×104.
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Figure 5.4: Broadening of the momentum distribution as a result of 6951 Bloch oscillations near the
zero crossing for the scattering length. The width ∆p is plotted as a function of magnetic field (dots).
The solid line is a Gaussian fit with a rms-width of 4.5 mG. The fit is centered at 17.119(2) G. The zero
for the scattering length scale on top was chosen to agree with this value.

after 6951 cycles in the vicinity of the crossing. Fig. 5.4 plots ∆p as a function of magnetic
field. It shows a clear minimum, which we expect to correspond to the zero crossing for the
scattering length. From a Gaussian fit we determine the center position of the minimum to
be at 17.119(2) G. The one-sigma error takes into account our statistical error in magnetic
field calibration. To our knowledge, this is the most precise determination of a minimum for
the elastic cross section in ultracold atom scattering. We believe that our measurements are
limited by the ambient magnetic field noise, leading to a finite width for the distribution of
the scattering length. In fact, a reduction of the atomic density gives longer decay times for
the Bloch oscillations. Note that in the scattering length regime considered here the effect of
the (magnetic) dipole-dipole interaction [Gio02] should start to play a role.

5.5 Revivals

Our capability to observe Bloch oscillations on extended time scales without interaction-
induced dephasing allows us to study the effect of deliberately imposed dephasing. For this
we apply a linear force gradient ∇F corresponding to harmonic trapping at ν = 40(1) Hz
along the vertical direction by turning on L2 during the hold time. Fig. 5.5 shows the widths
∆p for two cycle phases separated by π initially corresponding to the single resp. double-
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Figure 5.5: Collapse and revival of Bloch oscillations for the case of a non-interacting BEC with a
vertical force gradient. For two cycle phases separated by π, the width ∆p is plotted as a function
of the number N of Bloch cycles. For selected cycles (N = 1, 70, 140, 210, and 280) two absorption
images corresponding to the two cycle phases are shown.

peaked distribution as a function of the number N of Bloch cycles. Both widths rapidly
increase resp. decrease to the same value of 1.3 ~k within about N = 30 oscillations. Here
the ensemble is dephased. It then remains dephased for about 200 cycles. Partial rephasing
at intermediate times not reflected in the widths can be seen from the absorption images.
Revival of the oscillations [Pon06] happens around N=280 when the values for both widths
separate again [Rev]. This number agrees well with the expected value of Nrev = 292(15)

given by Nrev = Fgrav/(∇Fd) =mg/(mω2d), where Fgrav is the gravitational force, ω = 2πν,
and d = λ/2 is the lattice spacing. Subsequently, the widths collapse again to the common
value. In further measurements we see up to four collapses and revivals.

5.6 Summary

In summary, we have demonstrated the control of interaction-induced dephasing near a
zero-crossing for the scattering length. On the crossing, we have realized a non-interacting
BEC, which allows us to observe more than 20000 Bloch cycles, indicating a matter wave
coherence time of more than 10 s. The broadening of the momentum distribution agrees
well with results from theoretical models. We believe that the number of observable Bloch
cycles is limited by residual interactions as a result of magnetic field noise. Our results open
up exciting new avenues for precision measurements with quantum degenerate gases. For
example, it is now possible to perform sensitive measurements of forces on short length
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scales, such as the Casimir-Polder force near a dielectric surface [Car05]. Future experimental
work can now address the nature of the dephasing [Buc03a] by studying structure in the
momentum distribution.

A similar experiment on long-lasting Bloch oscillations and control of the interaction
strength has recently been performed with a BEC of 39K atoms at LENS, Italy. We thank A.
Daley for theoretical support and for help with setting up the numerical calculations and A.
Buchleitner and his group for useful discussions. We are grateful to A. Liem and H. Zellmer
for valuable assistance in setting up the 1064-nm fiber amplifier system. We acknowledge
contributions by P. Unterwaditzer and T. Flir during the early stages of the experiment. We
are indebted to R. Grimm for generous support and gratefully acknowledge funding by the
Austrian Ministry of Science and Research (BMWF) and the Austrian Science Fund (FWF) in
form of a START prize grant.
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The phenomenon of matter wave interference lies at the heart of quantum physics. It
has been observed in various contexts in the limit of non-interacting particles as a single
particle effect. Here we observe and control matter wave interference whose evolution is
driven by interparticle interactions. In a multi-path matter wave interferometer, the macro-
scopic many-body wave function of an interacting atomic Bose-Einstein condensate devel-
ops a regular interference pattern, allowing us to detect and directly visualize the effect of
interaction-induced phase shifts. We demonstrate control over the phase evolution by in-
hibiting interaction-induced dephasing and by refocusing a dephased macroscopic matter
wave in a spin-echo type experiment. Our results show that interactions in a many-body
system lead to a surprisingly coherent evolution, possibly enabling narrow-band and high-
brightness matter wave interferometers based on atom lasers.
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Matter wave interference has been observed as a single particle effect for electrons [Dav27],
neutrons [Hal36], atoms and molecules [Est30]. Macroscopic matter wave interference was
first directly observed in the case of two independent atomic Bose-Einstein condensates
(BEC) that were brought to overlap [And97]. This experiment validated the notion of the
BEC as a macroscopic matter wave and coined the expression of the atom laser in analogy
to the laser for the case of photons. Matter wave interferometers [Ber97, Cro09, Har07], in
particular for applications to precision measurements, are typically operated in the dilute
single particle limit [Wic02, Cla06a, Fix07] to avoid particle-particle interactions. Atom in-
terferometers based on Bose-Einstein condensates (BEC) are expected to benefit from the
extremely low momentum spread, the exceptional brightness, and the low spatial extent of
the BEC [Gup02], but they readily enter the nonlinear matter wave regime as a result of the
interaction-induced mean field potential. A possible solution is to operate BEC-based inter-
ferometers in the non-interacting limit [Gus08, Fat08] by exploiting the cancellation of the
scattering phase shift near a scattering resonance. This condition, however, is difficult or im-
possible to fulfill for most atomic species. In the present work we demonstrate a BEC-based
multipath atom interferometer where the dynamics is dominated by interaction-induced
phase shifts, and we show that full control and also cancellation of these phase shifts is pos-
sible. We realize the multipath interferometer by loading an interacting BEC into an optical
lattice potential along one dimension, coherently splitting the BEC into several parts that
are then each subject to different linear and nonlinear phase shifts. The linear phase shifts
due to the gravitational force lead to the the well-known phenomenon of Bloch oscillations
[Ben96, And98], whereas the interaction-induced nonlinear phase shifts cause the macro-
scopic wave function to first spread in momentum space as a function of time and then,
surprisingly, to exhibit high-contrast interference. We demonstrate a high degree of coher-
ence by reversing the nonlinear phase evolution, thereby refocusing the BEC momentum
wave function. By application of an external potential we cancel the dominant mean-field
contribution to the phase evolution and become sensitive to beyond-mean-field effects. A
crucial ingredient of our experiments is the capability to tune a, the atomic scattering length
which determines the strength of the interaction, by means of a Feshbach resonance [Web03].
In particular, a can be switched to zero to stop the interaction driven part of the evolution
in the interferometer or to perform high resolution wave function imaging in momentum
space.

6.1 Phase evolution

Our interferometer consists of a BEC adiabatically loaded into a 1D optical lattice potential
with a superimposed harmonic trap, as illustrated in figure 6.1a. In the tight-binding regime,
it is convenient to write the macroscopic wave function of the condensate, Ψ, in a basis
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[Sme03] of wave functions Ψj(z, r⊥) centered at the position zj = jd of the individual lattice
sites j, Ψ(z, r⊥, t) =

∑
j cj(t)Ψj(z, r⊥). Here, z is the coordinate along the (vertical) lattice

direction, r⊥ is the transverse coordinate, d is the distance between adjacent lattice sites and
cj(t) are time-dependent complex amplitudes.

After the BEC is loaded into the lattice, we tilt the lattice potential by applying a strong
force F along the lattice direction. In the limit Fd � J , where J is the tunnelling matrix
element, tunnelling between lattice sites is inhibited. The on-site occupation numbers |cj |2

are then fixed, and we can write cj(t) = cj(0)eiφj(t), where the phase φj(t) evolves in time
according to the local potential at each specific lattice site [Wit05],

~
∂φj
∂t

= Fdj + V trap
j + µloc

j

= Fdj + βtrj
2 − αintj

2. (6.1)

Here, the total potential at each lattice site j consists of three terms. The applied force leads to
a term linear in j and causes Bloch oscillations [Ben96, And98] with angular frequency Fd/~.
The second term comes from an optional harmonic confinement, where βtr = mω2

trd
2/2

characterizes the strength of the confining potential and ωtr is the trap frequency. Atom-atom
interactions give rise to a third term, the local chemical potential µloc

j , which depends on the
scattering length a and the site occupation number as [Sme03] µloc

j ∝
√
a|cj |2. When the BEC

is loaded in the Thomas-Fermi regime, as is done here, its initial value can be calculated in
a simple way. The density distribution will be such that the local chemical potential mirrors
the trapping potential that is present during loading into the lattice, µjloc = µ − V trap

j , with
µ being the (global) chemical potential of the BEC. We then initially have µloc

j = αintj
2,

where αint = mω2
lod

2/2 and ωlo is the trap frequency during loading. Note that although the
initial value of αint is independent of the scattering length used at loading, a later change in
scattering length will also change the value of αint.

The phase terms proportional to j2 lead to a nonlinear relative phase evolution between
lattice sites, i.e., dephasing. This results in a time-varying interference pattern of the macro-
scopic matter wave, as we will demonstrate below. The key in our experiments is that we
have full control over these nonlinear terms, not only over βtr via the external trapping po-
tential, but also over the interaction term characterized by αint, both via the initial density
distribution, and, more importantly, via the scattering length a. By tuning the scattering
length [Web03] from its initial value a to a′, we can ramp αint to a new value α′int, which
can in particular be set to zero for a= 0. Nonlinear phase terms for matter waves are well
known in single particle quantum mechanics. They play an important role for matter wave
Talbot interferences [Ber97, Den99] and can be visualized in terms of so-called matter wave
quantum carpets [Kap00]. In these contexts, the phase terms arise from propagation. In our
case, the nonlinear phase terms for αint 6=0 arise from interactions and thus lead to a density
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Figure 6.1: BEC-based atom interferometer. a, Experimental configuration: The tunable BEC is
formed at the intersection of the vertical guide laser beam L1 and a horizontal trapping beam L2.
The lattice is oriented along the vertical direction. Gravity, g, is initially compensated by a force due
to a magnetic field gradient, ∇B. b, Imaging the first Brillouin zone (BZ): One cycle of Bloch oscilla-
tions for a non-interacting BEC as seen in time-of-flight absorption imaging, showing narrow peaks
cycling through quasi-momentum space for cycle phases φ=0, π/4, π/2, ..., to 2π.

dependent many-body effect in the multipath atom interferometer.

In the preceding discussion, we have assumed that the minimum of the trapping po-
tential is centered directly over one of the lattice minima. If this is not the case, the trapping
potential term in equation (1) has to be modified to βtr(j−δ)2 = βtrj

2−2βtrδj+const., where
δ ∈ [0, 1] describes the offset of the trap center in the z-direction with respect to the lattice
minima, and an analogous modification has to be done to the interaction term. This adds a
small term linear in j and therefore leads to a slight modification of the Bloch oscillation fre-
quency. In our experiments, δ is the only parameter that we do not fully control. It is constant
on the timescale of a single experimental run, but it drifts over the course of minutes as the
beam pointing of the horizontally propagating laser beam generating the trapping potential
is not actively stabilized.

6.2 Interaction-induced matter wave interference

The starting point for our experiments is a BEC trapped in a crossed optical dipole trap and
adiabatically loaded into an optical lattice, as illustrated in figure 6.1a. The sample prepara-
tion is described in appendix A. The gravitational force acting on the BEC is initially com-
pensated using magnetic levitation [Web03]. We effectively start the multipath atom inter-
ferometer and hence the evolution of the interacting macroscopic wave function by turn-
ing off magnetic levitation and ramping down the vertical confinement created by laser
beam L2 within 0.3 ms, inducing Bloch oscillations in the lowest band of the lattice. With
Fd/~ ≈ 2π × 1740 Hz and J/~ ≈ 2π × 40 Hz the on-site occupation numbers |cj |2 are fixed
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to their initial values. After an evolution time τ , we close the interferometer by ramping
down the lattice in 1 ms and directly image the (vertical) quasi-momentum distribution in
the first Brillouin zone (BZ). The ramp is adiabatic with respect to the bandgap and maps
quasi-momentum onto real momentum [Kas95], which is measured by taking an absorption
image after a period of free expansion. Figure 1b shows absorption images of the first Bloch
oscillation [Ben96]. The Bloch period is about 0.58 ms and the peaks have a root mean square
(rms) width of 0.2~k, where k = π/d is the lattice wave vector, thus being well separated.

We study the evolution of the wave function at high resolution in momentum space by
taking snapshots after extended time-of-flight. As illustrated in figure 6.2a, the BEC wave
function spreads out in the BZ in about N = 18 Bloch cycles. Then, surprisingly, an inter-
ference pattern gradually develops at the edge of the BZ and later also becomes visible at
the center of the BZ, while the number of interference maxima and minima changes as time
progresses. Images are taken after an integer number of Bloch cycles for cycle phase φ = 0,
corresponding to the first image in figure 6.1b. The data is acquired with an interacting BEC
with the scattering length set to 190 a0, where a0 is the Bohr radius, at an initial peak density
of n = 4× 1013 atoms/cm3, occupying about 35 lattice sites after loading. We can follow the
evolution of the interference pattern for more than N = 100 Bloch cycles, corresponding to
times beyond 60 ms. This is about a factor 10 longer than the timescale for the initial broaden-
ing. We find that the number of maxima and minima in the interference pattern as measured
after a fixed evolution time τ depends on the number of occupied lattice sites and on the trap
frequency of the external harmonic confinement employed when loading the lattice. We also
find that the measured quasi-momentum distribution for a given τ is reproducible from one
experimental realization to the next, except that the pattern appears slightly shifted within
the BZ after several experimental realizations. We attribute this to a drift of δ, the offset of
the lattice minima from the dipole trap center, which leads to a small change of the Bloch fre-
quency as noted before. We do not actively stabilize the vertical position of L2 with respect
to the lattice, and hence temperature variations in the laboratory slowly change δ.

We combine two techniques to achieve a high resolution in momentum space and to vi-
sualize the interference pattern. First, we minimize broadening of the distribution as a result
of interactions by setting a to zero during the release from the lattice and the subsequent free
expansion [Gus08]. In addition, we use long expansion times, employing magnetic levitation
to prevent the BEC being accelerated by gravity and falling out of the field of view. Figure 3
shows how the contrast emerges during the expansion for a BEC after N = 40 Bloch cycles.
It takes more than 100 ms of expansion for the interference pattern to acquire full contrast.
In general, we find that the contrast is improved when the horizontally confining beam L1 is
not switched off abruptly but is ramped down slowly within the first 55 ms of time-of-flight,
reducing the horizontal expansion rate. However, this happens at the cost of some addi-
tional momentum broadening along the vertical direction. Our imaging techniques allow us
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Figure 6.2: Interaction induced macroscopic matter wave interference. a, Experimental results
showing the quasi-momentum distribution as a function of evolution time τ given in units of the
Bloch period. The absorption images are taken in steps of 4 Bloch cycles for a BEC with an initial
peak density of n=4× 1013 atoms/cm3 loaded into about 35 lattice sites with a=190 a0. Each image
corresponds to a single realization of the experiment. b, Evolution of the wave function in quasi-
momentum space when the phase at the individual lattice sites evolves according to equation (1)
with βtr = 0 (no external trap) for n= 4× 1013 atoms/cm3 loaded into 35 lattice sites with a= 190 a0.
αint is slightly rescaled to account for the reduction in density due to transversal dynamics, see text.
In a, some additional broadening, largely due to the presence of the horizontal trapping potential
during expansion, can be seen.

to resolve structure in momentum space on a scale below 0.1~k in a single shot absorption
image.

To understand the interference structure and its evolution in time, we compute the total
BEC wave function in quasi-momentum space for the case where the phase at each lattice
site evolves according to equation (1) (details can be found in appendix B). Figure 2b shows
the interference pattern for our experimental parameters according to this simple model.
The experimental results are qualitatively very well reproduced by the model when we re-
duce αint by 10 % compared to the value deduced from our experimental parameters. This
scale factor accounts primarily for the fact that our simple model does not take into account
any horizontal dynamics. In particular, switching off L2 when starting the evolution leads
to an excitation of a radial breathing mode in the horizontal plane, reducing the density at
each site and modulating it in time. To a first approximation, rescaling of αint accounts for
this. Nevertheless, the agreement between the experiment and the analytical model indicates
that the dominant driving mechanism for the wave function spreading and interference is
the nonlinear phase evolution. In particular, phase coherence is not lost, in contrast to pre-
vious experiments [Mor03b]. We test this coherence and demonstrate control over the phase
evolution in two experiments.
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Figure 6.3: Contrast of interference fringes. Contrast of matter wave interference emerging during
time-of-flight expansion for a BEC after N = 40 Bloch cycles, where the wave function completely
fills the BZ. We define the contrast as (Imax − Imin)/(Imax + Imin), where Imax (Imin) is the average
value of the maxima (minima) of the central peak structure. Each data point is the average contrast
of 10 experimental runs and the error bars indicate the 1σ statistical error. The insets show measured
quasi-momentum distributions integrated along the transverse direction at two expansion times as
indicated.

6.3 Cancellation of the dephasing

Equation (1) suggests that the effect of interactions can be cancelled by the application of an
external potential [Zha08]. Indeed, choosing this potential to be equal to the initial loading
potential, i.e. choosing αint ≈ βtr, allows us to observe persistent Bloch oscillations for an
interacting BEC. This demonstrates that the detrimental effects of the mean field phase shift
in a BEC matter wave interferometer can be compensated for. The BEC quasi-momentum
distribution after N = 40 Bloch cycles is shown in figures 6.4a and 6.4b as a function of
the strength of the external compensating potential, given by the power in laser L2. When
the external potential does not compensate for interactions, the condensate wave function is
dephased and spreads over the whole BZ within less than N = 20 Bloch cycles. In contrast,
when the external potential balances the effect of interactions, the BEC wave function does
not spread out and Bloch oscillations are clearly visible. The time during which Bloch oscilla-
tions can be observed is now greatly extended compared to the case when the compensating
potential is absent. The transition from a dephased to a non-dephased wave function as a
function of confinement strength is quantified in figure 6.4c, where the rms-width ∆p of
the singly-peaked quasi-momentum distribution after N = 40 Bloch cycles is plotted as a
function of the laser power in L2. Figures 4d and 4e show the time evolution of the quasi-
momentum distribution without and with the compensating potential while all other pa-
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Figure 6.4: Cancellation of interaction induced dephasing and observation of persistent Bloch os-
cillations. a-c, Absorption images showing the quasi-momentum distribution for cycle phase φ= π
(a) and φ = 0 (b) after N = 40 Bloch cycles and (c) momentum width ∆p for φ = 0 as a function of
confinement strength, normalized to the confinement strength at loading. d Momentum distribution
for φ= 0 as a function of the number N of Bloch cycles when no compensating potential is present,
showing fast broadening. e The evolution of the momentum distribution for the case of optimum
cancellation of interactions.

rameters are kept the same. Figure 4d essentially shows the broadening of the distribution
as described before. Interestingly, the condensate wave function in the presence of a com-
pensating potential shown in figure 6.4e dephases in a completely different way. Initially,
the central peak shows no broadening. However, it is slowly depopulated, while a much
broader background distribution is increasingly populated. After about 100 oscillations, the
shape of the central peak starts to develop side lobes or splits in two, with the exact shape
varying from one experimental run to the next. The timescale for the loss of interference is a
factor 10 larger than the timescale on which the dephasing and hence the initial broadening
takes place in the uncompensated case.

6.4 Rephasing of a dephased condensate

Second, we perform a matter wave spin-echo-type experiment. We initially proceed as shown
in figure 6.2, letting the wave function evolve for a time corresponding to aboutN = 40 Bloch
cycles until it is fully dephased and shows, upon measurement, a regular interference struc-
ture. We then essentially remove the effect of interactions by ramping to a= 10 a0 within 10

ms. By not switching the interaction entirely off and by ramping comparatively slowly we
avoid excessive excitation of the radial breathing mode as a result of the change in the mean
field potential at each site. At the same time, we gradually turn on the harmonic potential
as given by the horizontal dipole trapping laser beam L2 within 4 ms to approximately the
same depth as during the initial BEC loading phase. From equation (1) we expect that the
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wave function now experiences a phase shift with a quadratic spatial dependence with op-
posite sign, allowing us to reverse the evolution and to recover the initial condition. Figure 5
shows the resulting quasi-momentum distributions. As time progresses, the wave function
indeed refocuses while it continues to perform Bloch oscillations. As we do not control the
value of δ for a particular run, we record about 10 distributions for each evolution time and
select those that are symmetrical, corresponding to Bloch cycle phase φ = 0 or φ = π. For
the chosen strength of the potential, refocusing happens after about 24 Bloch cycles after the
ramp of a. This confirms that the initial broadening and dephasing mechanism must have
been coherent. We note that we cannot avoid some excitation of the radial breathing mode
as seen in the absorption images given in figure 6.5.

6.5 Discussion

Our results raise several important questions: To what extent can matter wave interferom-
etry be performed in the presence of interactions? What sets the timescale for the eventual
loss of interference contrast? Certainly, our simple analytic model does not predict any loss of
contrast. In particular, it should be possible to completely eliminate the effect of interactions
with the compensating external potential. However, there are several effects not included
in the model that could cause the residual dephasing we observe. Motion in the radial di-
rection, which causes the density and therefore the interaction energy to change over time,
could lead to mixing of the different degrees of freedom and hence to additional dephasing.
This might apply to our matter wave spin-echo experiment shown in figure 6.5, but in the ex-
periment in figure 6.4 where we compensate interactions by means of the external potential
there is hardly any radial excitation and this effect should not play a role. The appearance
of dynamical instabilities [Zhe04, Cri04, Fal04] can be ruled out, as the force applied along
the lattice is about 2.5 times stronger than the force needed for the instability to disappear
[Zhe04]. Going beyond the mean-field treatment, a variety of factors can lead to dephasing.
For example, at each lattice site there exists a superposition of number states, accumulating
different phases corresponding to their respective interaction energies [Li07, Ima97]. This
leads to an effective dephasing, as the phase on a particular lattice site becomes ill-defined.
Basic estimates [Li07, Ima97] indicate a dephasing time of about 20 ms for our system, on
the same order as we observe.

These experiments constitute a clear demonstration of coherent dynamics in an interact-
ing macroscopic quantum system. This coherence affords a large degree of control over the
system, as demonstrated by the possibility to rephase the wave function using an external
potential in order to reverse dephasing due to interactions. The control demonstrated here
has potential application in matter-wave interferometry, and such a degree of control over
the mean-field evolution also opens the possibility to probe beyond-mean-field effects in
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Figure 6.5: Matter wave spin-echo-type experiment. Rephasing of the BEC from a fully dephased
wave function back into a narrow distribution after switching interactions to near zero and turning on
an external potential. Time progresses from front to back. The black solid lines correspond to selected
quasi-momentum distributions that refocus into the characteristic singly-peaked distribution (cycle
phase φ= 0), see text. They are separated in time by 1.15 ms or two Bloch cycles, and they are offset
for clarity. The red solid lines correspond to selected distributions that refocus into the characteristic
double-peaked distribution (cycle phase φ=π). The images are absorption images corresponding to
the adjacent quasi-momentum distributions. Some radial excitation is also present.
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atom interferometers.

We note that coherent phase shifts due to interparticle interactions have also been ob-
served recently in Ramsey interferometry experiments in a two-component BEC [And09].
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SFB 15. R.H. is supported by a Marie Curie International Incoming Fellowship within the
7th European Community Framework Programme.

6.6 Appendix

6.6.1 Sample preparation

Our experimental approach initially follows the procedure described in [Gus08]. In brief,
within 10 s we produce an essentially pure BEC with tunable interactions [Web03] in the
Thomas-Fermi limit with up to 1.5×105 Cs atoms. The BEC is trapped in a crossed-beam
dipole trap generated by a vertically (L1) and a more tightly focused horizontally (L2) prop-
agating laser beam. The BEC is cigar-shaped with the long axis oriented along the direction
of L2. The trap frequencies are (ωx, ωy, ωz) = 2π × (39, 5, 39) Hz, where x denotes the hori-
zontal direction perpendicular to L2, y is the axial direction along L2, and z is the vertical
direction. We magnetically control the scattering length a in the range between 0 a0 and
300 a0 with a resolution of about 0.1 a0. For BEC production, we work at a= 210 a0, where
three-body losses are minimized [Kra06]. Initially, we support the optical trapping by mag-
netic levitation against gravity [Web03]. As shown in figure 6.1a we superimpose an optical
lattice with d=λ/2 along the vertical direction, where λ=1064.5 nm is the wavelength of the
lattice light. To load the BEC into the lattice, we stiffen the horizontal confinement within 1
s, leading to trap frequencies of 2π × (41, 13, 39) Hz, and at the same time turn on the lattice
potential exponentially to a depth of 8ER. Here, ER = h2/(2mλ2) = kB×64 nK is the photon
recoil energy and m the mass of the Cs atom. The BEC is thus gently loaded into the lattice,
occupying about 25 to 35 lattice sites, with up to 7000 atoms at the central site.

6.6.2 Derivation of the BEC wave function in momentum space

Here, we outline the method used to calculate the images in figure 6.2b. Due to the com-
paratively small interaction energies in our system, the atoms are restricted to move in the
lowest Bloch band and we can write the local wavefunction at lattice site j as Ψj(r⊥, z) =
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w
(j)
0 (z)Φ⊥(ρj , r⊥), wherew(j)

0 (z) is the lowest-band Wannier function localized at the j-th site
and Φ⊥(nj , r⊥) is a radial wave function depending on the occupation number nj = |cj |2 at
each site [Sme03]. We can then write the total time-dependent wave function in momentum
space as

Ψ(pz, p⊥, t) =
∑
j

cj(t)w
(j)
0 (pz)Φ⊥(nj , p⊥)

= w
(0)
0 (pz)

∑
j

cj(t)e
−ipzjdΦ⊥(nj , p⊥). (6.2)

Transforming to quasi-momentum space and assuming that the phase at each lattice site
evolves according to equation (1), we can write [Wit05]

Ψ(qz, p⊥, t) =
∑
j

cj(0)e−i(q+
Ft
~ )jd e−i(βtrj

2−αintj
2)t/~Φ⊥(nj , p⊥), (6.3)

where qz denotes the quasimomentum. The images in figure 6.2b show the BEC density
distribution |Ψ(qz, p⊥, t)|2 integrated along one radial direction, using a Thomas-Fermi wave
function as radial wave function Φ⊥(nj , p⊥).

We have compared the result in figure 6.2b with a numerical integration of the discrete
nonlinear Schrödinger equation [Sme03], which includes tunnelling between lattice sites,
and find essentially identical results, confirming that tunnelling is inhibited.
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CHAPTER 7

PUBLICATION

Inducing Transport in a Dissipation-Free Lattice with Super Bloch
Oscillations

Phys. Rev. Lett. 104, 200403 (2010)

E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, and H.-C. Nägerl

Institut für Experimentalphysik und Zentrum für Quantenphysik,

Universität Innsbruck, 6020 Innsbruck, Austria

Particles in a perfect lattice potential perform Bloch oscillations when subject to a constant
force, leading to localization and preventing conductivity. For a weakly-interacting Bose-
Einstein condensate (BEC) of Cs atoms, we observe giant center-of-mass oscillations in po-
sition space with a displacement across hundreds of lattice sites when we add a periodic
modulation to the force near the Bloch frequency. We study the dependence of these “su-
per” Bloch oscillations on lattice depth, modulation amplitude, and modulation frequency
and show that they provide a means to induce linear transport in a dissipation-free lattice.

7.1 Introduction

Understanding the conduction of electrons through solids is of fundamental concern within
the physical sciences. The simplified situation of an electron under a constant force F within
a perfect, non-dissipative, periodic lattice was originally studied by Bloch and Zener [Blo28,
Zen34] over 70 years ago. Their and subsequent studies revealed that the particle would
undergo so-called Bloch oscillations (BOs), a periodic oscillation in position and momen-
tum space, thereby quenching transport and hence resulting in zero conductivity. BOs can
be viewed as periodic motion through the first Brillouin zone, resulting in a Bloch period
TB = 2~k/F , where k = π/d is the lattice wave vector for a lattice spacing d. They result from
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Figure 7.1: (color online) Experimental setup (a) and excitation spectrum (b) for atoms in a tilted
periodic potential. The width W is plotted as a function of the drive frequency ν. The resonances
correspond to a drastic spreading of the atomic wave packet as a result of modulation-assisted tun-
neling [Sia08] when ν ≈ i/j × νB , where i, j are integers. The parameters are F0 = 0.096(1)mg,
∆F = 0.090(4)mg, V = 3.0(3) ER, and τ = 2 s. The dashed line is a guide to the eye.

the interference of the particle’s matter wave in the presence of the periodic lattice structure,
requiring a coherent evolution of the wave during the time TB . Generally, it is believed that
conductance is restored via dissipative effects such as scattering from lattice defects or lat-
tice phonons [Kan95, Ash76]. In bulk crystals, relaxation processes destroy the coherence of
the system even before a single Bloch cycle is completed. These systems thus exhibit con-
ductivity but prevent the observation of BOs. To observe BOs, the BO frequency νB = 1/TB

must be large compared to the rate of decoherence. In semiconductor superlattices, where
the Bloch frequency is enhanced, a few cycles have been observed [Leo92].

A recent approach to observe and study BOs is to use systems of ultracold atoms in opti-
cal lattice potentials with a force that is provided by gravity or by acceleration of the lattice
potential. In these engineered potentials, generated by interfering laser waves, dissipation is
essentially absent, and decoherence can be well-controlled [Gus10]. Essentially all relevant
system parameters are tunable, e.g. lattice depth and spacing, particle interaction strength,
and external force, i.e. lattice tilt. For sufficiently low temperatures, a well-defined narrow
momentum distribution can initially be prepared. BOs have been observed for thermal sam-
ples [Ben96, Bat04, Fer06], for atoms in weakly-interacting Bose-Einstein condensates (BECs)
[And98, Mor01, Gus10], and for ensembles of non-interacting quantum-degenerate fermions
[Roa04]. Non-interacting BECs [Gus08, Fat08] are ideally suited to study BOs as interaction-
induced dephasing effects are absent, allowing for the observation of more than 20000 Bloch
cycles [Gus08].
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Figure 7.2: (color online) Observation of super Bloch oscillations and modulation-driven wave packet
spreading. (a) and (b) In-situ absorption images and density profiles for off-resonant modulation
(∆ν = −1 Hz), showing giant oscillatory motion across more that 200 sites. (time steps of 120 ms,
average of 4 images).(c) and (d) In-situ absorption images and density profiles for resonant mod-
ulation (∆ν = 0 Hz), showing a wave packet that spreads symmetrically (time steps of 100 ms,
average of 4 images). The phase φ was adjusted to allow for a symmetric spreading, corresponding
to a calculated value of φ = π/2. For (a)-(d), the parameters are F0 = 0.062(1)mg, ∆F = 0.092(4)mg,
V = 3.0(3)ER, a = 11(1) a0. (e) Center-of-mass motion for a = 11(1)a0 (circles), a = 90(1)a0 (dia-
monds), a = 336(4)a0 (squares).

As for any oscillator, classical or quantum, it is natural that one investigates the proper-
ties of the oscillator under forced harmonic driving. The dynamics of a harmonically driven
Bloch oscillator has recently been the subject of several theoretical [Kor03, Har04, Tho02,
Kol09] and experimental studies [Wil96, Sia08, Iva08, Alb09]. For example, modulation-
enhanced tunneling between lattice sites [Sia08, Iva08] and spatial breathing of incoherent
atomic samples [Alb09] have been observed. Here, for a weakly-interacting atomic BEC in
a tilted lattice potential, we demonstrate that harmonic driving can lead to directed center-
of-mass motion and hence to transport. More strikingly, for slightly off-resonant driving,
we observe giant matter-wave oscillations that extend over hundreds of lattice sites. These
“super Bloch oscillations” result from a beat between the usual BOs and the drive. They
are rescaled BOs in position space and can also be used, by appropriate switching of the
detuning or the phase, to engineer transport.
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7.2 Super Bloch oscillations

The experimental starting point is a tunable BEC of 1.2 × 105 Cs atoms in a crossed beam
dipole trap [Kra04] adiabatically loaded within 400 ms into a vertically oriented 1D opti-
cal lattice [Gus08] as illustrated in Fig. 7.1(a). The lattice spacing is d = λ/2, where λ =

1064.49(1) nm is the wavelength of the light. Unless stated otherwise, we work with a shal-
low lattice with depth V = 3.0(3) ER, where ER = h2/(2mλ2) is the photon recoil energy for
particles with mass m. The atoms are initially levitated against gravity by means of a mag-
netic field gradient and spread across approximately 50 lattice sites with an average density
near 5 × 1013 cm−3 in the central region of the sample. We control the strength of the in-
teraction as measured by the s-wave scattering length a near a Feshbach resonance [Kra04].
Throughout this work, unless stated otherwise, we work at a = 11(1) a0, where a0 is Bohr’s
radius. We initiate BOs by removing, the dipole trap confinement in the vertical direction
and by reducing the levitation in 1 ms to cause a force that is a small fraction of the grav-
itational force mg, for which νB is near 100 Hz. An additional harmonic modulation of the
levitation gradient then results in an oscillating driving force F (t) = F0 + ∆F sin(2πνt+ φ),
where F0 is the constant force offset, ∆F is the amplitude of the modulation, ν is the mod-
ulation frequency, and φ is a phase difference between the BOs and the drive. After a given
hold time τ we switch off all optical beams and magnetic fields and take in-situ absorption
images after a short delay time of 800µs.

We first determine the excitation spectrum. Fig. 7.1(b) shows the 1/
√
e-width W of the

matter wave after τ = 2 s as a function of ν. A series of narrow resonances at rational multi-
ples of νB can clearly be identified. In agreement with recent experiments [Sia08, Iva08], we
attribute these resonances to modulation-enhanced tunneling between lattice sites, leading
to dramatic spreading of the atomic wave packet. Tunneling between nearest neighbor lat-
tice sites is enhanced when νB is an integer multiple j of ν via a j-phonon process [Eck05],
while tunneling between lattice sites i lattice units apart is enhanced when ν is an integer
multiple i of νB . Even combinations thereof, e.g. i/j = 2/3 or 2/5, are detectable.

We now investigate the dynamics of the wave packet in more detail. For this, we use the
resonance with i=j=1 and choose ν = νB + ∆ν, where ∆ν is the detuning. In Fig. 7.2(a)-(d)
we present absorption images and spatial profiles for the weakly-interacting BEC. The time
evolution for the width, shape, and center position of the BEC is dramatic. On resonance
(∆ν = 0), (c) and (d), the atomic ensemble spreads as it develops pronounced edges. Also,
as we will see below, the center-of-mass motion depends crucially on the phase φ. Off reso-
nance, (a) and (b), for small detuning ∆ν = −1 Hz, the wave packet exhibits giant oscillatory
motion across hundreds of lattice sites that we denote as “super Bloch oscillations” (sBO).
Note that, for the parameters used here, the amplitude for ordinary BOs corresponds to
about 4d = 2.1 µm. Also the width and higher moments of the distribution show oscillatory
behavior. In Fig. 7.2(e) we plot the center-of-mass position as a function of time for ∆ν = −1
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Figure 7.3: (color online) Results from a semi-classical model for sBOs. (a) For a constant force, here
F0 = 0.06mg, the velocity (in units of ~k/m) exhibits a symmetric, saw-tooth-like time evolution, typ-
ical for BOs. (b) Resonant modulation, here with ∆F = 0.8F0, alters the symmetric periodic velocity
excursions of normal BOs (φ = 0, solid line, φ = π, dashed line), leading to a net-movement, (c), with
φ = 0 (i), φ = π/2 (ii), and φ = π (iii). An additional detuning ∆ν = ±0.1νB results in a periodically
changing phase difference and hence in giant oscillations in position space, (i) and (ii) in (d). On top
of the motion, normal BOs can clearly be seen. The phase of sBOs depends on the sign of ∆ν, as
shown by experimental data in (e), where F0 = 0.096(1)mg, ∆F = 0.090(4)mg, ∆ν = 1 Hz (circles),
−1 Hz (squares).

Hz. At a = 11(1) a0 we typically observe sBOs over the course of several seconds. The dy-
namics of sBOs strongly depends upon the site-to-site phase evolution of the matter-wave.
In fact, stronger interactions, e.g. a = 90(1) a0, distort the density profile of the driven BEC
and alter the BEC’s oscillation frequency and amplitude. For sufficiently strong interactions,
no sBOs are observed. We also attribute the wave-packet spreading as seen after one cycle in
Fig. 7.2(b) mostly to interactions. For the measurements above, we intentionally use a large
modulation amplitude ∆F to enhance the amplitude of sBOs. However, all effects equally
exist for ∆F � F0, as we will also demonstrate below in Fig. 7.4(b).

7.3 Models and data analysis

It is useful to develop a simple semi-classical model to obtain a qualitative understanding of
the origin of sBOs. The only elements of this model are that the wave packet is accelerated
by the applied force and that, once the wave packet reaches the edge of the first Brillouin
zone, it is Bragg reflected. This model does not include an effective mass and cannot be used
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Figure 7.4: (color online) Quantitative analysis of sBOs. (a) The effect of the detuning ∆ν on the
oscillation frequency and the amplitude of sBOs, with ∆ν = 0.5 Hz (circles), 1 Hz (squares), 2 Hz
(diamonds). Right: The solid lines are fits with linear and ∆ν−1-dependence, respectively. (b) Depen-
dence of the amplitude of sBOs on ∆F/F0. The data sets correspond to ∆F/F0 = 1.52 (circles), 0.76
(squares), 0.15 (diamonds), 0.08 (stars). Right: The solid line is a fit proportional to B1(∆F/F0). (c)
Amplitude of sBOs as a function of lattice depth, V= 3 ER (circles), 4 ER (squares), 5 ER (diamonds),
7 ER (triangles). Right: The solid line is a fit proportional to J , for which we omit the first data point
for the shallow lattice. If not stated otherwise, the parameters for all measurements shown here are
F0 = 0.062(1)mg, ∆F = 0.092(4)mg, ∆ν = −1 Hz.

to predict quantitative results. Fig. 7.3(a)-(d) shows the result of a numerical integration of
the time-dependent acceleration a(t) = F0/m+ ∆F/m sin(2π(νB + ∆ν)t+ φ) with periodic
Bragg reflection. For a constant acceleration ∆F = 0, the wave packet’s velocity shows the
well-known saw-tooth-like time evolution that corresponds to BOs. The curve in (a) is sym-
metric, hence, there is no net movement, as indicated by the shaded regions of equal area.
If, however, there is additional harmonic modulation at ν = νB , the velocity excursions will
not be symmetric about zero, (b), and result in a net movement for each period, leading to
linear motion, (c). Only for φ = π/2 or φ = 3π/2 symmetry is restored and no net movement
will occur. Note that, in general, the velocity of the linear motion depends non-trivially on φ.
Off-resonant modulation with ∆ν � νB induces a slowly-varying phase mismatch between
the drive and the original Bloch period. This results in a slow oscillation of the net move-
ment for each Bloch cycle, which finally sums up to a giant oscillation in position space, (d).
Evidently, this oscillation is the result of a beat between the drive and the original BO. The
initial direction of the motion depends on φ and ∆ν. In particular, a change in the sign of
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∆ν at a given φ can lead to opposite motion in position space, as verified experimentally in
Fig. 7.3(e) for ∆ν = ±1 Hz.

A quantitative understanding of sBOs [Kol09] can be obtained from an approach based
on Wannier-Stark states [Tho02]. In essence, the harmonic drive is expected to lead to a
rescaling of the tunneling rate J → Jeff = JB1(∆F/F0) and the force F0 → Feff = h∆ν/d

for a stationary lattice with tilt. Here, B1 is the first Bessel function of the first kind. The am-
plitude of sBOs is thus given by a new Wannier-Stark localization length Leff ≈ Jeff/(dFeff)

[Kol09]. In this sense, sBOs are rescaled BOs. We quantitatively study the dependence of
amplitude and period of sBOs on ∆ν, ∆F/F0, and V . The results are shown in Fig. 7.4. As
expected, the period T is given by 1/∆ν. Also, the oscillation amplitude scales as 1/∆ν, and
its Bessel-function dependence on ∆F/F0 is well reproduced. Given our spatial resolution,
we can observe sBOs down to ∆F/F0 = 0.08 (Fig. 7.4(b)). Note that sBOs can only be ob-
served with sufficient wave function coherence and for well-defined initial conditions, i.e.
for sufficient wave packet localization in the first Brillouin zone of the lattice. Nevertheless,
incoherent atomic samples exhibit a breathing of the spatial distribution [Alb09] as the oscil-
lation period is insensitive to the initial conditions. In the work of Ref.[Alb09], the breathing
can be understood in terms of an incoherent sum over localized Wannier-Stark states that
individually show a breathing motion with period T [Tho02].

7.4 Inducing transport

The results above provide two mechanisms to circumvent the localization inherent in BOs
and to induce coherent transport in an otherwise insulating context. As shown in Fig. 7.5(a),
resonant modulation (∆ν = 0) causes directed motion of the wave packet’s center-of-mass.
For longer times, we find that the motion is approximately linear. The mean velocity depends
on the relative phase φ of the Bloch oscillator and the drive. In the experiment, we varied φ

via φ = φ0 + ∆φ, where φ0 is a constant phase offset, which depends on the details how BOs
are initiated. For off-resonant modulation, transport can be induced by switching the sign
of ∆ν before a half-cycle of a sBO is completed. The wave packet then continues to move in
the original direction. This motion is shown in Fig. 7.5(b), where we switch the sign after 400

ms. For comparison, Fig. 7.5(c) shows a sBO with T = 1 s without switching.

7.5 Conclusion

In summary, we have studied the coherent evolution of matter waves in tilted periodic po-
tentials under forced driving and have observed giant sBOs, which result from a beat of BOs
with the drive when a small detuning ∆ν from the Bloch frequency is introduced. Localiza-
tion as a result of BOs is broken, allowing us to engineer matter wave transport over macro-
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Figure 7.5: (color online) Inducing transport and suppressing interaction-induced dephasing. (a) Lin-
ear motion for resonant modulation. ∆φ = 0◦ diamonds, 65◦ circles, 120◦ triangles, 190◦ squares.
∆φ = 0◦ and ∆φ = 190◦ were chosen to maximize the speed in opposite directions. The solid lines
are linear fits to the data points excluding the first data point. For comparison we plot the linear mo-
tion that corresponds to a tunneling rate of Jeff , dotted lines. (b) Directed motion for off-resonant
modulation. ∆ν was switched from −1 Hz to 1 Hz after 400 ms. For comparison, (c) shows the
oscillatory motion without switching (time steps of 80 ms). The parameters are F0 = 0.096(1)mg,
∆F = 0.090(4)mg.

scopic distances in lattice potentials with high relevance to atom interferometry [Cro09]. We
are now in a position to investigate the effect of interactions on driven transport, for which
subdiffusive and chaotic dynamics have been proposed [Kol09].

During the final preparation of the manuscript we became aware of related work on non-
dissipative transport in a quantum ratchet [Sal09]. We thank A. R. Kolovsky, A. Zenesini, and
A. Wacker for discussions and R. Grimm for generous support. We acknowledge funding
by the Austrian Ministry of Science and Research and the Austrian Science Fund and by
the European Union within the framework of the EuroQUASAR collective research project
QuDeGPM. R.H. is supported by a Marie Curie Fellowship within FP7.
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Molecular cooling techniques face the hurdle of dissipating translational as well as inter-
nal energy in the presence of a rich electronic, vibrational, and rotational energy spectrum.
Here, we create a translationally ultracold, dense quantum gas of molecules bound by more
than 1000 wavenumbers in the electronic ground state. Specifically, we stimulate with 80%
efficiency a two-photon transfer of molecules associated on a Feshbach resonance from
a Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range
electrostatic bond of the Feshbach molecule is coherently transformed into a tight chem-
ical bond. We demonstrate coherence of the transfer in a Ramsey-type experiment and
show that the molecular sample is not heated during the transfer. Our results show that
the preparation of a quantum gas of molecules in specific rovibrational states is possible
and that the creation of a Bose-Einstein condensate of molecules in their rovibronic ground
state is within reach.
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Ultracold samples of molecules are ideally suited for fundamental studies in physics and
chemistry, ranging from few-body collisional physics [1, 16, 4, 5], ultracold chemistry [6], and
high resolution spectroscopy [2, 3], to quantum gas preparation, molecular Bose-Einstein
condensation [3], and quantum processing [4]. For many of the proposed experiments full
control over the molecular wave function in specific deeply bound rovibrational states is
needed. High densities are required for molecular quantum gas studies. Only in the rovi-
bronic ground state, i.e. the lowest vibrational and rotational energy level of the electronic
ground state, is collisional stability assured. However, direct molecular cooling towards high
phase space densities seems yet out of reach [11], whereas techniques like Feshbach asso-
ciation [Köh06] and photoassociation [14] either produce molecules exclusively in weakly
bound rovibrational levels, or suffer from low production rates and low state selectivity.

In order to produce a quantum gas of molecules in their absolute ground state, Jaksch
et al. [12] proposed a scheme for homonuclear alkali molecules in which the technique of
stimulated two-photon transfer is repeatedly applied to molecules associated from a high-
density sample of ultracold atoms. The initially very loosely bound molecules are transferred
in successive steps to the rovibrational ground state of the singlet X1Σ+

g molecular poten-
tial. The advantage of this scheme is that it is fully coherent, not relying on spontaneous
processes, and that it involves only a very small number of intermediate levels. It promises
that a ground state binding energy of typically 0.5 eV can be carried away without heating
the molecular sample. It essentially preserves phase space density, allowing the molecular
sample to inherit the high initial phase space density from the atomic sample. However, to
realize this scheme, several challenges have to be met. First, there is a large difference in in-
ternuclear separation that has to be bridged: the overlap between the radial wave function of
the least bound molecules with the radial wave functions of deeply bound molecular levels
is extremely low, potentially leading to prohibitively low transition rates for the two-photon
transitions. Second, the scheme requires the identification of suitable intermediate molecular
levels while strictly avoiding parasitic excitations. Third, a large difference in binding energy
has to be overcome. On a more technical side, the lasers driving the two-photon transitions
at widely different wavelengths need to have extremely low relative short term phase jit-
ter and high long term frequency stability to allow for coherence and reproducibility. In
important experiments, Winkler et al. [17] and recently Ospelkaus et al. [15] demonstrated
highly efficient two-photon transfer into lower lying molecular levels starting from weakly
bound dimer molecules, which were associated from ultracold atoms on a Feshbach reso-
nance [Köh06]. However, the transferred molecules are still weakly bound. Their binding
energy, on the order of the atomic hyperfine splitting, is less than 10−4 of the binding energy
of the rovibrational ground state, and wave function overlap with this state is still negligible.

Here we demonstrate the crucial step towards full control of the molecular wave func-
tion and towards the formation of a Bose-Einstein condensate (BEC) of molecules in their
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Figure 8.1: A Molecular level scheme for Cs2. Molecules in a weakly bound Feshbach level are trans-
ferred to rovibrational level |ν = 73, J = 2> of the singlet X1Σ+

g potential with a binding energy of
1061 cm−1 in a two-photon STIRAP process with wavelengths near 1126 nm and 1006 nm via the
225th level of the electronically excited (A1Σ+

u − b3Πu) 0+
u potentials. The X1Σ+

g potential has about
155 vibrational levels. B Zeeman diagram showing the energy of all relevant weakly bound molec-
ular levels for initial Feshbach molecular state preparation [21]. The binding energy is given with
respect to the F =3,mF =3 two-atom asymptote. The molecules are produced on a d-wave Feshbach
resonance at 4.8 mT (see inset) and then transferred to the weakly bound s-wave state |s> on an
avoided state crossing. Further lowering of the magnetic offset field to 1.9 mT transfers the molecules
from |s> to state |a>, the starting state for the STIRAP transfer. C STIRAP transfer scheme [23]. The
molecules are transferred from the initial state |a> to the final state |g>= |ν = 73, J = 2> by means
of two overlapping laser pulses for which laser L2 is pulsed on prior to L1. The detunings and Rabi
frequencies of Li are ∆i and Ωi, i = 1, 2.

rovibronic ground state by linking weakly bound molecular states with deeply bound rovi-
brational states. We coherently transfer an ultracold quantum gas of weakly bound cesium
Feshbach molecules to the rovibrational level |ν = 73, J = 2> of the singlet X1Σ+

g poten-
tial, bound by 1061 cm−1 ( or h×31.81 THz), corresponding to more than one fourth of the
binding energy of the rovibrational ground state. To achieve this result, we overcome low
wave function overlap by using a suitable intermediate excited molecular state while avoid-
ing excitation into loss channels, and we reference the transfer lasers to a frequency comb,
allowing us to flexibly bridge binding energy differences of more than 1000 cm−1.

Figure 8.1 shows the energy of the relevant molecular and atomic states. Our experiment
starts with a cigar-shaped BEC of cesium atoms in the lowest hyperfine sublevel F =3,mF =
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3 in an optical dipole trap. For BEC production, we essentially follow the procedure detailed
in [15]. For Feshbach molecule production out of the BEC, we ramp up the offset magnetic
field from the initial value of 2.1 mT to about 5.0 mT in 10 ms. We then ramp down, sweeping
across a d-wave Feshbach resonance at 4.8 mT after about 1 ms as shown in Figure 8.1B
[29, 21]. Our procedure [29] gives an ultracold and dense sample of up to 11000 molecules
every 10 s at densities above 1 × 1011 cm−3. For the state transfer experiments discussed
here, we do not separate the molecules from the original BEC. Upon lowering the magnetic
field, the molecules are transferred from the initial state |d> to a still weakly bound s-wave
molecular state |s> of the lowest hyperfine channel (F1 = 3, F2 = 3) via an avoided crossing
[21]. The index i=1, 2 denotes the i-th atom.

Upon further lowering the magnetic field to about 2.2 mT, the molecules enter into a
closed channel s-wave molecular state |a> via a second, broad avoided crossing [21]. This
state belongs to the uppermost hyperfine channel (F1 = 4, F2 = 4) and thus has an effective
binding energy of more than 2 × hνCs. Here h is Planck’s constant and νCs ≈ 9.19 GHz is
the Cs clock frequency. Similar to |s> this state is a mixture of the X1Σ+

g ground state and
the lowest triplet a3Σ+

u state, coupled by hyperfine interaction, and it has zero rotational
angular momentum. At a field of 1.9 mT, it has a binding energy of 5 MHz×h with respect
to the F = 3,mF = 3 two-atom asymptote [21]. As one might expect, we find that optical
transition rates as measured below are improved when using this effectively more deeply
bound state as the initial state for two-photon transfer instead of state |s>. We shut off the
trap and perform all subsequent experiments in free flight. This does not affect the particle
density immediately, but reduces it during the later detection procedure, which takes about
6ms, in order to avoid collisions between atoms and weakly bound dimers and hence loss.
We detect molecules in |a> via states |s> and |d> by first applying a magnetic field gradient
for atom-molecule Stern-Gerlach separation, then reversing the magnetic field ramp, and
finally dissociating them on the Feshbach resonance at 4.8 mT, and imaging the resulting
atoms [29].

Efficient two-photon transfer via the stimulated Raman adiabatic passage (STIRAP) tech-
nique [23, 17] relies on a suitable choice for the excited state |e>. In our case this state must
have singlet character so that it can be used as a transfer state to deeply bound levels of the
X1Σ+

g potential. In general, it must be well separated from other states, which otherwise
could be off-resonantly excited. It should thus be situated far to the red of the excited S 1

2
+P 1

2

potential asymptote to avoid the high density of excited molecular states near that asymp-
tote. We have performed optical loss spectroscopy starting from state |a> in the wavelength
range from 1120 to 1130 nm, about 2300 cm−1 to the red of the cesium D1 line. For this
measurement we recorded the number of remaining molecules in |a> as a function of ex-
citation wavelength and found two progressions of lines, which we assign to the potential
curves of the mixed (A1Σ+

u − b3Πu) 0+
u excited states and to the (1)3Σ+

g excited state, respec-
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tively. For the present experiments, we choose for |e> a level of the 0+
u progression which is

8879.63(1) cm−1 above the F =3,mF =3 two-atom asymptote, corresponding to a transition
wavelength of 1126.173(1) nm (Figure 8.1A). We measure all wavelengths on a home-built
wavemeter. We identify this previously unknown level as the 225th one of the 0+

u system,
with an uncertainty of two in the absolute numbering.

The ground state level |g> with vibrational quantum number ν=73 is well known from
conventional molecular spectroscopy [36, 37]. However, its binding energy, as well as the
binding energy of all deeply bound vibrational levels, has only been known with an un-
certainty of about ±0.45 cm−1 prior to the present experiments [37]. We search for |g> by
exciting the transitions from |a> to |e> with laser L1 and from |e> to |g> with laser L2

simultaneously. The two light fields create a molecule-molecule dark state. The molecules
initially in |a> are lost unless the second laser L2 is on two-photon resonance, provided
that the Rabi frequency Ω2 on the second transition is equal to or greater than Ω1, the Rabi
frequency on the first transition. For coherence, stability, and reproducibility, we lock both
lasers to independent narrow-band optical resonators, which we reference to an optical fre-
quency comb [22]. The comb is not calibrated, but it allows precise differential frequency
measurements and provides long-term stability needed for systematic line searches [23]. We
find the resonance condition with vibrational level ν=73 at 1005.976(1) and 1005.982(1) nm,
corresponding to rotational quantum numbers J = 0 and 2. Identification of J is possible
since the rotational energy splitting is well known. Figures 8.2 A and B show typical molec-
ular dark resonances when we set L2 on resonance and step the detuning ∆1 of L1 near
1126.173 nm. Figure 8.2C shows a dark resonance involving ν = 73, J = 2 using a different
excited molecular state |e′>, which is excited with L1 near 1123.104 nm.

Figures 8.2 D-F show dark resonances involving the neighboring vibrational levels ν=71

and ν= 72. These X1Σ+
g -levels were easily found based on previously acquired Cs2 spectra

[37]. We determine the binding energy of these levels with respect to the atomic F1 =3, F2 =

3 asymptote at zero magnetic field to be 1060.9694(10), 1088.3101(10), 1115.9148(10) cm−1

for ν = 73, 72, 71 with J = 0, respectively. The binding energy of the rovibrational ground
state ν = 0 is thus 3628.7053(14) cm−1, which represents an improvement in precision of
more than two orders of magnitude compared to the previous determination [37]. Fitting
the data for the dark resonances with a three-level model taking into account off-resonant
excitations and laser line widths, we determine the molecular transition strengths as given
by the normalized Rabi frequencies for the transitions |a> to |e> and |e> to |ν= 73, J = 2>

to be Ω1 = 2π×2 kHz
√
I/(mW/cm2) and Ω2 = 2π×11 kHz

√
I/(mW/cm2), respectively.

A comparison with a typical atomic transition strength of Ωa = 2π×5 MHz
√
I/(mW/cm2)

giving |Ω1/Ωa|2 < 10−6 reflects the minuteness of the wave function overlap.

We are now in a position to carry out coherent transfer using the STIRAP technique. For
|g> we choose the vibrational level with ν = 73, J = 2. This level will allow us to reach the
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Figure 8.2: Dark resonances for vibrational levels ν= 71, 72, and 73. Laser L2 is held on resonance,
while the detuning ∆1 of L1 is scanned. We record the number of molecules in |a> while both lasers
are pulsed on simultaneously. A, B, and C show dark resonances involving ν=73 for excitation with
L1 near 1126 nm into J=0 and 2 and for excitation with L1 near 1123 nm into J=2, respectively. D, E,
and F show the neighboring levels ν=71 and 72 for excitation near 1123 nm. The solid line in B is the

result of a three-level model calculation matched to the data giving Ω1 = 2π×2 kHz
√
I1/(mW/cm

2
)

and Ω2 = 2π×11 kHz
√
I2/(mW/cm

2
) for a pulse time of 5 µs at intensities of I1 = 4×105 mW/cm2

for L1 and I2 = 2×105 mW/cm2 for L2 assuming a laser linewidth of 2 kHz.

rovibrational ground state ν = 0, J = 0 with a second STIRAP step in view of the selection
rule ∆J = 0,±2. STIRAP uses a counterintuitive overlapping pulse sequence in which L2 is
pulsed on prior to L1. As is well known [23], STIRAP relies on the existence of a dark state of
the form |D>= α(t)|a> +β(t)|g>. With sufficient adiabaticity, the function |α(t)|2 decreases
smoothly from 1 to 0, while the function |β(t)|2 increases smoothly from 0 to 1. The initial
state |a> is thus rotated via |D> into the final state |g>. The criterion for adiabaticity is
τpΩ

2 � (2π)2Γ, where τp is the pulse overlap time, Ω ≈ Ω1 ≈ Ω2 is the peak Rabi frequency
during the pulse, and Γ≈ 2π × 4 MHz is the (spontaneous) decay rate from the upper state
|e> as determined from our loss measurements. This criterion is quite stringent, in partic-
ular in view of the low wave function overlap that enters into Ω. An upper (experimental)
limit for τp is given by the relative laser coherence time for L1 and L2. We choose τp to be
approximately 10 µs. For detection, we apply the reverse STIRAP sequence after a waiting
time τw ≈ 10 µs to transfer the molecules back into |a>. During this time we leave laser L1

on to assure that all possible residual population in state |a> is removed.

We perform double STIRAP about 3 ms after the production of the Feshbach molecules
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Figure 8.3: STIRAP transfer from the weakly bound state |a> to the deeply bound state |g>= |ν=
73, J = 2> and back to |a>. A shows the number of molecules in state |a> as a function of STIRAP
time τ for ∆1 ≈ 0 ≈ ∆2. The measured pulse overlap begins at 5 µs and ends at about 15 µs. The
second pulse overlap starts at 25 µs and ends at about 33 µs. B schematically shows the timing for
the Rabi frequencies Ωi, i = 1, 2, during the double STIRAP sequence. Laser L1 is left on after the
first STIRAP sequence to clear out any remaining population in |a>. C Double STIRAP efficiency as
a function of the detuning ∆2 of laser L2 for ∆1 ≈ 0. The solid line is a gaussian fit with a FWHM of
811 kHz. The peak Rabi frequencies are Ω1≈2π×3 MHz and Ω2≈2π×6 MHz. The error bars refer to
the 1-sigma error in determining the particle number.

and 1 ms after shutting off the trap. Figure 8.3A shows the molecular population in |a> as
a function of the STIRAP time τ , and Figure 8.3B shows the timing sequence for the double
transfer scheme. For recording the time evolution of the population we interrupt the trans-
fer process after time τ and measure the remaining population in |a>. The molecules in |a>
initially disappear during the first STIRAP sequence. They are now in level |ν = 73, J = 2>

of the singlet X1Σ+
g potential. Then a large fraction of them returns in the course of the re-

verse STIRAP sequence. For this particular measurement both lasers are on resonance. The
peak Rabi frequencies are Ω1 ≈ 2π×3 MHz and Ω2 ≈ 2π×6 MHz. We typically obtain an
overall efficiency of more than 65% for the double transfer process, corresponding to single
pass efficiencies of more than 80%, assuming equal efficiencies for both passes. Figure 8.3C
shows the double pass efficiency as a function of detuning ∆2 of laser L2. Simulations for
the three-level system show that the ∼800 kHz full width at half maximum of the efficiency
curve is compatible with a combination of laser power broadening and Fourier broadening.
Our simulations also show that higher transfer efficiencies can be expected for an optimized
STIRAP pulse sequence in which both peak Rabi frequencies are equal. Molecules not trans-
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Figure 8.4: A Ramsey-type experiment. The population in the initial state |a> oscillates as the hold
time τh during which both transfer lasers are off is increased. The solid line is a sinussoidal fit to the
data up to τh = 20 µs. Its frequency f is 115(2) kHz, in good agreement with the expected value of
113 kHz. The thin lines are borders to a region that is given by varying f by ±6 kHz, illustrating
the estimated jitter in the two-photon detuning |∆2 −∆1|. B Comparison of the rate of expansion in
the horizontal direction for the molecular sample without and with STIRAP transfer. The top curve
(circles) shows the Thomas-Fermi radius r of the molecular sample as a function of expansion time
without STIRAP. The linear fit gives a rate of expansion of dr/dt = 1.0(1) mm/s, corresponding to an
energy of kB × 14(4) nK. The bottom curve (squares) shows the expansion after double STIRAP with
dr/dt = 0.7(1) mm/s, corresponding to kB × 7(2) nK.

ferred by STIRAP are resonantly excited to |e> and then lost from our three-level system by
spontaneous emission into a multitude of ground state levels.

We demonstrate coherence of the transfer process in a Ramsey-type experiment [17],
halting the transfer process by simultaneously shutting off both lasers 12 µs into the first
STIRAP sequence when a balanced superposition of |a> and |g > has been created with
|α(τ)|2 ≈ 1

2 ≈ |β(τ)|2. After a hold time τh we resume the STIRAP transfer, with the roles of
lasers L1 and L2 reversed. Thus, for τh = 0 the population will simply be rotated back into
the initial state. A three-level calculation shows that the population in the initial state |a>
is expected to oscillate at the rate of the two-photon detuning |∆2 − ∆1|/(2π). Figure 8.4A
shows the initial state population for ∆1≈0 and ∆2≈2π×113 kHz as a function of τh. Indeed,
the population oscillates with a frequency at |∆2−∆1|/(2π), however with marked increase
in phase jitter on the time scale of 30 µs. We attribute this apparent loss of phase coherence to
a slow relative frequency drift of lasers L1 and L2, leading to a slightly different two-photon
detuning from one experimental run to the next. In Figure 8.4A, we have added a region
indicating a frequency jitter of ±6 kHz. This value is compatible with the present long-term
stability of our lasers. Note that the frequency drift does not affect an individual STIRAP
process as the transfer efficiency is very robust against laser detuning as shown in Figure
8.3C.

We now show that the molecular sample is not heated during the transfer process and
is indeed in the quantum gas regime. Specifically, we measure and compare the rate of ex-
pansion of the molecular sample in state |a> without and with the double transfer process.
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In our regime the energy scale for expansion is usually set by the mean field of the BEC,
resulting in typical expansion energies for the atoms in the range from kB × 2 nK to kB × 10

nK, where kB is Boltzmann’s constant, depending on the strength of the atomic interaction
[Kra04]. We find that the initial magnetic field ramping excites collective motion of the BEC
in the form of a breathing mode as a result of a change in the mean field potential due to a
change in atomic interaction strength [15]. The breathing is transformed into expansion of
the sample when the trap is shut off. We follow the expansion by monitoring the change of
the Thomas-Fermi radius r of the sample. Figure 8.4B shows this radius along the horizontal
direction as a function of expansion time without and with STIRAP. Without STIRAP, we ob-
tain from a linear fit an expansion rate of dr/dt= 1.0(1) mm/s, corresponding to an energy
of kB × 14(4) nK. With STIRAP, the rate is dr/dt=0.7(1) mm/s, corresponding to an energy
of kB × 7(2) nK. Both values are compatible with a separate measurement of the expansion
of the atomic BEC for the same magnetic field ramp. Interestingly, the rate for the case with
STIRAP is lower. We speculate that STIRAP with the tightly focused laser beams L1 and L2

preferentially transfers molecules in the center of the sample and is hence responsible for
some selection in velocity space.

It should now be possible to add a second STIRAP step for transfer into the rovibra-
tional ground state ν = 0, J = 0. A suitable two-photon transition at readily available laser
wavelengths is via the 68th excited state level of the 0+

u potential near 1329 nm (up) and 991
nm (down) with comparatively good wave function overlap at the level of |Ω/Ωa|2 ≈ 10−4.
We expect that searching for dark resonances will be straightforward as now all two-photon
transition energies are known to 10−3 cm−1. Molecules in ν = 0, J = 0 cannot further decay
into a lower state upon a two-body collision, and they are thus expected to allow the for-
mation of an intrinsically stable molecular BEC. The high speed of our STIRAP transfer will
allow us to perform in-situ as well as time-of-flight imaging for direct characterization of the
spatial and momentum distribution of the molecular ensemble.

With our technique any low-lying vibrational state can be coherently populated in a con-
trolled fashion with full control over the rotational quantum number, allowing, e.g., state-
specific collisional studies and high-precision molecular spectroscopy with possible impli-
cations for fundamental physics [2, 3]. Our procedure can be adapted to other species, in
particular to heteronuclear alkali dimers such as RbCs [18] and KRb [15] for the creation of
dipolar quantum gases [28]. For heteronuclear alkali dimers a single two-photon transfer
step might suffice as a result of favorable wave function overlap [28]. We expect that the
combination of our technique with Feshbach molecule production out of a Mott-insulator
state in a three-dimensional lattice [6] will increase the initial Feshbach molecule production
efficiency, avoiding collective excitations as a result of magnetic field ramping and inhibiting
collisional loss, and will provide full control over all internal and external quantum degrees
of freedom of the ground state molecules.
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One possible way to produce ultracold, high-phase-space-density quantum gases of
molecules in the rovibronic ground state is given by molecule association from quantum-
degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-
photon transfer into the rovibronic ground state. In ultracold samples of Cs2 molecules,
we observe two-photon dark resonances that connect the intermediate rovibrational level
|v = 73, J = 2 > with the rovibrational ground state |v = 0, J = 0 > of the singlet X1Σ+

g

ground state potential. For precise dark resonance spectroscopy we exploit the fact that it
is possible to efficiently populate the level |v=73, J=2 > by two-photon transfer from the
dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique.
We find that at least one of the two-photon resonances is sufficiently strong to allow future
implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibra-
tional ground state |v=0, J=0 >.

Introduction

Laser cooling of atoms and the production of quantum degenerate atomic Bose and Fermi
gases have revolutionized the field of atomic physics [10]. For molecular systems, ultralow
temperatures and high phase space densities are much more difficult to achieve. Laser cool-
ing of molecules has not yet been demonstrated, and with alternative cooling and slowing
techniques such as buffer gas cooling and Zeeman slowing high phase space densities are
yet out of reach [11, 2, 13]. In photoassociation experiments from magneto-optical traps,
[14, 17, 18, 19, 20], cold samples of deeply bound molecules in the lowest vibrational levels
have been created. Yet, the phase space densities are far away from the quantum degenerate
regime. In the limit of extremely weak binding, molecular Bose-Einstein condensation could
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be achieved [3] by using the trick of first cooling an atomic Fermi gas to high phase space
densities and subsequently associating pairs of atoms to molecules. For molecules composed
of Fermions, collisional stability of the highly excited molecules is assured as a result of a
Pauli blocking effect. Here, we are interested in ultracold and dense molecular systems in
specific deeply bound rovibrational levels. Such samples are of high interest for fundamen-
tal studies in physics and chemistry, ranging from ultracold chemistry [6] and few-body
collisional physics [4, 5] to high resolution spectroscopy [2, 3], to applications in quantum
processing [4], and to the formation of dipolar quantum gases and dipolar Bose-Einstein
condensates [28, 9]. For these experiments full control over the molecular wave function is
desired. In addition, high densities are required for molecular quantum gas studies. Only
in the rovibronic ground state, i.e. the lowest energy level of the electronic ground state, is
collisional stability assured.

For the production of molecular quantum gases in the absolute ground state, we follow
a scheme in which the technique of stimulated two-photon transfer is repeatedly applied
to molecules associated on a Feshbach resonance from a high-density sample of ultracold
atoms such as a Bose-Einstein condensate (BEC). The initially very loosely bound molecules
are to be transferred in a few successive steps to the rovibrational ground state, acquiring
more and more binding energy. The scheme has several advantages. It is fully coherent,
not relying on spontaneous processes, allowing high state selectivity, and it involves only
a comparatively small number of intermediate levels. The scheme is expected to allow the
removal of a ground state binding energy of typically 0.5 eV for an alkali dimer without
appreciably heating the molecular sample. It essentially preserves phase space density and
coherence of the particle wave function, allowing the molecular sample to inherit the high
initial phase space density from the atomic sample. Ideally, the scheme will ultimately result
in the formation of a molecular BEC. A major challenge is given by the low radial wave
function overlap between successive molecular levels, potentially leading to prohibitively
low transition rates for the two-photon transitions that could only be compensated by the
use of further (smaller) transfer steps.

In a crucial experiment, Winkler et al. [17] demonstrated that coherent two-photon trans-
fer by means of the stimulated Raman adiabatic passage (STIRAP) technique [23] can effi-
ciently be implemented with quantum gases of weakly bound Feshbach molecules. In this
work, the transferred molecules, in this case Rb2, were still weakly bound with a binding
energy of much less than 10−4 of the binding energy of the rovibrational ground state. In
particular, wave function overlap of the final level with the rovibrational ground state is
negligible. Nevertheless, an important result of this experiment was the demonstration that,
even with excitation near the excited S+P asymptote, parasitic excitation of unwanted molec-
ular transitions by the STIRAP laser beams could largely be avoided. Recently, Danzl et al.
[1] showed efficient coherent STIRAP transfer into deeply bound rovibrational levels in the
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quantum gas regime. More specifically, transfer into the rovibrational level |v= 73, J = 2 >

of the singlet X1Σ+
g molecular potential of the Cs dimer was demonstrated. This level is

bound by 1061 wavenumbers, more than one-fourth of the binding energy of the rovibra-
tional ground state. Here, as usual, v and J denote the vibrational and rotational quantum
numbers, respectively. This intermediate level was chosen as to give a balanced distribution
for the wave function overlap in a four-photon transfer scheme to the ground state, i.e. to
assure that all four dipole transition moments are of comparable magnitude. This level could
thus serve as a transfer state towards the rovibrational ground state |v=0, J=0 >, allowing
coherent ground state transfer with two two-photon transitions. Also recently, Ni et al. [22]
could demonstrate transfer all the way into the rovibrational ground state |v = 0, J = 0 >

of the singlet X1Σ+ molecular potential in a quantum gas of KRb molecules. The transfer
could be achieved in a single step as a result of the favorable run of the excited state poten-
tials in the case of heteronuclear alkali dimers [28]. Also, the lowest rovibrational level of the
Rb2 triplet a3Σ+

u potential could recently be populated in the quantum gas regime using the
STIRAP technique [18].

Here, in an ultracold and dense sample of Cs molecules, we present two-photon dark
resonances connecting the rovibrational level |v = 73, J = 2 > of the Cs dimer singlet
X1Σ+

g molecular potential with the rovibrational ground state |v= 0, J = 0 >. Starting from
|v=73, J=2 >, we first perform molecular loss spectroscopy by laser excitation in the wave-
length range from 1329 nm to 1365 nm to search for and identify suitable excited state levels
of the mixed (A1Σ+

u − b3Π0u) 0+
u excited molecular potentials. These levels are 9893 to 10091

wavenumbers above the rovibronic ground state, corresponding to a wavelength range from
1011 nm to 991 nm for the transition to the rovibronic ground state. We then perform dark
state spectroscopy by simultaneous laser irradiation near 1350 nm and 1000 nm. We find sev-
eral dark resonances, from which we derive normalized transition strengths and find that at
least one of the two-photon transitions is favorable for ground state transfer.

Molecular energy levels and laser transitions

Fig.8.5 shows the energy of the relevant Cs2 molecular states and the optical transitions for
our transfer scheme. State |1> is the initial weakly bound Feshbach state that we populate
out of an atomic BEC of Cs atoms via Feshbach association [29]. For the transfer from |1>
to the ro-vibrational ground state |5>= |v = 0, J = 0 >, three intermediate levels |2>, |3>,
and |4> are needed. All five molecular levels are coupled by two two-photon transitions in
a distorted M-shaped configuration as shown in Fig.8.6. Levels |2> and |4> belong to the
excited mixed (A1Σ+

u − b3Π0u) 0+
u potentials. We have identified level |2> as the 225th one

of the coupled 0+
u system, with an uncertainty of 2 in the absolute numbering, and |3> is

the level with v= 73 and J = 2 of the X1Σ+
g ground state potential [1]. A two-photon laser
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Figure 8.5: Molecular level scheme for Cs2. Molecules in a weakly bound Feshbach level |1>= |v≈
155 > (not resolved near the 6S+6S asymptote) are transferred to the rovibrational level |3>= |v =
73, J = 2> of the singlet X1Σ+

g ground state potential with a binding energy of 1061 cm−1 by a
two-photon STIRAP process [1] involving lasers L1 and L2 near 1126 nm and 1006 nm. The following
two-photon transition from |3> to |5>= |v=0, J=0> and also to |v=0, J=2> is then probed by lasers
L3 and L4 near 1350 nm and 1000 nm, respectively. Level |2> is the 225th level of the electronically
excited coupled (A1Σ+

u − b3Π0u) 0+
u potentials. Here, we probe suitable candidate levels for |4>,

connecting |3> to |5>. These candidate levels also belong to the 0+
u coupled state system and include

levels with coupled channel vibrational numbers v′= 57 to 68. The position of the vertical arrows is
not meant to reflect the internuclear distance at which the transition takes place.

transition with laser L1 at 1126 nm and laser L2 at 1006 nm couples |1> to |3> via |2>. There
are now several possibilities for coupling |3> to |5>, differing in the choice of the excited
state |4>. The aim of this work is to identify a suitable state |4> from the (A1Σ+

u − b3Π0u) 0+
u

potentials with sufficient wave function overlap with both |3> and |5>. We search for state
|4> in the energy range of 9893 to 10091 wavenumbers above the rovibrational ground state
|5>. Molecular structure calculations as outlined in Sec. 8 show that in this range there are
candidate states for |4> that have dipole transition matrix elements with both |3> and |5> of
comparable magnitude, allowing optimum STIRAP performance. The wavelengths for the
lasers L3 and L4 driving the associated two-photon transition are near 1350 nm and 1000
nm, respectively. We derive all laser light for driving the molecular transitions from highly
stable, widely tunable diode laser systems with kHz linewidths. For short term stability,
the lasers are all locked to narrow-band optical resonators. For long term stability, the opti-
cal resonators are referenced to an infrared, fiber-laser-based frequency comb, covering the
wavelength range from about 980 nm to about 2000 nm.
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and Ωi, i = 1, 2, 3, 4. For STIRAP to |v=73, J=2 > the detunings for L1 and L2 are ∆1 ≈ 0 ≈ ∆2.

Preparation of a molecular quantum gas in v=73, J=2

Our sample preparation procedure follows Ref. [1]. In summary, we first produce a cigar-
shaped BEC of typically 1.5×105 cesium atoms in the lowest hyperfine sublevel F =3, mF =

3 in a crossed optical dipole trap. As usual, F is the atomic angular momentum quantum
number, and mF its projection. The trapping light at 1064.5 nm is derived from a single-
frequency, highly-stable Nd:YAG laser. Using a d-wave Feshbach resonance at 4.8 mT [21]
we then produce a quantum gas of weakly bound Feshbach molecules out of the BEC [29].
For this, we first ramp the magnetic field from the BEC production value of 2.0 mT to 4.9 mT,
slightly above the Feshbach resonance. The molecules are produced on a downward sweep
at a typical sweep rate of 0.025 mT/ms. The resulting ultracold sample contains up to 11000
molecules, immersed in the bath of the remaining BEC atoms. For the present experiments
we shut off the trap and perform all subsequent measurements in free flight. This reduces the
particle density, in particular during the later detection stage of the experiment, and hence
reduces atom-molecule collisional loss, thus increasing the molecular signal. Following two
avoided state crossings while further sweeping the magnetic field to lower values, we trans-
fer the molecules via a weakly bound, open channel s-wave molecular state into the still
weakly bound, closed channel s-wave molecular state |1> by magnetic field ramping [1].
This is the starting state for the subsequent optical transfer. As with all other weakly bound
Feshbach states, it belongs to both the X1Σ+

g ground state potential and the lowest triplet
a3Σ+

u potential and is hence of mixed character. It has zero rotational angular momentum.
At a field of 1.9 mT, it has a binding energy of 5 MHz×h, where h is Planck’s constant, with
respect to the F =3,mF =3 two-atom asymptote [21]. We detect molecules in |1> by reverse
magnetic field ramping, leading to dissociation on the Feshbach resonance at 4.8 mT, and by
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Figure 8.7: Loss resonances for excitation near 1351 nm from |3>= |v = 73, J = 2 > of the X1Σ+
g

ground state potential. (A) Loss of molecules in |3> as a function of laser detuning ∆3 near 1351
nm after a waiting time of 20µs. The solid line represents a model calculation matched to the data
yielding an excited state natural linewidth of 2π× 2 MHz. (B) Time dependence of molecular loss on
resonance at 1351 nm for two different laser intensities. (1) 270± 80 mW/cm2, (2) 570± 80 mW/cm2.
The fitted exponential decay gives the decay constants τ = 26±4 µs for 270 mW/cm2 and τ = 14±2 µs
for 570 mW/cm2.

subsequent imaging of the resulting atoms [29].
We transfer the molecules from |1> to the rovibrational level |3>= |v= 73, J = 2 > with

the STIRAP technique [1]. For this, about 3 ms after molecule production, with the magnetic
field ramping completed, laser L2 at 1006 nm is pulsed on first and then laser L1 at 1126
nm. Both lasers are on resonance within a few kHz. The pulse overlap time is about 10 µs.
With peak Rabi frequencies of Ω1 ≈ 2π×3 MHz and Ω2 ≈ 2π×6 MHz we transfer about 80
% of the molecules to |3>. We find that the molecular sample is not heated as a result of
the STIRAP transfer. A residual kinetic energy on the order of kB × 10 nK comes from the
expansion energy of the initial atomic sample. Our current procedure allows us to produce a
sample of up to 8000 molecules in state |3> every 12 s. For the loss spectroscopy as detailed
below, we irradiate the molecules in |3> with light near 1350 nm for a certain waiting time.
We then measure the fraction of molecules that have remained in |3>. For this, we transfer
the remaining molecules back to |1> using the reverse STIRAP process and determine the
number of molecules in |1>. Without irradiation with light near 1350 nm we transfer more
than 65% of the molecules from |1> to |3> and back to |1> [1].

Loss spectroscopy

Prior to the present experiments, the energies of the levels with predominant A1Σ+
u char-

acter in the region of interest were established to about ± 0.06 cm−1 by fits [34] to data
obtained by Fourier transform spectroscopy (FTS) at Laboratoire Aimé Cotton (LAC) using
transitions to the X1Σ+

g state. However, the predominantly b3Π0u levels were only known
to about ± 2 cm−1 because this region was above that for which data was obtained from
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23∆1g → b3Π0u emission [28], but lower than the regime where b3Π0u levels acquire suffi-
cient singlet character (by spin-orbit mixing) to be observed in the FTS work. Paradoxically,
the predominantly b3Π0u levels are of special interest here because they happen to have sig-
nificant singlet character over regions of the internuclear distance that are most important
for transitions of interest in this work.

The coupled channel calculations used to characterize the level structure of the strongly
interacting A1Σ+

u and b3Π0u states employed methods developed from previous work on A
and b states of K2 [29, 30], RbCs [31], Na2 [32], and Rb2 [33]. The DVR approach [34] was used
to calculate eigenvalues primarily for two coupled channels, although some information on
b3Π1u was found in the FTS data from LAC. Similar computational approaches, differing
in the detailed numerical methods, have been applied recently also to the A and b states of
NaRb [35].

Because of the initial ± 2 cm−1 uncertainty in the positions of b3Π0u levels of interest, we
decided to perform a systematic, broad-range search around expected transition energies in
the wavelength range from 1329 nm to 1365 nm. For this, we perform double STIRAP from
|1> to |3> and back with a waiting time of typically τ = 1 ms. During the waiting time,
we irradiate the sample with laser L3 at an estimated intensity of 5 · 104 mW/cm2. Laser L3

is a diode laser with grating feedback. On the timescale of our experiment, the resonator of
the laser is sufficiently stable, allowing systematic tuning of the laser without locking the
laser to its external resonator. We step the laser frequency in units of typically 20 MHz by
tuning the piezo element on the grating. We monitor the laser wavelength with a home-
built wavemeter at approximately 300 MHz accuracy. For the initial broad range line search
we increased the repetition rate of the experiment by stopping evaporative cooling slightly
before condensation sets in. While stepping the laser, taking data points essentially at the
cycle rate corresponding to the sample production time, we look for a dip in the molecule
number. Once such a dip is found, typically consisting of a few data points, we perform a
more precise scan by locking the laser to the external, highly-stable resonator and then the
external resonator to the infrared frequency comb. This allows us to detune the laser with
kHz precision. Fig.8.7 (A) shows a typical loss resonance near 1351 nm. We reduce the laser
intensity such that on resonance at most 80% of the molecules are lost within 20 µs. From
such measurements the transition strength as given by the normalized Rabi frequency and
the natural linewidth of the excited state can be deduced. The typical width of the excited
state molecular levels that we have identified is 2π × 2 MHz, in agreement with typical
expected lifetimes. Fig.8.7 (B) shows a measurement of the time dependence of the molecular
loss. Here, we step the waiting time τ from 0 to 50 µs, while the laser is kept on resonance.
In total, we have found 7 excited levels belonging to the (A1Σ+

u − b3Π0u) 0+
u coupled state

system. They are listed in Table 8.1 along with the dominant overall character (either A1Σ+
u

state or b3Π0u state) of the vibrational wave function as determined from the coupled state
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calculations. Within the wavelength range from 1329 nm to 1365 nm, theory predicts the
existence of 5 more states of the 0+

u coupled state system, whose energies are also displayed
in Table 8.1. For most of them, the wave function overlap is not expected to be favorable
for STIRAP transfer to X 1Σ+

g |v = 0 >. However, an improved model of the energy level
structure, based on all the data except one FTS point with a large residual, fits the observed
transitions to a rms residual error of 0.02 cm−1, indicating that additional resonances can be
found with searches over very limited ranges of laser frequency.

Dark resonances with |v=0, J=0 > and |v=0, J=2 >

In our recent work [1] we could greatly improve the value for the binding energy of the rovi-
brational ground state |5>= |v= 0, J = 0> by determining the binding energy of |v= 73 >

and using well-known data from conventional molecular spectroscopy [36, 37]. Our mea-
surement was limited by the calibration of our wavemeter, not allowing us to determine the
number of the teeth of the frequency comb, and by the precision of the spectroscopy data.
Searching for |5> in dark state spectroscopy is now a straightforward task as only a range of
about 0.002 wavenumbers needs to be scanned. We do this by exciting the transitions from
|3> to |4> with laser L3 and from |4> to |5> with laser L4 simultaneously. The intensity
for L4 is typically 5 · 104 mW/cm2. As is well known, the two light fields create a molecule-
molecule dark state. The molecules initially in |3> are lost unless laser L4 is on two-photon
resonance, provided that the Rabi frequency Ω4 on the fourth transition is equal to or greater
than Ω3, the Rabi frequency on the third transition. We look for the resonance condition with
the rovibrational ground state |v = 0, J = 0 > for some of the excited levels that we found
above. Table 8.1 lists the observed transition wavelengths. We check that we can identify
the level with rotational quantum number J = 2 as the rotational energy splitting is well
known. Fig.8.8 shows typical molecular dark resonances when we set L4 on resonance and
step the detuning ∆3 of L3 near 1350 nm. From a three-level model matched to the data for
the dark resonances, taking into account off-resonant excitations and laser line widths, we
determine the molecular transition strengths as given by the normalized Rabi frequencies.
One of the two-photon transitions appears to be a particularly good candidate for STIRAP
ground state transfer. It involves the excited state level |4> with vibrational number v′ = 61

of the (A1Σ+
u − b3Π0u) 0+

u coupled state system. For the transition from |3> to |4> and

from |4> to |5> the normalized Rabi frequencies are Ω3 = 2π×6 kHz
√
I/(mW/cm2) and

Ω4 = 2π×5 kHz
√
I/(mW/cm2), respectively. These values carry an estimated error of 50%

as the laser beam parameters for L3 and L4 are not well determined. A comparison with a

typical atomic transition strength of Ωa=2π×5 MHz
√
I/(mW/cm2) giving |Ω3/Ωa|2 ≈ 10−6

and |Ω4/Ωa|2 ≈ 10−6 reflects the minuteness of the wave function overlap. Nevertheless,
their value is sufficient for STIRAP as seen in our recent work [1]. Also, they are of similar
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Figure 8.8: Dark resonances involvingX1Σ+
g state levels |v=73, J=2 > and |v=0 > for two different

intermediate levels. (A and B) Dark resonances with X1Σ+
g |v = 0, J = 0 > and |v = 0, J = 2 >

involving the 0+
u excited state level |v′ = 63, J = 1 > at an excitation wavelength near 1345 nm. (C

and D) Dark resonances with X1Σ+
g |v = 0, J = 0 > and |v = 0, J = 2 > involving the excited state

level |v′ = 61, J = 1 > at an excitation wavelength near 1351 nm. The solid line in (D) is the result
of a model calculation, solving the three-level master equation including laser bandwidth and loss,

matched to the data giving Ω3 = 2π×6 kHz
√
I/(mW/cm

2
) and Ω4 = 2π×4 kHz

√
I/(mW/cm

2
) for

X1Σ+
g |v = 0, J = 2 >. The corresponding calculation for X1Σ+

g |v = 0, J = 0 > yields 2π×5 kHz√
I/(mW/cm

2
).

magnitude. This facilitates STIRAP, for which the peak Rabi frequencies should be approxi-
mately equal for optimum performance.

Conclusion

We observe several two-photon dark resonances that connect the intermediate rovibrational
level |v=73, J=2 > of the X1Σ+

g ground state potential with the rovibrational ground state
level |v= 0, J = 0 >. At least one of the two-photon transitions is sufficiently strong for im-
plementing STIRAP to |v = 0, J = 0 > in the quantum gas regime, paving the way for the
realization of a BEC of ground state molecules. STIRAP can in principle be implemented in
two ways, either in the form of two sequential two-photon STIRAP steps, or in the form of
four-photon STIRAP [38, 39]. An attractive strategy for the production of a BEC of ground
state molecules relies on the addition of an optical lattice. Starting from an atomic BEC, pairs
of atoms at individual lattice sites are produced in a superfluid-to-Mott-insulator transition
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[Gre02]. These pairs can then be very efficiently associated on a Feshbach resonance and
subsequently transfered to the rovibronic ground state with STIRAP. The lattice has the ad-
vantage of shielding the molecules against inelastic collisions during the association process
and subsequent state transfer. As proposed by Jaksch et al. [12], dynamical melting of the
lattice should ideally result in the formation of a BEC of molecules in the rovibronic ground
state in a Mott-insulator-to-superfluid-type transition.
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Table 8.1: Levels of the excited 0+
u coupled state system in the region 9893 cm−1 to 10091 cm−1 above

X1Σ+
g |v = 0, J = 0 >. The first column gives the coupled channel vibrational numbers of the indi-

vidual levels. Levels marked with ∗ have not been searched for and the level energies given are those
determined from the coupled channels calculations. The column labeled ’C’ gives the predominant
contribution to the overall vibrational wave function, which is either predominantly A1Σ+

u or pre-
dominantly b3Π0u, indicated by A and b, respectively. The number in brackets gives the order within
the two progressions of levels with either predominantly A1Σ+

u or predominantly b3Π0u character.
Both the |J=1 > and the |J=3 > rotational levels were identified for all oberved excited state levels.
The wavemeter accuracy gives a typical uncertainty in wavelength of ±0.002 nm, which translates
into ±0.011 cm−1 uncertainty in the value for the energy above |v = 0, J = 0 >. The energy relative
to X1Σ+

g |v = 0, J = 0 > of experimentally determined levels is based on the measured excitation
wavelength from X1Σ+

g |v= 73, J = 2 > and the X1Σ+
g |v = 73 > level energy from Ref. [37], which

introduces an additional uncertainty of 0.001 cm−1. Deexcitation wavelengths are obtained from dark
resonance spectroscopy involving the respective intermediate excited state level and the rovibronic
ground state X1Σ+

g |v=0, J=0 >. n. m.: not measured

v′ C J Excitation wave-
length fromX1Σ+

g

|v=73, J=2〉
[nm]

Energy above X1Σ+
g

|v=0, J=0〉 [cm−1]
De-excitation
wavelength
to X1Σ+

g

|v=0, J=0〉
[nm]

57 A (7) 1 1365.148 9893.002 n. m.
57 A (7) 3 1365.131 9893.094 n. m.
∗58 b (50) 0 1362.893 9905.126 n. m.
∗59 A (8) 0 1357.748 9932.927 n. m.
60 b (51) 1 1357.091 9936.497 n. m.
60 b (51) 3 1357.071 9936.606 n. m.
61 b (52) 1 1351.367 9967.707 1003.240
61 b (52) 3 1351.347 9967.816 n. m.
∗62 A (9) 0 1350.388 9973.068 n. m.
63 b (53) 1 1345.725 9998.729 1000.128
63 b (53) 3 1345.705 9998.839 n. m.
∗64 A (10) 0 1343.082 10013.351 n. m.
65 b (54) 1 1340.162 10029.576 997.052
65 b (54) 3 1340.143 10029.682 n. m.
66 A (11) 1 1335.833 10053.759 994.653
66 A (11) 3 1335.816 10053.853 n. m.
∗67 b (55) 0 1334.675 10060.249 n. m.
68 b (56) 1 1329.257 10090.794 991.003
68 b (56) 3 1329.238 10090.902 n. m.
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One possibility for the creation of ultracold, high-phase-space-density quantum gases
of molecules in the rovibrational ground state relies on first associating weakly-bound
molecules from quantum-degenerate atomic gases on a Feshbach resonance and then trans-
fering the molecules via several steps of coherent two-photon stimulated Raman adiabatic
passage (STIRAP) into the rovibronic ground state. Here, in ultracold samples of Cs2 Fesh-
bach molecules produced out of ultracold samples of Cs atoms, we observe several optical
transitions to deeply bound rovibrational levels of the excited 0+

u molecular potentials with
high resolution. At least one of these transitions, although rather weak, allows efficient STI-
RAP transfer into the deeply bound vibrational level |v=73 > of the singlet X1Σ+

g ground
state potential, as recently demonstrated [1]. From this level, the rovibrational ground state
level |v= 0, J = 0> can be reached with one more transfer step. In total, our results show
that coherent ground state transfer for Cs2 is possible using a maximum of two successive
two-photon processes or one single four-photon STIRAP process.

Introduction

Ultracold and dense molecular samples in specific deeply bound rovibrational levels are of
high interest for fundamental studies in physics and chemistry. They are expected to find ap-
plications in high resolution spectroscopy and fundamental tests [2, 3], few-body collisional
physics [4, 5], ultracold chemistry [6], quantum processing [4], and in the field of dipolar
quantum gases and dipolar Bose-Einstein condensation [28, 9]. Ideally, full control over the
molecular wave function is desired, i.e. full (quantum) control over the internal and external
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degrees of freedom of the molecules. High phase space densities are needed for molecular
quantum gas studies. For many of the envisaged studies and applications, initial prepara-
tion of the molecular sample in the rovibronic ground state, i.e. the lowest energy level of
the electronic ground state, is desired. Only in this state one can expect sufficient collisional
stability.

But how is it possible to produce dense samples of ultracold molecules in the rovibra-
tional ground state? Laser cooling of atoms, which has lead to the production of quantum
degenerate atomic Bose and Fermi gases [10], can so far not be adapted to the case of molecu-
lar systems as suitable cycling transitions are not available. Versatile non-optical cooling and
slowing techniques such as buffer gas cooling and Zeeman slowing in combination with
molecule trapping [11, 2, 13] have been developed, but high molecular densities and in par-
ticular high phase space densities are yet to be reached. An alternative route to producing
ultracold molecular samples is given by first producing ultracold atomic samples and then
associating molecules out of the atomic sample. While this technique is so far limited to the
production of selected species of dimer molecules, it has the advantage that ultra-low tem-
peratures and high particle densities are easily inherited from the atomic precursor sample.
There are essentially two association techniques, photoassociation [14] and magnetically in-
duced Feshbach association [Köh06, 16]. In photoassociation experiments [17, 18, 19, 20], ul-
tracold samples of deeply bound molecules have been created. Additional techniques such
as vibrational cooling [19] should allow selective pumping into the rovibrational ground
state and open up the prospect for high molecular phase space densities. In Feshbach as-
sociation experiments [20, 29], high-density samples of weakly bound molecules are pro-
duced. For dimer molecules composed of Fermions, collisional stability of the highly excited
molecules is assured as a result of a Pauli blocking effect, and molecular Bose-Einstein con-
densation could be achieved in the limit of extremely weak binding [3].

Here, we are interested in combining the techniques of Feshbach association and co-
herent molecular state transfer to produce quantum gases of molecules in the rovibrational
ground state |v=0, J=0> of the lowest electronic state. As usual, v and J are the vibrational
and rotational quantum numbers, respectively. The molecules, produced on a Feshbach res-
onance and hence initially very loosely bound, are to be transferred in a few successive steps
of coherent two-photon laser transfer to the rovibrational ground state, acquiring more and
more binding energy in each step. The general idea is sketched in Fig. 8.9A for the case of
Cs2. Each two-photon step involves an excited state level. Population transfer into this level
needs to be avoided to prevent loss due to spontaneous emission. One possibility is to use the
technique of stimulated Raman adiabatic passage (STIRAP) [23], which is very robust and
largely insensitive to laser intensity fluctuations. The scheme has several advantages. First,
production of Feshbach molecules out of a quantum degenerate atomic sample can be very
efficient [25]. Second, the optical transition rate on the first transition starting from the Fesh-
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bach molecules is greatly enhanced in comparison to the free atom case. Further, the scheme
is fully coherent, not relying on spontaneous processes, allowing high state selectivity, and
involving only a comparatively small number of intermediate levels. A ground state bind-
ing energy of typically 0.5 eV for an alkali dimer can be removed essentially without heating
the molecular sample, as the differential photon recoil using pairwise co-propagating laser
beams driving the two-photon transitions is very small. If losses and off-resonant excitations
can be avoided, the scheme essentially preserves phase space density and coherence of the
initial particle wave function, allowing the molecular sample to inherit the high initial phase
space density from the atomic precursor sample.

Certainly, several challenges have to be met: Going from weakly bound Feshbach to
tightly bound ground state molecules corresponds to a large reduction in internuclear dis-
tance. Consequently, the radial wave function overlap between successive levels is small,
and a compromise has to be found between the number of transitions and the minimum tol-
erable wave function overlap. To keep the complexity of the scheme low, one or at most two
two-photon transitions are desirable. Accordingly, suitable intermediate levels have to be
identified that allow a balanced division of wave function overlap, as given by the Franck-
Condon factors, between the different transitions. For example, for a four-photon transition
scheme with Cs2 as shown in Fig. 8.9A the Franck-Condon factors are all on the order of
10−6. We emphasize that the identification of the first excited level and hence of the first
transition starting from the Feshbach molecules is of crucial importance. Detailed calcula-
tions determining the wave function overlap are generally missing, and estimates on the
Franck-Condon factors using hypothetical last bound states of either the singlet or triplet
potentials of an alkali dimer molecule do not necessarily reflect the transition dipole mo-
ments adequately. In addition, for electronic molecular states or energy regions where spec-
troscopic data is missing, the precise energy of the excited state levels above the atomic
threshold is known only with a large uncertainty which can approach the vibrational spac-
ing of a few nanometers. Hence, considerable time has to be spent on searching for weak
transitions starting from the initial Feshbach molecules.

In a pioneering experiment, Winkler et al. [17] demonstrated that the STIRAP technique
can efficiently be implemented with quantum gases of weakly bound Feshbach molecules.
In this work, the transferred molecules, in this case Rb2, were still weakly bound with a bind-
ing energy of less than 10−4 of the binding energy of the rovibronic ground state, and the
intermediate excited state level was close to the excited-atom asymptote. Here, we observe
several optical transitions starting from a weakly bound Feshbach level to deeply bound
rovibrational levels of the mixed excited (A1Σ+

u−b3Πu) 0+
u molecular potentials of the Cs2

molecule in a wavelength range from 1118 to 1134 nm, far to the red of the atomic D1 and
D2 transitions. The Cs2 molecular potentials are shown in Fig. 8.9A. We observe the levels
as loss from an ultracold sample of Cs2 Feshbach molecules as shown in Fig. 8.9B. We ob-
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Figure 8.9: (A) Simplified molecular level scheme for Cs2 showing the relevant ground state and
excited state potentials involved in rovibrational ground state transfer. Molecules in a weakly bound
Feshbach level |1>= |v≈155 > (not resolved near the 6S 1

2
+ 6S 1

2
two-atom asymptote, but shown in

Fig. 8.10) are to be transferred to the rovibrational ground state level |5>= |v=0, J=0> of the singlet
X1Σ+

g potential with a binding energy of 3629 cm−1 by two sequential two-photon STIRAP processes
involving lasers L1 and L2 near 1126 nm and 1006 nm and lasers L3 and L4 near 1351 nm and 1003
nm. The intermediate ground state level |3>= |v=73, J=2> has a binding energy of 1061 cm−1. (B)
Probing candidate levels for |2> belonging to the electronically excited coupled (A1Σ+

u−b3Πu) 0+
u

potentials. Here, we search for |2> in loss spectroscopy with laser L1 in a region near 8890 cm−1

above the 6S 1
2

+ 6S 1
2

asymptote, corresponding an excitation wavelength range of 1118 to 1134 nm.
The wiggly arrow indicates loss from the excited levels due to spontaneous emission. Also shown is
the excited (1)3Σ+

g potential, for which we find several levels.

serve two progressions, one that we attribute to the (A1Σ+
u−b3Πu) 0+

u potentials and one that
we associate to the triplet (1)3Σ+

g potential. From the loss measurements, we determine the
transition strengths and find that the stronger transitions should be suitable for STIRAP to
an intermediate, deeply bound rovibrational level of the singlet X1Σ+

g potential with v= 73.
Recently, we could implement STIRAP into |v = 73, J = 2 > [1]. For the case of the dimer
molecule KRb, Ni et al. [16] could demonstrate quantum gas transfer all the way into the
rovibrational ground state |v= 0, J = 0 > of the singlet X1Σ+ molecular potential. Here, the
transfer could be achieved in only a single step as a result of the favorable run of the excited
state potentials, which is generally the case for heteronuclear molecules composed of alkali
atoms [28]. Also recently, transfer to the rovibrational ground state of the lowest triplet state
a3Σ+

u of Rb2 could be achieved [18].
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Preparation of a sample of weakly bound Feshbach molecules

We produce ultracold samples of molecules on two different Feshbach resonances, one near
1.98 mT and one near 4.79 mT [21]. In both cases, essentially following the procedure de-
tailed in Ref.[15], we first produce an ultracold sample of typically 2 × 105 Cs atoms in the
lowest hyperfine sublevel F = 3, mF = 3 in a crossed optical dipole trap. As usual, F is
the atomic angular momentum quantum number, and mF its projection on the magnetic
field axis. The trapping light at 1064.5 nm is derived from a single-frequency, highly-stable
Nd:YAG laser. The offset magnetic field value for evaporative cooling is 2.1 mT. We sup-
port optical trapping by magnetic levitation with a magnetic field gradient of 3.1 mT/cm.
We then produce weakly bound Feshbach molecules out of the atomic sample [29]. We pro-
duce a sample every 8 s, i.e. our spectroscopic measurements are performed at a rate of one
data point every 8 s. In order to be able to search for optical transitions over large frequency
ranges it is advantageous to work with the shortest possible sample preparation times. For
this reason we stop evaporative cooling slightly before the onset of Bose-Einstein condensa-
tion (BEC), which also makes sample preparation somewhat less critical. The temperature of
the initial atomic sample is then typically about 100 nK. At higher temperatures and hence
lower phase space densities the molecule production efficiency is reduced, so that there is a
trade off between ease of operation and molecule number. We note that for our ground state
transfer experiments reported in Ref.[1] we produce a pure atomic BEC at the expense of
longer sample preparation times.

The spectrum of weakly-bound Feshbach levels near the two-free-atom asymptote is
shown in Fig. 8.10 [21]. For molecule production at the Feshbach resonance at 4.79 mT,
we first ramp the magnetic field from the BEC production value to 4.9 mT, about 0.1 mT
above the Feshbach resonance. We produce the molecular sample on a downward sweep at
a typical sweep rate of 0.025 mT/ms. The resulting ultracold sample contains up to 11000
molecules, immersed in the bath of the remaining ultracold atoms. The resonance at 4.79
mT is a d-wave resonance [21], and hence the molecules are initially of d-wave character, i.e.
`= 2, where ` is the quantum number associated with the mechanical rotation of the nuclei.
However, there is a weakly bound s-wave Feshbach state (|s >= |`= 0 >) belonging to the
open scattering channel right below threshold. This state couples quite strongly to the initial
d-wave state, resulting in an avoided state crossing (as shown in the inset to Fig. 8.10), on
which the molecules are transferred to the s-wave state |s > upon lowering the magnetic
field [21, 1]. Upon further lowering the magnetic field to less than 2.0 mT, the molecules
acquire more and more character of a closed channel s-wave state on a second, very broad
avoided crossing. Here, we perform spectroscopy in this transition range from open channel
to closed channel s-wave character. At a magnetic field value of 2.0 mT, the binding energy
of the molecules is near 5 MHz×h with respect to the F = 3,mF = 3 two-atom asymptote,
where h is Planck’s constant.
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Figure 8.10: Initial Feshbach molecule production: Zeeman diagram showing the energy of weakly
bound Feshbach levels [21] and the Feshbach resonances (FR) used in the present work. The binding
energy is given with respect to the F = 3,mF = 3 two-atom asymptote. The molecules are produced
either on a d-wave Feshbach resonance at 4.79 mT (see inset) and then transferred to the weakly
bound s-wave state |s> on an avoided state crossing, or on a g-wave Feshbach resonance at 1.98 mT,
resulting in molecules in level |g>. In the first case, further lowering of the magnetic offset field to
below 2.0 mT changes the character of the |s> level from open-channel to closed-channel dominated
[21]. The levels |s> and |g> are both candidate levels for the initial level |1> shown in Fig. 8.9. For
completeness, further g-wave Feshbach levels, |g1>, |g2>, and |g3> are shown. Level |g2> connects
|g> to |s> and can be used for Feshbach state transfer [21]. Level |g3> is a further interesting candidate
level for |1> with low nuclear spin contribution [21].

For molecule production at the Feshbach resonance at 1.98 mT, we simply ramp the mag-
netic field down from the initial BEC production value. Again, we produce an ultracold
molecular sample with about 11000 molecules. The molecules in |g> have g-wave character,
i.e. `= 4. When we lower the magnetic field to 1.6 mT, the binding energy of the molecules
is also near 5 MHz×h with respect to the F =3,mF =3 two-atom asymptote.

For spectroscopy, we release the molecules from the trap after magnetic field ramping
is completed and perform all subsequent experiments in free flight without any other light
fields on except for the spectroscopy laser.

For molecule detection in both cases, we reverse the magnetic field ramps [29]. The g-
wave molecules are dissociated on the g-wave Feshbach resonance at 1.98 mT, and the s-
wave molecules are dissociated on the d-wave Feshbach resonance at 4.79 mT. Prior to the
reverse magnetic field ramp, we apply a magnetic field gradient of 3.1 mT/cm for about 5
ms to separate the molecular from the atomic sample in a Stern-Gerlach-type experiment. Fi-
nally, we detect atoms by standard absorption imaging. The minimum number of molecules
that we can detect is on the order of 200 molecules.
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Spectroscopy

We perform optical spectroscopy on Feshbach molecules in the wavelength region around
1125 nm. Based on symmetry considerations, there are two sets of electronically excited
states that we address in the spectroscopic measurements presented here, namely the
(A1Σ+

u−b3Πu) 0+
u coupled state system and the (1)3Σ+

g electronically excited states. We first
discuss transitions to the 0+

u coupled state system. Transitions to the latter state are discussed
in Sec. 8.

Transitions to the (A1Σ+
u−b3Πu) 0+

u coupled electronically excited states

We are primarily interested in transitions from Feshbach levels to rovibrational levels of
the (A1Σ+

u−b3Πu) 0+
u electronically excited states. In the heavy alkali dimers, most notably

in Cs2, the A1Σ+
u state and the b3Πu state are strongly coupled by resonant spin-orbit in-

teraction [32, 33], yielding the 0+
u coupled states in Hund’s case (c) notation. The singlet

component of the 0+
u states allows us to efficiently couple to deeply bound X1Σ+

g state lev-
els, specifically to the |v = 73, J = 2 > level of the ground state potential, as has recently
been shown in a coherent transfer experiment [1]. We have chosen to do spectroscopy in the
wavelength range of 1118 nm to 1134 nm above the 6S 1

2
+6S 1

2
dissociation threshold of the

Cs2 dimer. This corresponds to a detuning of roughly 2300 cm−1 from the cesium D1 line and
to an energy range of approximately 12572 cm−1 to 12450 cm−1 above the rovibronic ground
state X1Σ+

g |v = 0, J = 0>. This region was chosen in order to give a balanced distribution
of transition dipole moments in a 4-photon transfer scheme to the rovibronic ground state.
In addition, the wavelengths of the four lasers used in the transfer experiments were cho-
sen such that they lie within the energy range covered by the infrared fiber-based frequency
comb that we use as a frequency reference in the state transfer experiments.

The transitions of interest here lie outside the energy regions for which Fourier transform
spectroscopic data was obtained at Laboratoire Aimé Cotton from transitions to the X1Σ+

g

state [34]. The vibrational progression of the 0+
u states is highly perturbed by the resonant

spin-orbit coupling and exhibits an irregular vibrational spacing. Molecular structure cal-
culations are complicated by the spin-orbit coupling and calculated term values are highly
sensitive to the coupling. Prior to the experiments discussed here the absolute energies of
the vibrational levels of the (A1Σ+

u−b3Πu) 0+
u excited state levels were poorly known in the

region of interest from 1118 nm to 1134 nm. We therefore perform a broad range search by
irradiating the weakly-bound Feshbach molecules at a fixed wavelength for a certain irra-
diation time τ of up to τ = 6 ms and by recording the number of remaining molecules as a
function of laser frequency. In one run of the experiment one particular laser frequency is
queried. We thus take data points at the repetition rate of our experiment, which is given by
the sample preparation time of 8 seconds. Based on the available laser intensity from L1 and
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Figure 8.11: Loss resonances for excitation from the initial Feshbach level |s> to the 0+
u system. (A)

Typical scan showing the number of molecules in |s> as a function of laser wavelength λ1 near 1126
nm. Three resonances can be identified, corresponding to |J = 5>, |J = 3>, and |J = 1>, from left
to right. The sample is irradiated with laser light at an intensity of 1 × 106 mW/cm2 for τ = 200
µs. The laser is locked to a narrow band optical resonator that is tuned via a piezoelectric element
with a step size of approximately 40 MHz. Wavelength is measured on a home-built wavemeter. The
molecule number is normalized to the atom number measured in the same individual realization of
the experiment to cancel out fluctuations that stem from shot-to-shot atom number fluctuations and
the baseline is set to 1. (B), (C), and (D) represent measurements of the three individual lines with |J=
5>, |J=3>, and |J=1> at reduced intensity in order to avoid saturation. The solid lines represent fits
as described in the text. The spectroscopy laser is stabilized to an optical resonator and the resonator
is in turn referenced to an optical frequency comb, which allows precise and reproducible tuning of
the frequency. The transition to |J=1 > in panel (D) is recorded at an intensity of 1.5× 104 mW/cm2

(circles) and 6 × 103 mW/cm2 (triangles), (B) and (C) are recorded at 1 × 106 mW/cm2 and 2 × 105

mW/cm2, respectively. Pulse duration is τ = 10 µs.

an estimate of the dipole transition moments for the strongest expected lines, we chose a fre-
quency step size of about 100 MHz to 150 MHz for initial line searching. We obtain the laser
light at 1118 nm - 1134 nm from a grating-stabilized external cavity diode laser. For coarse
frequency scanning, the laser is free running and tuned via a piezoelectric element on the
grating of the laser. For more precise measurements, we lock the laser to a narrow-band op-
tical resonator that can be tuned via a piezoelectric element. Fig. 8.11A shows a typical loss
spectrum starting from Feshbach state |s> for excitation near 1126 nm, measured at a mag-
netic field of 1.98 mT. In this particular case we find three resonances, which we associate
with the rotational splitting of the excited state level, J = 5, 3, 1, where J is the rotational
quantum number. Based on molecular structure calculations we identify this level as the
225th one of the 0+

u progression with an uncertainty of about two in the absolute numbering.
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Figure 8.12: Loss of molecules for excitation near 1126.173 nm from Feshbach level |s>. (A) Time
dependence of molecular loss on resonance at 1126.173 nm for two different laser intensities, 5.7×105

mW/cm2 (circles) and 2.1 × 105 mW/cm2 (triangles). The magnetic offset field is 1.9 mT. The fitted
exponential decay gives the decay constants τ = 9.7± 0.6 µs (circles) and τ = 25.5± 1 µs (triangles).
(B) Loss of molecules in |s> as a function of laser detuning ∆1 near 1126 nm with an irradiation time
of τ = 10µs for two values of the magnetic field, 1.9 mT (dots) and 2.2 mT (triangles). In both cases,
the excited state spontaneous decay rate was determined to≈ 2π×2 MHz. At higher magnetic fields,
Feshbach level |s> acquires more open-channel character, reducing radial wave function overlap
with the excited rovibrational levels. The shift in transition frequency is the result of a differential
magnetic field shift of the Feshbach level |s> and the excited state level.

We zoom in on these three transitions in Fig. 8.11B, C, and D and record loss resonances at
reduced laser intensity in order to avoid saturation of the lines. For these measurements, the
laser is locked to the narrow-band optical resonator and the resonator in turn is stabilized to
the optical frequency comb to assure reproducibility and long term frequency stability. As
one can expect, the loss is strongest on the transition to the |J=1 > level, and it is weakest on
the transition to |J = 5 >. All lines have an excited state spontaneous decay rate of around
2π × 2 MHz, in agreement with the typical expected lifetimes of excited molecular levels.
The transition to |J=1 > shown in Fig. 8.11D is of special interest to the current work. It has
been used as intermediate excited state level for coherent transfer to X1Σ+

g |v=73, J=2> in
our recent experiments [1].

By fitting a two level model that takes into account decay from the upper level to a series
of such measurements obtained with different laser intensities, we determine the transition
strength as given by the normalized Rabi frequency. As the Feshbach molecules scatter pho-
tons and spontaneously decay to other molecular levels, the number of Feshbach molecules
N decays as a function of laser detuning ∆1 according to

N(∆1) = N0 exp (−τΩ2
1/(Γ(1 + 4π2∆2

1/Γ
2))),
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Figure 8.13: Loss resonances for excitation from the initial Feshbach level |g>. (A),(B), and (C) show
the loss for excitation to |J = 5>, |J = 3>, and |J = 1>, corresponding to the resonances shown in
Fig. 8.11. The laser intensities are 1.5 × 104 mW/cm2 for panel (A) and for the circles in panel (B).
The second resonance in (B) (triangles) is measured with 5.6× 103 mW/cm2. (C) The line at 1126.173
nm is measured at 1 × 106 mW/cm2. All measurements are done with an irradiation time of τ = 10
µs. From a series of such measurements at different intensities we determine the line strengths for

|J=5>, |J=3>, and |J=1> to Ω1 =2π×1 kHz
√
I/(mW/cm

2
), Ω1 =2π×1 kHz

√
I/(mW/cm

2
), and

Ω1 =2π×0.1 kHz
√
I/(mW/cm

2
), respectively.

where N0 is the molecule number without laser irradiation and τ is the irradiation time.
From the fit we obtain the Rabi frequency on resonance Ω1 and the excited state spontaneous

decay rate Γ. We determine the normalized Rabi frequency to Ω1 =2π×2 kHz
√
I/(mW/cm2)

for |J = 1 >, where I is the laser intensity. This value is sufficient to perform STIRAP given
the available laser power [1]. The corresponding transition strengths for |J=3 > and |J=5 >

are Ω1 =2π×0.3 kHz
√
I/(mW/cm2) and Ω1 =2π×0.1 kHz

√
I/(mW/cm2), respectively. The

absolute values of these transition strengths bear an estimated uncertainty of 20 % because
the laser beam parameters for the spectroscopy laser are not well determined.

We also record the time dependence of the molecular loss on some of the stronger lines.
For this, we step the laser irradiation time τ from 0 to 150 µs, while laser L1 is kept on
resonance. The result is shown in Fig. 8.12A for the transition at 1126.173 nm for two different
values of the excitation laser intensity.

We note that the transition strength for a particular line starting from Feshbach level |s>
strongly depends on the value of the magnetic field, as evidenced in Fig. 8.12B. Loss reso-
nances for the transition at 1126.173 nm at 1.9 mT and 2.2 mT are shown. For ground state
transfer [1], we choose a magnetic field of around 1.9 mT, which is somewhat below the mag-
netic field region where state |s > is strongly curved, but above the avoided state crossing
with state |g2>, as seen in Fig. 8.10. The pronounced bending of |s> is the result of a strong
avoided crossing between two s-wave Feshbach levels [21]. For magnetic field values beyond
3.0 mT the level |s> can be associated to the F1 =3, F2 =3 asymptote, where Fi, i=1, 2, is the
atomic angular momentum quantum number of the i-th atom, respectively. Below 2.0 mT
the level |s> can be associated to the F1 = 4, F2 = 4 asymptote. It is hence of closed channel
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Figure 8.14: Loss of molecules for excitation near 1127.17 nm from Feshbach level |s> to the triplet
(1)3Σ+

g state. (A) represents a broad scan with laser irradiation at an intensity of 5 × 105 mW/cm2

for τ = 100 µs at a step size of 20 MHz. A rich structure due to rotation and excited state hyper-
fine splitting can be seen which is qualitatively different from the spectrum shown in Fig. 8.11. The
lines are greatly broadened by the high intensity and long irradiation time. The spectroscopy laser is
locked to a narrow band optical resonator that is stepped via a piezoelectric element. Scans of about
750 MHz were recorded as a function of piezo voltage on the resonator. Voltage was converted to
wavelength for each scan by a linear interpolation. (B)-(E) represent scans over some of the observed
features at a reduced intensity of 8 × 104 mW/cm2 and an irradiation time of τ = 10 µs in order to
reduce broadening of the lines. The step size is about 7 MHz. Resonator piezo voltage is converted
to frequency with an estimated error of 10 %. The vertical arrows indicate weak lines that have been
verified in additional scans with higher power. In panel (E) the power was somewhat increased for
an additional measurement (triangles) that emphasizes such a weak line. The wavelengths given to
identify the zero point on the frequency axis for each subpanel are not meant to imply this level of
accuracy which is limited to 0.001 nm by wavemeter calibration. Nevertheless, they give a measure
of the energy of the sublines relative to each other.

character and much more deeply bound with respect to its potential asymptote, effectively
by twice the atomic hyperfine splitting, improving the radial wave function overlap with
the excited state levels. This increases the transition strength. Trivially, the resonance fre-
quency is shifted as the binding energy is reduced for larger magnetic field values. Coupling

to the excited state level is reduced from Ω1 =2π×2 kHz
√
I/(mW/cm2) to Ω1 =2π×1 kHz√

I/(mW/cm2) when the magnetic field is changed from 1.9 mT to 2.2 mT.

As will be discussed in Sec.8 it is advantageous to be able to choose different Feshbach
states as a starting state for ground state transfer experiments. Therefore, we probe transi-
tions from Feshbach level |g> to (A1Σ+

u−b3Πu) 0+
u levels. Fig. 8.13 shows loss resonances to

the same excited state levels as shown in Fig. 8.11, only that now the initial Feshbach level is
|g> instead of |s>. In this case, the transition to |J=3 > is the strongest, while the transition
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to |J=1 > is very weak, but can be detected. A comparison of the transition strengths from

|g > to the excited state level |J = 3>, giving Ω1 = 2π×1 kHz
√
I/(mW/cm2) versus |s> to

|J = 1 > giving Ω1 = 2π×2 kHz
√
I/(mW/cm2) shows that level |g > could also be poten-

tially used as a starting level for coherent population transfer to deeply bound levels of the
ground state but requires longer STIRAP times in order to assure sufficient adiabaticity [23].
The |J=3> excited state level in turn couples to |J=2> in the ground state, as in previous
work [1].

In addition to the transition near 1126 nm we find a series of other excited state levels
that we assign to the (A1Σ+

u−b3Πu) 0+
u coupled state system. These are listed in Table 8.2.

The assignment to either the (A1Σ+
u−b3Πu) 0+

u system or to the (1)3Σ+
g electronically excited

state discussed below is primarily based on the spacing between neighboring vibrational
levels and in addition on the pattern of loss resonances associated with each particular vi-
brational level. Resonant spin-orbit coupling in the case of the 0+

u states leads to an irregular
vibrational spacing. In contrast, the (1)3Σ+

g state is not perturbed by spin-orbit interaction
and therefore has a regular vibrational progression. The levels near 1126 nm and near 1123
nm have been used to detect dark resonances with deeply bound levels of the X1Σ+

g state [1].
The ability to couple to these essentially purely singlet ground state levels unambiguously
assigns the corresponding excited state levels to the 0+

u system. The data given in Table 8.2
does not represent a fully exhaustive study of the (A1Σ+

u−b3Πu) 0+
u coupled states in the

wavelength range of interest. In fact, for the most part we observe those levels of the 0+
u sys-

tem that have a dominant A1Σ+
u state contribution, as determined from molecular structure

calculations.

Transitions to the (1)3Σ+
g electronically excited state

The Feshbach levels that serve as starting levels for the spectroscopy are of mixed X1Σ+
g and

a3Σ+
u character. In the wavelength range explored here, excitation to the (1)3Σ+

g electroni-
cally excited triplet state is possible from the a3Σ+

u component of the Feshbach molecules.
In fact, for a heavy molecule as Cs2, the (1)3Σ+

g state is better described by the two sepa-
rate electronic states 0−g and 1g, denoted by the Hund’s case (c) notation. The (1)3Σ+

g has
been previously studied by Fourier transform spectroscopy [35]. This state is not of prime
interest for the present work as transitions from this state down to the X1Σ+

g ground state
are expected to be strongly suppressed, but would be important for STIRAP transfer into
the rovibrational ground state level of the shallow triplet a3Σ+

u potential [18]. Certainly, it is
important to be able to distinguish rovibrational levels belonging to the (1)3Σ+

g state from
the ones belonging to the 0+

u system, because otherwise time would be wasted in searching
for ground state dark resonances that are very weak or even do not exist. Fig. 8.14A shows
a typical loss spectrum for one of the lines that we detected near 1127.37 nm. Due to hyper-
fine splitting, levels of triplet character exhibit a much richer substructure than the 0+

u levels
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used for ground state transfer. Several components can be identified as a result of rotational
and excited state hyperfine splitting. Zoomed-in regions are shown in Fig. 8.14B, C, D, and
E. We have observed a regularly spaced series of optical transitions which we attribute to
the (1)3Σ+

g excited state as listed in Table 8.2. The levels are well reproduced by molecular
structure calculations using the Dunham coefficients from Ref.[35]. The vibrational number-
ing used here is the same as in that work. However, it relies on the absolute energy position
of the potential, Te, which was not determined precisely in Ref. [35].

Conclusion

We have performed optical spectroscopy starting from weakly bound Cs2 Feshbach molecules
into deeply bound rovibrational levels of the mixed excited state 0+

u system and the excited
triplet (1)3Σ+

g state. At least one of the observed transitions, namely the one at 1126.173 nm
starting from the Feshbach level |s> at an offset magnetic field value of 1.9 mT to the excited
level |v′ = 225, J = 1> of the 0+

u system, is strong enough to allow efficient STIRAP trans-
fer into deeply bound rovibrational levels of the singlet X1Σ+

g ground state potential. The
use of this transition for STIRAP has recently been demonstrated in Ref.[1]. In that work,
the deeply bound rovibrational level |v = 73, J = 2 > of the X1Σ+

g ground state potential
was populated in the molecular quantum gas regime with 80% efficiency. The rovibrational
ground state |v=0, J=0> of the X1Σ+

g ground state potential can thus be reached from the
atomic threshold with a maximum of two two-photon STIRAP transfers. Dark resonances
connecting |v = 73, J = 2> to |v = 0, J = 0> have recently been observed [6], and two-step
STIRAP into |v= 0, J = 0 > has recently been implemented [7]. For future experiments, the
use of Feshbach level |g> as the initial state might be advantageous. Level |g> can be more
easily populated, as the Feshbach resonance connected to this level is at a low magnetic field
value of 1.98 mT [21], where the atomic background scattering length has a moderate value
of 155 a0, where a0 is Bohr’s radius. The use of this resonance avoids excitation of collective
motion of the atomic BEC as a result of a large mean field interaction near the Feshbach res-
onance at 4.79 mT [1], where the atomic background scattering length is about 935 a0. The
transition starting from level |g> appears to be strong enough to allow STIRAP, this time
via the excited state level |v′ = 225, J = 3> of the 0+

u system. An attractive strategy for the
production of a BEC of ground state molecules relies on the addition of a three-dimensional
optical lattice. Starting from the atomic BEC, pairs of atoms at individual lattice sites can be
produced in a superfluid-to-Mott-insulator transition [Gre02] with high efficiencies of up to
50% [12]. These pairs can then be very efficiently associated on a Feshbach resonance [20]
and subsequently transferred to the rovibronic ground state with STIRAP. The lattice has
the advantage of shielding the molecules against inelastic collisions during the association
process and subsequent state transfer. In particular, it should allow long STIRAP pulse du-
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rations, allowing us to resolve the weak hyperfine structure of ground state molecules [4].
As proposed by Jaksch et al. [12], dynamical melting of the lattice should ideally result in
the formation of a BEC of molecules in the rovibronic ground state in a Mott-insulator-to-
superfluid-type transition.
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Table 8.2: Observed excited state levels in the wavelength range from 1118 nm to 1134 nm. Transi-
tions were measured from Feshbach state |s> to the first electronically excited state, addressing both
(A1Σ+

u−b3Πu)0+
u levels and (1)3Σ+

g levels. Levels are given according to the excitation wavelength
(WL) from |s >, which essentially corresponds to the F = 3,mF = 3 two-atom asymptote. The data
is taken at a magnetic field of 1.98 mT. Wavemeter accuracy is about 0.001 nm. The energy of these
levels above the rovibronic ground state X1Σ+

g |v= 0, J = 0 > is given in the second column, where
the binding energy of the rovibronic ground state is taken from Ref.[1]. The assignment to either the
coupled (A1Σ+

u−b3Πu)0+
u system or to the (1)3Σ+

g is based on the vibrational spacing and similar-
ities in the substructure of the levels. The levels marked with ∗ have been used for dark resonance
spectroscopy coupling to deeply bound levels of the X1Σ+

g state [1]. The ability to couple to such
levels unambiguously reflects an important singlet component stemming from the A1Σ+

u state and
therefore clearly assigns these levels to the 0+

u system. The quantum numbers given for the 0+
u levels

are coupled channels quantum numbers derived from molecular structure calculations and bear an
uncertainty of two in the absolute numbering. The calculations show that these levels have about 70%
A1Σ+

u state contribution. Two further levels observed near 1120.17 nm and 1117.16 nm that belong to
the 0+

u progression are not given in the table since no further measurements have been done on these
levels. The level near 1129.5 nm exhibits a somewhat richer structure than the other levels assigned
to 0+

u and than exemplified in Fig. 8.11. Levels assigned to the (1)3Σ+
g state form a regular vibrational

progression and show a more complex substructure than the levels attributed to the 0+
u system, as

exemplified in Fig. 8.14. For these levels, the transition wavelength to one of the most prominent fea-
tures is given, since an in depth analysis of the rotational and hyperfine structure remains to be done.
The vibrational numbering for the (1)3Σ+

g levels is the same as in Ref [35].

WL [nm] Energy above Assignment
X1Σ+

g |v=0>

[cm−1]
1132.481 12458.875 0+

u |v′=221, J=1 >
1129.492 12482.245 0+

u

1126.173∗ 12508.332 0+
u |v′=225, J=1 >

1123.104∗ 12532.598 0+
u |v′=226, J=1 >

1133.680 12449.536 (1)3Σ+
g |v′=32 >

1130.510 12474.274 (1)3Σ+
g |v′=33 >

1127.379 12498.838 (1)3Σ+
g |v′=34 >

1124.274 12523.334 (1)3Σ+
g |v′=35 >

1121.196 12547.756 (1)3Σ+
g |v′=36 >

1118.155 12572.013 (1)3Σ+
g |v′=37 >
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[31] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Science, 2003, 299, 232.

[32] O. Dulieu and P. Julienne, J. Chem. Phys., 1995, 103, 60.

[33] C. Amiot, O. Dulieu, and J. Vergès, Phys. Rev. Lett. , 1999, 83, 2316.

[34] H. Salami, T. Bergeman, O. Dulieu, D. Li, F. Xie, and L. Li, manuscript in preparation
(2008).

[35] C. Amiot and J. Verges, Chem. Phys. Lett., 1985, 116, 273.

[36] M. J. Mark, J. G. Danzl, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Salami, T.
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We demonstrate efficient transfer of ultracold molecules into a deeply bound rovibrational
level of the singlet ground state potential in the presence of an optical lattice. The overall
molecule creation efficiency is 25%, and the transfer efficiency to the rovibrational level
|v = 73, J = 2 > is above 80%. We find that the molecules in |v = 73, J = 2> are trapped
in the optical lattice, and that the lifetime in the lattice is limited by optical excitation by
the lattice light. The molecule trapping time for a lattice depth of 15 atomic recoil energies
is about 20 ms. We determine the trapping frequency by the lattice phase and amplitude
modulation technique. It will now be possible to transfer the molecules to the rovibrational
ground state |v=0, J=0> in the presence of the optical lattice.

Introduction

The generation of molecular quantum gases and molecular Bose-Einstein condensates (BEC)
has been a major goal for the field of atomic and molecular physics. It has been achieved for
the case of two fermionic atoms that pair up to form a bosonic dimer molecule in the limit of
vanishing binding energy [1, 2] at ultralow temperatures. In this limit, collisional stability is
assured, and this has allowed the investigation of the BEC-BCS crossover [3]. Here, we are
interested in the opposite limit of deeply bound molecules. Collisional stability is expected
only for the rovibronic ground state, and most likely it will be necessary that one prepares
the lowest molecular hyperfine sublevel [4] to avoid hyperfine changing collisions. Our ap-
proach to producing a quantum gas of ground state molecules is based on laser cooling of
atoms to the point of quantum degeneracy, followed by molecule association on a Feshbach
resonance and subsequent coherent two-photon molecule transfer [Dan08, 6, 7, 17, 16, 18].
In principle, this approach combines high molecular densities and ultralow temperatures
with full state selectivity. For optimization of both the initial molecule creation process and
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the transfer process, the use of a three-dimensional optical lattice has been proposed, as il-
lustrated in Fig. 8.15C. In a superfluid-to-Mott-insulator phase transition doubly occupied
lattice sites can be favored [6, 12], and collisional relaxation during the transfer can, at least
in principle, be fully avoided. It should be possible that one finally creates a molecular BEC
by dynamical melting of the lattice after the two-photon transfer [12].

In the present work, we report on two-photon transfer into a deeply bound rovibrational
level by means of the stimulated Raman adiabatic passage (STIRAP) technique [23, 17] in the
presence of a three-dimensional optical lattice. We extend our previous work of transfering
Cs2 molecules to rovibrational level |v = 73, J = 2 > of the 1Σ+

g electronic ground state
in the quantum gas regime [Dan08] by first using the superfluid-to-Mott-insulator phase
transition to efficiently produce pairs of atoms at the wells of the lattice. The pairs are then
associated to weakly bound molecules on a Feshbach resonance. Subsequently, the molecules
are transferred by magnetic field ramping to the starting state for optical transfer. From there,
they are efficiently transferred to the deeply bound rovibrational level |v = 73, J = 2 > by
means of STIRAP. Note that in our previous work [Dan08] all experiments were performed
in free flight. Fig. 8.15A shows the relevant molecular states for the Cs dimer molecule and
the transitions involved. We find that the molecules in |v = 73, J = 2 > are trapped in the
lattice with a 1/e-trapping time of about 20 ms, limited by scattering of lattice light. We
measure the trapping frequency of the molecules in the lattice and find that the polarizability
in |v = 73, J = 2 > is about 30% of that of the Feshbach molecules. It will now be possible
that one adds a second STIRAP transfer step to reach the rovibronic ground state |v=0, J=

0>, giving full quantum control over the external and internal degrees of freedom for the
molecules.

Preparation of Feshbach molecules in the optical lattice

To produce an ultracold sample of Feshbach molecules trapped at the individual sites of an
optical lattice we first produce an atomic BEC with typically 1 × 105 Cs atoms in the lowest
hyperfine sublevel F = 3, mF = 3 in a crossed optical dipole trap. As usual, F is the atomic
angular momentum quantum number, and mF its projection on the magnetic field axis. For
BEC production, we essentially follow the procedure detailed in Ref.[15]. We set the atomic
scattering length to a value of 210 a0, where a0 is Bohr’s radius, by tuning the magnetic
offset field to 2.1 mT. At this value, three-body losses are minimal [16]. We then drive the
superfluid-to-Mott-insulator phase transition [17] by exponentially ramping up the power
in a three-dimensional optical lattice within about 400 ms while simultaneously ramping
up the harmonic confinement in the dipole trap. The lattice is generated by three mutually
orthogonal, retro-reflected laser beams at a wavelength of λ = 1064.5 nm, each with a 1/e-
waist of about 350 µm. For the atoms, we achieve a well depth of up to 40 ER, where ER =
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Figure 8.15: A Molecular level scheme for Cs2. Molecules in a weakly bound Feshbach level |1> are
transferred to rovibrational level |3>= |v=73, J=2> of the singlet X1Σ+

g potential in the presence of
an optical lattice. Level |3> with a binding energy of 1061 cm−1 is reached in a two-photon STIRAP
process with wavelengths near 1126 nm and 1006 nm via the 225th level of the electronically excited
(A1Σ+

u−b3Πu) 0+
u potentials. The X1Σ+

g potential has about 155 vibrational levels. B Zeeman diagram
showing the energy of all relevant weakly bound molecular levels for initial Feshbach molecular state
preparation [21]. The binding energy is given with respect to the F =3,mF =3 two-atom asymptote.
The molecules are first produced on a g-wave Feshbach resonance at 1.98 mT in state |g> (1). Residual
atoms are removed by a combined microwave and resonant light pulse (2). The molecules are then
transferred to the weakly bound s-wave state |1>= |s> (6), the starting state for the STIRAP transfer,
via three avoided state crossings involving state |g2> by slow (3,5) and fast magnetic field ramps (4).
C Lattice based ground state transfer. Top: The BEC is adiabatically loaded into the three-dimensional
optical lattice, creating a Mott-insulator state. Middle: Atoms at doubly occupied sites are converted
to Feshbach molecules. Atoms at singly occupied sites are removed thereafter. Bottom: The molecules
are subsequently transferred to the deeply bound rovibrational level |3>= |v = 73, J = 2> while
shielded from collisions by the lattice potential.

h2/(2mλ2) = kB×64 nK is the atomic photon recoil energy with the mass m of the Cs atom.
h is Planck’s constant, and kB is Boltzmann’s constant. Throughout the paper we give lattice
depths in units of the atomic recoil energy. The lattice light as well as the light for the dipole
trap beams is derived from a single-frequency, narrow-band, highly-stable Nd:YAG laser
that is amplified to up to 20 W without spectral degradation in a home-built fiber amplifier
[18]. The power in each lattice beam is controlled by an acousto-optical intensity modulator
and an intensity stabilization servo. While ramping up the lattice potential, the power in the
two dipole trap beams is increased to assure that the central density in the trap is sufficiently
high to allow the preferential formation of atom pairs at the central wells of the lattice, but
not too high in order to avoid triply occupied sites. We typically ramp the lattice to a depth
of 15 to 25 ER. Typically about 30% of the atoms reside at doubly occupied lattice sites. We
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estimate this number from the molecule production efficiency. This value is not optimal yet,
as loading from a parabolic potential should give a maximum of 53% [12, 19].

We now produce Feshbach molecules on a Feshbach resonance [20, 29, Köh06] near a
magnetic field value ofB = 1.98 mT [21] in the presence of the optical lattice [20, 6]. Fig. 8.15B
shows the relevant weakly bound Feshbach levels. The resonance at 1.98 mT is quite narrow,
but it lies at a conveniently low value of the magnetic field, allowing us to simply lower the
magnetic offset field from the BEC production value and ramp over the resonance with a
rate of about 0.006 T/s. The molecules produced are then in level |g>. These molecules have
g-wave character, i.e. `= 4, where ` is the quantum number associated with the mechanical
rotation of the nuclei [25]. After association, atoms remaining at singly occupied lattice sites
are removed by microwave transfer to F = 4 and a resonant light pulse. Starting from level
|g > we have recently identified transitions to deeply bound excited rovibrational levels of
the Cs2 mixed (A1Σ+

u−b3Πu) 0+
u excited states [7]. These transitions should allow STIRAP

transfer to the target rovibrational level |v = 73, J = 2 > of the electronic ground state, but
for the present work we have decided to use Feshbach level |s > as the starting state as in
our previous work [Dan08] so that the transfer performances with and without the presence
of the lattice can be compared. To reach level |s > from level |g >, we have implemented
Feshbach state transfer as realized in Ref.[21] using a combination of slow and fast magnetic
field ramps. In brief, we first transfer the molecules from |g > to level |g2 > by lowering
the magnetic field B sufficiently slowly to a value of 1.22 mT, thereby following the upper
branch of an avoided crossing near 1.33 mT as shown in Fig. 8.15 B. We then increase B
abruptly to a value of 1.67 mT, thereby jumping the two crossings with levels |g > and |l >.
The maximum magnetic field rate of change is ∼ 2000 T/s. We finally follow slowly on the
upper branch of the avoided crossing with |s > at 1.85 mT, stopping at B = 1.9 mT. Our
procedure allows us to essentially transfer all molecules from |g > to |s >. For molecule
detection, we reverse the magnetic field ramps to level |g >, dissociate the molecules at the
Feshbach resonance at B = 1.98 mT and detect the resulting atoms by standard absorption
imaging [29].

For comparison with our data obtained below we first measure the lifetime of the weakly-
bound Feshbach molecules in the optical lattice. Typical lifetime measurements for these
molecules are shown in Fig. 8.16A-C. In such measurements, we record the number of re-
maining molecules as a function of hold time in the lattice. The lifetime of the molecules de-
pends strongly on which Feshbach level is used and on the value of the magnetic fieldB. For
example, for molecules in level |g> at B=1.82 mT the lifetime is 1.8 s at a lattice depth of 15
ER, while in level |s> the lifetime is 0.09 s at B=1.9 mT and 10 s at B=2.9 mT for the same
lattice depth. We attribute this strong dependence of the lifetime of molecules in |s> to the
fact that the molecular character changes strongly from being predominantly closed chan-
nel dominated to being open channel dominated as the magnetic field is increased [Köh06],
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Figure 8.16: Lifetime measurements of ultracold molecules trapped in the optical lattice. A, B,
and C show the decay of trapped Feshbach molecules, while D shows the decay for molecules in
|3>= |v=73, J=2> of the X1Σ+

g ground state potential. In all cases, the triangles (circles) correspond
to a lattice depth of 15 ER (25 ER). All lifetimes τ are determined from exponential fits to the data as
shown by the the solid lines. A Lifetime of state |g>. B Lifetime of state |g2> (filled symbols) and of
state |s> at B= 2.9 mT (open symbols). C Lifetime of state |s> at B= 1.9 mT, from where we drive
the STIRAP transfer. D Lifetime of molecules in the rovibrational level |3>= |v = 73, J = 2>. The
STIRAP lasers are switched off during the hold time in |3>. In D, each data point is the average of 4
experimental runs, error bars correspond to the 1σ statistical uncertainty. The typical uncertainty for
the lifetimes is one unit of the last digit given.

reducing wave function overlap with excited molecular levels. We always determine the life-
time for two values of the lattice depth, 15 ER and 25 ER. In all cases, the lifetime is reduced
for higher lattice depth, indicating residual optical excitation by the lattice light. Neverthe-
less, the long lifetimes reflect the fact that the lattice perfectly shields the molecules from
inelastic molecule-molecule collisions, which would otherwise limit the lifetime to a few ms
at the given molecular densities [20].

Lattice-based STIRAP transfer

We implement two-photon STIRAP transfer to the deeply bound rovibrational level |3>=

|v = 73, J = 2 > of the 1Σ+
g electronic ground state potential in a similar way as in our

previous work [Dan08], except that now the molecules are trapped at the individual wells
of the optical lattice. In brief, laser L1 near a wavelength of 1126 nm, driving the transition
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from |1>= |s > to |2>, where |2> is a deeply bound level of the mixed (A1Σ+
u−b3Πu) 0+

u

excited states, is pulsed on after laser L2, which drives the transition from |3 > to |2 > at
1006 nm, see Fig.8.15A. The pulse (or pulse overlap) time τp is typically τp = 10 µs for the
present experiments. A schematic time course for the transition Rabi frequencies is shown in
Fig.8.17C. We estimate the peak Rabi frequencies to be 2π × 3 MHz for the transition at 1126
nm and 2π × 6 MHz for the transition at 1006 nm [Dan08]. After a variable hold time τh, we
reverse the pulse sequence to transfer the molecules back to |s >. For short τh below 40 µs
we typically leave L1 on between the two STIRAP pulse sequences. For longer τh we switch
L1 off to avoid any residual optical excitation of molecules in |v = 73, J = 2> and possible
effects of dipole forces generated by the tightly focused laser beam L1.

The result of double STIRAP transfer in the optical lattice is shown in Fig. 8.17 A. Here,
τp = 10 µs and τh = 15 µs. As in our previous work [Dan08], we interrupt the transfer after
a given STIRAP time τS and record the number of molecules in the initial state |s >. The
molecules first disappear, and then a sizable fraction of about 65% returns after the reverse
STIRAP transfer. Thus, as in our previous work [Dan08], the single pass efficiency is about
80% when both lasers are on resonance. Fig. 8.17B shows the double STIRAP transfer effi-
ciency as a function of the detuning ∆2 of laser L2 from the excited intermediate level while
laser L1 is held on resonance (detuning ∆1 ≈ 0). A Gaussian fit yields a full width at half
maximum of 830 kHz. With τp so short, we do not resolve molecular hyperfine structure in
|v=73, J=2>.

We find that the molecules transferred to |v = 73, J = 2> are trapped at the individual
wells of the lattice. The 1/e-lifetime is about 19 ms for a lattice depth of 15 ER. This is much
shorter than the lifetime of Feshbach molecules as shown above, but sufficiently long to al-
low future implementation of a second lattice-based STIRAP step to the rovibronic ground
state |v = 0, J = 0 >, for which the lifetime is expected to be much longer as discussed be-
low. We determine the lifetime by repeating the double STIRAP transfer while increasing the
hold time τh in steps of 3.5 ms. The result is shown in Fig.8.16D. The number of molecules
can be well fit by an exponentially decaying function as a function of τh. For a higher lattice
depth of 25 ER, the lifetime is reduced to 15 ms. We thus attribute the reduced molecu-
lar lifetime to off-resonant scattering of lattice light, exciting the molecules to levels of the
(A1Σ+

u−b3Πu) 0+
u states, which then in turn leads to loss into other ground state rovibra-

tional levels that we do not detect. Note that in the wavelength region of our trapping laser,
the lifetime is expected to show strong variations as a function of trapping laser wavelength
due to the presence of excited state levels. Hence, also the polarizability as discussed in the
next section should strongly depend on the wavelength of the laser generating the lattice
light.
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Figure 8.17: STIRAP transfer from the weakly bound state |1>= |s> to the deeply bound rovi-
brational level |3>= |v= 73, J = 2> and back to |1> in the optical lattice. A shows the number of
molecules in state |1> as a function of STIRAP time τS for both lasers on resonance (laser detunings
∆1 ≈ 0 ≈ ∆2). The measured pulse overlap begins at about 5 µs and ends at about 15 µs. The second
pulse overlap starts at 30 µs and ends at about 38 µs. The lattice depth is 15 ER. Data points represent
a single experimental realization, not an average over several runs. The data point at 39 µs represents
a ”bad shot”, which occasionally occurs. B Double STIRAP efficiency as a function of the detuning
∆2 of laser L2 for ∆1 ≈ 0. The solid line is a Gaussian fit with a full width at half maximum of 830
kHz. C schematically shows the timing for the Rabi frequencies, Ωi, i = 1, 2, for lasers L1 and L2

during the double STIRAP sequence. For short hold times τh < 40 µs laser L1 is left on after the first
STIRAP sequence as shown here. For longer hold times τh > 40 µs we shut off L1 to avoid possible
optical excitation.

Determination of molecule trapping parameters

We determine the molecular trapping frequency ω|v=73> for molecules in |v = 73, J = 2 >

by modulating the lattice phase and, alternatively, by modulating the lattice amplitude. In
the first case, we primarily excite transitions from the lowest band in the lattice to the first
excited band and then to higher bands. In the second case, we primarily excite into the sec-
ond excited band and then to higher bands. For sufficiently strong modulation, molecules
are lost from the lattice, as tunneling to neighboring sites and hence inelastic collisions with
neighboring molecules become more probable. We thus expect to detect increased molecular
loss if the modulation frequency is tuned into resonance with the inter-band transitions. The
results are shown in Fig. 8.18. At a lattice depth of 15 ER, we observe resonant loss at 5.2
kHz in the case of phase modulation and at 10.1 kHz in the case of amplitude modulation of
the lattice. Phase modulation at 22 ER and amplitude modulation at 20 ER yield resonances
at 6.5 kHz and 12.2 kHz, respectively. These values for different trap depths are consistent
with each other when compared with a calculation of the band structure. For comparison,
to determine the trapping frequency ωF of the Feshbach molecules in level |g>, we mea-
sure that phase modulation (amplitude modulation) of a 15 ER deep lattice leads to loss at
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Figure 8.18: Trapping of deeply bound molecules in the wells of the optical lattice. While the
molecules reside in level |3>= |v= 73, J = 2>, one of the lattice beams of the 3 dimensional optical
lattice is either phase modulated (A and B) or amplitude modulated (C and D). As the frequency of
the phase or amplitude modulation is scanned, a series of resonances due to transfer to higher bands
arise, reflected in a decrease in molecule number. The respective resonances at the lowest modulation
frequency are shown here. For phase modulation (”shaking” of the lattice), this corresponds to the
first lattice band, for amplitude modulation to the second band. To determine the center frequency,
the resonances are fit by a Gaussian. The lattice depth is 15 ER, 22 ER, 15 ER, and 20 ER in A, B, C,
and D, respectively.

a modulation frequency of 9.4 kHz (18.4 kHz). Relating the dynamical polarizability α|v=73>

of the deeply bound molecules in |v= 73 > to the dynamical polarizability αF of the Fesh-
bach molecules via α|v=73>/αF = ω2

|v=73>/ω
2
F , we obtain that the molecular polarizability in

|v=73, J=2> is ∼ 30% of the polarizability of the Feshbach molecules at the wavelength of
our trapping light.

Conclusion

We have transferred an ultracold sample of Cs2 molecules to the deeply bound rovibrational
level |v=73, J=2> of the singlet X1Σ+

g potential in the presence of an optical lattice. We es-
sentially find the same transfer efficiency as in our previous work [Dan08] where no lattice
was used. The transferred molecules are trapped, and we have determined their polariz-
ability in this particular level. The trapping time is sufficiently long to allow for subsequent
lattice-based STIRAP transfer to the rovibronic ground state |v = 0, J = 0 > by means of a
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second two-photon transition [6]. A lower bound for the STIRAP pulse time and hence for
the minimal required trapping time is set by the time needed to resolve the molecular hy-
perfine structure. This minimal time is the inverse of three times the ground state hyperfine
coupling constant c4 ≈ 14 kHz [4], giving 24 µs. Hence a compromise can easily be found
between Fourier-resolving the molecular hyperfine structure and keeping the STIRAP pulse
time sufficiently short in view of finite laser coherence time and finite trapping time. Note
that for optimum transfer efficiency also the hyperfine structure of the intermediate state
needs to be resolved, which requires longer STIRAP times also for the first transfer step.

For Cs2 molecules in the rovibronic ground state |v= 0, J = 0> we expect much longer
trapping times in the lattice as optical excitation at 1064.5 nm into excited molecular states
can only occur in a far off-resonant process. At this wavelength transitions to the
(A1Σ+

u−b3Πu) 0+
u states are relevant. These are possible only to levels that have a sizable

singlet contribution stemming from the A1Σ+
u state. 0+

u levels below the minimum of the
A1Σ+

u state, corresponding to a wavelength of ∼ 1041 nm as measured from the rovibronic
ground state [26], have little singlet component and hence these transitions are strongly sup-
pressed. We thus expect the formation of a stable molecular quantum gas in |v= 0, J = 0>

when the lattice depth is lowered and the molecules are released into a larger-volume optical
dipole trap, possibly allowing the observation of Bose-Einstein condensation of ground state
molecules.

Our technique can readily be applied to other molecular systems, e.g. heteronuclear
dimers such as RbCs [27] and KRb [16]. These dimers carry a sizable electric dipole mo-
ment. In the presence of the lattice, one should thus be able to exploit the long range nature
of the dipole-dipole interaction and be able to prepare interesting novel quantum phases
with nearest-neighbor interaction [28, 29].
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Control over all internal and external degrees of freedom of molecules at the level of single
quantum states will enable a series of fundamental studies in physics and chemistry [1, 2].
In particular, samples of ground-state molecules at ultralow temperatures and high num-
ber densities will allow novel quantum-gas studies [3] and future applications in quantum
information science [4]. However, high phase-space densities for molecular samples are
not readily attainable as efficient cooling techniques such as laser cooling are lacking. Here
we produce an ultracold and dense sample of molecules in a single hyperfine level of the
rovibronic ground state with each molecule individually trapped in the motional ground
state of an optical lattice well. Starting from a zero-temperature atomic Mott-insulator state
[Blo08] with optimized double-site occupancy [6], weakly-bound dimer molecules are ef-
ficiently associated on a Feshbach resonance [Chi10] and subsequently transferred to the
rovibronic ground state by a stimulated four-photon process with >50% efficiency. The
molecules are trapped in the lattice and have a lifetime of 8 s. Our results present a cru-
cial step towards Bose-Einstein condensation of ground-state molecules and, when suit-
ably generalized to polar heteronuclear molecules, the realization of dipolar quantum-gas
phases in optical lattices [8, 9, 10].

Recent years have seen spectacular advances in the field of atomic quantum gases. Ultra-
cold atomic samples have been loaded into optical lattice potentials, allowing the realization
of strongly-correlated many-body systems and enabling the direct observation of quantum
phase transitions with full control over the entire parameter space [Blo08]. Molecules with
their increased complexity are expected to play a crucial role in future generation quan-
tum gas studies. For example, the long-range dipole-dipole force between polar molecules
gives rise to nearest-neighbour and next-nearest-neighbour interaction terms in the extended
Bose-Hubbard Hamiltonian and should thus lead to novel many-body states in optical lat-
tices in the form of striped, checkerboard, and supersolid phases [8, 9, 10].
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An important prerequisite for all proposed molecular quantum gas experiments is the ca-
pability to fully control all internal and external quantum degrees of freedom of the molecules.
For radiative and collisional stability, the molecules need to be prepared in their rovibronic
ground state, i.e. the lowest vibrational and rotational level of the lowest electronic state,
and preferably in its energetically lowest hyperfine sublevel. As a starting point for the real-
ization of novel quantum phases, the molecular ensemble should be in the ground state of
the many-body system. Such state control is only possible at ultralow temperatures and suf-
ficiently high particle densities. While versatile non-optical cooling and slowing techniques
have recently been developed for molecular ensembles [11] and photo-association experi-
ments with atoms in magneto-optical traps have reached the rovibrational ground state [1],
the achievable molecular phase-space densities are still far away from the point of quan-
tum degeneracy. Here, we exploit the fact that high phase-space densities can readily be
achieved for atoms and that atoms can efficiently be associated on Feshbach resonances to
form molecules [Chi10] with minimal loss of phase-space density when an optical lattice is
present. Subsequent state transfer to a specific hyperfine sublevel of the rovibronic ground
state by means of a stimulated multi-photon process then preserves phase-space density and
hence the quantum-gas character of the molecular ensemble. This approach is expected to
allow the preparation of a molecular ground-state BEC [12]. Note that some loss of phase-
space density can be tolerated if the collisional properties of the ground-state molecules, a
priori unknown, turn out to be sufficiently favorable to allow for a final stage of evaporative
cooling or, alternatively, sympathetic cooling with atoms.

A crucial ingredient for our experiments is the presence of an optical lattice. It provides
full control over the motional wave function and prevents collisional loss. It allows us in
particular to maximize the efficiency for initial molecule production and the efficiency for
ground-state transfer. For sufficiently high efficiency, a molecular Mott-insulator state is
approximated by this preparation procedure [12], providing an excellent starting point for
the precision measurements [13, 14] and many-body and quantum information experiments
[8, 9, 10] envisioned with ground-state molecules. In the quantum gas regime without the
use of an optical lattice, molecular state transfer to deeply-bound rovibrational levels of the
singlet 1Σ ground-state potential has recently been implemented for Cs2 [15] and KRb [16].
For KRb, the rovibronic ground state was reached, resulting in a near-quantum-degenerate
gas of fermionic ground-state molecules [16]. Transfer of molecules in the presence of an op-
tical lattice has been implemented for Rb2 molecules [17], and the lowest rovibrational level
of the shallow triplet a3Σ+

u potential was reached [18].

Our molecular quantum-gas preparation procedure is summarized in Fig. 8.19. We load a
BEC of Cs atoms [Kra04] into a three-dimensional optical lattice and drive the superfluid-to-
Mott-insulator phase transition [Blo08]. The atomic number distribution in the Mott-insulator
state is inhomogeneous as a result of the external harmonic confinement. Shells with a con-
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|4 >

|1 > = |v = 155>
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|3 > = |v = 73>

|5 > = |v = 0>

Laser L1

Laser L2

Laser L3

Laser L4

MI

BEC

Figure 8.19: Molecular quantum gas preparation procedure. A BEC of Cs atoms is loaded into an
optical lattice. By increasing the lattice depth, a Mott-insulator state (MI) with preferentially two
atoms per site is created. Feshbach association (FA) subsequently converts atom pairs into weakly-
bound molecules in state |1>. These are then transferred in the presence of the lattice to a specific
hyperfine level |I = 6,MI = 6> of the rovibronic ground state |5> = X1Σ+

g |v = 0, J = 0> by a
stimulated four-photon process (STIRAP) involving lasers Li with Rabi frequencies Ωi i = 1, 2, 3, 4,
and three intermediate levels |2>, |3>, and |4>.

stant number of precisely n atoms per lattice site, where n = 1, 2, 3 . . ., are separated by
narrow superfluid regions [Blo08]. We aim to maximize the size of the two-atom Mott shell
in the central region of the lattice in order to obtain the highest number of lattice sites at
which there are precisely two atoms (see the Methods section). With up to 45(2)% of the
atoms at doubly-occupied lattice sites we come close to the theoretical limit of 53% given the
parabolic density profile of the BEC [6]. The atom pairs reside in the motional ground state
at each well and are then associated [20] with 94(1)% probability to Cs2 Feshbach molecules,
which are subsequently transferred to the weakly-bound level |1 >, the starting level for
the optical transfer (see the Methods section) [21, 15, 22]. Atoms at singly-occupied sites are
removed by a combination of microwave and optical excitation [20]. We now have a pure
molecular sample with a high occupation of about 85(3)% in the central region of the lattice
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Figure 8.20: Molecular potentials and level schemes for ground-state transfer. a, The four-photon
transfer from the weakly-bound Feshbach level |1>= |ν≈155 > (not resolved near the 6S+6S asymp-
tote) to the rovibrational ground state |5>= |ν= 0, J = 0> of the singlet X1Σ+

g potential involves the
deeply bound level |3>= |ν = 73 > of the X1Σ+

g potential [15] and the levels |2>= |ν′= 225, J = 1>
and |4>= |ν′ = 61, J = 1> of the electronically excited (A1Σ+

u − b3Πu) 0+
u potentials [30, 26]. The

laser wavelengths for L1, L2, L3, and L4 are near 1126 nm, 1006 nm, 1351 nm, and 1003 nm, re-
spectively. b, Zeeman diagram for weakly bound molecules near the 6S+6S asymptote. Molecules
are associated at a g-wave Feshbach resonance [29] at 1.98 mT (FA) and then transferred to the de-
sired starting level |1>= |s> for optical transfer via three avoided level crossings by slow (arrows
1,3) and fast (arrow 2) magnetic field ramps [21]. The binding energy is given with respect to the
(Fa1 = 3,mFa1 = 3) × (Fa2 = 3,mFa2 = 3) two-atom lowest hyperfine asymptote. All Feshbach levels
are characterized by MF = 6. c, Calculated Zeeman diagram for the hyperfine manifold of the rovi-
bronic ground state |5>= |ν= 0, J = 0>. The optical transfer goes selectively to level |I= 6,MI = 6>,
indicated in red. This level becomes the lowest-energy absolute ground state for magnetic-field val-
ues above ∼ 13 mT. There are no avoided crossings between different hyperfine sublevels [24].

(see the Methods section). Each molecule is in the motional ground state of its respective
well and perfectly shielded from collisional loss.

We employ stimulated Raman adiabatic passage (STIRAP) [23] involving four laser tran-
sitions to coherently transfer the molecules into the lowest rovibrational level |5 >= |v =

0, J = 0 > of the ground state singlet X1Σ+
g potential as shown in Fig. 8.20a, bridging a

binding energy of hc× 3628.7 cm−1 ≈ h × 109 THz [15]. Here, v and J are the vibrational
and rotational quantum numbers, respectively, h is Planck’s constant and c is the speed of
light. For Cs2, a homonuclear molecule, the four-photon process is preferred to a direct two-
photon process because it allows us to overcome small Franck-Condon overlap. Lasers L1

through L4 couple |1 > and |5 > via three intermediate levels |2 >,|3 >, and |4 > (see the
Methods section). For STIRAP in the presence of the lattice, the lattice light must not impede
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the transfer through optical excitation or by creating unwanted coherences. Also, the lattice
wavelength has to be chosen such that the dynamical polarizabilities for |1 > and |5 > are
closely matched in order to avoid excitation into higher motional states of the lattice as a
result of motional wave-function mismatch [18]. We typically set the lattice depth to a value
of 20 ER for atoms, corresponding to 80 ẼR for Feshbach molecules with twice the polariz-
ability and double the mass and 83 ẼR for molecules in |v = 0> at a lattice wavelength of
1064.5 nm, as determined below. Here, ER (ẼR) is the atomic (molecular) recoil energy.

Our experimental configuration ensures that only one particular molecular hyperfine
sublevel is populated. The atomic BEC is prepared in the lowest hyperfine sublevel |Fa =

3,mFa=3>, where Fa andmFa are the total atomic angular momentum and its projection on
the magnetic field. Feshbach association and transfer between Feshbach levels via avoided
crossings, as illustrated in Fig. 8.20b (see the Methods section), conserve [Chi10] the total
angular momentum projection MF = mFa1 + mFa2 = 6. Fig. 8.20c shows the hyperfine
structure of the target state, i.e. the rovibronic ground state X1Σ+

g |v = 0, J = 0 >. It splits
into 28 hyperfine sublevels in the presence of a weak magnetic field, corresponding to the
allowed values of the total nuclear spin I = 0, 2, 4, 6 and its 2I + 1 projections MI for each
value of I . The total energy splitting is ∼ h × 270 kHz at zero field [24] (see the Methods
section). Importantly, there is only a single MI = MF = 6 sublevel of |v = 0, J = 0 >,
namely the |I = 6,MI = 6 > level. This level we selectively populate by exploiting the
dipole selection rule ∆MF = 0 for linear polarization along the axis of quantization. It is
the lowest-energy hyperfine sublevel and hence the absolute energy ground state of the Cs
dimer for magnetic fields above ∼ 13 mT.

There are two possibilities for optical transfer from |1> to |5>. Sequential STIRAP (s-
STIRAP) uses two consecutive two-photon STIRAP processes, first from |1> to |3> and then
from |3> to |5>. The second scheme generalizes STIRAP [23, 17] to the five-level system
[25]: Four-photon STIRAP (4p-STIRAP) relies on the existence of a dark state of the form
|D>= (Ω2Ω4|1> −Ω1Ω4|3> + Ω1Ω3|5>)/Awith time-dependent Rabi frequencies Ωi=Ωi(t)

for lasers Li, i = 1, 2, 3, 4, and the appropriate normalization function A = A(t). Similar to
standard two-photon STIRAP, a counter-intuitive pulse sequence rotates the initial state |1>
adiabatically into the final state, here |5>. For this, L2 and L3 couple the three intermediate
levels while L4 and L1 deliver time-dependent overlapping pulses with L4 preceding L1.
Fig. 8.21b and e show the timings for both schemes including the reverse sequence used for
detecting the ground-state molecules after a certain hold time τh.

We investigate 4p-STIRAP to |v = 0, J = 0 > by interrupting the transfer sequence af-
ter a given 4p-STIRAP time τ and measuring the number of Feshbach molecules, as shown
in Fig. 8.21a. The molecules are transferred to |5 > in a single step. No molecules in |1 >
are detected during τh as the remaining Feshbach molecules are cleared by L1 at the end of
the transfer. When the pulse sequence is reversed, a large fraction of the molecules returns
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Figure 8.21: STIRAP transfer to the rovibronic ground state |5>= |ν = 0, J = 0> and back. a,
4p-STIRAP transfer and b, schematic timing for the Rabi frequencies Ωi, i = 1, 2, 3, 4: Number of
molecules in state |1> as a function of 4p-STIRAP time τ for all 4 lasers on resonance. The lattice
depth is 80 ẼR and 83 ẼR for molecules in levels |1> and |5>, respectively. Data points represent a
single experimental realization, not an average over several runs. The solid line is a 4p-STIRAP model
calculation. τh is the hold time in |5>= |ν= 0, J = 0>. Upper inset: double 4p-STIRAP efficiency as a
function of the detuning ∆4 of laser L4 and corresponding model calculation. The peak corresponds
to a single-pass efficiency of 57%. Lower inset: Band mapping of molecules after the double STIRAP
sequence. The absorption images corresponding to data points beyond τ = 60 µs are averaged and
smoothed with a Gaussian filter. The colour scale is chosen to emphasize any small population in
higher bands. c, and d, s-STIRAP: Double STIRAP efficiency for the inner two-photon STIRAP from
|3 > to |v = 0, J = 0 > (c) and to |v = 0, J = 2 > (d) and back, corresponding to the dotted bar in
the timing sequence in e, as a function of the detuning ∆4 of laser L4. The number of molecules is
normalized to the initial number in |3>. All measurements are performed at an offset magnetic field
of 1.9 mT.

to |1 >. Typically, 30% of the molecules are recovered after the full double 4p-STIRAP se-
quence. Almost all reside in the lowest band of the lattice as evidenced by band-mapping
experiments [Blo08]. The rectangular shape of the first Brillouin zone can be clearly seen in
the momentum-space image shown in the lower inset of Fig. 8.21a. 92(3)% of the molecules
can be found in the first Brillouin zone and hence had resided in the lowest lattice vibra-
tional level. Assuming equal efficiencies for both transfers, the single-pass efficiency is 55%.
The upper inset of Fig. 8.21a shows the double 4p-STIRAP efficiency versus detuning ∆4 of
L4 from the (|4 >→ |5 >)-transition with all other lasers on resonance. With ground-state
transfer efficiencies between 55% and 60%, about half of the lattice sites are occupied by a
ground-state molecule. The solid lines in Fig. 8.21a represent a simulation of 4p-STIRAP that
takes into account excited-state spontaneous decay and laser linewidth. Transfer times are
typically 4 µs to 10 µs. The simulation yields that the transfer efficiency is currently limited
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Figure 8.22: Lattice band structure for |v = 0 > molecules. Band energies as a function of lattice
depth in units of the molecular recoil energy ẼR as measured by phase and amplitude modulation
of the lattice. The lattice bands are labeled by (k, l,m), where k, l, and m give the number of vibra-
tional quanta along the three spatial directions in the limit of a deep lattice. The horizontal position
of the data points (filled circles, representing the position of excitation resonances as shown in in-
set c) is given by the molecular polarizability, which is determined by a fit of the data to the band
structure. Inset a shows the molecular momentum distribution after transfer to higher lattice bands
by resonant lattice amplitude modulation. The distribution represents an average of 5 experimental
runs, smoothed with a Gaussian filter. For comparison, inset b shows that hardly any population
is transferred to higher bands for off-resonant modulation. Inset c shows typical excitation spectra
for amplitude (top) and phase (bottom) modulation at 83 ẼR. For these, we determine the number
of molecules in the first Brillouin zone as a function of the excitation frequency. The solid lines are
Gaussian fits. The resonance at 22.5 kHz corresponds to excitation to the nearly-degenerate bands
(2,0,0) and (1,1,0) (not resolved). The resonance at 20.6 kHz is a two-phonon excitation to (4,0,0).

by a combination of laser linewidth, which is about 10 kHz when averaged over 1 s, and
imperfect adiabaticity due to finite available laser power to drive the extremely weak transi-
tions of the 5-level scheme [15, 26]. Molecules not transferred to |5> as a result of insufficient
phase coherence or limited adiabaticity are excited to either |2> or |4> by one of the lasers
and are hence pumped into a multitude of rovibrational levels, which do not couple to the
rovibrational ground state. For comparison, the double s-STIRAP efficiency from |3 > to
|v = 0, J = 0> and |v = 0, J = 2> is shown in Fig. 8.21c and d, respectively. The solid lines
represent a calculation matched to the data for standard 3-level STIRAP. With 55%-60%, the
total (|1>→ |5>)-transfer efficiency for s-STIRAP is comparable to 4p-STIRAP.

A crucial prerequisite for efficient ground-state transfer without heating is good match-
ing of the motional wave functions for the initial weakly-bound state and the final ground
state. A mismatch leads to unwanted excitation of higher lattice vibrational levels or bands
and hence to loss of state control. The lattice thus has to be operated at the magic wave-
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Figure 8.23: Lifetime of trapped ground-state molecules in the optical lattice. Normalized number
of molecules in |5>= |ν= 0, J = 0> as a function of hold time τh. The solid line is an exponential fit,
yielding a lifetime of 8.1(6)s. The inset schematically shows the excited-state potentials to which off-
resonant optical excitation is possible (cf. Fig. 8.20a). ∆L is the detuning of the lattice light at 1064.5
nm with respect to the lowest 0+

u level with A1Σ+
u character. During the hold time, all STIRAP laser

fields are turned off.

length condition [27], i.e. at a wavelength that gives equal light shifts for the initial and the
final molecular states. Our experiment in fact shows, as discussed above, that hardly any
population is transferred to higher lattice bands. We now measure the lattice band structure
and determine the molecular polarizability of the ground-state molecules (see the Methods
section). Molecules residing in the lowest band of the lattice are excited to the first (second)
band by phase (amplitude) modulation of the light generating the lattice. Fig. 8.22 shows
the measured band energies together with a calculation of the band structure as a func-
tion of lattice depth. On resonance, excitation to higher bands can readily be observed in
momentum space as shown in inset a. For comparison, off-resonant modulation transfers
hardly any population into higher bands (see inset b). We determine the band energies by
taking modulation spectra as shown in inset c. We then use the band structure calculation
to fit all measured resonance positions with the molecular dynamical polarizability P|v=0>

as the single free parameter. These measurements are done for |v = 0, J = 2 >. We obtain
P|v=0> = 2.1(1) × Pa, where Pa is the atomic polarizability. For the initial, weakly-bound
Feshbach molecules in level |g> we obtain P|g> = 2.0(1)× Pa. Hence the magic wavelength
condition is well fulfilled.

We measure the lifetime τe of the molecules in the lattice by varying the hold time τh
for up to 20 s and recording the number of remaining molecules as shown in Fig. 8.23. To
reduce inelastic light scattering, the lattice depth was adiabatically reduced to about 41.5
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ẼR after the 4p-STIRAP transfer. An exponential fit gives a 1/e-lifetime of τe = 8.1(6) s. We
attribute this long lifetime to the large detuning ∆L ≈ 6.9 THz from the lowest 0+

u level
with predominant A1Σ+

u singlet contribution as shown in the inset to Fig. 8.23. Levels of the
0+
u system that lie below this are almost purely of b3Πu character and thus make negligible

contributions to the optical excitation rate.

We are now in a position to determine collisional properties of ultracold ground-state
molecules in a fully state-selective way. At magnetic fields beyond 13 mT, where the level
|I = 6,MI = 6 > becomes the absolute ground state, the sample should show collisional
stability and thus allow the formation of a BEC of ground-state molecules when the lattice is
adiabatically removed [12]. For Cs2, formation of a trimer and an atom in a dimer-dimer col-
lision is predicted to be energetically forbidden (R. Guérout and O. Dulieu, private commu-
nication, 2009). The long coherence times and the perfect decoupling from the environment
in an optical lattice as demonstrated here will enable a new generation of precision measure-
ments [13, 14]. Furthermore, our results can readily be generalized to heteronuclear systems
such as KRb [16] and RbCs [28], opening up the possibility to study dipolar quantum phases
in optical lattices.

Methods

Lattice loading

We first follow the procedure detailed in Ref. [22]. In brief, we produce an atomic BEC with
typically 1 × 105 Cs atoms in the lowest hyperfine sublevel |Fa = 3, mFa = 3> in a crossed
optical dipole trap. We then drive the superfluid-to-Mott-insulator phase transition [Blo08]
by exponentially ramping up the power in a three-dimensional optical lattice within about
300 ms. The lattice is generated by three mutually-orthogonal, retro-reflected laser beams at
a wavelength of λ = 1064.5 nm, each with a 1/e2-waist of about 350 µm. While ramping up
the lattice potential, the power in the two dipole-trap beams is increased to ensure that the
central density in the trap is sufficiently high to allow formation of atom pairs at the central
wells of the lattice, but not too high to lead to triply occupied sites. Atoms at triply occupied
sites would rapidly be cleared out by inelastic three-body collisions. We ramp the lattice to a
depth of about 20ER before Feshbach association. Here,ER = h2/(2maλ

2) = kB×64 nK is the
atomic photon-recoil energy with the mass ma of the Cs atom and Boltzmann’s constant kB .
Up to 45(2)% of the atoms reside at doubly occupied lattice sites. We estimate this number
from the number of molecules that we obtain and the molecule production efficiency.

For the molecules, the recoil energy is ẼR = h2/(2 × 2maλ
2). The polarizability of Fesh-

bach molecules is twice the atomic polarizability. The same lattice that has a depth of 20 ER
for the atoms has thus a depth of 80 ẼR for the Feshbach molecules.
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Feshbach association and Feshbach state transfer

We efficiently produce weakly bound Cs2 Feshbach molecules in the presence of the optical
lattice by a magnetic field sweep [Chi10] across a narrow g-wave Feshbach resonance with
its pole at a magnetic field value of B = 1.98 mT [29, 21]. The molecules are initially in
level |g >, for which `= 4. Here, ` is the quantum number associated with the mechanical
rotation of the nuclei [Chi10]. We subsequently transfer the molecules via level |g2 > with
95(3)% efficiency into level |s>≡ |1> with `=0 by magnetic field ramping [21, 22] as shown
in Fig. 8.20b. For this level, the transitions to excited molecular levels are stronger than for
the initial level |g > [30]. We obtain up to 2.5 ×104 Feshbach molecules in the lattice in the
desired starting state. Assuming a perfect filling of the two-atom Mott-shell at the center of
the trap, taking into account the efficiencies for molecule production and state transfer, and
factoring in weak additional loss during sample purification, 85(3)% of the central lattice
sites are occupied. We detect the molecules in |1> by reversing the Feshbach state transfer
sequence, dissociating the molecules at the Feshbach resonance and detecting the resulting
atoms by standard absorption imaging [29].

Molecular states for ground state transfer

The relevant molecular states for Cs2 are shown in Fig. 8.20a. Levels |2> and |4> belong to
the coupled (A1Σ+

u −b3Πu)0+
u potentials [15]. We have recently identified suitable transitions

linking |1> to |5>, where levels |2 >, |3 >, and |4 > were chosen to give balanced transition
strengths on the four optical transitions [30, 26]. For |3> we choose either |v=73, J=2> or
|v=73, J=0> of the X1Σ+

g ground state with a binding energy of ∼ hc× 1061 cm−1.

Hyperfine structure of the rovibronic ground state

The hyperfine levels are calculated using the molecular constants from Ref. [24] by construct-
ing and diagonalizing a Hamiltonian matrix in an uncoupled basis set of functions represent-
ing the molecular rotation and the spins of the two nuclei, using the matrix elements given
in the Appendix of Ref. [24]. For J = 0 states the hyperfine structure is dominated by the
scalar spin-spin coupling and the nuclear Zeeman effect, but for J > 0 additional terms are
important.

STIRAP laser setup

STIRAP lasers Li with i = 1, 2, 3, 4 are continuous-wave grating-stabilized tunable diode
lasers, which are stabilized to optical resonators for short-term stability and referenced to an
optical frequency comb for long-term stability and reproducibility. We estimate the linewidth
of the lasers to be about 10 kHz. In order to ensure minimum momentum recoil imparted
on the molecules, the beams for lasers L1 and L2 are co-propagating. The beams for L3 and
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L4 are also co-propagating but run antiparallel to the beams of L1 and L2. All beams run
horizontally and are linearly polarized with the polarization axis in the vertical direction,
parallel to the direction of the magnetic field, which defines the axis of quantization. We
operate at Rabi frequencies in the range of 2π× (1 to 4) MHz.

Polarizability measurement

For determining the ground state molecular polarizability, transfer to |v = 0 > is performed
at a fixed lattice depth of 83 ẼR for |v = 0 > molecules. The lattice depth is then ramped
to the desired value within 50 ms. For phase modulation of the lattice, the frequency of
one lattice beam is usually modulated with a modulation depth of 2 MHz at the desired
frequency for about 10 ms. For amplitude modulation, the intensity is typically modulated
by 20% for about 10 ms.

Acknowledgements We thank H. Ritsch, S. Dürr, N. Bouloufa, and O. Dulieu for valu-
able discussions. We are indebted to R. Grimm for generous support and to H. Häffner for
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[Föl06] S. Fölling, A. Widera, T. Müller, F. Gerbier, and I. Bloch, Formation of Spatial Shell
Structure in the Superfluid to Mott Insulator Transition, Physical Review Letters 97, 1
(2006).

172



Bibliography

[Fos04] K. Fossheim and A. Sudbø, Superconductivity: physics and applications, John Wiley &
Sons Inc., 2004.

[Gan03] D. Gangardt and G. Shlyapnikov, Stability and Phase Coherence of Trapped 1D Bose
Gases, Physical Review Letters 90, 1 (2003).

[Geb97] F. Gebhard, The Mott Metal-Insulator Transition, Springer Verlag, Berlin, 1997.

[Gem09] N. Gemelke, X. Zhang, C.-L. Hung, and C. Chin, In situ observation of incompressible
Mott-insulating domains in ultracold atomic gases., Nature 460, 995 (2009).

[Geo00] A. Georges, T. Giamarchi, and N. Sandler, Interchain conductivity of coupled Luttinger
liquids and organic conductors, Physical Review B 61, 16393 (2000).

[Gia91] T. Giamarchi, Umklapp process and resistivity in one-dimensional fermion systems, Phys-
ical Review B 44, 2905 (1991).

[Gia97] T. Giamarchi, Mott transition in one dimension, Physica B: Condensed Matter 230-232,
975 (1997).

[Gia03] T. Giamarchi, Quantum physics in one dimension, Clarendon Press, Oxford, 2003.

[Gia04] T. Giamarchi, Theoretical framework for quasi-one dimensional systems., Chemical Re-
views 104, 5037 (2004).

[Gio02] S. Giovanazzi, A. Görlitz, and T. Pfau, Tuning the dipolar interaction in quantum gases,
Physical Review Letters 89, 130401 (2002).

[Gir60] M. Girardeau, Relationship between Systems of Impenetrable Bosons and Fermions in One
Dimension, Journal of Mathematical Physics 1, 516 (1960).

[Gir09] M. D. Girardeau and G. E. Astrakharchik, Wave functions of the super Tonks-Girardeau
gas and the trapped 1D hard sphere Bose gas, arXiv:0912.1633 (2009).

[Gog98] A. O. Gogolin, A. M. Tsvelik, and A. A. Nersesyan, Bosonization and strongly corre-
lated systems, Cambridge University Press, Cambridge UK, 1998.

[Gör01] A. Görlitz, J. Vogels, A. Leanhardt, C. Raman, T. Gustavson, J. Abo-Shaeer,
A. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Realization of Bose-
Einstein Condensates in Lower Dimensions, Physical Review Letters 87, 1 (2001).

[Gou86] P. Gould, G. Ruff, and D. Pritchard, Diffraction of atoms by light: The near-resonant
Kapitza-Dirac effect, Physical Review Letters 56, 827 (1986).

[Gre01] M. Greiner, I. Bloch, O. Mandel, T. Hänsch, and T. Esslinger, Exploring Phase Coher-
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Nägerl, Interference of interacting matter waves, New Journal of Physics 12, 065029
(2010).

[Had06] Z. Hadzibabic, P. Krüger, M. Cheneau, B. Battelier, and J. Dalibard, Berezinskii-
Kosterlitz-Thouless crossover in a trapped atomic gas, Nature 441, 1118 (2006).

[Hal36] H. V. Halbon Jr and P. Preiswerk, Preuve expérimentale de la diffraction des neutrons,
Comptes Rendus Acad. Sci. Paris 203, 73 (1936).

[Hal81] F. D. M. Haldane, ’Luttinger liquid theory’ of one-dimensional quantum fluids : I . Proper-
ties of the Luttinger model and their extension to the general 1D interacting spinless Fermi
gas, Journal Physics C: Solid State Physics 14, 2585 (1981).

174



Bibliography

[Hal09] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C.
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and C. Chin, Determination of atomic scattering lengths from measurements of molecular
binding energies near feshbach resonances, Physical Review A 79, 13622 (2009).

[Leo92] K. Leo, Observation of Bloch oscillations in a semiconductor superlattice, Solid State Com-
munications 84, 943 (1992).

[Li07] W. Li, A. Tuchman, H.-C. Chien, and M. Kasevich, Extended Coherence Time with
Atom-Number Squeezed States, Physical Review Letters 98 (2007).

[Lie63a] E. Lieb, Exact Analysis of an Interacting Bose Gas. II. The Excitation Spectrum, Physical
Review 130, 1616 (1963).

[Lie63b] E. Lieb and W. Liniger, Exact Analysis of an Interacting Bose Gas. I. The General Solution
and the Ground State, Physical Review 130, 1605 (1963).

[Lie03] A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, 100-W single-frequency master-
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molecules in a 1D Fermi gas, Physical Review Letters 94, 210401 (2005).

[Mor06] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices,
Reviews of Modern Physics 78, 179 (2006).

[Mot49] N. F. Mott, The Basis of the Electron Theory of Metals, with Special Reference to the Tran-
sition Metals, Proceedings of the Physical Society. Section A 62, 416 (1949).

[Mun07] J. Mun, P. Medley, G. Campbell, L. Marcassa, D. Pritchard, and W. Ketterle, Phase
Diagram for a Bose-Einstein Condensate Moving in an Optical Lattice, Physical Review
Letters 99, 1 (2007).

[Nai07] P. Naidon, E. Tiesinga, W. F. Mitchell, and P. S. Julienne, Effective-range description of
a Bose gas under strong one- or two-dimensional confinement, New Journal of Physics 9,
19 (2007).

[Ni08] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er, B. Neyenhuis, J. J. Zirbel,
S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, A High Phase-Space-Density Gas of
Polar Molecules, Science 322, 231 (2008).

[Nis08] Y. Nishida and S. Tan, Universal Fermi Gases in Mixed Dimensions, Physical Review
Letters 101 (2008).

179



Bibliography

[Nis09] Y. Nishida and S. Tan, Confinement-induced Efimov resonances in Fermi-Fermi mixtures,
Physical Review A 79, 3 (2009).

[O’H04] K. M. O’Hara, B. Laburthe Tolra, J. H. Huckans, W. D. Phillips, S. L. Rolston, and
J. V. Porto, Observation of Reduced Three-Body Recombination in a Correlated 1D Degen-
erate Bose Gas, Physical Review Letters 92, 190401 (2004).

[Ols98] M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of
impenetrable Bosons, Physical Review Letters 81, 938 (1998).

[Orz01] C. Orzel, A. K. Tuchman, M. L. Fenselau, M. Yasuda, and M. A. Kasevich, Squeezed
states in a Bose-Einstein condensate, Science 291, 2386 (2001).

[Par04] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov,
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