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Abstract

The investigation of dilute gases of ultracold atoms is currently a fast growing
field, both in experimental and theoretical physics. Major research directions
include the simulation of condensed matter systems, the investigation of super-
fluidity and the realization of controlled quantum chemistry. In this thesis we
present our contributions in form of several experiments covering four differ-
ent topics, sharing the usage of optical lattice potentials and the tunability of
interatomic interactions.

In a three-dimensional optical lattice, we investigate the properties of ultra-
cold atoms for various interatomic interaction strengths. Such a system can be
described by the Bose-Hubbard model, which originates from solid state physics.
For large repulsive values of the interaction strength, we create a strongly in-
teracting system and show the breakdown of the basic assumptions of the Bose
Hubbard model by precisely measuring the excitation spectrum. When prepar-
ing a Mott insulating state and subsequently changing to attractive interactions,
we observe a surprising stability and find indications that the system stabilizes
itself via inhibited three-body loss, grounded on the quantum zeno effect.

We examine the dynamics of matter waves along a lattice potential by ana-
lyzing Bloch oscillations, which occur when a force is applied along the lattice
direction. The effect of interactions and of external force gradients is investi-
gated in detail, and we can demonstrate the analog between this system and the
Talbot effect known from classical optics. When modulating the applied force,
we observe large oscillations in position space, so called super Bloch oscilla-
tions, which can be used to induce transport along the lattice direction without
dissipation.

In a set of experiments, we achieved the production of ultracold rovibronic
groundstate molecules, a prerequisite for many fundamental studies in quantum
chemistry. We associate ultracold atoms to weakly bound dimers employing a
Feshbach resonance, and use an optical lattice to shield the molecules against
inelastic collisions. Subsequently we transfer them into the rovibronic ground
state using the STIRAP technique, removing a binding energy corresponding to
a temperature of ∼ 5200 K without additional heading. This allows full control
over all internal and external degrees of freedom.

Elongated tubes created by an optical lattice potential realize an effective
one-dimensional geometry, which we use to study the physical models describing
such systems. For strong repulsive interactions we enter deeply into the regime
of the Tonks-Girardeau gas, a gas of impenetrable pointlike particles. Employ-
ing a confinement induced resonance, we can switch the interactions to strong
attractive values and thereby prepare a novel, highly excited quantum phase,
the Super-Tonks-Girardeau gas. By adding a weak lattice along the tubes, we
observe the so-called pinning quantum phase transition from a Luttinger liquid
to a Mott insulator.





Zusammenfassung

Die Untersuchung ultrakalter Quantengase ist ein schnell wachsendes Teilge-
biet der experimentellen und theoretischen Physik. Die derzeitigen Forschungsrich-
tungen beinhalten unter anderem die Simulation von Festkörpersystemen, die
Erforschung von Suprafluidität und die Realisierung kontrollierter Quanten-
chemie. In dieser Doktorarbeit stellen wir unseren Beitrag in Form mehrerer
durchgeführter Experimente, gruppiert in vier Themengebiete, vor.

In einem dreidimensionalen optischen Gitter untersuchen wir die Eigenschaften
ultrakalter Atome in Abhängigkeit von der Wechselwirkungsstärke. Dieses Sys-
tem kann mit dem aus der Festkörperphysik stammenden Bose-Hubbard Modell
beschrieben werden. Für ein stark wechselwirkendes System können wir das
Versagen einiger grundlegenden Annahmen des Bose-Hubbard Modells durch
präzise Messung des Anregungsspektrums zeigen. Bei Präparation eines Mott-
Isolators und anschließendem Umschalten zu attraktiven Wechselwirkungen be-
obachten wir eine überraschende Stabilität und finden Hinweise darauf, dass
sich das System durch Unterdrückung von Dreikörperverlusten aufgrund einer
hohen Dreikörperverlustrate in Verbindung mit dem Quanten Zeno-Effekt selbst
stabilisiert.

Wir untersuchen die Dynamik von Materiewellen entlang eines Gitterpoten-
tials durch Analyse von Bloch-Oszillationen, welche durch eine auf die Atome
wirkende Kraft auftreten. Wir testen die Auswirkungen von Wechselwirkung
und externen Kraftgradienten auf diese Oszillationen und können die Analo-
gie zwischen unserem System und dem Talbot-Effekt aus der klassischen Op-
tik demonstrieren. Bei Modulation der Kraft beobachten wir Super-Bloch-
Oszillationen, die wir zum Teilchentransport durch das Gitter ausnutzen.

In einer weiteren Reihe von Experimenten erzeugen wir ultrakalte Moleküle im
absoluten Rotations-Schwingungs-Grundzustand nahe der Quantenentartung,
eine Grundvoraussetzung für viele grundlegende Quantenchemieexperimente.
Wir erzeugen zuerst schwach gebundene Moleküle durch Nutzung einer Feshbach-
Resonanz und schützen die Moleküle mithilfe eines optischen Gitters vor in-
elastischen Stößen. Anschließend transferieren wir die Moleküle mit Hilfe der
STIRAP-Technik in den absoluten Grundzustand, wobei wir eine Bindungsen-
ergie entsprechend einer Temperatur von∼ 5200 K ohne Erwärmung der Moleküle
abführen können. Damit behalten wir nahezu die volle Kontrolle über alle in-
ternen und externen Freiheitsgrade der Moleküle.

Durch ein optisches Gitterpotential erzeugte Röhren realisieren eine effek-
tiv eindimensionale Geometrie, welche wir zur Untersuchung entsprechender
physikalischer Modelle nutzen. Für stark repulsive Wechselwirkung gelangen wir
in den Bereich des Tonks-Girardeau Gases, das einem idealen Gas harter Kugeln
entspricht und sich durch starke Teilchenkorrelationen auszeichnet. Mithilfe
einer Einschlussresonanz können wir die Wechselwirkung auf große attraktive
Werte umschalten, wodurch wir das hochangeregte Super-Tonks-Girardeau Gas
erzeugen können. Durch Hinzunahme eines schwachen Gitters entlang der Röhren
können wir den sogenannten ’Pinning’-Quantenphasenübergang beobachten.
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CHAPTER 1

INTRODUCTION

Cooling of atoms down to temperatures in the ultracold regime was first demon-
strated by successful laser cooling of ions in 1978 [Win78, Neu78]. Shortly
afterwards laser cooling of a beam of neutral atoms was realized [And81, Phi82],
enabling the trapping of atomic vapors by magnetic fields [Mig85] and the three-
dimensional cooling in an optical molasses [Chu85]. The temperature of such
laser cooled clouds reaches down to values of µK, and with further cooling by
evaporation the preparation of a new state of matter was realized, the Bose-
Einstein condensate [And95, Dav95]. The Bose-Einstein condensate (BEC)
brings fascinating phenomena of quantum mechanics into the macroscopic world
as it is a giant matter wave, built up by all the atoms in the ensemble in the
groundstate of the trap that holds the BEC. Since the first experimental real-
ization many other elements have been condensed successfully, first the other
alkaline atoms [Bra95, Fri98, Mod01, Web03a], more recently two alkaline earth
metals [Kra09, Ste09] and two rare earth metals [Tak03, Lu11], and the tran-
sition metal chromium [Gri05] as well as the noble gas helium [Rob01]. The
phenomenon of Bose-Einstein condensation has been observed also in more ex-
otic systems like exciton polaritons [Kas06] in semiconductors and with photons
[Kla10] in a optical resonator. Also a BEC of weakly bound molecules composed
of two fermionic atoms has been demonstrated [Joc03a, Gre03, Zwi03].

The creation of the BEC triggered an enormous amount of activities in the
research field of ultracold gases. As the BEC represents a coherent matter wave,
basic quantum mechanic phenomena like the interference of two overlapping
matter waves [And97] or the effect of quantum statistics leading to bosonic
bunching [Bur97] were directly observable. The superfluidity of a BEC was
shown in exciting experiments by the realization of vortices [Mat99, Mad00]
and vortex lattices [AS01]. A crucial step forward was the observation of Fesh-
bach resonances [Ino98, Cou98, Chi10], as they provide tunability of interparticle
interactions over a wide range. For example, they enabled the preparation of
a BEC with attractive interactions, leading to the observation of an collaps-
ing BEC, a so-called Bosenova [Ger00]. Feshbach resonances also allowed the
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2 INTRODUCTION

creation of bright solitons [Kha02, Str02], dispersion-free matter-wave packets
with attractive interactions, in contrast to the previously observed dark solitons
[Bur99, Den00] which are shape-preserved density-kinks in a BEC.

The tunability of interactions provided by Feshbach resonances is also a key
ingredient for the preparation and investigation of ultracold gases composed of
fermionic atoms. The great interest in ultracold fermionic samples arises from
the superfluid phase at attractive interactions, predicted by Bardeen, Cooper
and Schrieffer (BCS) [Bar57] to explain superconductivity in metals. This phase
arises from a pairing mechanism between two fermions, forming Cooper pairs in
momentum space. The possibility to cool fermionic gases deep into the quan-
tum degenerate regime, for example by preparing a two component mixture
with different spins to facilitate thermalizing collisions [DeM99], enables the on-
going intense investigation of the BCS phase and the crossover to the BEC side
at repulsive interactions [Bar04a, Bar04b, Chi04a], where two fermions form a
bosonic molecule, thus allowing the formation of a BEC [Joc03a, Gre03, Zwi03].
These weakly bound molecules are stable under collisions due to their fermionic
compounds [Reg03, Cub03, Str03, Joc03b]. The regime in between these two
phases, the strongly interacting Fermi gas in the unitarity limit, currently at-
tracts a lot of interest [Rie08, Sch09a, Gae10].

Another central element of many experiments in the field of ultracold atoms
are optical lattices [Blo08]. They are heavily used to create three-dimensional
lattice structures [Gre02a] or to reduce the dimensionality of the system to create
one-dimensional [Gre01, Mor03a] or two-dimensional [Had06] systems, option-
ally with an overlaid lattice along the non-confined directions [Stö04, Spi07].
Some key experiments were for example the observation of the quantum phase
transition between the superfluid and insulating phase for bosons [Gre02a] and
fermions [Sch08, Jör08] in three-dimensional systems and the realization of the
strongly correlated Tonks-Girardeau gas [Kin04, Par04] in a one-dimensional
geometry. One of the major challenges in the near future lies in the simulation
and implementation of quantum magnetism models with dipolar gases [Bar06].

This thesis is built up of 14 publications, grouped thematically together in
four chapters. This lead-in chapter intends to be a broad introduction into
the four different topics, giving an overview over the past and current status
of the appropriate research fields. The main result of this thesis is presented
in chapter 2, where we investigate a strongly interacting many-body system in
a 3D optical lattice and show the breakdown of the approximations used in
the standard Bose-Hubbard model [Mar11b]. We prepare a metastable Mott-
insulating state using strong attractive interactions and find evidence that the
metastability is supported by inhibited three-body recombination loss [Mar11c].
In chapter 3 we investigate the effect of interactions [Gus10], force gradients
[Mar11a] and a modulation of the applied force [Hal10b] onto Bloch oscillations.
In a series of measurements presented in chapter 4 we produce deeply bound
[Dan08, Dan09a] and subsequently rovibronic groundstate molecules [Dan10b],
supplemented by prerequisite precision spectroscopy data on various molecular
levels [Dan09b, Mar09]. Our investigations of tunable quantum gases confined to
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an one-dimensional geometry are summarized in chapter 5. We see clear evidence
for the existence of the Super Tonks-Girardeau gas [Hal09], a metastable excited
many-body system with attractive interactions, by employing a confinement in-
duced resonance, which is investigated in more detail [Hal10d]. Additionally we
were able to observe a novel type of quantum phase transition in this geometry
[Hal10c], and by measuring three-body recombination loss we determined the lo-
cal three-body correlation function for 1D gases over a large region of interaction
strengths [Hal11].

1.1. Matter wave dynamics along an optical lattice

Optical lattice potentials build up by standing light waves greatly extend the
research field of ultracold gases. They serve as a defect free crystal structure,
enabling the investigation of condensed matter phenomena and the implementa-
tion of novel many-body phases not possible in bulk matter [Blo08]. A paradigm
example are Bloch oscillations (BO) [Blo28, Zen34], an oscillation in momentum
space of the particle inside a lattice structure, when a constant force is acting
on it. In condensed matter systems BO are typically interrupted within one os-
cillation period by scattering events due to defects in the crystal structure. By
artificially increasing their oscillation frequency using semiconductor superlat-
tice structures, coherent submillimeter-wave emission arising from BO has been
successfully measured [Was93].

By using ultracold atoms in an optical lattice, a direct observation of BO
in momentum space [BD96, And98] is possible. Unlike defects in solid state
systems, atomic interactions lead to a coherent dephasing of BO, which can be
controlled and reversed by external fields and dynamical tuning of interactions
[Gus10]. Avoiding this dephasing by using noninteracting fermions [Roa04],
non-condensed bosons with a low background interaction strength [Fer06], or
by switching interactions to zero by means of a feshbach resonance in bosonic
BECs [Fat08a, Gus08b], it is possible to detect several thousand oscillations over
the course of seconds. Figure 1.1 shows BO as series of absorption pictures after
some expansion time to map the quasimomentum onto real space [Kas95], where
we vary the hold time during which the force accelerates the atoms. Currently
BO are used in new types of precision atom interferometers to measure the fine
structure constant, gravity or atom-surface interactions [Cad08, Cla09, Sor09,
Bou11].

The dynamical modulation of one parameter in such a system brings a new
degree of freedom into play. A shaking of the lattice can introduce photon-
assisted tunneling between lattice sites [Sia08]. The same effect can be observed
when modulating the applied force, in this case it is even possible to induce huge
oscillations in real space or directed transport through the lattice, depending on
the phase and frequency difference between the force modulation and the Bloch
cycle [Hal10b]. Lattice shaking or a modulated force can be also viewed in terms
of an effective tunneling matrix element Jeff between lattice sites [Lig07], which
can be tuned to zero or even negative depending on the modulation strength
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Fig. 1.1.: Time resolved imaging of Bloch oscillations of a non-interacting atomic
BEC. The atoms are accelerated and Bragg-reflected when they reach
the edge of the Brillouin-zone. Due to the finite momentum width of
the atomic ensemble the reflection appears gradually. Here one Bloch
cycle lasts ∼ 575µs.

and frequency. This leads to the introduction of a complex tunneling matrix
element and has drawn a lot of attention in the past few years, as corresponding
models predict the possibility to drive phase transitions [Eck05b, Str11] and the
creation of artificial gauge fields [Dal11].

1.2. Many-body physics in three-dimensional optical

lattices

The BEC as macroscopic matter wave can be described by a single particle
wave function, where the many-body aspect is reduced to a mean-field interac-
tion term [Gro61, Pit61]. In contrast, ultracold atoms in optical lattices exhibit
strong correlations due to the spatial confinement [Blo08]. In a pioneering exper-
iment, Greiner et al. observed the quantum phase transition from a superfluid
phase to a Mott insulator phase for bosons, where strong on-site interactions
inhibit tunneling processes and therefore transport through the lattice [Gre02a].
Such a phase transition is predicted by the Hubbard model originating from
solid state physics [Mot37, Hub63, Fis89]. For fermionic systems the appear-
ance of a band insulator [Köh05] and more recently the phase transition between
a metallic phase and the Mott insulating phase in three-dimensional lattices was
observed [Sch08, Jör08]. Also mixtures of bosonic and fermionic atoms loaded
into optical lattices have been realized [Gün06, Osp06c, Bes09], enabling the
study of new exotic phases, for example boson-fermion pairing [Lew04].

The Hubbard model also governs the physics of particles in lower-dimensional
lattice structures, and the phase transition between the superfluid and the Mott
insulator has also been observed in one-dimensional [Stö04] and two-dimensional
[Spi07] geometries. In the context of ultracold atoms, the Hubbard model can be
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derived from microscopical considerations [Jak98] and can include the statistical
properties of either bosons or fermions. The superfluid phase in the lattice is
characterized by the existence of global phase coherence of the wavefunction,
poissonian number fluctuations of the occupation number at a single lattice
site and a continuous excitation spectrum. In the Mott insulator, the atoms
are localized to the individual lattice sites, corresponding to local Fock states.
No phase coherence between the lattice sites is present in this state, and the
excitation spectrum is gapped, as the minimum excitation energy is given by
the on-site interaction energy between two atoms.

The superfluid to Mott insulator phase transition for bosonic systems was de-
tected by measurements of the reversal loss and recovery of coherence between
the atoms across the sample [Gre02a], the appearance (and disappearance) of
the excitation gap by applying a force gradient [Gre02a] and by amplitude modu-
lation of the lattice depth [Stö04], and the direct imaging of the on-site number
fluctuations in both regimes [Bak10, She10]. For fermionic systems, the sup-
pression of doubly occupied sites and the incompressibility of the Mott insulator
region [Sch08, Jör08] and again the gap in the excitation spectrum [Jör08] was
observed. As an example, the loss and recovery of coherence between the atoms
across the sample is directly observable with the standard time of flight tech-
nique as disappearance respectively reappearance of the interference pattern in
momentum space for bosons as shown in figure 1.2.

Fig. 1.2.: Quantum phase transition from a superfluid to a Mott insulator. In-
terference pattern in momentum space created by bosonic ultracold
atoms in a three-dimensional lattice in the superfluid state (bottom
left) and in the Mott insulator state (top right) imaged using the time
of flight technique.

The importance of interactions in such systems was demonstrated with the
preparation of long-lived repulsively bound pairs [Win06], which are ’bound’ by
repulsive interactions due to the fact that the pair cannot decay due to energy
and momentum conservation. Especially for strong interactions or high lattice
site occupancies the approximations of the Bose-Hubbard model break down,
leading to important modifications in the energy gaps and the tunneling rates
depending on the on-site particle number [Bus98, Sch09b, Joh09, Büc10]. First
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indications of this modifications where observed by microwave spectroscopy of
the Mott insulator shell structure [Cam06] and collapse and revival frequency
measurements [Wil10], although these measurements were limited to the lattice
occupancy as main variable parameter. A precise spectroscopy of the interac-
tion modifications over a broad range of interaction strengths [Mar11b, Mar11c]
verifies the exact numerical [Büc10] and renormalized analytical calculations
[Sch09b].

Up to now, the experimental and most of the theoretical work concerning
the Hubbard model for bosons was focused to the case of repulsive interac-
tions, since for attractive interactions the ground state reduces to the situation
where all atoms move on the same lattice site to minimize their energy, and
three-body recombination processes would lead to a fast loss of atoms. Recent
theoretical investigations in the regime of attractive interactions suggested that
for large on-site three-body loss rates the effective loss from the system gets in-
hibited [Dal09]. This leads to an effective Bose-Hubbard model description with
a local three-body hard-core constraint. Latest experimental progress [Mar11c]
demonstrates the successful preparation of a metastable bosonic system with
attractive interactions, and by spectroscopy of the three-body state indications
of a suppression of three-body occupancy are observed. Such a state opens up
new possibilities to create unusual and exciting quantum phases like a dimer
superfluid [Die10], Pfaffian-like states in one-dimensional systems [Par07] or a
stable superfluid condensate with negative temperature [Rap10].

The possibility to change practically all relevant parameters in such systems
as a function of time enables the study of dynamical processes additionally to
the groundstate properties. Paradigm examples are the collapse and revival of
the coherent matter wave field when the system is quenched suddenly from the
superfluid phase into the Mott insulator phase [Gre02b] or the other way around
[Tuc06]. Also the transport of atoms happening across the phase transition was
observed experimentally [Hun10]. Another fascinating idea is the realization
of lattice geometries different to the standard simple cubic structure. Using a
superlattice structure by means of an additional sublattice with half the lattice
spacing of the original one along one direction, it is possible to realize double well
structures in a massive parallel way. This enabled the direct observation of sec-
ond order tunneling [Föl07], exchange [And07] and superexchange interactions
[Tro08]. Recently hexagonal [SP11b] and triangular [Bec10] lattice structures
were realized experimentally and used for the observation of twisted superfluid
phases [SP11a] and frustrated classical magnetism [Str11].

Recently the realization of a quantum gas microscope [Bak09] opened the door
to a new class of experiments. Through carefully designed optics it allows an in-
situ detection of single atoms at their respective lattice sites and the same optics
can be used to manipulate them on a single site level with optical fields [Wei11].
Using this technique it is possible to directly image the spatial structure across
the superfluid to Mott insulator phase transition [Bak10, She10] and enabled
the observation of correlated particle-hole pairs [End11] and antiferromagnetic
spin chains [Sim11] in low-dimensional Mott insulators.



INTRODUCTION 7

1.3. Ultracold molecules

Preparing and controlling ultracold molecules enables or improves a variety of
fundamental studies in physics and chemistry [Doy04, Dul06, Fer09c, Sch09c],
for example collisional studies and the investigation and control of chemical reac-
tions [Wei99, Kre08, Dul09], precision measurements of fundamental constants
[Chi09] and the measurement of the hypothetical electron electric dipole moment
[Hud02]. For many of those studies the control of internal and external degrees
of freedom at a single quantum level is necessary, which can be achieved by trap-
ping a high phase-space density sample of the molecules of interest. Direct laser
cooling, which was so successful in the case of atoms and ions, seems challenging
in the case of molecules, as the internal vibrational and rotational level structure
normally does not provide a closed optical cycling transition [Bah96]. Recent
progress on this topic [Shu10] showed that for a certain class of molecules, which
feature nearly closed transitions, this problem can be technically solved.

At present the preparation of molecules via association of ultracold atoms is
the main path for the creation of high phase space density samples of ultracold
molecules. This approach starts with ultracold atoms, which can be associated
to molecules either by direct photoassociation [Wyn00, Jon06] or via magnetic
field ramps using a Feshbach resonance [Don02, Köh06]. This methods preserve
the already high phase space density of ultracold atoms, although it limits the
variety of available molecules. Direct cooling and slowing of molecules [van08,
Nar08, Mee09, Sch09c, Car09] would have the advantage of being applicable to
a broad range of molecules, including some of high importance to life sciences
and chemistry. The drawback of this method lies in the phase space density
they are currently able to reach, which is far below usable values for quantum
gas studies [Car09].

Pure samples of weakly bound ultracold molecules created via Feshbach asso-
ciation [Her03] allowed the detailed investigation of the molecular structure near
threshold [Mar07a, Mar07b, Lan08a]. These molecules are typically created in
highly excited rovibronic states, which, for a high density sample, leads to fast
trap loss due to the high relaxation probability during collisions. This loss is
highly suppressed if the molecule is build up of fermions as already mentioned,
for many of the other configurations collisional stability can be assured when
transferring the molecules into the rovibronic ground state in a controlled way
[Żuc10]. Especially heteronuclear molecules [Osp06a] in the rovibronic ground-
state are of high interest, as they exhibit a permanent electric dipole moment
[Ni08] which introduces long range anisotropic dipole-dipole interactions.

The transfer from weakly bound molecules to deeply bound dimers is done
using the Stimulated Rapid Adiabatic Passage (STIRAP) technique, which has
been demonstrated between two adjacent vibrational levels with high efficiency
using ultracold atoms [Win07]. For this measurement the molecules were pre-
pared inside an optical lattice, where the association efficiency of doubly oc-
cupied sites using a magnetic field ramp over a Feshbach resonance can nearly
reach unity [Tha06, Vol06] and the molecules reside in their motional state in
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the lattice. The successful preparation of high phase-space density samples of
deeply bound molecules [Dan08, Osp08] showed that the STIRAP technique is
capable to perform a coherent transfer bridging energy differences of several tens
of h×THz without significantly heating the sample.

Finally molecules in the rovibronic groundstate of the singlet and triplet po-
tential of KRb [Ni08] in a dipole trap, of Rb2 in the triplet potential [Lan08b] and
the singlet potential of Cs2 [Dan10b] in an optical lattice have been successfully
produced. The demonstration of complete control of all internal and external
degrees of freedom by preparing a BEC of rovibronic groundstate molecules
[Jak02] is now within reach. Heteronuclear molecules in a lattice structure are
supposed to give rise to novel quantum phases [Gór02], to allow the realiza-
tion of quantum computation schemes [DeM02] and enable the simulation of
quantum magnetism models [Bar06]. A promising candidate for this schemes,
which is stable under binary collisions [Żuc10], is RbCs, where the creation of
heteronuclear groundstate molecules is within reach [Deb11].

1.4. Physics of low-dimensional systems

Many physical properties are affected by the dimensionality of the system. For
example, the well-known behavior of simple graphite changes drastically when it
is reduced to a single atomic layer called graphene [Nov04, CN09] or to carbon
nanotubes [Iij91, Cha07]. Effects due to reduced dimensionality provided by
surfaces or crystalline layers inside bulk materials are believed to hold the key
for the understanding of high temperature superconductivity [Leg06]. Also the
effect of correlations and quantum fluctuations gets enhanced in such geometries.
The direct investigation of these effects is rather challenging, as bulk materials
offer in general little tunability, and the verification of simple theoretical models
normally gets disturbed by lattice defects, phonons and other side effects. Ul-
tracold atoms within optical lattices [Gre01] or high aspect ratio magnetic traps
[Det01, Hof07] provide an ideal testing ground to implement those theoretical
models, as they offer an almost perfect control over all relevant parameters.

A textbook example for such systems is the Tonks-Girardeau gas in one di-
mension, where bosons, for sufficiently strong repulsive interactions, build up
strong correlations and their density distribution becomes, in the limit of infinite
repulsive interactions, identical to the one of non-interacting fermions [Gir60].
Such a system has been prepared successfully in one-dimensional tubes created
with optical lattices [Kin04, Par04, Hal09]. The correlation functions reflect the
non-classical nature of such states and the local two-body and three-body cor-
relation function in such a gas have been measured using photoassociation rates
[Kin05] and three-body recombination processes [O’H04, Hal11]. Recently the
direct observation of atom number fluctuations, which are heavily depending on
the two-body correlation function, was realized [Jac11]. The time evolution in
this regime can be described analytically and is therefore integrable, which has
been demonstrated in a Newton’s cradle experiment [Kin06].

Recently it was suggested to use the Tonks-Girardeau gas as starting point
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to create a highly excited metastable state, the so-called super-Tonks-Girardeau
gas [Bat05]. This state is characterized by attractive interactions and its density
distribution is analog to fermions with repulsive long-range interactions, show-
ing a power-law decay in the correlation function [Ast05]. The observation of
this state [Hal09] was enabled by employing a confinement induced resonance
[Ols98] to switch from strong repulsive to strong attractive interactions. Such
scattering resonances are a direct consequence of the confinement used in the
experimental realizations of one-dimensional systems and have been observed
for various geometries [Hal10d, Lam10].

Fig. 1.3.: Sketch of the pinning quantum phase transition in a one-dimensional
geometry. A weak lattice structure is enough to pin the already cor-
related atoms onto the lattice sites.

For the description of a one-dimensional system with a sufficiently deep lattice
the standard Bose Hubbard model can be used, and the quantum phase tran-
sition between the superfluid and the Mott insulator state has been observed
[Stö04]. For weak lattice structures the system has to be described by the sine-
Gordon model [Gia03]. In such a system, for commensurate densities and strong
interactions, an arbitrary weak lattice is sufficient to be in the Mott insulating
state [Büc03]. This gives rise to a novel quantum phase transition, the so-called
pinning transition, schematically shown in Figure 1.3. Here an arbitrary weak
lattice induces the transition from the superfluid to the Mott insulating state.
Evidence for this phase transition has been observed recently [Hal10c].

1.5. Overview

This thesis is built up of 14 publications, grouped thematically together in chap-
ters. Each chapter includes another short introduction to the respective topic.
A detailed description about the experimental setup in general is given in the
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PhD thesis of Mattias Gustavsson [Gus08a] and the diploma thesis of Peter
Unterwaditzer [Unt05], Anton Flir [Fli06] and Gabriel Rojas Kopeinig [Roj07].

Chapter 2 contains two publications with the main topic of this thesis, our re-
sults on the experimental investigation of a tunable quantum gas in a 3D optical
lattice. We show that the standard Bose-Hubbard model fails for large inter-
action strength and we precisely measure the corresponding interaction shifts
for two- and three-body states. By tuning interactions to strong attractive val-
ues, we prepare a metastable Mott-insulating state and find evidence that the
metastability is supported by inhibited three-body recombination loss. Coun-
terintuitively this reduced three-body recombination loss is a result of a highly
increased three-body loss rate, which can be explained in terms of the quantum
zeno effect.

Chapter 3 discusses our measurements of matter-wave dynamics in an one-
dimensional optical lattice within three publications. We investigate the effect
of interactions, force gradients and a modulation of the applied force onto Bloch
oscillations, a phenomenon which occurs when a constant force acts on the atoms
in the presence of a lattice structure.

Chapter 4 covers five publications about the creation and investigation of
ultracold rovibronic groundstate molecules. These publications are also part of
the PhD thesis of Johann Danzl [Dan10a]. We show our ability to transfer weakly
bound dimers produced on a Feshbach resonance efficiently to the rovibronic
groundstate within an optical lattice.

Chapter 5 shows our investigation of the behavior of a tunable quantum gas
when confined to an one-dimensional geometry in the context of four publi-
cations. These publications are also part of the PhD thesis of Elmar Haller
[Hal10a]. We see clear evidence for the existence of the Super Tonks-Girardeau
gas, a metastable excited many-body system with attractive interactions, by em-
ploying a confinement induced resonance, which is investigated in more detail.
Additionally we were able to observe a novel type of quantum phase transition in
this geometry, and by measuring three-body recombination loss we determined
the local three-body correlation function for strongly correlated 1D gases.

Chapter 6 gives a short outlook to the near future of the experiment, which
will experience some major changes. Work on the extension to a mixture of
potassium-cesium has already started, which will open up new possibilities and
enable exciting experiments.

The following publications, here chronologically ordered, are included in this
thesis:

1. Manfred J. Mark, Elmar Haller, Katharina Lauber, Johann G. Danzl,
Alexander Janisch, Hans Peter Büchler, Andrew J. Daley, and Hanns-
Christoph Nägerl Preparation and spectroscopy of a metastable Mott insu-
lator state with attractive interactions, submitted for publication in Phys-
ical Review Letters (2012)

2. Elmar Haller, M. Rabie, Manfred J. Mark, Johann G. Danzl, Russell Hart,
Katharina Lauber, Guido Pupillo, and Hanns-Christoph Nägerl, Three-
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body correlation functions and recombination rates for bosons in three and
one dimensions, Physical Review Letters 107, 230404 (2011).

3. Manfred J. Mark, Elmar Haller, Katharina Lauber, Johann G. Danzl,
Andrew J. Daley, and Hanns-Christoph Nägerl Precision Measurements
on a Tunable Mott Insulator of Ultracold Atoms, Physical Review Letters
107, 175301 (2011).

4. Manfred J. Mark, Elmar Haller, Johann G. Danzl, Katharina Lauber,
Mattias Gustavsson, and Hanns-Christoph Nägerl, Demonstration of the
temporal matter-wave Talbot effect for trapped matter waves, New Journal
of Physics 13, 085008 (2011).

5. Elmar Haller, Russell Hart, Manfred J. Mark, Johann G. Danzl, Lukas
Reichsöllner, Mattias Gustavsson, Marcello Dalmonte, Guido Pupillo, and
Hanns-Christoph Nägerl, Pinning quantum phase transition for a Lut-
tinger liquid of strongly interacting bosons, Nature 466, 597 (2010).

6. Mattias Gustavsson, Elmar Haller, Manfred J. Mark, Johann G. Danzl,
Russell Hart, Andrew J. Daley, and Hanns-Christoph Nägerl, Interference
of interacting matter waves, New Journal of Physics 12 065029 (2010).

7. Elmar Haller, Russell Hart, Manfred J. Mark, Johann G. Danzl, Lukas Re-
ichsöllner, and Hanns-Christoph Nägerl Inducing Transport in a Dissipation-
Free Lattice with Super Bloch Oscillations, Physical Review Letters 104,
200403 (2010).

8. Elmar Haller, Manfred J. Mark, Russell Hart, Johann G. Danzl, Lukas
Reichsöllner, Vladimir Melezhik, Peter Schmelcher, and Hanns-Christoph
Nägerl, Confinement-induced resonances in low-dimensional quantum sys-
tems, Physical Review Letters 104, 153203 (2010).

9. Johann G. Danzl, Manfred J. Mark, Elmar Haller, Mattias Gustavsson,
Russell Hart, Jesus Aldegunde, Jeremy M. Hutson, and Hanns-Christoph
Nägerl An ultracold, high-density sample of rovibronic ground-state molecules
in an optical lattice, Nature Physics 6, 265 (2010).

10. Elmar Haller, Mattias Gustavsson, Manfred. J. Mark, Johann G. Danzl,
Russell Hart, Guido Pupillo, and Hanns-Christoph Nägerl, Realization of
an Excited, Strongly-Correlated Quantum Gas Phase, Science 325, 1224
(2009).

11. Johann G. Danzl, Manfred J. Mark, Elmar Haller, Mattias Gustavsson,
Russell Hart, Andreas Liem, Holger Zellmer, and Hanns-Christoph Nägerl,
Deeply bound ultracold molecules in an optical lattice, New Journal of
Physics 11, 055036 (2010).
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12. Johann G. Danzl, Manfred J. Mark, Elmar Haller, Mattias Gustavsson,
Nadia Bouloufa, Olivier Dulieu, Helmut Ritsch, Russell Hart, and Hanns-
Christoph Nägerl Precision molecular spectroscopy for ground state trans-
fer of molecular quantum gases, Faraday Discussions 142, 283 (2009).

13. Manfred J. Mark, Johann G. Danzl, Elmar Haller, Mattias Gustavsson,
Nadia Bouloufa, Olivier Dulieu, Houssam Salami, Tom Bergeman, Helmut
Ritsch, Russell Hart, and Hanns-Christoph Nägerl, Dark resonances for
ground-state transfer of molecular quantum gases, Applied Physics B 95
219 (2009).

14. Johann G. Danzl, Elmar Haller, Mattias Gustavsson, Manfred J. Mark,
Russell Hart, Nadia Bouloufa, Olivier Dulieu, Helmut Ritsch, and Hanns-
Christoph Nägerl Quantum gas of deeply bound ground state molecules,
Science 321, 1062 (2008).

1.6. Basic scattering properties of ultracold cesium

The description of elastic scattering processes between two particles in quantum
mechanics is typically done via partial wave expansion. For very low scattering
energies all partial waves except the s-wave can be neglected. Therefore, in the
ultracold regime, it is possible to describe the scattering process with one single
number: the s-wave scattering length aS, which is defined through the phase shift
δ(kdB) between incoming and outgoing wave through aS = lim

kdB→0
tan δ(kdB)/kdB.

Here, kdB = 2π/λdB is the wavenumber and λdB the de Broglie wavelength of the
particle. The scattering length concentrates all the short range details of the
interatomic interactions into one single value and has a very simple interpreta-
tion: The magnitude gives the strength of the interaction and the sign defines
the type of interaction, either repulsive (plus) or attractive (minus). It can also
be viewed as length scale such that the scattering of particles with aS gives the
same scattering cross section as hard spheres with radius aS [Lan77].

The scattering length depends on the short range details of the scattering
potential, especially on molecular states near the scattering threshold energy, if
the scattering state can couple to these molecular states. The molecular states
can have different magnetic moments compared to the free atoms, which means
that the energy of these states can be shifted relative to the scattering state by
changing the magnitude of an applied magnetic field B. When the energy of a
molecular state crosses the energy of the scattering state, a so-called Feshbach
resonance appears and the scattering length diverges at this point. The width
of such resonances in terms of magnetic field depends on the coupling strength
between the molecular state and the scattering state, and the behavior of the
scattering length around a resonance can be modeled analytically with

aS(B) = abg

(
1− ∆

B −B0

)
(1.1)
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where abg is the background scattering length far away from the Feshbach reso-
nance, B0 is the magnetic field position and ∆ is the width of the resonance. A
detailed review of Feshbach resonances in the context of ultracold gases is given
in Ref. [Chi10].

Fig. 1.4.: Tunability of ultracold cesium. Scattering length aS of cesium in
the lowest hyperfine state as a function of the magnetic field. The
main curvature is caused by a broad Feshbach resonance located at
∼ −12 G. Also visible are two medium Feshbach resonances at ∼ 48 G
and ∼ 53 G, where the 48 G resonance can be used to increase aS up to
1500 a0 given our magnetic field stability. Not shown are several nar-
row Feshbach resonances at 19.9 G, 15 G, 14.3 G and 11 G. A detailed
description about the calculation can be found in [Mar11a].

The details of the molecular state structure and of the coupling strengths de-
pend on the atomic species, for example in the widely used rubidium 87 no Fesh-
bach resonance occurs in the magnetically trappable state below 1000 G, there-
fore the scattering length in this region is constant with a value of aS = 102 a0

[Wil10], where a0 is Bohr’s radius. In contrast, cesium has a rich molecular struc-
ture near threshold, and due to the strong relativistic couplings several Feshbach
resonances with different widths are accessible in the low-field region between
0 G and 60 G. Figure 1.4 shows the calculated scattering length as a function of
the magnetic field for cesium in the lowest hyperfine state |F = 3,mF = 3 >.
Within this region, aS can be tuned continuously from −2500 a0 up to +1500 a0

with a precision of better than 1 a0 given by the typical magnetic field stability.
Additional broad Feshbach resonances are available at higher magnetic fields and
are currently used for a detailed investigation of the Efimov effect [Ber11]. Other
bosonic species like potassium 39 [Roa07], lithium 7 [Kha02], sodium 23 [Ino98]
or the other isotope of rubidium [Cor00] also have at least one Feshbach reso-
nance at magnetic fields lower than 1000 G, but in comparison to cesium their
continuous tuning range is more limited. A very important feature in figure 1.4
is the zero crossing of aS at about 17 G, where the atoms are essentially non-
interacting. At such a point effects arising from small magnetic dipole-dipole
interactions [Fat08b] become accessible within experiments . Preparing a non-
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interacting sample is particular interesting for atom interferometers [Gup02] or
for the controlled investigation of interaction effects as we will show in chapter
3 in more detail.

Beside elastic scattering processes described in terms of the scattering length,
inelastic scattering processes, which change the internal state of the atoms like
the already mentioned spin-changing collisions, play an important role in ex-
periments with ultracold atoms. Typically, the released energy in such inelastic
scattering processes is magnitudes higher than the trapping potential and there-
fore they lead to immediate loss of the involved atoms. In our experiments,
inelastic scattering of two atoms can be neglected since we prepare the atoms
in the lowest hyperfine state and endothermic processes are highly suppressed
in the ultracold regime. A scattering event involving three atoms is the next
higher order process which has to be taken into account. This three-body scat-
tering can lead to a three-body recombination process, where two atoms form
a weakly bound molecule during the scattering event and the third atom leads
to a decay of the molecule into a more deeply bound state. The released energy
gets converted into kinetic energy of the molecule and the atom, ensuring energy
and momentum conservation, and is sufficiently high that both particles are lost
from the trap.

The three-body loss rate γ3 can be described using the three-body loss rate
coefficient L3 and, in the universal regime where the scattering length is much
larger than the van-der-Waals length aS � lvdW [Köh06], is given by

γ3 = Ṅ = L3n
3 , L3 = nlC(aS)

~
m
a4

S (1.2)

where m is the atomic mass, n the density, ~ Plank’s constant, nl the number
of atoms lost in one three-body recombination process and C a dimensionless
factor, which can be in principle a function of aS [Web03b]. It has been shown
that C(aS) and therefore also L3 can exhibit a periodic resonant behavior when
taking weakly bound Efimov three-body states [Efi70] into account, which has
been verified experimentally by three-body loss measurements [Kra06, Zac09,
Ber11]. In a simple picture, such an Efimov resonance occurs when the energy of
the three-body state crosses the threshold energy of the three atoms scattering
state, opening up an additional loss channel. There is also evidence for the
existence of four-body states affecting the overall loss rate in terms of additional
four-body resonances [von09, Fer09b]. A more detailed review about Efimov
physics in ultracold atoms can be found in Ref. [Bra07, Fer11].



CHAPTER 2

MOTT INSULATOR WITH TUNABLE

INTERACTIONS

2.1. Introduction

The description of atoms in optical lattices using delocalized Bloch states [Blo28]
is most convenient in shallow lattices and when the atoms do not interact
with each other. For deep lattices or non-negligible interactions, an alterna-
tive description using the tight binding approximation is more instructive. The
Hubbard model [Hub63] describes the properties and dynamics of interacting
particles in deep lattices using so-called Wannier functions, which are wave-
functions localized to individual lattice sites. These Wannier functions can be
calculated by summing up all Bloch states of a specific band in a well defined
manner [Koh59], equivalent to a basis transformation from Bloch states to Wan-
nier states. Depending on the type of species, either the Bose-Hubbard or the
Fermi-Hubbard model is used. Here, we restrict ourself to the bosonic case.

The Hamiltonian of the standard Bose-Hubbard (BH) model is surprisingly
clear and concise, and an elementary derivation in the context of ultracold atoms
can be found for example in Ref. [Jak05]. In brief, it is given by

Ĥ = −J
∑
<i,j>

â†i âj +
∑
i

U

2
n̂i (n̂i − 1) +

∑
i

εin̂i, (2.1)

where J denotes the tunneling rate between nearest neighboring lattice sites,
U represents the interaction energy of two particles located at the same lattice
site and εi is an energy offset at lattice site i due to an external potential. â†i and
âi are the bosonic creation and annihilation operators for an atom at the lattice
site i, and n̂i is the corresponding number operator. J and U can be calculated
using overlap integrals of the corresponding Wannier functions. In the case of
the standard BH model only the Wannier functions of the lowest Bloch band
are taken into account. The properties of the groundstate of the system at zero
temperature depend on the ratio between J and U . For J/U → ∞ the atoms

15
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tend to delocalize and form a superfluid, whereas for J/U → 0 the atoms localize
and create an insulating state, the so-called Mott insulator [Mot49]. In between,
for a finite critical ratio (J/U)C , a quantum phase transition between these two
states occurs.

Figure 2.3 shows the calculated phase diagram of the BH model as a function
of J/U and µ/U , where µ is the chemical potential. The height shows the mean
atom number N per lattice site and the color indicates the amount of superflu-
idity, going from a complete superfluid state (bright green) to a fully localized
state (dark blue). For large values of J/U the system is always in the superfluid
state, which is characterized by phase coherence between different lattice sites
and a superposition of number states at each lattice site given by the poissonian
distribution of the mean density. For small values of J/U , insulating regions
with constant integer density and without phase coherence between the lattice
sites, so-called Mott lobes or Mott shells, appear. This calculation assumes a
homogeneous system, the effect of an external harmonic confinement can be in-
cluded by allowing for a spatial variance of the chemical potential, as indicated
by the solid line at fixed J/U . The starting point is the local chemical potential
in the trap center, and following the line gives the density when moving outwards
from the trap center until the density reaches 0. This means that for finite J/U
the system will have Mott insulating shells separated by superfluid regions.

Fig. 2.1.: Calculated phase diagram of the Bose-Hubbard model in three dimen-
sions with the mean particle density per lattice site as a function of
J/U and µ/U . The color coding indicates the amount of superfluid-
ity in the system, going from a superfluid state (bright green) to a
fully localized state (dark blue). The solid line at constant J/U indi-
cates the spatial density profile for a system in an external harmonic
trap. The calculation is done via the Gutzwiller mean field approach
[Kra92].

The experimental observation of the quantum phase transition between the
superfluid phase and the Mott insulator phase by changing J/U in optical lat-
tices for bosons [Gre02a] and fermions [Jör08, Sch08] triggered a tremendous
amount of activities, both in theory and experiments. A recent highlight was
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the realization of a quantum gas microscope, being able to image single atoms
on individual lattice sites [Bak09], and the observation of this phase transition
and the shell structure on a microscopic level [Bak10, She10].

The BH model gives a fairly accurate description of such systems as long as
the on-site interaction energies are weak compared to the separation between
the lowest and the first excited Bloch band. But what happens for a strongly
interacting system, where these energies are comparable? In this context one
has to be aware of the fact that the standard BH model relies on several approx-
imations, which, for strong interactions, have to be reviewed in terms of validity.
Some approximations like the neglection of nearest-neighbors interactions and
next-nearest-neighbor tunneling are still valid. The restriction to the lowest
Bloch band has to be omitted since the interaction can lead to a coupling be-
tween the different bands. In a simple picture the interaction between atoms on
the same lattice site will modify the on-site wavefunction, for example repulsive
interactions will lead to a broadening compared to the single particle Wannier
function of the lowest Bloch band. This broadening can be expressed in terms of
an admixture of higher band population. In the limit of infinite strong repulsive
interactions two atoms will tend to avoid each other, and the wavefunction will
evolve into the Wannier function of the first excited band. Also the treatment
of interactions via a zero-range pseudopotential is in general not valid, instead it
is necessary to use the fully regularized zero-range potential [Bus98]. To include
these effects, one would have to expand the BH model to include higher bands,
which would increase the complexity of the model drastically. To keep the sim-
plicity of the standard BH model, it is possible to incorporate these effects by
introducing a number-dependent interaction energy U(n̂i).

A similar problem, the calculation of the energy spectrum of two interacting
atoms in a harmonic oscillator for all interaction strengths using the fully reg-
ularized zero-range potential, has been solved analytically [Bus98]. Using this
solution, one is able to rescale it properly to derive the interaction energy U(2) in
a lattice, taking into account the anharmonicity at a lattice site [Sch09b]. Also
the direct numerical calculation of U(2) in the lattice by including higher bands
and the fully regularized zero-range potential has been achieved [Büc10]. The
interaction energy for three atoms at the same lattice site U(3), specifically the
correction to U(2) as a function of the scattering length can be calculated in the
framework of perturbation theory [Joh09] using effective three-body interactions,
but the validity of this corrections only holds for weak interactions. In principle,
also the tunneling rate J would have to be modified accordingly [Lüh11, Bis11].
Indications of this number-dependent change of the on-site interaction energy
already have been observed [Cam06, Wil10], although these investigations were
limited in scope since it was not possible to tune the interactions.

Up to now, the experimental and most of the theoretical work on the BH
model was focused to the case of repulsive interactions, meaning a positive sign
for the onsite interaction energy U . The BH model with attractive interactions
did not draw that much attention, since the ground state in this case reduces
to the situation where all atoms move on the same lattice site to minimize their
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energy, and the three-body recombination loss in real systems would destroy
the sample rather quickly. Counterintuitively, the situation changes drastically
when the three-body loss rate γ3 is much larger than all the other energy scales.
It can be shown that the effective loss rate scales with J2/γ3 [Dal09], which
means that for the limit where the three-body loss rate goes to infinity the
actual loss from the system will be inhibited. This behavior can be connected
to the quantum mechanical analogue of the Zeno effect[Win61, Mis77], where
the continuous measurement of a state prevents its time evolution. Such a state
would be stable against collapse and opens up possibilities to create unusual
and exciting new quantum phases like a dimer superfluid [Die10], Pfaffian-like
states in one-dimensional systems [Par07] or a stable superfluid condensate at
finite momentum with negative temperature [Rap10].

Fig. 2.2.: Experimental setup. Three retroreflected laser beams form a cubic
lattice structure for the atoms, indicated by the red dots. The overall
confinement is given by the Gaussian shape of the lattice beams and
additionally by the initial dipole trap which can be independently
tuned of the lattice depth.

In this chapter we investigate the properties of our sample of ultracold cesium
atoms in a Mott insulating state. With our ability to tune interaction, we can
reach the regime of strong repulsive interactions and, by ramping over the zero
crossing of the scattering length, switch the sign of interactions and probe its
behavior with attractive interactions. The experimental setup is illustrated in
Figure 2.2. It consists of three retro-reflected laser beams, forming a 3D cubic
optical lattice. The external confinement is given by the initial dipole trap
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combined with the confinement caused by the lattice beams themselves. For our
simulation of the BH model as given in equation 2.1, we can independently tune
the tunneling rate J via the lattice depth, the onsite interaction energy U by
changing the scattering length with the magnetic field and the distribution of
the local energy offset εi with the strength of the external confinement.

Chapter 2.2 presents our investigation of the BH model for weak and strong re-
pulsive interactions. First we characterize the superfluid to Mott insulator phase
transition point as a function of the tunneling rate and interaction strength by
measuring the coherence of the system through rapid release out of the lattice
and imaging the interference pattern visible in momentum space using the time
of flight technique. When changing the lattice depth while holding the interac-
tion strength constant, a sudden drop of coherence at a critical lattice depth can
be identified, indicating the phase transition. We map out the critical lattice
depth as a function of the scattering length and see reasonably good agreement
with the calculated values for the transition point from Quantum Monte Carlo
simulations [CS07] and mean field calculations [Fis89].

A second signature for the Mott insulator phase beside the loss of coherence
between lattice sites is the appearance of an excitation gap in contrast to the
continuous excitation spectrum of a superfluid. A simple picture of the excitation
mechanisms in a Mott insulator is given in figure 2.3. Localized atoms can only
be excited by inducing tunneling events, for example within the singly occupied
shell as illustrated in figure 2.3(b). The energy needed for the tunneling atom to
hop onto the already singly occupied lattice site is given by the onsite interaction
energy U . For the excitation process in figure 2.3(c) the energy difference is again
U , whereas for the process in figure 2.3(d) 2U is needed. Since we choose the
parameters of our preparation procedure such that we initially create only singly
and doubly occupied sites, excitations at higher lattice site fillings are omitted.

A measurement of the excitation spectrum and thereby of the interaction
energy U can be realized by monitoring the energy deposited into the system
by amplitude modulation of the lattice depth for a given time. This amplitude
modulation creates sidebands on the lattice light and enables two-photon Bragg
transitions [Stö04] when the modulation frequency hits the corresponding energy
needed for the tunneling process. We perform such modulation spectroscopy
and map out the interaction energy U as a function of interaction strength
from the weakly into the strongly interacting regime. As already discussed, one
would expect that the interaction energy U gets number-dependent for strong
interactions, which lifts the energetic degeneracy between excitations within the
single occupied shell and excitations in the doubly occupied shell.

We observe this effect as splitting of the excitation resonance into two separate
resonances for increasing interaction strengths. By additionally monitoring atom
loss and the amount of doubly occupied sites, we are able to assign our resonances
to the different excitation processes. Comparing our data to different theoretical
models we can show that only the full calculation incorporating higher bands
and the fully regularized pseudopotential [Sch09b, Büc10] is compatible with
our data, whereas an approach that only includes higher bands [Lüh09] fails.
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Fig. 2.3.: Excitation mechanisms in a Mott insulator. a) Schematic ground state
of the system. The two lattice sites with a single atom illustrate the
singly occupied shell, the others indicate the doubly occupied shell.
b) Excitation through a tunneling event within the singly occupied
shell. c) Excitation through a tunneling event within the doubly oc-
cupied shell. d) Excitation through a tunneling event from the singly
occupied shell to the doubly occupied shell.

Chapter 2.3 extends these measurements to the attractive interaction region.
For this we prepare a Mott insulator state with weak repulsive interactions
and subsequently change the interactions to the desired attractive value on a
timescale that is fast compared to the tunneling time, which ensures that no
significant additional heating effects occur during the transfer. We observe that
the system at attractive interactions remains stable on the order of seconds in
both the total atom number and in terms of temperature, whereas for vanishing
interactions the system shows significant heating and loss already after 50 ms.
This clearly shows that the system is stabilized by attractive interactions and
allows us to investigate the excitation spectrum in the same way as for repulsive
interactions by modulation of the lattice depth.

We observe several excitation resonances and are able to connect them to ex-
citations within the singly occupied shell and excitations in the doubly occupied
shell, corresponding to the formation of two-body bound states and three-body
bound states in the lowest Bloch band. Mapping out the dependence of the ex-
citation resonances on the interaction strength, we see good agreement with the
theoretical expectations for the two-body bound state. The three-body bound
state excitation energies are deviating from both, the standard BH model predic-
tion and the perturbation theory expectations [Joh09]. We are also able to iden-
tify a resonance showing an inverted behavior to the lowest Bloch band states,
decreasing its frequency when increasing the attractive interaction strength. We
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believe that the underlying excitation process creates atom pairs in the first
excited two-body bound state, and the numerical calculations of the energy of
this state [Büc10] show reasonable agreement for weak attractive interactions,
whereas for strong attractive interactions a significant deviation is visible.

The resonance corresponding to excitations into three-body bound states
shows another important feature, it rapidly decreases in strength and increases
in width as we increase the interaction strength until it finally cannot be resolved
anymore for the used experimental parameters. We interpret this behavior as
signature of the inhibition of three-body loss [Dal09] caused by a rapidly increas-
ing three-body recombination rate of three atoms at the same lattice site, which
scales like a4

S [Kra06]. Such a system represents a BH model with a three-body
constraint and can be used as starting state to realize exciting new quantum
phases [Die10, Par07, Rap10]. Also a detailed investigation of the energy de-
pendence of the three-body bound states with attractive interactions in a lattice
seems worthwhile, as it could be that Efimov-related physics heavily influences
these bound states, possibly allowing for example the observation of Efimov
states or universal four-body states in the lattice.
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2.2. Publication: Precision Measurements on a

Tunable Mott Insulator of Ultracold Atoms
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Andrew J. Daley2 and Hanns-Christoph Nägerl1
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We perform precision measurements on a Mott-insulator quantum state of
ultracold atoms with tunable interactions. We probe the dependence of the
superfluid-to-Mott-insulator transition on the interaction strength and ex-
plore the limits of the standard Bose-Hubbard model description. By tuning
the on-site interaction energies to values comparable to the interband sepa-
ration, we are able to quantitatively measure number-dependent shifts in the
excitation spectrum caused by effective multi-body interactions.
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2.2.1. Introduction

The observation of the superfluid-to-Mott-insulator transition in the context of
ultracold atoms [Jak98, Gre02a] has triggered numerous activities both in theory
and in experimental physics [Blo08]. It has become clear that ultracold gaseous
systems confined to optical lattice potentials are capable of serving as bottom-up
models for condensed matter phenomena [Jak05, Lew07, Blo08]. In addition, in
view of unprecedented control and read-out capabilities [Bak10, She10, Wei11],
there is justified hope that ultracold atomic and molecular systems will al-
low the implementation of quantum simulation schemes [Jan03, Bul09]. While
there is tremendous progress for fermionic systems confined to optical lattices
[Jör08, Sch08], most experiments have so far addressed the case of bosonic quan-
tum gases and in particular the quantum phase transition from a superfluid to
an insulating Mott state [Gre02a, Stö04, Cam06, Gem09, Cle09, Fuk09, Hal10c,
Bak10, She10]. In this case, as long as the interaction can be treated as a weak
perturbation, the system is described by the Bose-Hubbard (BH) model [Fis89].
One of the merits of ultracold atomic systems is the fact that all parameters of
the BH model can be derived in a microscopic way [Jak98]. Nevertheless, recent
theoretical [Lüh09, Joh09, Sch09b, Büc10] and experimental [Wil10] investiga-
tions have shown that already for comparatively weak interactions corrections
to the standard BH model are needed.

In this Letter we use our capability to tune interaction energies to values com-
parable to the interband spacing and thereby leave the range of validity for the
approximations of the standard BH model description - specifically, the restric-
tion that only the lowest Bloch band in the lattice is occupied, and the treatment
of interactions via the zero-range pseudopotential applied in the Born approx-
imation. Using a Bose-Einstein condensate (BEC) of Cs atoms loaded into a
3D optical lattice potential we first investigate the superfluid-to-Mott-insulator
transition and its dependence on the interaction strength. We precisely deter-
mine the on-site interaction energies including effective multi-body interaction
shifts, demonstrating the breakdown of the standard approximations. Our re-
sults show good agreement with treatments beyond the BH model incorporating
both higher bands and regularization of the pseudopotential.

2.2.2. The Bose Hubbard model

The standard BH model introduces two parameters to describe the dynamics
of ultracold atoms in an optical lattice: the rate J/~, which describes tunnel-
ing between neighboring lattice sites, and the energy U , which quantifies the
interaction of atoms at the same lattice site. In the presence of weak external
harmonic confinement the Hamiltonian reads

Ĥ = −J
∑
<i,j>

â†i âj +
∑
i

U

2
n̂i (n̂i − 1) +

∑
i

εin̂i, (2.2)

where â†i (âi) are the bosonic creation (annihilation) operators at the i-th lattice
site, n̂i = â†i âi is the number operator, and εi denotes the on-site energy shift due
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to an external confinement. For small U/J the ground state at zero temperature
is a superfluid (SF), whereas for large U/J and commensurate filling on-site
interactions inhibit tunneling and the ground state is the Mott insulator (MI) of
exponentially localized atoms. These limits are connected by a quantum phase
transition. The transition point for a homogeneous system at unity filling can be
calculated in a mean-field approach, giving (U/J)c = 34.8 in a 3D cubic lattice
[Fis89], close to the quantum Monte-Carlo result (U/J)c ≈ 29.3 [CS07].

In the standard BH model, U and J are usually calculated from lowest-band
Wannier functions [Jak98]. Two-body interactions can be described via a regu-
larized zero-range pseudopotential, as the system is dilute, and relative momenta
between atoms are small compared with scales determined by the range of the
interaction potential [Tie00, Cas01]. For small values of the s-wave scattering
length aS, this pseudopotential is then replaced by a δ-function in the integrals
that determine U (giving the Born approximation result). Under these approx-
imations, the standard BH model was successfully used to describe a range of
experiments with ultracold atoms in optical lattices [Gre02a, Blo08]. However,
for sufficiently strong interactions the approximations break down. In a simple
picture, two or more particles localized at a single lattice site with strong in-
teractions tend to avoid each other and the on-site wave function increases in
width to minimize the energy, resulting in coupling to higher Bloch bands. This
admixture of higher bands results in number-dependent shifts for the on-site
interaction energy, and the standard BH model may be modified to reproduce
the new bound state energies [Büc10] by replacing U by a number-dependent
term U(ni)

1[Lüh09, Joh09, Wil10]. However, care must be taken, as the re-
placement of the pseudopotential with a δ-function is in general not valid when
including higher bands, and instead it is necessary to use the full regularized
zero-range potential [Bus98]. Note that small modifications for U as a func-
tion of ni are already visible for weak interactions but reasonably deep lattices
[Cam06, Wil10].

The starting point for our experiment is a BEC without detectable non-
condensed fraction of typically 1.0 × 105 Cs atoms in the energetically lowest
hyperfine ground state confined by a crossed dipole trap. Atom cooling and
trapping follow the procedures described in Ref. [Web03a, Kra04]. The cu-
bic lattice is generated by three retro-reflected laser beams at a wavelength of
λ= 1064.5 nm. With the given laser power the maximum lattice depth V0 is
30ER, where ER =h2/(2mλ2) is the atomic recoil energy with the mass m of
the Cs atom. The strength of interactions can be widely tuned as aS depends
strongly on magnetic field B (see 2.2.6 for suppl. material) due to multiple
Feshbach resonances as illustrated in Fig. 2.4(a).

2.2.3. Superfluid to Mott insulator transition

We first probe the transition from the SF to the MI state as we vary the strength
of interactions, using the standard interference-contrast technique [Gre02a]. We

1Note that the admixture of higher bands can also change tunneling rates.
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gently load the BEC within 400 ms into the lattice (see 2.2.6 for suppl. material),
hold the atoms for 10 ms, and then instantly switch off both the lattice and
the external trap to determine the momentum distribution in a 50 ms time-of-
flight (TOF). We determine the FWHM d of the central peak of the resulting
interference pattern [Wes04] as shown in Fig. 2.4(b). As expected, d shows a
strong dependence on V0 (see Fig. 2.4(c)). We relate the onset of the MI phase
to the abrupt kink in the data, corresponding to a critical depth VC

2. Fig. 2.4(d)
shows VC as a function of aS. We find good agreement with the values for the
calculated MI-transition points [CS07] for the case of a homogeneous system
with integer density of one atom per lattice site. We note that in general our
data on the set of transition points exhibits some dependence on the initial
density. Therefore, we choose the density for this measurement such that for a
given interaction strength the mean atom number per lattice site in the central
region of the trap is near unity at the transition point.

2.2.4. Excitation spectrum

A second signature for the MI phase is the opening up of a gap and hence the
appearance of distinct resonances in the excitation spectrum [Gre02a, Stö04,
Cla06b, Kol06]. Here, we will find that the experiment deviates significantly
from the results of the standard BH model and the associated approximations.
Fig. 2.5(a) shows a typical spectrum when the system is deeply in the MI phase.
Here the external confinement is chosen such that we create a n = 2 Mott shell
in the central region of the lattice. We plot the BEC fraction [Nar98] after
150 ms of amplitude modulation (AM) at 20 % of V0 and back-transfer into the
initial dipole trap as a function of the AM frequency fM. The BEC fraction is a
sensitive indicator for temperature changes and hence for the amount of energy
deposited into the system. The spectrum in Fig. 2.5(a), taken for comparatively
weak interactions and low atom density, shows three characteristic peaks around
the energies U/2, U and 2U . The U/2 peak relates to a two-phonon transition,
while the 2U peak corresponds to an excitation at the edge between the singly
and doubly occupied shells [Cla06b, Kol06]. We have checked that defects in the
singly occupied shell caused by residual thermal excitations make up a minor
contribution to the 2U peak. Interestingly, when we take spectra like the one
in Fig. 2.5(a), the peaks, in particular the one at U , are typically not well fit by
symmetric gaussian functions. The reason for this will become evident below.
Fig. 2.5 (b) plots the positions of the U and 2U resonances as a function of V0

for aS = 212 a0 and compares them to the results of the standard BH model.
In general, the agreement is not satisfactory. For comparatively deep lattices
(above 18ER) we measure a significant downshift for both the U and the 2U
resonance. Near the transition point (here at V0 = 12ER) the 2U resonance
is clearly upshifted. The latter can be understood when taking the spatially
separated coexistence of the SF and MI phase into account, as for the SF part

2The critical depth VC is identified as the intersection point of two linear functions that we
add quadratically and fit to the data.
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the maximal excitation probability lies energetically above the expected value
for U and hence also for 2U [Cla06b, Kol06]. In the following, we will find an
explanation for the downshift.

Fig. 2.5(c) shows an excitation spectrum as we increase the effect of inter-
actions (aS = 320 a0). Evidently, the resonance corresponding to U splits into
two clearly visible but not yet fully resolved components. The resonance at U/2
develops a shoulder on the high-frequency side. The splitting becomes more pro-
nounced for even higher values of aS. A detailed excitation spectrum around U is
shown in Fig. 2.6(a) for three different values for the initial density (aS = 427 a0).
The two components are now well separated from each other. Their strength de-
pends in opposite ways on the initial density: The resonance at lower frequency
(R1) decreases in strength when the initial density is reduced and nearly disap-
pears at low densities, whereas the resonance at higher frequency (R2) increases
in strength. We interpret this behavior in the following way: R1 is caused by
excitations in the doubly occupied Mott shell, whereas for R2 singly occupied
sites are excited. We also detect an increased atom loss in conjunction with
R1 as shown in Fig. 2.6(b). Evidently, this resonance corresponds to excitations
of doubly into triply occupied sites, thereby leading to three-body atom loss
[Web03b]. In Fig. 2.6(c) we plot the number of atoms at doubly occupied sites
measured directly by associating them to molecules via a Feshbach resonance,
removing the unpaired atoms, and detecting the remaining fraction of molecules
nM [Dan09a, Dan10b]. We observe a decrease of nM at R1 and an increase at
R2, in agreement with our interpretation for the origin of the two resonances.
The width of resonance R2 matches roughly the expected broadening caused by
the external confinement, whereas for R1 an additional broadening mechanism,
probably related to fast three-body atom loss, has to be taken into account.

We map out the dependence of the resonances on the interaction strength by
varying the magnetic field B from the point at about B= 21 G, where the two
resonances start to split, to B= 40 G, spanning the range from aS ≈ 200 a0 to
aS ≈ 900 a0 (see 2.2.6 for suppl. material). As the loading of the lattice at
high values for aS leads to considerable heating and loss, we ramp into the MI
phase at aS = 400 a0, set V0 = 20ER, and subsequently increase aS to the desired
value with a ramp speed of 5 G/ms. Fig. 2.7(a) shows the frequencies for R1 and
R2 and for the resonance at 2U as a function of aS. Computing the number
dependent energies U(2) and U(3) is non-trivial because of the anharmonicity
of the lattice potential and the need to regularize the δ-function pseudopotential
for the interactions. Values for U(2) were calculated in Ref. [Büc10], and for
our parameters are also well approximated by rescaling the exact result for two
atoms in a harmonic trap [Bus98] to correct for anharmonicity, using the ratio
of the Born approximation results for the lowest oscillator levels in our lattice
and the harmonic trap [Sch09b, Men09, Gri09]. We plot the rescaled result
from Ref. [Bus98] in Fig. 2.7(a) as the solid black line and see that it agrees
well with our data for R2. Note that an approach incorporating higher bands
but not renormalizing the pseudopotential fails within our range of aS values
(see 2.2.6 for suppl. material). U(3) can be estimated using the renormalized
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perturbation theory of Ref. [Joh09]. This result is plotted as a dashed line in
Fig. 2.7(a), and agrees well for small values of aS. In order to reach larger values
of aS we would need to properly resum the perturbation expansion, which up to
now is an open problem. Interestingly, we find that the function 3U(3)−2U(2) ≈
U(2)/ (1 + 1.34U(2)/(~ω)), with ~ω the band gap, equivalent at second order
in U(2)/(~ω) to the perturbation result, agrees well with our experimental data
for R1, as shown by the solid red line in Fig. 2.7(a). The same measurements
and calculations for a lattice depth of 25ER are shown in Fig. 2.7(b), and we see
again good agreement between the calculations and our experimental data. For
comparison we plot also the interaction energies calculated with the standard
BH model as dotted lines. Remarkably, this basic calculation fits our data for
U(2) even at intermediate interaction strengths, due to opposing corrections
that arise from including higher bands and regularizing the pseudopotential (see
2.2.6 for suppl. material).

2.2.5. Conclusion

We have investigated the SF-to-MI quantum phase transition and the MI phase
over a large region of interaction strengths. For strong interactions, beyond
single-band BH effects appear, leading to a splitting of the excitation resonances
in the MI phase. Our precise measurements amount to a careful calibration of
system parameters, including the scattering length over a wide range. The split-
ting of the excitation resonances can be used to manipulate the Mott shells inde-
pendently, for example increasing the number of doubly occupied sites without
loss due to excitation to triply occupied sites.

We are indebted to R. Grimm for generous support. We thank D. Boyanovsky,
H. Büchler, P. Johnson, W. Niedenzu, and E. Tiesinga for fruitful discussions.
We gratefully acknowledge funding by the Austrian Science Fund (FWF) within
project I153-N16 and within the framework of the European Science Foundation
(ESF) EuroQUASAR collective research project QuDeGPM.

2.2.6. Supplementary material

Corrections to the standard BH model

The standard application of the BH model to cold gas experiments involves cal-
culating the two-particle onsite interaction energy using U = 4π~aS/m

∫
w4

0(r)d3r,
where w0(r) is the maximally localized Wannier function of the lowest Bloch
band. This energy depends linearly on the scattering length aS and is shown as
a dotted line in Fig. 2.8. As the scattering length becomes larger, this energy can
become comparable to the energy gap between Bloch Bands, and admixtures of
higher bands must be taken into account. At the same time, the Born approxi-
mation which is implicit in this formula for U (which is equivalent to replacing a
fully regularized zero-range pseudopotential with a δ-function) becomes invalid.

If we correct the value of U for the admixture of higher bands while using a
δ-function potential, we obtain the dashed line in Fig. 2.8 as a function of aS. To
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compute these energies, we diagonalize the full Hamiltonian with a predefined
number of higher bands included (four, in this case) and find the lowest energy
eigenvalues. This correction decreases the onsite interaction energy significantly
when compared to the standard BH model result. An exact result was found
for two atoms in a harmonic potential interacting via the full regularized zero-
range potential by Busch et al. [Bus98], and two-body bound state energies
on a lattice were computed by Büchler [Büc10]. In the parameter regime in
which we work, we can correct the Busch result for anharmonicity, rescaling it
by the ratio of the Born approximation results for the lowest oscillator levels
in the lattice and the harmonic trap [Sch09b]. The resulting energies agree
with the bound state energies of Büchler [Büc10], and are plotted as the solid
line in Fig. 2.8 as a function of aS. These results remarkably coincide with the
standard BH model calculation of U up to ≈ 700a0, leading to the observation
that the correction caused by using the full regularized zero-range potential
almost cancels the correction caused by the admixture of higher bands in this
parameter regime.

Loading the optical lattice

After evaporation the BEC is confined in a crossed optical dipole trap with
typical trap frequencies of ωx,y,z = 2π × (15.0(2), 21.6(3), 15.5(2)) Hz. The load-
ing into the cubic lattice, consisting of three retro-reflected beams with a 1/e2

beam waist of ≈ 300µm, is realized by exponentially ramping up the inten-
sity of the lattice beams over the course of 400 ms with a time constant of
67 ms. Depending on the final lattice depth, the lattice beams themselves
create an additional harmonic confinement of 2π × 20 Hz at our maximum
lattice depth of 30ER. During lattice loading we can independently adjust
the harmonic confinement of the crossed optical dipole trap to values up to
ωx,y,z = 2π × (47.7(2), 68.4(3), 49.1(2)) Hz using an exponential ramp for the
power in each beam. For the shown experimental data we set the overall har-
monic confinement to values between ωx,y,z = 2π × (22.1(2), 27.0(3), 22.5(2)) Hz
and ωx,y,z = 2π× (34.2(2), 46.3(3), 35.0(2)) Hz, depending on the number of dou-
bly occupied sites we want to create.

Conversion between magnetic field and scattering length

In Ref. [Lan09] the scattering length aS was calculated from measurements of
the binding energy of weakly bound dimers near the Feshbach resonances around
48 G and 53 G. For overlapping Feshbach resonances aS can be parameterized
via

aS

abg

=
N∏
i=1

B −B∗i
B −B0,i

,

where abg is the background scattering length, B0,i is the pole, and B∗i is the
zero crossing for the i-th Feshbach resonance. With a fit to the dimer data the
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poles and zero crossings of three Feshbach resonances were determined, namely
the narrow d-wave and g-wave resonances at 48 G and 53 G and the broad s-
wave resonance at −11 G [Lan09]. In order to fit the result of the newest global
multi-channel calculations for aS in a range between 0 and 60 G 3, we somewhat
modified the parameters of the s-wave Feshbach resonance, adapted abg, and
added an auxiliary resonance to ensure a residual error of less then 1 a0 over the
whole region. The parameters that we use for the magnetic-field to scattering-
length conversion are summarized in Table 2.1. We use abg = 2476 a0.

Table 2.1.: Parameters for the calculation of aS(B)

Resonance B∗i (G) B0,i(G)

s-wave 17.148 -12.357
d-wave 47.944 47.780
g-wave 53.457 53.449

auxiliary -90.68 -126.23

3The conversion between B and aS is based on new data provided by P.S. Julienne and J.M.
Hutson (private communication).
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Fig. 2.4.: (color online) a) Scattering length aS for Cs atoms in the lowest hy-
perfine ground state as a function of the magnetic field B (see 2.2.6
for suppl. material). b) Example of an integrated density profile of
the BEC for 50 ms TOF. The arrows indicate the FWHM d. c) Center
peak FWHM d as a function of lattice depth V0 for 427 a0 (circles),
320 a0 (squares), and 212 a0 (diamonds). The solid lines are fits from
which the critical lattice depth VC is determined. d) Critical depth VC

as a function of aS. The solid (dashed) line corresponds to the transi-
tion points for the SF-to-MI transition given by the QMC (mean field)
calculation (U/J)c = 29.3(34.8) [CS07] ([Fis89]), the shaded area in-
dicates our uncertainty for V0 for the QMC calculation.
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Fig. 2.5.: (color online) a) Excitation spectrum in the MI phase at V0 = 20ER

and aS = 212 a0. The solid line is a triple gaussian fit. We take the
resonance positions as the centers of the gaussian peaks. b) Frequency
of the U resonance (circles) and the 2U resonance (diamonds) for
various values of V0 for aS = 212 a0. The solid lines are the calculated
frequencies corresponding to U(1) and 2U(1). At this value for aS the
transition point occurs at ≈12ER. c) Excitation spectrum in the MI
regime at 20ER and aS = 320 a0. The solid line is a five-peak gaussian
fit.
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Fig. 2.6.: (color online) a) Detailed structure of the resonance near U for dif-
ferent values of the initial atom density at aS = 427 a0 (low density,
no double occupancy (circles), intermediate density, some double oc-
cupancy (squares), high density, high double occupancy (diamonds),
for details see text). Every data point is the statistical average of five
measurements, the error bars are the standard deviation. b) Remain-
ing atom number nA after AM at the same interaction strength as
in a), normalized to nA without AM. The solid line is a gaussian fit.
c) Remaining molecule number nM after AM at the same interaction
strength as in a), normalized to nM without AM. The solid line is a
double gaussian fit.
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Fig. 2.7.: (color online) a) Frequency of the upper (R2, circles) and lower (R1,
squares) resonance around U and of the resonance around 2U (dia-
monds) as a function of aS for a lattice depth V0 = 20ER. The dotted
lines are the calculated U(1)/h and 2U(1)/h values from the standard
BH model. The solid lines are the result of the more elaborate cal-
culations for U(2)/h and 3U(3)/h− 2U(2)/h (see text). The dashed
line is the calculated 3U(3)/h− 2U(2)/h using the renormalized per-
turbation theory [Joh09]. b) Same as in a), but for V0 = 25ER.
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Fig. 2.8.: (color online) Calculated onsite interaction energy using different mod-
els. The dotted line shows the standard BH model result, and the
dashed line shows the energy corrected by an admixture of higher
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zero-range potential for two particles in a Harmonic trap, rescaled to
correct for anharmonicity (see text).
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2.3. Publication: Preparation and spectroscopy of a

metastable Mott insulator state with attractive

interactions

submitted for publication in Physical Review Letters (2012)†

Manfred J. Mark1, Elmar Haller1,2, Katharina Lauber1, Johann G. Danzl1,
Alexander Janisch3, Hans Peter Büchler3, Andrew J. Daley4,

and Hanns-Christoph Nägerl1

1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität
Innsbruck,

Technikerstraße 25, A–6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der
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We prepare and study a metastable attractive Mott insulator state formed
with bosonic atoms in a three-dimensional optical lattice. Starting from a
Mott insulator with Cs atoms at weak repulsive interactions, we use a mag-
netic Feshbach resonance to tune the interactions to large attractive values
and produce a metastable state pinned by attractive interactions with a life-
time on the order of 10 seconds. We probe the (de-)excitation spectrum
via lattice modulation spectroscopy, measuring the interaction dependence of
two- and three-body bound state energies. As a result of increased on-site
three-body loss we observe resonance broadening and suppression of tunneling
processes that produce three-body occupation.

†The author of the present thesis developed the experimental procedure, performed the
measurements and made the data analysis for this publication with support from KL. The
paper was written by MJM and HCN. All authors contributed to the paper writing and
by general experimental and theoretical support.
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2.3.1. Introduction

Ultracold atomic gases in optical lattices provide a platform for investigating
novel many-body dynamics in a highly controllable environment [Blo08]. Recent
studies of the quantum phase transition between a superfluid and an insulating
Mott state for bosons [Gre02a, Gem09, Fuk09, Bak10, She10] and the metal to in-
sulator transition for fermions [Jör08, Sch08] exemplify the control available over
these systems by tailoring the lattice potential, or tuning interparticle interac-
tions using magnetic Feshbach resonances [Chi10]. This opens the door towards
quantitative studies of phenomena that are not well understood in condensed
matter physics, and also novel dynamics beyond what is normally realizable in
solid state systems. Key examples of the latter include non-equilibrium dynam-
ics such as transport processes [Hac10, Tro11], quenches across phase transitions
[Che11b, Che11a, Kol07], and the potential to realize metastable many-body
states that are long-lived on experimental timescales. For example, repulsively
bound atom pairs can be formed in experiments [Win06, Str10] and are stable
in optical lattice systems because of the lack of strong dissipative mechanisms
such as lattice phonons that could remove energy on short timescales.

Here we prepare and study a novel metastable many-body state, specifically
a metastable Mott insulator, in which particles are exponentially localized at
individual sites through attractive two-body interactions. This state can be pre-
pared via a sudden change in interparticle interactions, starting from a Mott
insulator state with repulsive interactions, and then switching to attractive in-
teractions abruptly on the tunneling timescale in the lattice. This is made
possible by a broad Feshbach resonance for Cs atoms in the lowest hyperfine
state [Chi04b]. We demonstrate that the resulting highly excited many-body
state is long-lived, allowing for detailed studies of its properties. Using ampli-
tude modulation (AM) of the optical lattice corresponding to two-photon Bragg
transitions [Stö04], we measure the (de-)excitation spectrum. By identifying
specific excitation resonances, we map out two-body bound state energies over
a wide range of scattering lengths and make a quantitative comparison with the
corresponding theoretical prediction [Büc10]. We also observe shifted resonances
connected to three-body bound states [Joh09], which feature a fast broadening
and strength reduction for increasing attractive interactions due to increasing
three-body loss [Kra06]. This reduction in strength corresponds to an inhibi-
tion of tunneling events that create three-body occupation due to on-site loss
processes, which promises interesting effects on the many-body physics of the
system [Dal09].

The standard Bose-Hubbard (BH) model describes the dynamics of bosons in
an optical lattice using the two-body on-site interaction energy U and the nearest
neighbor tunneling rate J . There are two groundstates for zero temperature, the
superfluid state for U � J and the Mott insulator for U � J . Here we prepare a
metastable Mott insulator state with attractive interactions (U < 0). This state
is analogous to a standard bosonic Mott insulator with repulsive interactions, in
that particles are exponentially localized at different lattice sites, and the state
exhibits an energy gap due to inter-particle interactions. However, for U < 0
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in a uniform system at unit filling, it is the most highly excited Hamiltonian
eigenstate of the BH model in the limit |U | � J . The state is metastable on
long timescales because of an energy gap of order U to lower lying eigenstates,
and there are no fast dissipative mechanisms to remove this energy from the
system. This is analogous to metastability in a gas of repulsively bound pairs
[Win06, Str10] and the super-Tonks-Girardeau gas [Hal09]. The preparation of
this highly excited system is realized by starting in a standard Mott insulator
with U > 0, U � J , and then rapidly switching U to a large attractive value,
on a timescale that is faster than h/J , but sufficiently slow to avoid population
of higher Bloch bands.

2.3.2. Experimental procedure

We start with the production of an essentially pure Bose-Einstein condensate
(BEC) of 1.0 × 105 Cs atoms in an optical dipole trap in the lowest hyperfine
state following mainly the procedures detailed in Ref. [Kra04]. We load the
BEC over the course of 500 ms into a cubic optical lattice created by three
retro-reflected laser beams with a wavelength of λ= 1064.5 nm. The lattice
depth V0 for the measurements that follow is typically set to V0 = 20ER, where
ER =h2/(2mλ2) is the atomic recoil energy with the mass m of the Cs atom.
The scattering length aS can be tuned in a range between ≈ −2500 a0 and
≈ 1500 a0 by applying a magnetic field B between 0 G and 48 G, employing
a broad Feshbach resonance with pole at ∼ −12 G and a narrow resonance at
∼ 48 G [Lan09]. Here, a0 is Bohr’s radius. The zero crossing for aS is at 17.119 G.
During loading of the lattice the interaction strength is set to aS = + 220 a0 to
prepare an atomic Mott insulator state as the starting point for all subsequent
measurements. The number of doubly occupied lattice sites can be controlled
via the external confinement, which is primarily set by the dipole trap laser
beams used for the initial BEC preparation.

2.3.3. Stability of the attractive Mott insulator state

To first investigate the stability of the many-body system with attractive inter-
actions, we ramp B and therefore the interaction strength to the desired value
with a ramp speed of 2.5 G/ms, wait for a variable hold time tH and return to
the initial interaction strength. Subsequently we ramp down the optical lattice
and recapture the cloud of particles in the dipole trap. Using the time-of-flight
technique, we deduce the number of remaining atoms NA and the BEC fraction
xBEC. In the course of the ramps, we have to cross several narrow Feshbach res-
onances [Chi04b]. To avoid heating through interaction-induced band-transfer
[Köh05], we cross the resonances using fast ramps with a speed of 2× 104 G/ms
[Dan09a]. Figure 2.9(a) and (b) show xBEC and NA as a function of aS for
tH = 50 ms. Sharp dips for both observables occur near the expected locations of
the narrow resonances. Also, around the zero crossing of aS the system becomes
unstable. An approximately 20% (10%) decrease for xBEC (NA) is observed for
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aS<0 compared to the values at aS >0, probably caused by the crossing of the
zero interaction region within a finite time. Figure 2.9(c) and (d) show xBEC

and NA as a function of tH for different values of aS. As one would expect, xBEC

decays somewhat faster than NA at given aS. Exponential fits to the data yield
lifetimes. These are reduced for more attractive interactions, but stay in the
range of 10 to 20 seconds, more than 30 times larger than the bare tunneling
time h/J at this lattice depth. This clearly shows that the system is stabilized
by attractive interactions and allows us to investigate its properties in more
detail.

2.3.4. Deexcitation spectrum

In this work we focus on the (de-)excitation spectrum [Gre02a, Stö04], which
we measure by AM at frequency fM of one of the lattice beams at typically
20 % of V0 for a duration of tH = 300 ms. Tunneling processes at U < 0 to sites
with non-zero occupation lower the overall energy and lead to a deexcitation of
the system. The deexcitations - through the spatial configuration - are mapped
onto excitations when returning subsequently to repulsive interactions, leading
to an increased overall energy of the system, which we detect again by mea-
suring xBEC as a sensitive indicator for the energy deposited into the system.
Figure 2.10(a) shows the measured excitation spectrum for aS = − 306 a0 in the
vicinity of |U |/h ≈ 1.6 kHz as calculated from the standard BH model. A double
resonance structure can clearly be identified, similar to our previous work in the
regime of strong repulsive interactions [Mar11b]. At comparatively low initial
densities, with a small number of doubly occupied sites, the lower resonance is
dominant, whereas for higher initial densities, giving a larger fraction of doubly
occupied sites, the upper resonance becomes more pronounced at the expense
of the lower resonance. As in the repulsive case, this splitting is caused by the
energy difference for excitations in the different Mott shells through effective
multibody interactions for three particles at the same lattice site [Joh09]. We
associate the lower resonance with excitations in the singly occupied shell, cre-
ating doubly occupied sites, i. e. two-body bound states in the presence of the
lattice, and the upper resonance with excitations in the doubly occupied shell,
creating triply occupied sites, i. e. three-body bound states in the presence of
the lattice. In contrast to the repulsive case [Mar11b] the three-body resonance
is now at higher energies. Our interpretation is confirmed by a measurement
of the number of doubly occupied sites through molecule formation [Dan09a].
Figure 2.10(b) shows the molecule number NM as a function of fM. For the lower
resonance we find a greatly increased probability for dimer formation, which we
attribute to an increase in the number of sites with double occupancy, while
for the upper resonance we observe a strongly reduced probability for dimer
formation, in agreement with the fact that doubly occupied sites are resonantly
emptied upon modulation and that particles at triply occupied sites are lost due
to fast three-body recombination at negative aS [Kra06].

Figure 2.10(c) shows excitation spectra taken over a comparatively large fre-
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quency range as aS is varied from −112 a0 to −2334 a0. The resonance discussed
above corresponding to the excitation into the two-body bound state is clearly
visible and it is shifted to higher frequencies as |aS| is increased, as one would ex-
pect. The three-body resonance is only visible for weak interaction strengths. It
also shifts to higher frequencies, as expected. We will discuss the behavior of this
resonance below. Interestingly, we observe another resonance with an inverse
behavior compared to the two-body and three-body resonances, with decreas-
ing frequency as |aS| increases. We observe an additional resonance at twice
the frequency with the same behavior, visible in the spectra taken for strong
interactions. These resonances do not disappear when we prepare a purely
singly-occupied Mott insulator. We therefore suspect that they are related to
excitations into the first excited two-body bound state of the lattice [Büc10].
The strong visibility of the half-frequency resonance most likely is a result of
the presence of the first harmonic in the frequency spectrum of J , which for our
parameters reaches a strength of up to 20 % of the main frequency component
(see 2.3.8 for suppl. material).

2.3.5. Comparison to theory

Figure 2.11 provides an overview over the measured excitation energies ∆E as
aS is varied and compares our data to the prediction by theory [Büc10, Mar11b].
The three relevant excitation processes are illustrated in the inset to this fig-
ure. We determine ∆E = hfM,c by fitting simple gaussians to the loss features
as shown in Figure 2.10(a) and taking the peak positions fM,c. The data for
repulsive interactions (aS > 0) is taken from Ref. [Mar11b], augmented by new
measurements at strong repulsive interactions (aS > 1000 a0). In general, we find
good agreement between our measurements and the calculated energies for the
excitations to the lowest-band two-body bound state using the exact numerical
results [Büc10] (see 2.3.8 for suppl. material), and the fitting function described
in Ref. [Mar11b], which extrapolates the result for the three-body resonance from
Ref. [Büc10]. Only for comparatively strongly attractive interactions do we find
a significant deviation for the energy of the three-body bound state, which is
expected due to more complex three-body physics arising at negative values for
the scattering length 4. The excitation energies into the first excited two-body
bound states, derived by doubling the measured frequency values, show the same
qualitative behavior as the exact numerical calculations [Büc10] (see 2.3.8 for
suppl. material), though with a significant offset for strong attractive interac-
tions. Note that the exact numerical analysis is only valid for two particles or
a very dilute system, and does not include the influence of a Mott insulating
background. Its contribution will increase for stronger particle interactions and
might account for the offset observed. Also, we are not able to completely ex-
clude the possibility of a systematic deviation in the calculation of aS in this
magnetic field region.

4J. von Stecher, private communication
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2.3.6. Supression of three-body occupation

Detailed spectra with the three-body bound state excitation resonance for at-
tractive interactions are shown in Fig. 2.12(a). Compared to the two-body
bound-state resonance at lower frequencies, we clearly observe a broadening
of the three-body resonance as aS is increased. In fact, the resonance broad-
ens so much that it finally disappears. Given our finite signal-to-noise ratio,
we are not able to detect the resonance for |aS| > 500 a0. Fig. 2.12(b) shows
the width (FWHM) as a function of aS. We note that, as there is currently
no theory on the lineshapes of three-body resonances, the FWHM is obtained
from simple gaussian fits as used above. The broadening leads to a decrease
in the height of the resonance, i.e., a decrease in the formation rate of triply-
occupied sites, and thus to a decrease in the overall loss rate. We interpret
this behavior in terms of the process discussed in Ref. [Dal09]: Fast three-body
loss can suppress the formation of triply occupied sites, analogous to the sup-
pression of inelastic two-body processes as reported in Ref. [Sya08] for the case
of weakly-bound molecules. As the three-body recombination rate scales like
Ṅ ∼ a4

Sn
3 with the density n, one would expect a strong increase of the three-

body loss rate. We note that for repulsive interactions a similar broadening of
the three-body bound-state excitation resonance can be observed. This is shown
in Figure 2.12(c). In this case the increase of the FWHM as a function of aS

is far less drastic. Further experimental and theoretical investigations will be
needed for a quantitative analysis of the broadening, including a calculation of
the modified on-site density of three-body bound states and the corresponding
tunneling rates at attractive and repulsive interactions and the role of Efimov
physics in confined dimensions [Por11].

2.3.7. Conclusion

In summary we have investigated a metastable Mott insulating state with at-
tractive interactions and have shown that this state exhibits a very long lifetime
on the order of 10 seconds. By measuring excitation spectra we were able to
determine the energies of two-body and three-body bound states. The broad-
ening of the excitation resonance corresponding to the three-body bound state
gives a strong indication that very high three-body recombination rates suppress
the creation of triply occupied sites, thereby reducing the effective loss rate of
the system, which also can be interpreted in terms of the quantum Zeno effect
[Mis77] with the three-body recombination rate playing the role of the measure-
ment. This effect can be used to realize a Bose-Hubbard model with a three-body
hard-core constraint [Dal09], leading to interesting many-body physics, including
a dimer superfluid phase and a continuous supersolid phase for attractive bosons
[Die10, Bon11], the realization of Pfaffian-like states in one-dimensional geome-
tries [Par07], and the stabilization of an atomic color superfluid for fermions
[Kan09]. The Mott insulating state with attractive interactions can also serve
as starting point for the preparation of stable superfluid condensates at finite
momentum with negative temperature [Rap10].
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2.3.8. Supplementary material

Modifications and frequency components of U and J during amplitude
modulation

A sinusoidal modulation of the lattice depth leads to a modulation in both U
and J . Excitations are driven mainly by the modulation of J [Cla06b]. To
characterize this process in a first approximation, we write the lattice depth
modulation as V (t) = V0(1 + M sin(ωM t)) with ωM = 2πfM and numerically
calculate U(t) and J(t) for each time step using tunneling rates and Wannier
functions for the lowest Bloch band. Here, we do not include the modification of
U and J arising for stronger interactions. To derive the frequency components
of J(t), we Fourier transform J(t), omit the DC part and normalize the strength
of the frequency components to the peak strength at the main frequency ωM.
Due to the nonlinear dependence of J on V0, higher harmonics at 2ωM and
3ωM are visible, and their strength as a function of the modulation depth M is
shown in figure 2.13(a) for three different values of the lattice depth V0. For our
experimental parameters (V0 = 20 ER, M = 20 %) the 2ωM component reaches
20 % peak strength of the main frequency peak, whereas the 3ωM component
stays below 3 %. This explains the good visibility of the half-frequency resonance
into the first excited two-body bound state. Note that a half-frequency resonance
is also present for the lowest two-body bound state as shown in Ref. [Mar11b].
The weak 3ωM component would give rise to a further resonance, which, however,
is not observable given the finite signal-to-noise ratio for our experiment.

Due to the nonlinearity of J and U as a function of V0 the corresponding time
averaged values during the modulation are different from the values that one
obtains assuming no modulation. Figure 2.13(b) shows the relative change of
the time averaged 〈U〉 and 〈J〉 as a function of M for three different values of
V0. The shift of U by less than 0.5 % is nearly independent of V0 and can be
neglected in view of the uncertainties in our experiment. The shift of J is more
pronounced, but it does not affect the experimental results on the measurement
of interaction energies. Nonetheless, this effect has to be taken into account
for a future investigation of modulation-assisted tunneling rates, additionally
to the changes due to modifications in the on-site wave functions arising from
interactions [Lüh11].

Numerical analysis of the two-particle bound states

The numerically efficient and precise determination of the attractive and repul-
sive bound state energies for two particles in a three-dimensional optical lattice
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has been presented in Ref. [Büc10]. Here, we use this method for the compar-
ison with the experimental data; the notation is in analogy to Ref. [Büc10].
Within the two channel description of the short range pseudo-potential, the s-
wave scattering length aS is related to the detuning ν of the molecular channel,
and the coupling g via 4π~2aS/m = −g2/ν. The influence of the optical lat-
tice is a shift χ(E) in the detuning and is associated with a change of the free
particle properties due to the formation of Bloch bands. The relation between
the bound state energies Ebs and the shift χ(E) in the detuning takes the form
χ(Ebs) = −πa/(8ERaS) with a the lattice spacing. The numerical determination
of χ(E) involves the precise determination of Bloch wave functions and band en-
ergies, as well as a summation over a high number of Bloch bands. In addition,
it requires a regularization of the coupling between the open and closed channel.
Here, we choose the regularization α(r) =

∫
v(Λ)

dk exp(ikr)/(2π)3, where the

volume v(Λ) = Λ3v0 is centered around k = 0 with v0 = (2π)3/a3 the volume
of the first Brillouin zone. For fixed cut-off Λ, the summation over Bloch bands
converges very quickly for S > Λ, see inset to Fig. 2.14; the shell parameter S
denotes the number of Bloch bands for each spatial direction included in the
summation. Finally, we can remove the cut-off Λ via the asymptotic scaling
relation χΛ(E) = c/Λ +χ(E) 5, see Fig. 2.14. The convergence of the numerical
data is checked by varying the shell parameter S, cut-off Λ, and the precision
for the determination of the Bloch wave functions and Bloch bands.

Using the above procedure, the repulsive and attractive bound states are
determined for the experimentally relevant parameters with V0 = 20ER. The
lowest bound state for weak interactions is dominated by the contributions of
two particles in the lowest Bloch band, and for increasing interactions smoothly
connects to the state with a single bound molecule of mass 2m within the lowest
Bloch band of an optical lattice with strength 2V0. In turn, the first excited
bound state corresponds for weak interactions to a state with one particle in the
lowest Bloch band and the second particle in the first excited Bloch band. Again
for increasing interactions, this state smoothly connects to a single molecule in
the first excited Bloch band.

5Note that the numerical data in the original manuscript was based on an incorrect assump-
tion on the cut-off function, and an Erratum is in preparation.
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Fig. 2.9.: (color online) Stability of the many-body system for attractive interac-
tions a) BEC fraction xBEC as a function of aS with tH = 50 ms. The
narrow shaded areas indicate the locations of Feshbach resonances.
The inset shows the region around aS = 0 a0. b) Number of remaining
atoms NA as a function of aS with the same settings as in a). c) xBEC

as a function of tH for aS = + 220 a0 (circles), aS = − 240 a0 (squares)
and aS = − 2000 a0 (diamonds). The solid lines are exponential fits
giving 1/e-decay times of 14.2± 0.6 s (+220 a0), 13.7± 0.6 s (−240 a0)
and 11.4 ± 0.4 s (−2000 a0). d) NA as a function of tH for the same
settings as in c). The solid lines are exponential fits giving decay
times of 28.3± 0.9 s (+220 a0), 25.2± 1.8 s (−240 a0) and 19.5± 0.5 s
(−2000 a0). The vertical error bars reflect the one-sigma statistical
error.
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Fig. 2.10.: (color online) Excitation spectrum for a Mott insulating state with
attractive interactions a) BEC fraction xBEC as a function of fM for
high (low) initial density shown as circles (squares) at aS = − 306 a0.
The solid lines are double Gaussian fits. b) Normalized molecule
number NM as a function of fM at aS = − 306 a0. The vertical error
bars reflect the one-sigma statistical error. c) Set of excitation spec-
tra with xBEC as a function of fM as aS is varied: aS = −111 a0 (top)
to aS = − 2334 a0 (bottom). The three-body resonance is indicated
by an arrow.
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Fig. 2.11.: (color online) Excitation energies ∆E into two- and three-body
bound states. Two-body bound state excitation energy (circles),
three-body bound state excitation energy (squares), and first excited
two-body bound state excitation energy (diamonds, obtained by dou-
bling the measured values) are shown as a function of aS. We have
added to the plot the data for aS > 0 from Ref. [Mar11b], augmented
by new measurements for aS > 1000 a0. The shaded areas at the top
indicate the first two single-particle bands. The solid (dashed) line
is the calculated excitation energies for the two-body (three-body)
bound state and the dotted line is the calculated excitation energy
for the first excited two-body bound state. The dashed-dotted line
is the standard BH model calculation. The vertical error bars re-
flect the one-sigma statistical error as derived from the gaussian fit.
The horizontal error bars indicate the variation of aS over the cloud
due to the gradient in B. The inset illustrates the main excitation
processes.
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Fig. 2.12.: (color online) Broadening of the three-body excitation resonance. a)
Set of excitation spectra showing the normalized BEC fraction xBEC

as a function of fM for various values of aS as indicated. The reso-
nance peak connected to the two-body (three-body) bound state is
located at lower (higher) frequency. The solid lines are double-peaked
Gaussian fits, from which the width (FWHM) of the resonances is
deduced. b) FWHM of the three-body excitation resonance as a func-
tion of aS for attractive interactions. c) For comparison, we show the
FWHM of the three-body excitation resonance as a function of aS

for repulsive interactions [Mar11b].
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Fig. 2.14.: (color online) Convergence of the numerical analysis for increasing
cut-off parameter and number of Bloch bands: Regularized shift of
the detuning χΛ(E) at energy E = 5.5ER and for an optical lattice
with V0 = 16ER. The dots are the values for different shell param-
eters S. The shift satisfies the asymptotic behavior χλ = c/Λ + χ
(solid line). The inset shows the fast convergence for fixed Λ by in-
creasing the shell parameter S, i.e., the involved number of Bloch
bands.



CHAPTER 3

MATTER-WAVE DYNAMICS ALONG ONE

DIMENSION

3.1. Introduction

In this chapter we investigate the single particle matter-wave dynamics along one
dimension within an optical lattice potential. Excitations and motion perpen-
dicular to the lattice direction are neglected. The system behavior, for example
scattering properties, are the same as for the three-dimensional case, in contrast
to a one-dimensional system as discussed later in chapter 5, where the confine-
ment strength perpendicular to the lattice has to fulfill a special requirement.

When applying a constant force along the optical lattice axis, the atoms get
accelerated until the Bragg-condition between the atoms and the lattice light
is fulfilled and the atoms are Bragg-reflected. In the Bloch-band picture, the
atoms reach the edge of the first Brillouin-zone and, due to the periodicity of
the quasimomentum, reappear on the opposite side with an inverted quasimo-
mentum. The system undergoes so-called Bloch oscillations [Blo28, Zen34].

For electrons in a conductor with an applied electric field, Bloch oscillations
typically are interrupted within one oscillation period by scattering events due
to defects in the crystal structure, which inhibits their observation in standard
bulk materials. Using semiconductor superlattice structures it was possible to
observe coherent submillimeter-wave emission arising from Bloch oscillations
[Was93]. An optical lattice provides an ideal crystal structure without defects,
allowing the direct observation of these oscillations [BD96, And98]. In this
case interactions between atoms were supposed to destroy and wash out Bloch
oscillations, allowing long observation times only in the case of dilute thermal
samples with a low background interaction strength [Fer06] or noninteracting
fermions [Roa04]. Using our ability to tune interactions and in particular to
minimize them by turning the scattering length to a zero crossing, we were
able to observe more than 20.000 Bloch oscillations with a BEC, allowing us
to measure the Bloch period with an accuracy of the order of 10−6 [Gus08b].

51
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By adding interactions in a controlled way to the Bloch oscillations we were
able to verify theoretical predictions that the momentum width broadens due
to interactions [Wit05] until it fills the complete first Brillouin-zone and the
oscillations are not visible anymore.

Figure 3.1 illustrates our experimental configuration. A standing wave creates
a vertically oriented lattice potential, intersected by a horizontal dipole trap
beam which provides the confinement along the lattice. An additional vertical
dipole trap beam superimposed with the standing wave can be used to control
the confinement perpendicular to the lattice independent of the lattice depth.
Thus we create a series of pancake-shaped microtraps, and a BEC loaded into
this configuration fills typically between 10 and 30 lattice sites, where the atom
number per lattice site is given by the density distribution of the BEC during
the loading process. To study matter-wave dynamics along the lattice direction,
we suspend the atoms to a force directed along the lattice, which in our case is
realized by gravity and the levitation force provided by a magnetic field gradient.
During the sample preparation, the two forces are balanced so that the atoms
feel no overall acceleration.

Fig. 3.1.: Schematic experimental setup. A vertically oriented standing wave
and an intersecting horizontal dipole trap beam create a series of pan-
cake shaped microtraps. The force along the lattice direction can be
controlled via the balance between gravity and the levitation force.

In contrast to the crystal defects in solid state systems, interactions do not
destroy the Bloch oscillations, as we show in section 3.2. Experimentally, we
observe that after the first broadening of the momentum width a high-contrast
interference pattern appears in the completely filled first Brillouin-zone as shown
in Figure 3.2. In a mean-field picture, the interactions cause an additional phase
shift between different lattice sites, leading to a coherent dephasing. We are
able to probe this coherence with a spin-echo type experiment, where we reverse
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the time evolution by switching off interactions and applying an external force
gradient, effectively switching the sign of the phase shift, and show a refocusing
to Bloch oscillations.

Fig. 3.2.: High-contrast time series of interference patterns in fully dephased
Bloch oscillations. After a first rapid broadening an interference pat-
tern appears, which evolve in time according to mean-field calcula-
tions.

It is also possible to describe the time evolution of our setup in terms of the
Talbot effect, the self-imaging of an illuminated grating in near field diffraction
[Tal36]. We show in section 3.3 that the time evolution of the microtrap phases
are identical to the spatial phase evolution of coherent light behind a grating,
when we switch interactions to zero and add an external quadratic potential. The
self-image of the grating in optics, which occurs after the so-called Talbot length,
is equivalent to the refocusing of the momentum distribution of the atoms to the
initial one after a corresponding Talbot time. Higher-order interference patterns
similar to those shown in Figure 3.2, which appear at fractional multiples of the
Talbot time, are analogous to the fractional Talbot effect [Now97].

All the measurements above were performed applying a constant force to the
atoms. In section 3.4 we investigate the properties of the system with a period-
ically modulated force. For fractional ratios n/m between the driving frequency
and the Bloch oscillation frequency we observe modulation-enhanced tunneling
resonances [Sia08, Iva08], where tunneling between lattice sites n lattice units
apart via a m-phonon process [Eck05a] gets enabled. For a small detuning of the
modulation frequency from such a resonance we observe huge oscillations in real
space. This so-called super-Bloch oscillations spread over hundreds of lattice
sites, compared to only a few sites for normal Bloch oscillations. We investigate
these super-Bloch oscillations in detail and show that by changing the sign of
the detuning at the appropriate point in time this mechanism can be used to
induce transport along the lattice, which normally would be prevented through
Bloch oscillations.
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3.2. Publication: Interference of interacting matter

waves
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The phenomenon of matter wave interference lies at the heart of quan-
tum physics. It has been observed in various contexts in the limit of non-
interacting particles as a single particle effect. Here we observe and control
matter wave interference whose evolution is driven by interparticle interac-
tions. In a multi-path matter wave interferometer, the macroscopic many-
body wave function of an interacting atomic Bose-Einstein condensate devel-
ops a regular interference pattern, allowing us to detect and directly visualize
the effect of interaction-induced phase shifts. We demonstrate control over
the phase evolution by inhibiting interaction-induced dephasing and by refo-
cusing a dephased macroscopic matter wave in a spin-echo type experiment.
Our results show that interactions in a many-body system lead to a surpris-
ingly coherent evolution, possibly enabling narrow-band and high-brightness
matter wave interferometers based on atom lasers.

†The author of the present thesis contributed to this work by assisting the experimental
measurements and performing parts of the theoretical calculations. He also maintained
and improved the experimental setup and contributed to the paper writing.
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3.2.1. Introduction

Matter wave interference has been observed as a single particle effect for elec-
trons [Dav27], neutrons [Hal36], atoms and molecules [Est30]. Macroscopic mat-
ter wave interference was first directly observed in the case of two independent
atomic Bose-Einstein condensates (BEC) that were brought to overlap [And97].
This experiment validated the notion of the BEC as a macroscopic matter wave
and coined the expression of the atom laser in analogy to the laser for the case
of photons. Matter wave interferometers [Ber97, Cro09, Har07], in particular for
applications to precision measurements, are typically operated in the dilute sin-
gle particle limit [Wic02, Cla06a, Fix07] to avoid particle-particle interactions.
Atom interferometers based on Bose-Einstein condensates (BEC) are expected
to benefit from the extremely low momentum spread, the exceptional bright-
ness, and the low spatial extent of the BEC [Gup02], but they readily enter
the nonlinear matter wave regime as a result of the interaction-induced mean
field potential. A possible solution is to operate BEC-based interferometers in
the non-interacting limit [Gus08b, Fat08a] by exploiting the cancellation of the
scattering phase shift near a scattering resonance. This condition, however, is
difficult or impossible to fulfill for most atomic species. In the present work we
demonstrate a BEC-based multipath atom interferometer where the dynamics is
dominated by interaction-induced phase shifts, and we show that full control and
also cancellation of these phase shifts is possible. We realize the multipath inter-
ferometer by loading an interacting BEC into an optical lattice potential along
one dimension, coherently splitting the BEC into several parts that are then
each subject to different linear and nonlinear phase shifts. The linear phase
shifts due to the gravitational force lead to the the well-known phenomenon
of Bloch oscillations [BD96, And98], whereas the interaction-induced nonlinear
phase shifts cause the macroscopic wave function to first spread in momentum
space as a function of time and then, surprisingly, to exhibit high-contrast inter-
ference. We demonstrate a high degree of coherence by reversing the nonlinear
phase evolution, thereby refocusing the BEC momentum wave function. By
application of an external potential we cancel the dominant mean-field contri-
bution to the phase evolution and become sensitive to beyond-mean-field effects.
A crucial ingredient of our experiments is the capability to tune a, the atomic
scattering length which determines the strength of the interaction, by means of
a Feshbach resonance [Web03a]. In particular, a can be switched to zero to stop
the interaction driven part of the evolution in the interferometer or to perform
high resolution wave function imaging in momentum space.

3.2.2. Phase evolution

Our interferometer consists of a BEC adiabatically loaded into a 1D optical lat-
tice potential with a superimposed harmonic trap, as illustrated in figure 3.3a.
In the tight-binding regime, it is convenient to write the macroscopic wave func-
tion of the condensate, Ψ, in a basis [Sme03] of wave functions Ψj(z, r⊥) cen-
tered at the position zj = jd of the individual lattice sites j, Ψ(z, r⊥, t) =
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∑
j cj(t)Ψj(z, r⊥). Here, z is the coordinate along the (vertical) lattice direc-

tion, r⊥ is the transverse coordinate, d is the distance between adjacent lattice
sites and cj(t) are time-dependent complex amplitudes.

After the BEC is loaded into the lattice, we tilt the lattice potential by ap-
plying a strong force F along the lattice direction. In the limit Fd� J , where
J is the tunnelling matrix element, tunnelling between lattice sites is inhib-
ited. The on-site occupation numbers |cj|2 are then fixed, and we can write
cj(t) = cj(0)eiφj(t), where the phase φj(t) evolves in time according to the local
potential at each specific lattice site [Wit05],

~
∂φj
∂t

= Fdj + V trap
j + µloc

j

= Fdj + βtrj
2 − αintj

2. (3.1)

Here, the total potential at each lattice site j consists of three terms. The applied
force leads to a term linear in j and causes Bloch oscillations [BD96, And98] with
angular frequency Fd/~. The second term comes from an optional harmonic
confinement, where βtr = mω2

trd
2/2 characterizes the strength of the confining

potential and ωtr is the trap frequency. Atom-atom interactions give rise to a
third term, the local chemical potential µloc

j , which depends on the scattering

length a and the site occupation number as [Sme03] µloc
j ∝

√
a|cj|2. When the

BEC is loaded in the Thomas-Fermi regime, as is done here, its initial value can
be calculated in a simple way. The density distribution will be such that the local
chemical potential mirrors the trapping potential that is present during loading
into the lattice, µjloc = µ − V trap

j , with µ being the (global) chemical potential

of the BEC. We then initially have µloc
j = αintj

2, where αint = mω2
lod

2/2 and
ωlo is the trap frequency during loading. Note that although the initial value
of αint is independent of the scattering length used at loading, a later change in
scattering length will also change the value of αint.

The phase terms proportional to j2 lead to a nonlinear relative phase evolution
between lattice sites, i.e., dephasing. This results in a time-varying interference
pattern of the macroscopic matter wave, as we will demonstrate below. The
key in our experiments is that we have full control over these nonlinear terms,
not only over βtr via the external trapping potential, but also over the interac-
tion term characterized by αint, both via the initial density distribution, and,
more importantly, via the scattering length a. By tuning the scattering length
[Web03a] from its initial value a to a′, we can ramp αint to a new value α′int,
which can in particular be set to zero for a = 0. Nonlinear phase terms for
matter waves are well known in single particle quantum mechanics. They play
an important role for matter wave Talbot interferences [Ber97, Den99] and can
be visualized in terms of so-called matter wave quantum carpets [Kap00]. In
these contexts, the phase terms arise from propagation. In our case, the non-
linear phase terms for αint 6=0 arise from interactions and thus lead to a density
dependent many-body effect in the multipath atom interferometer.

In the preceding discussion, we have assumed that the minimum of the trap-
ping potential is centered directly over one of the lattice minima. If this is
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not the case, the trapping potential term in equation (1) has to be modified to
βtr(j − δ)2 = βtrj

2 − 2βtrδj + const., where δ ∈ [0, 1] describes the offset of the
trap center in the z-direction with respect to the lattice minima, and an anal-
ogous modification has to be done to the interaction term. This adds a small
term linear in j and therefore leads to a slight modification of the Bloch oscilla-
tion frequency. In our experiments, δ is the only parameter that we do not fully
control. It is constant on the timescale of a single experimental run, but it drifts
over the course of minutes as the beam pointing of the horizontally propagating
laser beam generating the trapping potential is not actively stabilized.

3.2.3. Interaction-induced matter wave interference

The starting point for our experiments is a BEC trapped in a crossed optical
dipole trap and adiabatically loaded into an optical lattice, as illustrated in
figure 3.3a. The sample preparation is described in appendix A. The gravita-
tional force acting on the BEC is initially compensated using magnetic levitation
[Web03a]. We effectively start the multipath atom interferometer and hence the
evolution of the interacting macroscopic wave function by turning off magnetic
levitation and ramping down the vertical confinement created by laser beam L2

within 0.3 ms, inducing Bloch oscillations in the lowest band of the lattice. With
Fd/~ ≈ 2π × 1740 Hz and J/~ ≈ 2π × 40 Hz the on-site occupation numbers
|cj|2 are fixed to their initial values. After an evolution time τ , we close the
interferometer by ramping down the lattice in 1 ms and directly image the (ver-
tical) quasi-momentum distribution in the first Brillouin zone (BZ). The ramp
is adiabatic with respect to the bandgap and maps quasi-momentum onto real
momentum [Kas95], which is measured by taking an absorption image after a
period of free expansion. Figure 3.3b shows absorption images of the first Bloch
oscillation [BD96]. The Bloch period is about 0.58 ms and the peaks have a root
mean square (rms) width of 0.2~k, where k = π/d is the lattice wave vector,
thus being well separated.

We study the evolution of the wave function at high resolution in momentum
space by taking snapshots after extended time-of-flight. As illustrated in fig-
ure 3.4a, the BEC wave function spreads out in the BZ in about N = 18 Bloch
cycles. Then, surprisingly, an interference pattern gradually develops at the edge
of the BZ and later also becomes visible at the center of the BZ, while the num-
ber of interference maxima and minima changes as time progresses. Images are
taken after an integer number of Bloch cycles for cycle phase φ = 0, correspond-
ing to the first image in figure 3.3b. The data is acquired with an interacting
BEC with the scattering length set to 190 a0, where a0 is the Bohr radius, at an
initial peak density of n = 4× 1013 atoms/cm3, occupying about 35 lattice sites
after loading. We can follow the evolution of the interference pattern for more
than N = 100 Bloch cycles, corresponding to times beyond 60 ms. This is about
a factor 10 longer than the timescale for the initial broadening. We find that the
number of maxima and minima in the interference pattern as measured after a
fixed evolution time τ depends on the number of occupied lattice sites and on
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the trap frequency of the external harmonic confinement employed when loading
the lattice. We also find that the measured quasi-momentum distribution for
a given τ is reproducible from one experimental realization to the next, except
that the pattern appears slightly shifted within the BZ after several experimen-
tal realizations. We attribute this to a drift of δ, the offset of the lattice minima
from the dipole trap center, which leads to a small change of the Bloch frequency
as noted before. We do not actively stabilize the vertical position of L2 with
respect to the lattice, and hence temperature variations in the laboratory slowly
change δ.

We combine two techniques to achieve a high resolution in momentum space
and to visualize the interference pattern. First, we minimize broadening of the
distribution as a result of interactions by setting a to zero during the release
from the lattice and the subsequent free expansion [Gus08b]. In addition, we
use long expansion times, employing magnetic levitation to prevent the BEC
being accelerated by gravity and falling out of the field of view. Figure 3.5
shows how the contrast emerges during the expansion for a BEC after N = 40
Bloch cycles. It takes more than 100 ms of expansion for the interference pattern
to acquire full contrast. In general, we find that the contrast is improved when
the horizontally confining beam L1 is not switched off abruptly but is ramped
down slowly within the first 55 ms of time-of-flight, reducing the horizontal
expansion rate. However, this happens at the cost of some additional momentum
broadening along the vertical direction. Our imaging techniques allow us to
resolve structure in momentum space on a scale below 0.1~k in a single shot
absorption image.

To understand the interference structure and its evolution in time, we com-
pute the total BEC wave function in quasi-momentum space for the case where
the phase at each lattice site evolves according to equation (1) (details can be
found in appendix B). Figure 3.4b shows the interference pattern for our exper-
imental parameters according to this simple model. The experimental results
are qualitatively very well reproduced by the model when we reduce αint by 10
% compared to the value deduced from our experimental parameters. This scale
factor accounts primarily for the fact that our simple model does not take into
account any horizontal dynamics. In particular, switching off L2 when starting
the evolution leads to an excitation of a radial breathing mode in the horizontal
plane, reducing the density at each site and modulating it in time. To a first
approximation, rescaling of αint accounts for this. Nevertheless, the agreement
between the experiment and the analytical model indicates that the dominant
driving mechanism for the wave function spreading and interference is the non-
linear phase evolution. In particular, phase coherence is not lost, in contrast to
previous experiments [Mor03b]. We test this coherence and demonstrate control
over the phase evolution in two experiments.
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3.2.4. Cancellation of the dephasing

Equation (1) suggests that the effect of interactions can be cancelled by the
application of an external potential [Zha08]. Indeed, choosing this potential to
be equal to the initial loading potential, i.e. choosing αint ≈ βtr, allows us to
observe persistent Bloch oscillations for an interacting BEC. This demonstrates
that the detrimental effects of the mean field phase shift in a BEC matter wave
interferometer can be compensated for. The BEC quasi-momentum distribution
after N = 40 Bloch cycles is shown in figures 3.6a and 3.6b as a function of the
strength of the external compensating potential, given by the power in laser L2.
When the external potential does not compensate for interactions, the conden-
sate wave function is dephased and spreads over the whole BZ within less than
N = 20 Bloch cycles. In contrast, when the external potential balances the effect
of interactions, the BEC wave function does not spread out and Bloch oscillations
are clearly visible. The time during which Bloch oscillations can be observed is
now greatly extended compared to the case when the compensating potential
is absent. The transition from a dephased to a non-dephased wave function as
a function of confinement strength is quantified in figure 3.6c, where the rms-
width ∆p of the singly-peaked quasi-momentum distribution after N = 40 Bloch
cycles is plotted as a function of the laser power in L2. Figures 3.6d and 3.6e
show the time evolution of the quasi-momentum distribution without and with
the compensating potential while all other parameters are kept the same. Fig-
ure 3.6d essentially shows the broadening of the distribution as described before.
Interestingly, the condensate wave function in the presence of a compensating
potential shown in figure 3.6e dephases in a completely different way. Initially,
the central peak shows no broadening. However, it is slowly depopulated, while
a much broader background distribution is increasingly populated. After about
100 oscillations, the shape of the central peak starts to develop side lobes or
splits in two, with the exact shape varying from one experimental run to the
next. The timescale for the loss of interference is a factor 10 larger than the
timescale on which the dephasing and hence the initial broadening takes place
in the uncompensated case.

3.2.5. Rephasing of a dephased condensate

Second, we perform a matter wave spin-echo-type experiment. We initially
proceed as shown in figure 3.4, letting the wave function evolve for a time cor-
responding to about N = 40 Bloch cycles until it is fully dephased and shows,
upon measurement, a regular interference structure. We then essentially remove
the effect of interactions by ramping to a=10 a0 within 10 ms. By not switch-
ing the interaction entirely off and by ramping comparatively slowly we avoid
excessive excitation of the radial breathing mode as a result of the change in
the mean field potential at each site. At the same time, we gradually turn on
the harmonic potential as given by the horizontal dipole trapping laser beam L2

within 4 ms to approximately the same depth as during the initial BEC loading
phase. From equation (1) we expect that the wave function now experiences a
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phase shift with a quadratic spatial dependence with opposite sign, allowing us
to reverse the evolution and to recover the initial condition. Figure 3.7 shows
the resulting quasi-momentum distributions. As time progresses, the wave func-
tion indeed refocuses while it continues to perform Bloch oscillations. As we do
not control the value of δ for a particular run, we record about 10 distributions
for each evolution time and select those that are symmetrical, corresponding to
Bloch cycle phase φ = 0 or φ = π. For the chosen strength of the potential, re-
focusing happens after about 24 Bloch cycles after the ramp of a. This confirms
that the initial broadening and dephasing mechanism must have been coherent.
We note that we cannot avoid some excitation of the radial breathing mode as
seen in the absorption images given in figure 3.7.

3.2.6. Discussion

Our results raise several important questions: To what extent can matter wave
interferometry be performed in the presence of interactions? What sets the
timescale for the eventual loss of interference contrast? Certainly, our simple
analytic model does not predict any loss of contrast. In particular, it should
be possible to completely eliminate the effect of interactions with the compen-
sating external potential. However, there are several effects not included in the
model that could cause the residual dephasing we observe. Motion in the ra-
dial direction, which causes the density and therefore the interaction energy to
change over time, could lead to mixing of the different degrees of freedom and
hence to additional dephasing. This might apply to our matter wave spin-echo
experiment shown in figure 3.7, but in the experiment in figure 3.6 where we
compensate interactions by means of the external potential there is hardly any
radial excitation and this effect should not play a role. The appearance of dy-
namical instabilities [Zhe04, Cri04, Fal04] can be ruled out, as the force applied
along the lattice is about 2.5 times stronger than the force needed for the insta-
bility to disappear [Zhe04]. Going beyond the mean-field treatment, a variety
of factors can lead to dephasing. For example, at each lattice site there exists
a superposition of number states, accumulating different phases corresponding
to their respective interaction energies [Li07, Ima97]. This leads to an effective
dephasing, as the phase on a particular lattice site becomes ill-defined. Basic
estimates [Li07, Ima97] indicate a dephasing time of about 20 ms for our system,
on the same order as we observe.

These experiments constitute a clear demonstration of coherent dynamics in
an interacting macroscopic quantum system. This coherence affords a large
degree of control over the system, as demonstrated by the possibility to rephase
the wave function using an external potential in order to reverse dephasing due
to interactions. The control demonstrated here has potential application in
matter-wave interferometry, and such a degree of control over the mean-field
evolution also opens the possibility to probe beyond-mean-field effects in atom
interferometers.
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We note that coherent phase shifts due to interparticle interactions have
also been observed recently in Ramsey interferometry experiments in a two-
component BEC [And09].
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R.H. is supported by a Marie Curie International Incoming Fellowship within
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3.2.7. Appendix

Sample preparation

Our experimental approach initially follows the procedure described in [Gus08b].
In brief, within 10 s we produce an essentially pure BEC with tunable interac-
tions [Web03a] in the Thomas-Fermi limit with up to 1.5×105 Cs atoms. The
BEC is trapped in a crossed-beam dipole trap generated by a vertically (L1)
and a more tightly focused horizontally (L2) propagating laser beam. The BEC
is cigar-shaped with the long axis oriented along the direction of L2. The trap
frequencies are (ωx, ωy, ωz)=2π× (39, 5, 39) Hz, where x denotes the horizontal
direction perpendicular to L2, y is the axial direction along L2, and z is the
vertical direction. We magnetically control the scattering length a in the range
between 0 a0 and 300 a0 with a resolution of about 0.1 a0. For BEC produc-
tion, we work at a = 210 a0, where three-body losses are minimized [Kra06].
Initially, we support the optical trapping by magnetic levitation against grav-
ity [Web03a]. As shown in figure 3.3a we superimpose an optical lattice with
d = λ/2 along the vertical direction, where λ = 1064.5 nm is the wavelength
of the lattice light. To load the BEC into the lattice, we stiffen the horizontal
confinement within 1 s, leading to trap frequencies of 2π × (41, 13, 39) Hz, and
at the same time turn on the lattice potential exponentially to a depth of 8ER.
Here, ER = h2/(2mλ2) = kB×64 nK is the photon recoil energy and m the mass
of the Cs atom. The BEC is thus gently loaded into the lattice, occupying about
25 to 35 lattice sites, with up to 7000 atoms at the central site.

Derivation of the BEC wave function in momentum space

Here, we outline the method used to calculate the images in figure 3.4b. Due
to the comparatively small interaction energies in our system, the atoms are
restricted to move in the lowest Bloch band and we can write the local wave-
function at lattice site j as Ψj(r⊥, z) = w

(j)
0 (z)Φ⊥(ρj, r⊥), where w

(j)
0 (z) is the

lowest-band Wannier function localized at the j-th site and Φ⊥(nj, r⊥) is a ra-
dial wave function depending on the occupation number nj = |cj|2 at each site
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[Sme03]. We can then write the total time-dependent wave function in momen-
tum space as

Ψ(pz, p⊥, t) =
∑
j

cj(t)w
(j)
0 (pz)Φ⊥(nj, p⊥)

= w
(0)
0 (pz)

∑
j

cj(t)e
−ipzjdΦ⊥(nj, p⊥). (3.2)

Transforming to quasi-momentum space and assuming that the phase at each
lattice site evolves according to equation (1), we can write [Wit05]

Ψ(qz, p⊥, t) =
∑
j

cj(0)e−i(q+
Ft
~ )jd e−i(βtrj

2−αintj
2)t/~Φ⊥(nj, p⊥), (3.3)

where qz denotes the quasimomentum. The images in figure 3.4b show the BEC
density distribution |Ψ(qz, p⊥, t)|2 integrated along one radial direction, using a
Thomas-Fermi wave function as radial wave function Φ⊥(nj, p⊥).

We have compared the result in figure 3.4b with a numerical integration of
the discrete nonlinear Schrödinger equation [Sme03], which includes tunnelling
between lattice sites, and find essentially identical results, confirming that tun-
nelling is inhibited.
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Fig. 3.3.: BEC-based atom interferometer. a, Experimental configuration: The
tunable BEC is formed at the intersection of the vertical guide laser
beam L1 and a horizontal trapping beam L2. The lattice is oriented
along the vertical direction. Gravity, g, is initially compensated by a
force due to a magnetic field gradient, ∇B. b, Imaging the first Bril-
louin zone (BZ): One cycle of Bloch oscillations for a non-interacting
BEC as seen in time-of-flight absorption imaging, showing narrow
peaks cycling through quasi-momentum space for cycle phases φ= 0,
π/4, π/2, ..., to 2π.
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Fig. 3.4.: Interaction induced macroscopic matter wave interference. a, Experi-
mental results showing the quasi-momentum distribution as a function
of evolution time τ given in units of the Bloch period. The absorp-
tion images are taken in steps of 4 Bloch cycles for a BEC with an
initial peak density of n= 4 × 1013 atoms/cm3 loaded into about 35
lattice sites with a = 190 a0. Each image corresponds to a single
realization of the experiment. b, Evolution of the wave function in
quasi-momentum space when the phase at the individual lattice sites
evolves according to equation (1) with βtr = 0 (no external trap) for
n= 4 × 1013 atoms/cm3 loaded into 35 lattice sites with a= 190 a0.
αint is slightly rescaled to account for the reduction in density due
to transversal dynamics, see text. In a, some additional broadening,
largely due to the presence of the horizontal trapping potential during
expansion, can be seen.
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Fig. 3.5.: Contrast of interference fringes. Contrast of matter wave interference
emerging during time-of-flight expansion for a BEC after N=40 Bloch
cycles, where the wave function completely fills the BZ. We define the
contrast as (Imax − Imin)/(Imax + Imin), where Imax (Imin) is the av-
erage value of the maxima (minima) of the central peak structure.
Each data point is the average contrast of 10 experimental runs and
the error bars indicate the 1σ statistical error. The insets show mea-
sured quasi-momentum distributions integrated along the transverse
direction at two expansion times as indicated.
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Fig. 3.6.: Cancellation of interaction induced dephasing and observation of per-
sistent Bloch oscillations. a-c, Absorption images showing the quasi-
momentum distribution for cycle phase φ=π (a) and φ= 0 (b) after
N=40 Bloch cycles and (c) momentum width ∆p for φ=0 as a func-
tion of confinement strength, normalized to the confinement strength
at loading. d Momentum distribution for φ= 0 as a function of the
number N of Bloch cycles when no compensating potential is present,
showing fast broadening. e The evolution of the momentum distribu-
tion for the case of optimum cancellation of interactions.
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Fig. 3.7.: Matter wave spin-echo-type experiment. Rephasing of the BEC from
a fully dephased wave function back into a narrow distribution after
switching interactions to near zero and turning on an external poten-
tial. Time progresses from front to back. The black solid lines cor-
respond to selected quasi-momentum distributions that refocus into
the characteristic singly-peaked distribution (cycle phase φ= 0), see
text. They are separated in time by 1.15 ms or two Bloch cycles,
and they are offset for clarity. The red solid lines correspond to se-
lected distributions that refocus into the characteristic double-peaked
distribution (cycle phase φ= π). The images are absorption images
corresponding to the adjacent quasi-momentum distributions. Some
radial excitation is also present.
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3.3. Publication: Demonstration of the temporal

matter-wave Talbot effect for trapped matter

waves
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We demonstrate the temporal Talbot effect for trapped matter waves using
ultracold atoms in an optical lattice. We investigate the phase evolution of
an array of essentially non-interacting matter waves and observe matter-wave
collapse and revival in the form of a Talbot interference pattern. By using
long expansion times, we image momentum space with sub-recoil resolution,
allowing us to observe fractional Talbot fringes up to 10th order.

†The author of the present thesis performed the measurements and made the data analysis
for this publication with support from KL. The experimental procedure was developed
originally by MG and was refined by MJM. The paper was written by MJM and HCN. All
authors contributed to the paper writing and by general experimental support.
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3.3.1. Introduction

Interference of matter waves is one of the basic ingredients of modern quantum
physics. It has proven to be a very rich phenomenon and has found many
applications in fundamental physics as well as in metrology [Cro09] since the
first electron diffraction experiments by Davisson and Germer [Dav27]. Matter-
wave optics has now developed into a thriving subfield of quantum physics.
Many key experiments from classical optics have found their counterpart with
matter waves, for example the realization of Young’s double slit experiment with
electrons [Jön61], the implementation of a Mach-Zehnder-type interferometer
with neutrons [Rau74], or, more recently, the observation of Poisson’s spot with
molecules [Rei09]. The creation of Bose-Einstein condensates (BEC) in 1995
[And95, Dav95] opened the door to many more exciting experiments with matter
waves, to a large extent in the same way as the laser did in the case of classical
light waves.

One remarkable phenomenon in classical optics is the Talbot effect, the self-
imaging of a periodic structure in near field diffraction [Ber01]. The effect was
first observed by Talbot in 1836 [Tal36] and was later explained in the context
of wave optics by Rayleigh in 1881 [Ray81]. When light with a wavelength
λ illuminates a material grating with period d, the intensity pattern of the
light passing through the grating reproduces the structure of the grating at
distances behind the grating equal to odd multiples of the so-called Talbot length
LTalbot = d2/λ. At even multiples of the Talbot length the intensity pattern again
reproduces the structure of the grating, but shifted laterally in space by half of
the grating period. In between these recurrences, at rational fractions n/m of
LTalbot (with n,m coprime), patterns with smaller period d/m are formed. This
effect is known as the fractional Talbot effect. A necessary requirement for the
appearance of the Talbot effect and its fractional variation is the validity of the
paraxial approximation [Krz89]. Crucial to the Talbot effect is the fact that
the accumulated phase differences of the propagating waves behind the grating
show a quadratic dependence on lateral distance or grating slit index.

The first observations of the atomic matter-wave Talbot effect [Sch93, Cha95]
were based on setups comprising an atomic beam and two material gratings,
where the second grating acted as a mask used for detection purposes. The
demonstration of the fractional Talbot effect with atomic matter waves used the
fact that the interference fringes could be recorded directly by using a spatially
resolving detector [Now97]. The Talbot effect can also be demonstrated with
spatially incoherent wave sources by using an additional first grating to create
spatial coherence according to Lau [Lau48]. In this way, an interferometer is
formed that is made of two or even three gratings. Such Talbot-Lau interferom-
eters [Cla94] are now an important tool in atomic and molecular interferometry
[Cro09, Bre02, Ger07]. In the context of macroscopic matter waves, i.e. atomic
BECs, the Talbot effect has been observed in the time domain by using pulsed
phase gratings formed by standing laser waves [Den99]. During expansion after
release from the trap the BEC was exposed to two short grating pulses separated
by a variable time delay and the momentum distribution was measured. At a
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specific delay, this distribution was observed to rephase to the initial one. In
essence, the quadratic dispersion relation of freely propagating, non-interacting
matter waves resulted in a quadratic phase evolution for the diffracted momen-
tum states and hence to a temporal version of the Talbot effect. Intriguingly,
the Talbot effect is also present for interacting matter waves, as we could show
in our previous work [Gus10]. The momentum distribution of a trapped array of
decoupled two-dimensional BECs proved to exhibit a regular, time-varying in-
terference pattern. In this case, the quadratic phase evolution was driven by the
local mean-field interaction that had a quadratic spatial dependence reflecting
the parabolic shape of the initial density distribution.

In the present work, we report on the demonstration of the temporal Talbot
effect using trapped, non-interacting matter waves. Here, the Talbot effect is not
driven by interactions but by the (weak) external harmonic dipole-trap confine-
ment, leading to a characteristic quadratic phase evolution. Unlike in our earlier
work [Gus10], the contrast of the Talbot pattern is not degraded by interaction-
driven on-site phase diffusion [Li07], allowing us to follow the phase evolution for
long times and hence allowing us to observe matter-wave revivals. For our mea-
surements we use as before an array of pancake-shaped, two-dimensional BECs
in a one-dimensional optical lattice [Gus10]. The optical lattice takes on the role
of the grating. Cancelling the effect of interactions in the vicinity of a Feshbach
resonance and decoupling the individual BECs by means of a gravitational tilt
initiates long-lived Bloch oscillations (BO) in momentum space [Gus08b]. These
are quickly superimposed by a Talbot-type interference pattern in the presence
of the external confinement. The pattern can be directly connected to the (frac-
tional) Talbot effect. In particular, after specific hold times that are multiples
of the Talbot time, the time-analogue to the Talbot length, a rephasing of the
momentum distribution can be observed.

3.3.2. Preparation of the initial sample

We first produce an essentially pure BEC of Cs atoms (no detectable non-
condensed fraction) by largely following the procedure detailed in Ref. [Web03a,
Kra04]. The atoms are in the lowest hyperfine sublevel F = 3, mF = 3 trapped in
a crossed optical dipole trap and initially levitated against gravity by a magnetic
gradient field. As usual, F is the atomic angular momentum quantum number,
and mF its projection on the magnetic field axis. For the present experiments,
the atom number is set to typically 6× 104 atoms. The trap frequencies in the
crossed dipole trap are chosen to be ωx = 2π× 21.7(3) Hz, ωy = 2π× 26.7(3) Hz,
and ωz = 2π × 26.9(3) Hz. The confinement along the vertical axis (z) and the
two horizontal axes (x, y) is controlled by two horizontally propagating dipole
trap beams with beam waists of 46µm and 144µm and one vertically propa-
gating dipole trap beam with a beam waist of 123µm. The atomic scattering
length as and therefore the strength of interactions in the BEC can be tuned
via a magnetic offset field B in a range between as = 0 a0 and as = 1000 a0 by
setting B to values between approximately 17 and 46 G using a magnetically
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induced Feshbach resonance [Chi04b] as illustrated in figure 3.8(a). Here, a0 is
Bohr’s radius. For the initial preparation of the sample, we set as to positive
values, typically between 100 a0 and 210 a0. Later, as is set to zero as discussed
below. We gently load the condensed atomic sample into a vertical standing
wave as illustrated in figure 3.8(b) by exponentially ramping up the power in
the standing wave over the course of about 1000 ms. The standing wave is gen-
erated by a retro-reflected laser beam at a wavelength of λ= 1064.48(5) nm with
a 1/e-waist of about 350µm. We are able to achieve well depths of up to 40ER,
where ER = ~2k2/(2m) =h2/(2mλ2) = kB×64 nK is the atomic photon recoil en-
ergy. Here k= 2π/λ, m denotes the mass of the Cs atom, h is Planck’s constant,
and kB is Boltzmann’s constant. The lattice light as well as the light for the
dipole trap beams is derived from a single-frequency, narrow-band, highly-stable
Nd:YAG laser that seeds a home-built fibre amplifier [Lie03]. The maximum
output power is up to 20 W without spectral degradation. The powers in all
light beams are controlled by acousto-optical intensity modulators and intensity
stabilization servos.

3.3.3. Phase evolution and the Talbot effect

Our system, the BEC loaded into a 1D optical lattice with spacing d=λ/2, can
be modelled by a discrete nonlinear equation (DNLE) in one dimension [Sme03],
as discussed in our earlier work [Gus10]. In brief, this equation can be obtained
by expanding the condensate wave function from the Gross-Pitaevskii equation,
Ψ, in a basis of wave functions Ψj(z, r⊥) centred at individual lattice sites with
index j, Ψ(z, r⊥, t) =

∑
j cj(t)Ψj(z, r⊥). Here, z is the coordinate along the

(vertical) lattice direction, r⊥ is the transverse coordinate, and cj(t) are time-
dependent complex amplitudes. The atoms are restricted to move in the lowest
Bloch band and we can write Ψj(r⊥, z) =w

(j)
0 (z)Φ⊥(ρj, r⊥), where w

(j)
0 (z) are

the lowest-band Wannier functions localized at the j-th site and Φ⊥ρj, r⊥) is a
radial wave function depending on the peak density ρj at each site [Sme03]. By
inserting this form into the Gross-Pitaevskii equation and integrating out the
radial direction, the DNLE is obtained,

i~
∂cj
∂t

= J(cj−1 + cj+1) + Eint
j (cj)cj + Vjcj. (3.4)

Here, J/h is the tunnelling rate between neighbouring lattice sites, Vj =Fd j +
V trap
j describes the combination of a linear potential with force F and an external,

possibly time-varying trapping potential V trap
j , and Eint

j (cj) is the nonlinear term
due to interactions.

We first load the BEC into the vertical lattice and then allow the gravitational
force to tilt the lattice potential. We thus enter the limit Fd � J , in which
tunnelling between sites is inhibited and the on-site occupation numbers |cj|2
are constant, determined by the initial density distribution. The time evolution
of the system is then given by the time-dependent phases of all cj, and the 1D
wave function Ψ̃(q, t) in quasi-momentum space q acquires a particularly simple
form [Wit05]:
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Ψ̃(q, t) =
∑
j

cj(t)e
−iqjd =

∑
j

cj(0)e−i(Fdj+V
trap
j +Eint

j )t/~e−iqjd

=
∑
j

cj(0) e−i(q+
Ft
~ )jd e−i(βtr(j−δ)

2−αint(j−δ)2)t/~ (3.5)

Here, we have assumed that our external potential is harmonic, given by
V trap
j = βtr(j − δ)2, where βtr =mω2

zd
2/2 characterizes the strength of the po-

tential with trapping frequency ωz along z for a particle with mass m. The
parameter δ in the interval [−1/2, 1/2] describes a possible offset of the poten-
tial centre with respect to the nearest lattice well minimum along the z-direction.
For the interaction term αint, the spatial dependence is also parabolic, reflecting
the fact that we initially load a (parabolically shaped) BEC in the Thomas-
Fermi regime. In our experiments, the offset δ is not well controlled. It is nearly
constant on the timescale of a single experimental run (duration of up to 20 s),
but its value changes over the course of minutes as the positions of the horizon-
tally propagating laser beams generating the trapping potential and the position
of the retro-reflecting mirror generating the vertical standing wave drift due to
changes of the ambient conditions.

The phase evolution in equation 3.5 has a simple interpretation. The term
in the exponent linear in j results in Bloch oscillations [Gus08b, BD96, And98]
with a Bloch period TBloch = 2π~/(Fd). In figure 3.8(c) a full cycle of one BO,
corresponding to a Bloch phase from 0 to 2π, is shown. When restricting our-
selves to times that are integer multiples of TBloch this term can be omitted. The
nonlinear exponents proportional to j2 lead to a dephasing between lattice sites,
resulting in a time-varying interference pattern for the quasimomentum distri-
bution [Gus10]. In our experiments we have full control over these nonlinear
terms, not only over βtr via the external trapping potential, but also over the
interaction term characterized by αint via the scattering length as. Our previous
work [Gus10] has focused on the role of interactions, whereas in this work we
focus on the (nonlinear) term caused by the external potential. For this we tune
as in such a way that the term with αint is minimized. Now the phase evolution
depends only on the term with βtr. The offset δ slightly modifies the Bloch
period, resulting in a global shift of the interference pattern in quasimomentum
space when imaged at integer multiples of the original TBloch. However, as it
is irrelevant for the Talbot effect, we set δ to zero here. By including the sim-
plifications and introducing the Talbot time TTalbot =h/(mω2

zd
2), equation 3.5

reduces to

Ψ̃(q, t) =
∑
j

cj(0, q) e
−iπj2t/(2TTalbot) (3.6)

with cj(0, q) = cj(0) exp(−iqjd). Now the Talbot effect is evident. For times
that are even multiples of TTalbot the original wave function is recovered, whereas
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for odd multiples the original wave function appears with a shift of ~k in quasi-
momentum space. This realisation of the Talbot effect is nearly ideal, since no
paraxial approximation is needed and since there is no limitation in time due to
decreasing wave packet overlap [Den99]. For fractions n/m of TTalbot, m copies
of the original wave function with a spacing 2~k/m appear, corresponding to the
fractional Talbot effect. The evolution of the quasimomentum distribution as a
function of time can be visualized in terms of so-called matter-wave quantum
carpets [Kap00, Ruo01]. Such a quantum carpet, calculated by solving equa-
tion 3.4 numerically with the parameters typical to our experiment, is shown in
figure 3.9. Note that in this case the more simple calculation based on equation
3.6 leads to the same result. However, equation 3.4 gives us more flexibility
in relaxing the requirements of harmonic confinement or negligible tunnelling.
We plot the distribution as a line density plot with white areas indicating high
densities. Only times that are integer multiples of TBloch are shown. After a fast
spreading of the quasimomentum distribution a regular pattern appears at times
for which one expects fractional Talbot interferences. The number of peaks in
the momentum distributions directly represents the fraction t/TTalbot. At TTalbot

a refocusing to the initial distribution occurs, shifted by ~k in quasimomentum
space. The evolution is then repeated until at 2TTalbot the original wave function
is recovered.

3.3.4. Experimental realisation

For the present experiments we choose a lattice depth of 8 ER. For lattice load-
ing the interaction strength is set to as = 100 a0 and the external trap frequencies
are changed adiabatically to populate about 40 lattice sites. After loading, we
change ωz to the final value. This change is done sufficiently quickly (within
3 ms) to avoid a change in the initial distribution due to tunnelling, but suffi-
ciently slowly to avoid motional excitations along the z-direction. Then, within
0.1 ms, we switch off the levitating magnetic field gradient to decouple the in-
dividual lattice sites and set the scattering length to the value near as = 0 a0

that gives minimal dephasing [Gus08b]. Note that the point of minimal de-
phasing does not correspond exactly to 0 a0 as residual magnetic dipole-dipole
interactions have to be taken into account [Fat08b]. The shift is calculated to
be about −0.7 a0. After a variable hold time thold, which typically corresponds
to hundreds of Bloch cycles with TBloch = 0.575 ms, we switch the levitation field
back on in 0.1 ms and ramp down the optical lattice and the dipole trap re-
sponsible for trapping in the vertical direction in 0.3 ms. The ramp is adiabatic
with respect to the trap frequency of the individual lattice sites, ensuring that
the atoms stay in the lowest Bloch band and thus mapping quasimomentum
onto real momentum [Kas95]. Before taking an absorption picture we let the
sample expand for 80 ms while it remains levitated and thus map momentum to
real space. The dipole trap responsible for horizontal trapping is not turned off
immediately, but instead it is ramped down slowly over the course of 50 ms to
reduce spreading of the sample in the horizontal direction. At the same time,



TEMPORAL TALBOT EFFECT FOR TRAPPED MATTER WAVES 75

as is kept at the value that gives minimal interactions to avoid broadening of
the sample in the vertical direction. From the absorption pictures we calculate
the momentum width ∆p as two times the second moment of the momentum
distribution along the vertical direction. Note that the presence of the horizon-
tal trap during expansion leads to additional broadening in vertical direction.
This broadening plus some residual incoherent background limits the observable
values of ∆p. Nevertheless, with our ability to image the quasimomentum with
high resolution [Gus10] we are able to compare not only the momentum width
but also the substructure in the momentum distribution to theory.

Figure 3.10 shows the measured momentum distribution of the atom cloud at
specific hold times thold that are fractions of the calculated Talbot time TTalbot.
For this measurement we choose a vertical trap frequency of ωz = 2π×22.0(2) Hz,
which gives TTalbot = 555(10) ms. Figure 3.10(a) shows the absorption images as
density plots (white areas indicate regions with high density), while figure 3.10(b)
plots the horizontally integrated densities from the corresponding images of fig-
ure 3.10(a). Initially, the momentum distribution is singly peaked, as expected
for a non-dephased BEC. After a rapid coherent dephasing (corresponding to
a rapid broadening of the momentum distribution, not shown here) regularly
structured patterns appear. The number of peaks within the first Brillouin zone
[−~k,+~k] corresponds exactly to the fraction thold/TTalbot, as expected from
the theoretical considerations. A small fraction of the atoms is detected outside
the first Brillouin zone, likely caused by imperfections in the mapping of quasi-
momentum onto real momentum. Finally, at the Talbot time, the momentum
distribution rephases again to the initial distribution. In general, apart from
an overall shift of each individual distribution in quasimomentum space due to
variations in δ as discussed below, we find very good qualitative agreement with
the results of the calculation shown in figure 3.9.

Figure 3.11 illustrates the effect of δ on the observed patterns in quasimo-
mentum space. For two different hold times thold =TTalbot and thold =TTalbot/2,
absorption images for several individual experimental realisations and the corre-
sponding horizontally integrated densities are shown. The expected single- and
double-peaked momentum patterns are reproduced from one experimental reali-
sation to the next, but they experience a varying shift in quasimomentum space.
As a consequence of the periodic structure of quasimomentum space, a peak that
is located near one edge of the Brillouin zone also reappears at the opposite edge.
The maximum possible shift of the pattern in quasimomentum space due to δ
increases with hold time and is calculated to be ±~k× thold/TTalbot. This is why
the patterns shown in figure 3.10, e. g. at thold =TTalbot or at thold =TTalbot/2,
agree with the calculated patterns only modulo the shift in quasimomentum
space. Note that, alternatively, we could have chosen to present in figure 3.10
selected patterns from a sufficiently large sample of measurements, e.g. the one
from experimental run 4 for thold =TTalbot or the one from experimental run 1
for thold =TTalbot/2 shown in figure 3.11.

A simple quantitative comparison between experiment and calculations can
be done by considering the time evolution of the momentum width ∆p. The
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distribution of this quantity across several experimental realisations is evidently
sensitive to the de- and rephasing of the matter wave. In fact, we can relax
the choice of the Bloch phase and allow its value to be random. For example,
for a non-dephased BEC the momentum width ∆p is measured to range from
(∆p)min ≈ 0.6 ~k, corresponding to the singly peaked momentum distribution,
to (∆p)max ≈ 1.7 ~k when the momentum distribution is evenly peaked at both
edges of the Brillouin zone (e. g. at half the first Bloch period, see figure 3.8(c)).
For a completely dephased sample corresponding to a uniform distribution over
the first Brillouin zone we measure a value of ∆p ≈ 1.25 ~k. Accordingly, the
range for the momentum width ∆p at a given hold time thold shows a distinct
behaviour as a function of thold, in particular indicating the revival at TTalbot by
maximizing the difference D∆p = (∆p)max− (∆p)min between the extrema of ∆p.
Figure 3.12(a) shows (∆p)max and (∆p)min as a function of thold as calculated
from equation 3.4. Initially and at TTalbot the extrema lie far apart (at these
times the calculation gives values for (∆p)min that are close to zero in accordance
with the fact that the momentum width is determined only by the spread in
position space, which is large), whereas at intermediate times the difference is
drastically reduced, only increasing slightly at rational fractions of thold/TTalbot.
In figure 3.12(b) we plot the measured momentum width extrema. These are
determined from samples of 10 single measurements at each chosen value for thold.
The initial rapid collapse agrees well with the fact that the sample dephases.
Then, near the calculated value for TTalbot, a clear increase in D∆p can be seen.
The difference recovers almost completely to the initial value. We attribute the
slight reduction to additional dephasing mechanisms not included in our simple
model as discussed below.

The behaviour of D∆p offers a simple method to test the dependence of the
Talbot time TTalbot on the vertical trap frequency ωz. Evidently, D∆p has a max-
imum at TTalbot. Figure 3.13(a) shows the momentum width ∆p in the vicinity of
the calculated TTalbot, here for a specific trap frequency of ωz = 2π× 26.9(2) Hz.
Again we evaluate 10 experimental realisations for each hold time and select
(∆p)max and (∆p)min to calculate D∆p. We locate the position of its maximum
by a simple gaussian fit, as shown in figure 3.13(b). We then vary ωz and deter-
mine TTalbot accordingly. In Figure 3.13(c) TTalbot is plotted as a function of ωz.
The experimental values are in excellent agreement with the calculated values
for the Talbot time according to TTalbot =h/(mω2

zd
2).

We finally discuss the main limitations for our experiment. We believe that
the total number of subsequent revivals that we can observe (we detect up to
4 revivals) is mainly limited by three-body loss and by the anharmonicity of
the trapping potential. Three-body loss heats the two-dimensional BECs re-
siding at each lattice site. This leads to a loss of phase coherence and thus
decreases the visibility of the revivals. Perhaps more interestingly, the anhar-
monicity of the trapping potential along the vertical direction causes deviations
from the quadratic phase evolution required for the Talbot effect. In order to
test this effect we generate the vertical trapping potential with a more tightly
focused dipole trap beam, which enhances the effect of anharmonicity. We then
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observe non-perfect Talbot revivals followed by subrevivals as can be seen in
figure 3.14(a). This is in qualitative agreement with calculations shown in fig-
ure 3.14(b), for which the real gaussian shape of the trapping potential instead
of a simple harmonic one has been used. The full calculated time evolution
of the momentum distribution is shown in figure 3.14(c). The distortion of the
matter-wave quantum carpet can clearly be seen.

3.3.5. Conclusion

We have demonstrated the temporal Talbot effect with trapped, non-interacting
matter waves. High resolution imaging in quasimomentum space allows us to
resolve Talbot fringes up to the 10th order. We have tested the dependence
of the Talbot time on the strength of the confinement and have found very
good agreement with the calculated value. We find that the interference pattern
is sensitive to the anharmonicity of the trapping potential. In principle, the
detailed structure of the interference pattern and the precise revival times are
sensitive probes for force gradients and interactions between atoms. The weak
magnetic dipole-dipole interaction, for example, has recently been investigated in
the context of matter-wave interferometry [Fat08b]. Matter-wave interferometry
in the Talbot regime could potentially be used to examine in detail the effect
of the long-range nature of such an interaction. Similarly, a spatially dependent
force like the Casimir-Polder force [Cas48, Har05, Chw10] near a surface could
be investigated through its influence on the Talbot interference pattern.

We are indebted to R. Grimm for generous support and we thank A. Daley
for valuable discussions. We gratefully acknowledge funding by the Austrian
Science Fund (FWF) within project I153-N16 and within the framework of the
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Fig. 3.8.: (a) Magnetic-field dependence of the scattering length as for Cs atoms
in F = 3, mF = 3: Wide tunability is given by a broad magnetic Fesh-
bach resonance with a pole near −11 G (not shown), leading to a
region with attractive interaction, a zero crossing at about 17 G, and
a repulsive region above [Chi04b]. Two narrow Feshbach resonances
can be seen in the vicinity of 50 G. (b) Experimental configuration:
A vertically-oriented standing laser wave creating a stack of pancake-
shaped traps is intersected by two horizontal laser beams. (c) Bloch
oscillations: Time series in steps of about 57µs showing the quasimo-
mentum distribution over the course of one Bloch cycle.
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eas indicate a high occupation of the respective momentum state. (b)
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Fig. 3.10.: BEC-based temporal Talbot effect - experiment. (a) Series of ab-
sorption images after 80 ms of expansion, showing fractional Talbot
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the 10th order at TTalbot/10, 9th order at TTalbot/9, etc., down to the
0th order at the Talbot time (right). Note that the time axis is not
linear. White areas indicate higher density. (b) Horizontally inte-
grated density profiles obtained from the absorption images shown
in (a). Note that, e.g. for TTalbot/10, the outermost momentum
component appears twice, i.e. at both edges of the Brillouin zone.



TEMPORAL TALBOT EFFECT FOR TRAPPED MATTER WAVES 81

0 1 2 3 4

-1

-0.5

0

0.5

1

M
om

en
tu

m
 (ħ

k)

Experimental run

0 1 2 3 4

-1

-0.5

0

0.5

1

M
om

en
tu

m
 (ħ

k)

Experimental run
0 1 2 3 4

−1

−0.5

0

0.5

1

M
om

en
tu

m
 (ħ

k)

Experimental run

(a) (b)

(d)

0 1 2 3 4

−1

−0.5

0

0.5

1

M
om

en
tu

m
 (ħ

k)

Experimental run

(c)

Fig. 3.11.: Variations in the momentum distribution between successive ex-
perimental realisations for long hold times. (a) Absorption im-
ages of five individual experimental realisations with thold =TTalbot.
White areas indicate higher density. (b) Horizontally integrated
density profiles obtained from the absorption images shown in (a).
(c) Absorption images of five individual experimental realisations
with thold =TTalbot/2. (d) Horizontally integrated density profiles
obtained from the absorption images shown in (c). Note that, in
addition to the random shift in quasimomentum space caused by δ,
effects of horizontal dynamics, especially fragmentation and density
variations along the horizontal axis, can be observed.
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Fig. 3.12.: Talbot revival as evidenced by the spread of the momentum width
∆p. (a) Calculated (∆p)max (blue diamonds) and (∆p)min (black
circles) as a function of thold in units of TTalbot. (b) Measurement of
(∆p)max (blue diamonds) and (∆p)min (black circles) as a function
of thold in units of TTalbot for a vertical trap frequency of ωz = 2π ×
22.0(2) Hz. The extrema are determined from a sample of 10 single
experimental realisations for each value of thold.
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Fig. 3.13.: Talbot time TTalbot as a function of the external confinement
strength. (a) Momentum width ∆p in the vicinity of the expected
TTalbot for a dipole trap frequency of ωz = 2π× 26.9(2) Hz for 10 sin-
gle experimental realisations (black circles). The extrema (∆p)max

and (∆p)min are indicated as red diamonds. (b) Calculated D∆p for
the measured extrema in (a). The solid line represents a gaussian fit,
from which TTalbot is derived. (c) Dependence of TTalbot on the trap
frequency νz =ωz/(2π). The black (blue) circles (diamonds) repre-
sent measurements for which the external harmonic trap is generated
by the dipole trap beam with 46µm (144µm) beam waist. The solid
line gives the calculated values for TTalbot. The vertical error bars
are the 1σ uncertainty of the maximum position of the gaussian fit
as shown in (b). The horizontal error bars are equal or smaller than
the symbol size.
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Fig. 3.14.: Effect of the anharmonic trapping potential on the momentum dis-
tribution. (a) Momentum width ∆p in the vicinity of the expected
TTalbot for a dipole trap frequency of 2π × 31.1(2) Hz for 10 single
experimental realisations (black circles). The vertical dipole trap is
created by the more tightly focused dipole trap beam with a beam
waist of 46µm. The extrema (∆p)max and (∆p)min are indicated as
red diamonds. (b) Calculated (∆p)max and (∆p)min in the vicinity
of the expected TTalbot for the same experimental parameters as in
(a). For the trapping potential the real gaussian shape of the dipole
trap is used. (c) Full calculation of the momentum distribution as a
function of the hold time thold using the same parameters as in (b).
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Oscillations

Phys. Rev. Lett. 104, 200403 (2010)†
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Lukas Reichsöllner, and Hanns-Christoph Nägerl

Institut für Experimentalphysik und Zentrum für Quantenphysik,

Universität Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria

Particles in a perfect lattice potential perform Bloch oscillations when subject
to a constant force, leading to localization and preventing conductivity. For
a weakly-interacting Bose-Einstein condensate (BEC) of Cs atoms, we ob-
serve giant center-of-mass oscillations in position space with a displacement
across hundreds of lattice sites when we add a periodic modulation to the
force near the Bloch frequency. We study the dependence of these “super”
Bloch oscillations on lattice depth, modulation amplitude, and modulation
frequency and show that they provide a means to induce linear transport in
a dissipation-free lattice.

†The author of the present thesis contributed to this work by maintaining and improving the
experimental setup and paper writing.
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3.4.1. Introduction

Understanding the conduction of electrons through solids is of fundamental con-
cern within the physical sciences. The simplified situation of an electron under
a constant force F within a perfect, non-dissipative, periodic lattice was origi-
nally studied by Bloch and Zener [Blo28, Zen34] over 70 years ago. Their and
subsequent studies revealed that the particle would undergo so-called Bloch os-
cillations (BOs), a periodic oscillation in position and momentum space, thereby
quenching transport and hence resulting in zero conductivity. BOs can be viewed
as periodic motion through the first Brillouin zone, resulting in a Bloch period
TB = 2~k/F , where k = π/d is the lattice wave vector for a lattice spacing d.
They result from the interference of the particle’s matter wave in the presence of
the periodic lattice structure, requiring a coherent evolution of the wave during
the time TB. Generally, it is believed that conductance is restored via dissipative
effects such as scattering from lattice defects or lattice phonons [Kan95, Ash76].
In bulk crystals, relaxation processes destroy the coherence of the system even
before a single Bloch cycle is completed. These systems thus exhibit conduc-
tivity but prevent the observation of BOs. To observe BOs, the BO frequency
νB = 1/TB must be large compared to the rate of decoherence. In semiconduc-
tor superlattices, where the Bloch frequency is enhanced, a few cycles have been
observed [Leo92].

A recent approach to observe and study BOs is to use systems of ultracold
atoms in optical lattice potentials with a force that is provided by gravity or by
acceleration of the lattice potential. In these engineered potentials, generated
by interfering laser waves, dissipation is essentially absent, and decoherence can
be well-controlled [Gus10]. Essentially all relevant system parameters are tun-
able, e.g. lattice depth and spacing, particle interaction strength, and external
force, i.e. lattice tilt. For sufficiently low temperatures, a well-defined narrow
momentum distribution can initially be prepared. BOs have been observed for
thermal samples [BD96, Bat04, Fer06], for atoms in weakly-interacting Bose-
Einstein condensates (BECs) [And98, Mor01, Gus08b], and for ensembles of
non-interacting quantum-degenerate fermions [Roa04]. Non-interacting BECs
[Gus08b, Fat08a] are ideally suited to study BOs as interaction-induced dephas-
ing effects are absent, allowing for the observation of more than 20000 Bloch
cycles [Gus08b].

As for any oscillator, classical or quantum, it is natural that one investi-
gates the properties of the oscillator under forced harmonic driving. The dy-
namics of a harmonically driven Bloch oscillator has recently been the subject
of several theoretical [Kor03, Har04, Tho02, Kol09] and experimental studies
[Wil96, Sia08, Iva08, Alb09]. For example, modulation-enhanced tunneling be-
tween lattice sites [Sia08, Iva08] and spatial breathing of incoherent atomic sam-
ples [Alb09] have been observed. Here, for a weakly-interacting atomic BEC in
a tilted lattice potential, we demonstrate that harmonic driving can lead to
directed center-of-mass motion and hence to transport. More strikingly, for
slightly off-resonant driving, we observe giant matter-wave oscillations that ex-
tend over hundreds of lattice sites. These “super Bloch oscillations” result from
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a beat between the usual BOs and the drive. They are rescaled BOs in position
space and can also be used, by appropriate switching of the detuning or the
phase, to engineer transport.

3.4.2. Super Bloch oscillations

The experimental starting point is a tunable BEC of 1.2 × 105 Cs atoms in
a crossed beam dipole trap [Kra04] adiabatically loaded within 400 ms into
a vertically oriented 1D optical lattice [Gus08b] as illustrated in Fig. 3.15(a).
The lattice spacing is d = λ/2, where λ = 1064.49(1) nm is the wavelength of
the light. Unless stated otherwise, we work with a shallow lattice with depth
V = 3.0(3) ER, where ER = h2/(2mλ2) is the photon recoil energy for particles
with mass m. The atoms are initially levitated against gravity by means of a
magnetic field gradient and spread across approximately 50 lattice sites with
an average density near 5 × 1013 cm−3 in the central region of the sample. We
control the strength of the interaction as measured by the s-wave scattering
length a near a Feshbach resonance [Kra04]. Throughout this work, unless
stated otherwise, we work at a = 11(1) a0, where a0 is Bohr’s radius. We
initiate BOs by removing, the dipole trap confinement in the vertical direction
and by reducing the levitation in 1 ms to cause a force that is a small fraction of
the gravitational force mg, for which νB is near 100 Hz. An additional harmonic
modulation of the levitation gradient then results in an oscillating driving force
F (t) = F0 + ∆F sin(2πνt+ φ), where F0 is the constant force offset, ∆F is the
amplitude of the modulation, ν is the modulation frequency, and φ is a phase
difference between the BOs and the drive. After a given hold time τ we switch
off all optical beams and magnetic fields and take in-situ absorption images after
a short delay time of 800µs.

We first determine the excitation spectrum. Fig. 3.15(b) shows the 1/
√
e-

width W of the matter wave after τ = 2 s as a function of ν. A series
of narrow resonances at rational multiples of νB can clearly be identified. In
agreement with recent experiments [Sia08, Iva08], we attribute these resonances
to modulation-enhanced tunneling between lattice sites, leading to dramatic
spreading of the atomic wave packet. Tunneling between nearest neighbor lat-
tice sites is enhanced when νB is an integer multiple j of ν via a j-phonon process
[Eck05a], while tunneling between lattice sites i lattice units apart is enhanced
when ν is an integer multiple i of νB. Even combinations thereof, e.g. i/j = 2/3
or 2/5, are detectable.

We now investigate the dynamics of the wave packet in more detail. For
this, we use the resonance with i= j = 1 and choose ν = νB + ∆ν, where ∆ν
is the detuning. In Fig. 3.16(a)-(d) we present absorption images and spatial
profiles for the weakly-interacting BEC. The time evolution for the width, shape,
and center position of the BEC is dramatic. On resonance (∆ν = 0), (c) and
(d), the atomic ensemble spreads as it develops pronounced edges. Also, as
we will see below, the center-of-mass motion depends crucially on the phase φ.
Off resonance, (a) and (b), for small detuning ∆ν = −1 Hz, the wave packet



88
INDUCING TRANSPORT IN A DISSIPATION-FREE LATTICE WITH SUPER

BLOCH OSCILLATIONS

exhibits giant oscillatory motion across hundreds of lattice sites that we denote
as “super Bloch oscillations” (sBO). Note that, for the parameters used here, the
amplitude for ordinary BOs corresponds to about 4d = 2.1 µm. Also the width
and higher moments of the distribution show oscillatory behavior. In Fig. 3.16(e)
we plot the center-of-mass position as a function of time for ∆ν = −1 Hz. At
a = 11(1) a0 we typically observe sBOs over the course of several seconds.
The dynamics of sBOs strongly depends upon the site-to-site phase evolution
of the matter-wave. In fact, stronger interactions, e.g. a = 90(1) a0, distort
the density profile of the driven BEC and alter the BEC’s oscillation frequency
and amplitude. For sufficiently strong interactions, no sBOs are observed. We
also attribute the wave-packet spreading as seen after one cycle in Fig. 3.16(b)
mostly to interactions. For the measurements above, we intentionally use a
large modulation amplitude ∆F to enhance the amplitude of sBOs. However,
all effects equally exist for ∆F � F0, as we will also demonstrate below in
Fig. 3.18(b).

3.4.3. Models and data analysis

It is useful to develop a simple semi-classical model to obtain a qualitative
understanding of the origin of sBOs. The only elements of this model are that
the wave packet is accelerated by the applied force and that, once the wave packet
reaches the edge of the first Brillouin zone, it is Bragg reflected. This model
does not include an effective mass and cannot be used to predict quantitative
results. Fig. 3.17(a)-(d) shows the result of a numerical integration of the time-
dependent acceleration a(t) = F0/m+∆F/m sin(2π(νB+∆ν)t+φ) with periodic
Bragg reflection. For a constant acceleration ∆F = 0, the wave packet’s velocity
shows the well-known saw-tooth-like time evolution that corresponds to BOs.
The curve in (a) is symmetric, hence, there is no net movement, as indicated
by the shaded regions of equal area. If, however, there is additional harmonic
modulation at ν = νB, the velocity excursions will not be symmetric about zero,
(b), and result in a net movement for each period, leading to linear motion, (c).
Only for φ = π/2 or φ = 3π/2 symmetry is restored and no net movement will
occur. Note that, in general, the velocity of the linear motion depends non-
trivially on φ. Off-resonant modulation with ∆ν � νB induces a slowly-varying
phase mismatch between the drive and the original Bloch period. This results in
a slow oscillation of the net movement for each Bloch cycle, which finally sums
up to a giant oscillation in position space, (d). Evidently, this oscillation is the
result of a beat between the drive and the original BO. The initial direction of
the motion depends on φ and ∆ν. In particular, a change in the sign of ∆ν at a
given φ can lead to opposite motion in position space, as verified experimentally
in Fig. 3.17(e) for ∆ν = ±1 Hz.

A quantitative understanding of sBOs [Kol09] can be obtained from an ap-
proach based on Wannier-Stark states [Tho02]. In essence, the harmonic drive
is expected to lead to a rescaling of the tunneling rate J → Jeff = JB1(∆F/F0)
and the force F0 → Feff = h∆ν/d for a stationary lattice with tilt. Here, B1
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is the first Bessel function of the first kind. The amplitude of sBOs is thus
given by a new Wannier-Stark localization length Leff ≈ Jeff/(dFeff) [Kol09]. In
this sense, sBOs are rescaled BOs. We quantitatively study the dependence of
amplitude and period of sBOs on ∆ν, ∆F/F0, and V . The results are shown
in Fig. 3.18. As expected, the period T is given by 1/∆ν. Also, the oscilla-
tion amplitude scales as 1/∆ν, and its Bessel-function dependence on ∆F/F0

is well reproduced. Given our spatial resolution, we can observe sBOs down
to ∆F/F0 = 0.08 (Fig. 3.18(b)). Note that sBOs can only be observed with
sufficient wave function coherence and for well-defined initial conditions, i.e. for
sufficient wave packet localization in the first Brillouin zone of the lattice. Never-
theless, incoherent atomic samples exhibit a breathing of the spatial distribution
[Alb09] as the oscillation period is insensitive to the initial conditions. In the
work of Ref.[Alb09], the breathing can be understood in terms of an incoher-
ent sum over localized Wannier-Stark states that individually show a breathing
motion with period T [Tho02].

3.4.4. Inducing transport

The results above provide two mechanisms to circumvent the localization inher-
ent in BOs and to induce coherent transport in an otherwise insulating context.
As shown in Fig. 3.19(a), resonant modulation (∆ν = 0) causes directed motion
of the wave packet’s center-of-mass. For longer times, we find that the motion is
approximately linear. The mean velocity depends on the relative phase φ of the
Bloch oscillator and the drive. In the experiment, we varied φ via φ = φ0 + ∆φ,
where φ0 is a constant phase offset, which depends on the details how BOs are
initiated. For off-resonant modulation, transport can be induced by switching
the sign of ∆ν before a half-cycle of a sBO is completed. The wave packet then
continues to move in the original direction. This motion is shown in Fig. 3.19(b),
where we switch the sign after 400 ms. For comparison, Fig. 3.19(c) shows a
sBO with T = 1 s without switching.

3.4.5. Conclusion

In summary, we have studied the coherent evolution of matter waves in tilted
periodic potentials under forced driving and have observed giant sBOs, which
result from a beat of BOs with the drive when a small detuning ∆ν from the
Bloch frequency is introduced. Localization as a result of BOs is broken, allow-
ing us to engineer matter wave transport over macroscopic distances in lattice
potentials with high relevance to atom interferometry [Cro09]. We are now in a
position to investigate the effect of interactions on driven transport, for which
subdiffusive and chaotic dynamics have been proposed [Kol09].

During the final preparation of the manuscript we became aware of related
work on non-dissipative transport in a quantum ratchet [Sal09]. We thank A.
R. Kolovsky, A. Zenesini, and A. Wacker for discussions and R. Grimm for
generous support. We acknowledge funding by the Austrian Ministry of Science
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and Research and the Austrian Science Fund and by the European Union within
the framework of the EuroQUASAR collective research project QuDeGPM. R.H.
is supported by a Marie Curie Fellowship within FP7.
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Fig. 3.15.: (color online) Experimental setup (a) and excitation spectrum (b)
for atoms in a tilted periodic potential. The width W is plotted as
a function of the drive frequency ν. The resonances correspond to a
drastic spreading of the atomic wave packet as a result of modulation-
assisted tunneling [Sia08] when ν ≈ i/j × νB, where i, j are inte-
gers. The parameters are F0 = 0.096(1)mg, ∆F = 0.090(4)mg,
V = 3.0(3) ER, and τ = 2 s. The dashed line is a guide to the eye.
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Fig. 3.16.: (color online) Observation of super Bloch oscillations and
modulation-driven wave packet spreading. (a) and (b) In-situ ab-
sorption images and density profiles for off-resonant modulation
(∆ν = −1 Hz), showing giant oscillatory motion across more that
200 sites. (time steps of 120 ms, average of 4 images).(c) and (d)
In-situ absorption images and density profiles for resonant modu-
lation (∆ν = 0 Hz), showing a wave packet that spreads symmet-
rically (time steps of 100 ms, average of 4 images). The phase φ
was adjusted to allow for a symmetric spreading, corresponding to
a calculated value of φ = π/2. For (a)-(d), the parameters are
F0 = 0.062(1)mg, ∆F = 0.092(4)mg, V = 3.0(3)ER, a = 11(1)
a0. (e) Center-of-mass motion for a = 11(1)a0 (circles), a = 90(1)a0

(diamonds), a = 336(4)a0 (squares).
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Fig. 3.17.: (color online) Results from a semi-classical model for sBOs. (a) For
a constant force, here F0 = 0.06mg, the velocity (in units of ~k/m)
exhibits a symmetric, saw-tooth-like time evolution, typical for BOs.
(b) Resonant modulation, here with ∆F = 0.8F0, alters the sym-
metric periodic velocity excursions of normal BOs (φ = 0, solid line,
φ = π, dashed line), leading to a net-movement, (c), with φ = 0 (i),
φ = π/2 (ii), and φ = π (iii). An additional detuning ∆ν = ±0.1νB
results in a periodically changing phase difference and hence in giant
oscillations in position space, (i) and (ii) in (d). On top of the mo-
tion, normal BOs can clearly be seen. The phase of sBOs depends
on the sign of ∆ν, as shown by experimental data in (e), where
F0 = 0.096(1)mg, ∆F = 0.090(4)mg, ∆ν = 1 Hz (circles), −1 Hz
(squares).
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Fig. 3.18.: (color online) Quantitative analysis of sBOs. (a) The effect of the
detuning ∆ν on the oscillation frequency and the amplitude of sBOs,
with ∆ν = 0.5 Hz (circles), 1 Hz (squares), 2 Hz (diamonds). Right:
The solid lines are fits with linear and ∆ν−1-dependence, respec-
tively. (b) Dependence of the amplitude of sBOs on ∆F/F0. The
data sets correspond to ∆F/F0 = 1.52 (circles), 0.76 (squares),
0.15 (diamonds), 0.08 (stars). Right: The solid line is a fit pro-
portional to B1(∆F/F0). (c) Amplitude of sBOs as a function of
lattice depth, V= 3 ER (circles), 4 ER (squares), 5 ER (diamonds),
7 ER (triangles). Right: The solid line is a fit proportional to J ,
for which we omit the first data point for the shallow lattice. If not
stated otherwise, the parameters for all measurements shown here
are F0 = 0.062(1)mg, ∆F = 0.092(4)mg, ∆ν = −1 Hz.
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Fig. 3.19.: (color online) Inducing transport and suppressing interaction-
induced dephasing. (a) Linear motion for resonant modulation.
∆φ = 0◦ diamonds, 65◦ circles, 120◦ triangles, 190◦ squares. ∆φ = 0◦

and ∆φ = 190◦ were chosen to maximize the speed in opposite di-
rections. The solid lines are linear fits to the data points excluding
the first data point. For comparison we plot the linear motion that
corresponds to a tunneling rate of Jeff , dotted lines. (b) Directed
motion for off-resonant modulation. ∆ν was switched from −1 Hz
to 1 Hz after 400 ms. For comparison, (c) shows the oscillatory mo-
tion without switching (time steps of 80 ms). The parameters are
F0 = 0.096(1)mg, ∆F = 0.090(4)mg.





CHAPTER 4

ULTRACOLD ROVIBRONIC GROUNDSTATE

MOLECULES

4.1. Introduction

In this chapter, we report on our results of the creation of ultracold rovibronic
groundstate molecules via association of cesium atoms to weakly bound dimers
and subsequent transfer into deeply bound molecular states with the Stimu-
lated Raman Adiabatic Passage (STIRAP) technique [Ber98]. Especially ultra-
cold molecules in the rovibronic groundstate are of high interest, since collision-
induced relaxations are absent and reactive collisions are energetically forbidden
for most alkaline dimers [Żuc10]. They would allow collisional studies and the
investigation and control of chemical reactions [Wei99, Kre08, Dul09], and in the
case of heteronuclear dimers [Osp06a] enable the realization of dipolar quantum
gases, as they exhibit a permanent electric dipole moment [Ni08] introducing
long range anisotropic dipole-dipole interactions. A more detailed introduction
and description of the experiments discussed in this chapter is given in the PhD
thesis of Johann Danzl [Dan10a].

Several possible ways can lead to the creation of a trapped, high phase-space
density sample of the rovibronic groundstate molecules. Direct laser cooling
of molecules, recently demonstrated by Shuman et al. [Shu10], holds a great
potential for the future, but is currently not able to cool molecules into the
quantum degenerate regime. The same holds for methods directly cooling and
slowing molecules [van08, Nar08, Mee09], as the temperatures they are currently
able to reach are on the order of mK. Direct photoassociation [Wyn00, Jon06] in
laser cooled atomic clouds produces molecules with very low temperatures, but
does not reach high densities. The most successful method at the moment is the
association of already ultracold atoms via magnetic field ramps using a Feshbach
resonance [Köh06] and the subsequent transfer to the rovibronic ground state
using STIRAP. This methods preserve the already high phase space density of
ultracold atoms, and all created molecules populate one defined molecular state.

97
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A trivial requirement for the creation of ultracold molecules via Feshbach as-
sociation is the existence of such magnetically tunable resonances. As discussed
already in section 1.6 they appear when the energy of a molecular state crosses
the energy threshold of free atoms. Cesium in the lowest hyperfine state offers
a rich molecular structure at low magnetic fields. Figure 4.1 shows the energy
of the most relevant molecular states relative to the threshold of free atoms for
cesium in the low magnetic field region.

Fig. 4.1.: Molecular structure of Cs2 near threshold. The molecular states are
labeled according to f, l, (mf ), with ~f = ~F1 + ~F2 the sum of the total

atomic spins ~F1, 2 and mf its projection, and the rotation l = 0, 2, 4
labeled as s, d, g-states [Chi04b]. Each crossing of a molecular state
with the threshold gives rise to a Feshbach resonance with a width
depending on the strength of the coupling between the states. The
curvature of the 6s(6) state is the result of a huge avoided crossing
with a molecular state from the uppermost hyperfine channel. The
figure is taken from [Dan10a].

Especially the Feshbach resonances connected to the 4d(4) and 4g(4) molecu-
lar states are typically used for the production of weakly bound dimers. For the
subsequent transfer to deeply bound states the 6s(6) state is of special interest,
since its character changes below the curvature at ∼ 20 G into a molecular state
from the uppermost hyperfine channel, leading to an effective binding energy of
more than 2×hνCs with νCs ≈ 9.19 GHz the hyperfine splitting in cesium. Thus
the wavefunction overlap and therefore the coupling strengths to deeply bound
states of the electronically excited state potential improves substantially.

The general scheme of our experiments is shown in Figure 4.2. After the
production of a cesium BEC, we adiabatically load the BEC into our three-
dimensional cubic lattice and drive the phase transition from the superfluid
phase to the Mott insulator as already discussed in chapter 2. During this
loading, we adapt the external confinement given by the additional dipole trap
beams such that we maximize the number of doubly occupied sites [Vol06]. Us-
ing a Mott insulator as starting state for the transfer, losses due to inelastic
molecule-molecule or atom-molecule collisions are greatly reduced. By ramping
the magnetic field over a Feshbach resonance, we associate the atoms at doubly
occupied sites to weakly bound molecules [Vol06] in the corresponding molec-
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ular state. The remaining atoms are removed from the system by a combined
microwave- and light-pulse [Tha06], and the molecules are transferred to the
6s(6) state, passing several avoided crossings, where we either ramp over adia-
batic to change the molecular state or jump across fast enough to stay in the
same state. The pure molecular sample is then transfered into an intermediate
deeply bound state with a STIRAP sequence using lasers 1 and 2. Another
STIRAP sequence using lasers 3 and 4 brings the molecules into the rovibronic
ground state. An alternative transfer scheme employs a direct 4-photon STIRAP
sequence, where lasers 1 and 4 perform the STIRAP sequence and laser 2 and 3
are kept on during the whole transfer, effectively coupling all the intermediate
states together. To measure the amount of successfully transferred molecules,
we reverse the whole procedure and count the number of reappearing atoms.

Fig. 4.2.: Production and transfer scheme of Cs2 groundstate molecules. After
loading a BEC into a 3D optical lattice and preparing a Mott insulator
state, doubly occupied sites are transfered to weakly bound molecules
via a adiabatic ramp over a magnetic feshbach resonance. In the first
STIRAP step the molecules are transfered from the feshbach state
|1> with lasers 1 and 2 over the excited state |2> into the deeply
bound intermediate state |3> with a binding energy of ∼ 30 THz.
The second STIRAP step transfers the molecules from state |3> into
the rovibronic groundstate |5> via excited state |4> using lasers 3 and
4. The figure is adapted from [Dan10b]

The first step towards implementation of this scheme was the realization of the
STIRAP transfer to the intermediate molecular state described in section 4.2.
We showed that such a transfer between a weakly bound dimer and an chemically
bound molecule with an binding energy of ∼ h× 30 THz can be realized with a
high efficiency of over 80 %. The coherent character of the transfer was probed
via a Ramsey-type experiment, showing interference between the weakly and
deeply bound molecular state. Without employing the optical lattice for this
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measurement, we were able to show that the molecular sample was not heated
due to the transfer process. In Section 4.3 we repeated the measurement of this
transfer step including the preparation of the molecular sample in an optical
lattice. We were able to show that the transfer efficiency is not affected by the
presence of the optical lattice, yet the rather short lifetime of the deeply bound
molecules in the optical lattice of 20 ms indicated that near-resonant scattering
from the lattice light has to be taken into account.

In section 4.4 we realized the second STIRAP transfer step into the rovibronic
ground state reaching an overall transfer efficiency of ∼ 60 %. By probing the
lattice band structure with modulation spectroscopy we were able to calculate
the polarizibility of the groundstate molecules, showing that our lattice fulfills
the magic wavelength condition between the ground state molecules and the
weakly bound dimers [Vex11]. This means that we have prepared rovibronic
groundstate molecules in the lowest motional state on each lattice site, enabling
us to perform fully state-selective experiments. The lifetime of the molecules
in the lattice of more than 8 s proves that the lattice light is far off-resonant
for excitations of the rovibronic groundstate, allowing long hold times for future
experiments in the lattice and dipole traps. After improving the overall transfer
efficiency, the dynamical melting of the lattice should enable us to create a stable
BEC of rovibronic groundstate molecules [Jak02].

In Section 4.5 and 4.6 we show detailed spectroscopy data on the molecular
levels needed for the first and second STIRAP transfer step. These measure-
ments were necessary prerequisites for performing the transfers between the
molecular states and contributed to theoretical improvements on the excited
state calculations [Bai11].
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4.2. Publication: Quantum gas of deeply bound

ground state molecules

Science 321, 1062 (2008)†

Johann G. Danzl1, Elmar Haller1, Mattias Gustavsson1, Manfred J. Mark1,
Russell Hart1, Nadia Bouloufa2, Olivier Dulieu2, Helmut Ritsch3,

and Hanns-Christoph Nägerl1

1Institut für Experimentalphysik und Zentrum für Quantenphysik,
Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

2Laboratoire Aimé Cotton,
Université Paris-Sud Bât. 505, 91405 Orsay Cedex, France

3Institut für Theoretische Physik und Zentrum für Quantenphysik,

Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria

Molecular cooling techniques face the hurdle of dissipating translational as
well as internal energy in the presence of a rich electronic, vibrational, and
rotational energy spectrum. Here, we create a translationally ultracold, dense
quantum gas of molecules bound by more than 1000 wavenumbers in the
electronic ground state. Specifically, we stimulate with 80% efficiency a two-
photon transfer of molecules associated on a Feshbach resonance from a Bose-
Einstein condensate of cesium atoms. In the process, the initial loose, long-
range electrostatic bond of the Feshbach molecule is coherently transformed
into a tight chemical bond. We demonstrate coherence of the transfer in a
Ramsey-type experiment and show that the molecular sample is not heated
during the transfer. Our results show that the preparation of a quantum gas
of molecules in specific rovibrational states is possible and that the creation
of a Bose-Einstein condensate of molecules in their rovibronic ground state is
within reach.

†The author of the present thesis contributed to this work by assisting the experimental
measurements. He also maintained and improved the experimental setup and contributed
to the paper writing.
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4.2.1. Introduction

Ultracold samples of molecules are ideally suited for fundamental studies in
physics and chemistry, ranging from few-body collisional physics [Chi05, Kra06,
Sta06, Zah06], ultracold chemistry [Kre05], and high resolution spectroscopy
[Zel08, DeM08], to quantum gas preparation, molecular Bose-Einstein conden-
sation [Ing08], and quantum processing [DeM02]. For many of the proposed ex-
periments full control over the molecular wave function in specific deeply bound
rovibrational states is needed. High densities are required for molecular quan-
tum gas studies. Only in the rovibronic ground state, i.e. the lowest vibrational
and rotational energy level of the electronic ground state, is collisional stability
assured. However, direct molecular cooling towards high phase space densities
seems yet out of reach [Doy04], whereas techniques like Feshbach association
[Köh06] and photoassociation [Jon06] either produce molecules exclusively in
weakly bound rovibrational levels, or suffer from low production rates and low
state selectivity.

In order to produce a quantum gas of molecules in their absolute ground
state, Jaksch et al. [Jak02] proposed a scheme for homonuclear alkali molecules
in which the technique of stimulated two-photon transfer is repeatedly applied
to molecules associated from a high-density sample of ultracold atoms. The
initially very loosely bound molecules are transferred in successive steps to the
rovibrational ground state of the singlet X1Σ+

g molecular potential. The ad-
vantage of this scheme is that it is fully coherent, not relying on spontaneous
processes, and that it involves only a very small number of intermediate lev-
els. It promises that a ground state binding energy of typically 0.5 eV can
be carried away without heating the molecular sample. It essentially preserves
phase space density, allowing the molecular sample to inherit the high initial
phase space density from the atomic sample. However, to realize this scheme,
several challenges have to be met. First, there is a large difference in internu-
clear separation that has to be bridged: the overlap between the radial wave
function of the least bound molecules with the radial wave functions of deeply
bound molecular levels is extremely low, potentially leading to prohibitively low
transition rates for the two-photon transitions. Second, the scheme requires the
identification of suitable intermediate molecular levels while strictly avoiding
parasitic excitations. Third, a large difference in binding energy has to be over-
come. On a more technical side, the lasers driving the two-photon transitions
at widely different wavelengths need to have extremely low relative short term
phase jitter and high long term frequency stability to allow for coherence and
reproducibility. In important experiments, Winkler et al. [Win07] and recently
Ospelkaus et al. [Osp08] demonstrated highly efficient two-photon transfer into
lower lying molecular levels starting from weakly bound dimer molecules, which
were associated from ultracold atoms on a Feshbach resonance [Köh06]. How-
ever, the transferred molecules are still weakly bound. Their binding energy,
on the order of the atomic hyperfine splitting, is less than 10−4 of the binding
energy of the rovibrational ground state, and wave function overlap with this
state is still negligible.
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Here we demonstrate the crucial step towards full control of the molecular
wave function and towards the formation of a Bose-Einstein condensate (BEC)
of molecules in their rovibronic ground state by linking weakly bound molec-
ular states with deeply bound rovibrational states. We coherently transfer an
ultracold quantum gas of weakly bound cesium Feshbach molecules to the rovi-
brational level |ν = 73, J = 2> of the singlet X1Σ+

g potential, bound by 1061
cm−1 ( or h×31.81 THz), corresponding to more than one fourth of the binding
energy of the rovibrational ground state. To achieve this result, we overcome low
wave function overlap by using a suitable intermediate excited molecular state
while avoiding excitation into loss channels, and we reference the transfer lasers
to a frequency comb, allowing us to flexibly bridge binding energy differences of
more than 1000 cm−1.

4.2.2. Preparation of Feshbach molecules

Figure 4.3 shows the energy of the relevant molecular and atomic states. Our
experiment starts with a cigar-shaped BEC of cesium atoms in the lowest hy-
perfine sublevel F = 3,mF = 3 in an optical dipole trap. For BEC production,
we essentially follow the procedure detailed in [Web03a]. For Feshbach molecule
production out of the BEC, we ramp up the offset magnetic field from the initial
value of 2.1 mT to about 5.0 mT in 10 ms. We then ramp down, sweeping across
a d-wave Feshbach resonance at 4.8 mT after about 1 ms as shown in Figure 4.3B
[Her03, Mar07a]. Our procedure [Her03] gives an ultracold and dense sample of
up to 11000 molecules every 10 s at densities above 1×1011 cm−3. For the state
transfer experiments discussed here, we do not separate the molecules from the
original BEC. Upon lowering the magnetic field, the molecules are transferred
from the initial state |d> to a still weakly bound s-wave molecular state |s> of
the lowest hyperfine channel (F1 = 3, F2 = 3) via an avoided crossing [Mar07a].
The index i=1, 2 denotes the i-th atom.

Upon further lowering the magnetic field to about 2.2 mT, the molecules enter
into a closed channel s-wave molecular state |a> via a second, broad avoided
crossing [Mar07a]. This state belongs to the uppermost hyperfine channel (F1 =
4, F2 =4) and thus has an effective binding energy of more than 2× hνCs. Here
h is Planck’s constant and νCs ≈ 9.19 GHz is the Cs clock frequency. Similar
to |s> this state is a mixture of the X1Σ+

g ground state and the lowest triplet
a3Σ+

u state, coupled by hyperfine interaction, and it has zero rotational angular
momentum. At a field of 1.9 mT, it has a binding energy of 5 MHz×h with
respect to the F = 3,mF = 3 two-atom asymptote [Mar07a]. As one might
expect, we find that optical transition rates as measured below are improved
when using this effectively more deeply bound state as the initial state for two-
photon transfer instead of state |s>. We shut off the trap and perform all
subsequent experiments in free flight. This does not affect the particle density
immediately, but reduces it during the later detection procedure, which takes
about 6ms, in order to avoid collisions between atoms and weakly bound dimers
and hence loss. We detect molecules in |a> via states |s> and |d> by first
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applying a magnetic field gradient for atom-molecule Stern-Gerlach separation,
then reversing the magnetic field ramp, and finally dissociating them on the
Feshbach resonance at 4.8 mT, and imaging the resulting atoms [Her03].

4.2.3. Molecular spectroscopy

Efficient two-photon transfer via the stimulated Raman adiabatic passage (STI-
RAP) technique [Ber98, Win07] relies on a suitable choice for the excited state
|e>. In our case this state must have singlet character so that it can be used as a
transfer state to deeply bound levels of the X1Σ+

g potential. In general, it must
be well separated from other states, which otherwise could be off-resonantly
excited. It should thus be situated far to the red of the excited S 1

2
+P 1

2
poten-

tial asymptote to avoid the high density of excited molecular states near that
asymptote. We have performed optical loss spectroscopy starting from state
|a> in the wavelength range from 1120 to 1130 nm, about 2300 cm−1 to the
red of the cesium D1 line. For this measurement we recorded the number of
remaining molecules in |a> as a function of excitation wavelength and found
two progressions of lines, which we assign to the potential curves of the mixed
(A1Σ+

u−b3Πu) 0+
u excited states and to the (1)3Σ+

g excited state, respectively. For
the present experiments, we choose for |e> a level of the 0+

u progression which is
8879.63(1) cm−1 above the F =3,mF =3 two-atom asymptote, corresponding to
a transition wavelength of 1126.173(1) nm (Figure 4.3A). We measure all wave-
lengths on a home-built wavemeter. We identify this previously unknown level
as the 225th one of the 0+

u system, with an uncertainty of two in the absolute
numbering.

The ground state level |g> with vibrational quantum number ν = 73 is well
known from conventional molecular spectroscopy [Wei85, Ami02]. However, its
binding energy, as well as the binding energy of all deeply bound vibrational lev-
els, has only been known with an uncertainty of about ±0.45 cm−1 prior to the
present experiments [Ami02]. We search for |g> by exciting the transitions from
|a> to |e> with laser L1 and from |e> to |g> with laser L2 simultaneously. The
two light fields create a molecule-molecule dark state. The molecules initially in
|a> are lost unless the second laser L2 is on two-photon resonance, provided that
the Rabi frequency Ω2 on the second transition is equal to or greater than Ω1,
the Rabi frequency on the first transition. For coherence, stability, and repro-
ducibility, we lock both lasers to independent narrow-band optical resonators,
which we reference to an optical frequency comb 1. The comb is not calibrated,

1Laser L1 near 1126 nm and laser L2 near 1006 nm are continuous-wave grating-stabilized
tunable diode lasers with up to 26 mW and 5 mW of power at the sample position, respec-
tively, both focused to a 1/e2-waist of about 25 µm for sufficiently high Rabi frequencies.
We estimate the laser linewidth for both lasers to be on the order of 1 kHz. The laser beams
propagate horizontally at an angle of 80◦ with the long axis of the BEC with vertical linear
polarization. Copropagation assures that the imparted photon recoil during STIRAP is
minimal, corresponding to an energy of kB × 0.4 nK, with Boltzmann’s constant kB . The
beam intensity is controlled by acousto-optical modulators, allowing pulse lengths down
to 1 µs.
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but it allows precise differential frequency measurements and provides long-term
stability needed for systematic line searches 2. We find the resonance condition
with vibrational level ν=73 at 1005.976(1) and 1005.982(1) nm, corresponding
to rotational quantum numbers J=0 and 2. Identification of J is possible since
the rotational energy splitting is well known. Figures 4.4 A and B show typical
molecular dark resonances when we set L2 on resonance and step the detun-
ing ∆1 of L1 near 1126.173 nm. Figure 4.4C shows a dark resonance involving
ν=73, J=2 using a different excited molecular state |e′>, which is excited with
L1 near 1123.104 nm.

Figures 4.4 D-F show dark resonances involving the neighboring vibrational
levels ν = 71 and ν = 72. These X1Σ+

g -levels were easily found based on previ-
ously acquired Cs2 spectra [Ami02]. We determine the binding energy of these
levels with respect to the atomic F1 = 3, F2 = 3 asymptote at zero magnetic
field to be 1060.9694(10), 1088.3101(10), 1115.9148(10) cm−1 for ν = 73, 72, 71
with J = 0, respectively. The binding energy of the rovibrational ground state
ν=0 is thus 3628.7053(14) cm−1, which represents an improvement in precision
of more than two orders of magnitude compared to the previous determination
[Ami02]. Fitting the data for the dark resonances with a three-level model tak-
ing into account off-resonant excitations and laser line widths, we determine the
molecular transition strengths as given by the normalized Rabi frequencies for
the transitions |a> to |e> and |e> to |ν = 73, J = 2> to be Ω1 = 2π×2 kHz√
I/(mW/cm2) and Ω2 =2π×11 kHz

√
I/(mW/cm2), respectively. A compari-

son with a typical atomic transition strength of Ωa=2π×5 MHz
√
I/(mW/cm2)

giving |Ω1/Ωa|2 < 10−6 reflects the minuteness of the wave function overlap.

4.2.4. STIRAP transfer

We are now in a position to carry out coherent transfer using the STIRAP
technique. For |g> we choose the vibrational level with ν = 73, J = 2. This
level will allow us to reach the rovibrational ground state ν = 0, J = 0 with a
second STIRAP step in view of the selection rule ∆J = 0,±2. STIRAP uses a
counterintuitive overlapping pulse sequence in which L2 is pulsed on prior to L1.
As is well known [Ber98], STIRAP relies on the existence of a dark state of the
form |D>= α(t)|a> +β(t)|g>. With sufficient adiabaticity, the function |α(t)|2
decreases smoothly from 1 to 0, while the function |β(t)|2 increases smoothly
from 0 to 1. The initial state |a> is thus rotated via |D> into the final state
|g>. The criterion for adiabaticity is τpΩ

2 � (2π)2Γ, where τp is the pulse
overlap time, Ω ≈ Ω1 ≈ Ω2 is the peak Rabi frequency during the pulse, and
Γ≈ 2π × 4 MHz is the (spontaneous) decay rate from the upper state |e> as
determined from our loss measurements. This criterion is quite stringent, in
particular in view of the low wave function overlap that enters into Ω. An upper
(experimental) limit for τp is given by the relative laser coherence time for L1

2The wavemeter calibration is currently not sufficient to allow absolute numbering of the
frequency comb teeth.
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and L2. We choose τp to be approximately 10 µs. For detection, we apply
the reverse STIRAP sequence after a waiting time τw ≈ 10 µs to transfer the
molecules back into |a>. During this time we leave laser L1 on to assure that
all possible residual population in state |a> is removed.

We perform double STIRAP about 3 ms after the production of the Feshbach
molecules and 1 ms after shutting off the trap. Figure 4.5A shows the molecular
population in |a> as a function of the STIRAP time τ , and Figure 4.5B shows the
timing sequence for the double transfer scheme. For recording the time evolution
of the population we interrupt the transfer process after time τ and measure the
remaining population in |a>. The molecules in |a> initially disappear during
the first STIRAP sequence. They are now in level |ν=73, J=2> of the singlet
X1Σ+

g potential. Then a large fraction of them returns in the course of the
reverse STIRAP sequence. For this particular measurement both lasers are on
resonance. The peak Rabi frequencies are Ω1 ≈ 2π×3 MHz and Ω2 ≈ 2π×6
MHz. We typically obtain an overall efficiency of more than 65% for the double
transfer process, corresponding to single pass efficiencies of more than 80%,
assuming equal efficiencies for both passes. Figure 4.5C shows the double pass
efficiency as a function of detuning ∆2 of laser L2. Simulations for the three-level
system show that the ∼ 800 kHz full width at half maximum of the efficiency
curve is compatible with a combination of laser power broadening and Fourier
broadening. Our simulations also show that higher transfer efficiencies can be
expected for an optimized STIRAP pulse sequence in which both peak Rabi
frequencies are equal. Molecules not transferred by STIRAP are resonantly
excited to |e> and then lost from our three-level system by spontaneous emission
into a multitude of ground state levels.

4.2.5. Coherence and temperature

We demonstrate coherence of the transfer process in a Ramsey-type experiment
[Win07], halting the transfer process by simultaneously shutting off both lasers
12 µs into the first STIRAP sequence when a balanced superposition of |a>
and |g> has been created with |α(τ)|2 ≈ 1

2
≈ |β(τ)|2. After a hold time τh

we resume the STIRAP transfer, with the roles of lasers L1 and L2 reversed.
Thus, for τh = 0 the population will simply be rotated back into the initial state.
A three-level calculation shows that the population in the initial state |a> is
expected to oscillate at the rate of the two-photon detuning |∆2 − ∆1|/(2π).
Figure 4.6A shows the initial state population for ∆1 ≈ 0 and ∆2 ≈ 2π×113
kHz as a function of τh. Indeed, the population oscillates with a frequency at
|∆2 −∆1|/(2π), however with marked increase in phase jitter on the time scale
of 30 µs. We attribute this apparent loss of phase coherence to a slow relative
frequency drift of lasers L1 and L2, leading to a slightly different two-photon
detuning from one experimental run to the next. In Figure 4.6A, we have added
a region indicating a frequency jitter of ±6 kHz. This value is compatible with
the present long-term stability of our lasers. Note that the frequency drift does
not affect an individual STIRAP process as the transfer efficiency is very robust
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against laser detuning as shown in Figure 4.5C.

We now show that the molecular sample is not heated during the transfer
process and is indeed in the quantum gas regime. Specifically, we measure and
compare the rate of expansion of the molecular sample in state |a> without and
with the double transfer process. In our regime the energy scale for expansion is
usually set by the mean field of the BEC, resulting in typical expansion energies
for the atoms in the range from kB×2 nK to kB×10 nK, where kB is Boltzmann’s
constant, depending on the strength of the atomic interaction [Kra04]. We find
that the initial magnetic field ramping excites collective motion of the BEC in the
form of a breathing mode as a result of a change in the mean field potential due to
a change in atomic interaction strength [Web03a]. The breathing is transformed
into expansion of the sample when the trap is shut off. We follow the expansion
by monitoring the change of the Thomas-Fermi radius r of the sample. Figure
4.6B shows this radius along the horizontal direction as a function of expansion
time without and with STIRAP. Without STIRAP, we obtain from a linear fit an
expansion rate of dr/dt=1.0(1) mm/s, corresponding to an energy of kB×14(4)
nK. With STIRAP, the rate is dr/dt=0.7(1) mm/s, corresponding to an energy
of kB×7(2) nK. Both values are compatible with a separate measurement of the
expansion of the atomic BEC for the same magnetic field ramp. Interestingly,
the rate for the case with STIRAP is lower. We speculate that STIRAP with
the tightly focused laser beams L1 and L2 preferentially transfers molecules in
the center of the sample and is hence responsible for some selection in velocity
space.

It should now be possible to add a second STIRAP step for transfer into
the rovibrational ground state ν = 0, J = 0. A suitable two-photon transition
at readily available laser wavelengths is via the 68th excited state level of the
0+
u potential near 1329 nm (up) and 991 nm (down) with comparatively good

wave function overlap at the level of |Ω/Ωa|2 ≈ 10−4. We expect that searching
for dark resonances will be straightforward as now all two-photon transition
energies are known to 10−3 cm−1. Molecules in ν = 0, J = 0 cannot further
decay into a lower state upon a two-body collision, and they are thus expected
to allow the formation of an intrinsically stable molecular BEC. The high speed
of our STIRAP transfer will allow us to perform in-situ as well as time-of-flight
imaging for direct characterization of the spatial and momentum distribution of
the molecular ensemble.

4.2.6. Conclusion

With our technique any low-lying vibrational state can be coherently populated
in a controlled fashion with full control over the rotational quantum number,
allowing, e.g., state-specific collisional studies and high-precision molecular spec-
troscopy with possible implications for fundamental physics [Zel08, DeM08]. Our
procedure can be adapted to other species, in particular to heteronuclear alkali
dimers such as RbCs [Sag05] and KRb [Osp08] for the creation of dipolar quan-
tum gases [Gór02]. For heteronuclear alkali dimers a single two-photon transfer
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step might suffice as a result of favorable wave function overlap [Stw04]. We
expect that the combination of our technique with Feshbach molecule produc-
tion out of a Mott-insulator state in a three-dimensional lattice [Vol06] will
increase the initial Feshbach molecule production efficiency, avoiding collective
excitations as a result of magnetic field ramping and inhibiting collisional loss,
and will provide full control over all internal and external quantum degrees of
freedom of the ground state molecules.

We thank the team of J. Hecker Denschlag, the LevT team in our group,
and T. Bergeman for very helpful discussions and M. Prevedelli for technical
assistance. We are indebted to R. Grimm for generous support and gratefully
acknowledge funding by the Austrian Ministry of Science and Research (BMWF)
and the Austrian Science Fund (FWF) in form of a START prize grant and by
the European Science Foundation (ESF) in the framework of the EuroQUAM
collective research project QuDipMol.
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Fig. 4.3.: A Molecular level scheme for Cs2. Molecules in a weakly bound Fesh-
bach level are transferred to rovibrational level |ν= 73, J = 2> of the
singlet X1Σ+

g potential with a binding energy of 1061 cm−1 in a two-
photon STIRAP process with wavelengths near 1126 nm and 1006 nm
via the 225th level of the electronically excited (A1Σ+

u − b3Πu) 0+
u po-

tentials. The X1Σ+
g potential has about 155 vibrational levels. B Zee-

man diagram showing the energy of all relevant weakly bound molec-
ular levels for initial Feshbach molecular state preparation [Mar07a].
The binding energy is given with respect to the F = 3,mF = 3 two-
atom asymptote. The molecules are produced on a d-wave Feshbach
resonance at 4.8 mT (see inset) and then transferred to the weakly
bound s-wave state |s> on an avoided state crossing. Further lowering
of the magnetic offset field to 1.9 mT transfers the molecules from |s>
to state |a>, the starting state for the STIRAP transfer. C STIRAP
transfer scheme [Ber98]. The molecules are transferred from the ini-
tial state |a> to the final state |g>= |ν= 73, J = 2> by means of two
overlapping laser pulses for which laser L2 is pulsed on prior to L1.
The detunings and Rabi frequencies of Li are ∆i and Ωi, i = 1, 2.
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is held on resonance, while the detuning ∆1 of L1 is scanned. We
record the number of molecules in |a> while both lasers are pulsed on
simultaneously. A, B, and C show dark resonances involving ν=73 for
excitation with L1 near 1126 nm into J = 0 and 2 and for excitation
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data giving Ω1 = 2π×2 kHz
√
I1/(mW/cm2) and Ω2 = 2π×11 kHz√

I2/(mW/cm2) for a pulse time of 5 µs at intensities of I1 = 4×105

mW/cm2 for L1 and I2 = 2×105 mW/cm2 for L2 assuming a laser
linewidth of 2 kHz.
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frequencies Ωi, i = 1, 2, during the double STIRAP sequence. Laser
L1 is left on after the first STIRAP sequence to clear out any remaining
population in |a>. C Double STIRAP efficiency as a function of the
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4.3. Publication: Deeply bound ultracold molecules

in an optical lattice

New J. Phys. 11, 055036 (2010)†

Johann G. Danzla, Manfred J. Marka, Elmar Hallera, Mattias Gustavssona,
Russell Harta, Andreas Liemb, Holger Zellmerc, and Hanns-Christoph Nägerla

a Institut für Experimentalphysik und Zentrum für Quantenphysik,
Universität Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria

b JT Optical Engine GmbH + Co. KG,
Prüssingstraße 41, D–07745 Jena, Germany

c Hochschule für Technik, Wirtschaft und Kultur Leipzig,

Gutenbergplatz 2-4, D–04103 Leipzig, Germany

We demonstrate efficient transfer of ultracold molecules into a deeply bound
rovibrational level of the singlet ground state potential in the presence of
an optical lattice. The overall molecule creation efficiency is 25%, and the
transfer efficiency to the rovibrational level |v = 73, J = 2 > is above 80%.
We find that the molecules in |v = 73, J = 2> are trapped in the optical
lattice, and that the lifetime in the lattice is limited by optical excitation by
the lattice light. The molecule trapping time for a lattice depth of 15 atomic
recoil energies is about 20 ms. We determine the trapping frequency by the
lattice phase and amplitude modulation technique. It will now be possible to
transfer the molecules to the rovibrational ground state |v=0, J=0> in the
presence of the optical lattice.

†The author of the present thesis contributed to this work by assisting the experimental
measurements and optimizing the molecule production and cleaning in the lattice. He also
maintained and improved the experimental setup and contributed to the paper writing.
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4.3.1. Introduction

The generation of molecular quantum gases and molecular Bose-Einstein con-
densates (BEC) has been a major goal for the field of atomic and molecular
physics. It has been achieved for the case of two fermionic atoms that pair
up to form a bosonic dimer molecule in the limit of vanishing binding energy
[Joc03a, Gre03] at ultralow temperatures. In this limit, collisional stability is as-
sured, and this has allowed the investigation of the BEC-BCS crossover [Ing08].
Here, we are interested in the opposite limit of deeply bound molecules. Col-
lisional stability is expected only for the rovibronic ground state, and most
likely it will be necessary that one prepares the lowest molecular hyperfine
sublevel [Ald09] to avoid hyperfine changing collisions. Our approach to pro-
ducing a quantum gas of ground state molecules is based on laser cooling of
atoms to the point of quantum degeneracy, followed by molecule association
on a Feshbach resonance and subsequent coherent two-photon molecule trans-
fer [Dan08, Mar09, Dan09b, Win07, Ni08, Lan08b]. In principle, this approach
combines high molecular densities and ultralow temperatures with full state se-
lectivity. For optimization of both the initial molecule creation process and the
transfer process, the use of a three-dimensional optical lattice has been proposed,
as illustrated in Figure 4.7 C. In a superfluid-to-Mott-insulator phase transition
doubly occupied lattice sites can be favored [Vol06, Dür08], and collisional re-
laxation during the transfer can, at least in principle, be fully avoided. It should
be possible that one finally creates a molecular BEC by dynamical melting of
the lattice after the two-photon transfer [Jak02].

In the present work, we report on two-photon transfer into a deeply bound
rovibrational level by means of the stimulated Raman adiabatic passage (STI-
RAP) technique [Ber98, Win07] in the presence of a three-dimensional optical
lattice. We extend our previous work of transfering Cs2 molecules to rovibra-
tional level |v=73, J=2> of the 1Σ+

g electronic ground state in the quantum gas
regime [Dan08] by first using the superfluid-to-Mott-insulator phase transition
to efficiently produce pairs of atoms at the wells of the lattice. The pairs are then
associated to weakly bound molecules on a Feshbach resonance. Subsequently,
the molecules are transferred by magnetic field ramping to the starting state
for optical transfer. From there, they are efficiently transferred to the deeply
bound rovibrational level |v=73, J=2> by means of STIRAP. Note that in our
previous work [Dan08] all experiments were performed in free flight. Figure 4.7
A shows the relevant molecular states for the Cs dimer molecule and the transi-
tions involved. We find that the molecules in |v=73, J=2> are trapped in the
lattice with a 1/e-trapping time of about 20 ms, limited by scattering of lattice
light. We measure the trapping frequency of the molecules in the lattice and find
that the polarizability in |v= 73, J = 2> is about 30% of that of the Feshbach
molecules. It will now be possible that one adds a second STIRAP transfer step
to reach the rovibronic ground state |v=0, J=0>, giving full quantum control
over the external and internal degrees of freedom for the molecules.
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4.3.2. Preparation of Feshbach molecules in the optical lattice

To produce an ultracold sample of Feshbach molecules trapped at the individual
sites of an optical lattice we first produce an atomic BEC with typically 1×105 Cs
atoms in the lowest hyperfine sublevel F =3, mF =3 in a crossed optical dipole
trap. As usual, F is the atomic angular momentum quantum number, andmF its
projection on the magnetic field axis. For BEC production, we essentially follow
the procedure detailed in Ref.[Web03a]. We set the atomic scattering length to
a value of 210 a0, where a0 is Bohr’s radius, by tuning the magnetic offset field to
2.1 mT. At this value, three-body losses are minimal [Kra06]. We then drive the
superfluid-to-Mott-insulator phase transition [Gre02a] by exponentially ramping
up the power in a three-dimensional optical lattice within about 400 ms while
simultaneously ramping up the harmonic confinement in the dipole trap. The
lattice is generated by three mutually orthogonal, retro-reflected laser beams at
a wavelength of λ = 1064.5 nm, each with a 1/e-waist of about 350 µm. For
the atoms, we achieve a well depth of up to 40 ER, where ER = h2/(2mλ2) =
kB×64 nK is the atomic photon recoil energy with the mass m of the Cs atom. h
is Planck’s constant, and kB is Boltzmann’s constant. Throughout the paper we
give lattice depths in units of the atomic recoil energy. The lattice light as well
as the light for the dipole trap beams is derived from a single-frequency, narrow-
band, highly-stable Nd:YAG laser that is amplified to up to 20 W without
spectral degradation in a home-built fiber amplifier [Lie03]. The power in each
lattice beam is controlled by an acousto-optical intensity modulator and an
intensity stabilization servo. While ramping up the lattice potential, the power
in the two dipole trap beams is increased to assure that the central density in the
trap is sufficiently high to allow the preferential formation of atom pairs at the
central wells of the lattice, but not too high in order to avoid triply occupied sites.
We typically ramp the lattice to a depth of 15 to 25 ER. Typically about 30% of
the atoms reside at doubly occupied lattice sites. We estimate this number from
the molecule production efficiency. This value is not optimal yet, as loading
from a parabolic potential should give a maximum of 53% [Dür08, Han06].

We now produce Feshbach molecules on a Feshbach resonance [Reg03, Her03,
Köh06] near a magnetic field value of B = 1.98 mT [Mar07a] in the presence
of the optical lattice [Tha06, Vol06]. Figure 4.7 B shows the relevant weakly
bound Feshbach levels. The resonance at 1.98 mT is quite narrow, but it lies at
a conveniently low value of the magnetic field, allowing us to simply lower the
magnetic offset field from the BEC production value and ramp over the reso-
nance with a rate of about 0.006 T/s. The molecules produced are then in level
|g>. These molecules have g-wave character, i.e. `=4, where ` is the quantum
number associated with the mechanical rotation of the nuclei [Chi04b]. After
association, atoms remaining at singly occupied lattice sites are removed by mi-
crowave transfer to F = 4 and a resonant light pulse. Starting from level |g> we
have recently identified transitions to deeply bound excited rovibrational levels
of the Cs2 mixed (A1Σ+

u−b3Πu) 0+
u excited states [Dan09b]. These transitions

should allow STIRAP transfer to the target rovibrational level |v= 73, J = 2>
of the electronic ground state, but for the present work we have decided to use
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Feshbach level |s > as the starting state as in our previous work [Dan08] so
that the transfer performances with and without the presence of the lattice can
be compared. To reach level |s > from level |g >, we have implemented Fesh-
bach state transfer as realized in Ref.[Mar07a] using a combination of slow and
fast magnetic field ramps. In brief, we first transfer the molecules from |g >
to level |g2 > by lowering the magnetic field B sufficiently slowly to a value of
1.22 mT, thereby following the upper branch of an avoided crossing near 1.33
mT as shown in Figure 4.7 B. We then increase B abruptly to a value of 1.67
mT, thereby jumping the two crossings with levels |g> and |l>. The maximum
magnetic field rate of change is ∼ 2000 T/s. We finally follow slowly on the
upper branch of the avoided crossing with |s> at 1.85 mT, stopping at B = 1.9
mT. Our procedure allows us to essentially transfer all molecules from |g > to
|s>. For molecule detection, we reverse the magnetic field ramps to level |g>,
dissociate the molecules at the Feshbach resonance at B = 1.98 mT and detect
the resulting atoms by standard absorption imaging [Her03].

For comparison with our data obtained below we first measure the lifetime
of the weakly-bound Feshbach molecules in the optical lattice. Typical lifetime
measurements for these molecules are shown in Figure 4.8 A-C. In such measure-
ments, we record the number of remaining molecules as a function of hold time
in the lattice. The lifetime of the molecules depends strongly on which Feshbach
level is used and on the value of the magnetic field B. For example, for molecules
in level |g > at B = 1.82 mT the lifetime is 1.8 s at a lattice depth of 15 ER,
while in level |s> the lifetime is 0.09 s at B= 1.9 mT and 10 s at B= 2.9 mT
for the same lattice depth. We attribute this strong dependence of the lifetime
of molecules in |s > to the fact that the molecular character changes strongly
from being predominantly closed channel dominated to being open channel dom-
inated as the magnetic field is increased [Köh06], reducing wave function overlap
with excited molecular levels. We always determine the lifetime for two values
of the lattice depth, 15 ER and 25 ER. In all cases, the lifetime is reduced for
higher lattice depth, indicating residual optical excitation by the lattice light.
Nevertheless, the long lifetimes reflect the fact that the lattice perfectly shields
the molecules from inelastic molecule-molecule collisions, which would otherwise
limit the lifetime to a few ms at the given molecular densities [Tha06].

4.3.3. Lattice-based STIRAP transfer

We implement two-photon STIRAP transfer to the deeply bound rovibrational
level |3 >= |v = 73, J = 2 > of the 1Σ+

g electronic ground state potential in a
similar way as in our previous work [Dan08], except that now the molecules are
trapped at the individual wells of the optical lattice. In brief, laser L1 near a
wavelength of 1126 nm, driving the transition from |1>= |s > to |2>, where
|2 > is a deeply bound level of the mixed (A1Σ+

u−b3Πu) 0+
u excited states, is

pulsed on after laser L2, which drives the transition from |3> to |2> at 1006
nm, see Figure 4.7 A. The pulse (or pulse overlap) time τp is typically τp = 10 µs
for the present experiments. A schematic time course for the transition Rabi
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frequencies is shown in Figure 4.9 C. We estimate the peak Rabi frequencies to
be 2π× 3 MHz for the transition at 1126 nm and 2π× 6 MHz for the transition
at 1006 nm [Dan08]. After a variable hold time τh, we reverse the pulse sequence
to transfer the molecules back to |s >. For short τh below 40 µs we typically
leave L1 on between the two STIRAP pulse sequences. For longer τh we switch
L1 off to avoid any residual optical excitation of molecules in |v = 73, J = 2>
and possible effects of dipole forces generated by the tightly focused laser beam
L1.

The result of double STIRAP transfer in the optical lattice is shown in Fig-
ure 4.9 A. Here, τp = 10 µs and τh = 15 µs. As in our previous work [Dan08],
we interrupt the transfer after a given STIRAP time τS and record the number
of molecules in the initial state |s>. The molecules first disappear, and then a
sizable fraction of about 65% returns after the reverse STIRAP transfer. Thus,
as in our previous work [Dan08], the single pass efficiency is about 80% when
both lasers are on resonance. Figure 4.9 B shows the double STIRAP transfer
efficiency as a function of the detuning ∆2 of laser L2 from the excited interme-
diate level while laser L1 is held on resonance (detuning ∆1 ≈ 0). A Gaussian
fit yields a full width at half maximum of 830 kHz. With τp so short, we do not
resolve molecular hyperfine structure in |v=73, J=2>.

We find that the molecules transferred to |v= 73, J = 2> are trapped at the
individual wells of the lattice. The 1/e-lifetime is about 19 ms for a lattice depth
of 15 ER. This is much shorter than the lifetime of Feshbach molecules as shown
above, but sufficiently long to allow future implementation of a second lattice-
based STIRAP step to the rovibronic ground state |v = 0, J = 0 >, for which
the lifetime is expected to be much longer as discussed below. We determine
the lifetime by repeating the double STIRAP transfer while increasing the hold
time τh in steps of 3.5 ms. The result is shown in Figure 4.8 D. The number of
molecules can be well fit by an exponentially decaying function as a function of
τh. For a higher lattice depth of 25 ER, the lifetime is reduced to 15 ms. We
thus attribute the reduced molecular lifetime to off-resonant scattering of lattice
light, exciting the molecules to levels of the (A1Σ+

u−b3Πu) 0+
u states, which then

in turn leads to loss into other ground state rovibrational levels that we do not
detect. Note that in the wavelength region of our trapping laser, the lifetime is
expected to show strong variations as a function of trapping laser wavelength
due to the presence of excited state levels. Hence, also the polarizability as
discussed in the next section should strongly depend on the wavelength of the
laser generating the lattice light.

4.3.4. Determination of molecule trapping parameters

We determine the molecular trapping frequency ω|v=73> for molecules in |v =
73, J = 2> by modulating the lattice phase and, alternatively, by modulating
the lattice amplitude. In the first case, we primarily excite transitions from the
lowest band in the lattice to the first excited band and then to higher bands.
In the second case, we primarily excite into the second excited band and then
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to higher bands. For sufficiently strong modulation, molecules are lost from
the lattice, as tunneling to neighboring sites and hence inelastic collisions with
neighboring molecules become more probable. We thus expect to detect in-
creased molecular loss if the modulation frequency is tuned into resonance with
the inter-band transitions. The results are shown in Figure 4.10. At a lattice
depth of 15 ER, we observe resonant loss at 5.2 kHz in the case of phase modu-
lation and at 10.1 kHz in the case of amplitude modulation of the lattice. Phase
modulation at 22 ER and amplitude modulation at 20 ER yield resonances at
6.5 kHz and 12.2 kHz, respectively. These values for different trap depths are
consistent with each other when compared with a calculation of the band struc-
ture. For comparison, to determine the trapping frequency ωF of the Feshbach
molecules in level |g>, we measure that phase modulation (amplitude modu-
lation) of a 15 ER deep lattice leads to loss at a modulation frequency of 9.4
kHz (18.4 kHz). Relating the dynamical polarizability α|v=73> of the deeply
bound molecules in |v=73 > to the dynamical polarizability αF of the Feshbach
molecules via α|v=73>/αF = ω2

|v=73>/ω
2
F , we obtain that the molecular polariz-

ability in |v=73, J=2> is ∼ 30% of the polarizability of the Feshbach molecules
at the wavelength of our trapping light.

4.3.5. Conclusion

We have transferred an ultracold sample of Cs2 molecules to the deeply bound
rovibrational level |v=73, J=2> of the singlet X1Σ+

g potential in the presence
of an optical lattice. We essentially find the same transfer efficiency as in our
previous work [Dan08] where no lattice was used. The transferred molecules are
trapped, and we have determined their polarizability in this particular level. The
trapping time is sufficiently long to allow for subsequent lattice-based STIRAP
transfer to the rovibronic ground state |v=0, J=0> by means of a second two-
photon transition [Mar09]. A lower bound for the STIRAP pulse time and hence
for the minimal required trapping time is set by the time needed to resolve the
molecular hyperfine structure. This minimal time is the inverse of three times
the ground state hyperfine coupling constant c4 ≈ 14 kHz [Ald09], giving 24 µs.
Hence a compromise can easily be found between Fourier-resolving the molecular
hyperfine structure and keeping the STIRAP pulse time sufficiently short in view
of finite laser coherence time and finite trapping time. Note that for optimum
transfer efficiency also the hyperfine structure of the intermediate state needs to
be resolved, which requires longer STIRAP times also for the first transfer step.

For Cs2 molecules in the rovibronic ground state |v = 0, J = 0 > we expect
much longer trapping times in the lattice as optical excitation at 1064.5 nm into
excited molecular states can only occur in a far off-resonant process. At this
wavelength transitions to the (A1Σ+

u−b3Πu) 0+
u states are relevant. These are

possible only to levels that have a sizable singlet contribution stemming from
the A1Σ+

u state. 0+
u levels below the minimum of the A1Σ+

u state, corresponding
to a wavelength of ∼ 1041 nm as measured from the rovibronic ground state
[Ver87], have little singlet component and hence these transitions are strongly
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suppressed. We thus expect the formation of a stable molecular quantum gas in
|v= 0, J = 0> when the lattice depth is lowered and the molecules are released
into a larger-volume optical dipole trap, possibly allowing the observation of
Bose-Einstein condensation of ground state molecules.

Our technique can readily be applied to other molecular systems, e.g. het-
eronuclear dimers such as RbCs [Pil09] and KRb [Ni08]. These dimers carry a
sizable electric dipole moment. In the presence of the lattice, one should thus be
able to exploit the long range nature of the dipole-dipole interaction and be able
to prepare interesting novel quantum phases with nearest-neighbor interaction
[Gór02, Wal09].

We are indebted to R. Grimm for generous support and we thank S. Knoop,
N. Boloufa, and O. Dulieu for valuable discussions. We gratefully acknowledge
funding by the Austrian Ministry of Science and Research (BMWF) and the
Austrian Science Fund (FWF) in form of a START prize grant. R.H. acknowl-
edges support by the European Union in form of a Marie-Curie International
Incoming Fellowship (IIF).
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Fig. 4.7.: A Molecular level scheme for Cs2. Molecules in a weakly bound Fesh-
bach level |1> are transferred to rovibrational level |3>= |v=73, J=
2> of the singlet X1Σ+

g potential in the presence of an optical lattice.
Level |3> with a binding energy of 1061 cm−1 is reached in a two-
photon STIRAP process with wavelengths near 1126 nm and 1006 nm
via the 225th level of the electronically excited (A1Σ+

u−b3Πu) 0+
u po-

tentials. The X1Σ+
g potential has about 155 vibrational levels. B Zee-

man diagram showing the energy of all relevant weakly bound molec-
ular levels for initial Feshbach molecular state preparation [Mar07a].
The binding energy is given with respect to the F =3,mF =3 two-atom
asymptote. The molecules are first produced on a g-wave Feshbach
resonance at 1.98 mT in state |g> (1). Residual atoms are removed by
a combined microwave and resonant light pulse (2). The molecules are
then transferred to the weakly bound s-wave state |1>= |s> (6), the
starting state for the STIRAP transfer, via three avoided state cross-
ings involving state |g2> by slow (3,5) and fast magnetic field ramps
(4). C Lattice based ground state transfer. Top: The BEC is adi-
abatically loaded into the three-dimensional optical lattice, creating
a Mott-insulator state. Middle: Atoms at doubly occupied sites are
converted to Feshbach molecules. Atoms at singly occupied sites are
removed thereafter. Bottom: The molecules are subsequently trans-
ferred to the deeply bound rovibrational level |3>= |v = 73, J = 2>
while shielded from collisions by the lattice potential.
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Fig. 4.8.: Lifetime measurements of ultracold molecules trapped in the optical
lattice. A, B, and C show the decay of trapped Feshbach molecules,
while D shows the decay for molecules in |3>= |v = 73, J = 2> of
the X1Σ+

g ground state potential. In all cases, the triangles (circles)
correspond to a lattice depth of 15 ER (25 ER). All lifetimes τ are
determined from exponential fits to the data as shown by the the solid
lines. A Lifetime of state |g>. B Lifetime of state |g2> (filled symbols)
and of state |s> at B= 2.9 mT (open symbols). C Lifetime of state
|s> at B = 1.9 mT, from where we drive the STIRAP transfer. D
Lifetime of molecules in the rovibrational level |3>= |v= 73, J = 2>.
The STIRAP lasers are switched off during the hold time in |3>. In
D, each data point is the average of 4 experimental runs, error bars
correspond to the 1σ statistical uncertainty. The typical uncertainty
for the lifetimes is one unit of the last digit given.
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Fig. 4.9.: STIRAP transfer from the weakly bound state |1>= |s> to the
deeply bound rovibrational level |3>= |v = 73, J = 2> and back to
|1> in the optical lattice. A shows the number of molecules in state
|1> as a function of STIRAP time τS for both lasers on resonance
(laser detunings ∆1 ≈ 0 ≈ ∆2). The measured pulse overlap begins
at about 5 µs and ends at about 15 µs. The second pulse overlap starts
at 30 µs and ends at about 38 µs. The lattice depth is 15 ER. Data
points represent a single experimental realization, not an average over
several runs. The data point at 39 µs represents a ”bad shot”, which
occasionally occurs. B Double STIRAP efficiency as a function of the
detuning ∆2 of laser L2 for ∆1 ≈ 0. The solid line is a Gaussian fit
with a full width at half maximum of 830 kHz. C schematically shows
the timing for the Rabi frequencies, Ωi, i = 1, 2, for lasers L1 and L2

during the double STIRAP sequence. For short hold times τh < 40 µs
laser L1 is left on after the first STIRAP sequence as shown here. For
longer hold times τh > 40 µs we shut off L1 to avoid possible optical
excitation.
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Fig. 4.10.: Trapping of deeply bound molecules in the wells of the optical lat-
tice. While the molecules reside in level |3>= |v=73, J=2>, one of
the lattice beams of the 3 dimensional optical lattice is either phase
modulated (A and B) or amplitude modulated (C and D). As the
frequency of the phase or amplitude modulation is scanned, a series
of resonances due to transfer to higher bands arise, reflected in a de-
crease in molecule number. The respective resonances at the lowest
modulation frequency are shown here. For phase modulation (”shak-
ing” of the lattice), this corresponds to the first lattice band, for
amplitude modulation to the second band. To determine the center
frequency, the resonances are fit by a Gaussian. The lattice depth is
15 ER, 22 ER, 15 ER, and 20 ER in A, B, C, and D, respectively.
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Control over all internal and external degrees of freedom of molecules at the
level of single quantum states will enable a series of fundamental studies in
physics and chemistry [Car09, Kre08]. In particular, samples of ground-state
molecules at ultralow temperatures and high number densities will allow novel
quantum-gas studies [Gór02] and future applications in quantum information
science [DeM02]. However, high phase-space densities for molecular samples
are not readily attainable as efficient cooling techniques such as laser cooling
are lacking. Here we produce an ultracold and dense sample of molecules
in a single hyperfine level of the rovibronic ground state with each molecule
individually trapped in the motional ground state of an optical lattice well.
Starting from a zero-temperature atomic Mott-insulator state [Blo08] with
optimized double-site occupancy [Vol06], weakly-bound dimer molecules are
efficiently associated on a Feshbach resonance [Chi10] and subsequently trans-
ferred to the rovibronic ground state by a stimulated four-photon process with
>50% efficiency. The molecules are trapped in the lattice and have a lifetime
of 8 s. Our results present a crucial step towards Bose-Einstein condensa-
tion of ground-state molecules and, when suitably generalized to polar het-
eronuclear molecules, the realization of dipolar quantum-gas phases in optical
lattices [Bar08, Lah09, Pup09].

†The author of the present thesis contributed to this work by assisting the experimental
measurements and optimizing the molecule production and cleaning in the lattice. He also
maintained and improved the experimental setup and contributed to the paper writing.



126
AN ULTRACOLD, HIGH-DENSITY SAMPLE OF ROVIBRONIC

GROUND-STATE MOLECULES IN AN OPTICAL LATTICE

4.4.1. Introduction

Recent years have seen spectacular advances in the field of atomic quantum
gases. Ultracold atomic samples have been loaded into optical lattice potentials,
allowing the realization of strongly-correlated many-body systems and enabling
the direct observation of quantum phase transitions with full control over the
entire parameter space [Blo08]. Molecules with their increased complexity are
expected to play a crucial role in future generation quantum gas studies. For
example, the long-range dipole-dipole force between polar molecules gives rise to
nearest-neighbour and next-nearest-neighbour interaction terms in the extended
Bose-Hubbard Hamiltonian and should thus lead to novel many-body states
in optical lattices in the form of striped, checkerboard, and supersolid phases
[Bar08, Lah09, Pup09].

An important prerequisite for all proposed molecular quantum gas experi-
ments is the capability to fully control all internal and external quantum degrees
of freedom of the molecules. For radiative and collisional stability, the molecules
need to be prepared in their rovibronic ground state, i.e. the lowest vibrational
and rotational level of the lowest electronic state, and preferably in its energet-
ically lowest hyperfine sublevel. As a starting point for the realization of novel
quantum phases, the molecular ensemble should be in the ground state of the
many-body system. Such state control is only possible at ultralow temperatures
and sufficiently high particle densities. While versatile non-optical cooling and
slowing techniques have recently been developed for molecular ensembles [Fri09]
and photo-association experiments with atoms in magneto-optical traps have
reached the rovibrational ground state [Car09], the achievable molecular phase-
space densities are still far away from the point of quantum degeneracy. Here,
we exploit the fact that high phase-space densities can readily be achieved for
atoms and that atoms can efficiently be associated on Feshbach resonances to
form molecules [Chi10] with minimal loss of phase-space density when an opti-
cal lattice is present. Subsequent state transfer to a specific hyperfine sublevel
of the rovibronic ground state by means of a stimulated multi-photon process
then preserves phase-space density and hence the quantum-gas character of the
molecular ensemble. This approach is expected to allow the preparation of a
molecular ground-state BEC [Jak02]. Note that some loss of phase-space den-
sity can be tolerated if the collisional properties of the ground-state molecules,
a priori unknown, turn out to be sufficiently favorable to allow for a final stage
of evaporative cooling or, alternatively, sympathetic cooling with atoms.

A crucial ingredient for our experiments is the presence of an optical lattice.
It provides full control over the motional wave function and prevents collisional
loss. It allows us in particular to maximize the efficiency for initial molecule
production and the efficiency for ground-state transfer. For sufficiently high
efficiency, a molecular Mott-insulator state is approximated by this prepara-
tion procedure [Jak02], providing an excellent starting point for the precision
measurements [DeM08, Zel08] and many-body and quantum information exper-
iments [Bar08, Lah09, Pup09] envisioned with ground-state molecules. In the
quantum gas regime without the use of an optical lattice, molecular state trans-
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fer to deeply-bound rovibrational levels of the singlet 1Σ ground-state potential
has recently been implemented for Cs2 [Dan08] and KRb [Ni08]. For KRb, the
rovibronic ground state was reached, resulting in a near-quantum-degenerate gas
of fermionic ground-state molecules [Ni08]. Transfer of molecules in the pres-
ence of an optical lattice has been implemented for Rb2 molecules [Win07], and
the lowest rovibrational level of the shallow triplet a3Σ+

u potential was reached
[Lan08b].

4.4.2. Preparation of Feshbach molecules

Our molecular quantum-gas preparation procedure is summarized in Fig. 4.11.
We load a BEC of Cs atoms [Kra04] into a three-dimensional optical lattice
and drive the superfluid-to-Mott-insulator phase transition [Blo08]. The atomic
number distribution in the Mott-insulator state is inhomogeneous as a result of
the external harmonic confinement. Shells with a constant number of precisely n
atoms per lattice site, where n = 1, 2, 3 . . ., are separated by narrow superfluid
regions [Blo08]. We aim to maximize the size of the two-atom Mott shell in
the central region of the lattice in order to obtain the highest number of lattice
sites at which there are precisely two atoms (see the Methods section). With
up to 45(2)% of the atoms at doubly-occupied lattice sites we come close to the
theoretical limit of 53% given the parabolic density profile of the BEC [Vol06].
The atom pairs reside in the motional ground state at each well and are then
associated [Tha06] with 94(1)% probability to Cs2 Feshbach molecules, which
are subsequently transferred to the weakly-bound level |1>, the starting level
for the optical transfer (see the Methods section) [Mar07a, Dan08, Dan09a].
Atoms at singly-occupied sites are removed by a combination of microwave and
optical excitation [Tha06]. We now have a pure molecular sample with a high
occupation of about 85(3)% in the central region of the lattice (see the Methods
section). Each molecule is in the motional ground state of its respective well
and perfectly shielded from collisional loss.

4.4.3. STIRAP transfer

We employ stimulated Raman adiabatic passage (STIRAP) [Ber98] involving
four laser transitions to coherently transfer the molecules into the lowest rovi-
brational level |5>= |v= 0, J = 0> of the ground state singlet X1Σ+

g potential
as shown in Fig. 4.12a, bridging a binding energy of hc× 3628.7 cm−1 ≈ h×109
THz [Dan08]. Here, v and J are the vibrational and rotational quantum num-
bers, respectively, h is Planck’s constant and c is the speed of light. For Cs2,
a homonuclear molecule, the four-photon process is preferred to a direct two-
photon process because it allows us to overcome small Franck-Condon overlap.
Lasers L1 through L4 couple |1> and |5> via three intermediate levels |2>,|3>,
and |4> (see the Methods section). For STIRAP in the presence of the lattice,
the lattice light must not impede the transfer through optical excitation or by
creating unwanted coherences. Also, the lattice wavelength has to be chosen
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such that the dynamical polarizabilities for |1> and |5> are closely matched in
order to avoid excitation into higher motional states of the lattice as a result of
motional wave-function mismatch [Lan08b]. We typically set the lattice depth
to a value of 20 ER for atoms, corresponding to 80 ẼR for Feshbach molecules
with twice the polarizability and double the mass and 83 ẼR for molecules in
|v = 0> at a lattice wavelength of 1064.5 nm, as determined below. Here, ER
(ẼR) is the atomic (molecular) recoil energy.

Our experimental configuration ensures that only one particular molecular
hyperfine sublevel is populated. The atomic BEC is prepared in the lowest
hyperfine sublevel |Fa=3,mFa=3>, where Fa and mFa are the total atomic an-
gular momentum and its projection on the magnetic field. Feshbach association
and transfer between Feshbach levels via avoided crossings, as illustrated in Fig.
4.12b (see the Methods section), conserve [Chi10] the total angular momentum
projection MF = mFa1 + mFa2 = 6. Fig. 4.12c shows the hyperfine structure
of the target state, i.e. the rovibronic ground state X1Σ+

g |v = 0, J = 0 >. It
splits into 28 hyperfine sublevels in the presence of a weak magnetic field, cor-
responding to the allowed values of the total nuclear spin I = 0, 2, 4, 6 and its
2I+1 projections MI for each value of I. The total energy splitting is ∼ h×270
kHz at zero field [Ald09] (see the Methods section). Importantly, there is only
a single MI = MF = 6 sublevel of |v= 0, J = 0>, namely the |I = 6,MI = 6 >
level. This level we selectively populate by exploiting the dipole selection rule
∆MF = 0 for linear polarization along the axis of quantization. It is the lowest-
energy hyperfine sublevel and hence the absolute energy ground state of the Cs
dimer for magnetic fields above ∼ 13 mT.

There are two possibilities for optical transfer from |1> to |5>. Sequential
STIRAP (s-STIRAP) uses two consecutive two-photon STIRAP processes, first
from |1> to |3> and then from |3> to |5>. The second scheme generalizes
STIRAP [Ber98, Win07] to the five-level system [Mal97]: Four-photon STIRAP
(4p-STIRAP) relies on the existence of a dark state of the form |D> = (Ω2Ω4|1>
− Ω1Ω4|3> + Ω1Ω3|5>)/A with time-dependent Rabi frequencies Ωi=Ωi(t) for
lasers Li, i=1, 2, 3, 4, and the appropriate normalization function A=A(t). Sim-
ilar to standard two-photon STIRAP, a counter-intuitive pulse sequence rotates
the initial state |1> adiabatically into the final state, here |5>. For this, L2 and
L3 couple the three intermediate levels while L4 and L1 deliver time-dependent
overlapping pulses with L4 preceding L1. Fig. 4.13b and e show the timings for
both schemes including the reverse sequence used for detecting the ground-state
molecules after a certain hold time τh.

We investigate 4p-STIRAP to |v = 0, J = 0 > by interrupting the transfer
sequence after a given 4p-STIRAP time τ and measuring the number of Feshbach
molecules, as shown in Fig. 4.13a. The molecules are transferred to |5 > in
a single step. No molecules in |1 > are detected during τh as the remaining
Feshbach molecules are cleared by L1 at the end of the transfer. When the
pulse sequence is reversed, a large fraction of the molecules returns to |1 >.
Typically, 30% of the molecules are recovered after the full double 4p-STIRAP
sequence. Almost all reside in the lowest band of the lattice as evidenced by
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band-mapping experiments [Blo08]. The rectangular shape of the first Brillouin
zone can be clearly seen in the momentum-space image shown in the lower
inset of Fig. 4.13a. 92(3)% of the molecules can be found in the first Brillouin
zone and hence had resided in the lowest lattice vibrational level. Assuming
equal efficiencies for both transfers, the single-pass efficiency is 55%. The upper
inset of Fig. 4.13a shows the double 4p-STIRAP efficiency versus detuning
∆4 of L4 from the (|4 >→ |5 >)-transition with all other lasers on resonance.
With ground-state transfer efficiencies between 55% and 60%, about half of the
lattice sites are occupied by a ground-state molecule. The solid lines in Fig.
4.13a represent a simulation of 4p-STIRAP that takes into account excited-
state spontaneous decay and laser linewidth. Transfer times are typically 4 µs
to 10 µs. The simulation yields that the transfer efficiency is currently limited
by a combination of laser linewidth, which is about 10 kHz when averaged over
1 s, and imperfect adiabaticity due to finite available laser power to drive the
extremely weak transitions of the 5-level scheme [Dan08, Mar09]. Molecules
not transferred to |5 > as a result of insufficient phase coherence or limited
adiabaticity are excited to either |2> or |4> by one of the lasers and are hence
pumped into a multitude of rovibrational levels, which do not couple to the
rovibrational ground state. For comparison, the double s-STIRAP efficiency
from |3 > to |v = 0, J = 0 > and |v = 0, J = 2 > is shown in Fig. 4.13c and
d, respectively. The solid lines represent a calculation matched to the data
for standard 3-level STIRAP. With 55%-60%, the total (|1 >→ |5 >)-transfer
efficiency for s-STIRAP is comparable to 4p-STIRAP.

4.4.4. Polarizability and lifetime

A crucial prerequisite for efficient ground-state transfer without heating is good
matching of the motional wave functions for the initial weakly-bound state and
the final ground state. A mismatch leads to unwanted excitation of higher lattice
vibrational levels or bands and hence to loss of state control. The lattice thus
has to be operated at the magic wavelength condition [Ye08], i.e. at a wave-
length that gives equal light shifts for the initial and the final molecular states.
Our experiment in fact shows, as discussed above, that hardly any population is
transferred to higher lattice bands. We now measure the lattice band structure
and determine the molecular polarizability of the ground-state molecules (see
the Methods section). Molecules residing in the lowest band of the lattice are
excited to the first (second) band by phase (amplitude) modulation of the light
generating the lattice. Fig. 4.14 shows the measured band energies together
with a calculation of the band structure as a function of lattice depth. On reso-
nance, excitation to higher bands can readily be observed in momentum space as
shown in inset a. For comparison, off-resonant modulation transfers hardly any
population into higher bands (see inset b). We determine the band energies by
taking modulation spectra as shown in inset c. We then use the band structure
calculation to fit all measured resonance positions with the molecular dynamical
polarizability P|v=0> as the single free parameter. These measurements are done
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for |v = 0, J = 2 >. We obtain P|v=0> = 2.1(1) × Pa, where Pa is the atomic
polarizability. For the initial, weakly-bound Feshbach molecules in level |g >
we obtain P|g> = 2.0(1) × Pa. Hence the magic wavelength condition is well
fulfilled.

We measure the lifetime τe of the molecules in the lattice by varying the
hold time τh for up to 20 s and recording the number of remaining molecules
as shown in Fig. 4.15. To reduce inelastic light scattering, the lattice depth
was adiabatically reduced to about 41.5 ẼR after the 4p-STIRAP transfer. An
exponential fit gives a 1/e-lifetime of τe = 8.1(6) s. We attribute this long
lifetime to the large detuning ∆L ≈ 6.9 THz from the lowest 0+

u level with
predominant A1Σ+

u singlet contribution as shown in the inset to Fig. 4.15.
Levels of the 0+

u system that lie below this are almost purely of b3Πu character
and thus make negligible contributions to the optical excitation rate.

4.4.5. Conclusion

We are now in a position to determine collisional properties of ultracold ground-
state molecules in a fully state-selective way. At magnetic fields beyond 13 mT,
where the level |I = 6,MI = 6 > becomes the absolute ground state, the sam-
ple should show collisional stability and thus allow the formation of a BEC of
ground-state molecules when the lattice is adiabatically removed [Jak02]. For
Cs2, formation of a trimer and an atom in a dimer-dimer collision is predicted to
be energetically forbidden (R. Guérout and O. Dulieu, private communication,
2009). The long coherence times and the perfect decoupling from the environ-
ment in an optical lattice as demonstrated here will enable a new generation of
precision measurements [DeM08, Zel08]. Furthermore, our results can readily
be generalized to heteronuclear systems such as KRb [Ni08] and RbCs [Pil09],
opening up the possibility to study dipolar quantum phases in optical lattices.

4.4.6. Methods

Lattice loading

We first follow the procedure detailed in Ref. [Dan09a]. In brief, we produce
an atomic BEC with typically 1 × 105 Cs atoms in the lowest hyperfine sub-
level |Fa = 3, mFa = 3 > in a crossed optical dipole trap. We then drive the
superfluid-to-Mott-insulator phase transition [Blo08] by exponentially ramping
up the power in a three-dimensional optical lattice within about 300 ms. The
lattice is generated by three mutually-orthogonal, retro-reflected laser beams at
a wavelength of λ = 1064.5 nm, each with a 1/e2-waist of about 350 µm. While
ramping up the lattice potential, the power in the two dipole-trap beams is in-
creased to ensure that the central density in the trap is sufficiently high to allow
formation of atom pairs at the central wells of the lattice, but not too high to
lead to triply occupied sites. Atoms at triply occupied sites would rapidly be
cleared out by inelastic three-body collisions. We ramp the lattice to a depth of
about 20 ER before Feshbach association. Here, ER = h2/(2maλ

2) = kB×64 nK
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is the atomic photon-recoil energy with the mass ma of the Cs atom and Boltz-
mann’s constant kB. Up to 45(2)% of the atoms reside at doubly occupied lattice
sites. We estimate this number from the number of molecules that we obtain
and the molecule production efficiency.

For the molecules, the recoil energy is ẼR = h2/(2×2maλ
2). The polarizability

of Feshbach molecules is twice the atomic polarizability. The same lattice that
has a depth of 20 ER for the atoms has thus a depth of 80 ẼR for the Feshbach
molecules.

Feshbach association and Feshbach state transfer

We efficiently produce weakly bound Cs2 Feshbach molecules in the presence
of the optical lattice by a magnetic field sweep [Chi10] across a narrow g-wave
Feshbach resonance with its pole at a magnetic field value of B = 1.98 mT
[Her03, Mar07a]. The molecules are initially in level |g >, for which ` = 4.
Here, ` is the quantum number associated with the mechanical rotation of the
nuclei [Chi10]. We subsequently transfer the molecules via level |g2 > with
95(3)% efficiency into level |s >≡ |1 > with ` = 0 by magnetic field ramping
[Mar07a, Dan09a] as shown in Fig. 4.12b. For this level, the transitions to
excited molecular levels are stronger than for the initial level |g> [Dan09b]. We
obtain up to 2.5 ×104 Feshbach molecules in the lattice in the desired starting
state. Assuming a perfect filling of the two-atom Mott-shell at the center of
the trap, taking into account the efficiencies for molecule production and state
transfer, and factoring in weak additional loss during sample purification, 85(3)%
of the central lattice sites are occupied. We detect the molecules in |1 > by
reversing the Feshbach state transfer sequence, dissociating the molecules at the
Feshbach resonance and detecting the resulting atoms by standard absorption
imaging [Her03].

Molecular states for ground state transfer

The relevant molecular states for Cs2 are shown in Fig. 4.12a. Levels |2 >
and |4> belong to the coupled (A1Σ+

u − b3Πu)0
+
u potentials [Dan08]. We have

recently identified suitable transitions linking |1 > to |5 >, where levels |2 >,
|3 >, and |4 > were chosen to give balanced transition strengths on the four
optical transitions [Dan09b, Mar09]. For |3> we choose either |v=73, J=2> or
|v=73, J=0> of the X1Σ+

g ground state with a binding energy of ∼ hc× 1061
cm−1.

Hyperfine structure of the rovibronic ground state

The hyperfine levels are calculated using the molecular constants from Ref.
[Ald09] by constructing and diagonalizing a Hamiltonian matrix in an uncoupled
basis set of functions representing the molecular rotation and the spins of the
two nuclei, using the matrix elements given in the Appendix of Ref. [Ald09].
For J = 0 states the hyperfine structure is dominated by the scalar spin-spin
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coupling and the nuclear Zeeman effect, but for J > 0 additional terms are
important.

STIRAP laser setup

STIRAP lasers Li with i = 1, 2, 3, 4 are continuous-wave grating-stabilized tun-
able diode lasers, which are stabilized to optical resonators for short-term sta-
bility and referenced to an optical frequency comb for long-term stability and
reproducibility. We estimate the linewidth of the lasers to be about 10 kHz.
In order to ensure minimum momentum recoil imparted on the molecules, the
beams for lasers L1 and L2 are co-propagating. The beams for L3 and L4 are
also co-propagating but run antiparallel to the beams of L1 and L2. All beams
run horizontally and are linearly polarized with the polarization axis in the ver-
tical direction, parallel to the direction of the magnetic field, which defines the
axis of quantization. We operate at Rabi frequencies in the range of 2π× (1 to
4) MHz.

Polarizability measurement

For determining the ground state molecular polarizability, transfer to |v = 0 >
is performed at a fixed lattice depth of 83 ẼR for |v = 0 > molecules. The lattice
depth is then ramped to the desired value within 50 ms. For phase modulation
of the lattice, the frequency of one lattice beam is usually modulated with a
modulation depth of 2 MHz at the desired frequency for about 10 ms. For
amplitude modulation, the intensity is typically modulated by 20% for about 10
ms.
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|2 >

|4 >

|1 > = |v = 155>

FA

|3 > = |v = 73>

|5 > = |v = 0>

Laser L1

Laser L2

Laser L3

Laser L4

MI

BEC

Fig. 4.11.: Molecular quantum gas preparation procedure. A BEC of Cs atoms
is loaded into an optical lattice. By increasing the lattice depth, a
Mott-insulator state (MI) with preferentially two atoms per site is
created. Feshbach association (FA) subsequently converts atom pairs
into weakly-bound molecules in state |1>. These are then transferred
in the presence of the lattice to a specific hyperfine level |I=6,MI =
6> of the rovibronic ground state |5> = X1Σ+

g |v = 0, J = 0> by
a stimulated four-photon process (STIRAP) involving lasers Li with
Rabi frequencies Ωi i = 1, 2, 3, 4, and three intermediate levels |2>,
|3>, and |4>.
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Fig. 4.12.: Molecular potentials and level schemes for ground-state transfer.
a, The four-photon transfer from the weakly-bound Feshbach level
|1>= |ν ≈ 155 > (not resolved near the 6S+6S asymptote) to the
rovibrational ground state |5>= |ν= 0, J = 0> of the singlet X1Σ+

g

potential involves the deeply bound level |3>= |ν = 73 > of the
X1Σ+

g potential [Dan08] and the levels |2>= |ν ′ = 225, J = 1> and
|4>= |ν ′=61, J=1> of the electronically excited (A1Σ+

u − b3Πu) 0+
u

potentials [Dan09b, Mar09]. The laser wavelengths for L1, L2, L3,
and L4 are near 1126 nm, 1006 nm, 1351 nm, and 1003 nm, re-
spectively. b, Zeeman diagram for weakly bound molecules near the
6S+6S asymptote. Molecules are associated at a g-wave Feshbach
resonance [Her03] at 1.98 mT (FA) and then transferred to the de-
sired starting level |1>= |s> for optical transfer via three avoided
level crossings by slow (arrows 1,3) and fast (arrow 2) magnetic field
ramps [Mar07a]. The binding energy is given with respect to the
(Fa1 = 3,mFa1 = 3) × (Fa2 = 3,mFa2 = 3) two-atom lowest hyperfine
asymptote. All Feshbach levels are characterized by MF = 6. c,
Calculated Zeeman diagram for the hyperfine manifold of the rovi-
bronic ground state |5>= |ν = 0, J = 0>. The optical transfer goes
selectively to level |I = 6,MI = 6>, indicated in red. This level
becomes the lowest-energy absolute ground state for magnetic-field
values above ∼ 13 mT. There are no avoided crossings between dif-
ferent hyperfine sublevels [Ald09].
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Fig. 4.13.: STIRAP transfer to the rovibronic ground state |5>= |ν=0, J=0>
and back. a, 4p-STIRAP transfer and b, schematic timing for the
Rabi frequencies Ωi, i = 1, 2, 3, 4: Number of molecules in state |1>
as a function of 4p-STIRAP time τ for all 4 lasers on resonance.
The lattice depth is 80 ẼR and 83 ẼR for molecules in levels |1>
and |5>, respectively. Data points represent a single experimental
realization, not an average over several runs. The solid line is a 4p-
STIRAP model calculation. τh is the hold time in |5>= |ν= 0, J =
0>. Upper inset: double 4p-STIRAP efficiency as a function of the
detuning ∆4 of laser L4 and corresponding model calculation. The
peak corresponds to a single-pass efficiency of 57%. Lower inset:
Band mapping of molecules after the double STIRAP sequence. The
absorption images corresponding to data points beyond τ = 60 µs
are averaged and smoothed with a Gaussian filter. The colour scale
is chosen to emphasize any small population in higher bands. c, and
d, s-STIRAP: Double STIRAP efficiency for the inner two-photon
STIRAP from |3> to |v=0, J=0> (c) and to |v=0, J=2> (d) and
back, corresponding to the dotted bar in the timing sequence in e, as
a function of the detuning ∆4 of laser L4. The number of molecules
is normalized to the initial number in |3 >. All measurements are
performed at an offset magnetic field of 1.9 mT.
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Fig. 4.14.: Lattice band structure for |v = 0 > molecules. Band energies as a
function of lattice depth in units of the molecular recoil energy ẼR as
measured by phase and amplitude modulation of the lattice. The lat-
tice bands are labeled by (k, l,m), where k, l, and m give the number
of vibrational quanta along the three spatial directions in the limit
of a deep lattice. The horizontal position of the data points (filled
circles, representing the position of excitation resonances as shown in
inset c) is given by the molecular polarizability, which is determined
by a fit of the data to the band structure. Inset a shows the molecular
momentum distribution after transfer to higher lattice bands by res-
onant lattice amplitude modulation. The distribution represents an
average of 5 experimental runs, smoothed with a Gaussian filter. For
comparison, inset b shows that hardly any population is transferred
to higher bands for off-resonant modulation. Inset c shows typical
excitation spectra for amplitude (top) and phase (bottom) modula-
tion at 83 ẼR. For these, we determine the number of molecules in
the first Brillouin zone as a function of the excitation frequency. The
solid lines are Gaussian fits. The resonance at 22.5 kHz corresponds
to excitation to the nearly-degenerate bands (2,0,0) and (1,1,0) (not
resolved). The resonance at 20.6 kHz is a two-phonon excitation to
(4,0,0).
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Fig. 4.15.: Lifetime of trapped ground-state molecules in the optical lattice.
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of 8.1(6)s. The inset schematically shows the excited-state potentials
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4.5. Publication: Precision molecular spectroscopy

for ground state transfer of molecular quantum

gases

Faraday Discuss. 142, 283 (2009)†

Johann G. Danzl1, Manfred J. Mark1, Elmar Haller1, Mattias Gustavsson1,
Nadia Bouloufa2, Olivier Dulieu2, Helmut Ritsch3, Russell Hart1,

and Hanns-Christoph Nägerl1

1 Institut für Experimentalphysik und Zentrum für Quantenphysik,
Universität Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria.

2 Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, Bât. 505,
91405 Orsay Cedex, France.

3 Institut für Theoretische Physik und Zentrum für Quantenphysik,

Universität Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria.

One possibility for the creation of ultracold, high-phase-space-density quan-
tum gases of molecules in the rovibrational ground state relies on first as-
sociating weakly-bound molecules from quantum-degenerate atomic gases on
a Feshbach resonance and then transfering the molecules via several steps of
coherent two-photon stimulated Raman adiabatic passage (STIRAP) into the
rovibronic ground state. Here, in ultracold samples of Cs2 Feshbach molecules
produced out of ultracold samples of Cs atoms, we observe several optical
transitions to deeply bound rovibrational levels of the excited 0+

u molecular
potentials with high resolution. At least one of these transitions, although
rather weak, allows efficient STIRAP transfer into the deeply bound vibra-
tional level |v=73 > of the singlet X1Σ+

g ground state potential, as recently
demonstrated [Dan08]. From this level, the rovibrational ground state level
|v = 0, J = 0 > can be reached with one more transfer step. In total, our
results show that coherent ground state transfer for Cs2 is possible using a
maximum of two successive two-photon processes or one single four-photon
STIRAP process.

†The author of the present thesis contributed to this work by assisting the experimental
measurements. He also maintained and improved the experimental setup and contributed
to the paper writing.
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4.5.1. Introduction

Ultracold and dense molecular samples in specific deeply bound rovibrational
levels are of high interest for fundamental studies in physics and chemistry. They
are expected to find applications in high resolution spectroscopy and fundamen-
tal tests [Zel08, DeM08], few-body collisional physics [Sta06, Zah06], ultracold
chemistry [Kre05], quantum processing [DeM02], and in the field of dipolar quan-
tum gases and dipolar Bose-Einstein condensation [Gór02, Bar02]. Ideally, full
control over the molecular wave function is desired, i.e. full (quantum) control
over the internal and external degrees of freedom of the molecules. High phase
space densities are needed for molecular quantum gas studies. For many of the
envisaged studies and applications, initial preparation of the molecular sample in
the rovibronic ground state, i.e. the lowest energy level of the electronic ground
state, is desired. Only in this state one can expect sufficient collisional stability.

But how is it possible to produce dense samples of ultracold molecules in the
rovibrational ground state? Laser cooling of atoms, which has lead to the pro-
duction of quantum degenerate atomic Bose and Fermi gases [Sou02], can so far
not be adapted to the case of molecular systems as suitable cycling transitions
are not available. Versatile non-optical cooling and slowing techniques such as
buffer gas cooling and Zeeman slowing in combination with molecule trapping
[Doy04, Kre08, van08] have been developed, but high molecular densities and in
particular high phase space densities are yet to be reached. An alternative route
to producing ultracold molecular samples is given by first producing ultracold
atomic samples and then associating molecules out of the atomic sample. While
this technique is so far limited to the production of selected species of dimer
molecules, it has the advantage that ultra-low temperatures and high particle
densities are easily inherited from the atomic precursor sample. There are es-
sentially two association techniques, photoassociation [Jon06] and magnetically
induced Feshbach association [Köh06, Fer08]. In photoassociation experiments
[Nik00, Sag05, Vit08, Dei08], ultracold samples of deeply bound molecules have
been created. Additional techniques such as vibrational cooling [Vit08] should
allow selective pumping into the rovibrational ground state and open up the
prospect for high molecular phase space densities. In Feshbach association ex-
periments [Reg03, Her03], high-density samples of weakly bound molecules are
produced. For dimer molecules composed of Fermions, collisional stability of
the highly excited molecules is assured as a result of a Pauli blocking effect, and
molecular Bose-Einstein condensation could be achieved in the limit of extremely
weak binding [Ing08].

Here, we are interested in combining the techniques of Feshbach association
and coherent molecular state transfer to produce quantum gases of molecules
in the rovibrational ground state |v = 0, J = 0> of the lowest electronic state.
As usual, v and J are the vibrational and rotational quantum numbers, respec-
tively. The molecules, produced on a Feshbach resonance and hence initially
very loosely bound, are to be transferred in a few successive steps of coherent
two-photon laser transfer to the rovibrational ground state, acquiring more and
more binding energy in each step. The general idea is sketched in Fig. 4.16A for



PRECISION MOLECULAR SPECTROSCOPY FOR GROUND STATE
TRANSFER OF MOLECULAR QUANTUM GASES 141

the case of Cs2. Each two-photon step involves an excited state level. Population
transfer into this level needs to be avoided to prevent loss due to spontaneous
emission. One possibility is to use the technique of stimulated Raman adiabatic
passage (STIRAP) [Ber98], which is very robust and largely insensitive to laser
intensity fluctuations. The scheme has several advantages. First, production of
Feshbach molecules out of a quantum degenerate atomic sample can be very effi-
cient [Mar05]. Second, the optical transition rate on the first transition starting
from the Feshbach molecules is greatly enhanced in comparison to the free atom
case. Further, the scheme is fully coherent, not relying on spontaneous processes,
allowing high state selectivity, and involving only a comparatively small number
of intermediate levels. A ground state binding energy of typically 0.5 eV for an
alkali dimer can be removed essentially without heating the molecular sample, as
the differential photon recoil using pairwise co-propagating laser beams driving
the two-photon transitions is very small. If losses and off-resonant excitations
can be avoided, the scheme essentially preserves phase space density and co-
herence of the initial particle wave function, allowing the molecular sample to
inherit the high initial phase space density from the atomic precursor sample.

Certainly, several challenges have to be met: Going from weakly bound Fesh-
bach to tightly bound ground state molecules corresponds to a large reduction in
internuclear distance. Consequently, the radial wave function overlap between
successive levels is small, and a compromise has to be found between the number
of transitions and the minimum tolerable wave function overlap. To keep the
complexity of the scheme low, one or at most two two-photon transitions are
desirable. Accordingly, suitable intermediate levels have to be identified that al-
low a balanced division of wave function overlap, as given by the Franck-Condon
factors, between the different transitions. For example, for a four-photon transi-
tion scheme with Cs2 as shown in Fig. 4.16A the Franck-Condon factors are all
on the order of 10−6. We emphasize that the identification of the first excited
level and hence of the first transition starting from the Feshbach molecules is of
crucial importance. Detailed calculations determining the wave function over-
lap are generally missing, and estimates on the Franck-Condon factors using
hypothetical last bound states of either the singlet or triplet potentials of an
alkali dimer molecule do not necessarily reflect the transition dipole moments
adequately. In addition, for electronic molecular states or energy regions where
spectroscopic data is missing, the precise energy of the excited state levels above
the atomic threshold is known only with a large uncertainty which can approach
the vibrational spacing of a few nanometers. Hence, considerable time has to
be spent on searching for weak transitions starting from the initial Feshbach
molecules.

In a pioneering experiment, Winkler et al. [Win07] demonstrated that the
STIRAP technique can efficiently be implemented with quantum gases of weakly
bound Feshbach molecules. In this work, the transferred molecules, in this case
Rb2, were still weakly bound with a binding energy of less than 10−4 of the
binding energy of the rovibronic ground state, and the intermediate excited
state level was close to the excited-atom asymptote. Here, we observe several
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optical transitions starting from a weakly bound Feshbach level to deeply bound
rovibrational levels of the mixed excited (A1Σ+

u−b3Πu) 0+
u molecular potentials

of the Cs2 molecule in a wavelength range from 1118 to 1134 nm, far to the red
of the atomic D1 and D2 transitions. The Cs2 molecular potentials are shown
in Fig. 4.16A. We observe the levels as loss from an ultracold sample of Cs2

Feshbach molecules as shown in Fig. 4.16B. We observe two progressions, one
that we attribute to the (A1Σ+

u−b3Πu) 0+
u potentials and one that we associate

to the triplet (1)3Σ+
g potential. From the loss measurements, we determine the

transition strengths and find that the stronger transitions should be suitable for
STIRAP to an intermediate, deeply bound rovibrational level of the singlet X1Σ+

g

potential with v= 73. Recently, we could implement STIRAP into |v= 73, J =
2 > [Dan08]. For the case of the dimer molecule KRb, Ni et al. [Ni08] could
demonstrate quantum gas transfer all the way into the rovibrational ground
state |v=0, J=0 > of the singlet X1Σ+ molecular potential. Here, the transfer
could be achieved in only a single step as a result of the favorable run of the
excited state potentials, which is generally the case for heteronuclear molecules
composed of alkali atoms [Stw04]. Also recently, transfer to the rovibrational
ground state of the lowest triplet state a3Σ+

u of Rb2 could be achieved [Lan08b].

4.5.2. Preparation of a sample of weakly bound Feshbach

molecules

We produce ultracold samples of molecules on two different Feshbach resonances,
one near 1.98 mT and one near 4.79 mT [Mar07a]. In both cases, essentially
following the procedure detailed in Ref.[Web03a], we first produce an ultra-
cold sample of typically 2 × 105 Cs atoms in the lowest hyperfine sublevel
F = 3, mF = 3 in a crossed optical dipole trap. As usual, F is the atomic
angular momentum quantum number, and mF its projection on the magnetic
field axis. The trapping light at 1064.5 nm is derived from a single-frequency,
highly-stable Nd:YAG laser. The offset magnetic field value for evaporative
cooling is 2.1 mT. We support optical trapping by magnetic levitation with a
magnetic field gradient of 3.1 mT/cm. We then produce weakly bound Fesh-
bach molecules out of the atomic sample [Her03]. We produce a sample every
8 s, i.e. our spectroscopic measurements are performed at a rate of one data
point every 8 s. In order to be able to search for optical transitions over large
frequency ranges it is advantageous to work with the shortest possible sample
preparation times. For this reason we stop evaporative cooling slightly before
the onset of Bose-Einstein condensation (BEC), which also makes sample prepa-
ration somewhat less critical. The temperature of the initial atomic sample is
then typically about 100 nK. At higher temperatures and hence lower phase
space densities the molecule production efficiency is reduced, so that there is a
trade off between ease of operation and molecule number. We note that for our
ground state transfer experiments reported in Ref.[Dan08] we produce a pure
atomic BEC at the expense of longer sample preparation times.

The spectrum of weakly-bound Feshbach levels near the two-free-atom asymp-
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tote is shown in Fig. 4.17 [Mar07a]. For molecule production at the Feshbach
resonance at 4.79 mT, we first ramp the magnetic field from the BEC production
value to 4.9 mT, about 0.1 mT above the Feshbach resonance. We produce the
molecular sample on a downward sweep at a typical sweep rate of 0.025 mT/ms.
The resulting ultracold sample contains up to 11000 molecules, immersed in the
bath of the remaining ultracold atoms. The resonance at 4.79 mT is a d-wave
resonance [Mar07a], and hence the molecules are initially of d-wave character,
i.e. `= 2, where ` is the quantum number associated with the mechanical ro-
tation of the nuclei. However, there is a weakly bound s-wave Feshbach state
(|s >= |`= 0 >) belonging to the open scattering channel right below thresh-
old. This state couples quite strongly to the initial d-wave state, resulting in
an avoided state crossing (as shown in the inset to Fig. 4.17), on which the
molecules are transferred to the s-wave state |s > upon lowering the magnetic
field [Mar07a, Dan08]. Upon further lowering the magnetic field to less than 2.0
mT, the molecules acquire more and more character of a closed channel s-wave
state on a second, very broad avoided crossing. Here, we perform spectroscopy
in this transition range from open channel to closed channel s-wave character.
At a magnetic field value of 2.0 mT, the binding energy of the molecules is near
5 MHz×h with respect to the F = 3,mF = 3 two-atom asymptote, where h is
Planck’s constant.

For molecule production at the Feshbach resonance at 1.98 mT, we simply
ramp the magnetic field down from the initial BEC production value. Again,
we produce an ultracold molecular sample with about 11000 molecules. The
molecules in |g> have g-wave character, i.e. `=4. When we lower the magnetic
field to 1.6 mT, the binding energy of the molecules is also near 5 MHz×h with
respect to the F =3,mF =3 two-atom asymptote.

For spectroscopy, we release the molecules from the trap after magnetic field
ramping is completed and perform all subsequent experiments in free flight with-
out any other light fields on except for the spectroscopy laser.

For molecule detection in both cases, we reverse the magnetic field ramps
[Her03]. The g-wave molecules are dissociated on the g-wave Feshbach resonance
at 1.98 mT, and the s-wave molecules are dissociated on the d-wave Feshbach
resonance at 4.79 mT. Prior to the reverse magnetic field ramp, we apply a
magnetic field gradient of 3.1 mT/cm for about 5 ms to separate the molecular
from the atomic sample in a Stern-Gerlach-type experiment. Finally, we detect
atoms by standard absorption imaging. The minimum number of molecules that
we can detect is on the order of 200 molecules.

4.5.3. Spectroscopy

We perform optical spectroscopy on Feshbach molecules in the wavelength region
around 1125 nm. Based on symmetry considerations, there are two sets of
electronically excited states that we address in the spectroscopic measurements
presented here, namely the
(A1Σ+

u−b3Πu) 0+
u coupled state system and the (1)3Σ+

g electronically excited
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states. We first discuss transitions to the 0+
u coupled state system. Transitions

to the latter state are discussed in Sec. 4.5.3.

Transitions to the (A1Σ+
u−b3Πu) 0+

u coupled electronically excited states

We are primarily interested in transitions from Feshbach levels to rovibrational
levels of the (A1Σ+

u−b3Πu) 0+
u electronically excited states. In the heavy alkali

dimers, most notably in Cs2, the A1Σ+
u state and the b3Πu state are strongly

coupled by resonant spin-orbit interaction [Dul95, Ami99], yielding the 0+
u cou-

pled states in Hund’s case (c) notation. The singlet component of the 0+
u states

allows us to efficiently couple to deeply bound X1Σ+
g state levels, specifically to

the |v=73, J=2> level of the ground state potential, as has recently been shown
in a coherent transfer experiment [Dan08]. We have chosen to do spectroscopy
in the wavelength range of 1118 nm to 1134 nm above the 6S 1

2
+6S 1

2
dissociation

threshold of the Cs2 dimer. This corresponds to a detuning of roughly 2300
cm−1 from the cesium D1 line and to an energy range of approximately 12572
cm−1 to 12450 cm−1 above the rovibronic ground state X1Σ+

g |v = 0, J = 0 >.
This region was chosen in order to give a balanced distribution of transition
dipole moments in a 4-photon transfer scheme to the rovibronic ground state.
In addition, the wavelengths of the four lasers used in the transfer experiments
were chosen such that they lie within the energy range covered by the infrared
fiber-based frequency comb that we use as a frequency reference in the state
transfer experiments.

The transitions of interest here lie outside the energy regions for which Fourier
transform spectroscopic data was obtained at Laboratoire Aimé Cotton from
transitions to the X1Σ+

g state [Sal08b]. The vibrational progression of the 0+
u

states is highly perturbed by the resonant spin-orbit coupling and exhibits an
irregular vibrational spacing. Molecular structure calculations are complicated
by the spin-orbit coupling and calculated term values are highly sensitive to
the coupling. Prior to the experiments discussed here the absolute energies of
the vibrational levels of the (A1Σ+

u−b3Πu) 0+
u excited state levels were poorly

known in the region of interest from 1118 nm to 1134 nm. We therefore perform
a broad range search by irradiating the weakly-bound Feshbach molecules at
a fixed wavelength for a certain irradiation time τ of up to τ = 6 ms and by
recording the number of remaining molecules as a function of laser frequency.
In one run of the experiment one particular laser frequency is queried. We thus
take data points at the repetition rate of our experiment, which is given by the
sample preparation time of 8 seconds. Based on the available laser intensity
from L1 and an estimate of the dipole transition moments for the strongest
expected lines, we chose a frequency step size of about 100 MHz to 150 MHz
for initial line searching. We obtain the laser light at 1118 nm - 1134 nm from
a grating-stabilized external cavity diode laser. For coarse frequency scanning,
the laser is free running and tuned via a piezoelectric element on the grating of
the laser. For more precise measurements, we lock the laser to a narrow-band
optical resonator that can be tuned via a piezoelectric element. Fig. 4.18A
shows a typical loss spectrum starting from Feshbach state |s> for excitation
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near 1126 nm, measured at a magnetic field of 1.98 mT. In this particular case
we find three resonances, which we associate with the rotational splitting of the
excited state level, J = 5, 3, 1, where J is the rotational quantum number. Based
on molecular structure calculations we identify this level as the 225th one of the
0+
u progression with an uncertainty of about two in the absolute numbering.

We zoom in on these three transitions in Fig. 4.18B, C, and D and record loss
resonances at reduced laser intensity in order to avoid saturation of the lines.
For these measurements, the laser is locked to the narrow-band optical resonator
and the resonator in turn is stabilized to the optical frequency comb to assure
reproducibility and long term frequency stability. As one can expect, the loss
is strongest on the transition to the |J = 1 > level, and it is weakest on the
transition to |J=5 >. All lines have an excited state spontaneous decay rate of
around 2π× 2 MHz, in agreement with the typical expected lifetimes of excited
molecular levels. The transition to |J = 1 > shown in Fig. 4.18D is of special
interest to the current work. It has been used as intermediate excited state level
for coherent transfer to X1Σ+

g |v=73, J=2> in our recent experiments [Dan08].
By fitting a two level model that takes into account decay from the upper

level to a series of such measurements obtained with different laser intensities,
we determine the transition strength as given by the normalized Rabi frequency.
As the Feshbach molecules scatter photons and spontaneously decay to other
molecular levels, the number of Feshbach molecules N decays as a function of
laser detuning ∆1 according to

N(∆1) = N0 exp (−τΩ2
1/(Γ(1 + 4π2∆2

1/Γ
2))),

where N0 is the molecule number without laser irradiation and τ is the irra-
diation time. From the fit we obtain the Rabi frequency on resonance Ω1 and
the excited state spontaneous decay rate Γ. We determine the normalized Rabi

frequency to Ω1 = 2π×2 kHz
√
I/(mW/cm2) for |J = 1 >, where I is the laser

intensity. This value is sufficient to perform STIRAP given the available laser
power [Dan08]. The corresponding transition strengths for |J=3 > and |J=5 >

are Ω1 =2π×0.3 kHz
√
I/(mW/cm2) and Ω1 =2π×0.1 kHz

√
I/(mW/cm2), re-

spectively. The absolute values of these transition strengths bear an estimated
uncertainty of 20 % because the laser beam parameters for the spectroscopy
laser are not well determined.

We also record the time dependence of the molecular loss on some of the
stronger lines. For this, we step the laser irradiation time τ from 0 to 150 µs,
while laser L1 is kept on resonance. The result is shown in Fig. 4.19A for the
transition at 1126.173 nm for two different values of the excitation laser intensity.

We note that the transition strength for a particular line starting from Fesh-
bach level |s> strongly depends on the value of the magnetic field, as evidenced
in Fig. 4.19B. Loss resonances for the transition at 1126.173 nm at 1.9 mT and
2.2 mT are shown. For ground state transfer [Dan08], we choose a magnetic field
of around 1.9 mT, which is somewhat below the magnetic field region where state
|s > is strongly curved, but above the avoided state crossing with state |g2 >,
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as seen in Fig. 4.17. The pronounced bending of |s> is the result of a strong
avoided crossing between two s-wave Feshbach levels [Mar07a]. For magnetic
field values beyond 3.0 mT the level |s> can be associated to the F1 =3, F2 =3
asymptote, where Fi, i=1, 2, is the atomic angular momentum quantum number
of the i-th atom, respectively. Below 2.0 mT the level |s> can be associated to
the F1 = 4, F2 = 4 asymptote. It is hence of closed channel character and much
more deeply bound with respect to its potential asymptote, effectively by twice
the atomic hyperfine splitting, improving the radial wave function overlap with
the excited state levels. This increases the transition strength. Trivially, the
resonance frequency is shifted as the binding energy is reduced for larger mag-
netic field values. Coupling to the excited state level is reduced from Ω1 =2π×2

kHz
√
I/(mW/cm2) to Ω1 =2π×1 kHz

√
I/(mW/cm2) when the magnetic field

is changed from 1.9 mT to 2.2 mT.

As will be discussed in Sec.4.5.4 it is advantageous to be able to choose dif-
ferent Feshbach states as a starting state for ground state transfer experiments.
Therefore, we probe transitions from Feshbach level |g > to (A1Σ+

u−b3Πu) 0+
u

levels. Fig. 4.20 shows loss resonances to the same excited state levels as shown
in Fig. 4.18, only that now the initial Feshbach level is |g> instead of |s>. In this
case, the transition to |J=3 > is the strongest, while the transition to |J=1 >
is very weak, but can be detected. A comparison of the transition strengths from

|g > to the excited state level |J = 3>, giving Ω1 = 2π×1 kHz
√
I/(mW/cm2)

versus |s> to |J = 1 > giving Ω1 = 2π×2 kHz
√
I/(mW/cm2) shows that level

|g > could also be potentially used as a starting level for coherent population
transfer to deeply bound levels of the ground state but requires longer STIRAP
times in order to assure sufficient adiabaticity [Ber98]. The |J = 3 > excited
state level in turn couples to |J = 2> in the ground state, as in previous work
[Dan08].

In addition to the transition near 1126 nm we find a series of other excited state
levels that we assign to the (A1Σ+

u−b3Πu) 0+
u coupled state system. These are

listed in Table 4.1. The assignment to either the (A1Σ+
u−b3Πu) 0+

u system or to
the (1)3Σ+

g electronically excited state discussed below is primarily based on the
spacing between neighboring vibrational levels and in addition on the pattern
of loss resonances associated with each particular vibrational level. Resonant
spin-orbit coupling in the case of the 0+

u states leads to an irregular vibrational
spacing. In contrast, the (1)3Σ+

g state is not perturbed by spin-orbit interaction
and therefore has a regular vibrational progression. The levels near 1126 nm
and near 1123 nm have been used to detect dark resonances with deeply bound
levels of the X1Σ+

g state [Dan08]. The ability to couple to these essentially purely
singlet ground state levels unambiguously assigns the corresponding excited state
levels to the 0+

u system. The data given in Table 4.1 does not represent a fully
exhaustive study of the (A1Σ+

u−b3Πu) 0+
u coupled states in the wavelength range

of interest. In fact, for the most part we observe those levels of the 0+
u system

that have a dominant A1Σ+
u state contribution, as determined from molecular

structure calculations.
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Transitions to the (1)3Σ+
g electronically excited state

The Feshbach levels that serve as starting levels for the spectroscopy are of
mixed X1Σ+

g and a3Σ+
u character. In the wavelength range explored here, exci-

tation to the (1)3Σ+
g electronically excited triplet state is possible from the a3Σ+

u

component of the Feshbach molecules. In fact, for a heavy molecule as Cs2, the
(1)3Σ+

g state is better described by the two separate electronic states 0−g and
1g, denoted by the Hund’s case (c) notation. The (1)3Σ+

g has been previously
studied by Fourier transform spectroscopy [Ami85]. This state is not of prime
interest for the present work as transitions from this state down to the X1Σ+

g

ground state are expected to be strongly suppressed, but would be important for
STIRAP transfer into the rovibrational ground state level of the shallow triplet
a3Σ+

u potential [Lan08b]. Certainly, it is important to be able to distinguish
rovibrational levels belonging to the (1)3Σ+

g state from the ones belonging to
the 0+

u system, because otherwise time would be wasted in searching for ground
state dark resonances that are very weak or even do not exist. Fig. 4.21A shows
a typical loss spectrum for one of the lines that we detected near 1127.37 nm.
Due to hyperfine splitting, levels of triplet character exhibit a much richer sub-
structure than the 0+

u levels used for ground state transfer. Several components
can be identified as a result of rotational and excited state hyperfine splitting.
Zoomed-in regions are shown in Fig. 4.21B, C, D, and E. We have observed a
regularly spaced series of optical transitions which we attribute to the (1)3Σ+

g

excited state as listed in Table 4.1. The levels are well reproduced by molecu-
lar structure calculations using the Dunham coefficients from Ref.[Ami85]. The
vibrational numbering used here is the same as in that work. However, it relies
on the absolute energy position of the potential, Te, which was not determined
precisely in Ref. [Ami85].

4.5.4. Conclusion

We have performed optical spectroscopy starting from weakly bound Cs2 Fesh-
bach molecules into deeply bound rovibrational levels of the mixed excited state
0+
u system and the excited triplet (1)3Σ+

g state. At least one of the observed
transitions, namely the one at 1126.173 nm starting from the Feshbach level |s>
at an offset magnetic field value of 1.9 mT to the excited level |v′=225, J=1>
of the 0+

u system, is strong enough to allow efficient STIRAP transfer into deeply
bound rovibrational levels of the singlet X1Σ+

g ground state potential. The use
of this transition for STIRAP has recently been demonstrated in Ref.[Dan08].
In that work, the deeply bound rovibrational level |v= 73, J = 2> of the X1Σ+

g

ground state potential was populated in the molecular quantum gas regime with
80% efficiency. The rovibrational ground state |v = 0, J = 0 > of the X1Σ+

g

ground state potential can thus be reached from the atomic threshold with a
maximum of two two-photon STIRAP transfers. Dark resonances connecting
|v = 73, J = 2 > to |v = 0, J = 0 > have recently been observed [Mar09], and
two-step STIRAP into |v=0, J=0 > has recently been implemented [Dan10b].
For future experiments, the use of Feshbach level |g> as the initial state might
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be advantageous. Level |g > can be more easily populated, as the Feshbach
resonance connected to this level is at a low magnetic field value of 1.98 mT
[Mar07a], where the atomic background scattering length has a moderate value
of 155 a0, where a0 is Bohr’s radius. The use of this resonance avoids excita-
tion of collective motion of the atomic BEC as a result of a large mean field
interaction near the Feshbach resonance at 4.79 mT [Dan08], where the atomic
background scattering length is about 935 a0. The transition starting from level
|g> appears to be strong enough to allow STIRAP, this time via the excited
state level |v′ = 225, J = 3 > of the 0+

u system. An attractive strategy for the
production of a BEC of ground state molecules relies on the addition of a three-
dimensional optical lattice. Starting from the atomic BEC, pairs of atoms at
individual lattice sites can be produced in a superfluid-to-Mott-insulator transi-
tion [Gre02a] with high efficiencies of up to 50% [Dür08]. These pairs can then
be very efficiently associated on a Feshbach resonance [Tha06] and subsequently
transferred to the rovibronic ground state with STIRAP. The lattice has the
advantage of shielding the molecules against inelastic collisions during the asso-
ciation process and subsequent state transfer. In particular, it should allow long
STIRAP pulse durations, allowing us to resolve the weak hyperfine structure
of ground state molecules [Ald09]. As proposed by Jaksch et al. [Jak02], dy-
namical melting of the lattice should ideally result in the formation of a BEC of
molecules in the rovibronic ground state in a Mott-insulator-to-superfluid-type
transition.
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Table 4.1.: Observed excited state levels in the wavelength range from 1118
nm to 1134 nm. Transitions were measured from Feshbach state
|s > to the first electronically excited state, addressing both
(A1Σ+

u−b3Πu)0+
u levels and (1)3Σ+

g levels. Levels are given accord-
ing to the excitation wavelength (WL) from |s >, which essentially
corresponds to the F = 3,mF = 3 two-atom asymptote. The data is
taken at a magnetic field of 1.98 mT. Wavemeter accuracy is about
0.001 nm. The energy of these levels above the rovibronic ground
state X1Σ+

g |v = 0, J = 0 > is given in the second column, where
the binding energy of the rovibronic ground state is taken from
Ref.[Dan08]. The assignment to either the coupled (A1Σ+

u−b3Πu)0+
u

system or to the (1)3Σ+
g is based on the vibrational spacing and sim-

ilarities in the substructure of the levels. The levels marked with ∗
have been used for dark resonance spectroscopy coupling to deeply
bound levels of the X1Σ+

g state [Dan08]. The ability to couple to
such levels unambiguously reflects an important singlet component
stemming from the A1Σ+

u state and therefore clearly assigns these
levels to the 0+

u system. The quantum numbers given for the 0+
u lev-

els are coupled channels quantum numbers derived from molecular
structure calculations and bear an uncertainty of two in the absolute
numbering. The calculations show that these levels have about 70%
A1Σ+

u state contribution. Two further levels observed near 1120.17
nm and 1117.16 nm that belong to the 0+

u progression are not given
in the table since no further measurements have been done on these
levels. The level near 1129.5 nm exhibits a somewhat richer struc-
ture than the other levels assigned to 0+

u and than exemplified in
Fig. 4.18. Levels assigned to the (1)3Σ+

g state form a regular vibra-
tional progression and show a more complex substructure than the
levels attributed to the 0+

u system, as exemplified in Fig. 4.21. For
these levels, the transition wavelength to one of the most prominent
features is given, since an in depth analysis of the rotational and
hyperfine structure remains to be done. The vibrational numbering
for the (1)3Σ+

g levels is the same as in Ref [Ami85].

WL [nm] Energy above Assignment
X1Σ+

g |v=0>
[cm−1]

1132.481 12458.875 0+
u |v′=221, J=1 >

1129.492 12482.245 0+
u

1126.173∗ 12508.332 0+
u |v′=225, J=1 >

1123.104∗ 12532.598 0+
u |v′=226, J=1 >

1133.680 12449.536 (1)3Σ+
g |v′=32 >

1130.510 12474.274 (1)3Σ+
g |v′=33 >

1127.379 12498.838 (1)3Σ+
g |v′=34 >

1124.274 12523.334 (1)3Σ+
g |v′=35 >

1121.196 12547.756 (1)3Σ+
g |v′=36 >

1118.155 12572.013 (1)3Σ+
g |v′=37 >
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Fig. 4.16.: (A) Simplified molecular level scheme for Cs2 showing the relevant
ground state and excited state potentials involved in rovibrational
ground state transfer. Molecules in a weakly bound Feshbach level
|1>= |v≈155 > (not resolved near the 6S 1

2
+ 6S 1

2
two-atom asymp-

tote, but shown in Fig. 4.17) are to be transferred to the rovibrational
ground state level |5>= |v=0, J=0> of the singlet X1Σ+

g potential
with a binding energy of 3629 cm−1 by two sequential two-photon
STIRAP processes involving lasers L1 and L2 near 1126 nm and 1006
nm and lasers L3 and L4 near 1351 nm and 1003 nm. The interme-
diate ground state level |3>= |v= 73, J = 2> has a binding energy
of 1061 cm−1. (B) Probing candidate levels for |2> belonging to the
electronically excited coupled (A1Σ+

u−b3Πu) 0+
u potentials. Here, we

search for |2> in loss spectroscopy with laser L1 in a region near 8890
cm−1 above the 6S 1

2
+ 6S 1

2
asymptote, corresponding an excitation

wavelength range of 1118 to 1134 nm. The wiggly arrow indicates
loss from the excited levels due to spontaneous emission. Also shown
is the excited (1)3Σ+

g potential, for which we find several levels.
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Fig. 4.17.: Initial Feshbach molecule production: Zeeman diagram showing the
energy of weakly bound Feshbach levels [Mar07a] and the Feshbach
resonances (FR) used in the present work. The binding energy is
given with respect to the F = 3,mF = 3 two-atom asymptote. The
molecules are produced either on a d-wave Feshbach resonance at 4.79
mT (see inset) and then transferred to the weakly bound s-wave state
|s> on an avoided state crossing, or on a g-wave Feshbach resonance
at 1.98 mT, resulting in molecules in level |g>. In the first case,
further lowering of the magnetic offset field to below 2.0 mT changes
the character of the |s> level from open-channel to closed-channel
dominated [Mar07a]. The levels |s> and |g> are both candidate
levels for the initial level |1> shown in Fig. 4.16. For completeness,
further g-wave Feshbach levels, |g1>, |g2>, and |g3> are shown.
Level |g2> connects |g> to |s> and can be used for Feshbach state
transfer [Mar07a]. Level |g3> is a further interesting candidate level
for |1> with low nuclear spin contribution [Mar07a].
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Fig. 4.18.: Loss resonances for excitation from the initial Feshbach level |s> to
the 0+

u system. (A) Typical scan showing the number of molecules
in |s> as a function of laser wavelength λ1 near 1126 nm. Three
resonances can be identified, corresponding to |J=5>, |J=3>, and
|J=1>, from left to right. The sample is irradiated with laser light at
an intensity of 1× 106 mW/cm2 for τ = 200 µs. The laser is locked
to a narrow band optical resonator that is tuned via a piezoelec-
tric element with a step size of approximately 40 MHz. Wavelength
is measured on a home-built wavemeter. The molecule number is
normalized to the atom number measured in the same individual re-
alization of the experiment to cancel out fluctuations that stem from
shot-to-shot atom number fluctuations and the baseline is set to 1.
(B), (C), and (D) represent measurements of the three individual
lines with |J = 5>, |J = 3>, and |J = 1> at reduced intensity in or-
der to avoid saturation. The solid lines represent fits as described in
the text. The spectroscopy laser is stabilized to an optical resonator
and the resonator is in turn referenced to an optical frequency comb,
which allows precise and reproducible tuning of the frequency. The
transition to |J = 1 > in panel (D) is recorded at an intensity of
1.5 × 104 mW/cm2 (circles) and 6 × 103 mW/cm2 (triangles), (B)
and (C) are recorded at 1 × 106 mW/cm2 and 2 × 105 mW/cm2,
respectively. Pulse duration is τ = 10 µs.



PRECISION MOLECULAR SPECTROSCOPY FOR GROUND STATE
TRANSFER OF MOLECULAR QUANTUM GASES 153

 

 

0 50 100 150
Irradiation time (μs)

 

 1

0.5

0

M
ol

ec
ul

es
 (a

.u
.)

M
ol

ec
ul

es
 (a

.u
.)

1

0.5

0 0 5 10-10 -5
Laser detuning Δ1 (MHz)

BA

Fig. 4.19.: Loss of molecules for excitation near 1126.173 nm from Feshbach
level |s>. (A) Time dependence of molecular loss on resonance at
1126.173 nm for two different laser intensities, 5.7 × 105 mW/cm2

(circles) and 2.1×105 mW/cm2 (triangles). The magnetic offset field
is 1.9 mT. The fitted exponential decay gives the decay constants
τ = 9.7 ± 0.6 µs (circles) and τ = 25.5 ± 1 µs (triangles). (B)
Loss of molecules in |s> as a function of laser detuning ∆1 near
1126 nm with an irradiation time of τ = 10µs for two values of the
magnetic field, 1.9 mT (dots) and 2.2 mT (triangles). In both cases,
the excited state spontaneous decay rate was determined to ≈ 2π ×
2 MHz. At higher magnetic fields, Feshbach level |s> acquires more
open-channel character, reducing radial wave function overlap with
the excited rovibrational levels. The shift in transition frequency is
the result of a differential magnetic field shift of the Feshbach level
|s> and the excited state level.



154
PRECISION MOLECULAR SPECTROSCOPY FOR GROUND STATE

TRANSFER OF MOLECULAR QUANTUM GASES

 

 

 

 

 

 

Laser detuning Δ1 (MHz)
000

1126.144 nm 1126.163 nm 1126.173 nm

5-55-5 5-5 1010-10 -10

M
ol

ec
ul

es
 (a

. u
.)

0

1

0.5

0

1

0.5

0

1

0.5

CBA
J=1J=3J=5

Fig. 4.20.: Loss resonances for excitation from the initial Feshbach level |g>.
(A),(B), and (C) show the loss for excitation to |J = 5>, |J = 3>,
and |J=1>, corresponding to the resonances shown in Fig. 4.18. The
laser intensities are 1.5×104 mW/cm2 for panel (A) and for the circles
in panel (B). The second resonance in (B) (triangles) is measured
with 5.6 × 103 mW/cm2. (C) The line at 1126.173 nm is measured
at 1× 106 mW/cm2. All measurements are done with an irradiation
time of τ = 10 µs. From a series of such measurements at different
intensities we determine the line strengths for |J = 5>, |J = 3>,

and |J = 1> to Ω1 = 2π×1 kHz
√
I/(mW/cm2), Ω1 = 2π×1 kHz√

I/(mW/cm2), and Ω1 =2π×0.1 kHz
√
I/(mW/cm2), respectively.
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Fig. 4.21.: Loss of molecules for excitation near 1127.17 nm from Feshbach level
|s> to the triplet (1)3Σ+

g state. (A) represents a broad scan with laser
irradiation at an intensity of 5×105 mW/cm2 for τ = 100 µs at a step
size of 20 MHz. A rich structure due to rotation and excited state
hyperfine splitting can be seen which is qualitatively different from
the spectrum shown in Fig. 4.18. The lines are greatly broadened
by the high intensity and long irradiation time. The spectroscopy
laser is locked to a narrow band optical resonator that is stepped via
a piezoelectric element. Scans of about 750 MHz were recorded as a
function of piezo voltage on the resonator. Voltage was converted to
wavelength for each scan by a linear interpolation. (B)-(E) represent
scans over some of the observed features at a reduced intensity of
8 × 104 mW/cm2 and an irradiation time of τ = 10 µs in order
to reduce broadening of the lines. The step size is about 7 MHz.
Resonator piezo voltage is converted to frequency with an estimated
error of 10 %. The vertical arrows indicate weak lines that have
been verified in additional scans with higher power. In panel (E)
the power was somewhat increased for an additional measurement
(triangles) that emphasizes such a weak line. The wavelengths given
to identify the zero point on the frequency axis for each subpanel are
not meant to imply this level of accuracy which is limited to 0.001
nm by wavemeter calibration. Nevertheless, they give a measure of
the energy of the sublines relative to each other.
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4.6. Publication:Dark resonances for ground-state

transfer of molecular quantum gases

Appl. Phys. B 95 219-225 (2009)†

Manfred J. Mark1, Johann G. Danzl1, Elmar Haller1, Mattias Gustavsson1,
Nadia Bouloufa2, Olivier Dulieu2, Houssam Salami3, Tom Bergeman3,

Helmut Ritsch4, Russell Hart1, and Hanns-Christoph Nägerl1

1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität
Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria

2Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, Bât. 505, 91405 Orsay
Cedex, France

3Department of Physics and Astronomy, SUNY Stony Brook, NY 11794-3800, USA
4Institut für Theoretische Physik und Zentrum für Quantenphysik, Universität

Innsbruck, Technikerstraße 25, A–6020 Innsbruck, Austria

One possible way to produce ultracold, high-phase-space-density quantum
gases of molecules in the rovibronic ground state is given by molecule asso-
ciation from quantum-degenerate atomic gases on a Feshbach resonance and
subsequent coherent optical multi-photon transfer into the rovibronic ground
state. In ultracold samples of Cs2 molecules, we observe two-photon dark
resonances that connect the intermediate rovibrational level |v= 73, J = 2 >
with the rovibrational ground state |v = 0, J = 0 > of the singlet X1Σ+

g

ground state potential. For precise dark resonance spectroscopy we exploit
the fact that it is possible to efficiently populate the level |v=73, J=2 > by
two-photon transfer from the dissociation threshold with the stimulated Ra-
man adiabatic passage (STIRAP) technique. We find that at least one of the
two-photon resonances is sufficiently strong to allow future implementation
of coherent STIRAP transfer of a molecular quantum gas to the rovibrational
ground state |v=0, J=0 >.

†The author of the present thesis contributed to this work by performing the measurements
and the data analysis together with JGD. He also maintained and improved the experi-
mental setup and contributed to the paper writing.
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4.6.1. Introduction

Laser cooling of atoms and the production of quantum degenerate atomic Bose
and Fermi gases have revolutionized the field of atomic physics [Sou02]. For
molecular systems, ultralow temperatures and high phase space densities are
much more difficult to achieve. Laser cooling of molecules has not yet been
demonstrated, and with alternative cooling and slowing techniques such as
buffer gas cooling and Zeeman slowing high phase space densities are yet out of
reach [Doy04, Kre08, van08]. In photoassociation experiments from magneto-
optical traps, [Jon06, Nik00, Sag05, Vit08, Dei08], cold samples of deeply bound
molecules in the lowest vibrational levels have been created. Yet, the phase space
densities are far away from the quantum degenerate regime. In the limit of ex-
tremely weak binding, molecular Bose-Einstein condensation could be achieved
[Ing08] by using the trick of first cooling an atomic Fermi gas to high phase space
densities and subsequently associating pairs of atoms to molecules. For molecules
composed of Fermions, collisional stability of the highly excited molecules is
assured as a result of a Pauli blocking effect. Here, we are interested in ultra-
cold and dense molecular systems in specific deeply bound rovibrational levels.
Such samples are of high interest for fundamental studies in physics and chem-
istry, ranging from ultracold chemistry [Kre05] and few-body collisional physics
[Sta06, Zah06] to high resolution spectroscopy [Zel08, DeM08], to applications
in quantum processing [DeM02], and to the formation of dipolar quantum gases
and dipolar Bose-Einstein condensates [Gór02, Bar02]. For these experiments
full control over the molecular wave function is desired. In addition, high den-
sities are required for molecular quantum gas studies. Only in the rovibronic
ground state, i.e. the lowest energy level of the electronic ground state, is colli-
sional stability assured.

For the production of molecular quantum gases in the absolute ground state,
we follow a scheme in which the technique of stimulated two-photon transfer is
repeatedly applied to molecules associated on a Feshbach resonance from a high-
density sample of ultracold atoms such as a Bose-Einstein condensate (BEC).
The initially very loosely bound molecules are to be transferred in a few succes-
sive steps to the rovibrational ground state, acquiring more and more binding
energy. The scheme has several advantages. It is fully coherent, not relying
on spontaneous processes, allowing high state selectivity, and it involves only
a comparatively small number of intermediate levels. The scheme is expected
to allow the removal of a ground state binding energy of typically 0.5 eV for
an alkali dimer without appreciably heating the molecular sample. It essentially
preserves phase space density and coherence of the particle wave function, allow-
ing the molecular sample to inherit the high initial phase space density from the
atomic sample. Ideally, the scheme will ultimately result in the formation of a
molecular BEC. A major challenge is given by the low radial wave function over-
lap between successive molecular levels, potentially leading to prohibitively low
transition rates for the two-photon transitions that could only be compensated
by the use of further (smaller) transfer steps.

In a crucial experiment, Winkler et al. [Win07] demonstrated that coherent
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two-photon transfer by means of the stimulated Raman adiabatic passage (STI-
RAP) technique [Ber98] can efficiently be implemented with quantum gases of
weakly bound Feshbach molecules. In this work, the transferred molecules, in
this case Rb2, were still weakly bound with a binding energy of much less than
10−4 of the binding energy of the rovibrational ground state. In particular, wave
function overlap of the final level with the rovibrational ground state is negligi-
ble. Nevertheless, an important result of this experiment was the demonstration
that, even with excitation near the excited S+P asymptote, parasitic excitation
of unwanted molecular transitions by the STIRAP laser beams could largely
be avoided. Recently, Danzl et al. [Dan08] showed efficient coherent STIRAP
transfer into deeply bound rovibrational levels in the quantum gas regime. More
specifically, transfer into the rovibrational level |v = 73, J = 2 > of the singlet
X1Σ+

g molecular potential of the Cs dimer was demonstrated. This level is
bound by 1061 wavenumbers, more than one-fourth of the binding energy of the
rovibrational ground state. Here, as usual, v and J denote the vibrational and
rotational quantum numbers, respectively. This intermediate level was chosen
as to give a balanced distribution for the wave function overlap in a four-photon
transfer scheme to the ground state, i.e. to assure that all four dipole transition
moments are of comparable magnitude. This level could thus serve as a transfer
state towards the rovibrational ground state |v = 0, J = 0 >, allowing coher-
ent ground state transfer with two two-photon transitions. Also recently, Ni et
al. [Ni08] could demonstrate transfer all the way into the rovibrational ground
state |v= 0, J = 0 > of the singlet X1Σ+ molecular potential in a quantum gas
of KRb molecules. The transfer could be achieved in a single step as a result
of the favorable run of the excited state potentials in the case of heteronuclear
alkali dimers [Stw04]. Also, the lowest rovibrational level of the Rb2 triplet
a3Σ+

u potential could recently be populated in the quantum gas regime using
the STIRAP technique [Lan08b].

Here, in an ultracold and dense sample of Cs molecules, we present two-
photon dark resonances connecting the rovibrational level |v = 73, J = 2 > of
the Cs dimer singlet X1Σ+

g molecular potential with the rovibrational ground
state |v= 0, J = 0 >. Starting from |v= 73, J = 2 >, we first perform molecular
loss spectroscopy by laser excitation in the wavelength range from 1329 nm to
1365 nm to search for and identify suitable excited state levels of the mixed
(A1Σ+

u − b3Π0u) 0+
u excited molecular potentials. These levels are 9893 to 10091

wavenumbers above the rovibronic ground state, corresponding to a wavelength
range from 1011 nm to 991 nm for the transition to the rovibronic ground state.
We then perform dark state spectroscopy by simultaneous laser irradiation near
1350 nm and 1000 nm. We find several dark resonances, from which we derive
normalized transition strengths and find that at least one of the two-photon
transitions is favorable for ground state transfer.
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4.6.2. Molecular energy levels and laser transitions

Fig.4.22 shows the energy of the relevant Cs2 molecular states and the optical
transitions for our transfer scheme. State |1> is the initial weakly bound Fesh-
bach state that we populate out of an atomic BEC of Cs atoms via Feshbach
association [Her03]. For the transfer from |1> to the ro-vibrational ground state
|5>= |v=0, J=0 >, three intermediate levels |2>, |3>, and |4> are needed. All
five molecular levels are coupled by two two-photon transitions in a distorted
M-shaped configuration as shown in Fig.4.23. Levels |2> and |4> belong to the
excited mixed (A1Σ+

u − b3Π0u) 0+
u potentials. We have identified level |2> as the

225th one of the coupled 0+
u system, with an uncertainty of 2 in the absolute

numbering, and |3> is the level with v=73 and J=2 of the X1Σ+
g ground state

potential [Dan08]. A two-photon laser transition with laser L1 at 1126 nm and
laser L2 at 1006 nm couples |1> to |3> via |2>. There are now several possibili-
ties for coupling |3> to |5>, differing in the choice of the excited state |4>. The
aim of this work is to identify a suitable state |4> from the (A1Σ+

u − b3Π0u) 0+
u

potentials with sufficient wave function overlap with both |3> and |5>. We
search for state |4> in the energy range of 9893 to 10091 wavenumbers above
the rovibrational ground state |5>. Molecular structure calculations as outlined
in Sec. 4.6.4 show that in this range there are candidate states for |4> that
have dipole transition matrix elements with both |3> and |5> of comparable
magnitude, allowing optimum STIRAP performance. The wavelengths for the
lasers L3 and L4 driving the associated two-photon transition are near 1350 nm
and 1000 nm, respectively. We derive all laser light for driving the molecu-
lar transitions from highly stable, widely tunable diode laser systems with kHz
linewidths. For short term stability, the lasers are all locked to narrow-band
optical resonators. For long term stability, the optical resonators are referenced
to an infrared, fiber-laser-based frequency comb, covering the wavelength range
from about 980 nm to about 2000 nm.

4.6.3. Preparation of a molecular quantum gas in v=73, J=2

Our sample preparation procedure follows Ref. [Dan08]. In summary, we first
produce a cigar-shaped BEC of typically 1.5 × 105 cesium atoms in the lowest
hyperfine sublevel F = 3, mF = 3 in a crossed optical dipole trap. As usual,
F is the atomic angular momentum quantum number, and mF its projection.
The trapping light at 1064.5 nm is derived from a single-frequency, highly-stable
Nd:YAG laser. Using a d-wave Feshbach resonance at 4.8 mT [Mar07a] we then
produce a quantum gas of weakly bound Feshbach molecules out of the BEC
[Her03]. For this, we first ramp the magnetic field from the BEC production
value of 2.0 mT to 4.9 mT, slightly above the Feshbach resonance. The molecules
are produced on a downward sweep at a typical sweep rate of 0.025 mT/ms. The
resulting ultracold sample contains up to 11000 molecules, immersed in the bath
of the remaining BEC atoms. For the present experiments we shut off the trap
and perform all subsequent measurements in free flight. This reduces the parti-
cle density, in particular during the later detection stage of the experiment, and
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hence reduces atom-molecule collisional loss, thus increasing the molecular sig-
nal. Following two avoided state crossings while further sweeping the magnetic
field to lower values, we transfer the molecules via a weakly bound, open chan-
nel s-wave molecular state into the still weakly bound, closed channel s-wave
molecular state |1> by magnetic field ramping [Dan08]. This is the starting state
for the subsequent optical transfer. As with all other weakly bound Feshbach
states, it belongs to both the X1Σ+

g ground state potential and the lowest triplet
a3Σ+

u potential and is hence of mixed character. It has zero rotational angular
momentum. At a field of 1.9 mT, it has a binding energy of 5 MHz×h, where
h is Planck’s constant, with respect to the F = 3,mF = 3 two-atom asymptote
[Mar07a]. We detect molecules in |1> by reverse magnetic field ramping, leading
to dissociation on the Feshbach resonance at 4.8 mT, and by subsequent imaging
of the resulting atoms [Her03].

We transfer the molecules from |1> to the rovibrational level |3>= |v=73, J=
2 > with the STIRAP technique [Dan08]. For this, about 3 ms after molecule
production, with the magnetic field ramping completed, laser L2 at 1006 nm is
pulsed on first and then laser L1 at 1126 nm. Both lasers are on resonance within
a few kHz. The pulse overlap time is about 10 µs. With peak Rabi frequencies of
Ω1≈2π×3 MHz and Ω2≈2π×6 MHz we transfer about 80 % of the molecules to
|3>. We find that the molecular sample is not heated as a result of the STIRAP
transfer. A residual kinetic energy on the order of kB × 10 nK comes from the
expansion energy of the initial atomic sample. Our current procedure allows us
to produce a sample of up to 8000 molecules in state |3> every 12 s. For the loss
spectroscopy as detailed below, we irradiate the molecules in |3> with light near
1350 nm for a certain waiting time. We then measure the fraction of molecules
that have remained in |3>. For this, we transfer the remaining molecules back to
|1> using the reverse STIRAP process and determine the number of molecules
in |1>. Without irradiation with light near 1350 nm we transfer more than 65%
of the molecules from |1> to |3> and back to |1> [Dan08].

4.6.4. Loss spectroscopy

Prior to the present experiments, the energies of the levels with predominant
A1Σ+

u character in the region of interest were established to about ± 0.06 cm−1

by fits [Sal08b] to data obtained by Fourier transform spectroscopy (FTS) at
Laboratoire Aimé Cotton (LAC) using transitions to the X1Σ+

g state. However,
the predominantly b3Π0u levels were only known to about ± 2 cm−1 because this
region was above that for which data was obtained from 23∆1g → b3Π0u emission
[Xie08], but lower than the regime where b3Π0u levels acquire sufficient singlet
character (by spin-orbit mixing) to be observed in the FTS work. Paradoxically,
the predominantly b3Π0u levels are of special interest here because they happen
to have significant singlet character over regions of the internuclear distance that
are most important for transitions of interest in this work.

The coupled channel calculations used to characterize the level structure of
the strongly interacting A1Σ+

u and b3Π0u states employed methods developed
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from previous work on A and b states of K2 [Lis01, Man02], RbCs [Ber03a],
Na2 [Qi07], and Rb2 [Sal08a]. The DVR approach [Col92] was used to calculate
eigenvalues primarily for two coupled channels, although some information on
b3Π1u was found in the FTS data from LAC. Similar computational approaches,
differing in the detailed numerical methods, have been applied recently also to
the A and b states of NaRb [Doc07].

Because of the initial ± 2 cm−1 uncertainty in the positions of b3Π0u levels
of interest, we decided to perform a systematic, broad-range search around ex-
pected transition energies in the wavelength range from 1329 nm to 1365 nm.
For this, we perform double STIRAP from |1> to |3> and back with a waiting
time of typically τ = 1 ms. During the waiting time, we irradiate the sample
with laser L3 at an estimated intensity of 5 · 104 mW/cm2. Laser L3 is a diode
laser with grating feedback. On the timescale of our experiment, the resonator
of the laser is sufficiently stable, allowing systematic tuning of the laser without
locking the laser to its external resonator. We step the laser frequency in units
of typically 20 MHz by tuning the piezo element on the grating. We monitor
the laser wavelength with a home-built wavemeter at approximately 300 MHz
accuracy. For the initial broad range line search we increased the repetition rate
of the experiment by stopping evaporative cooling slightly before condensation
sets in. While stepping the laser, taking data points essentially at the cycle rate
corresponding to the sample production time, we look for a dip in the molecule
number. Once such a dip is found, typically consisting of a few data points, we
perform a more precise scan by locking the laser to the external, highly-stable
resonator and then the external resonator to the infrared frequency comb. This
allows us to detune the laser with kHz precision. Fig.4.24 (A) shows a typi-
cal loss resonance near 1351 nm. We reduce the laser intensity such that on
resonance at most 80% of the molecules are lost within 20 µs. From such mea-
surements the transition strength as given by the normalized Rabi frequency and
the natural linewidth of the excited state can be deduced. The typical width
of the excited state molecular levels that we have identified is 2π × 2 MHz, in
agreement with typical expected lifetimes. Fig.4.24 (B) shows a measurement
of the time dependence of the molecular loss. Here, we step the waiting time τ
from 0 to 50 µs, while the laser is kept on resonance. In total, we have found 7
excited levels belonging to the (A1Σ+

u − b3Π0u) 0+
u coupled state system. They

are listed in Table 4.2 along with the dominant overall character (either A1Σ+
u

state or b3Π0u state) of the vibrational wave function as determined from the
coupled state calculations. Within the wavelength range from 1329 nm to 1365
nm, theory predicts the existence of 5 more states of the 0+

u coupled state sys-
tem, whose energies are also displayed in Table 4.2. For most of them, the wave
function overlap is not expected to be favorable for STIRAP transfer to X 1Σ+

g

|v=0 >. However, an improved model of the energy level structure, based on all
the data except one FTS point with a large residual, fits the observed transitions
to a rms residual error of 0.02 cm−1, indicating that additional resonances can
be found with searches over very limited ranges of laser frequency.
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4.6.5. Dark resonances with |v=0, J=0 > and |v=0, J=2 >

In our recent work [Dan08] we could greatly improve the value for the binding
energy of the rovibrational ground state |5>= |v = 0, J = 0 > by determining
the binding energy of |v = 73 > and using well-known data from conventional
molecular spectroscopy [Wei85, Ami02]. Our measurement was limited by the
calibration of our wavemeter, not allowing us to determine the number of the
teeth of the frequency comb, and by the precision of the spectroscopy data.
Searching for |5> in dark state spectroscopy is now a straightforward task as only
a range of about 0.002 wavenumbers needs to be scanned. We do this by exciting
the transitions from |3> to |4> with laser L3 and from |4> to |5> with laser
L4 simultaneously. The intensity for L4 is typically 5 · 104 mW/cm2. As is well
known, the two light fields create a molecule-molecule dark state. The molecules
initially in |3> are lost unless laser L4 is on two-photon resonance, provided that
the Rabi frequency Ω4 on the fourth transition is equal to or greater than Ω3,
the Rabi frequency on the third transition. We look for the resonance condition
with the rovibrational ground state |v=0, J=0 > for some of the excited levels
that we found above. Table 4.2 lists the observed transition wavelengths. We
check that we can identify the level with rotational quantum number J = 2 as
the rotational energy splitting is well known. Fig.4.25 shows typical molecular
dark resonances when we set L4 on resonance and step the detuning ∆3 of L3

near 1350 nm. From a three-level model matched to the data for the dark
resonances, taking into account off-resonant excitations and laser line widths,
we determine the molecular transition strengths as given by the normalized Rabi
frequencies. One of the two-photon transitions appears to be a particularly good
candidate for STIRAP ground state transfer. It involves the excited state level
|4> with vibrational number v′ = 61 of the (A1Σ+

u − b3Π0u) 0+
u coupled state

system. For the transition from |3> to |4> and from |4> to |5> the normalized

Rabi frequencies are Ω3 = 2π× 6 kHz
√
I/(mW/cm2) and Ω4 = 2π× 5 kHz√

I/(mW/cm2), respectively. These values carry an estimated error of 50% as

the laser beam parameters for L3 and L4 are not well determined. A comparison

with a typical atomic transition strength of Ωa = 2π×5 MHz
√
I/(mW/cm2)

giving |Ω3/Ωa|2 ≈ 10−6 and |Ω4/Ωa|2 ≈ 10−6 reflects the minuteness of the wave
function overlap. Nevertheless, their value is sufficient for STIRAP as seen in
our recent work [Dan08]. Also, they are of similar magnitude. This facilitates
STIRAP, for which the peak Rabi frequencies should be approximately equal
for optimum performance.

4.6.6. Conclusion

We observe several two-photon dark resonances that connect the intermediate
rovibrational level |v = 73, J = 2 > of the X1Σ+

g ground state potential with
the rovibrational ground state level |v = 0, J = 0 >. At least one of the two-
photon transitions is sufficiently strong for implementing STIRAP to |v=0, J=
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0 > in the quantum gas regime, paving the way for the realization of a BEC
of ground state molecules. STIRAP can in principle be implemented in two
ways, either in the form of two sequential two-photon STIRAP steps, or in
the form of four-photon STIRAP [Sho91, Kuz08]. An attractive strategy for
the production of a BEC of ground state molecules relies on the addition of
an optical lattice. Starting from an atomic BEC, pairs of atoms at individual
lattice sites are produced in a superfluid-to-Mott-insulator transition [Gre02a].
These pairs can then be very efficiently associated on a Feshbach resonance
and subsequently transfered to the rovibronic ground state with STIRAP. The
lattice has the advantage of shielding the molecules against inelastic collisions
during the association process and subsequent state transfer. As proposed by
Jaksch et al. [Jak02], dynamical melting of the lattice should ideally result in
the formation of a BEC of molecules in the rovibronic ground state in a Mott-
insulator-to-superfluid-type transition.
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for valuable discussions and C. Amiot for providing the FTS data of LAC on
Cs2. We gratefully acknowledge funding by the Austrian Ministry of Science and
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support by the European Union in form of a Marie-Curie International Incoming
Fellowship (IIF). The work at Stony Brook was supported by the US NSF, under
grant PHY0652459.



DARK RESONANCES FOR GROUND-STATE TRANSFER OF MOLECULAR
QUANTUM GASES 165

Table 4.2.: Levels of the excited 0+
u coupled state system in the region 9893

cm−1 to 10091 cm−1 above X1Σ+
g |v = 0, J = 0 >. The first col-

umn gives the coupled channel vibrational numbers of the individ-
ual levels. Levels marked with ∗ have not been searched for and the
level energies given are those determined from the coupled channels
calculations. The column labeled ’C’ gives the predominant con-
tribution to the overall vibrational wave function, which is either
predominantly A1Σ+

u or predominantly b3Π0u, indicated by A and
b, respectively. The number in brackets gives the order within the
two progressions of levels with either predominantly A1Σ+

u or pre-
dominantly b3Π0u character. Both the |J = 1 > and the |J = 3 >
rotational levels were identified for all oberved excited state levels.
The wavemeter accuracy gives a typical uncertainty in wavelength
of ±0.002 nm, which translates into ±0.011 cm−1 uncertainty in the
value for the energy above |v = 0, J = 0 >. The energy relative to
X1Σ+

g |v = 0, J = 0 > of experimentally determined levels is based
on the measured excitation wavelength from X1Σ+

g |v= 73, J = 2 >
and the X1Σ+

g |v = 73 > level energy from Ref. [Ami02], which
introduces an additional uncertainty of 0.001 cm−1. Deexcitation
wavelengths are obtained from dark resonance spectroscopy involv-
ing the respective intermediate excited state level and the rovibronic
ground state X1Σ+

g |v=0, J=0 >. n. m.: not measured

v′ C J Excitation
wavelength
from X1Σ+

g

|v = 73, J = 2 >
[nm]

Energy above
X1Σ+

g |v = 0, J =
0 > [cm−1]

De-excitation
wavelength
to X1Σ+

g

|v = 0, J = 0 >
[nm]

57 A (7) 1 1365.148 9893.002 n. m.
57 A (7) 3 1365.131 9893.094 n. m.
∗58 b (50) 0 1362.893 9905.126 n. m.
∗59 A (8) 0 1357.748 9932.927 n. m.
60 b (51) 1 1357.091 9936.497 n. m.
60 b (51) 3 1357.071 9936.606 n. m.
61 b (52) 1 1351.367 9967.707 1003.240
61 b (52) 3 1351.347 9967.816 n. m.
∗62 A (9) 0 1350.388 9973.068 n. m.
63 b (53) 1 1345.725 9998.729 1000.128
63 b (53) 3 1345.705 9998.839 n. m.
∗64 A (10) 0 1343.082 10013.351 n. m.
65 b (54) 1 1340.162 10029.576 997.052
65 b (54) 3 1340.143 10029.682 n. m.
66 A (11) 1 1335.833 10053.759 994.653
66 A (11) 3 1335.816 10053.853 n. m.
∗67 b (55) 0 1334.675 10060.249 n. m.
68 b (56) 1 1329.257 10090.794 991.003
68 b (56) 3 1329.238 10090.902 n. m.
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Fig. 4.22.: Molecular level scheme for Cs2. Molecules in a weakly bound Fesh-
bach level |1>= |v≈155 > (not resolved near the 6S+6S asymptote)
are transferred to the rovibrational level |3>= |v=73, J=2> of the
singlet X1Σ+

g ground state potential with a binding energy of 1061
cm−1 by a two-photon STIRAP process [Dan08] involving lasers L1

and L2 near 1126 nm and 1006 nm. The following two-photon tran-
sition from |3> to |5>= |v = 0, J = 0> and also to |v = 0, J = 2>
is then probed by lasers L3 and L4 near 1350 nm and 1000 nm, re-
spectively. Level |2> is the 225th level of the electronically excited
coupled (A1Σ+

u − b3Π0u) 0+
u potentials. Here, we probe suitable can-

didate levels for |4>, connecting |3> to |5>. These candidate levels
also belong to the 0+

u coupled state system and include levels with
coupled channel vibrational numbers v′= 57 to 68. The position of
the vertical arrows is not meant to reflect the internuclear distance
at which the transition takes place.
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Fig. 4.23.: 5-level distorted M-scheme. The one-photon-detunings and Rabi
frequencies of Li are ∆i and Ωi, i = 1, 2, 3, 4. For STIRAP to
|v=73, J=2 > the detunings for L1 and L2 are ∆1 ≈ 0 ≈ ∆2.
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Fig. 4.24.: Loss resonances for excitation near 1351 nm from |3>= |v= 73, J =
2 > of the X1Σ+

g ground state potential. (A) Loss of molecules in
|3> as a function of laser detuning ∆3 near 1351 nm after a waiting
time of 20µs. The solid line represents a model calculation matched
to the data yielding an excited state natural linewidth of 2π×2 MHz.
(B) Time dependence of molecular loss on resonance at 1351 nm for
two different laser intensities. (1) 270 ± 80 mW/cm2, (2) 570 ± 80
mW/cm2. The fitted exponential decay gives the decay constants
τ = 26± 4 µs for 270 mW/cm2 and τ = 14± 2 µs for 570 mW/cm2.
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Fig. 4.25.: Dark resonances involving X1Σ+
g state levels |v=73, J=2 > and |v=

0 > for two different intermediate levels. (A and B) Dark resonances
with X1Σ+

g |v = 0, J = 0 > and |v = 0, J = 2 > involving the 0+
u

excited state level |v′=63, J=1 > at an excitation wavelength near
1345 nm. (C and D) Dark resonances with X1Σ+

g |v=0, J=0 > and
|v = 0, J = 2 > involving the excited state level |v′ = 61, J = 1 > at
an excitation wavelength near 1351 nm. The solid line in (D) is the
result of a model calculation, solving the three-level master equation
including laser bandwidth and loss, matched to the data giving Ω3 =

2π×6 kHz
√
I/(mW/cm2) and Ω4 =2π×4 kHz

√
I/(mW/cm2) for

X1Σ+
g |v = 0, J = 2 >. The corresponding calculation for X1Σ+

g

|v = 0, J = 0 > yields 2π×5 kHz
√
I/(mW/cm2).





CHAPTER 5

LOW-DIMENSIONAL SYSTEMS

5.1. Introduction

In this chapter, we investigate the properties of tunable Bose gases in an one-
dimensional geometry. This geometry is especially interesting, since many the-
oretical models are analytically solvable and allow a direct comparison without
the need of approximations [Gia03]. As a mathematical one-dimensional model
cannot be realized directly, the best way to simulate them is to strongly confine
the particles along two directions, either by creating potential tubes within a
two-dimensional lattice structure [Gre01] or by single magnetic traps with a high
aspect ratio [Det01, Hof07]. For very low temperatures and strong transversal
confinement, particles in such a tube are only allowed to move along the tube,
the motion perpendicular is frozen out. From a quantum mechanical point of
view, the atoms are in the transversal groundstate of the tube, and the energy
gap to the first excited state in this directions is much larger than any other
energy scale in the system, especially temperature [Ols98]. A more detailed
introduction and description of the experiments in this chapter is given in the
PhD thesis of Elmar Haller [Hal10a].

Tunability of interactions is realized by means of a Feshbach resonance as de-
scribed in chapter 1.6. In 1D, the relevant parameter describing the interaction
strength is the coupling constant g1D, which is directly proportional to the 3D
scattering length a3D as long as a3D is much smaller than the harmonic confine-
ment length a⊥ perpendicular to the tube axis [Ols98]. For strong interactions
one has to take the effect of the confinement into account, which leads to a
so-called confinement induced resonance (CIR) at the point where a3D ∼ a⊥
[Ber03b]. The physical origin of this resonance relies on the fact that the con-
finement provides excited states. The CIR appear when the binding energy of
a molecular state from a excited trap state crosses the energy threshold of two
scattering particles in the lowest harmonic oscillator state, in a way similar to
the appearance of a Feshbach resonance in free space. The interaction strength
g1D diverges at this point, whereas the divergence of a3D at the original Fesh-
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bach resonance disappears in g1D. Figure 5.1 shows the behavior of a3D and g1D

as a function of the magnetic field around the free-space Feshbach resonance in
cesium at ∼ 47.8 G.

Fig. 5.1.: Interaction strengths as a function of the magnetic field in our one-
dimensional geometry. The 3D scattering length a3D diverges at the
Feshbach resonance at ∼ 47.8 G, while the 1D interaction strength g1D

shows resonant behavior at the point where a3D ∼ a⊥. The figure is
adapted from [Hal09]

Using two retroreflected laser beams, we are able to create an array of tubes as
shown in figure 5.2, which provide an tight confinement perpendicular to the long
tube axis. A weak harmonic confinement along the tubes is given by the lattice
beams itself, and it can be increased by our initial dipole trap when needed.
As tunneling between individual tubes can be neglected for the duration of our
typical experiments, they can be treated as independent traps, realizing up to
6000 1D systems in parallel. To load atoms into the tubes, we either adiabatically
ramp up the two-dimensional lattice directly or we first drive the Mott insulator
transition with a three-dimensional lattice and subsequently ramp down one
lattice direction adiabatically. The density shape of our initial BEC results in
a spatial number variance across the tubes, slightly different between the two
preparation methods, which has to be taken into account for the analysis of the
experiments.

In section 5.2 we observe the appearance of an atom loss resonance connected
to the CIR by varying the interaction strength across the calculated resonance
position. We investigate the properties of this loss resonance in more detail by
determining its position in a3D as a function of a⊥, where we find good agree-
ment with the expected dependence on a⊥. By introducing an asymmetry in
the perpendicular confinement, we observe a splitting of the loss feature into
two resonances. The two resonances shift according to the harmonic confine-
ment length in each perpendicular direction of the asymmetric tube, and in the
limiting case of vanishing confinement in one perpendicular direction - the 2D
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Fig. 5.2.: Experimental realization of 1D systems. An array of tube-shaped
traps is created by two standing light waves. For typical experimental
parameters tunneling between tubes can be neglected, and the aspect
ratio of the tubes reach up to ∼ 1000. The tubes can be loaded with
up to ∼ 60 atoms each.

limit - one of the resonances survives. In contrast to theoretical predictions
[Pet01, Nai07] it is located in the repulsive interaction region.

Going back to the configuration with symmetric tubes, we investigate in sec-
tion 5.3 the properties of the system as a function of the interaction strength,
showing that we can prepare the noninteracting, weakly-interacting and strongly-
interacting regime. For very strong interactions the bosonic atoms tend to avoid
each other, forming the so-called Tonks-Girardeau gas [Gir60, Lie63]. The atoms
behave like impenetrable particles, and their density distribution gets similar
to the one from non-interacting fermions. By ramping over the CIR, we in-
stantly switch interactions from strong repulsion to strong attraction, thus en-
tering a highly excited metastable many-body state, the so-called Super-Tonks-
Girardeau gas [Ast05]. It preserves and even enhances the particle correlations
from the Tonks-Girardeau gas and can be mapped to fermions with long-range
interactions. We show that this state exhibits a long lifetime and an increased
stiffness.

In Section 5.4 we modify the system by adding a lattice potential along the
tubes and investigate the superfluid to Mott insulator phase transition in 1D
geometry in various interaction regimes. In the Tonks-Girardeau regime, where
the particles are already ordered due to increased correlations, we observe a
novel type of phase transition, the so-called pinning transition. For interactions
beyond a critical value an already infinitesimal weak lattice induces this quantum
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phase transition from a superfluid to the Mott insulator, presumed that the
density of the superfluid is commensurate with the lattice [Gia03, Büc03]. We
map out the phase boundary for all interaction strengths and see good agreement
with the theoretical expectations.

To investigate in more detail the strong modification of particle correlations
due to reduced dimensionality, we perform a measurement of the local three-
body correlation function g(3) in section 5.5. To deduce g(3) we use the fact that
three-body recombination processes, which lead to particle loss, are directly
connected to the local three-body correlation function. Compared to the 3D
situation, we observe a reduction of g(3) by 3 orders of magnitude when increasing
the interactions such that we enter the strongly correlated Tonks-Girardeau
regime, in good agreement with theory [Gan03, Che06b].
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5.2. Publication: Confinement-induced resonances in

low-dimensional quantum systems

Phys. Rev. Lett. 104, 153203 (2010)†

Elmar Haller1, Manfred J. Mark1, Russell Hart1, Johann G. Danzl1,
Lukas Reichsöllner1, Vladimir Melezhik2, Peter Schmelcher3,

and Hanns-Christoph Nägerl1

1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität
Innsbruck,

Technikerstraße 25, A–6020 Innsbruck, Austria
2Bogoliubov Laboratory of Theoretical Physics, Joliot-Curie 6, 141980 Dubna, Russia

3Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg,

Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

We report on the observation of confinement-induced resonances in strongly
interacting quantum-gas systems with tunable interactions for one- and two-
dimensional geometry. Atom-atom scattering is substantially modified when
the s-wave scattering length approaches the length scale associated with the
tight transversal confinement, leading to characteristic loss and heating sig-
natures. Upon introducing an anisotropy for the transversal confinement we
observe a splitting of the confinement-induced resonance. With increasing
anisotropy additional resonances appear. In the limit of a two-dimensional
system we find that one resonance persists.

†The author of the present thesis contributed to this work by maintaining and improving the
experimental setup and paper writing.
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5.2.1. Introduction

Low-dimensional systems have recently become experimentally accessible in
the context of ultracold quantum gases. For a two-dimensional (2D) geom-
etry, the Berezinskii-Kosterlitz-Thouless (BKT) transition has been observed
[Had06], and in one dimension the strongly-correlated Tonks-Girardeau (TG)
[Gir60, Kin04, Par04, Sya08, Hal09] and super-Tonks-Girardeau (sTG) gases
[Hal09] have been realized. In these experiments steep optical potentials freeze
out particle motion along one or two directions and restrict the dynamics to a
plane or to a line. Such quasi-2D or quasi-1D systems can be realized with
ultracold gases when the kinetic and the interaction energy of the particles
are insufficient to transfer the particles to transversally excited energy levels.
Whereas the confinement removes motional degrees of freedom, it also provides
an additional structure of discrete energy levels that can be used to modify
scattering along the unconfined direction and by this to effectively control the
interaction properties of the low-dimensional system [Ols98, Pet00b, Ber03b].
In this Letter, we investigate the few-body scattering processes that give rise to
the capability to tune interactions and hence to drastically alter the properties
of low-dimensional many-body quantum systems [Hal09].

In three-dimensional (3D) geometry magnetically-induced Feshbach resonances
(FBRs) [Chi10] allow tuning of the inter-particle interaction strength. A FBR
occurs when the scattering state of two atoms is allowed to couple to a bound
molecular state. Typically, scattering state and bound state are brought into de-
generacy by means of the magnetically tunable Zeeman interactions. For parti-
cles in 1D and 2D geometry a novel type of scattering resonance occurs. Coupling
between the incident channel of two incoming particles and a transversally ex-
cited molecular bound state generates a so-called confinement-induced resonance
(CIR) [Ols98, Pet00b, Ber03b, Tie00, Yur05, Mel07, Sae08, Kim05, Nai07]. A
CIR occurs when the 3D scattering length a3D approaches the length scale that
characterizes the transversal confinement, i.e. the harmonic oscillator length
a⊥ =

√
~/(mω⊥) for a particle with mass m and transversal trapping frequency

ω⊥. This causes the 1D coupling parameter g1D = 2~2a3D
ma2⊥

1
1−Ca3D/a⊥

to diverge at

a⊥ = Ca3D, where C = 1.0326 is a constant [Ols98, Ber03b]. The CIR allows
tuning of interactions from strongly repulsive to strongly attractive and thus rep-
resents a crucial ingredient for the control of interactions in a low-dimensional
system. Modification of scattering properties due to confinement has been mea-
sured near a FBR for fermions [Gün05], and, recently, a CIR has been observed
for a strongly-interacting 1D quantum gas of bosonic Cs atoms and was used
to drive the crossover from a TG gas with strongly repulsive interactions to an
sTG gas with strongly attractive interactions [Hal09]. Here, for an ultracold
quantum gas of Cs atoms with tunable interactions, we study the properties of
CIRs by measuring particle loss and heating rate and, in particular, confirm the
resonance condition a⊥ = Ca3D for symmetric 1D confinement. For the case
of transversally anisotropic confinement we find that the CIR splits and, to our
surprise, persists for positive a3D even when the anisotropy reaches the limit of
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a 2D system.

5.2.2. Confinement induced resonances

Figure 5.3(a) reviews the basic mechanism that causes a CIR for zero collisional
energy in 1D [Ber03b]. It is assumed that in 3D the scattering potential sup-
ports a single universal bound state for strong repulsive interactions (dotted
line) [Chi10]. The point where the incoming channel of two colliding atoms
and the universal dimer state are degenerate marks the position of a 3D FBR
(triangle). In 1D, strong transversal confinement shifts the zero-energy of the
incoming channel (middle dashed line) and introduces a transversally excited
state (upper dashed line). As a result of the strong confinement, the univer-
sal dimer state with binding energy EB (lower solid line) exists also for at-
tractive interactions [Mor03a] whereas the original 3D FBR has disappeared.
Instead, there is a CIR (star) when the incoming scattering channel becomes
degenerate with the transversally excited molecular bound state (upper solid
line). It is assumed that the binding energy of this state is also EB, shifted
by 2~ω⊥[Ols98]. In more detail, as depicted in Fig. 5.3(b), we assume that the
energy levels of non-interacting atoms, as a result of cylindrically symmetric
transversal confinement, can be approximated by those of a 2D harmonic oscil-
lator with En1,n2 = ~ω⊥(n1 +n2 +1) and quantum numbers n1 and n2 belonging
to the two Cartesian directions. Scattering atoms 1 in the transversal ground
state (0, 0) can couple to the excited states (n1, n2) if the parity of the total
wave function is preserved [Kim05]. The energetically lowest allowed excited
states are threefold degenerate with an energy E = 3~ω⊥ and with quantum
numbers (1, 1), (2, 0) and (0, 2). For the transversally symmetric confinement,
they contribute towards a single CIR [Ber03b]. However, the contribution of
the state (1,1) is negligible due to the zero contact probability of the atoms and
the short-range character of the interatomic interaction. Unequal transversal
trapping frequencies ω1 and ω2 = ω1 + ∆ω lift this degeneracy and shift the
energy levels according to En1,n2 = ~ω1(n1 +n2 + 1) +~∆ω(n2 + 1/2). One thus
expects a splitting of the CIR.

5.2.3. Experimental procedure

We start from a tunable Bose-Einstein condensate (BEC) of 1.0 to 1.4 × 105

Cs atoms in the energetically lowest hyperfine sublevel [Kra04] confined in a
crossed-beam optical dipole trap and levitated against gravity by a magnetic
field gradient of |∇B| ≈ 31.1 G/cm. Tunability of a3D is given by a FBR as
shown in Fig. 5.3(d) with its pole at B0 = 47.78(1) G and a width of 164
mG [Kra04, Lan09]. The BEC is produced at a3D ≈ 290 a0. We load the atoms
within 300 ms into an optical lattice, which is formed by two retro-reflected laser
beams at a wavelength of λ = 1064.49(1) nm, one propagating vertically and one
propagating horizontally as illustrated in Fig. 5.3(c). These lattice beams confine

1Center-of-mass and relative motion separate for identical particles in a harmonic trap
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the atoms to an array of approximately 3000 horizontally oriented, elongated
1D tubes with a maximum occupation of 60 atoms at a linear peak density of
approximately n1D ≈ 2/µm. Weak longitudinal confinement results from the
Gaussian-shaped intensity distribution of the beams. We raise the lattice to
a depth of typically V = 30 ER, where ER = h2/(2mλ2) is the photon recoil
energy. At this depth, the resulting transversal and longitudinal trap frequencies
are ω⊥ = 2π × 14.5 kHz and ω‖ = 2π × 16 Hz and we then have a⊥ ≈ 1370 a0.
After loading we slowly ramp down |∇B| in 50 ms and adiabatically increase
a3D to 915 a0 in 100 ms to create a TG gas with well-defined starting conditions
near the CIR [Hal09]. To detect the CIR as a function of B, manifested by a loss
resonance, we quickly set B in less than 200 µs to the desired value, wait for a
hold time of typically τ = 200 ms, and then measure the number N of remaining
atoms by absorption imaging. For this, we re-levitate the atoms, ramp down
the lattice beams adiabatically with respect to the lattice band structure, and
allow for 50 ms of levitated expansion and 2 ms time-of-flight. Note that τ is
chosen to be much longer than the lifetime of the sTG phase [Hal09].

5.2.4. Transversally symmetric confinement

We observe the CIR in the form of an atomic loss signature as shown in Fig. 5.4.
We attribute the loss near the resonance to inelastic three-body collisions [Web03a],
which lead to molecule formation and convert binding energy into kinetic en-
ergy, causing trap loss and heating, similar to the processes observed near a
FBR [Chi10]. In Fig. 5.4(a) the CIR can be identified as a distinct “edge” for
the atom number N . Initially, in the TG regime losses are greatly suppressed,
but increase rapidly on the attractive side of the CIR. N drops to a minimum
when B is increased and then recovers somewhat. A clear shift of the loss sig-
nature to lower values for B and hence lower values for a3D can be discerned
when the confinement is stiffened. When we identify the position of the edge
with the position of the CIR, we find good agreement with the analytical result
Ca3D = a⊥ as shown in Fig. 5.4(b). As we have no theoretical description of the
detailed shape of the loss resonance, we also plot, for comparison, the position
of the minimum, which is shifted accordingly.

In Fig. 5.4(c) we juxtapose the loss and the heating rate that we measure in
the vicinity of the CIR. For this, we measure the increase of the release energy
within the first 100 ms. After holding the atoms for time τ at a given value of
B, we decrease a3D back to 250 a0 in 20 ms, switch off the lattice potential and
determine the release energy in the direction of the tubes from the momentum
distribution in free space expansion. We observe an increase for the heating rate
when the CIR is crossed. From a low value of 10 nK/s in the TG regime it
rises to a maximum of approximately 150 nK/s and then drops to settle at some
intermediate value. The position of the maximum agrees well with the maximum
for atom loss. We check that the system’s increase in energy is sufficiently small
so that its 1D character is not lost. The release energy, even at maximal heating,
remains below kB×30 nK, which is far below the energy spacing of the harmonic
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oscillator levels, ~ω⊥ ≈ kB × 600 nK.

5.2.5. Transversally asymmetric confinement

We now examine 1D systems with transversally anisotropic confinement. Start-
ing from a lattice depth of V = 25 ER along both transversal directions, yielding
ω⊥ = ω1 = ω2 = 2π × 13.2(2) kHz, we increase the horizontal confinement to
frequencies up to ω2 = 2π × 16.5(2) kHz, corresponding to a lattice depth of
39 ER, while keeping the depth of the vertical confinement constant. Fig. 5.5(a)
shows a distinct splitting of the original CIR into two loss resonances, CIR1 and
CIR2. The splitting increases as the anisotropy is raised. In Fig. 5.5(b) we plot
the 3D scattering length values a3D,1 and a3D,2 that we associate with the posi-
tions of CIR1 and CIR2 as a function of the frequency ratio ω2/ω1. For this, as
it becomes difficult to assign an edge to both of them, we simply determine the
associated atom number minima and subtract a constant offset of 88(7) a0 as
determined from the measurement shown in Fig. 5.4(b). One of the resonances,
CIR2, exhibits a pronounced shift to smaller values for a3D as the horizontal con-
finement is stiffened. The second resonance, CIR1, shows a slight shift towards
higher values for a3D. We now use the lifting of the degeneracy for the energy
levels as indicated in Fig. 5.3(b) to model the observed splitting of the CIR.
We assume that the implicit equation ζ(1/2,−EB/(2~ω⊥) + 1/2) = −a⊥/a3D

for the binding energy EB [Ber03b] remains approximately valid for sufficiently
small ∆ω, taking ω⊥ = ω1. Here, ζ is the Hurwitz zeta function. We translate
the scattering length values a3D,1 and a3D,2 into binding energies and calculate
the energy difference ∆EB = EB(a3D,1)−EB(a3D,2), shown in Fig. 5.5(c). While
this model does not explain the upward deviation seen for CIR1, the difference
∆EB is in reasonable agreement with the expected energy shift caused by the
shifts of the excited harmonic oscillator states (E0,2 − E2,0) = 2~∆ω (solid line
in Fig. 5.5(c)). We thus attribute CIR2 to the stiffened confinement along the
horizontal direction and hence to state (0, 2), while CIR1 corresponds to the
unchanged confinement along the vertical direction and hence to state (2, 0).

5.2.6. Limit of a 2D-system

We observe the appearance of additional structure in the measured loss curves
when we increase the transversal anisotropy by weakening the confinement along
one axis, here along the vertical direction. Fig. 5.6(a) shows the atom number
after τ = 300 ms for trapping frequency ratios ω1/ω2 from 0.67 to 0.45. Multiple
loss resonances appear close to the position of CIR1. The number of resonances
increases and the positions shift continuously as the confinement is weakened.
We speculate that those resonances are a result of a coupling to additional ex-
cited states, resulting in a multi-channel scattering situation. Also the weakening
of the confinement could induce sufficient anharmonicity to allow for violation
of the parity rule [Pea05].

Surprisingly, we find that one of the CIRs persists in the limit of a 2D system.
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Previous theoretical studies on 2D systems have predicted the appearance of a
CIR for negative a3D, but not for positive a3D [Pet01, Nai07]. In the experiment,
we reduce the horizontal confinement while keeping the vertical confinement
constant to probe the transition from the array of tubes to a stack of pancake-
shaped, horizontally-oriented 2D systems. Trapping in the horizontal direction
is still assured, now by the Gaussian profile of the vertically propagating laser
beam, for which ω2 = 2π × 11 Hz. Fig. 5.6(b) shows that the CIR associated
with the tight confinement shifts to lower values for B and hence for a3D as
the horizontal confinement is weakened. In the limit of 2D confinement, one
of the CIRs, and in fact all the additional structure observed above, have dis-
appeared, but one resonance persists. To check that the observed resonance is
indeed the result of the 2D confinement, we vary the confinement along the tight
vertical direction. Fig. 5.6(c) plots the positions of edge and minimum of the
loss signature as a function of a⊥,2D, the confinement length associated with this
direction. When we again associate the edge with the pole of the resonance, we
obtain C2Da3D = a⊥,2D with C2D = 1.19(3), where C2D is a scaling factor similar
to C for the 1D case. Further scattering experiments are needed to elucidate
the energy dependence of this 2D scattering resonance.

In summary, we have investigated the properties of CIRs, which appear in
low-dimensional quantum systems as a result of tight confinement and which
replace “conventional” 3D Feshbach resonances to tune the effective atomic in-
teraction strength. We observed a splitting of the CIR for anisotropic transversal
confinement, the appearance of multiple resonances for strongly anisotropic con-
finement, and the survival of one resonance for positive a3D in the limit of 2D
confinement. We expect that CIRs will not only be used in 1D geometry to tune
the effective interaction strength as recently demonstrated [Hal09], but also in
2D geometry and mixed dimensions [Lam10] for the study of strongly-interacting
quantum systems.
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Fig. 5.3.: (color online) (a) Illustration of the mechanism responsible for a CIR,
see Ref.[Ber03b] and text for details. The energy levels near a scatter-
ing resonance are plotted as a function of 1/a3D. The CIR occurs for
Ca3D = a⊥ when scattering atoms are allowed to couple to transver-
sally excited bound states. (b) indicates the shift and splitting for
anisotropic confinement characterized by ∆ω. (c) Experimental con-
figuration. Two laser beams create an optical lattice that confines the
atoms to an array of approximately 3000 independent, horizontally-
oriented elongated 1D tubes. (d) Tuning of a3D is achieved by means
of a FBR with a pole at B = 47.78(1) G [Lan09].
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Fig. 5.4.: (color online) Particle loss and heating rates in the vicinity of a
CIR. (a) The number N of remaining atoms after τ = 200 ms
shows a distinct drop (“edge”) when B is scanned across the CIR.
A clear shift of the position of the edge to lower values for B can
be observed when the transversal confinement is stiffened, ω⊥ =
2π × (0.84, 0.95, 1.05) × 14.2(2) kHz (circles, squares, triangles). (b)
Position of the edge (circles) as determined from the intersection point
of a second-order polynomial fit to the minimum for N and the initial
horizontal baseline as shown in (a), converted into values for a3D. For
comparison, the position of the minimum (triangles) is also shown.
The solid line is given by Ca3D = a⊥. (c) Heating rates near the
CIR (circles). For comparison, N is also shown (triangles). Here,
ω⊥ = 2π × 12.0(2) kHz. All error bars reflect 1σ statistical uncer-
tainty.
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Fig. 5.5.: (color online) Splitting of a CIR for a 1D system with transver-
sally anisotropic confinement. (a) As the horizontal confinement is
stiffened, ω2/ω1 = 1.00, 1.10, 1.18 (circles, diamonds, triangles) for
ω1 = 2π × 13.2(2) kHz, the CIR splits into CIR1 and CIR2. (b) Po-
sition of CIR1 (a3D,1, circles) and CIR2 (a3D,2, squares) as a function
of the frequency ratio ω2/ω1. (c) Binding energy difference ∆EB as
determined from the implicit equation (see text) in comparison to the
expectation from the simple harmonic oscillator model (solid line).
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Fig. 5.6.: (color online) (a) Appearance of additional structure in the vicin-
ity of CIRs for strongly anisotropic transversal confinement. The
trap frequencies are ω2 = 2π × 16.6(2) kHz and ω1/ω2 =
0.67, 0.60, 0.53, 0.49, 0.45 from top to bottom. (b) Transition from
1D to 2D confinement. As the horizontal lattice is ramped down,
CIR2 shifts and persists, while CIR1 disappears (ω1 = 2π × 13.0(2)
kHz and ω2/ω1 = 0.58, 0.42, 0.00 for squares, circles, and triangles).
(c) Scaling of the CIR’s position in 2D, in analogy to the 1D case
shown in Fig. 5.4(b). The position of the CIR as determined from the
edge (circles) and, alternatively, from the minimum in atom number
(triangles) shifts to lower values for a3D as the confinement is stiff-
ened and a⊥,2D is reduced. The solid line is a linear fit according to
C2Da3D = a⊥,2D with C2D = 1.19(3).
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Ultracold atomic physics offers myriad possibilities to study strongly corre-
lated many-body systems in lower dimensions. Typically, only ground state
phases are accessible. Using a tunable quantum gas of bosonic cesium atoms,
we realize and control in one dimensional geometry a highly excited quantum
phase that is stabilized in the presence of attractive interactions by main-
taining and strengthening quantum correlations across a confinement-induced
resonance. We diagnose the crossover from repulsive to attractive interactions
in terms of the stiffness and the energy of the system. Our results open up
the experimental study of metastable excited many-body phases with strong
correlations and their dynamical properties.

†The author of the present thesis contributed to this work by maintaining and improving the
experimental setup and paper writing.
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5.3.1. Introduction

In many-body quantum physics the interplay between strong interactions and
confinement to a low-dimensional geometry amplifies the effects of quantum
fluctuations and correlations. A remarkable example in one dimension is the
Tonks-Girardeau (TG) gas, where bosons with strong repulsive interactions min-
imize their interaction energy by avoiding spatial overlap and acquire fermionic
properties [Gir60, Lie63]. Evidence for this ground state phase was found using
Bose-Einstein condensates (BEC) loaded into optical lattices [Par04, Kin04].
While many-body quantum systems are usually found in their ground state
phases, long-lived excited state phases are responsible for some of the most
striking physical effects, examples ranging from vortex lattices in superfluids to
subtle topological excitations in spin liquids [Ale06]. However, the experimen-
tal realization of excited phases is difficult, as these usually quickly decay by
intrinsic effects or by coupling to the environment. In this context, cold atoms
[Pet00b, Mor03a, Par04, Kin04, O’H04, Pet07, Hof07, Sya08, Blo08] may pro-
vide unique opportunities for the realization of long-lived, strongly interacting,
excited many-body phases due to the excellent decoupling from the environment
and the tunability of interactions via, for example, Feshbach resonances.

For an ultracold one-dimensional (1D) system of bosons, we prepare a highly-
excited many-body phase known as the super-Tonks-Girardeau (sTG) gas [Ast05].
In this highly-correlated quantum phase, interactions are attractive, and rapid
decay into a cluster-type ground state is in principle possible. However, a sur-
prising property of this many-body phase is its metastability. Attractive inter-
actions strengthen correlations between particle positions and ensure, similar to
an effective long-range repulsive interaction, that particles rarely come together.
To realize this exotic phase, we observe and exploit a 1D confinement-induced
resonance (CIR) [Ber03b, Ols98]. This resonance allows us to first enter deeply
into the repulsive TG regime to establish strong particle correlations and then to
switch interactions from strongly repulsive to strongly attractive. The frequency
ratio of the two lowest-energy collective modes [Men02] provides accurate diag-
nostics for the crossover from the TG to the sTG regime. In particle loss and
expansion measurements we study the time evolution of the system through the
crossover.

5.3.2. Scattering in 1D systems

We tune the strength of the interaction as characterized by the three-dimensional
(3D) scattering length a3D by means of a magnetically-induced Feshbach res-
onance [Ino98]. For a 1D system, a CIR arises and strongly modifies the
1D scattering properties when a3D approaches the harmonic oscillator length
a⊥ =

√
~/(mω⊥) of the transversal confinement with trap frequency ω⊥ [Ols98,

Ber03b]. Here, m is the mass of the particles and ~ is Planck’s constant divided
by 2π. More precisely, the coupling constant g1D of the 1D δ-function contact
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potential U1D(z) = g1Dδ(z) behaves as [Ber03b]

g1D = − 2~2

ma1D

=
2~2a3D

ma2
⊥

1

1− C a3D/a⊥
, (5.1)

where a1D is the 1D scattering length defined by this equation and C = 1.0326 is
a constant. Thus, the CIR allows tuning of g1D. For values of a3D less but close
to a⊥/C (a3D . a⊥/C) the coupling parameter g1D is large and positive, and for
a3D & a⊥/C it is large and negative, leading to an effectively attractive inter-
action. For homogenous systems with g1D > 0, it is customary to characterize
the strength of interactions by the Lieb-Liniger parameter γ = g1Dm/(~2n1D),
where n1D is the linear 1D density of the system [Lie63, Pet00b]. The TG gas
corresponds to the limit γ � 1 or g1D → ∞. As interactions are increased,
the system becomes strongly correlated and is fully dominated by its kinetic
energy. In previous experiments, without the capability to tune a3D, a maxi-
mum of γ ≈ 5.5 was achieved [Kin04], while an effective strength γeff ≈ 200
was reached with an additional shallow lattice potential along the longitudinal
direction [Par04]. In the former experiment, a saturation for the size and energy
of the 1D system was observed, and in the latter experiment the momentum
distribution was studied.

But what happens in the case of strong attractive interactions g1D → −∞,
i.e. a1D & 0? The ground state for a system of N attractively interacting
bosons in 1D is a cluster state [McG65, Tem08], which one would expect, in
a cold atom system, to decay quickly via molecular channels. However, by
crossing the CIR from the TG side, i.e. switching interactions from g1D = +∞
to g1D = −∞, an excited gas-like phase, the sTG gas, should be accessible
[Ast05]. Is this excited phase stable, i.e. does it exist at all? The expectation
is that the large kinetic energy inherited from the TG gas, in a Fermi-pressure
like manner, prevents the gas from collapsing [Bat05]. This stability can most
simply be inferred from a Bethe-ansatz solution to the Lieb-Liniger model with
attractive interactions [Ast04, Bat05]. This ansatz yields for the energy per
particle E/N ≈ ~2π2n2

1D/[6m(1 − n1Da1D)2], corresponding to the energy of a
gas of hard rods [Gir60], for which a1D represents the excluded volume. This
results in a positive inverse compressibility and also in an increased stiffness of
the systems as long as n1Da1D is sufficiently small. Interestingly, in this phase
the density correlations are even stronger than in the TG gas, as they show a
power-law decay that is slower than for a TG gas [Ast05], indicating an effective
long-range interaction.

We realize the crossover all the way from a non-interacting gas via the 1D
mean-field Thomas-Fermi (TF) regime to a TG gas and then to a sTG gas. We
exploit the fact that our 1D systems possess weak harmonic confinement along
the axial direction characterized by the confinement length a‖. Whereas the
frequency ωD of the lowest dipole mode depends only on the confinement, the
frequency ωC of the lowest axial compressional mode is sensitive to the various
regimes of interaction [Men02]. For the non-interacting system one expects R ≡
ω2
C/ω

2
D = 4. This value then changes to R = 3 for weakly repulsive interactions
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in a 1D TF regime [Mor03a]. For increasing positive interaction strength, R is
expected to change smoothly to 4 when entering the TG regime as the system
becomes fermionized and hence effectively non-interacting. A rise beyond the
value of 4, after crossing the CIR, would then constitute clear evidence for
the sTG regime [Ast05]. As a1D is further increased, the system will finally
become unstable and R is expected to turn over and drop towards zero. For a
harmonically confined system, the point of instability is reached when the overall
length of the system of hard rods, Na1D, becomes of the order of the size

√
Na‖

for the wave function of N non-interacting fermions, i.e. A ≡ Na1D/(
√
Na‖) ≈ 1.

We use A2 as an alternative parameter to γ to characterize the strength of the
interaction as it accounts for the harmonic confinement.

5.3.3. Experimental procedure

We start from a 3D Bose-Einstein condensate (BEC) with up to 2×105 Cs atoms
with no detectable thermal fraction in a crossed-beam dipole trap with magnetic
levitation [Web03a]. Depending on the interaction regime to be studied, we then
set the number of atoms in the BEC to values in the range of (1 − 4) × 104

by means of forced radio-frequency evaporation. To confine the atoms in 1D,
i.e. to freeze out transversal motion, we use a two-dimensional optical lattice
[Blo08], which forms an array of vertically oriented elongated tubes with an
aspect ratio that we set to values between 100 and 1000 (Fig. 5.7A). We occupy
between 3000−6000 independent tubes with 8-25 atoms in the center tube. The
interaction strength g1D is controlled by magnetic tuning of a3D by means of a
combination of a broad and a narrow Feshbach resonance (Fig. 5.7C) with poles
at B = −11.1(6) G and B = 47.78(1) G and widths of about 29.2 G and 164
mG, respectively [Lan09]. The broad resonance provides a slow variation of a3D,
allowing us to gently tune a3D from 0 a0 near 17.119 G to about 1240 a0 near 76
G, while the narrow resonance allows us to tune a3D to absolute values beyond
4000 a0 given our magnetic field control. We convert the applied magnetic field
B into a3D using the fit formula of Ref. 23. A magnetic field gradient, used
to levitate the atomic sample (see Sec. 5.3.7), introduces a small spread in the
value of a3D across the sample.

To determine the oscillation frequencies ωC and ωD of the fundamental modes
(Fig. 5.7 B), we excite each mode separately at a given value of the magnetic
field B (see Sec. 5.3.7) and let the atoms evolve for a varying amount of hold
time. The distribution is then imaged in momentum space by taking an absorp-
tion picture after release and expansion. To avoid possible broadening effects
due to interaction during the initial expansion, a3D is set to zero near B = 17.119
G at the moment of release. To extract the frequency, we determine for each
hold time the axial 1/e-width of the distribution and then fit a damped sinusoid
with linear offset to this data. Typical measurements of ωC are shown in Fig.
5.7 D and E. Whereas the atom number remains constant for g1D > 0, we ob-
serve some atom loss and a slight broadening of the distribution for attractive
1D interactions. In all parameter regimes, the 1D system is sufficiently stable
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to allow a reliable measurement of ωC .

5.3.4. Transitions between the mean field, TG and STG regimes

First, we show that we can tune the system from the non-interacting regime
deeply into the repulsive TG regime (Fig. 5.8). In agreement with expectations,
the value for R = ω2

C/ω
2
D first drops from 4 to 3 and then increases back to 4

as γ is tuned by means of the gently-varying background scattering length. We
find that the TG regime is fully reached for γ > 50. A further increase to values
up to γ ≈ 500 does not lead to changes for R. Note that, as a3D approaches
a⊥, the divergence of g1D according to Eq. 1 has to be taken into account when
determining γ (see Sec. 5.3.7). Heating of the system can be excluded as we
can return to a 3D BEC without significant thermal background when ramping
down the lattice potential.

The attractive regime is entered by crossing the CIR on the low-field wing
of the 47.78 G Feshbach resonance. a1D is now small and positive. The central
results of this work are summarized in Fig. 5.9A and compared to the theoretical
work of Ref. 13. We plot R = ω2

C/ω
2
D as a function of the interaction parameter

A2. For reference, Fig. 5.9B plots a3D, a1D, and g1D in the vicinity of the
Feshbach resonance as a function of the magnetic field B. As the CIR is crossed
and A2 is increased, R rises beyond the value of 4. This provides clear evidence
for the sTG regime as R = 4 is the maximal value for bosons with repulsive
contact interaction. This increase is expected from the model of a gas of hard
rods, and our data initially follows the prediction from this model. However, as
A2 is increased, R reaches a maximum and then starts to drop. The maximum
of about 4.5 is reached for A2 ≈ 3× 10−2. The existence of the maximum is in
qualitative agreement with the results obtained from Monte-Carlo simulations
[Ast05]. The theoretical prediction, however, underestimates the measured R.
This is probably due to the local density approximation, which may not be
applicable to our system with low particle numbers. For comparison, the results
from Fig. 5.8 for γ ≥ 1 are shown. Note that γ ≈ 500 corresponds to small
values of A2 ≈ 10−4. For this data, at higher particle numbers, there is excellent
agreement with the theoretical prediction (solid line) in the entire crossover from
the mean-field regime to the TG regime[Men02].

5.3.5. Losses and heating

We study the stability of the system in the crossover from the TG to the sTG
regime and find further evidence for the existence of the CIR by recording par-
ticle loss and measuring the axial width of the atomic cloud after release from
the tubes. The axial width is a measure for the kinetic energy of the system as
interactions are instantly switched off upon release. Similar conditions are used
as for the measurements on the sTG regime presented in Fig. 5.9. The TG
regime is entered adiabatically to avoid the excitation of collective modes. The
system is prepared at a3D = 887(1) a0 at a magnetic field of B = 42.77(2) G
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with about 11 atoms in the central tube. The magnetic field is then ramped to
a specific value within 0.2 ms and the sample is held at this value for a variable
hold time τ from 10 to 200 ms. a⊥ is set to 1523(6) a0. The results (Fig. 5.10)
for different hold times τ in the tubes show that, for τ = 10 ms, corresponding
to the timescale of the measurements in the sTG regime shown in Fig. 5.9,
the transition from the TG to the sTG regime appears very smooth. There is
essentially no particle loss when the system is deep in the TG regime and close
to the CIR. The loss gradually increases in the attractive regime as one moves to
larger values of B and towards the pole for a1D. Correspondingly, the width of
the sample exhibits a smooth behavior across the CIR, showing a slight increase
for larger B. This behavior is consistent with the expectation of an increased
energy in the sTG regime [Ast05].

For longer hold times, the data for the atom number and the sample width
develop distinct features at the calculated position of the CIR. Evidently, the
system is in a transient state. For τ = 50 ms, the number of remaining atoms
shows a dip that correlates with a peak in the kinetic energy of the sample. Both
features become more prominent and asymmetric for longer hold times (τ = 100
and 200 ms). Note that, in comparison, no pronounced effects are visible at
the pole of the Feshbach resonance for a3D. Our results must be connected to
the fact that the energy spectrum of the system changes dramatically across the
CIR, from the TG to the sTG regime [Tem08]. The system acquires a deeply
lying ground state together with a family of lower lying many-body excited
states, potentially opening up new decay channels. Also, the CIR strongly
modifies the two-body scattering problem, making formation of confinement-
induced molecules in transversally excited trap states [Ber03b] possible.

5.3.6. Summary

The non-trivial time evolution observed in this system raises intriguing ques-
tions on possible coupling and decay mechanisms for strongly interacting excited
many-body systems, in particular in the context of integrability of 1D systems
[Kin06]. Our results offer an example of the counter-intuitive effects that oc-
cur in many-body systems, and open up the possibility to study the dynamical
properties of strongly-correlated systems with effective long-range interactions
[Boc99, Ste08] under conditions where all parameters are tunable and, in fact,
can be changed dynamically. Similar to magnetic Feshbach resonances in atomic
scattering, we expect the confinement-induced resonance demonstrated here to
serve as a general tool to tailor interactions in 1D and possibly also in 2D systems
[Pet00a], allowing for the further investigation of strongly correlated phases in
the context of cold atomic gases.

We thank S. Giorgini and C. Menotti for helpful discussions and for providing
the theory curves shown in Fig. 5.9A. We are indebted to R. Grimm for gen-
erous support and to H. Häffner and his group for the loan of a CCD camera.
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5.3.7. Materials and Methods

Lattice loading

We produce a BEC of Cs atoms in the lowest hyperfine sublevel with hyperfine
quantum numbers F = 3 and mF = 3 in a crossed beam dipole trap with trap
frequencies ωx,y,z = 2π × (15, 20, 13) Hz, where z denotes the vertical direction.
The BEC is adiabatically transferred from the dipole trap to the array of tubes
by exponentially ramping up the power in the lattice laser beams with waists
∼ 350 µm within 500 ms. The repulsive interaction causes the atoms to move
radially outwards during the initial phase of the lattice loading in response to the
strong local compression. We use this effect to vary the total number of tubes
loaded and hence the atom number per tube by setting a3D for the loading
process to values between 40 a0 and 350 a0. For the data set in the repulsive
regime (Fig. 5.9A, circles), we exponentially ramp down the crossed beam
dipole trap during the loading process and reach longitudinal and transversal
trap frequencies of ωD = 2π × 15.4(1) Hz and ω⊥ = 2π × 13.1(1) kHz with a
transversal confinement length a⊥ = 1440(6) a0. Here, depending on the regime
of interaction to be studied, the number of atoms in the central tube is set to
values between 8 and 25. For the data set in the sTG regime (Fig. 5.9A,
squares) we increase ωD to 2π× 115.6(3) Hz to reduce the vertical extent of the
sample and hence the variation of the magnetic field across the atom cloud, see
below. For this, we keep the depth of the crossed beam dipole trap constant
during the loading process and then ramp up the power in one of the beams
within 100 ms. In this regime we choose ω⊥ = 2π × 15.0(1) kHz, corresponding
to a⊥ = 1346(5) a0. The number of atoms in the central tube is set to values
between 8 and 11.

Array of 1D tubes

The atom number per tube becomes fixed once tunneling is suppressed during
the loading process and can be determined by integrating a Thomas-Fermi profile
along the tubes (1). The number of atoms in tube (i, j) is given by

Ni,j = N0,0

[
1−

(
i
dlat

Rx

)2

−
(
j
dlat

Ry

)2
]3/2

with N0,0 =
5Ntotd

2
lat

2πRxRy

,
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where Ntot is the total atom number, N0,0 is the occupation of the central tube,
dlat = λ/2 is the lattice spacing at a wavelength λ = 1064.5 nm, and Rx,y are
the Thomas-Fermi radii in the horizontal directions. To calculate the effective
atom number per tube N , we average over the tubes, weighting each tube by its
atom number. This procedure accounts for the fact that we measure an averaged
frequency ωC , as ωC is expected to slightly vary from tube to tube. The result
for ωC should be dominated by the more heavily occupied tubes close to the
center of the array.

Magnetic levitation

To hold the (F = 3, mF = 3) atoms in the vertically oriented tubes, magnetic
levitation by means of a magnetic field gradient of 31.1 G/cm is applied. The
gradient introduces a small field spread over the atomic sample. This sets our
precision to tune the interaction strength. For the measurements in the sTG
regime the distribution has a full width at half maximum (FWHM) of 30 mG.
We measure the atom distribution in the magnetic field by driving a magnetic-
field-dependent microwave transition. A typical distribution is shown in the
bottom left corner of Fig. 5.9B.

Excitation of collective modes

We use two different methods to excite the lowest compressional mode. For a
measurement in the mean-field regime, we use a rapid change of the interac-
tion strength to excite the oscillation. For this, we ramp the scattering length
adiabatically in 100 ms to a value that is approximately 50 a0 from the desired
final value and then perform the last part of the ramp non-adiabatically. For a
measurement in the sTG regime, we use an analogous method. We simply ramp
sufficiently quickly, within about 5 ms, all the way from the mean-field across
the TG into the sTG regime. For the TG regime, we chose to excite the mode by
compressing the cloud adiabatically with an additional dipole trap laser beam,
starting the motion by rapidly ramping down the power of this beam. In all
cases, we adjust the ramp speeds so that the measured oscillation amplitude is
within 10-20% of the initial cloud size. To excite the dipole mode at frequency
ωD, we adiabatically lower the levitating magnetic field gradient and hence dis-
place the cloud along the vertical direction. Quickly readjusting the gradient
back to full levitation leads to excitation of the dipole oscillation.

Determination of γ

We make a conservative estimate to determine the Lieb-Liniger interaction pa-
rameter γ

γ =
mg1D

~2 n1D

=
2

n1D |a1D|
.

To take into account that the atom number varies according to Ni,j, we first
calculate γi,j for every tube separately. We calculate the center density for each
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tube both in the mean-field and in the TG regime and use the larger value to
determine γi,j. We then take γ as the weighted average over γi,j. The error
in determining γ largely comes from the determination of a1D, reflecting the
magnetic field distribution across the sample.
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Fig. 5.7.: (color online) A, Experimental setup. The lattice potential is created
by two retro-reflected laser beams confining the atoms to an array
of one-dimensional tubes with equipotential surfaces shown in red.
B, Along each tube (left) we excite the lowest compressional mode
(center) and compare its frequency to the dipole mode (right). C,
The strength of the interatomic interaction is adjusted by tuning the
s-wave scattering length a3D. The background scattering length rises
gently from 0 to 1240 a0 when the magnetic field B is tuned from
17 to 76 G. Further tuning is possible near a Feshbach resonance
at 47.78(1) G to absolute values beyond 4000 a0. The dashed line
indicates a⊥/C for a transversal trap frequency of ω⊥ = 2π × 13.1
kHz. D and E present typical data sets for the compressional mode
in the TG and sTG regime at a3D = 875(1) a0 and a3D = 2300(200)
a0, respectively. The upper panels show the atom number, the lower
panels show the 1/e-cloud-width after time-of-flight. The solid lines
in the lower panels are sinusoidal fits (see online material), yielding
the oscillation frequencies ωC = 2π×30.6(3) Hz and ωC = 2π×241(1)
Hz, respectively.
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Fig. 5.8.: (color online) Transition from the non-interacting regime via the
mean-field TF regime into the TG regime. The squared frequency
ratio R = ω2

C/ω
2
D of the lowest compressional mode with frequency

ωC and the dipole mode with frequency ωD serves as an indicator for
the different regimes of interaction. For increasing interactions from
γ = 0 to γ ≈ 500 the system passes from the ideal gas regime (R = 4)
to the 1D TF regime (R ≈ 3) and then deeply into the TG regime
(R = 4). The inset shows the transition from the non-interacting
regime to the mean-field regime in more detail. The vertical error
bars refer to standard error and the horizontal error bars reflect the
uncertainty in determining a1D and n1D (see online material). The
horizontal error bar on the data point at γ = 0 (not shown in the
inset) is ±0.03 a0 .
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2
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measurements in the attractive regime (g1D < 0), providing evidence
for the super-Tonks-Girardeau gas. The circles show the transition
from the TF to the TG regime (g1D > 0, same data as in Fig. 5.8
for γ > 1). The solid (dashed) line presents the theoretical data for
g1D > 0 (g1D < 0) by Astrakharchik et al.[Ast05]. The dotted line
corresponds to the model of hard rods. For reference, the measure-
ments for g1D < 0 are numbered. Data points 1c to 6 are taken at
ωD = 2π× 115.6(3) Hz. For data points 1a and 1b the trap frequency
is ωD = 2π × 22.4(1) Hz and ωD = 2π × 52.3(1) Hz, respectively. For
all measurements in the sTG regime a⊥ = 1346(5) a0. B, The param-
eters a3D (dashed-dotted), a1D (solid), and g1D (dashed) are plotted
in the vicinity of the Feshbach resonance (FR) at 47.78(1) G. The hor-
izontal dotted line indicates the value of a⊥/C. The pole of the CIR
is at 47.36(2) G. a1D has a pole (P) at 47.96(2) G. The bell-shaped
curve at the bottom left indicates the atomic distribution as a func-
tion of the magnetic field determined from high-resolution microwave
spectroscopy.
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Fig. 5.10.: (color online) Stability and kinetic energy in the TG and sTG
regimes. A, relative number of atoms remaining and B, relative 1/e-
width along the axial direction after 10 ms expansion, after a hold
time τ = 10, 50, 100, and 200 ms (circles, triangles, squares, and
diamonds, respectively) at a given magnetic field B. The position of
the CIR, the pole of the Feshbach resonance (FR), and the pole for
a1D (P) are as indicated. For these measurements a⊥ = 1523(6) a0

and ωD = 2π × 115.6(3) Hz. The atom number is normalized to the
initial value of 1.7(1)×104 and the width is normalized to the initial
value in the TG regime.
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One of the most remarkable results of quantum mechanics is the fact that many-body
quantum systems may exhibit phase transitions even at zero temperature [Sac00].
Quantum fluctuations, deeply rooted in Heisenberg’s uncertainty principle, and not
thermal fluctuations, drive the system from one phase to another. Typically, the
relative strength of two competing terms in the system’s Hamiltonian is changed
across a finite critical value. A well-known example is the Mott-Hubbard quantum
phase transition from a superfluid to an insulating phase [Jak98, Gre02a], which has
been observed for weakly interacting bosonic atomic gases. However, for strongly
interacting quantum systems confined to lower-dimensional geometry a novel type of
quantum phase transition may be induced for which an arbitrarily weak perturbation
to the Hamiltonian is sufficient to drive the transition [Gia03, Gog98]. Here, for a one-
dimensional (1D) quantum gas of bosonic caesium atoms with tunable interactions,
we observe the sine-Gordon quantum phase transition from a superfluid Luttinger
liquid to a Mott-insulator [Büc03, Pok79]. For sufficiently strong interactions, the
transition is induced by adding an arbitrarily weak optical lattice commensurate with
the atomic granularity, which leads to immediate pinning of the atoms. We map out
the phase diagram and find that our measurements in the strongly interacting regime
agree well with a quantum field description based on the exactly solvable sine-Gordon
model [Col75]. We trace the phase boundary all the way to the weakly interacting
regime where we find good agreement with the predictions of the 1D Bose-Hubbard
model. Our results open up the experimental study of quantum phase transitions,
criticality, and transport phenomena beyond Hubbard-type models in the context of
ultracold gases.

†The author of the present thesis contributed to this work by maintaining and improving the
experimental setup and paper writing.
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5.4.1. Introduction

Ultracold atomic gases are a versatile tunable laboratory system for the in-
vestigation of complex many-body quantum phenomena [Blo08]. The study of
quantum phases and quantum phase transitions is greatly enriched by the pos-
sibility to independently control the kinetic energy and the interactions. In
deep optical lattice potentials the many-body dynamics for a weakly interacting
gas is, to a very good approximation, governed microscopically by a Hubbard
Hamiltonian [Jak98] with a local onsite interaction energy U and kinetic energy
J , which corresponds to tunneling of atoms from one lattice site to the next.
Experiments with Bose-Einstein condensates (BEC) of Rb atoms have demon-
strated the quantum phase transition from a superfluid phase for large J to an
insulating Mott-Hubbard (MH) phase [Gre02a]. The transition between these
two phases was obtained by quenching J in a lattice of finite depth. Recent ex-
periments with fermionic atoms have demonstrated the presence of a fermionic
MH insulating state [Jör08, Sch08], potentially opening the way to the study of
high-temperature superconductivity in proximity of the MH phase in 2D.

While the focus in the study of quantum phase transitions in the context of
ultracold atoms has so far been on Hubbard-type physics in the weakly inter-
acting regime, novel quantum phenomena occur in lower dimensions, where the
effects of quantum fluctuations and correlations are enhanced. In a 1D bosonic
gas, strong repulsive interactions lead to the formation of a Tonks-Girardeau
(TG) gas, where bosons minimize their interaction energy by avoiding spatial
overlap and acquire fermionic properties [Gir60, Kin04, Par04, Hal09]. The ad-
dition of an arbitrarily weak lattice potential commensurate with the atomic
density, i.e. n ∼ 2/λ, where n is the linear 1D density and λ/2 is the lattice
periodicity, is expected to lead to a novel kind of quantum phase transition
[Gia03, Büc03]: the strongly correlated 1D gas is immediately pinned by the
lattice and the superfluid TG phase is turned into an insulating, gapped phase.
Figure 5.11 contrasts the Hubbard-type superfluid-to-Mott-insulator transition
to this pinning transition. Given the universality of 1D quantum physics, the
pinning transition will occur for interacting bosons as well as for fermions in
1D and has been discussed with respect to a variety of quantum models in low
dimensions [Gia03].

5.4.2. The pinning transition

The pinning transition is described by the (1+1) quantum sine-Gordon (sG)
model, which is an exactly solvable quantum field theory, extensively studied
in high energy, condensed matter, and mathematical physics [Gog98]. The sG
Hamiltonian reads

H =
~vs
2π

∫
dx[(∂xθ)

2 + (∂xφ)2 + V cos(
√

4Kθ)]. (5.2)

Here, ∂xθ and ∂xφ are the fluctuations of the long-wavelength density and phase
fields θ and φ, respectively, of the hydrodynamic description of the 1D liquid
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with commutation relation [∂xθ(x), φ(y)] = iπδ(x − y), vs is the velocity of the
soundlike excitations of the 1D gas, V = V nπ/(~vs) is proportional to the depth
V of a weak lattice [Gia03, Büc03], and ~ is Planck’s constant h divided by
2π. For vanishing lattice V = 0, Eq. (5.2) describes a Luttinger liquid, where
the strength of interactions is parameterized by the dimensionless parameter
K = ~πn/(mvs), which determines the long-distance power-law decay of the
correlation functions, e.g. 〈n(x)n(x′)〉 ∼ n2 + cK/(x − x′)2 + c′ cos(2πn ∗ (x −
x′))/(x − x′)2K + ... , with c and c′ constants and m the atomic mass. The
sG model with a weak but finite lattice predicts a quantum phase transition
of the Berezinskii-Kosterlitz-Thouless (BKT) type between a superfluid state
for K > Kc = 2, where the shallow lattice is an irrelevant perturbation, to an
insulating Mott phase for K < Kc, for which the spectrum is gapped for any
value of V .

While in general K is a phenomenological parameter, in the case of a 1D
bosonic gas it can be microscopically related to the Lieb-Liniger parameter γ =
mg/(~2n), which characterizes interactions in a homogenous 1D system [Lie63]
(see Methods). Here, g ' 2~ω⊥a3D is the coupling constant of the 1D δ-function
interaction potential U(x) = gδ(x), where ω⊥ is the frequency of transverse
confinement and a3D is the 3D scattering length. The strength of interactions,
and thus K, can be tuned by varying a3D near a Feshbach resonance [Chi10]. The
TG regime corresponds to γ � 1. Using the relation between K and γ, Büchler
and coworkers [Büc03] have shown that particles are pinned for experimentally
accessible values of γ > γc ' 3.5 in the limit of a vanishingly weak lattice.
The pinning transition is expected to continuously transform into the MH-type
quantum phase transition, which occurs for the weakly interacting gas when the
lattice depth becomes sufficiently large. Here, using a quantum gas of caesium
(Cs) atoms with tunable interactions confined to an array of independent 1D
tubes (see Methods), we drive the superfluid-to-Mott-insulator phase transition
by varying γ and determine the phase boundary all the way from the strongly to
the weakly interacting regime using modulation spectroscopy and measurement
of transport. For shallow lattices under conditions of commensurability, we
observe immediate pinning of the particles for strong interactions when γ > γc.

5.4.3. Experimental procedure

We first discuss our experiments in the strongly interacting regime. We start
with a 3D Bose-Einstein condensate (BEC) of typically 1.3 × 105 Cs atoms
without detectable thermal fraction in a crossed-beam dipole trap with mag-
netic levitation [Kra04] and initialize our system by creating a conventional 3D
MH-state in a deep 3D lattice at U/(6J) ≈ 75 with precisely one atom per lat-
tice site [Gre02a]. We find, by reversing the loading, that the procedure does
not lead to heating of the sample. The array of 1D tubes is obtained by re-
ducing the lattice depth V along one direction. Our procedure ensures that a
majority of tubes has a near-commensurate number density (see Methods). A
Feshbach resonance allows us to control a3D with a precision of 3 a0 limited
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by the presence of the magnetic field gradient. Here, a0 is Bohr’s radius. For
the case of the shallow lattice, we probe the state of the system by amplitude
modulation spectroscopy [Stö04, Iuc06]. We determine the presence of an exci-
tation gap Eg by testing whether energy can be deposited into the 1D system
at a given excitation frequency f . The lattice depth V is modulated at f by
25% to 45% for 40−60 ms. After ramping down the lattice beams adiabatically
with respect to the lattice band structure and after a levitated expansion time
of 40−60 ms [Kra04], we detect the atoms by time-of-flight absorption imaging.
We determine the spatial width of the atomic sample from a gaussian fit to the
absorption profile and obtain the change δ of the spatial width compared to the
unmodulated case as a function of f . Two typical measurements are shown in
Fig. 5.12(a), one in the superfluid phase and one deep in the 1D Mott phase
at the same value for the lattice depth, V = 1.5(1)ER, where ER = h2/(2mλ2)
is the photon recoil energy. For weak interactions the system exhibits a linear
increase for δ as a function of f , which we attribute to the superfluid charac-
ter of the gas. For strong interactions, the increase, after a slow rise, shows a
clear kink. We attribute the initial slow rise to excitation of residual superfluid
portions of our inhomogeneous system and the sudden change in slope to the
presence of an excitation gap. We associate the axis intercept fg obtained from
a linear fit to the steep part of the spectrum with the frequency of the gap.
To determine the phase transition from the 1D Mott state to the superfluid
state, we repeat this measurement for a given depth V as we scan γ by changing
a3D. A typical result is shown in Fig. 5.12(c). The gap closes as γ is reduced.
For values V ≤ 2.0ER, the transition point is identified with the abrupt step,
i.e. we determine the critical value γc,V at which the transition happens by an
error-function fit to the data. Note that we always observe some small residual
value for fg of about 120 Hz for weak interactions. In general, we find that
the measured value for the frequency of the gap is robust against variations of
modulation amplitude, while the slope increases with stronger modulation.

For comparison, we present in Fig. 5.12(b) and (d) excitation spectra for
an intermediate value of the lattice depth and for the case of a deep lattice,
respectively. For V = 3.0(2)ER the spectrum shows additional structure for high
frequencies as band structure comes into play. We find that for V > 2.0ER the
gap opens up approximately linearly as a function of γ beyond a critical γc,V , see
inset to Fig. 5.12(c). For deep lattices and for comparatively weak interactions
the spectrum exhibits a broad distribution characteristic of a superfluid. For
stronger interactions we recover the discrete excitation spectrum of the Mott
phase in the Hubbard regime [Gre02a, Stö04] with a pronounced peak at f =
1.0 U/h. Additional peaks [Cla06b] can be found at f = 0.5 U/h and above
f = 1.5 U/h.

For the case of a deep lattice, we find that the state of the system is very
sensitively probed by transport measurements [Fer05, Mun07]. A characteristic
property of the Mott state is the inhibition of particle motion. In our experi-
ment with the capability to tune interactions we expect the phase transition to
manifests itself, at fixed V , through a strong suppression of transport when the
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strength of the interaction is raised above a certain critical value. Essentially,
we test whether momentum can be imparted to the 1D system as a function of
interaction strength. For a given V we apply a weak axial magnetic force for a
brief time to the interacting system, chosen such that the imparted momentum
would be approximately 0.2~k if the system were non-interacting. Then, as a
function of a3D, we determine the center-of-mass displacement x0 of the sample
after a fixed time of flight. Fig. 5.13 shows that x0 decreases monotonically
with a3D. For the case of a deep lattice with V = 9.0(5)ER the quenching of
transport is abrupt. At a certain critical value for a3D transport is fully inhib-
ited [Alt05, Sch10]. We find the critical a3D by a linear fit to the decreasing
data and by determining the axis intercept and derive from this a critical γc,V .
Reducing the lattice depth to V = 5.0(3)ER and V = 2.0(1)ER leads to a less
abrupt quenching of transport. For stronger interactions, the decrease starts to
level off. Nevertheless, the initial decrease is still linear, allowing us to deter-
mine the critical γc,V by an extrapolation of the initially linear decrease to zero.
The inset to Fig. 5.13 shows the measured critical ratio (U/J)c determined by
our transport method as a function of lattice depth V . When we compare our
results with the predicted value [Rap99] of (U/J)c ≈ 3.85 for the transition in
1D, we find a slight systematic overestimation of the transition point. This,
however, is expected in view of e.g. the spatial inhomogeneity of the sample and
the BKT-type nature of the transition in a finite size system.

5.4.4. Phase diagram

We summarize our results in Fig. 5.14, where we present the phase diagram as a
function of 1/γ and V . The set {γc,V } defines the phase boundary between the
1D Mott insulator and the 1D superfluid. The measurements based on modula-
tion spectroscopy cover a range from V = 4ER down to 0.5ER (circles), while the
transport measurements extend from V = 2ER to 10ER (squares). In the weakly
interacting regime, 1/γ > 2, our data are in good agreement with the prediction
of the MH model (dashed line). In the strongly interacting regime, 1/γ < 1,
the measured phase boundary extrapolates to a finite critical value 1/γc for the
Lieb-Liniger parameter as the lattice depth V is reduced to zero. Our results are
in excellent quantitative agreement with the theory for a commensurate system
based on the sine-Gordon model (solid line, see Methods), for which γc = 3.5.
We also find good agreement between our two types of measurement techniques
in the intermediate regime (V = 2ER to 4ER). Our results demonstrate the
striking consequence of strong interactions in 1D geometry in the presence of a
lattice: Beyond a critical value γc, an insulating Mott state exists for vanishingly
small lattice depth V . The particles are immediately pinned by the lattice.

We measure a finite gap energy Eg for γ > γc in the regime of a shallow
lattice. In the limit of γ →∞ and V → 0 one would expect the simple relation
Eg = V/2 as the bosonic system has become fully fermionized and the lattice
effectively induces a band insulator of fermions [Büc03]. In the inset to Fig. 5.14
we plot the measured Eg as a function of V at fixed γ = 11(1). For V < 1ER
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our data is in good agreement with the analytical result for the gap energy at
finite γ (see Methods). Note that, for V ≥ 1ER, we observe a deviation for Eg

away from the predicted values. This deviation occurs at rather shallow lattices.
However, one does expect the curve to have a reduced slope for deeper lattices,
for which Eg becomes of order U and is only weakly dependent on V .

Our results are a benchmark realization of quantum field theory models with
tunable parameters in cold atomic systems. These results open up the experi-
mental study of the out-of-equilibrium properties of sine-Gordon-type models.
In particular, thermalization in integrable models beyond the Luttinger liquid
model, quenches across quantum phase transitions, and their relations to the
breakdown of the adiabatic theorem in low dimensions can now be investigated
with full tunability of system parameters.

5.4.5. Methods Summary

Sample preparation.

We begin with a BEC with no detectable thermal fraction of typically 1.3×105 Cs
atoms in the |F = 3,mF = 3> hyperfine ground state in a crossed-beam dipole
trap with magnetic levitation. Details of the BEC preparation are presented
elsewhere [Kra04]. The BEC is adiabatically transferred to the 3D lattice by
exponentially ramping up the power in the lattice laser beams within 300 ms.
We create a 3D Hubbard-type Mott insulator with precisely one atom per site in
the central region of the trap by adjusting the external dipole trap confinement
prior to loading into the lattice. The array of vertically oriented tubes is created
by ramping down the power in the vertically propagating beam pair. Typical
trapping frequencies for the tubes are ωr,z = 2π×(12300(200), 21.9(3)) Hz along
the transversal and longitudinal directions, respectively.

It is not necessary to strictly adhere to the commensurate density condition
to observe the pinning transition at very weak lattices [Büc03]. However, we
prepare our sample such that the commensurability condition is on average best
fulfilled over the inhomogeneously populated array of tubes. We find this optimal
configuration when the total atom number is chosen such that the peak density
of the center tube is approximately 1.2 nc, where nc = 2/λ is the commensurate
1D density. Typically there are about 60 atoms in the center tube.

Phase transition line.

For the case of a 1D Bose gas in a weak optical lattice the effective sine-Gordon
Hamiltonian Eq. (5.2) is realized. In this regime, the BKT transition line be-
tween the superfluid and the Mott-insulating phases can be derived in terms of
V and γ = γc,V as

V

ER

= 2

(
π√

γ − γ3/2/(2π)
− 2

)
.

When the system is weakly interacting, γ � 1, and for deeper lattices, V � 1ER,
the system can be described by the Bose-Hubbard Hamiltonian [Jak98]. In this
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regime, the quantum phase transition between a superfluid and a MH state
occurs at [Rap99] (U/J)c ≈ 3.85, which determines a transition line in the
(V, γ) - plane via

4V

ER

= ln2

[
2
√

2π

γ

(
U

J

)
c

√
V

ER

]
.

Here, J is the hopping energy, and U is onsite interaction energy of the Bose-
Hubbard model.

We thank W. Zwerger for discussions. We are indebted to R. Grimm for
generous support. We gratefully acknowledge funding by the Austrian Ministry
of Science and Research (Bundesministerium für Wissenschaft und Forschung,
BMWF) and the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung, FWF) in form of a START prize grant and by the European Union
through the STREP FP7-ICT-2007-C project NAME-QUAM (Nanodesigning
of Atomic and MolEcular QUAntum Matter) and within the framework of the
EuroQUASAR collective research project QuDeGPM. R.H. is supported by a
Marie Curie International Incoming Fellowship within the 7th European Com-
munity Framework Programme.



206
PINNING QUANTUM PHASE TRANSITION FOR A LUTTINGER LIQUID OF

STRONGLY INTERACTING BOSONS

5.4.6. Methods

1D Bose gas in a weak optical lattice

In the absence of the optical lattice, V = 0, the Luttinger liquid parameter
K can be expressed in terms of the Lieb-Liniger parameter γ = gm/(~2n) for
all strengths of interactions [Lie63, Caz04]. For γ ≤ 10 and γ � 10 one gets
K ' π/

√
γ − γ3/2/(2π) and K ' (1 + 2/γ)2, respectively. The addition of a

weak but finite commensurate optical lattice with V ≤ 1ER realizes the effec-
tive sine-Gordon Hamiltonian Eq. (5.2). Using a perturbative renormalization
group approach, the BKT transition line between the superfluid and the Mott-
insulating phases can be derived in terms of V and γ = γc,V as

V

ER

= 2

(
π√

γ − γ3/2/(2π)
− 2

)
.

For small lattice depths, the integrable structure of the sine-Gordon model
[Zam79, Zam95] allows one to derive the following analytical expression for the
dependence of the spectral gap Eg on V and K

Eg

ER

=
8Γ[ πK

2(2−K)
]

√
πΓ[1

2
2+K(π−1)

2−K ]

[(
K2V

16ER

)
Γ[1− K

2
]

Γ[1 + K
2

]

] 1
2−K

.

Here, Γ is the gamma function. For strong interactions K ' 1, the dependence
of the gap on V is linear, and Eg approaches the free fermion value Eg = V/2.
In the vicinity of K = 2, the gap closes exponentially approaching the BKT
transition line.

Deep lattice: the Bose-Hubbard model

In the weakly interacting regime γ � 1, for V � 1ER, when all atoms occupy
the lowest vibrational state in each potential well of the lattice, the system can
be described by the following Bose-Hubbard model [Jak98]

H = −J
∑
i

(b†ibi+1 + h.c.) +
U

2

∑
i

b†ib
†
ibibi.

Here, bi (b†i ) is the operator destroying (creating) a bosonic particle at the posi-

tion of the ith-well, J = 4ER(V/ER)
3
4 exp[−2

√
V/ER]/

√
π is the hopping energy,

and U =
√

2πg(V/ER)1/4/λ is onsite interaction energy. The quantum phase
transition between a superfluid and a MH state occurs at [Rap99] (U/J)c ≈ 3.85,
which determines a transition line in the (V, γ) - plane via

4V

ER

= ln2

[
2
√

2π

γ

(
U

J

)
c

√
V

ER

]
.
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Magnetic Feshbach resonance

The strength of interaction can be tuned by means of a broad magnetic Feshbach
resonance with a pole at −11.7 G and with a zero crossing for the scattering
length near 17 G [Kra04]. To hold the atoms in the vertically oriented tubes,
magnetic levitation by means of a magnetic field gradient is applied. For a
cesium atom in the hyperfine state |F = 3,mF = 3 > a magnetic field gradient
of 31.1 G/cm cancels the gravitational force.

Lattice loading and array of 1D tubes

We create a 3D optical lattice by interference of 3 pairs of counterpropagating
dipole trap laser beams at wavelength λ = 1064.5 nm with 1/e2 beam waists of
∼ 350 µm. The atomic BEC, initially trapped in a crossed-beam dipole trap,
is adiabatically transferred to the 3D lattice by exponentially ramping up the
power in the lattice laser beams within 300 ms. At the same time we increase
the interaction strength by linearly raising the magnetic field strength and fi-
nally reach a 3D Hubbard-type Mott insulator with precisely one atom per site
in the central region. The array of vertically oriented tubes is created by lin-
early ramping down the power in the vertically propagating beam pair in 100 ms
reaching lattice depths from 10 to 0.5 ER. At the same time we linearly reduce
the magnetic field strength to set a3D. Typical trapping frequencies for the tubes
are ωr,z = 2π × (12300(200), 21.9(3)) Hz along the transversal and longitudinal
directions, respectively. The depth of the lattice along the tubes is calibrated
by the pulsed Raman-Nath technique [Gou86]. The transversal trapping fre-
quencies of the tubes are determined by parametric heating measurements. The
distribution of the atom number per tube can be directly determined from the
density distribution in the Mott-insulating phase and shows an occupation of
about 60 atoms in the center tube. Here, we assume a constant filling factor of
one atom and no thermal or superfluid components. In view of our inhomoge-
neous system we calculate γ, for a given tube, by assuming a 1D Thomas-Fermi
distribution and taking the center density. The reported γ is a weighted average
over all tubes.

Commensurability

To observe the pinning transition it is not necessary to fulfill the condition
of commensurability precisely [Büc03]. A finite commensurability parameter
Q = 2π(n − nc) corresponds to a shift δµ of the chemical potential. Here,
nc = 2/λ is the commensurate 1D density. The system stays locked to the Mott
insulating phase as long as δµ remains smaller than the energy necessary to
add another atom. When Q rises beyond a critical value Qc(γ, V ), the system
develops finite density excitations, which destroy the long range order of the
Mott insulator. We find that, for the array of 1D tubes, the commensurability
condition in the superfluid regime is fulfilled best when the total atom number is
chosen in such a way that the peak density of the center tube is approximately
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1.2 nc.

Modulation parameters and error bars.

For the data in Fig. 5.12 a, b, d we chose the following modulation times and
amplitudes: a 40 ms, 35%, b 40 ms, 30%, d 30 ms, 35% for the superfluid
phase and 25% for the Mott phase. In Fig. 5.12 a, b, d, the error bars for δ
reflect the 1σ statistical error. In Fig. 5.12 c, the error bars for fg are derived
from the 1σ error on the fit parameters. The error for γ results from the 1σ
statistical error of the independent input variables and the spread of γ due to
the distribution of tubes. For the data in Fig. 5.14 the error in γ is derived from
the 1σ error of the fit parameters for the modulation measurements. For the
transport measurements, the error in γ results from the 1σ statistical error of
the independent input variables and the spread of γ due to the distribution of
tubes.
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Fig. 5.11.: Comparing two types of superfluid-to-Mott-insulator phase transi-
tions in 1D. Schematic density distributions (grey) in the presence
of a periodic potential (red solid line). a, Mott-Hubbard type quan-
tum phase transition for weak interactions [Gre02a]. The system is
still superfluid at finite lattice depth (top). The transition to the
insulating state is induced by raising the lattice depth above a fi-
nite critical value (bottom). b, Sine-Gordon type quantum phase
transition for strong interactions [Büc03]. In the absence of any per-
turbation, the system is a strongly correlated superfluid (top). For
sufficiently strong interactions, not necessarily infinitely strong, an
arbitrarily weak perturbation by a lattice potential commensurate
with the system’s granularity induces the transition to the insulating
Mott state (bottom).
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Fig. 5.12.: Modulation spectroscopy on bosons in 1D. a, b, d, Excitation spectra
for low, intermediate, and high lattice depth V . The change δ of the
spatial width after amplitude modulation is plotted as a function of
the modulation frequency f for different values of γ. a, Characteristic
spectra for V = 1.5(1)ER in the superfluid (squares, a3D = 115(2) a0,
γ = 1.0(1)) and in the Mott regime (circles, a3D = 261(2) a0, γ =
3.1(2)). The solid lines are linear fits to the high-frequency part of
the spectrum. We determine the axis intercept fg as indicated. b,
Spectra for V = 3.0(2)ER. The system is superfluid at γ = 0.51(6)
(squares), while it exhibits a gap for γ = 1.6(1) (triangles) and γ =
4.1(3) (circles). c, Determination of the transition point for the case
of the shallow lattice with V = 1.5(1)ER. The frequency fg is plotted
as a function of γ. The solid line is an error-function fit to the data.
The inset plots fg as a function of γ for V = 3.0(2)ER. d, Spectra
for V = 9.0(5)ER for weak (squares, γ = 0.10(3)) and strong (circles,
γ = 8.1(4)) interactions in the superfluid (SF) and Mott insulator
(MI) regimes. Here, f is in units of U . Modulation parameters and
errors bars are discussed in the Methods.



PINNING QUANTUM PHASE TRANSITION FOR A LUTTINGER LIQUID OF
STRONGLY INTERACTING BOSONS 211

0 20 40 60 80 100 120 140 160 180 200

0

5

10

15

20

25

30

35

40

Scattering length a
3D

 (a
0
)

C
en

te
r-

o
f-

m
as

s 
p

o
si

ti
o

n
 x

0 (µ
m

)

6 7 8 9 10
Lattice depth V (E

R
)

0

2

4

6

8

10

(U
/J

 ) c

Fig. 5.13.: Transport measurements on the 1D Bose gas. Center-of-mass dis-
placement x0 as a function of a3D for different values of V (V =
9.0(5)ER (diamonds), V = 5.0(3)ER (squares), V = 2.0(1)ER (cir-
cles)). We extrapolate the linear slope at small values for a3D and
associate the transition point with the axis intercept. For the data
with V = 2.0(1)ER transport is not fully quenched as the condi-
tion of commensurability is not fulfilled for all atoms. All errors are
the 1σ statistical error. The inset plots the mesured critical ratio
(U/J)c at the transition point as a function of lattice depth V . The
dashed line indicates the theoretical result (U/J)c ≈ 3.85 for the 1D
Bose-Hubbard regime [Rap99].



212
PINNING QUANTUM PHASE TRANSITION FOR A LUTTINGER LIQUID OF

STRONGLY INTERACTING BOSONS

0

2

4

6

8

10

12

La
tt

ic
e 

d
ep

th
 V

 (E
R)

0 2 4 6 8

Inverse Lieb-Liniger interaction parameter 1/γ
1/γc

0.6 0.8 1.0  1.2 1.4 1.6
0.1

0.2

0.3

0.4

Lattice depth V (ER)

G
ap

 E
g (

E R)

superfluid

      Bose-Hubbard
Mott-insulator

sine-Gordon

Fig. 5.14.: Phase diagram for the strongly interacting 1D Bose gas. Super-
fluid and Mott insulating phases in 1D versus inverse Lieb-Lininger
interaction parameter 1/γ and optical lattice depth V in units of
the photon recoil energy ER. The critical interaction parameter is
γc. For strong interactions and shallow lattices we determine the
transition by amplitude modulation spectroscopy (circles). For weak
interactions and deep lattices we probe the phase boundary by trans-
port measurements (squares). The solid (dashed) line is the predic-
tion from the sine-Gordon (Bose-Hubbard) model. Error bars are
discussed in the Methods. The inset plots the measured gap en-
ergy Eg = hfg as a function of V for γ = 11(1) and compares our
data to the analytical result for finite γ as given by the sine-Gordon
model (solid line, see Methods). Also shown is the universal behavior
Eg = V/2, which is valid for non-interacting fermions (dashed line).
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5.5. Publication: Three-body correlation functions

and recombination rates for bosons in three and

one dimensions

Physical Review Letters 107, 230404 (2011)†

Elmar Haller12, Mohamed Rabie1, Manfred J. Mark1, Johann G. Danzl1,
Russel Hart1, Katharina Lauber1, Guido Pupillo23,
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1 Institut für Experimentalphysik und Zentrum für Quantenphysik,
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der Wissenschaften, Technikerstraße 21a, A–6020 Innsbruck, Austria
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Innsbruck, Austria

We investigate local three-body correlations for bosonic particles in three
and one dimensions as a function of the interaction strength. The three-
body correlation function g(3) is determined by measuring the three-body
recombination rate in an ultracold gas of Cs atoms. In three dimensions, we
measure the dependence of g(3) on the gas parameter in a BEC, finding good
agreement with the theoretical prediction accounting for beyond-mean-field
effects. In one dimension, we observe a reduction of g(3) by several orders
of magnitude upon increasing interactions from the weakly interacting BEC
to the strongly interacting Tonks-Girardeau regime, in good agreement with
predictions from the Lieb-Liniger model for all strengths of interaction.

†The author of the present thesis contributed to this work by maintaining and improving the
experimental setup and paper writing.
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5.5.1. Introduction

Correlation functions reflect the non-classical nature of quantum many-body
systems. They may be used to characterize the latter when quantities such as
temperature, density, dimensionality, and particle statistics are varied in exper-
iments. It is particularly instructive to monitor a system’s correlation functions
as the strength of particle interactions is tuned from weak to strong. A paradigm
is given by an ensemble of bosons in one-dimensional (1D) geometry with contact
interactions [Caz11]: For weak repulsive interactions, in the zero-temperature
limit, the system is a quasicondensate with essentially flat particle correlation
functions in position space to all orders. For strong repulsive interactions, the
bosons avoid each other, leading to loss of coherence and strong increase of local
correlations. In the context of ultracold atomic gases, with exquisite control over
temperature, density, and dimensionality [Blo08], tuning of interactions is en-
abled by Feshbach resonances [Chi10]. Local two- and three-body correlations in
atomic many-body systems can be probed e.g. in measurements of photoassoci-
ation rates [Kin05] and of three-body recombination processes [Bur97, O’H04],
respectively. Non-local two-body correlations for atomic matter waves have
been measured in atom counting [Yas96, Ött05, Sch05, Jel07], noise-correlation
[Gre05, Föl05, Rom06], and in-situ imaging [Jac11] experiments. Recently,
also non-local three-body correlations have become accessible in experiments
[Arm10, Hod11].

Recombination processes are sensitive to the properties of the many-body
wave function at short distances. In particular, the process of three-body recom-
bination, in which three particles collide inelastically to form a dimer, is directly
connected to the local three-particle correlation function g(3) ≡< ψ̂†(x)3ψ̂(x)3 >
/n3, which compares the probabilities of having three particles at the same po-
sition for a correlated and an uncorrelated system. Here, ψ̂† and ψ̂ are atomic
field operators and n is the density. The function g(3) depends strongly on
quantum statistics [Bur97, Hod11] and temperature T [Khe03, Kor09, Kor11].
For example, in 3D geometry, statistics change the value of g(3) from zero for
identical fermions to one for non-interacting classical particles and to six for
thermal (non-condensed) bosons. For non-interacting bosons statistical bunch-
ing is suppressed in a Bose-Einstein condensate (BEC), for which g(3) = 1. In
addition, interactions also have a pronounced effect on g(3): In a 3D BEC, quan-
tum depletion due to quantum fluctuations reduces the condensate fraction by
increasing the number of occupied single-particle modes. In this case, beyond-
mean-field calculations [Kag85] predict an increase of g(3) proportional to the
square root of the gas parameter (na3

3D)1/2, where a3D is the 3D s-wave scat-
tering length. This increase of g(3) has never been seen experimentally and is
in stark contrast to the behavior of 1D systems. In 1D geometry, bosons with
repulsive interactions minimize their interaction energy by avoiding spatial over-
lap. For very strong repulsive interactions in the Tonks-Girardeau (TG) limit
[Gir60, Kin04, Par04, Hal09, Caz11] a strong reduction of g(3) with a γ−6 scal-
ing is predicted [Gan03]. Here, γ is the dimensionless Lieb-Liniger parameter,
which characterizes interactions in a homogeneous 1D system [Caz11] (see 5.5.5
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for suppl. material). Recently, g(3) has been calculated all the way from the
weakly to the strongly interacting 1D regime for T = 0 [Che06b, Che06a] and
also for T ≥ 0 [Kor09, Kor11]. Experimentally, Laburthe Tolra et al. [O’H04]
have observed a reduction of g(3) by a factor of about 7(5) for a weakly inter-
acting gas of Rb atoms with γ = 0.45.

5.5.2. Experimental procedure

In this work we experimentally determine g(3) in 3D and in 1D geometry using
a trapped ultracold gas of Cs atoms with tunable (repulsive) interactions. For a
BEC in 3D geometry we find clear evidence for an increase of g(3) with increasing
interaction strength, in good agreement with the prediction of Ref. [Kag85]. In
1D, for which we can tune γ from zero to above 100 [Hal09], we determine
g(3) in the crossover regime from weak (1D BEC regime) to strong interactions
(TG regime). Here our data agrees well with the prediction of Ref. [Che06b].
For strong interactions in the TG regime, our measurements show that g(3) is
suppressed by at least three orders of magnitude. For high densities and strong
interactions, we observe a rather sudden increase of three-body losses after long
hold times in the trap. Understanding the behavior of g(3) at short and long times
is an important step towards understanding integrability and thermalization in
1D systems [Kin06, Hof08].

A three-body loss process [Fed96, Chi10] consists of the collision of three
particles, the formation of a dimer, and the release of the dimer’s binding energy
typically sufficient to allow both, the dimer and the remaining particle, to escape
from the trap. The loss, assuming negligible one- and two-body loss, is modeled
by the rate equation ṅ = −αK(3)g(3)n3. Here, we have explicitly split the
loss rate coefficient αK(3)g(3) into its three contributions. The parameter α = 3
describes a situation where exactly three particles are lost in each recombination
event. In principle, secondary losses [Zac09] could modify its value. However,

in the following we will be interested in relative measurements of αK(3)g(3)(3)
,

which are only weakly dependent on the precise value of α (see 5.5.5 for suppl.
material), allowing us to neglect a possible deviation of α from the value of 3.
The parameter K(3) contains the effect of few-body physics on the loss process
[Chi10]. It depends on the probability of dimer formation (a process that can be
strongly enhanced near Efimov resonances [Kra06]) and generally varies strongly
with a3D [Fed96, Esr99, Nie99, Bed00, Web03b]. For a3D much larger than the
range of the scattering potential, K(3) shows a generic a4

3D scaling. Contributions
of many-body physics are contained in the three-particle distribution function
g(3)n3. In what follows, we aim to measure g(3) as a function of a3D both in 3D
and 1D geometry.

We determine K(3)g(3) from measurements of the decay of the total number
of atoms N(t) in our trap [Bur97, Web03b], which obeys the loss equation Ṅ =
−3K(3)g(3)

∫
n3(r)d3r. Figures 5.15(a) and 5.16(c) show typical atom number

measurements for 3D and 1D geometry. The data in 3D geometry is well fit by
solutions to the loss equation. The determination of K(3)g(3) depends critically
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on an exact knowledge of the atomic density profile n(r). In particular, particle
loss and loss-induced heating of the sample [Web03b] can modify the density
profile in a non-trivial way. Also, on long time scales evaporative losses might
start to play a role. To avoid these complications we restrict ourselves to short
time intervals, during which not more than 15% of the atoms are lost, and we
determine the slope Ṅ(0) from a linear fit to the data. We determine

∫
n3(r)d3r

from a measurement of the total atom number N and the trap frequencies ωx,y,z
using interaction dependent models for n(r) (see 5.5.5 for suppl. material). We
find that the linear approximation underestimates K(3)g(3) by approximately
12%, however, the data analysis is greatly simplified, especially in 1D. Finally, a
comparative measurement of K(3)g(3) allows us to eliminate K(3), as explained
below, and to determine g(3) in 3D and 1D geometry.

5.5.3. Correlation function in 3D:

We measure K(3)g(3) for both a non-condensed thermal sample and a BEC as
a function of a3D. For the thermal sample we start with typically 3.5 × 105 Cs
atoms at a temperature of T ≈200 nK. The peak density is about n0 = 1× 1014

cm−3. In the BEC [Web03b, Kra04] we have about 9×104 Cs atoms without any
detectable non-condensed fraction at about n0 = 5× 1013 cm−3. We tune a3D in
the range from 50 a0 to 800 a0 by means of a broad magnetic Feshbach resonance
[Web03b, Lan09] (a0 is Bohr’s radius). The magnetic field gradient needed to
levitate the atoms against gravity [Web03b] introduces a slight (less than 5 a0)
variation of a3D across the samples. We determine N by means of absorption
imaging after a variable hold time t and 50 ms of expansion in the presence of
the levitation field. We note that we do not observe the appearance of any non-
condensed fraction in all measurements using the BEC. Figure 5.15(b) displays

the ratio K
(3)
th g

(3)
th /(K

(3)
BECg

(3)
BEC) = g

(3)
th /g

(3)
BEC determined from the thermal sample

and the BEC as a function of a3D. Here we have made the reasonable assumption
that K(3) is independent of the system’s phase in 3D geometry, i.e. K

(3)
th = K

(3)
BEC.

Our measurement shows that the ratio g
(3)
th /g

(3)
BEC attains the expected value of

6 for weak interactions [Bur97], but then exhibits a pronounced decrease as a3D

is increased. For comparison, we plot the prediction of Ref. [Kag85]

g
(3)
th /g

(3)
BEC = 6/

(
1 +

64√
π

√
n0a3

3D

)
. (5.3)

We note that the density n0 enters into this equation as a measured quantity. In
general, we find good agreement between the experimental and the theoretical
result, establishing our measurement as a clear demonstration of beyond mean-
field effects on g(3) in 3D bosonic quantum gases.

5.5.4. Correlation function in 1D:

Figure 5.16 (a) illustrates our experimental setup to generate an array of 1D sys-
tems. We load a BEC of typically 8×104 atoms within 400 ms into approximately
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5000 vertically (z-direction) oriented tubes that are formed by two horizontally
propagating, retro-reflected lattice laser beams. Each tube with index (i, j) in
the x-y-plane has a transversal trapping frequency of ω⊥ = 2π × 12.2(5) kHz
and an aspect ratio ω⊥/ωz of approximately 800. The transversal motion of the
atoms in the tubes is effectively frozen out as kinetic and interaction energy are
much smaller than ~ω⊥. We adjust a3D in 100 ms to its final value. After time
t we turn off the lattice potential and determine the total atom number N(t)
by absorption imaging in a time-of-flight measurement. In order to determine
g

(3)
1D we calculate the ratio K

(3)
1Dg

(3)
1D/(K

(3)
3Dg

(3)
3D) = g

(3)
1D/g

(3)
3D . Here, it is not obvi-

ous that few-body physics is not affected by the confinement and that hence
K

(3)
1D and K

(3)
3D cancel each other. Nevertheless, it is reasonable to assume that

K(3) is not significantly changed by the confinement as long as the confinement
length a⊥ =

√
~/(mω⊥) is larger than the extent of the dimer produced in the

recombination event and the range of the scattering process, which are both of
order of a3D. Here, m is the atom mass. We choose a moderately deep lattice
potential with a⊥ ≈ 1500 a0 and restrict a3D to a3D . 800 a0. In particular, we
avoid the confinement-induced resonance condition a3D ≈ a⊥ [Hal09, Hal10c].

The main difficulty in the determination of K
(3)
1Dg

(3)
1D comes from the fact that

the initial atom number of the tubes varies across the lattice as a result of
the harmonic confinement. We choose to always load the lattice in a regime
of weak repulsive interactions such that almost all 1D samples are initially in
the 1D Thomas-Fermi (TF) regime [Men02]. The local chemical potentials µi,j,
the total atom number N , and the chemical potential µ are then unambiguously
related, and we can directly calculate the initial occupation number Ni,j for each
tube (i, j) (see 5.5.5 for suppl. material and Fig. 5.16(b)). The variation in Ni,j

results in a considerable variation in the type of density profile for each of the
1D systems after the strength of interactions is increased to the desired value:
Some tubes remain in the 1D TF regime, while others are now in the TG regime.
For tubes that are in the weakly interacting regime we determine the 1D density
n1D numerically by solving the 1D Gross-Pitaevskii equation. For the TG regime
the density profiles are determined following Ref. [Men02]. In general, we find
good agreement when we compare the numerical results to integrated density
distributions from in-situ absorption images. For the interaction parameter γ
we take a mean value that is calculated as an average over all local γi,j at the
center of each tube (i, j) weighted by Ni,j (see 5.5.5 for suppl. material).

As before we determine K
(3)
1Dg

(3)
1D from the initial slope of the loss curve as

shown in Fig. 5.16(c). In Fig. 5.17(a) we compare the data that we obtain in

1D geometry to our data for K
(3)
3Dg

(3)
3D for a 3D-BEC as we vary a3D. We note

that the BEC data is in good agreement with previous three-body loss data on
thermal samples when one takes into account the combinatorial factor 3! = 6
[Web03b, Kra06]. In particular, the 3D data follows the universal scaling law
K(3) ∼ a3D

4 for sufficiently large a3D [Fed96, Esr99, Nie99, Bed00, Web03b]. We
exclude data points affected by the presence of a narrow Feshbach resonance in
the vicinity of a3D = 150a0 [Mar07a]. Note that in the range from a3D ≈ 10a0 to
a3D ≈ 850a0 three-body losses in 3D increase by nearly 3 orders of magnitude.
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This behavior is in stark contrast to the measurements in 1D. In 1D, we observe
a reduction of K(3)g(3) by approximately a factor of 2 upon increasing a3D over
the same range of values. In fact, for a3D ≥ 200a0 our measurement only gives
an upper bound on K

(3)
1Dg

(3)
1D as losses become so small that we have difficulty in

determining Ṅ(0) in view of shot-to-shot particle number variations. We note

that not only the behavior of g
(3)
1D reduces the atom loss, but also the fact that

the density is decreased as repulsive interactions are increased. In addition, on
a more technical side, our loading procedure for a3D ≥ 200a0, aimed at avoiding
the Feshbach resonance near 150a0, leads to a lower density. Also note that
tunneling between tubes (on a timescale of 1 s for the parameters of our lattice)
sets an upper bound for the timescale for which the tubes can be considered to
be independent and hence fully in the 1D regime.

In Fig. 5.17(b) we plot K
(3)
1Dg

(3)
1D/(K

(3)
3Dg

(3)
3D) ≈ g

(3)
1D as a function of γ. A striking

decrease by 3 orders of magnitude from the value 1 at γ ≈ 0.03 to 10−3 at
γ ≈ 50 can be seen. We compare this result to the predictions based on the
Lieb-Liniger model of interacting bosons in 1D: In the weakly interacting Gross-
Pitaevskii regime (γ � 1) the Bogoliubov approach yields g(3)(γ) ' 1− 6

√
γ/π,

while in the TG regime, γ � 1, g(3) can be expressed through derivatives of
the three-body correlation function of free fermions, giving g(3) = 16π6/(15γ6)
[Gan03]. Cheianov et al. [Che06b] have recently calculated numerically g(3)

for all strengths of interactions within the Lieb-Liniger model, providing an
interpolation between the weakly and strongly interacting limits (red continuous
line in Fig. 5.17(b)). We find very good agreement between the result of our
experiment and the theory that is valid for all strengths of interactions. This is
the central result of this work.

Finally, for large values of a3D and n0, and for long hold times in 1D geom-
etry, we find a surprisingly sudden increase of losses as shown in Fig.5.16(d),
accompanied by a rapid increase for the expansion energy in the longitudinal
direction (data not shown). The onset of increased losses shifts to later times
with decreased density in the tubes, i.e. increased γ, and it is rather sensitive to
the precise value of γ. We believe that the 1D tubes suffer from a recombination-
heating induced breakdown of correlations: For sufficiently large values of a3D

the binding energy of the weakly bound dimer produced in the recombination
process becomes comparable to the trap depth (here h×45 kHz). This leads to a
positive feedback cycle in the many-body system in which three-body losses lead
to an increase of temperature [Web03b] and thus of g(3) [Khe03, Kor09, Kor11],
which in turn increases three-body losses.

Summary

In summary, we have measured the local value g(3) for the three-particle corre-
lation function for quantum degenerate gases in 3D and 1D. In 3D, increasing
interactions deplete the condensate and increase the value of g(3) in accordance
with beyond mean-field calculations. In 1D, we observe a strong suppression for
g(3) by 3 orders of magnitude as the TG regime is entered. The accompanying
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suppression of three-body losses is crucial to the study of strongly interacting
matter in and out of equilibrium in 1D [Kin06, Hof08, Hal09, Hal10d].

We thank R. Grimm for generous support. We gratefully acknowledge funding
by the Austrian Science Fund (FWF) within project I153-N16 and within the
framework of the European Science Foundation (ESF) EuroQUASAR collective
research project QuDeGPM. GP acknowledges funding from the EU through
NAME-QUAM and AQUTE.

5.5.5. Supplementary material

Trap parameters

In 3D geometry, we measure the atom loss in a crossed beam dipole trap with one
horizontal and one vertical laser beam. The horizontal trap-frequencies ωx,y and
the vertical trap-frequency ωz vary for the different measurements. The data sets
in Fig. 5.15(a) are taken with trap frequencies ωx,y,z = 2π× (29(1), 80(2), 74(1))
Hz for thermal atoms and with ωx,y,z = 2π × (11.8(1), 17.9(3), 13.5(1)) Hz for
a BEC. The data sets in Fig. 3(a) are taken at trap frequencies of ωx,y,z =
2π × (10.5(8), 17.4(1), 13.9(1)) Hz for a BEC.

In 1D geometry, we use a crossed dipole trap in addition to the 2D optical lat-
tice potential to adjust the atom number distribution over the tubes. We choose
two settings with global trap frequencies ωx,y,z = 2π × (9.7(2), 11.4(2), 14.5(1))
Hz and 2π × (13.1(2), 17.7(2), 17.5(2)) Hz.

Atom number distribution over the tubes

We calculate the initial occupation number Ni,j for tube (i, j) from the global
chemical potential µ. For weak repulsive interactions during the loading process
almost all tubes are in the 1D Thomas-Fermi (TF) regime with a local chemical
potential µi,j at the center of each tube

µi,j = µ− 1

2
m(λ/2)2(ω2

xi
2 + ω2

yj
2),

where m is the atomic mass and λ = 1064.5 nm is the wavelength of lattice
light. We calculate µ from the condition N =

∑
i,j Ni,j(µ) with the Ni,j given

by [Pet00a]

µi,j =

(
3Ni,j

4
√

2
g1Dωz

√
m

)2/3

,

where g1D is the 1D coupling parameter [Ols98]

g1D = 2~ω⊥a3D

(
1− 1.0326

a3D

a⊥

)−1

.
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Determination of γ

We determine the mean interaction parameter γ from the local parameters γi,j
at the center of each tube (i, j)

γi,j =
mg1D

~2n1D
i,j

, γ =
1

N

∑
i,j

Ni,jγi,j.

Here, n1D
i,j is the 1D density at the center of the tube (i, j). Note that this gives a

lower estimate for γ. Averaging γ over the density profile along each tube gives
a slightly larger γ by a factor 1.5 for a 1D TF density profile and a factor 1.27
for a TG density profile.

Density profiles

The density profiles for the individual tubes with index (i, j) depend strongly on
the strength of interactions and the occupation number Ni,j. Figure 5.18 com-
pares the results for the integrated density profiles

∫
n3
i,j(r)d

3r using the different
approximations to calculate the profile (gaussian, TF, TG, numerically solved
GP-equation, and Lieb-Liniger solution within the local density approximation
[Dun01]) for the specific case of Ni,j = 15. For our analysis of the experimental
data we use the GP result for weak interactions and the TG result [Men02] for
strong interactions (continuous red line).

Secondary loss processes

Here we estimate the deviation ∆α from α = 3 in the rate equation ṅ =
−αK(3)g(3)n3 due to secondary loss processes [Sch01, Zac09]. Within a sim-
ple simulation, we determine an upper bound for the correction to the data of
the 3D loss experiment of Fig. 5.15(b) and show that secondary loss processes

cannot explain our results for g
(3)
th /g

(3)
BEC. In fact for our experimental trap pa-

rameters and atom numbers secondary processes would result in an increase
of g

(3)
th /g

(3)
BEC with increasing interaction strength, in contradiction with the ob-

served behavior.
A secondary collision is caused by the collision of the dimer and/or free atom

from a three-body recombination process with other atoms while leaving the
trap, triggering additional losses. We estimate the average number of secondary
collisions in our experiment by determining numerically the collisional opacity
< nl > σ for the products of a three-body recombination event. Here < nl > is
the average column density, with l the distance covered by a (randomly chosen)
atom leaving the trap, and σ is the scattering cross section. For the atom-
atom cross section we use the formula σ = 8πa2

3D/(1 + k2a3D
2), where ~k is

the momentum of the free atom gained in the recombination event. For the
atom-dimer collision, we use a similar expression for the cross section, with the
momentum of the dimer and a scattering length 2a3D. For our experimental
parameters, we then determine the total number of atoms lost due to secondary
processes for a thermal sample, ∆αth, and a BEC, ∆αBEC. Figure 5.19 shows



THREE-BODY CORRELATION FUNCTIONS AND RECOMBINATION RATES
FOR BOSONS IN THREE AND ONE DIMENSIONS 221

that the ratio (3 + ∆αth)/(3 + ∆αBEC) increases with increasing a3D by about
30 percent over the experimentally accessible range of a3D. These results imply
that for our experimental parameters secondary loss processes would result in
an increase of the ratio g

(3)
th /g

(3)
BEC in Fig. 5.15(b), in contrast to the measured

data. Thus, within the present model, this rules out secondary loss processes as
the cause of the effects shown in the present work.
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Fig. 5.15.: (color online) (a) Relative atom number N(t)/N(0) vs. hold time t in
3D geometry: BEC (squares and circles) and thermal gas (diamonds)
for a3D = 101(2) a0, 386(3) a0, and 386(3) a0, respectively. The
dashed lines are fits to the data based on the loss equation (see
text). The solid lines are linear fits that include the data from 100%

to 85%. (b) The ratio of correlation functions g
(3)
th /g

(3)
BEC as a function

of a3D (experimental data: circles; prediction [Kag85]: squares). All
error bars reflect the 1σ statistical uncertainty.
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Fig. 5.16.: (color online) (a) Sketch of the experimental setup: A 2D optical lat-
tice traps atoms in an array of 1D tubes. (b) Example of a computed
atom number distribution Ni,j (see text). (c) The relative atom num-
ber N(t)/N(0) as a function of time t in 1D geometry: squares and
circles correspond to a3D = 23(1) a0 and 568(3) a0 with initial den-
sities of 4.5 µm−1 and 1.7 µm−1 at the center of the center tube,
respectively. The solid lines are linear fits to the initial slopes. (d)
The relative atom number N(t)/N(0) in 1D for fixed a3D = 568(3) a0

and for various values of γ as the 1D density is changed: γ = 12 (cir-
cles), γ = 13 (triangles), and γ = 14 (squares). The solid (dashed)
lines are linear fits to the data points for short (large) times to guide
the eye.
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Fig. 5.17.: (color online) (a) Three-body loss coefficient K(3)g(3) vs. a3D for
a quantum degenerate gas in 3D (squares) and in 1D (circles). The
line gives the K(3) = C~a4

3D/m scaling in the universal regime in 3D
with C = 67.9 [Fed96, Esr99, Nie99, Bed00, Web03b]. The error bars
of K(3)g(3) reflect the 1σ statistical uncertainty of the linear fit. The
increased relative error for the larger values of a3D is the result of
greatly reduced atom loss, giving smaller slopes for the decay curves
at roughly the same shot-to-shot particle variations, primarily due
to the behavior of g(3), but also due to a reduction of the density

(for details, see text). (b) The measured correlation function g
(3)
1D vs.

γ in 1D geometry (circles). The crosses indicate the values for g
(3)
1D

corrected for the variations of g
(3)
3D with a3D as in Eq. (5.3) (see text).

The dashed and dotted lines are approximate analytical solutions for
γ � 1 and γ � 1 from Ref. [Gan03]. The solid line is the prediction
from Ref. [Che06b, Che06a].
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Fig. 5.18.: (color online) The quantity
∫
n3
i,j(r)d3r for an occupation number

Ni,j = 15 as a function of the scattering length a3D for the given
trap parameters of our experiment. The various curves correspond to
the different approximations: gaussian solution (green dashed line),
TF solution (blue dotted line), TG solution (black dash-dotted line),
numerically solved GP-equation result (black stars), and Lieb-Liniger
solution with local density approximation (blue circles). For the data
analysis the continuous red line is used.
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Fig. 5.19.: (color online) Upper estimate for the corrections due to secondary
loss. For details see text.



CHAPTER 6

OUTLOOK

Our experimental setup will undergo some mayor changes in the near future.
One of these will be the addition of potassium into the setup. To minimize the
dead time during which experiments cannot be carried out, this implementation
will be accomplished stepwise and the necessary changes are carefully planned
in such a way that as many parts as possible are untouched. On the other hand
one can take the opportunity and review some old experimental parts to improve
them with the knowledge built up in the past years.

The alkali metal potassium naturally occurs in the three isotopes 39K, 40K
and 41K, where 40K is a Fermion and slightly radioactive with a lifetime of
1.25 billion years. In the field of ultracold gases, potassium is widely used in com-
bination with other species like lithium [Wil08] and rubidium [Mod01, Roa02,
Osp06b, Roa07]. The scattering properties of the potassium isotopes at ultralow
temperatures are markedly different. 41K has a small positive scattering length
of ∼ 66 a0, which allows to form a stable BEC [Mod01], but there are no broad
Feshbach resonances available to tune interactions. In contrast 39K has a small
negative scattering length of ∼ 33 a0, but a broad Feshbach resonance at 402 G
in its lowest hyperfine state which allows for tuning of the interactions and the
creation of the BEC in the vicinity of this resonance [Roa07]. The fermionic
40K, if brought to ultralow temperatures, would not interact at all because its
fermionic nature allows only p-wave scattering between identical particles. Mix-
tures of 40K in different hyperfine states are again allowed to interact via s-wave
scattering, and also the tuning via Feshbach resonances is possible [Lof02].

Since the laser frequencies needed for optical cooling of the three different
isotopes are very similar, it is possible to use the same laser setup for all of
them. This gives the flexibility to investigate Bose-Bose and Fermi-Bose mix-
tures without the need of major changes to the setup. Interspecies Feshbach
resonances between potassium and cesium, where several are predicted to ap-
pear below 1000 G [Fer09a], should enable tunability between the two species.
Combined with an optical lattice this would enable the study of new exotic
phases, for example pairing of fermions with bosons or bosonic holes [Lew04].
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An additional strategy is the creation of either bosonic or fermionic heteronu-
clear KCs molecules and the subsequent transfer into the rovibronic ground
state in a similar way as we have shown in chapter 4 for Cs2. They would ex-
hibit a permanent electric dipole moment [Aym05] and they should be stable
against collisions [Żuc10], in contrast to some other heteronuclear combinations
like KRb [Osp10]. The electric dipole moment leads to anisotropic long range
dipole-dipole interactions, which in combination with an optical lattice, allows
for the simulation of quantum magnetism [Bar06] and the implementation of
quantum computation schemes [DeM02].



APPENDIX A

ELECTRONIC CIRCUITS

Experiments in the field of ultracold quantum gases would not be realizable
without electronic circuits. For example magnetic fields are typically created
by a electric current in a coil or wire, and the magnitude of it needs to be
controlled dynamically during an experimental cycle to enable magnetic field
ramps. In our case, the whole experiment is computer controlled using a bus
system, which provides an expandable amount of digital and analog output
channels [Gus08a]. The electronic circuits have to interpret these digital or
analog signals and control laser intensities and magnetic fields accordingly.

Within this thesis, many new electronic circuits or improvements have been
designed, build, tested and implemented into the experiment. The following sec-
tions give an introduction into the most important circuits and their functional
principle.

A.1. Magnetic field stabilization

The stability of magnetic fields is crucial for every cold atoms experiment, espe-
cially when driving atomic radio- or microwave transitions or when interactions
are very sensitive to magnetic field changes.

A.1.1. Line trigger

One of the most common magnetic field fluctuations is are generated by stray
magnetic field with 50 Hz or higher harmonics of it, since it is related to the fre-
quency of the electric line, powering every laboratory power supply and electric
device. To suppress this noise, either a passive filtering with µ-metal around the
science chamber or an active counter-regulation by modulating 50 Hz onto the
main magnetic field is possible. In our case, we do not want to limit our optical
access by shielding, and the active counter-regulation has not been implemented
yet.
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In most cases we are relying on a reproducible magnetic field value at a specific
time during an experimental sequence. This can be realized by either running the
experiment fully synchronized to the 50 Hz line frequency via phase lock between
the 50 Hz and the clock signal for the experimental control, or by introducing
an additional variable wait time during the sequence, waiting until the phase of
the 50 Hz is at a specific value before continuing the cycle. Since we need to
have a clock frequency, which is synchronized via GPS for long duration time
measurements, we have chosen the second implementation scheme. Figure A.1
shows the circuit, which stops the experimental control clock when sending an
TTL pulse to it, until the 50 Hz line signal goes through a defined phase point.
The maximal wait time introduced is 20 ms. This allowed us to measure the
magnetic field fluctuation caused by the 50 Hz line frequency using microwave
spectroscopy, which in our case is on the order of 10 mG.
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Fig. A.1.: Circuit diagram of the line trigger box.

A.1.2. Current stabilization

Our magnetic offset field is generated with a coil pair and a current in the range
of 0 − 50 A. The current is provided by a Delta Elektronika switching power
supply. Such a switching power supply can handle high output powers, but it
generates additional noise components at their switching frequency or multiples
of it. Even as the coil behaves like a low pass at frequencies on the order of
several kHz and the switching frequencies are in the range of 100 kHz or more,
the magnetic field noise is noticeable in the experiment. It creates huge shot-to-
shot fluctuations for microwave transitions and molecule association efficiencies.
A direct low pass filtering of the current is not possible since this would prevent
fast magnetic field ramps.
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Fig. A.2.: Circuit diagram of the Current PID controller.

Our implemented solution consists of a three-stage feedback, enabling the
integration of a car battery as current source for the sensitive parts of the mea-
surement as it provides a very low noise current. By using the car battery only
for short times during the experimental cycle, we are able to recharge it in the
time between and therefore do not need a huge car battery stack. In the first
stage, for the first part of the experimental cycle, where current noise is not that
important, the regulation is done with the PID controller in figure A.2 via the
feedback input of the Delta power supply. For the second stage we switch to the
direct current control of this PID controller, which means that the input voltage
of the feedback of the Delta power supply is directly set by the experiment con-
trol and not by the feedback provided from the current sensor. At the same time
we activate a second PID controller which regulates the current using a power
MOSFET stage in series with the coil. By setting the direct output of the Delta
power supply slightly higher than needed, the MOSFET stage regulates the cur-
rent to the desired value. This switching takes about 10 ms and produces some
current spikes, therefore we do this during the evaporation ramps where it does
not effect the system much. For the third stage we set the Delta power supply
output on a higher voltage than the car battery, add the battery via a switch
and diodes parallel to the Delta power supply and ramp down the output of the
Delta power supply afterwards. This changes the current source from the power
supply to the car battery while maintaining a constant current running through
the coils. This switching takes again about 10 ms, but it can be done anytime
in the experiment cycle, since it does not produce current spikes.
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A.2. Laser diode stabilization

Many laser frequencies used in cold atom experiments can be generated with
semiconductor laser diodes. Typically the temperature and the supply current
of the laser diode needs to be stabilized to ensure a stable single frequency at
the wavelength needed for the experiment.

A.2.1. Temperature stabilization

A prerequisite for a stable laser frequency is the temperature stabilization of
the laser diode, since temperature shifts change the cavity length of the diode
and therefore the frequency. For the latest design of the diode laser housing,
we choose a two-stage stabilization scheme, where the laser diode with its metal
mounting is temperature stabilized by four peltier elements and the complete
housing, consisting of an inner and outer metal shield, is kept on a constant
temperature using a heating foil. The temperature of this parts is sensed with
NTC resistors, and the circuit which converts the resistance into a temperature
signal, shown in figure A.3, is placed within the inner and outer shield to mini-
mize temperature drifts of the electronic components. The circuit also contains
connections for monitoring sensors, the laserdiode current and piezo voltages.
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Fig. A.3.: Circuit diagram of the temperature sensing circuit.

It is connected to the actual temperature PID controller shown in figure A.4
via the Sub-D connector, where all signals, power supplies and control currents
for the peltier elements and the heating foil are transferred. The temperature
PID controller consists of two independent PID circuits, one for the laser diode
temperature and one for the housing temperature. After a low pass filtering
to remove suspicious high frequency signals, a simple PID circuit drives a high



APPENDIX 233

power bipolar output stage, which provide up to 3 A current for cooling or heat-
ing. This circuit, in combination with the careful designed laser diode housing,
provides a long term temperature stability of less than 1 mK.
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Fig. A.4.: Circuit diagram of the temperature PID controller.

A.2.2. Laser current stabilization

The emitted frequency of a laser diode is very sensitive to the amount of current
running through it. For slow current variations, the changing power dissipation
in the diode will have the most significant effect, which leads to a change in the
temperature and therefore to a changing frequency. For fast current variations,
the change of index of refraction inside the diode will be most significant, also
leading to a change in frequency. For assuring a most stable and noise-free laser
frequency, one needs to provide a stable, low noise current to the laser diode.

Our laser diode current driver shown in figure A.5 is based on a design by
Todd P. Meyrath from the group of Prof. Mark Raizen. It should exhibit a
temperature stability of the output current on the order of ∼ 50 ppm, and a
theoretically calculated peak-to-peak noise below one µA integrated from 10 Hz
to 100 MHz. Critical to the noise reduction are the components of the Pi-filter
after the output stage, the temperature stability is mostly determined by the
instrumentation amplifier in the feedback circuit and the stability of the voltage
reference. The circuit can provide laser diode currents up to 400 mA for cathode
and anode ground laser diodes, switchable via jumper settings. For increased
security the switching on and off is rather smooth without generating spikes,
and a power failure will switch off the current and keep it off even when the
circuit gets its power supply back. A circuit at the output of the current driver
enables a fast modulation of the laser diode current for locking purposes.
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Fig. A.5.: Circuit diagram of the Laser diode current driver.

A.2.3. Laser PID feedback

Typically a laser frequency is locked to a stable reference, for example atoms
in a vapor cell or a cavity. After the creation of an error signal via Pound-
Drever-Hall for a cavity or Doppler-free modulation transfer spectroscopy for
the vapor cell, one needs a circuit which changes the laser frequency accordingly
to keep it stable to this reference. We are using grating-stabilized laser diodes
in Littrow or Littmann configuration, where the angle of the grating is tunable
with a piezoelectric crystal. Therefore the frequency of the laser diode can be
tuned by changing the applied voltage to the piezo and by changing the current
of the laser diode itself. Alternatively an electro-optical modulator crystal can
be placed between the laser diode and the grating, which changes the optical
length of the external cavity built up between the laser diode and the grating
depending on the voltage applied to the crystal.

We split up the error signal into two paths, on for the piezo control and one
for the current control. The usable frequency range of the piezo is limited by
its mechanical resonance frequency, typically on the order of kHz. Therefore we
use it only to compensate slow drifts or mechanical vibrations. The laser diode
current can be modulated up to several MHz, enabling the filtering of acoustic
noise or other high frequency laser noise. Our PID feedback circuit is inspired by
the homebuilt controller used in the group of T. W. Hänsch and the commercial
FALC controller from Toptica and was a joint effort of Johann Danzl and me.

The fast part used for the control of the laser diode current is shown in figure
A.6. After a ultra-low noise input amplifier the signal is split into two paths,
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Fig. A.6.: Circuit diagram of the Laser PID frontboard.

where one goes to the slow piezo controller part. An extra filtering stage for
this path filters suspicious high frequency components which could lead to a
saturation of the following low frequency amplifiers. The fast path consists of
a variable attenuator for setting the overall gain, a low frequency integrator
stage with fixed corner frequency of 723 Hz and a maximum gain of 40 dB, and
a single amplifier PID stage, with a maximum gain of 20 dB and variable corner
frequencies of the I and D parts over a range of two decades.

Fig. A.7.: Exemplary Bode diagram for the fast Laser PID circuit.

Through careful SMD board design and specially chosen electronic parts this
circuit should be able to reach locking bandwidths of several MHz. A calculated
sample Bode diagram of the frequency and phase response of the circuit is shown
in figure A.7, where the dotted and dashed lines correspond to the frequency
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response of single parts of this circuit and the solid line is the overall transfer
function. It does not contain the real frequency behavior of the amplifiers, but
shows the general behavior of the circuit.

The circuit for the piezo control is shown in figure A.8. It serves as power
supply for the PID frontboard and integrates a sweep generator to scan the laser
frequency for spectroscopy purposes.
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Fig. A.8.: Circuit diagram of the Laser PID mainboard.
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H.-C. Nägerl, Inducing Transport in a Dissipation-Free Lattice with
Super Bloch Oscillations, Phys. Rev. Lett. 104, 200403 (2010).



BIBLIOGRAPHY 251

[Hal10c] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichsöllner, M. Gus-
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[Jan03] E. Jané, G. Vidal, W. Dür, P. Zoller, and J. Cirac, Simulation of quan-
tum dynamics with quantum optical systems, Quantum Information
and Computation 3, 15 (2003).

[Jel07] T. Jeltes, J. M. McNamara, W. Hogervorst, W. Vassen, V. Krachmal-
nicoff, M. Schellekens, A. Perrin, H. Chang, D. Boiron, A. Aspect, and
C. I. Westbrook, Comparison of the Hanbury Brown-Twiss effect for
bosons and fermions, Nature 445, 402 (2007).

[Jön61] C. Jönsson, Elektroneninterferenzen an mehreren künstlich hergestell-
ten Feinspalten, Zeitschrift für Physik A Hadrons and Nuclei 161, 454
(1961), 10.1007/BF01342460.

[Joc03a] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. Hecker Denschlag, and R. Grimm, Bose-Einstein Condensation of
Molecules, Science 302, 2101 (2003).

[Joc03b] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker
Denschlag, and R. Grimm, Pure Gas of Optically Trapped Molecules
Created from Fermionic Atoms, Phys. Rev. Lett 91, 240402 (2003).

[Joh09] P. R. Johnson, E. Tiesinga, J. V. Porto, and C. J. Williams, Effec-
tive three-body interactions of neutral bosons in optical lattices, New
Journal of Physics 11, 093022 (2009).

[Jon06] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, Ultracold
photoassociation spectroscopy: Long-range molecules and atomic scat-
tering, Reviews of Modern Physics 78, 483 (2006).
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