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Abstract

The combination of an ultracold gas with a periodic potential in the form of an optical
lattice opens up the opportunity to study phenomena known from solid state physics in a
clean and well isolated environment, with a high degree of control over both internal and
external degrees of freedom. This thesis reports on the realization of a tunable quantum
gas in an optical lattice, where the use of Cs atoms allows a precise control over the atom-
atom interactions using a broad Feshbach resonance. In particular, it is possible to strongly
suppress the interactions by tuning the scattering length close to zero.

In the framework of this thesis, a Cs BEC apparatus was constructed with the specific
aim to perform experiments with optical lattices. The apparatus is an evolution of the first-
generation Innsbruck Cs BEC apparatus. Instead of using a stainless steel vacuum chamber,
the Cs atoms are trapped in a glass cell, which allows for fast and precise control over mag-
netic fields without disturbing eddy currents. The setup was designed to allow a large optical
access, enabling the addition of an optical lattice, and is capable of producing a Cs BEC of
up to 2 · 105 atoms every 10 s.

The control over atom-atom interactions is demonstrated in two sets of experiments
studying the effect of interactions on a Bloch oscillating BEC. The atom-atom interactions
lead to density-dependent phase shifts at the individual lattice sites and limit the number
of Bloch oscillations one can observe. In the first set of experiments, we quantitatively char-
acterize this dephasing as a function of the magnetic field and determine the point where
atom-atom interactions are minimized. With interactions minimized, more than 20000 Bloch
oscillations can be followed, corresponding to a coherent evolution over more than 10 s. The
force inducing the Bloch oscillations can then be determined with better than 10−6 precision.
Our technique to suppress interactions has potential applications for BEC atom interferom-
etry, where phase shifts and decoherence due to interactions are a major problem.

In the second set of experiments, we observe and control matter wave interference that
is driven by interparticle interactions. We show that interaction-induced phase shifts lead to
the development of a regular interference pattern in the wave function of a Bloch oscillating
BEC. The high degree of coherence in this process is demonstrated in a matter wave spin-
echo type experiment, where the phase evolution of a dephased BEC is reversed by tuning
the scattering length close to zero and applying an external potential, allowing us to recover
the original BEC wave function.
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1
Introduction

The invention of laser-cooling techniques gave birth to the field of ultracold gases, where
dilute samples of atoms can be prepared at microkelvin temperatures. Evaporative cooling
made it possible to achieve even lower temperatures and reach the quantum gas regime.
Here, the motion of the atoms cannot be described by classical physics and a quantum me-
chanical description has to be used, with the atoms treated as wavepackets. For bosonic
atoms, a phase transition occurs when the temperature is so low that the extent of the
wavepackets, characterized by the de Broglie wavelength, becomes comparable to their av-
erage mutual distance. A macroscopic number of particles accumulate in the quantum me-
chanical ground state of the trapping potential, a phenomenon first predicted by Bose and
Einstein in the early days of quantum mechanics [Bos24, Ein25]. The experimental realiza-
tion of such a Bose-Einstein condensate (BEC) in a dilute gas of 87Rb [And95] in 1995 was
a major breakthrough that was rewarded with the Nobel prize six years later. In the years
that followed, the notion of a BEC as a coherent matter wave was validated via interference
of two independent condensates [And97], and superfluidity was proven through the exci-
tation of vortices [Mat99, Mad00, AS01]. The nonlinear behaviour of the BEC matter wave
was demonstrated with the realization of a matter wave amplifier [Ino99] and the excitation
of solitons [Den00].

By now, Bose-Einstein condensation has been reached with all alkali atom species except
Fr, and additionally with H, Yb, Cr, metastable He and with weakly bound molecules of
Li2 and K2. The different species all have different advantages. For example, the large inter-
nal energy of metastable He allows single atom detection, whereas Cr has a large magnetic
dipole moment, allowing the investigation of dipolar effects in quantum gases.

The heaviest alkali atom, Cs, offers very attractive scattering properties. The presence of
both broad and narrow Feshbach resonances at moderate magnetic fields [Chi04] enables a
very precise control over the atom-atom interactions, characterized by the s-wave scattering
length. It therefore allows the creation of a tunable quantum gas, where the interactions can
be precisely varied from repulsive to attractive, and even be set very close to zero [Web03b].
Feshbach resonances also make it possible to create an ultracold molecular sample out of a
trapped atomic gas [Reg03, Her03].

The combination of an ultracold gas with a periodic potential in the form of an optical
lattice opens up new exciting opportunities. Many of the phenomena pertinent to solid state
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1. Introduction

physics can be investigated in a clean system well isolated from the environment, with a
lattice potential free of defects. Light fields, radio frequency and microwave radiation and
magnetic fields can be employed to control both the motion and the internal state of the
atoms, giving a large degree of control over different model parameters. Absorption imag-
ing allows the experimentalist to directly measure density and momentum distributions, and
it is also possible to obtain information on spatial correlations. The realization that bosonic
atoms in an optical lattice can be described by a Bose-Hubbard model [Jak98] and the sub-
sequent observation of the quantum phase transition from a BEC to a Mott insulator [Gre02]
launched the field of strongly interacting quantum systems, and the Mott insulator state with
a well-defined number of atoms per lattice site is an ideal laboratory for few-body physics.

In this thesis, I report on the realization of a tunable quantum gas in an optical lattice. In
contrast to previous experiments with optical lattices, our use of Cs atoms offers very pre-
cise control over the interparticle interactions and therefore further control over the system
parameters than previously possible. This addition of a new experimental “knob” to turn
allows us to investigate the role of interactions in different physical systems, both in the
weakly and the strongly interacting regime. In particular, we study the effect of interactions
on a Bloch oscillating BEC in two series of experiments. The well-known phenomenon of
Bloch oscillations [Blo29, BD96, And98] originates when a wave-packet in a periodic poten-
tial is subject to a constant force, which causes an oscillatory motion. The number of Bloch
oscillations one can observe is however strongly limited by collisional dephasing. In the first
set of experiments, we measure the dependence of this dephasing on the interaction strength.
The interparticle interactions can can be set very close to zero by tuning the magnetic field
near a zero-crossing of the s-wave scattering length. Control over the scattering length to an
unprecedented precision of 0.1 Bohr radii is demonstrated and the magnetic field for which
interactions are minimized is determined to a high precision. With the atom-atom interac-
tions minimized, more than 20000 Bloch oscillations can be followed.

The strong suppression of atom-atom interactions has an additional interest for atom in-
terferometry. A BEC combines high brightness with narrow spatial and momentum spread
and would constitute an ideal source for a matter wave interferometer. Unfortunately, be-
cause of the high density in a BEC, interactions lead to phase diffusion and can cause sys-
tematic frequency shifts due to unwanted density gradients, limiting the performance of the
interferometer. This limitation could be overcome around using the precise control over the
interaction strength demonstrated in this work.

In a second series of experiments, we observe matter-wave interference that is driven by
interparticle interactions. When a large force is applied to a BEC to induce Bloch oscillations,
tunneling between the lattice sites is strongly suppressed. The system can then be seen as
a matter wave interferometerm, where every lattice site experiences a different phase shift
proportional to the local potential at the site. As is well known, the potential gradient due
to the applied force leads to Bloch oscillations. In this work, we demonstrate that the addi-
tional interaction potential leads to an additional component in the evolution of the phase
at the individual lattice sites, which can be detected and visualized by the appearance of in-
terference patterns when the wavefunction is imaged in momentum space. The high degree
of coherence in the system is demonstrated by reversing the wave function evolution of a
dephased BEC, switching off interactions and applying an external potential. The original
BEC wave function is then recovered.
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Overview

This thesis is structured in the following way. In chapter 2, the basic concepts needed to un-
derstand ultracold gases and Bose-Einstein condensates are introduced. The technical details
of our new generation Cs BEC apparatus are then described, and the different cooling steps
employed to produce a Cs BEC are outlined. The third chapter discusses a BEC in an optical
lattice. I review the important concept of band structure and Bloch states, and also introduce
the Wannier functions, an alternative basis of wavefunctions localized to single lattice sites.
The Wannier functions are then used to derive an effective 1D equation describing the dy-
namics of a BEC in a lattice. Using these tools, the properties of the BEC ground state in the
lattice are calculated. The technical setup of the lattice is then described together with an
important method for measuring the lattice depth.

Chapter 4 presents the measurements of the interaction-induced dephasing of Bloch
oscillations, demonstrating the very precise control over atom-atom interactions possible
in our setup, particularly the ability to minimize atom-atom interactions. This opens up
new possibilities for BEC interferometry, and this chapter concludes with a study arguing
that a precision measurement of the fine structure constant with a BEC contrast interfer-
ometer would be feasible. In chapter 5, the evolution of the BEC wave function is stud-
ied. A simple analytical model is derived that explains the interference fringes appearing
in the momentum wave function of a dephased Bloch oscillating BEC as a consequence of
interaction-induced phase shifts. The appearance of these fringes and the coherence of the
process is demonstrated experimentally. Finally, chapter 6 discusses some of the many excit-
ing prospects for future experiments with a tunable quantum gas in an optical lattice.

Publications

The following articles have been written in the framework of this thesis. They are attached
as part of the appendix.

Control of Interaction-Induced Dephasing of Bloch Oscillations
M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, G. Rojas-Kopeinig, and H.-C. Nägerl
Phys. Rev. Lett. 100, 080404 (2008).

Quantum Gas of Deeply Bound Ground State Molecules
J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O. Dulieu, H. Ritsch,
and H.-C. Nägerl
Science 321, 1062 (2008), published online 10 July 2008; 10.1126/science.1159909.

Dark resonances for ground state transfer of molecular quantum gases
M. J. Mark, J. G. Danzl, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Salami, T. Berge-
man, H. Ritsch, R. Hart, and H.-C. Nägerl
Submitted for publication. arXiv:0811.0695.

Precision molecular spectroscopy for ground state transfer of molecular quantum gases
J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, N. Bouloufa, O. Dulieu, H. Ritsch, R. Hart,
and H.-C. Nägerl
Accepted for publication in Faraday Discuss. arXiv:0811.2374.
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Interference of interacting matter waves
M. Gustavsson, E. Haller, M. J. Mark, J. G. Danzl, R. Hart, A. Daley, and H.-C. Nägerl
Submitted for publication.
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2
A new Cs BEC apparatus

To perform the experiments described in this thesis, a new apparatus for trapping and cool-
ing Cs atoms to quantum degeneracy was developed. The goal was to set up a machine
that can rapidly produce a Cs BEC which can be loaded into an optical lattice, with rapid
and precise control over magnetic fields and large optical access to allow maximum flexi-
bility for future experiments. In this chapter, I will first review the basic concepts needed to
understand cold trapped atoms and Bose-Einstein condensates. The technical setup of the
apparatus will then be described, and finally the different cooling steps necessary to achieve
BEC will be detailed.

2.1 Basic concepts

2.1.1 Ultracold collisions

As is well-known, scattering can be treated by expanding the wave function of the relative
motion of two colliding atoms in spherical partial waves. Each of the spherical partial waves
is characterized by its angular momentum, l. At sufficiently low energies, the centrifugal
barrier prohibits partial waves with nonzero angular momentum and only s-wave scattering
(l = 0) needs to be considered. The scattering is then isotropic and is characterized by the
phase shift δ0 between the incoming and the outgoing s-wave. In the limit of zero collision
energy, the scattering is usually parameterized by the scattering length

a = lim
k→0

tan δ0(k)
k

, (2.1)

where k denotes the wave vector of the relative motion of the atoms. The scattering be-
haviour in the low-energy limit is thus well described by one single parameter, the scatter-
ing length, independent of the details of the interaction potential between the two colliding
particles. The s-wave scattering length is typically in the range 10 – 100 a0 for alkali atoms,
where a0 is the Bohr radius.

For two identical bosons, the collisional cross-section is [Dal99b]

σel =
8πa2

1 + k2a2
. (2.2)
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2. A new Cs BEC apparatus

This expression has two limiting cases. For large scattering lengths, such that ka � 1, the
cross section is limited by the collision energy, σel = 8π/k2. This is called the unitarity limit.
In the limit of small scattering length, ka� 1, the cross section is σel = 8πa2.

In the s-wave limit, the exact interaction potential can be approximated by a point-like
scattering potential. This contact interaction potential reads 1

V (r) = gδ(r), (2.3)

where r is the distance between between the colliing particles and the coupling constant g is
proportional to the scattering length,

g =
4π~2a

m
. (2.4)

Besides the contact interaction, there can also be other more long-range interactions where
the scattering potential cannot be described by a δ-function, for example different forms
of dipole-dipole interaction. In most cases the contact interaction dwarfs the other forms of
interaction, but there are examples where this is not the case. Chromium has a large magnetic
dipole moment and the magnetic dipole-dipole interaction can be made much larger than
the contact interaction when the scattering length is changed using a Feshbach resonance
[Lah07]. Samples of ultracold polar molecules in the rovibronic ground state, which have a
very large electric dipole moment, have been realized in recent experiments [Sag05, Ni08].
It will be demonstrated in section 4.2.3 that the magnetic dipole-dipole interaction is not
negligible for the atom we use, Cs, when the scattering length is tuned close to zero.

Feshbach resonances

The scattering length does not have to be constant. It can in many cases be tuned by an
external magnetic field through so-called Feshbach resonances, a concept first studied in the
context of nuclear physics [Fes58] and later applied to atom-atom scattering [Tie93].

The principle behind a Feshbach resonance is illustrated in figure 2.1. In the preceding
discussion, we did not take into account the internal structure of the colliding particles. How-
ever, atoms do have an internal structure and the interaction potential between two particles,
usually called a scattering channel, depends on their internal state. The channel correspond-
ing to the initial state of the colliding particles is called the incident channel. During a colli-
sion, the atoms can change their internal state and exit in another channel, provided there
is a coupling between the channels. This can only happen if the continuum of this outgo-
ing channel has a lower energy than the total energy of the incident channel, in which case
the channel is called an open channel. It is not possible to scatter into a channel where the
continuum has a higher energy than the incident channel, and such a channel is therefore
called a closed channel. Coupling to such a channel can however still modify the scattering
properties. If the internal atomic states corresponding to the closed channel have a different
magnetic moment than those of the incident channel, the “position” of the closed channel
can be changed by tuning the magnetic field. A bound molecular state in the closed chan-
nel can then be brought into degeneracy with the incident scattering state. If there is some

1Note that this simple form of the contact interaction potential is only valid when using the Born approx-
imation for scattering. A more proper way to express the contact interaction is the potential V (r)Ψ(r) =
gδ(r) ∂

∂r
(rΨ(r)). See [Dal99b] for more detail.
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Figure 2.1: Schematic illustration of a Feshbach resonance. Left. Molecular potentials: An external
magnetic field can be used to tune a bound molecular state in degeneracy with the scat-
tering state of two free atoms. Right. Zeeman diagram: When the molecular state and the
scattering state (here with zero magnetic moment) are tuned into degeneracy, the scatter-
ing length diverges.

coupling between the channels, this leads to resonant scattering and a divergence of the
scattering length.

A Feshbach resonance can be characterized by its position B0, the magnetic field where
the molecular state crosses the incident scattering state2, and its width ∆B, which is depen-
dent on the magnetic moment of the bound state and the strength of the coupling between
the two scattering channels. The scattering length around a Feshbach resonance can be writ-
ten as

a(B) = abg

(
1− ∆B

B −B0

)
, (2.5)

where abg is the background scattering length far from resonance.
Coupling between the scattering channels can be induced by several forms of interac-

tion. The Coulomb interaction preserves orbital angular momentum l, which for s-wave
scattering means that only molecular s-wave states couple to the incident channel. These
resonances are consequently called s-wave resonances. Relativistic interactions such as mag-
netic spin-spin interaction and second order spin-spin interaction are usually much weaker.
They couple the s-wave scattering state to molecular states with higher orbital angular mo-
mentum l = 2, 4, ... and therefore give rise to d-wave (l = 2) and g-wave (l = 4) resonances.

The atom we use in our experiments, Cs, has an unusually large second-order spin-spin
interaction. This leads to a very rich variety of Feshbach resonances and makes it a very
interesting atom for use in cold atom experiments. The Cs scattering properties have been
extensively investigated in a series of experiments at Stanford and an accompanying the-
oretical analysis at NIST [Chi00, Leo00, Chi04]. The scattering length for Cs atoms in the
|F = 3,mF = 3〉 state is shown in figure 2.2. For magnetic fields between 0 and 150 G, field
strengths that are easily accessible in the lab, seven narrow Feshbach resonances can be seen.

2Note that the position of the Feshbach resonance is not exactly where the molecular state of the bare closed
channel crosses the incident scattering state. Instead, the coupling between the two channels creates new dressed
states, and the actual position of the Feshbach resonance is where the dressed molecular state reaches the contin-
uum.

15



2. A new Cs BEC apparatus

0 10050 150

-2

-1

0

1

2

15 20

-0.4

0. 0

0. 4

(d
,4

,4
)

(g
,4

,4
)

(g
,4

,4
)

(d
,6

,4
)

(g
,6

,5
)

(g
,4

,3
)

(g
,2

,2
)

(d
,4

,4
)

(g
,4

,2
)

sc
at

te
ri

n
g

le
n

g
th

a
[1

00
0a

0
]

magnetic field B (Gauss)

Figure 2.2: The scattering length for Cs in the |F = 3,mF = 3〉 state, given in units of the Bohr radius
a0. The broad variation of the scattering length comes from a very broad s-wave Feshbach
resonance at -11 G. On top of this several narrower d- and g-wave resonances at B =
11.0, 14.4, 15.0, 19.9, 48.0, 53.5, 112.8 and 131.1 G can be seen. The quantum numbers
corresponding to the resonant molecular state are indicated with the notation (l, f,mf ),
where l is the orbital angular momentum, f is the internal angular momentum and mf

its projection on the magnetic field axis. Around 17.1 G, the scattering length has a zero
crossing with a slope of 61 a0/G. Figure from [Chi04].

A very broad s-wave resonance centered at about -11 G leads to a slow variation of the scat-
tering length, which makes it possible to tune the scattering length with a high precision.
Especially interesting is the zero crossing at 17.1 G. Here, the scattering length varies with
a slope of 61 G/a0 and, as will be demonstrated in section 4.2.3, it can be controlled with a
precision better than 0.1 a0. A thourough discussion of Cs scattering properties and weakly
bound molecular states can be found in [Chi01] and [Mar07b].

To be able to observe Feshbach resonances experimentally, the temperature has to be low
enough such that the scattering cross section is not unitarity limited. This means that ka
should not be much larger than one. For Cs atoms with a kinetic energy of kB · 10 µK, ka = 1
for a ≈ 270 a0.

Feshbach resonances offer the possibility to tune scattering length using an external mag-
netic field and are thus a very helpful tool for controlling atom-atom interactions. They can
also be used to produce molecules out of an ultracold atomic gas by sweeping the magnetic
field over the resonance, so called magneto-association [Her03, Reg03]. The unbound scat-
tering state forms an avoided crossing with the bound molecular state in the closed channel
and the magnetic field adiabatically converts the free atoms into molecules. This process is
discussed in detail in several reviews [Köh06, Fer09].

2.1.2 Bose-Einstein condensation

An atomic gas of bosons behaves in different ways depending on its temperature. A qual-
itative picture of the different regimes is illustrated in figure 2.3. At high temperatures, the
atoms in the gas behave as point-like particles. When the temperature is lowered, the atoms
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2.1. Basic concepts

Figure 2.3: The behaviour of a gas of identical bosonic atoms at different temperatures. (A) At high
temperatures, the gas can be treated as system of point-like particles. (B) For sufficiently
low temperatures, the atoms must be described as wavepackets that scatter according to
quantum mechanics. (C) A phase transition to a BEC occurs when the size of the atomic
wavepackets is comparable to the mean distance between particles and the wavepackets
start to overlap. (D) At zero temperature, all particles are in the same quantum state and
can be described by a single macroscopic wave function. Adapted from [Ket99].

have to be described as quantum mechanical wave packets with an extent on the order of
the de Broglie wavelength

λdB =
h√

2πmkBT
, (2.6)

where T is the temperature and m is the mass of the particle. The extent of the atomic
wavepackets gets larger the further the temperature is lowered. At some point, the inter-
atomic separation becomes comparable with size of the atomic wavepackets. The overlap of
the atomic wavepackets can be quantified in terms of the phase-space density, defined as the
density of the gas n multiplied by volume occupied by the wavepacket,

D = nλ3
DB. (2.7)

When the phase-space density is on the order of unity, a phase transition will occur and the
(bosonic) atoms form a Bose-Einstein condensate, where all atoms occupy the same quantum
state. The atoms can then be described by a single macroscopic wave function. Note that to
reach Bose-Einstein condensation, the gas must be sufficiently dilute that it does not become
a liquid or a solid when being cooled. A BEC of atoms is in fact a metastable state, and will
eventually decay through the formation of molecules.

There is a vast body of literature covering ultracold gases and Bose-Einstein condensa-
tion and I will here only review the parts of the subject that are relevant to the work presented
in this thesis. Several textbooks [Pit03, Pet02] and review articles [Ket99, Dal99a, Cas01] pro-
vide further reading.

BEC of an ideal gas

Let us consider an ideal gas of bosons in thermal equilibrium with temperature T . The quan-
tum state v will have a mean occupation number Nv given by the Bose distribution function

Nv =
1

e(εv−µ)/(kBT ) − 1
, (2.8)

where εv is the energy of state v and µ is the chemical potential. For a fixed total number of
particles N , the chemical potential is related to the temperature through the normalization
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condition N =
∑

v Nv. The chemical potential is always smaller than the energy of the low-
est state, µ < ε0, since otherwise states with an energy lower than µ would have negative
occupation numbers.

We can write the total number of particles as a sum of N0, the occupation number in the
ground state, and a thermal component Nth, the number of particles in excited states.

N = N0 +Nth = N0 +
∞∑

v=1

1
e(εv−µ)/(kBT ) − 1

. (2.9)

For a fixed temperature, Nth(µ) varies smoothly and reaches a maximum for µ = ε0. This
means that the maximum number of particles in the thermal component is

Nth,max =
∞∑

v=1

1
e(εv−ε0)/(kBT ) − 1

. (2.10)

When the temperature is lowered, Nth,max can be significantly lower than the total particle
number N . This implies that a significant amount of particles must occupy the ground state,
the signature of Bose-Einstein condensation. The temperature where Nth,max = N and con-
densation starts is called the critical temperature Tc. If the thermal energy is much larger
than the spacing between the energy levels, the sum in equation (2.10) can be replaced by an
integral. For a harmonic trapping potential, the critical temperature can then be calculated
to

Tc =
~ω̄
kB

(
N

ζ(3)

)1/3

≈ 4.5
ω̄/2π
100Hz

N1/3 nK, (2.11)

where ω̄ = (ωxωyωz)1/3 is the geometrical average of trap frequencies and ζ(n) is the Rie-
mann zeta function with ζ(3) ≈ 1.2. The critical temperature depends on both the atom
number and the trap frequencies and is thus not constant during evaporative cooling. Note
that for a large atom number, (N/ζ(3))1/3 � 1 and the energy kBTC corresponding to the
critical temperature is much larger than the energy separation of the lowest trap levels. Still,
the Bose statistics cause a macroscopic occupation of the ground state for temperatures be-
low TC .

It is often useful to monitor the progress towards Bose-Einstein condensation using the
phase-space density of the gas instead of the temperature. The peak density of a classical gas
in a harmonic trap can be derived from the Maxwell-Boltzmann distribution as

n̂ = Nω̄3

(
m

2πkBT

)3/2

. (2.12)

Using equation (2.7), we can write the peak phase-space density in the trap on the form

D = N

(
~ω̄
kBT

)3

. (2.13)

From equation (2.11), we see that a temperature Tc would correspond to a critical phase-
space density Dc = ζ(3) ≈ 1.2. However, equations (2.12) and (2.13) are derived for a classi-
cal gas and are not valid close to the critical temperature. It can be shown [Cas01] that in the
limit kBT � ~ω, the critical phase-space density is

Dc = ζ(3/2) ≈ 2.6. (2.14)
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Another useful quantity is the fraction of condensed atoms, which can be calculated from
equations (2.10) and (2.11). The result is [Pit03]

N0

N
= 1−

(
T

Tc

)3

. (2.15)

BEC of an interacting gas

A BEC of interacting particles in a trapping potential V (r) can at zero temperature be treated
in a mean-field approach [Gro61, Pit61, Pit03]. The BEC can then be described by a single
macroscopic wave function Ψ(r, t) governed by the Gross-Pitaevskii equation

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + g|Ψ(r, t)|2] + V (r)

]
Ψ(r, t), (2.16)

where g is the interaction coupling constant given by equation (2.4) and n(r) = |Ψ(r)|2 is the
density. This description is only valid in the dilute gas limit n|a|3 � 1. Without interactions
g = 0 and equation (2.16) reduces to the normal Schrödinger equation.

The stationary solution to equation (2.16) can be found by writing Ψ(r, t) = Φ(r)e−iµt/~,
resulting in the time-independent Gross-Pitaevskii equation

µΦ(r) =
[
− ~2

2m
∇2 + g|Φ(r)|2] + V (r)

]
Φ(r). (2.17)

The energy of the system can be calculated from the wave function,

E =
∫ [

~2

2m
|∇Ψ|2 + V (r)|Ψ|2 +

1
2
g|Ψ|4

]
dr = Ekin + Epot + Eint. (2.18)

This expression contains three terms: Ekin is the quantum kinetic energy, often refered to
as quantum pressure, Epot is the potential energy of the system and Eint is the interaction
energy or mean-field energy. From direct integration of the Gross-Pitaevskii equation (2.17),
a relation between the chemical potential and the different energy terms can be derived:

µ =
Ekin + Epot + 2Eint

N
. (2.19)

An additional useful identity, known as the virial relation, is [Pit03]

2Ekin − 2Epot + 3Eint = 0. (2.20)

Thomas-Fermi approximation

In the limit of vanishing interactions, the solution to equation (2.17) with a harmonic poten-
tial is the harmonic oscillator ground state, the Gaussian wave function

Φ(r) =
√
N

(
1√
πσho

)3/2

e
− r2

2σho , (2.21)
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where ω̄ = (ωxωyωz)1/3 is again the geometrical average of the trapping frequencies and
σho =

√
~/(mω̄) the associated harmonic oscillator length. However, in most cases the inter-

actions cannot be neglected. A useful result comparing the interaction energy and the kinetic
energy is

Eint

Ekin
=
N |a|
σho

. (2.22)

If the interaction energy dominates the kinetic energy, we can set the kinetic energy term in
the Gross-Pitaevskii equation to zero. This is called the Thomas-Fermi approximation. The
Gross-Pitaevskii equation will then reduce to

µ = V (r) + gn(r). (2.23)

The BEC density will arrange itself such that the interaction energy and the potential energy
balance each other out and add up to a constant value, the chemical potential. The density
distribution will therefore reflect the confining potential:

n(r) =


µ− V (r)

g
where µ > V (r),

0 otherwise.
(2.24)

For the common case of a harmonic confinement, the BEC density distribution has a parabolic
shape, in contrast to the Gaussian density distribution of a thermal cloud or a non-interacting
condensate.

It is straightforward to derive several useful physical quantities from the Thomas-Fermi
solution. The peak density of the condensate is directly found in equation (2.24),

n̂ =
µ

g
=

µm

4π~2a
. (2.25)

The total atom number is calculated by integrating the density, N =
∫
n(r)dr. This allows

to deduce a relation between the chemical potential and the atom number in the case of a
harmonic confinement,

µ =
1
2

~ω̄
(

15Na
σho

)2/5

. (2.26)

The Thomas-Fermi-radii where the density becomes zero are calculated by setting µ = V (r),

RTF,i =

√
2µ
mω2

i

= σho

(
15N

a

σho

)1/5 ω̄

ωi
i = x, y, z. (2.27)

2.2 Experimental setup

2.2.1 The Cs atom

The experiments described in this thesis are carried out using Cs atoms. Cs is the heaviest
stable member of the alkali metals and has only one stable isotope, 133Cs. It is a solid at room
temperature, with a melting point of 28°C. 133Cs has a nuclear spin of 7/2, which together
with the spin 1/2 from the single valence electron makes it a composite boson.
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Figure 2.4: The energies of lowest 133Cs electronic levels. The frequencies corresponding to the
D1 and D2 transitions are ω1 = 2π · 335.1160487481(24) THz [Ger06] and ω2 = 2π ·
351.72571850(11) THz [Ude00], respectively. The transition used for laser cooling has been
marked.

The structure of the lowest electronic levels is shown in figure 2.4. The hyperfine split-
ting of the ground state 26S1/2 is the basis for the current definition of the second, with the
splitting defined to be exactly 9.192631770 GHz. The (26S1/2 →2 6P3/2) transition, referred
to as the D2 line, has a natural linewidth Γ2 = 2π · 5.23 MHz. In this line, the transition
(F = 4,mF = 4 → F ′ = 5,m′F = 5) is a closed transition that is suitable to use for laser
cooling. Here, F and F ′ denote the hyperfine quantum number of the ground state and the
excited state, respectively, and mF and m′F their projection on the magnetic field axis. The
saturation intensity of this transitition is Isat = 1.1 mW/cm2. Another strong transition, not
employed for laser cooling but important for optical dipole traps, is the (26S1/2 → 26P3/2)
transition (D1 line) which has a natural linewidth Γ1 = 2π · 4.58 MHz.

133Cs has a mass of 132.9 atomic mass units or 2.21 ·10−25 kg. The recoil temperature, the
temperature corresponding to an ensemble with a one-dimensional rms momentum of one
photon recoil, is only 198 nK due to the large mass. This makes it possible to achieve very low
temperatures by laser cooling only. The large mass also means that a Cs atom experiences a
large potential gradient due to gravitation, kB · 157 µK/mm. A compilation of the physical
and optical properties relevant to quantum optics experiments is [Ste02].

2.2.2 Vacuum system

Experiments with ultracold gases must be carried out in an ultra high vacuum (UHV), to
minimize interactions with the room temperature lab environment. Our vacuum system,
depicted in figure 2.2.2, is an evolution of the design used in the first generation Cs BEC setup
in Innsbruck [Web03a, Her05]. It can be divided into five parts: An oven where Cs is heated to
produce an atomic beam, the oven pumping section maintaining a pressure difference between
the oven and the rest of the vacuum system, a long tube around which a Zeeman slower is
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2. A new Cs BEC apparatus

Figure 2.5: Overview of the vacuum system and the coils creating magnetic fields. The upper picture
shows the vacuum chamber and the coils before the surrounding optics were installed.
Also, the second part of the Zeeman slower had not yet been wound. Below is a CAD
drawing of the setup with the different parts marked.
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mounted, a glass cell where the experiments are carried out and the main pumping section
providing the pumping capacity necessary to attain UHV. The whole system is mounted on
an optical table with the centerline 300 mm above the table top.

Oven

The oven is the source for the Cs atoms that are cooled and trapped in the apparatus. It
consists of a 64 mm diameter stainless steel tube with CF64 connectors. On one end there
is a flange with 4 current feedthroughs and a viewport. 32 Cs dispensers (SAES Getters
CS/NF/8/25 FT10+10) are mounted on Macor holders and connected to the feedthroughs
in two independent circuits. When current flows through the dispensers, a pure Cs gas is
released. We normally operate one of the circuits at 3.3 A, while the other is kept in reserve
in case the first circuit should fail or run out of Cs.

A flange with a long nozzle, from which the atomic beam emerges, is attached to the other
end of the oven. The nozzle, depicted in figure 2.6, is an aluminium piece consisting of two
tubes with an opening milled in between. The first tube is 150 mm long with 3 mm inner
diameter and extends far into the oven chamber. The choice of such a long tube allowed
us to increase the diameter and thereby get a higher flux in the atomic beam while still
maintaining good differential pumping . In addition, the geometry assures a well-collimated
beam. The part of the nozzle residing outside the oven chamber has a 66 mm× 14 mm square
opening milled into it. The opening provides optical access to the atomic beam, for example
for transversal cooling, and also allows for pumping between the tubes. After the opening,
a 5 mm diameter, 96 mm long second tube serves as another differential pumping tube.
Since the first and second tube are part of the same metal piece, their mutual alignment is
automatically assured.

At room temperature, cesium is a solid with a melting point of 28°C and a vapor pressure
of about 10−6 mbar [Ste02]. To produce an intense atomic beam, the pressure must be raised.
The oven is thus heated by heating foil to 90°C, which corresponds to a Cs vapor pressure of
3 · 10−4 mbar. Previous experience has shown that the viewport, which is used for diagnosis
and alignment of the Zeeman slowing beam, can have its seal corroded by the cesium in the
oven. To prevent accumulation of cesium on the seal, the viewport is kept 10°C warmer than
the rest of the oven.

Figure 2.6: Oven nozzle. The long, narrow tube on the right extends into the oven chamber. The
thicker part resides in the pumping section.The opening in the middle provides optical
access to the atomic beam.
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Figure 2.7: Overview of the oven and the connected differential pumping section. Left: View from
above. Right: View from the side.

The oven is connected to a section providing differential pumping, depicted in figure 2.7.
The first part is a CF63 cube with viewports, providing optical access to the atomic beam.
The cube has the same function as an ordinary 6-way cross but a more compact size. One
side has a tee attached between cube and viewport with a 20 l/s ion getter pump (Varian
Plus 20 StarCell) connected.

Having passed the cube, the atomic beam emerges through the differential pumping tube
into a second pumping chamber, a 6-way cross. A titanium sublimation pump is connected
to the lower flange of the cross. Titanium is a surface getter for almost all active gases and
the surface area covered by the pump gives an estimated pumping speed of about 900 l/s for
air. The pumping speed for Cs is not known, but the pumping efficiency for different gases
is typically of the same order of magnitude as the pumping efficiency for air. A second 20 l/s
ion getter pump pumps inert gases like noble gases or methane that are not absorbed by the
titanium.

An ionization gauge (Varian UHV-24p) mounted on a tee measures the pressure in this
region, about 10−10 mbar. On the opposite side of the tee is an angle valve (VAT series 54)
that allows to connect an external turbomolecular pump and a roughing pump, to produce
the initial vacuum needed for the titanium sublimation and ion getter pumps to work well.

A wobblestick connected to the upper flange of the 6-way cross serves as an atomic beam
shutter. A small servo motor outside the vacuum can move the wobble stick in and out of the
beam path. The oven section can be sealed off from the UHV part of the vacuum chamber
with a pneumatic viton-sealed gate valve (VAT series 01). An electronic circuit monitors the
pressure in the oven chamber and automatically closes the valve if the pressure rises above
10−8 mbar. This prevents a leak in the oven section from contaminating the UHV section.

Glass cell

The atoms are cooled and trapped in the main experiment chamber, a rectangular glass cell
with inner dimensions 160 mm × 65 mm × 35 mm manufactured by Hellma GmbH. It
is connected to the oven section through a 42 mm long, 16 mm diameter tube, where the
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Figure 2.8: The main experiment chamber, a rectangular glass cell. The left, narrower glass tube con-
nects to the Zeeman slower via a flexible bellows. The right, wider glass tube is connected
to the UHV pumping section.

atomic beam is slowed down using the Zeeman slowing technique. The walls of the glass
cell are made out of 6.5 mm thick glass plates polished to an optical surface quality of 15/15
scratch/dig. The glass material used, Vycor 7913, is transparent for light with wavelength
between 300–2600 nm. The manufacturing process involves heating the glass plates to high
temperatures, and an anti-reflection coating added to the glass plates before assembly would
be destroyed. This means that the cell can only be coated after assembly, which limits any
applied coating to the outside surfaces. Since it would thus not be possible to eliminate all
reflections, we opted to not coat the outside either, making it possible to add laser beams at
any wavelength in the future.

One end of the cell has a 28 mm inner diameter glass-to-metal-transition (Larson Elec-
tronic Glass) with a CF40 flange which connects to the Zeeman slower tube via a flexible
edge-welded bellow (ComVAT). The bellow relieves mechanical stress which would other-
wise break the fragile glass chamber. The other end of the cell has a larger 58 mm inner
diameter glass-to-metal-transition with a CF63 flange, which is fastened to a 5-way cross
providing pumping. The large diameter was chosen to assure a high conductance to the
5-way cross, achieving high pumping speeds. Both flanges are made out of low magnetic
permeability SAE type 316 stainless steel.

The mounting of the glass cell to the rest of the vacuum system is a delicate procedure.
The two flanges of the cell cannot both be rigidly mounted, since there would be a high risk
of imposing mechanical stress, especially considering that the vacuum system experiences
large temperature changes during bakeout. On the other hand, letting one flange float freely
is not an option since its weight would impose a large torque on the cell. We therefore de-
cided to let the flange rest on a support residing on a spring. The spring was adjusted such
that it exactly cancels the gravitational force acting on the flange.

To seal the CF flanges we used annealed copper gaskets, which are softer than normal
copper gaskets. This minimizes the stress applied to the cell while mounting. The bolts con-
necting the flanges were tightened sequentially one quarter turn at a time. To assure that the
flanges were well aligned and not askew, their gap between them was periodically measured
with shims.

UHV pumping section

A 5-way cross with attached pumps maintains ultra-high vacuum in the glass cell. A tita-
nium sublimation pump coats a surface corresponding to a pumping speed of 4000 l/s for
air. The pumping speed in the glass cell is however limited by the aperture connecting the
pump section to the glass cell, with a conductance of about 100 l/s for the Cs gas coming
from the oven. Inert gases are pumped by a 55 l/s ion getter pump (Varian Plus 55 Star-
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Cell). A viewport provides optical access for the Zeeman slower beam, an all-metal angle
valve (VAT series 57) allows connection to external pumps, and an ionization gauge (Varian
UHV-24p) measures the pressure in the chamber.

The pressure measured by the ionization gauge is off-scale, indicating a pressure of less
than 10−11 mbar. It is difficult to tell what the pressure in the glass cell is, but the lifetime of
an atomic sample in a magnetic quadrupole trap is above 60 s, which is more than enough
for our purposes.

Cleaning and baking

In a UHV system, the base pressure is determined by the flow of gases into the chamber
and the available pumping capability. If the system is leak tight, only a slight amount of He
diffusing through glass surfaces will come into the system from the outside. Instead, most of
the gas load will come from internal sources. Apart from the atoms in the atomic beam, these
sources are mainly outgassing from surface contamination and diffusion of impurities from
the stainless steel chamber walls. The speed with which the impurities diffuse out of the
chamber walls increases exponentially with temperature, and to attain a good base pressure
one has to heat the chamber while the whole system is under vacuum.

Before assembly, all stainless steel parts were cleaned with acetone in an ultrasonic bath
to remove surface contamination. The system was then assembled, evacuated and baked
in two stages. First, the system was assembled with viewports and the glass cell replaced
with stainless steel components. The setup was heated to 350°C for one week while under
vacuum, pumped by a turbomolecular pump. The pressure was then about 10−7 mbar. After
cooling down to room temperature and flashing the titanium sublimation pumps, a base
pressure below 10−11 mbar was measured. The system was then flooded with argon gas,
viewports and glass cell were connected and the Zeeman slower coil mounted around the
Zeeman slower tube. With all glass parts mounted, a second bakeout was performed. To
make sure that the glass cell would not break due to thermal expansion, the system was
slowly heated by 5°C/h until 200°C was reached. Great care was taken to isolate the system
to prevent large thermal gradients. The system was baked for 10 days and then slowly cooled
down to room temperature again.

In the early stages of the experiment, a leak in the oven viewport led us to break vacuum
in the oven section. After the leak was repaired and the system closed off again, the chamber
has now been under vacuum for several years without any maintenance except for periodic
activation of the titanium sublimation pumps.

2.2.3 Magnetic fields

It is crucial to have both fast and precise control over the magnetic field in the experiment
region. We have installed a number of coils serving different purposes. A pair of Helmholtz
coils provides a large vertically oriented homogenous field to tune the Cs scattering length.
Two coils in anti-Helmholtz configuration create a quadrupole field, providing a field gra-
dient which is used to counteract gravity. A large cage creates a smaller homogenous field
in arbitrary direction to compensate for the earth magnetic field and provide the field neces-
sary for Raman sideband cooling. Finally, a set of solenoids create the field for the Zeeman
slower. The coil design is in many ways inspired by the designs used in the Innsbruck GOST
experiment [Eng06].
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Helmholtz and quadrupole coils

Working with 133Cs has the advantage that only moderate magnetic field strengths are
needed, both to tune the scattering length and to access narrow Feshbach resonances where
molecules can be created. Additionally, our optical trapping approach means that no mag-
netic trap is need, avoiding the requirement of high magnetic field gradients. The goal when
designing the main coils that produce a homogenous field and a quadrupole field was there-
fore not to optimize for maximum field strength, but rather to maximize the optical access,
keep the coil inductance small and the water cooling simple.

The homogenous field is created by a pair of coils with corotating currents. Their radius
R and mutual distance D was chosen such that R = D, the Helmholtz configuration, which
maximizes the field homogeneity. The coils were designed to provide a magnetic field of up
to 150 G, allowing us to tune the scattering length up to 1600 a0.

Another coil pair creates a quadrupole field. Here, the geometry has several optima – for
a given mutual distance D, the field gradient is maximal if R = D and the homogeneity is
maximal for R ≈ 0.58D. The requirement to be able to create a gradient strong enough to
compensate gravity for both atoms and Feshbach molecules, about 60 G/cm, could be easily
met and we choose a radius R ≈ 0.8D, a compromise between a homogenous gradient and
large gradient strength allowing good optical access.

The coils are made out of a single layer of flat 1 mm × 8 mm copper wire. They are
mounted on water-cooled aluminium plates, which dissipates the heat from the coils. Every
winding has good thermal contact with the plate, which assures adequate cooling. The cool-
ing plates are milled out of a 6 mm thick aluminium sheet. They are slit in order to avoid
eddy currents which reduce the speed with which the magnetic field can be switched. To fur-
ther reduce the amount of metal between the coils and the trapped atoms, additional grooves
have been milled into the plate. The disc is cooled by water flowing through a copper tube
along the periphery.

The individual coils were wound by hand around a plastic template, which was affixed
into a lathe. To ensure that the coils held together, a thin layer of epoxy was applied to
the first and last five windings. We used the epoxy Emerson & Cumming EccoBond 285 /
Catalyst 9, with a good thermal conductivity and low thermal expansion coefficient which
had worked well in a neighboring lab [Eng06]. This epoxy was also used to bond the coils
to the cooling plate. It was important to use very thin layers of epoxy to achieve good heat
transfer, applying just enough to fill any pockets of air between the coil and the cooling plate.
When the cooling plate is well cooled, a continuous current of 70 A through the quadrupole
coils, giving 60 G/cm field gradient, leads to a temperature rise of about 25°C,.

The coils are mounted around the glass cell as depicted in figure 2.9. There is one cooling
plate above the glass cell and one below, separated by spacers made of Tufnol, a machin-
able non-conducting material. Each cooling plate has an inner and an outer coil attached
to each side, for a total of eight coils. The four outer ones, with 11 windings each, are con-
nected in series to effectively form a pair of coils in Helmholtz configuration and provide
a homogenous field. The four inner coils, each with 15 windings, are connected to form a
pair of coils with counterrotating current and create the quadrupole field. The most impor-
tant properties of the coils are summarized in table 2.1. The magnetic field was calibrated
using microwave spectroscopy as described in section 2.2.8, or by measuring the position of
the known Feshbach resonances [Chi04]. The measured fields were found to agree very well
with the expected values.
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Figure 2.9: Left: Drawing depicting how the Helmholtz and quadrupole coils are mounted around
the glass cell, viewed from the side. Right: Picture of the Helmholtz and quadrupole coils,
viewed from above.

The magnetic field response to a sudden change in coil current was probed using the
imaging beam. Starting with a large field, the current through the coils was switched off
within microseconds and the field at the position of the atoms was probed by measuring the
resonance frequency of the imaging beam. From this we could estimate the 1/e decay time to
be about 200 µs, considerably faster than in the first generation Cs BEC setup [Her05] which
used a stainless steel vacuum chamber.

Helmholtz coils Quadrupole coils
Radius 77 mm 60.5 mm
Coil separation 76 mm 76 mm
Number of windings 2× 22 2× 30
Resistance 74 mΩ 65 mΩ
Inductance 290 µH 250 µH
Field strength (calculated) 2.59 G/A 0.85 (G/cm)/A
Field strength (measured) 2.58 G/A 0.83 (G/cm)/A

Table 2.1: Properties of the main Helmholtz and quadrupole coils.

Current control

The Helmholtz and quadrupole coils are powered by two programmable switched-mode
power supplies (Delta Elektronika SM60-100 and SM30-100). They provide a maximum cur-
rent of 100 A and a maximum voltage of 60 V and 30 V, respectively. Fast ramping speeds
are achieved using a feedback loop, where the current is measured with a sensitive current
transducer (DanFysik UltraStab 867-200I) and fed back to a PID circuit which controls the
voltage of the power supplies.

Upward ramps of the current I are limited by the current rise speed dI/dt = V/L, where
V is the applied voltage and L the coil inductance. If the maximum voltage is applied, the
current rises with 200 A/ms for the Helmholtz coils and 120 A/ms for the gradient coils.
This assures that the current can be ramped up to any desired value within less than 500 µs.
Downward ramps are limited by the fact that the power supplies are unipolar. Since the
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voltage required to drive the coils in steady-state is only a few V, the best one can do is set the
voltage to zero, which causes the current to decay exponentially with the time constant L/R,
where R is the resistance of the circuit. We have therefore installed 0.5 Ω external resistors in
series with the coils, which for both coil pairs improves the time constant from about 4 ms
to 500 µs.

Even with external resistors installed, the absolute ramp speed is limited at low currents
because the current decays exponentially when the voltage is set to zero. This problem was
overcome by installing fast high-power diodes in the circuit, which only conduct current
above a threshold voltage. The zero of the voltage scale is therefore effectively shifted, and
applying zero voltage at the power supplies is equivalent to applying a negative voltage
across the coils. This makes fast ramping possible even at low currents.

The current can be quickly switched off using MOSFET transistors. The energy stored
in the coils is then dissipated in varistors connected in parallel with the transistors. It takes
about 10 µs to switch the current off.
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Figure 2.10: Geometry of the compensation coils, which can create a homogenous field of about 1 G
in an arbitrary direction.

A large cage consisting of three square coil pairs creates a homogenous magnetic field
of about 1 G in arbitrary direction. Its geometry is illustrated in figure 2.10. The primary
use of the compensation coils is to cancel static fields like the earth magnetic field and stray
fields from lab equipment like ion getter pumps, but it is also used to provide the small
field needed for Raman sideband cooling and to compensate for the field of the Zeeman
slower. The large size of the cage was chosen for several reasons; the coils are far away from
the main coils, which minimizes the inductive coupling. This avoids induced currents in
the compensation circuits when the main coils are quickly ramped. Large coils also produce
more homogenous fields. Finally, it is convenient to have the coil frame far away from the
experiment chamber, thereby not removing any optical access.

The measured resistance, inductance and field strength of the compensation coils is shown
in table 2.2. Self-made linear regulated power supplies can send up to 2A current through
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the coils. A new current can typically be set in about 1 ms.

Direction Resistance Inductance Measured field strength
x 3.5 Ω 12 mH 225 mG/A
y 1.5 Ω 1.1 mH 309 mG/A
z 1.6 Ω 2.1 mH 426 mG/A

Table 2.2: Measured properties of the compensation coils. x-, y- and z-directions are defined in
figure 5.10.

2.2.4 Zeeman slower

The atomic beam coming out of the oven is decelerated in a Zeeman slower [Phi82, Met99].
The atoms are slowed by scattering photons from a counter-propagating laser beam. A care-
fully designed magnetic field introduces a Zeeman shift that compensates for the change in
Doppler shift due to the decreasing velocity. To achieve a constant deceleration, the magnetic
field profile should have a square-root shape.

To be able to capture atoms with high velocities, the Zeeman slowing region has to be
long. On the other hand, the atomic beam diverges during the propagation through the Zee-
man slower, and making the Zeeman slower longer does not automatically ensure a larger
flux of slow atoms through the MOT capture volume. For light atoms, the divergence is
mainly due to a spread of the transverse velocity distribution due to the scattering of many
photons. Cs is heavy and has a low recoil momentum, hence the transverse heating is not as
large and the main factor determining the divergence is mainly due to the initial transverse
velocity component of the atoms when emerging from the oven, which becomes important
at the end of the slower where the longitudinal velocity is small. The large beam divergence
at the end of the slower also implies that it is important to keep the distance between the
MOT and the Zeeman slowing section short. We therefore opted for a decreasing-field Zee-
man slower where the field of the Zeeman slowing coils seamlessly merges with the MOT
quadrupole field. In this way, the atoms can be decelerated all the way to the MOT.

Simulations of the slowing process indicated an optimal Zeeman slower length of about
70 cm. The Zeeman slower solenoid has to be split in two parts to accommodate a post sup-
porting the flange of the UHV glass cell. The first part resides around the long tube connect-
ing the oven section to the glass cell and consists of a 80 mm diameter, 480 mm long brass
tube around which a 1x2.5 mm insulated flatband copper wire was wound. After winding
one layer, the wire was fixated with epoxy (UHU Plus Endfest 300) before moving on to
wind the next layer. The first four layers were wound along the whole length of the tube,
with 178 windings per layer. Thereafter an additional 12 layers were wound, with the num-
ber of windings in each layer was gradually reduced to produce the necessary magnetic field
profile. A measurement of the magnetic field with a Hall probe showed excellent agreement
with the calculated profile.

The second of the Zeeman slower coils resides around the glass-metal-transition of the
glass cell. This part had to be wound in place after the vacuum setup was assembled. Two
halves of a plastic tube were mounted in a rotatable way around the glass-to-metal-transition,
such that the coil could be wound by simply rotating the tube. The coil has a total of 7 layers
of windings in a conical shape, with 12 extra windings close to the edge of the coil to help
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bridge the gap to the first coil.
Figure 2.11 shows the calculated magnetic field profile. The second of the Zeeman slower

coils creates a field of about 2 G at the position of the MOT. This field is compensated by the
compensation coils. The coils are operated at a current of 2 A except for the four inner layers
of the first coil, which are run at 4.4 A. The two Zeeman slower coils dissipate a total power
of 40 W, which means that no water cooling is necessary.
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Figure 2.11: Left: Schematic drawing of the Zeeman slower section with the two conical Zeeman coils.
Right: The axial magnetic field of the Zeeman slower and the quadrupole coil. The red
curve is the total field and the blue curves show the contributions from the individual
coil layers.

2.2.5 Magnetic levitation

Cs is the heaviest of the stable alkali atoms and the gravitational force causes Cs atoms to
experience a large potential gradient of kB · 157 µK/mm. Since the dipole traps we use have
trap depths on the order of tens of µK, it is immediately clear that larger dipole traps will not
be able to support the atoms against gravity. We therefore employ the magnetic levitation
technique [Web03a, Her05] and apply a vertical magnetic field gradient, causing an upward
force that counteracts the gravitational force.

For atoms in |F = 3,mF = 3〉, the potential due to a magnetic field is

Umag = −µ(B)B ≈ µ(1)B − µ(2)B2, (2.28)

with

µ(1) = h · 1.50283 MHz/G = 0.7522µB,

µ(2) = h · 93.5 MHz/G2, (2.29)

where µB = 9.27400915 ·10−28 J/G is the Bohr magneton. The second term in equation (2.28)
is due to the quadratic Zeeman effect. The gravitational force can be counteracted by apply-
ing a magnetic field gradient such that ∂Umag/∂z = mg. The gradient needed to support the
atoms against gravity is

∂B

∂z
= 31.02 G/cm− 0.0055 G/cm ·B0/G, (2.30)

and is slightly dependent on the field amplitude B0 due to the quadratic Zeeman effect.
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Figure 2.12: Equipotential lines of the magnetic field resulting from a quadrupole field and a homoge-
nous offset field oriented in the z-direction. From [Her05].

Unfortunately, applying a vertical gradient automatically leads to outward horizontal
forces. This can be understood by drawing the equipotential lines of a quadrupole field,
as seen in figure 2.12. The atoms, residing above the magnetic field minimum, experience
a force perpendicular to the equipotential lines. It is clear that the closer the atoms are to
the quadrupole center, the stronger the curvature of the potential becomes. Neglecting the
quadratic Zeeman effect, the magnetic potential in the radial direction ρ is [Eng06]

Umag(ρ) = µ(1)B −mω2
levρ

2, (2.31)

a repulsive harmonic potential with (anti-)trapping frequency

ωlev = g

√
m

4µ(1)B0
. (2.32)

For a field B0 = 17 G, the antitrapping frequency is 2π · 3.4 Hz.

2.2.6 Diode laser system

For laser cooling and absorption imaging, narrow-band laser light with a wavelength close
to the Cs D2 line at 852 nm is needed. This is provided by a set of home-built diode lasers.
These have been described in great detail in two diploma theses [Unt05, Fli06] and I will
here only summarize the main points of the setup.

The laser system has to provide the following frequencies (the hyperfine quantum num-
bers of the ground state and the excited state of the D2 line are denoted F and F ′, respec-
tively):

− MOT cooling light, tunable between 70-0 MHz red-detuned from the main laser cool-
ing transition (F = 4 → F ′ = 5).

− MOT repumper light to pump off-resonantly scattered atoms from F = 3 back into
F = 4, resonant with (F = 3 → F ′ = 3).

− Zeeman slower light, 50 MHz red-detuned from (F = 4 → F ′ = 5).

− Zeeman slower repumper, 50 MHz red-detuned from (F = 3 → F ′ = 3).

− The optical lattice for Raman sideband cooling, resonant with (F = 4 → F ′ = 4).
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− Polarizer beam, 9 MHz blue-detuned from (F = 3 → F ′ = 2).

− Imaging beam, resonant with (F = 4 → F ′ = 5).

A grating-stabilized diode laser in Littrow configuration serves as master laser. It is
locked 320 MHz red-detuned to the (F = 4 → F ′ = 5) transition using an error signal ob-
tained by modulation transfer spectroscopy. With this locking scheme a linewidth of about
10 kHz is achieved. In addition to its use as a frequency reference, this laser also provides a
few mW of light for absorption imaging.

The light for the Zeeman slower comes from a slave laser, a laser diode which is locked
using the injection lock technique. A few mW of seed light is split off from the master laser,
frequency shifted using acousto-optical modulators (AOMs) and injected into the laser cav-
ity. If the laser current and temperature is right, the slave laser will inherit the spectral prop-
erties of the seed light without the need for any locking electronics. For diagnosis, saturated
absorption spectroscopy is implemented.

Two further slave lasers, also injection-locked, provide light both for the MOT and the op-
tical lattice used for Raman sideband cooling. Two different seed beams with the frequencies
needed for the MOT and the Raman lattice are overlapped on a 50/50 beam splitter, coupled
into an optical fibre and injected into the slave laser cavity. The lasers can then be switched
to the frequency needed within microseconds by simply turning on the corresponding seed
beam. The light output by the lasers can be directed to either the MOT or the Raman lattice
using AOMs.

The laser light addressing transitions from the F = 3 hyperfine state is about 9 GHz
detuned from the master laser, which is too far detuned to easily reference to the master laser.
Instead, we use a second grating-stabilized diode laser. It is built similar to the master laser
and locked 125 MHz red-detuned from the (F = 3 → F ′ = 2) frequency, reaching a linewidth
of 30 kHz. From this laser the light for Zeeman slower repumping, MOT repumping and and
the polarizer beam used in Raman sideband cooling is derived using AOMs as frequency
shifters.

The diode laser setup is built on an optical table separate from the experiment table. The
light is transported to the experiment using single-mode optical fibers. This assures excellent
beam quality and decouples the beam pointing at the experiment from the details of the laser
setup, which significantly facilitates maintenance. Except for the Zeeman slower light, every
laser beam has at least one AOM in its beam path, which makes it possible to switch the
light or control the intensity with microsecond precision. In addition, shutters are installed
before each fiber to mechanically block any remaining stray light. The setup has proved
to be robust, and since the installation of an air conditioning unit with enough power to
keep a stable temperature in the lab, the experiment can run for many hours with all lasers
remaining locked.

2.2.7 Experiment control

BEC creation takes several seconds. On the other hand, many of the processes in the exper-
iment require laser intensities, laser frequencies, magnetic fields, RF and microwave signals
to be controlled with microsecond precision. An experiment control system thus needs to
provide precise and reproducible timing on both short and long time scales. In addition,
many digital and analog outputs channels are needed.
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Figure 2.13: Schematic of the hardware for experiment control.

We have chosen a combination of hardware and software developed by F. Schreck and
T. Meyrath3, illustrated in figure 2.13. The central hardware is a computer equipped with
a buffered fast digital I/O card (National Instruments PCI-6533), which provides 32 digital
outputs that can be switched at up to 2 MHz. 25 of these outputs are used to create a simple
data bus which can communicate with different output devices. On the bus, 8 bits are used
to select which device to address, 16 bits are used for sending data to the device and one bit
is used as a clock. The bus is distributed to different parts of the lab by means of flat ribbon
cables. Anywhere on the flat ribbon cable, an output device can be connected. We currently
have three different types of output devices in use:

• Digital output board Provides 16 digital TTL outputs, which can all be switched si-
multaneously.

• Analog output board Provides 8 analog outputs with 16 bit resolution and an output
range of ±10 V. Since the bus is 16 data bits wide, only one output can be changed
every clock cycle. The settling time for an output port is 10 µs.

• Digital frequency generator This device uses an Analog Devices AD9852 Direct Dig-
ital Synthesizer (DDS) to create radio frequency signals. The DDS chip is capable of
creating frequencies between 0-135 MHz with 48 bit resolution, corresponding to 0.5
µHz. The amplitude can be controlled with 12 bit precision.

Designs exist for other devices like analog input boards and mechanical shutter drivers, but
are not employed in the current setup.

There are several advantages to this hardware concept. It is easy and cheap (around 50
EUR for 16 digital outputs, 150 EUR for 8 analog outputs and 150 EUR for a frequency
generator) to add new output boards anywhere in the lab. This means that one can put
output ports near the devices that are to be controlled, reducing the need to clutter the lab
with long cables, as would be the case when using one large central output board. The ability
to use shorter cables is not only convenient, it also reduces the chance of the analog lines
picking up stray signals. We currently have 80 digital outputs, 24 analog outputs and 15
digital frequency generators available, distributed over different parts of the lab.

The system clock is provided by a signal generator (SRS DS345) phase locked to a stable
10 MHz reference. Many environmental parameters, like for example magnetic fields, fluctu-

3The system is documented at http://george.ph.utexas.edu/control/index.html
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ate with the 50 Hz frequency of the AC power line, and it is therefore desirable to keep every
experimental run synchronized with the power line. This is accomplished by a home-built
electronics device which, on receiving a TTL signal, stops the clock signal from reaching the
main digital I/O card until the power line has reached a predetermined phase. When no
clock signal is present, the I/O card suspends the output of data from its buffer, which is
resumed when the clock signal comes back. This way of synchronizing the experiment with
the power line has the advantage that it can be done anytime during the timing sequence.
A line sync can thus be done at the beginning of the experimental run, and if a magnetic
field sensitive operation needs to be performed several seconds later in the timing sequence
when the AC line phase may have drifted compared to the much more stable system clock,
another line sync can be triggered.

The hardware is controlled by a software frontend written in C++. The software is ca-
pable of programming arbitrary waveforms and allows flexible flow control. A set of ex-
perimental parameters can be defined, which can be varied through a simple user interface.
After every experimental run, the parameters used are logged to the hard drive. Measure-
ment series can be created where one or more parameters are varied in a nested loop. It is
also possible to put several measurement series in a queue so that a long series of different
measurements can be executed one after another, allowing the apparatus to run unattended.

2.2.8 Detection and diagnosis

Imaging

The density distribution of the atomic sample is determined using absorption imaging [Ket99].
A laser beam resonant with the (F = 4 → F ′ = 5) transition illuminates the atoms and the
resulting shadow is imaged on a CCD chip. The amount of light absorbed is related to the
column density of the atom cloud, and by comparing the shadow image to a reference image
taken with no atoms present, the density distribution and atom number can be determined.
Due to the photons absorbed by the sample, absorption imaging is destructive and new ex-
perimental run is needed for every picture.

We use a camera (Apogee Alta U32+, CCD chip Kodak KAF-3200ME) with a pixel size of
6.8 µm × 6.8 µm, 14 bit resolution and an active area of 2184 × 1472 pixels. The image of the
atom cloud is collected by a 25 mm diameter, f = 80 mm achromatic doublet optimized for
diffraction limited performance (Melles Griot 01LAI009) at a distance of 80 mm from the trap
center and focused onto the CCD chip by a 25 mm diameter, f = 175 mm achromat (Melles
Griot 01LAO167). This lens arrangement has a theoretical resolution limit of 3.1 µm and
provides a magnification of 2.2. The lenses are mounted in a long lens tube that is directly
connected the camera. This provides automatic alignment and shields the CCD chip from
stray light. The magnification of the lens system was determined by measuring the position
of a freely falling atom cloud and fitting the result with a parabola, and we found that one
pixel corresponds to 3.1 µm × 3.1 µm, in agreement with the calculated value.

The absorption images are always taken with the magnetic fields turned off. The MOT re-
pumping light is turned on 100 µs before the absorption picture is taken, to pump the atoms
into the F = 4 hyperfine state. The imaging beam is then pulsed on for 150 µs. The images
are read out from the camera to a computer and visualized and processed with a Matlab
program. Gaussian or bimodal fits can be applied to the density profiles, from which useful
quantities like atom number, Gaussian width of a thermal cloud or Thomas-Fermi radius of
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a BEC are inferred. The program can plot these quantities as a function of different experi-
mental parameters and automatically apply different fit functions to the data. The real-time
visualization is very helpful, as it allows immediate assessment of ongoing measurements.

A triggerable video camera (Pulnix TM6-EX) mounted at approximately 30° to the ver-
tical provides information about the atomic sample from a second perspective. This camera
is mainly used to take fluorescence pictures, where the MOT light is switched on for a short
time and the fluorescence of the atoms is imaged. Although the limited resolution and signal-
to-noise ratio of the camera is not useful for quantitative analysis, it has proven very useful
when aligning the different dipole traps.

Thermometry

The temperature of the atomic cloud is measured using time-of-flight measurements. The
trapping potential is shut off and an absorption picture is taken a time t later. The experi-
ment is repeated for different expansion times t and the Gaussian width σ(t) of the freely
expanding cloud is measured. The temperature T can then be determined from the relation

σ(t) =

√
σ2

0 +
kBT

m
t2, (2.33)

where σ0 is the size of the cloud at time t = 0 and m is the atom mass.
For temperatures in the nK range, it is necessary to use long expansion times get a re-

liable temperature measurement. The magnetic levitation field is therefore kept on during
the expansion. The transversal force due to the levitation field causes the cloud to spread in
the horizontal direction and equation (2.33) is only valid for the vertical expansion. For the
horizontal expansion, one has to use the relation [Her05]

σ(t) =

√
σ2

0 cosh2(ωlevt) +
kBT

m

sinh2(ωlevt)
ω2

lev
, (2.34)

where ωlev is the levitation anti-trapping frequency defined in equation (2.32).

Microwave spectroscopy

The application of microwave fields at around 9.2 GHz can drive transitions between the
Cs lower and upper hyperfine ground states F = 3 and F = 4. Every state experiences
a different Zeeman shift, therefore the frequency needed to drive a transition between two
states is dependent on the value of magnetic field. Microwave spectroscopy can thus be used
as a sensitive tool to measure the magnetic field.

A frequency generator capable of producing frequencies up to 3 GHz (Rohde & Schwarz
SMIQ03B) was readily available in the lab, which prompted us to adapt a very simple setup
to create the 9.2 GHz radiation needed to drive transitions between the hyperfine states. The
frequency generator, referenced to an accurate 10 MHz signal derived from a commercial
frequency standard (SRS PRS10), is set to output a 2.3 GHz signal. The signal is sent to a
frequency doubler (Eclipse D1550L), an amplifier (Mini-Circuits ZX60-6013E) and a second
frequency doubler (Eclipse D2060L). This creates a 9.2 GHz signal, which is fed to a power
amplifier (ALC APA0612-35-30) and then sent to an outcoupler situated above the experi-
ment chamber at a distance of about 10 cm from the trap center.
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Figure 2.14: Measurement of the magnetic field using microwave spectroscopy. The atom loss from
the trap was measured as a function of the detuning from the hyperfine splitting,
9.9192631770 GHz. A fit to the data yields a center frequency of 42.063(4) MHz, which
corresponds to a magnetic field of 17.143(2) G.

An example of a magnetic field calibration is shown in figure 2.14. A trapped cloud of
atoms in the |F = 3,mF = 3〉 state was irradiated with a microwave field tuned to populate
the |F = 4,mF = 4〉 state. Inelastic collisions lead to heating and result in a loss of atoms
from the trap. In this case, the measured atom loss after 200 ms is maximal for a detuning of
42.063(4) MHz from the 9.9192631770 GHz hyperfine splitting.

Including the quadratic Zeeman shift, the shift of the energy for the magnetic sublevel
mF in the hyperfine states F = 3 and F = 4 can be calculated to [Eng06]

EF=3,mF
/Hz = −h · 350943.7875mF · (B/G)− 13.355(16−m2

F ) · (B/G)2, (2.35)

EF=4,mF
/Hz = +h · 349820.3875mF · (B/G) + 13.355(16−m2

F ) · (B/G)2. (2.36)

These expressions are valid for low magnetic fields. The error is about 10−6 for 10 G and
about 0.1 % for 100 G. For the transition (|F = 3,mF = 3〉 → |F = 4,mF = 4〉), the mag-
netic field corresponding to a detuning ν from the hyperfine splitting can be calculated from
equations (2.35) and (2.36):

B(ν) = 0.407811
G

MHz
ν
(
1− ν

64319 MHz

)
. (2.37)

For the measurement in figure 2.14, the magnetic field is then determined to be 17.143(2) G.

2.3 The path to BEC

Cs has a low recoil energy due to its large mass, which makes it possible to achieve low
temperatures with laser cooling. Together with the availability of laser diodes from the opti-
cal telecommunication industry at around 850 nm, the wavelength of the Cs D2 line, this
made Cs one of the main candidates in the quest to achieve a quantum degenerate gas
[Tie92, Mon93]. However, attempts to evaporatively cool Cs in a magnetic trap were marred
by spin-changing collisions, both for Cs in the |F = 4,mF = 4〉 state [Söd98, Arl98] and in
the |F = 3,mF = −3〉 state [GO98, Hop00, Tho03].

A way to get around this problem is to trap the lowest Zeeman sublevel, |F = 3,mF = 3〉,
where spin-changing collisions are energetically forbidden at low temperatures. This state
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is a high-field seeker and cannot be trapped in a magnetic trap. Instead an optical trap has
to be used, an approach followed in experiments in Stanford [Vul99], Berkeley [Han01] and
two different experiments in Innsbruck, one surface trapping experiment [Ham02] and one
using a conventional dipole trap [Web03c]. With the problem of two-body inelastic collisions
solved, a new enemy turned up in the form an unusually large three-body recombination
rate, leading to trap loss and heating [Web03c]. The Innsbruck experiment still managed to
reach BEC using forced evaporation in the dipole trap in a narrow magnetic field window
around 21 G [Web03b]. It was later found that three-body recombination is reduced at this
magnetic field, an effect associated with few-body Efimov physics [Kra06].

Later, Cs BEC has been achieved in the Innsbruck surface trap [Ryc04], in the apparatus
described in this thesis and, recently, at the University of Chicago [Hun08].

We follow the path to BEC pioneered in the Innsbruck experiment, summarized in ta-
ble 2.3. Atoms are laser cooled in two steps, first in a magneto-optical trap and then via 3D
Raman sideband cooling to below 1 µK. A large, shallow crossed-beam dipole trap is then loaded,
with a magnetic field gradient balancing gravity for the trapped |F = 3,mF = 3〉 state. This
magnetic levitation also automatically assures perfect spin polarization. The large-volume
dipole trap can catch many of the laser cooled atoms but is not suitable for evaporation due
to its low trap frequencies. Instead, a second, tightly focused dipole trap, the dimple trap, is
loaded. Forced evaporation is then done by lowering the laser power of the dimple trap while
keeping the magnetic field at the three-body recombination minimum at 21 G. Using these
techniques, we can produce a BEC with up to 2 · 105 atoms every 10 s.

Density (cm−3) Temperature PSD Atom number
Oven ≈ 107 360 K ≈ 10−21 N/A
MOT ≈ 1010 ≈ 70 µK ≈ 5 · 10−8 3 · 108

Compressed MOT ≈ 4 · 1010 ≈ 40 µK ≈ 5 · 10−7 2 · 108

Raman sideband cooling 2 · 1010 650 nK 1 · 10−4 6 · 107

Large dipole trap 1 · 1011 1.1 µK 4 · 10−4 1 · 107

Dimple trap 4 · 1013 1.1 µK 1 · 10−1 1.5 · 106

Table 2.3: Summary of temperatures and densities for the different cooling stages. PSD denotes
phase-space density. The exact values can vary due to changes in the lab environment,
shown are typical good values. A well aligned setup produces a BEC with about 2 · 105

atoms.

2.3.1 Magneto-optical trap

The magneto-optical trap (MOT) has become the standard technique to capture atoms and
cool them down to µK temperatures [Met99]. Our MOT is created by three pairs of counter-
propagating laser beams with 10 mm waist. Two beam pairs are located in the horizontal
plane, at an angle of 75° to each other. For these beams 65 mW of light from a diode laser
is available. A second diode laser provides 70 mW power for the third beam pair, which
is oriented at a slight angle from the vertical. The intensities are about 10 mW/cm2 for the
horizontal beams and 22 mW/cm2 for the vertical beams. Additionally, 10 mW of repumping
light is overlapped with the vertical beams. The magnetic confinement is created by the main
quadrupole coils.
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The MOT captures atoms out of the Zeeman slowed atomic beam. 75 mW of light red-
detuned 50 MHz from the laser cooling transition (F = 4 → F ′ = 5) is available for the
slowing together with 8 mW of repumping power. The slowing laser beam is expanded to a
beam waist of about 2 cm and enters the vacuum system through a viewport at the end of
the UHV pumping section (see section 2.2.2). The beam is focused down such that its focus
is slightly behind the nozzle of the oven. The beam can exit through a second viewport at the
end of the oven, which is very helpful when aligning the beam. If the beam can pass cleanly
through the long oven nozzle, it is well aligned with the atomic beam.

We found that MOT loading works best with a magnetic field gradient of 4.5 G/cm and
the MOT light 10 MHz red-detuned from the cooling transition. The initial loading rate from
the Zeeman slower is about 2 · 108 atoms/s and after 2 s of loading, approximately 3 · 108

atoms are collected. The whole atom cloud does not fit within the limited field-of-view of our
imaging setup when expanded such that it is not optically dense, and these numbers should
be considered rough estimates. The flux of slow atoms could be improved by implementing
transverse cooling of the atomic beam emerging from the oven. Optical access to implement
such cooling is available, and the rather slow velocity of the Cs atoms out of the oven would
allow for a long interaction time with the cooling beams. A rough estimate indicates that it
should be possible to increase the loading rate by about an order of magnitude, but since the
current loading rate is satisfactory for our current purposes, we have not implemented this
yet.

After the MOT is loaded, it is compressed [DeP00] by increasing the magnetic field gra-
dient to 25 G/cm over 25 ms, and then holding that gradient for 25 ms. At the same time,
the MOT detuning is ramped to 65 MHz. In this way the density is increased, which consid-
erably increases the efficiency when the laser cooled cloud is later transfered to the optical
dipole trap. After compression, we typically end up with 2 · 108 atoms at a temperature of
about 40 µK. We have found that the temperature of the compressed MOT is not very impor-
tant for the efficiency of the next laser cooling step, Raman sideband cooling, and therefore
made no effort to reach lower temperatures. To prepare for Raman sideband cooling, the
repumper light is shut off 2 ms before the compressed MOT is turned off, which makes the
atoms fall into the |F = 3〉 state.

2.3.2 3D Raman sideband cooling

In most BEC experiments, atoms are loaded out of a MOT into a magnetic trap or optical
dipole trap, where evaporative cooling is performed. We have chosen to add a further laser
cooling step, 3D Raman sideband cooling, before loading the dipole trap. This allows us to
reach temperatures well below 1 µK and simultaneously polarize the atoms into the state
|F = 3,mF = 3〉, which is the state we want to trap later. I will here describe the main points
of this cooling stage, a more detailed characterization can be found elsewhere [Fli06].

Our setup follows the approach outlined in [Ker00, Tre01] and is illustrated in figure 2.15.
The atoms from the MOT are trapped in a three-dimensional optical lattice. Due to their
relatively high temperature, they will initially populate highly excited vibrational trap levels.
A magnetic field is applied such that the Zeeman splitting of states with ∆mF = 1 is equal to
the vibrational level spacing in the lattice. This means that the state |ν,mF 〉 with vibrational
quantum number ν and hyperfine sublevel mF is degenerate with the state |ν − 1,mF − 1〉.
In addition to trap the atoms, the lattice light also drives Raman transitions between these
states. Simultaneously, the polarizer, a mainly σ+-polarized beam, provides optical pumping
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2. A new Cs BEC apparatus

to P3/2, F
′ = 2. In the Lamb-Dicke regime, ν is conserved during the pumping and the whole

process therefore leads to rapid loss of vibrational quanta. The state |ν = 0,mF = 2〉, which
is not resonant with σ+-polarized light, is depopulated by a weak π-polarized component
of the polarizer beam. In the end, all atoms are transfered to |ν = 0,mF = 3〉, a dark state.
The atoms are then released into free space by adiabatically ramping down the lattice, which
reduces the free-space temperature [Kas95].

Figure 2.15: Left: Schematic of the cooling process for Raman sideband cooling. Atoms in vibra-
tionally excited states are cooled by degenerate Raman transitions (double-sided arrows)
and optical pumping with a strong σ+ component and a weak π component. Figure from
[DD04].
Right: Five laser beams are needed for 3D Raman sideband cooling, one circularly po-
larized beam for optical pumping (blue) and four linearly polarized beams for the lattice
(red).

There is 120 mW of laser power available for the lattice, which is formed by four beams
with 1.5 mm 1/e2-radius. Geometry, relative intensities and polarizations were originally
chosen as in [Tre01] and have later been empirically optimized to maximize atom number
and minimize temperature. The lattice light comes from two injection-locked diode lasers
and is resonant with the (F = 4 → F ′ = 4) transition, thus being 9.2 GHz detuned with
respect to the resonance for atoms in |F = 3〉. The lattice therefore acts as a repumper for
atoms off-resonantly scattered into |F = 4〉. The relatively small lattice detuning means that
cooling is essential to trap atoms – the heating rate was measured to about 0.2 µK/ms with
the polarizer beam was turned off, leading to a rapid loss of atoms from the lattice.

The polarizer is 9 MHz blue-detuned from the (F = 3 → F ′ = 2) transition. The detuning
is necessary to compensate for the light shift from the lattice potential. The beam has 120 µW
power, a 1.5 mm 1/e2-radius and the light is circularly polarized.

The magnetic field is created by the compensation coils and is oriented along the ver-
tical, parallel to the polarizer beam. If the polarizer had perfect circular polarization, only
σ+-transitions would be driven. Any ellipticity gives rise to σ−-transitions, which leads to
heating. The magnetic field is therefore slightly tilted by adding a small component in the
horizontal direction. The elliptical polarization is then converted into σ+ light with a small
amount of π light, which is exactly what is needed. We found that a linear ramp of the mag-
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netic field amplitude during the cooling process brought a significant gain in the number of
trapped and cooled atoms. This is probably due to the finite size of the lattice beams which
leads to different trap frequencies at the edge of the lattice compared to the center, requiring
different magnetic fields for efficient cooling.

In only 3 ms of cooling, up to 6 · 107 atoms are trapped, polarized into |F = 3,mF = 3〉
and cooled to about 650 nK. This corresponds to a phase-space density of about 1 · 10−4.
The phase-space density has increased by three orders of magnitude in a few ms, which
shows the remarkable efficiency of this cooling scheme. These are good starting conditions
for loading the optical dipole trap.

2.3.3 Large volume dipole trap - reservoir

Because of the low temperature of the atom cloud after Raman sideband cooling, only a
shallow trap is needed to trap the atomic sample. This makes it possible to use large beams
with attainable laser power. A large-volume dipole trap has the advantage that it can trap a
large part of the laser-cooled atoms. The gravitational force is compensated with the mag-
netic levitation technique described in section 2.2.5. Gravitation is only balanced for atoms
in the |F = 3,mF = 3〉 state and atoms in other states are lost from trap, assuring that the
sample is always perfectly spin-polarized.

Optical dipole traps

A light field induces an electrical dipole moment in an atom, which in turn interacts with
the electric field of the light. The result is a potential proportional to the intensity of the light,
which can be used to trap atoms. For an atomic transition with resonance frequency ω0 and
natural linewidth Γ, the potential depth V (r) and the photon scattering rate Γsc are [Gri00]

Vdip(r) = −3πc2Γ
2ω3

0

(
1

ω0 − ω
+

1
ω0 + ω

)
I(r) (2.38)

Γsc(r) =
3πc2Γω3

2~ω6
0

(
1

ω0 − ω
+

1
ω0 + ω

)2

I(r) (2.39)

This expression is valid when the detuning |ω − ω0| is much larger than the linewidth Γ and
the photon scattering is low (Γsc � Γ).

In our case, the two atomic resonances corresponding to the Cs D1 and D2 lines have to
be taken into account. ω0 then has to be replaced by an effective transition frequency [Gri00]

ωeff =
1
3
ω1 +

2
3
ω2 = 2π · 2.56 · 1014 Hz. (2.40)

Similarly, Γ has to be replaced by an effective linewidth

Γeff =
1
3
Γ1 +

2
3
Γ2 = 2π · 5.00 MHz. (2.41)

We use dipole traps with 1064 nm light. For this wavelength, the potential depth and the
scattering rate is

Vdip = kB · 2.6 · 10−6 µK · I/(mW/cm2), (2.42)

Γsc = 1.6 · 10−8 s−1 · I/(mW/cm2) = 0.0061 s−1/(Vdip/µK). (2.43)

41



2. A new Cs BEC apparatus

The intensity profile of a Gaussian laser beam with power P is

I(ρ, z) =
2P

πw2(z)
e−2ρ2/w2(z) with w(z) = w0

√
1 +

(
z

zR

)2

, (2.44)

where z is the coordinate along the beam axis, ρ the coordinate in radial direction and w(z)
the beam waist. zR = πw2

0/λ is the Rayleigh range and w0 the beam waist at the focus of
the beam. Even for beam waists w0 as small as 100 µm, the Rayleigh range is 3 cm. The
confinement in the axial direction is therefore very weak and can safely be neglected for our
purposes.

The trap depth can be calculated from equations (2.38) and (2.44). Our large-volume
dipole trap has beams with a waist of 500 µm, which leads to a trap depth

V0 = kB · 0.65 µK/W. (2.45)

To achieve confinement in all directions, two crossed beams can be overlapped. In this case,
the total trap depth is given by the beam with the lowest trap depth.

Technical setup

The light for the large-volume dipole trap is generated by a 100 W Ytterbium fiber laser (IPG
Photonics YLR-LP-100) with 1071 nm wavelength. The laser is running on many longitudinal
modes, causing the emitted light to have a 3 nm spectral width. The beam coming out of the
fiber is specified to be spatially single-mode with M2 < 1.1, but we have found that the beam
profile becomes severely distorted at high output power. We thus normally run the laser at
about 40 W, where the beam shape is still fine.

The light has a stable linear polarization, and the laser beam is split in two beam paths
with equal power using a half-wave plate and a polarizing beam splitter. When we first set
up the trap, we used AOMs to switch the light on and off. Several lenses had to be introduced
into the beam path to focus the light through the AOM and the small beam waist needed led
to very high intensities. Although great care was taken to keep the lab environment clean,
we found that dust burned on the mirrors and the AOM crystals, leading to drifts in the
beam pointing and distortion of the beam profile. We have therefore opted for an alternative,
simple solution that minimizes the number of optical elements in the beam path. The light
is switched on an off using mechanical shutters, where a mirror mounted on a motor can
be moved into the beam path to deflect the laser beam into a water-cooled beam dump.
The switching can be done with ms precision, considerably less precise than an AOM but
enough for our purposes. Care was taken to keep the beam waist large, especially where the
beam hits an optical surface. To minimize reflections, the two beams enter the experiment
chamber at Brewster’s angle, which for the Vycor glass used in our glass cell is 56° to the
normal of the surface. Both beams propagate in the horizontal plane and cross at an angle
of 68°. Telescopes where one lens is on a translation stage allow for easy and reproducible
adjustment of the beam waists in the experiment region in the range 300–1200 µm. We found
that the transfer to the dipole trap worked best with a beam waist of 500 µm.

Trap loading

To transfer the laser-cooled atoms into the dipole trap, the dipole trap is turned on during the
last second of laser cooling. When the cloud is released from the Raman lattice, the magnetic
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levitation gradient is ramped up. The gradient is first ramped to a value of 60 G/cm, more
than needed to counteract gravity, within 700 µs. It is then relaxed to 31.3 G/cm within
350 µs, exactly compensating for gravity. This deliberate “overshoot” compensates for the
finite ramping speed and cancels the downward velocity acquired while the levitation was
ramped up. Simultaneously to the levitation gradient, the magnetic offset field is ramped up
to 129 G, corresponding to a scattering length of 1540 a0.

The transfer into the dipole trap heats the sample to about 3 µK. The temperature is
then reduced by plain evaporation, causing the atom number to be reduced to 1 · 107 and
the temperature to 1.1 µK. The initial heating can be attributed to imperfect mode-matching
between the dipole trap and the Raman-cooled cloud. In the dipole trap, a 650 nK sample in
thermal equilibrium would have an 1/e-radius of about 200 µm. The Raman-cooled cloud
has a 1/e-radius of about 800 µm and is badly mode-matched to the dipole trap. It therefore
has an excess of potential energy that is converted into kinetic energy and heats the sample.

2.3.4 Tightly focused dipole trap - dimple

A large-volume dipole trap is required to ensure a high transfer efficiency from the laser
cooling stage. It is however not a good trap for forced evaporation because of the low trap
frequencies and the low density of the atomic sample. Additionally, the broad-band trap-
ping light we use cannot be used to trap Cs2 molecules because the trap light would induce
transitions to excited states. To overcome these problems we use a second “dimple” trap, a
more tightly focused crossed dipole trap with narrow-band light.

When the strength of a trapping potential is adiabatically changed, an increase in density
of the trapped sample is accompanied by an increase in temperature, and the phase-space
density remains constant. A non-adiabatic change will even decrease the phase-space den-
sity. However, as first demonstrated in [Pin97], changing the shape of the trapping potential
can locally increase the phase-space density. If we have a large trap filled with cold atoms
and introduce a narrow dimple in the potential, elastic collisions will load atoms into the
dimple. As long as the number of atoms in the dimple is small compared to the reservoir
of atoms in the large trap, the temperature will remain almost constant. The density in the
dimple will be increased by the Boltzmann factor exp(U/kBT ), where U is the depth of the
dimple potential. The local phase-space density will thus be increased, at the prize of a lower
atom number.

Technical setup

A fiber amplifier, described in section 3.2.1, produces light with 1064 nm wavelength and
1 kHz linewidth for the dimple trap. From this light, two beams are derived. Each beam is
sent through an AOM and is then coupled into a polarization-maintaining single-mode op-
tical fiber. The light intensity after the fiber is monitored using a photodiode measuring the
light leaked through a dielectric mirror. The electronic circuit reading out the photodiodes
features a logarithmic amplifier, which allows to precisely measure the intensity over several
orders of magnitude. The photodiode signal is fed to PID circuit, which stabilizes the light
intensity using the AOM. This ensures a stable trap depth over several orders of magnitude
unaffected by fluctuations in laser intensity and fiber transmittance.

One of the dimple beams propagates in the horizontal plane, at an angle of 45° to the
glass cell. It is focused down to a beam waist of 40 µm by a lens with focal length 300 mm.
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The lens is mounted on a translation stage to allow precise adjustment of the focus. The other
dimple beam enters the chamber vertically. It has a beam waist of 150 µm in the experiment
region. We chose to let one of the dimple beams propagate vertically because it can be used
to augment the very weak radial confinement of the 1D optical lattice (described in section
3.2.1).

Trap loading

The dimple is loaded by raising the power to 80 mW in the tightly focused horizontal beam
and 550 mW in the vertical beam in a 1 s linear ramp. The horizontal beam creates a 7.5 µK
deep potential with 2π ·170 Hz trap frequency and the potential created by the vertical beam
is 4 µK deep with 2π · 100 Hz trap frequency. It is desirable to have a large scattering length
while the dimple is loaded, assuring enough collisions to keep the low density sample in
the reservoir in thermal equilibrium. On the other hand, a large scattering length enhances
losses due to three-body recombination in the dimple, where the density is high. We found
a scattering length of 450 a0 to be a good compromise. After the dimple is ramped up, we
lower the scattering length to 300 a0.

After 300 ms, one reservoir beam is shut off and the atoms residing in the reservoir es-
cape. The second reservoir beam is initially kept on, since the vertically propagating dimple
beam is not strong enough to provide confinement on its own. About 1.5 · 106 atoms remain
in the dimple trap at a temperature of about 1.1 µK. The density is about 4 · 1013 cm−1 and
the phase-space density is 10−1. These are excellent conditions for evaporative cooling.

2.3.5 Evaporation and Bose-Einstein condensation

We start forced evaporative cooling by ramping down the power of the dimple beams. The
remaining reservoir beam is turned off when the power in the horizontal dimple beam is
40 mW. The evaporation is most efficient when the scattering length is set to 210 a0, where
the elastic collision rate is large enough to allow for fast evaporation and the three-body
recombination rate has a local minimum [Kra06]4. We use a piecewise exponential ramp
over 6 s, where the power is in the horizontal dimple beam is reduced from 80 mW to 1 mW.
The power in the vertical dimple beam is typically reduced from 550 mW to 10 mW.

At the end of the ramp, a nearly pure BEC with up to 2 · 105 atoms remains in the trap.
The trap depth at the end of the ramp is 280 nK and the trap frequencies 2π · (20, 20, 28) Hz.
For a scattering length of 210 a0, this corresponds to Thomas-Fermi radii of (14,14,10) µm
and a peak density of 5 · 1013 cm−1.

An example of the tunability of the BEC interaction energy is shown in figure 2.17. The
BEC is released from the trap and imaged after different times of free expansion. At the time
of release from the trap, the scattering length is set to a new value, 10 a0 and 100 a0, re-
spectively. The interaction energy of the BEC, which is proportional to the scattering length
(see section 2.1.2) is converted to kinetic energy and determines the rate of expansion. The
difference in expansion rate can be clearly seen. Note also that the expansion rate is much
larger in the horizontal direction than in the vertical direction. This is due to the horizon-
tal anti-trapping caused by the magnetic levitation, as explained in section 2.2.5. When the

4When starting with a low atom number in the dimple, it was necessary to set the scattering length to a higher
value towards the end of the evaporation ramp to keep the elastic collision rate large enough.
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10 mW 7 mW 1 mW

Laser power

Figure 2.16: Density distribution of the atomic sample with the evaporation ramp ending at different
laser power of the dimple trap, imaged after 50 ms levitated time-of-flight. The phase
transition from a thermal cloud with a Gaussian density distribution (left) to a BEC with
a much narrower Thomas-Fermi distribution (right) is clearly seen.

scattering length is set close to zero, the expansion energy becomes very small [Web03b]. We
have measured expansion energies as low as kB · 200 pK.
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Figure 2.17: Levitated expansion of a BEC with the scattering length set to 10 a0 (left) and 100 a0

(right), respectively.
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3
A BEC in an optical lattice

I will in this chapter review the basic theoretical tools needed to describe a BEC in a 1D
optical lattice and describe the experimental setup and techniques used in our apparatus.
For further reading there are several reviews of both experiments and theory of ultracold
atoms in optical lattices, for example [Mor06] and [Blo08].

3.1 Theory

3.1.1 Optical lattice potential

Two superimposed counter-propagating narrow-band laser beams will interfere and create
a standing wave pattern. If the laser beams are far detuned from the atomic resonance and
have radially symmetric Gaussian beam profiles, the resulting periodic potential at the beam
focus takes the form

V (r, z) = −V0e
−2r2/w2

0 cos2(kz), (3.1)

where k = 2π/λ is the wave vector of the laser light,w0 is the 1/e2-radius (waist) of the beam,
V0 is the lattice depth, z is the direction of beam propagation and r is the radial distance from
the beam center. It has been has assumed that the confinement in z-direction is negligible,
e.g. z � zR, where zR is the Rayleigh length. An easy way to create two counter-propagating
laser beams is to simply retro-reflect a single beam, as illustrated in figure 3.1.

Due to constructive interference, the lattice depth V0 is four times larger than the depth
of a non-retroreflected dipole trap with the same intensity. It can be calculated using equa-
tion (2.38),

V0 = − 8P
πw2

0

3πc2Γ
2ω3

0

(
1

ω0 − ω
+

1
ω0 + ω

)
(3.2)

It is often useful to specify the lattice depth as V0 = sER, where ER = ~2k2/2m is the
recoil energy imparted by one lattice photon on an atom with mass m. For 133Cs atoms and
1064 nm lattice light, 1 ER = kB · 64 nK = h · 1325 Hz.

In the center of the trap, the potential can be well approximated by a sum of a harmonic
radial confinement and a homogenous lattice potential:

V (r, z) =
1
2
mω2

rr
2 + V0 cos2(kz). (3.3)
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Figure 3.1: The simplest way to create a standing wave is to retro-reflect a Gaussian laser beam. Illus-
tration from [Win07a].

Here the radial trapping frequency is given by

ωr =

√
4V0

mw2
0

. (3.4)

In some cases, it is useful to approximate the individual lattice wells with harmonic traps.
For a given lattice depth V0, the trap frequency along the lattice direction z is

ωlat =

√
V0

2k2

m
= 2

√
sωrec, (3.5)

where ωrec = ~k2/2m is the recoil frequency.

3.1.2 Bloch states and band structure

The motion of a particle in a potential V (x) is governed by the Hamiltonian

Ĥ =
p̂2

2m
+ V (x). (3.6)

In free space, where V (x) = 0, the set of plane waves |p〉 carrying momentum p form a
complete basis of solutions to the Schrödinger equation,

Ĥ |p〉 = E(p) |p〉 where E(p) =
p2

2m
. (3.7)

When V (x) is a periodic potential, the equivalent role is played by the Bloch states |φq〉. Simi-
lar to as plane waves, these states are delocalized in space. To calculate these states, we have
to seek the eigenstates to the Schrödinger equation

Ĥ |φq〉 = En(q) |φq〉 (3.8)

where the potential V (x) in our case comes from an optical lattice and is sinusoidal,

V (x) = V0 cos2(kx) = V0

(
1
2

+
1
4
ei2kx +

1
4
e−i2kx

)
. (3.9)
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Since multiplying a wave function with a factor eikx is equal to adding a momentum ~k, the
potential can also be written in operator form as

V̂ =
1
4
V0

(
2 + T̂+2~k + T̂−2~k

)
, (3.10)

where T̂±2~k denotes an operator adding the momentum ±2~k to the wave function. This
can be understood in a simple picture; an atom can absorb a photon from one lattice beam,
which is followed by stimulated emission into the counter-propagating beam, causing a total
transfer of two recoil momenta ~k from the lattice to the atom.

It is therefore natural to seek the eigenstates |φq〉 of the Hamiltonian as a superposition
of plane waves with momentum spacing of 2~k. This leads to the following ansatz:

|φq〉 =
∑

l

cl(q) |q + l · 2~k〉 . (3.11)

The ”central momentum” q is called quasimomentum and can without loss of generality be
restricted to the first Brillouin zone [−~k, ~k]. The coefficients cl(q) can be calculated by in-
serting the ansatz into the Schrödinger equation (3.8). The kinetic energy term in the Hamil-
tonian is then

p̂2

2m
|φq〉 =

∑
l

cl(q)
(q + l · 2~k)2

2m
|q + l · 2~k〉 (3.12)

=
∑

l

cl(q)
( q

~k
+ 2l

)2
ER |q + l · 2~k〉 . (3.13)

Using equation (3.10), the potential energy term is

1
4
V0

(
T̂+2~k + T̂−2~k + 2

)
|φq〉 =

=
1
4
V0

∑
l

cl(q) [|q + (l + 1) · 2~k〉+ |q + (l − 1) · 2~k〉+ 2 |q · 2~k〉]

=
1
4
V0

∑
l

[cl−1(q) + 2cl(q) + cl+1(q)] |q + l · 2~k〉 .

(3.14)

The Schrödinger equation can now be written in matrix form as

∑
l′

Hl,l′c
n
l′(q) = En(q)cnl (q) with Hl,l′ =


(q/~k + 2l)2ER + V0/2 for l = l′

V0/4 for l − l′ = ±1
0 elsewhere.

(3.15)
Equation (3.15) is an eigenvalue problem which can be solved numerically by truncating
the Hamiltonian matrix Hl,l′ ; for lattice depths V0 ≤ 20ER it is sufficient to take |l| ≤ 5 into
account if only the lowest energy bands are considered. One can thus calculate the eigenener-
giesEn(q) for Bloch states with different quasimomenta q. The wave function corresponding
to a certain Bloch state can be determined from the coefficients cnl (q) using equation (3.11).

The dispersion relation En(q) is shown in figure 3.2 for different lattice depths. In the
limit of vanishing lattice depth, the Bloch states are equal to plane waves and the dispersion
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Figure 3.2: Illustration of Bloch bands. The energies of the Bloch states plotted against their quasimo-
mentum for different lattice depths. With increasing lattice depth, the lowest band flattens
and the band gap approaches the level spacing ~ωlat of a harmonic oscillator.

relation is equal to the dispersion relation in free space limited to the first Brillouin zone.
With a lattice present, the range of possible energies is split up into energy bands called
Bloch bands. As the lattice gets deeper, the gap between the bands increases and the width of
the bands decreases. For very deep lattices, the gap between the lowest bands approaches
the level spacing of the harmonic oscillator ~ωlat .

In figure 3.3, Bloch functions are shown in both position space and momentum space. In
position space, one can see that the Bloch functions are delocalized over the entire lattice.
As could be expected, the probability density has maxima centered over the lattice sites.
In momentum space, the concept of Bloch states as a superposition of discrete momentum
states is easily seen.

3.1.3 Wannier states

The Bloch states form an orthogonal set of eigenstates to the Schrödinger equation delocal-
ized over the entire lattice. For a shallow lattice, this a good choice of basis to work with.
When working with deep lattices, it is often more convenient to work with a set of states
localized to a single lattice site. There exists such an orthogonal set of states, called Wannier
states. A Wannier state is constructed as a specific superposition of all Bloch states in one
band [Ash76],

|w(n)〉 = N−1/2
∑

q

|φn
q 〉 , (3.16)

where |w(n)〉 denotes the Wannier state corresponding to a particle in the nth band and N is
a normalization constant1. The sum is carried out over all q belonging to the first Brillouin

1Note that equation (3.16) does not define a unique set of Wannier states, since the Bloch states |φq〉 are
arbitrary up to a complex phase. For the lowest band, choosing the Bloch states such that the coefficients cl(q)
are real and positive gives a Wannier function that is real, symmetric and falls off exponentially. There exists
only one such Wannier function per band, called a maximally localized Wannier function [Koh59]. Throughout
this work, this particular set of Wannier functions will be used.
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Figure 3.3: Density distribution of the Bloch states for quasimomenta 0, 0.5 and 1 ~k in position space
(upper) and momentum space (lower). In the lower plot, it can be clearly seen how the
Bloch states are a superposition of momentum states spaced 2 ~k apart. The dotted line
marks the Wannier function (see next section).
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shows the sidelobes close to next neighbouring lattice site Center, right: Comparison of
the Wannier function and the harmonic oscillator ground state (3.17) for 5 ER and 15 ER

deep lattices. Note the discrepancy in amplitude at the neighbouring lattice site.
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3. A BEC in an optical lattice

zone. Using equation (3.16), one gets a Wannier state localized over lattice site 0. The Wan-
nier function at lattice site j can be inferred from the function at lattice site 0 by a simple
translation w(n)

j (z) = w
(n)
0 (z − jd), where d = π/k is the lattice site spacing. In momentum

space this translates to w(n)
j (p) = e−ipjd/~w

(n)
0 (p).

Note that the Wannier states are not eigenstates to the lattice potential. Their virtue is that
they are localized states that form a basis for a single Bloch band. Since most of the following
discussion will concern the lowest Bloch band, we will drop the band index n and refer to
the Wannier functions in the lowest band as wj(z).

For sufficiently deep lattices, the lattice wells can be seen as isolated harmonic traps and
the Wannier functions approach the harmonic oscillator ground state

who(x) =
1

π1/4σ
1/2
lat

e
− z2

2σ2
lat , (3.17)

where σlat is the harmonic oscillator length of the lattice well,

σlat =
d

πs1/4
. (3.18)

The Gaussian approximation can be made more accurate by, instead of using σho as the Gaus-
sian width, seeking the width that minimizes the energy of the system. One finds [Cri02] that
a Gaussian with a width σc satisfying the condition

e−(σc/σlat)
2/
√

s = (σc/σlat)−4 (3.19)

is the best approximation.
As can be seen in figure 3.4, there is one important difference between Wannier functions

and the harmonic oscillator ground state; Wannier functions have sidelobes at neighbouring
lattice sites. Therefore, even for deep lattices, the wave function overlap with neighbouring
lattice sites is severely underestimated in a Gaussian approximation.

Conversion between quasimomentum and momentum space

Let us assume that we have a wave function characterized by a quasimomentum distribu-
tion f(q). How does this wave function look in momentum space? We can write the wave
function as a sum of Bloch functions

Ψf (p) =
∫
f(q)φq(p)dq. (3.20)

A Bloch function can be written as a sum of Wannier functions multiplied by a phase factor
[Har04],

φq(p) =
1√
~k

∞∑
l=−∞

wn(p)eildq/~ (3.21)

=
1√
~k
w0(p)

∞∑
l=−∞

eild(q−p)/~, (3.22)
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3.1. Theory

where we have used the relation wj(p) = w0(p)e−ipjd/~. The sum over l can be transformed
using the identity

∑∞
l=−∞ eils/S = 2πS

∑∞
l=−∞ δ(s+ l · 2πS), and we can then write

φq(p) =
√

~k w0(p)
∞∑

l=−∞
δ(q − p+ l · 2~k). (3.23)

We can now rewrite equation (3.20) and deduce that a quasimomentum wave function
f(q) in momentum space is equal to

Ψf (p) =
∫ (

f(q)
√

~k w0(p)
∞∑

l=−∞
δ(p− q + l · 2~k)

)
dq (3.24)

=
√

~k w0(p)f̃(q). (3.25)

The wave function in momentum space is thus simply f̃(q) =
∑∞

l=−∞(p+ l · 2~k), the quasi-
momentum wave function periodically repeated, multiplied by a Wannier function envelope
and a normalization constant.

3.1.4 Effective 1D equation

Let us now consider a system consisting of a three-dimensional BEC trapped in a harmonic
trap with a superimposed one-dimensional optical lattice. In the weakly interacting regime,
the dynamics of the system is governed by the Gross-Pitaevskii equation

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + g|Ψ(r, t)|2 + Vext(r)

]
Ψ(r, t) (3.26)

with the external potential

Vext(r) =
1
2
(
mω2

xx
2 +mω2

yy
2 +mω2

zz
2
)

+ sER cos2(kz). (3.27)

Here, the confinement along the radial (x- and y-) direction comes from both the harmonic
trap and the optical lattice beams. Changing the depth s of the lattice therefore also changes
the radial confinement, but leaves the axial (z-) confinement unchanged.

If the lattice is sufficiently deep, the depth of the lattice wells is larger than the chemical
potential and the BEC is split into an array of pancake-shaped BECs, which are coupled to
each other due to tunneling between the wells. In this case, the system is best described in
a tight-binding picture, where the total wave function of the system is written as a sum of
localized wave functions Ψj(r, Nj) centered at the individual lattice sites j,

Ψ(r, t) =
∑

j

cj(t)Ψj(r, Nj), (3.28)

and Nj = |cj |2 is the number of atoms at lattice site j. In the case where the chemical po-
tential is much lower than the vibrational level spacing ~ωlat of the lattice wells, only the
lowest level is populated. Excitations along the tightly confined direction are “frozen out”
and the dynamics is restricted to the radial, weakly confining direction. We can then write
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3. A BEC in an optical lattice

the localized wave function as a product of a Wannier function along the lattice axis z and a
density-dependent wave function along the radial axis,

Ψj(r, Nj) = w(z − jd)Φ(x, y,Nj). (3.29)

Inserting this ansatz into the Gross-Pitaevskii equation and integrating over the spatial co-
ordinates, one arrives at a discrete nonlinear Schrödinger-like equation (DNL) [Sme03],

i~
∂cj
∂t

= J(cj−1 + cj+1) + µloc
j (cj)cj + Vjcj . (3.30)

In the derivation of this equation, two further important approximations have been made.
First, the overlap between wave functions more than one lattice site apart is assumed to
be negligible. Second, the local wave functions Ψj(r, Nj) only depend implicitly on time
through Nj . The radial wave function at a lattice site is assumed to always adapt to the
ground state corresponding to the number of atoms in that well, which means that any radial
excitations are not taken into account.

The right-hand side of equation (3.30) consists of three terms: The first term describes
hopping between neighboring lattice sites. The tunneling matrix element J is calculated as

J = −
∫ (

~2

2m
∇Ψj · ∇Ψj+1 + ΨjVextΨj+1

)
dr. (3.31)

In principle, this integral depends implicitly on the respective populations Nj at the lattice
sites. However, the dependence of J onNj is very weak [Sme03] and one can use the approx-
imation Ψj(r, Nj) ≈ Ψj(r, N0), where N0 is the average number of atoms per site. Usually,
one does not have to compute the integral directly; for the case of a deep lattice it can be
shown that J = 4δ, where δ is the width of the lowest Bloch band [Jak99]. The band struc-
ture is easily calculated as outlined in section 3.1.2. For lattices where s � 1, the tunneling
energy can also be approximated by the analytical expression [Blo08]

J/ER =
4√
π
s3/4e−2

√
s. (3.32)

This approximation should be used with some care – it overestimates J by 30 % for 5 ER

lattice depth and by 15 % for 15 ER lattice depth. The value of J is plotted in figure 3.5 for
various lattice depths.

The second, nonlinear term in equation (3.30) describes the on-site interaction, character-
ized by the local chemical potential (cf. equations (2.18) and (2.19))

µloc
j =

∫ (
~2

2m
|∇Ψj |2 + Vext(r)|Ψj |2 + g|Ψj |4

)
dr. (3.33)

For an effectively two-dimensional BEC with the wave function (3.29) in a harmonic trap,
the chemical potential is, in the Thomas-Fermi approximation [Sme03],

µloc
j = U1|cj | =

√
mω̄⊥g̃

π
|cj |, (3.34)

where ω⊥ = √
ωxωy is the effective radial trapping frequency and g̃ is an effective 2D inter-

action coupling constant given by

g̃ = g

∫
|w(z)|4dz ≈ g√

2πσlat
, (3.35)
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Figure 3.5: The tunneling matrix element J as a function of lattice depth. The solid line is computed
from the width of the lowest band in a band structure calculation. The dashed line is the
approximation (3.32).

where the Gaussian approximation to the Wannier function has been used. Note that since
σlat ∝ s−1/4, g̃ and therefore µloc

j scale weakly with the lattice depth.
The third term describes the external confinement, which gives rise to a potential energy

difference between lattice sites. Here this is simply the harmonic trap,

Vj =
1
2
mω2

zd
2j2. (3.36)

3.1.5 Ground state of a BEC in a lattice

What is the ground state of a BEC in a 1D lattice and a harmonic confinement? One can
obtain a stationary solution to the DNL by setting cj(t) = gje

−iµt/~, which leads to

µgj = J (gj−1 + gj+1) +
(
µloc

j (gj) + Vj

)
gj . (3.37)

An analytic solution can be found using the Thomas-Fermi approximation and neglecting
the kinetic energy term, which here corresponds to the tunneling term. This leads to the
equation

µ = µloc
j (gj)− Vj . (3.38)

Using µloc
j = U1|gj |, the number of atoms at lattice site j is then

Nj =


(
µ− Vj

g

)2

= N0

(
1− j2

jTF 2

)2

where µ > Vj ,

0 otherwise

(3.39)

When many lattice sites are occupied, the normalization condition
∑

j Nj = N can be re-
placed by an integral. In a similar manner to the Gross-Pitaevskii equation as discussed
in section 2.1.2, several useful relations can now be calculated. One finds [Sme03] that the
global chemical potential

µ =

(
15NU2

1

√
mω2

zd
2/2

16

)2/5

. (3.40)
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Figure 3.6: The solid line shows the dependence of the effective scattering length a∗ on the lattice
depth. The dashed line indicates the harmonic oscillator ground state approximation,
equation (3.44). The dash-dotted line has been calculated using the improved Gaussian
approximation described by equation (3.19).

This somewhat complicated expression can be rewritten in a familiar form,

µ =
1
2

~ω̄
(

15Na∗

σho

)2/5

, (3.41)

where ω̄ = (ωxωyωz)1/3 is the geometrical average of the trapping frequencies for the har-
monic confinement, σho =

√
~/(mω̄) the associated harmonic oscillator length and a∗ an

effective scattering length,

a∗ = ad

∫
|w(x)|4dx. (3.42)

Equation (3.41) is equal to the expression for the chemical potential in harmonic trap without
a lattice, equation (2.26), except that the scattering length a has been replaced with a∗. This
can be understood in the following manner: The lattice has the effect of increasing the local
density at the lattice sites. Compared to a wave function with constant density over one
lattice site, the interaction energy corresponding to a Wannier function is increased by a
factor

Eint,wannier

Eint,const.
=

g
∫
|w(x)|4dx

g
∫
|Ψconst.|4dx

= d

∫
|w(x)|4dx. (3.43)

Thus, on a macroscopic scale, the periodic lattice potential results in an effective enhance-
ment of the interaction energy. If one introduces a “smoothed” macroscopic density, defined
as the average density over one lattice well, the usual expressions for chemical potential,
density profile and Thomas-Fermi radii described in section 2.1.2 can be used if one replaces
a with a∗. A more rigorous discussion of this concept can be found in [Ped01, Kra02].

The dependence of the effective scattering length on the lattice depth is plotted in fig-
ure 3.6. For deep lattices, where the Wannier functions approach the harmonic oscillator
ground state (equation (3.17)), one can use the analytical result

a∗

a
=
s1/4

π
. (3.44)

For 10 ER lattice depth, this approximation overestimates a∗ by about 10 %.
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3.2. Technical setup

It is interesting to consider the effect of adding lattices along the other spatial dimensions.
In a 3D lattice, the integral in equation (3.42) has to be carried out over three dimensions
instead of one, and thus a∗3D = (a∗)3. A 3D lattice therefore strongly enhances the effective
interactions. For a 10 ER deep lattice, a∗/a = 2.0 and a∗3D/a = 8.4.

3.2 Technical setup

3.2.1 Lattice setup

A commercial non-planar ring oscillator laser (Innolight Mephisto) provides 2W of 1064 nm
light with the narrow bandwidth required to create an optical lattice. This light is split up
and distributed to several labs. We have about 700 mW at our disposal, which is used to seed
a home-built fiber amplifier using an Ytterbium-doped large-mode-area fiber [Lie03]. When
the fiber is pumped with 33 W of 980 nm light from a high-power laser diode (Dilas MIF
980), the seed light is amplified to typically 15 W without loss of spectral quality.

If the amount of seed light coupled into the fiber becomes too small, due to vibrations or
accidental blocking of the seed beam, not all energy stored in the fiber is removed. Within
milliseconds, the fiber amplifier becomes unstable and will start removing its energy in
pulses, which quickly destroys the fiber end. To protect against this, the outgoing laser inten-
sity is monitored with a photodiode behind one of the dielectric mirrors in the beam path.
If the intensity changes too quickly, an electronic circuit automatically turns off the pump
light.

The 15 W laser light from the fiber amplifier is split up into five beam paths, two beams
to create the dimple trap (see section 2.3.4) and three lattice beams to create a 3D lattice. For
the experiments described in this work, only one lattice beam is used, creating a 1D lattice.

Figure 3.7 shows the optical setup for the lattice, described in detail in [RK07]. The lattice
light is guided to the experiment using a single-mode polarization maintaining fiber, with a
Faraday isolator installed directly after the fiber providing protection from the retro-reflected
light. A photodiode measures the light intensity after the Faraday isolator. This signal is sent
to a servo circuit which controls the intensity using an AOM installed before the fiber. The
light is focused onto the atomic sample using a pair of lenses. The beam waist at its focus is
approximately 300 µm. After the focus, the beam is collimated using another lens pair and
then retro-reflected by a mirror to create a standing wave. Before the mirror, the vertically
propagating dimple beam is overlapped with the lattice beam on a polarizing beam splitter.
According to equation (3.2), the lattice depth is

V0 = 0.11ER/(I/mW). (3.45)

The fairly large beam waist ensures a homogenous lattice depth. For a BEC with Thomas-
Fermi radius 30 µm in the center of the lattice, the lattice depth changes less than 1 % over
the sample.

The lattice is often combined with the dimple trap to increase the harmonic confinement.
Additionally, the magnetic levitation causes a horizontal antitrapping which slightly weak-
ens the confinement. The potential of the combined traps is

V (r) =
1
2
(
mω2

xx
2 +mω2

yy
2 +mω2

zz
2
)

+ V0 cos2(kz), (3.46)
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3. A BEC in an optical lattice

Figure 3.7: Illustration of the setup for the optical lattice.
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with the trap frequencies in x-,y- and z-direction being

ω2
x = ω2

Dh + ω2
Dv + ω2

lat,r − ω2
lev, (3.47)

ω2
y = ω2

Dv + ω2
lat,r − ω2

lev, (3.48)

ω2
z = ω2

Dh. (3.49)

Here, ωDh and ωDv are the trap frequencies of the horizontal and vertical dimple beams,
respectively. The antitrapping frequency from magnetic levitation is usually ωlev ≈ 2π · 3 Hz
and the radial confinement of the lattice ωlat,r = 2π · 2.55

√
V0/ER Hz. The experiments in

this thesis are performed with an 8ER deep lattice, corresponding to 2π ·7.2 Hz confinement.
Rough alignment of the lattice is done by shining the lattice beam on the cold and spa-

tially large atom cloud produced after Raman sideband cooling. The cloud is sufficiently
cold that the dipole trapping effects of the beam can be seen. Fine alignment is done by ob-
serving the effect of the lattice beam on the condensate. The beam is adiabatically ramped
up and the displacement of the BEC is monitored and minimized, which assures alignment
in the imaging plane. Alignment along the imaging axis can also be probed by suddenly
switching off an adiabatically raised lattice beam and observing oscillations in the dimple
trap. If there are no oscillations, alignment along the imaging axis is assured. Finally, the
retroreflected beam is adjusted by optimizing its coupling back into the fiber (the protecting
optical diode is slightly de-adjusted such that it allows a small amount of the returning beam
to come through).

3.2.2 Lattice depth calibration

The depth of the optical lattice could be calculated from the power and size of the lattice
beams. These quantities are difficult to measure precisely and the beam alignment may be
imperfect, therefore a way of measuring the lattice depth is needed. We use a method out-
lined by Denschlag et al. [Den02].

A BEC with momentum q in the lab frame can to a good approximation be described as a
plane wave |q〉. Suddenly switching on the lattice projects the plane wave onto Bloch states,

|Ψ(t = 0)〉 =
∑

n

|φ(n)
q 〉 〈φ(n)

q |q〉 (3.50)

=
∑

n

c∗n,0(q) |φ(n)
q 〉 , (3.51)

according to equation (3.11). While in the lattice, the BEC wave function evolves in time
according to

|Ψ(t)〉 =
∑

n

c∗n,0(q)e
−i

En(q)
~ t |φ(n)

q 〉 . (3.52)

After a time th the lattice is suddenly switched off and the Bloch states are projected back
onto plane waves. The final state is now a superposition of momentum states separated by
2~k,

|Ψ(t)〉 =
∑
n,l

c∗n,0(q)cn,l(q)e−i
En(q)

~ th |q + l · 2~k〉 , (3.53)
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3. A BEC in an optical lattice

which can be observed as diffraction peaks in a time-of-flight measurement. The population
of diffraction peak l is

pl(t) = |〈q + l · 2~k|Ψ(t)〉|2 =

∣∣∣∣∣∑
n

c∗n,0(q)cn,l(q)e−i
En(q)

~ th

∣∣∣∣∣
2

. (3.54)

The interference between the differently evolving phases leads to oscillations in the diffrac-
tion peak populations as a function of th.

When starting with a BEC at rest (q = 0), no odd Bloch bands get populated because
the corresponding Bloch wave functions are antisymmetric, while the initial wave function
is symmetric. Furthermore, for the lattice depths we use in the lab, only bands 0 and 2 are
significantly populated2. Therefore the population of the diffraction peaks will oscillate with
a frequency corresponding to the energy difference between band 0 and 2,

f2−0 =
E2 − E0

h
, (3.55)

which is dependent on the lattice depth. This dependence can be computed from a band
structure calculation and is plotted in figure 3.8.
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Figure 3.8: Left: Energy difference between Bloch band 0 and 2 for quasimomentum q=0. Right: A
typical lattice depth measurement showing oscillations in population between the 0~k and
±2~k momentum states. For this particular case, the oscillation frequency is 8.82(3) kHz,
corresponding to 7.93(4) ER lattice depth.

A typical lattice depth calibration is carried out in the following manner: We produce
a BEC, turn off the confining dipole trap and tune the scattering length close to zero by
switching the magnetic offset field to 17 G. The lattice is then pulsed on for a time tH and after
typically 50 ms of expansion the atom cloud is imaged to reveal the momentum distribution.
The BEC is levitated during the whole procedure.

The momentum distribution shows two diffraction peaks at ±2~k. We count the fraction
of atoms in these two peaks and plot against the pulse length. The result is shown in fig-
ure 3.8. Note that the amplitude of the oscillation signal decreases significantly slower than
in [Den02]. The authors attribute the decay to inhomogeneity of the lattice beams leading to

2The population in band 4 is less than 0.3 % for a lattice depth of 10 ER. To populate band 4 with more than
5 % requires a depth of 24 ER.
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slightly different oscillation periods over the sample. In our setup the lattice depth is more
homogenous due to the large size of our lattice beams, enabling the observation of many
oscillation periods and therefore precise lattice depth measurements.
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4
Bloch oscillations and

interaction-induced dephasing

In the early days of quantum mechanics, the study of electrical conductivity in a crystal
lattice led Felix Bloch to predict that when a force acts on a particle in a periodic potential, it
will undergo an oscillating motion [Blo29]. In practice however, an electron in a conventional
solid will not Bloch oscillate because it will scatter on another electron or a crystal defect
before it has time complete to a single oscillation cycle. It was not until 1993 that Bloch
oscillations could be observed using semiconductor superlattices, where the larger lattice
spacing leads to a much shorter Bloch period [Was93].

Ultracold dilute gases in optical lattices provide an interesting alternative for observing
Bloch oscillations, with easy control over many parameters and the ability to directly im-
age the momentum distribution of the atomic sample. Bloch oscillations were first seen with
velocity-selected thermal atoms [BD96] and later observed with a BEC [And98, Cri02]. Ex-
actly as for electrons in a solid, particle-particle interactions lead to collisional dephasing and
severely limit the number of Bloch oscillations one can observe. One way around this prob-
lem is to use a Fermi gas of indistinguishable atoms, where s-wave scattering is prohibited
due to the symmetry requirements of the scattering wave function. In this way, about 200
oscillations were observed [Roa04]. With bosons, 4000 oscillations where observed with a
thermal cloud of 89Sr atoms at low density [Fer06], using the fact that 89Sr has a background
scattering length that is zero to within a few a0 [Mic05, Esc08].

The ability to tune interactions using a wide Feshbach resonance gives us an excellent
tool to study the interaction-induced dephasing of Bloch oscillations. We have investigated
the rate of dephasing of a Bloch oscillating BEC as a function of scattering length. We are able
to resolve changes in the scattering length as small as 0.1 a0, and when tuning the scattering
length to zero, we find that we can follow more than 20000 oscillations [Gus08]. Similar
experiments using 39K have been performed at LENS, Italy [Fat08a].

The suppression of atom-atom interactions has potential implications for atom interfer-
ometry. A BEC has a very narrow momentum spread, and its small size makes it possible to
investigate effects on a µm scale. However, the large density leads to large interaction effects
which limit coherence time and accuracy [Gup02]. One possible way around this limitation
is to work with low densities using low atom numbers and weak traps [Ree05], but this
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4. Bloch oscillations and interaction-induced dephasing

limits the signal-to-noise ratio. Our technique, instead, allows the direct suppression of the
effect of interactions. The large number of Bloch oscillations we could observe allowed us
to measure the force acting on the BEC with a sensitivity better than 10−6. This shows that
precision measurements with BECs are feasible.

4.1 Theory of Bloch oscillations

When a matter wave in a lattice potential is subject to an external force, it will not be acceler-
ated towards infinity. Instead, the force induces an oscillatory motion, the Bloch oscillation
[Blo29]. This can be understood in a band structure picture. A wavepacket in a lattice ex-
posed to a force F will gain in quasimomentum as q = Ft. When it reaches the end of the
Brillouin zone, because of the periodicity of the band structure (a state with quasimomentum
q + 2~k is equivalent to a state with quasimomentum q) it will “wrap around” and emerge
at the other side of the Brillouin zone. This leads to a periodic motion in quasimomentum
space with a period corresponding to the time it takes for the wavepacket to “scan” the
whole Brilluoin zone,

TB =
2~k
F
. (4.1)

The oscillation in quasimomentum space also leads to an oscillation in position space with
the amplitude [Har04]

lB =
∆
2F

, (4.2)

where ∆ is the width of the lowest band. In experiments with ultracold atoms, this amplitude
is usually very small (in the experiments in this chapter, the amplitude is 50 nm) and Bloch
oscillations are observed by imaging in momentum space.

When the Bloch oscillating wavepacket reaches the edge of the Brillouin zone, there is
a probability of Landau-Zener tunneling into the next higher Bloch band, which effectively
leads to the particle being lost from the lattice. The tunneling probability depends on the
magnitude of the applied force and is [Mor06]

r = e−Fc/F , where Fc =
V 2

0

ERd
· π

2

32
(4.3)

and d is the distance between the lattice sites. The experiments described in this thesis are
all carried out at a lattice depth V0 = 7.9ER. In this case, the critical force Fc ≈ 3 · 10−23 N.
The force acting on the atoms is the gravitational force mg, which is about 15 times smaller
than the critical force, which gives r ≈ 4 · 10−7. Therefore, tunneling into higher bands can
be neglected for the rest of the discussion.

Another instructive way of looking at Bloch oscillations is a quantum mechanical treat-
ment in terms of the phase evolution at each lattice site. The Hamiltonian of the system is

Ĥ =
p̂

2m
+ V (x) + Fx, (4.4)

where V (x) is the lattice potential with period d. The eigenfunctions to this Hamiltonian
are the Wannier-Stark functions1, which can be constructed as a superposition of Wannier

1Strictly speaking, the Wannier-Stark states are only eigenstates when tunneling into higher Bloch bands is
neglected. See [Har04] and references therein for a more complete discussion.
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functions [Har04]:

ΨWS,j =
∑

l

Bk−j

(
Fd

J

)
wk(x), (4.5)

where Bl is the lth Bessel function, wl is the Wannier function centered over the lth lattice
site and J is the tunneling matrix element. In the case of a large force such that Fd/J � 1,
all Bessel functions except B0 are approximately zero and the Wannier-Stark functions are
reduced to Wannier functions. Let us in the following discussion for simplicity assume that
we have such a large force, meaning that the Wannier functions are eigenfunctions to the
Hamiltonian (a similar argument as below can also be made in the general case).

The total wave function of the system can be written as a sum of Wannier functions
localized to the individual lattice sites. In momentum space, the wave function takes the
form

Φ(p, t) =
∑

j

cjwj(p) = w0(p)
∑

j

cje
−ipjd/~, (4.6)

where the relation wj(p) = w0(p)e−ipjd/~ comes as a result of the translation wj(x − jd) =
w0(x). For a non-interacting system, the phase on each lattice site evolves according to the
site’s potential energy,

~
dφj

dt
= Fjd. (4.7)

The total wave function can then be written as

Φ(p, t) = w0(p)
∑

j

cj(0)eiFdjt/~e−ipjd/~ (4.8)

= w0(p)
∑

j

cj(0)e−i(p−Ft)jd/~. (4.9)

As discussed in section 3.1.3, the wave function in quasimomentum space is found by divid-
ing by the Wannier function (in this case particularly simple), which leads to

Φ(q, t) =
∑

j

cj(0)e−i(q−Ft)jd/~. (4.10)

It is now clear that an initial quasimomentum distribution f(q) will after a time t have
evolved to f(q − Ft), e.g applying a force results in a translation of the wave function in
quasimomentum space.

4.2 Experimental realization

4.2.1 Observation of Bloch oscillations

Our protocol for observing Bloch oscillations is illustrated in figure 4.1. We start with a nearly
pure condensate with typically 1 · 105 atoms in the dimple trap with trap frequencies 2π ·
(11, 6, 10) Hz. The BEC has Thomas-Fermi-radii (13,33,12) µm and a peak density of about
1013 cm−3. A 1D optical lattice oriented along the vertical axis is then ramped to 7.9ER lattice
depth exponentially in 1000 ms, and at the same time the power in the vertically propagating
dimple trap beam is increased. The confinement is then increased to 2π · (15, 12, 10) Hz. The
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Figure 4.1: The experimental protocol used to observe Bloch oscillations. The BEC is adiabatically
loaded into the optical lattice. Bloch oscillations are then induced by turning off the mag-
netic levitation and the vertical confinement. After a hold time tH , the atomic sample is
adiabatically released from the lattice, followed by ballistic expansion with the scattering
length set to zero.

slow ramp is adiabatic not only with respect to the tight lattice confinement, but also with
respect to the radial trapping. This ensures that the condensate does not get excited along
the horizontal direction. About 50 lattice sites are populated.

Next, the magnetic levitation and the vertical confinement is switched off. Our relatively
large lattice beams produce a very weak horizontal confinement on their own, 8.7 Hz for
7.9 ER lattice depth. We therefore do not turn off the vertical dimple beam, which coprop-
agates with the lattice. With magnetic levitation turned off, the condensate starts to Bloch
oscillate due to the gravitational force. It is left to evolve in the lattice for a hold time tH ,
after which the levitation is switched on again.

How can we now measure the quasi-momentum distribution? If the lattice is ramped
down on a time scale that is slow compared to the lattice trap frequency, but fast enough
that the quasimomentum distribution does not change, a state with quasimomentum q is
adiabatically mapped to a state with free particle momentum p = q [Kas95, Gre01]. The
free particle momentum can then be measured in ballistic expansion. We ramp down the
lattice and the vertical dimple beam in 300 µs and take an absorption picture after a period
of free expansion, typically 80 ms. The scattering length is switched to zero when the trap is
turned off. This enables us to directly image the quasimomentum distribution without any
broadening due to interaction energy being converted into kinetic energy, which otherwise
would greatly reduce the contrast of the Bloch oscillations [Roa04].

The result of this experiment is shown in figure 4.2. The quasimomentum increases with
increasing hold time tH until it reaches lower edge of the first Brillouin zone. There it “wraps
around” and appears at the other edge. Note that some parts of the quasimomentum distri-

66



4.2. Experimental realization

Hold time tH

Figure 4.2: A sequence of absorption images revealing the evolution of the quasimomentum distri-
bution during a Bloch oscillation. Every image is the average over 7 snapshots and the
sequence shows the evolution over 575 µs. The dashed lines indicate the extent of the first
Brillouin zone.

bution appears to be outside of the Brillouin zone. This is due to the fact that the lattice
cannot be ramped down perfectly adiabatically with the respect to the vibrational trap fre-
quency, since the trap frequency approaches zero at the end of the ramp. The mapping of
quasimomentum to momentum is then not perfect.

4.2.2 Momentum broadening due to interactions

If interactions are negligible during Bloch oscillations, the dominant factor influencing the
phase evolution of the wave function at a lattice site is the potential due to the external force.
In this case, Bloch oscillations would go on forever. When interactions are present, the phase
at each lattice site will in addition be influenced by the local interaction energy, which is
different from site to site. This gives rise to dephasing, which causes a broadening of the
quasimomentum wave function and limits the number of oscillations one can observe.

We study this effect by adjusting the scattering length during Bloch oscillations in the
range2 from 0 to 300 a0. To keep the initial density constant, the lattice is always loaded at a
scattering length of 210 a0. As a quantitative measure of the dephasing, we measure the rms-
diameter ∆p of the momentum distribution at instants in time when the average momentum
is zero, i.e. after an integer number of oscillations N . Figure 4.3a shows how ∆p evolves
with time for different scattering lengths. When the scattering length is switched to ≈ 0 a0,
no broadening is observed within the first 300 oscillations. For larger scattering lengths ∆p
increases linearly with time until a saturation value of about 1.3 ~k, which corresponds to
the first Brillouin zone being completely filled.

Figure 4.3b shows how ∆p depends on the scattering length for a fixed number of os-
cillations. It appears that ∆p increases with the square root of the scattering length. An ini-
tially linear increase with both time and interaction strength has been predicted in a pure
1D model [Wit05]. As discussed in section 3.1.4, our 3D system can be described with an
effective 1D model where the effective interaction, characterized by the local chemical po-
tential µloc defined in equation (3.34), scales with the square root of the scattering length.

2Note that it is not possible to switch to a significant negative scattering length, since the BEC becomes un-
stable and undergoes a “Bose-Nova” style implosion [Don01] for scattering lengths . −5 a0.
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4. Bloch oscillations and interaction-induced dephasing

Figure 4.3: (a) Evolution of the rms-diameter ∆p of the momentum distribution for different values
of the scattering length. a = 0, 25, 50, 100 and 300 a0 from bottom (filled circles) to top (open
squares). (b) ∆p as function of scattering length after a fixed number of Bloch oscillations
N = 1 (filled circles), 25 (filled squares), 50 (filled diamonds), 100 (open circles), 150 (open
squares) and 200 (open diamonds). The solid lines are numerical solutions to equation
(3.30), see text.

Hence our observations are in agreement with the predictions in [Wit05].
We have also simulated the system by solving the DNL (equation (3.30)) numerically.

The result is indicated by the solid lines in figure 4.3 and is in good agreement with the data.
There is a systematic discrepancy for the N = 50 data in figure 4.3b, where the measured
dephasing is stronger than in the simulation. We attribute this to horizontal dynamics not
included in the model. When the Bloch oscillations are started, the scattering length is sud-
denly switched to a new value and the horizontal trapping beam is switched off, causing the
trap frequencies to change. Both of these changes excite a horizontal breathing mode, which
causes the density to be modulated in time. This causes a modulation of the effective inter-
action, which results in a change in the rate of dephasing. More details about the simulation
can be found in [Mar07a].

One can learn more about the dephasing by examining the the shape of the quasimo-
mentum distribution. When the BEC wave function completely fills the first Brillouin zone,
interference fringes appear. A detailed investigation of this phenomenon and its implications
will be the subject of chapter 5.

4.2.3 Precise determination of the scattering length zero crossing

If the atoms are left to Bloch oscillate in the lattice for a long time, even a very small amount
of interaction causes dephasing and broadens the momentum distribution of the BEC. This
can be used as a sensitive tool to determine at which magnetic field strength the scattering
length is zero.

We seek the scattering length zero crossing by measuring the width of the quasimomen-
tum distribution after the BEC has been Bloch oscillating for 4 s. To be more sensitive to
small interaction strengths, the density of the BEC was increased to about 7 · 1013 cm−3 for
this measurement.

The result of this experiment is shown in figure 4.4. There is only a small range of
≈ 20 mG centered around 17.119 mG where the BEC wave function is not spread out over
the whole Brillouin zone. Within this range, even a change in the scattering length as small
as 0.1 a0 has an observable effect on the BEC. Since we can also reach scattering lengths up
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Figure 4.4: Width of the quasimomentum distribution after 6951 Bloch oscillations (4 s evolution
time) in a compressed trap at different values of the magnetic field. The solid line is a
Gaussian fit to the data, to guide the eye and to determine the position of the dephasing
minimum. The minimum is found at 17.119(2) mG. Above the plot is a scale indicating
the scattering length. This scale has been chosen such that the zero agrees with the value
17.13 mG inferred from this measurement, including a correction due to magnetic dipole-
dipole interactions, and the slope is 61 G/a0, inferred from coupled-channel scattering
calculations performed at NIST [Jul04].

to 2000 a0, this shows that we can reproducibly change the scattering length over more than
four orders of magnitude.

Although the point of minimum dephasing can be inferred with high precision from the
data in figure 4.4, this does not automatically translate into an accurate and precise measure-
ment of the scattering length zero crossing. I will now discuss the statistical error and the
main factor limiting accuracy, magnetic dipole-dipole interaction.

Magnetic field measurement and statistical error

The magnetic field value was measured by microwave spectroscopy. A 200 ms long mi-
crowave pulse was applied to a cold thermal gas in the same trap configuration that was
used to measure the dephasing minimum. If the pulse is resonant with the (|F = 3,mF = 3〉 →
|F = 4,mF = 4〉) transition, heating due to spin relaxation leads to atom loss. The magnetic
field can be determined from the resonance frequency using equation (2.37), as discussed in
section 2.2.8. The long pulse duration was used to make sure that any short-time fluctuations
in the magnetic field are averaged out.

The magnetic field was measured for two different control voltages given to the Helmholtz
coil control circuit. The fieldB corresponding to a control voltage V is calculated from a sim-
ple linear interpolation

B(V,B2, B1) =
B2 −B1

V2 − V1
(V − V2) +B2, (4.11)

where B1, B2 is the field measured for the control voltages V1, V2. The total statistical error
in determining B is then

∆B(V0, B1, B2) =

√(
∂B

∂V0
∆V0

)2

+
(
∂B

∂B1
∆B1

)2

+
(
∂B

∂B2
∆B2

)2

. (4.12)
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We measure B1=17.1426(16) G for V1 = 1.8 V and B2 = 17.0937(12) G for V2 = 2.2 V. A
Gaussian fit to the data in figure 4.4 gives that the minimum dephasing is at a control voltage
V0 = 1.992(36) V. From this we can calculate that dephasing is minimized at a magnetic field
of 17.119(2) G. The uncertainty from the fitting process contributes about as much to the final
error as the uncertainty from the magnetic field measurement.

Shift due to magnetic dipole-dipole interaction

Apart from the contact interaction characterized by the scattering length, there are other
forms of atom-atom interaction. The strongest of these is the magnetic dipole-dipole interac-
tion [Men08] which is described by a potential

Vdd(r) = −µ0µ
2

4π

(
3 cos2 θ − 1

r3

)
, (4.13)

where µ0 is the Bohr magneton, µ is the magnetic moment of the atom, r the distance be-
tween the two interacting dipoles and θ the angle between the direction joining the two
dipoles and the dipole orientation (assuming that the dipoles are aligned in the same direc-
tion). The relative strength of the dipolar interaction compared to the contact interaction is
characterized by the dimensionless parameter

εdd =
µ0µ

2m

12π~2a
. (4.14)

In most cases εdd � 1, for example Cs with a = 210 a0 yields εdd ≈ 0.003, and the dipolar
interaction is completely negligible. When we tune the scattering length close to zero, this is
no longer the case. For a = 0.5 a0, εdd ≈ 1.2. Therefore, the total on-site interaction is not zero
when the scattering length is zero, but rather where the contact and dipolar interactions
cancel each other out. The scattering length ā where this happens has been calculated in
[Fat08b], approximating the BEC wave function at a lattice site with a Gaussian with radius
σ⊥ and σlat in the radial and axial lattice directions, respectively. For the case where the
atomic dipoles are oriented along the lattice axis as in our system, it is

ā = −µ0µ
2m

6π~2

(
1− 3π

4
σ⊥
σlat

)
(4.15)

in the limit σ⊥ � σlat. In our experiment, we excite considerable motion in the radial direc-
tion when we switch to a new scattering length during the Bloch oscillations. However, the
dependence on the radial size of the BEC is very weak for our experimental conditions, and
equation (4.15) should therefore still be valid. For our system, ā = −1.13 a0.

Since the magnetic dipole-dipole interaction is long-range, it does not only change the
on-site interaction. It also gives rise to a non-negligible inter-site interaction term, which
was calculated numerically in [Fat08b]. Under the assumption that the relative strength of
the inter-site and the on-site interaction is the same for our system, we can estimate the
scattering length for which the dephasing is minimized to be ā ≈ −0.7a0. This means that
the scattering length zero crossing is at 17.13 mG, offset by 11 mG from the point of minimum
dephasing.
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4.2.4 Limit of vanishing interaction - long lived Bloch oscillations and mea-
surement of local gravity

Minimizing the interaction strength allows us to observe a large number of Bloch oscilla-
tions. As shown in figure 4.5, more than 20000 oscillations can be clearly observed. This cor-
responds to a coherent absorption and emission of 40000 photons over more than 10 seconds
and is the largest number of Bloch oscillations that have been observed.

1 osc.
(0.575 ms)

1000 osc.
(575.4 ms)

10000 osc.
(5.754 s)

20000 osc.
(11.508 s)

30000 osc.
(17.261 s)

Figure 4.5: Absorption pictures showing long-lived Bloch oscillations. The pictures are taken after 27
ms of free expansion.

To determine the Bloch oscillation period, we fit two Gaussian peaks to the quasimomen-
tum distribution. The position of the strongest of these peaks can be seen as a measure of the
phase of the Bloch oscillation. Figure 4.6 shows how the phase evolves with time. A fit to
the data with a sawtooth pattern yields an oscillation period of 0.5753807(5) ms – a relative
precision of 9 · 10−7. To rule out any effects due to gradients caused by the switching of the
magnetic fields, the first 100 ms of data were excluded from the fit. Towards the end of the
plot, the data points show more scatter. We believe that this is not due to shot-to-shot fluctua-
tions in the actual phase, but rather that the broadening of the quasimomentum distribution
makes the fitting procedure more unreliable.

Knowing the Bloch period, local gravity can be determined from equation (4.1). The
wavelength of the lattice light was measured to 1064.4946(1) nm with a commercial waveme-
ter (High Finesse WS7), which gives a local gravity g = 9.803821(9) m/s2. The high sensitiv-
ity reached clearly shows the potential for precision measurements with BECs with tunable
scattering length.

Systematic errors

The error given for local gravity is statistical only. The goal of this experiment was to show
that it is possible to make precision measurements with a BEC with tunable scattering length,
not to make an accurate measurement of local gravity, and we have made no effort to evalu-
ate the systematic errors. We expect that the main factor limiting accuracy is stray magnetic
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4. Bloch oscillations and interaction-induced dephasing

Figure 4.6: The position of the strongest peak in the momentum distribution as a function of time.
The solid line is a fit to the data, from which a Bloch period of 0.5753807(5) ms can be
extracted.

field gradients, which cause a supplemental force indistinguishable from gravity. In cases
where one is content with measuring a change in force to high accuracy, this error will cancel
out in a differential measurement.

Another cause of systematic error is misalignment between the lattice direction and the
force direction. The Bloch oscillation period is inversely proportional to the component of the
force acting along the lattice direction, and a 1 mrad misalignment would cause a systematic
error of 5 · 10−7. For the current case where we measure gravity, the beam alignment could
be done by slightly tilting the optical table and measuring the force as a function of table tilt.

Limitations

We have shown that when we minimize interactions using a Feshbach resonance, we can
observe more than 20000 Bloch oscillations. What limits the number of oscillations we can
observe? Although we have not investigated this in detail, I will list some effects that could
contribute.

• Magnetic field noise Since the amount of phase picked up at a lattice site due to inter-
actions is proportional to the scattering length (see section 5.1.1), the effect of magnetic
field fluctuations around an average value will cancel out with time, as long as the
density is constant. This means that magnetic field noise on a time scale faster than
any induced density modulations. In our system, there is a density modulation caused
by the transverse excitation which is on the time scale of the trap frequencies (≈ 10 Hz).
Noise with much higher frequency than this should therefore not influence the dephas-
ing. This means that we are mainly sensitive to long-term drifts in the magnetic field.

• Magnetic dipole-dipole interactions between lattice sites As discussed in chapter
4.2.3, the magnetic dipole-dipole interaction is not negligible when the scattering length
is sufficiently small. The on-site dipolar interaction energy has the same dependence of
the atom number as the contact interaction and it is possible to have them cancel each
other out on every lattice site. However, the dipole-dipole interaction is long-range and
there is also an interaction energy due to inter-site interactions [Fat08b]. This term can-
not be canceled out and no matter the scattering length, there will always be a small
residual interaction leading to dephasing.
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4.3. Possibilities for precision measurements with a BEC at zero scattering length

However, there is a way around this limitation. If the atomic dipoles are oriented at
an angle θ = 54.7° to the lattice axis, the dipolar interaction energy will average to
zero [Gio02]. This could be achieved by an appropriate orientation of the magnetic
offset field.

• Photon scattering Although the lattice is very far detuned from the atomic resonance,
spontaneous emission cannot be neglected on long timescales. Scattering of photons
leads to heating and decoherence. It has been shown [Kol02] that in the presence of
spontaneous emission, the amplitude of the oscillation of the mean momentum will
decay exponentially with a time constant given by the photon scattering rate. We are
using a lattice depth of 8 ER, which at 1064 nm wavelength corresponds to a scattering
rate of 0.2 photons/min. This is too slow to explain the decay we are seeing.

Heating due to photon scattering is a fundamental limit to the number of Bloch oscil-
lations one can observe. It is not possible to use a lower lattice depth as this leads to
atom losses due to an increased tunneling rate out of the lattice. The way around this
limitation is instead to either use a further red-detuned lattice (which will also give a
shorter Bloch period due to the smaller lattice k) or to use a lattice detuned to the blue
side of the atomic resonance, where the atoms are trapped in scattering minima.

Instead of increasing the number of Bloch oscillations one can observe, the Bloch period
precision can be improved by a better measurement of the oscillation phase. We determine
the momentum distribution of the BEC by absorption imaging, which is somewhat crude
and can reach an estimated resolution of about ~k/200 if long expansion times are used.
Cladé et al. have demonstrated [Cla05, Cla06b] a technique to precisely measure the momen-
tum distribution by employing a velocity-selective Raman transition into another hyperfine
state and subsequent spin-dependent detection. A sensitivity of ~k/10000 was reached with
160 shots.

4.3 Possibilities for precision measurements with a BEC at zero
scattering length

The results in the previous section show the potential for doing precision measurements
with a BEC with tunable interactions. To further argue this point, I will analyze a scheme
for measuring the fine structure constant with a BEC interferometer that could be imple-
mented with the current setup and estimate the main error sources and challenges of such
an experiment.

4.3.1 Measuring the fine structure constant with a contrast interferometer

The fine structure constant α is one of the fundamental constants of nature, describing the
strength of the electromagnetic interaction in the framework of QED. The CODATA-2006
[Moh08] recommended value of α has an uncertainty of 0.68 ppb, which makes it one of the
most precisely measured fundamental constants. However, as illustrated in figure 4.3.1, the
recommended value is to a large extent determined by a single experiment, a measurement
of the electron magnetic moment carried out at Harvard [Odo06] and an accompanying elab-
orate QED calculation [Gab06] (0.7 ppb). The danger in having only one method that defines
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the value of a constant is illustrated by the fact that the Harvard 2006 value later had to
be adjusted due to a correction of the QED analysis [Gab07]. Recently, the Harvard group
published an improved measurement [Han08], reaching an uncertainty of 0.37 ppb.

The best α measurements carried out with other methods come from photon recoil mea-
surements, using Bloch oscillations of thermal Rb atoms [Cla06a, Cla06b] (6.7 ppb) and an
atom Ramsey-Bordé interferometer with cold thermal Cs atoms [Wic02, Ger06] (8.0 ppb).
These measurements have an uncertainty more than a magnitude larger than the Harvard
measurement and there is a clear need for a better alternative α measurement to confirm the
Harvard findings. Since the Harvard method needs a QED calculation to arrive at a value
for α, an independent α measurement is at the same time a test of QED.

Figure 4.7: Upper: The results of the most recent α measurements. From [Han08]. Lower: The values
used to determine the CODATA-2006 value of α. From [Moh08].

I will here briefly describe a method to measure α with a BEC interferometer, as outlined
and demonstrated in [Gup03, Gup02]. The method builds on the fact that the fine structure
constant can be written as

α2 =
2R∞
c

h

me
=

2R∞
c

mCs

me

h

mCs
. (4.16)

The Rydberg constant R∞ is known to better than 7 ppt [Moh08], the Cs mass mCs has an
uncertainty of 0.18 ppb [Wap03, Aud03] and the electron mass me is known to 0.42 ppb
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[Moh08]. This means that a precision measurement of ~/mCs would result in a competitive
determination of the fine structure constant. ~/mCs can be determined by measuring the
photon recoil frequency ωrec, the frequency corresponding to the kinetic energy of a Cs atom
recoiling from the absorption of a photon with wave vector k,

~ωrec =
~2k2

2mCs
. (4.17)

k can be measured very accurately for near-resonant light by referencing it to the Cs D2 line,
which has been measured with an uncertainty of 110 kHz or 0.4 ppb [Ude00]. Alternatively,
far-detuned light that is referenced to a calibrated frequency comb could be used.

Figure 4.8: (a) 2-way interferometer sensitive to the photon recoil, resulting in a moving density
wave. (b) Extension to a 3-way contrast interferometer. From [Gup03].

An interferometer scheme for measuring ωrec is illustrated in figure 4.8(a). A standing
wave with wave vector k is used to split a BEC into two momentum states, |0~k〉 and |2~k〉,
using a Bragg π/2-pulse. After a time T , a second order Bragg π-pulse is used to reverse the
momentum, transferring the |+2~k〉 state into |−2~k〉. This causes the two parts to recombine
after a time 2T . The two wavepackets will interfere and form a moving density wave . The
phase of this wave at time 2T will depend on the relative phase of the wavepackets. The
wavepacket in path 2 has been moving with a velocity 2~k with respect to path 1, which
corresponds to an additional kinetic energy 4~ωrec. Path 2 will then pick up an extra phase

δΦ = 8ωrecT + φ1 + 2φ2, (4.18)

where φ1 and φ2 are the phases of the optical lattice at the time of the two Bragg pulses.
This idea can be extended to a three-way interferometer as shown in figure 4.8(b). The

initial splitting of the BEC can be done using a Kapitza-Dirac pulse, creating momentum
states |−2~k〉, |0〉 and |2~k〉. When the states are recombined, there will be two density waves
moving in opposite direction, which will interfere and create a standing wave. Both the
frequency and the phase of this standing wave will depend on the recoil frequency. The
standing wave can be probed by scattering a weak light pulse off the density wave, which
acts as a matter wave grating. Due to the symmetry of the setup, many error sources will be
canceled out. Especially, the standing wave will not be sensitive to the phases φ1 and φ2 and
the measurement will therefore not be sensitive to mirror movement between the splitting
and recombination pulses. The intensity of the scattered probe pulse, proportional to the
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amplitude of the matter wave grating, will around the time 2T vary as

I(t) ∼ cos2(8N2ωrecT + 4N2ωrec(t− 2T ) + φoff), (4.19)

where φoff describes a possible phase offset due to for example diffraction phase shifts or
light shifts. A measurement of the recoil frequency can then be done by measuring the phase
Φ of the density modulation at time t = 2T for varying separation times T , using the relation

Φ = 8ωrecT + φoff. (4.20)

The scheme can be extended by using higher order Kapitza-Dirac and Bragg pulses
to create higher momentum states. The energy (and therefore the measured phase) scales
quadratically with the number of photon recoils and the phase φ will for N th order pulses
simply be

Φ = 8N2ωrecT + φoff. (4.21)

Recently, 12th order Bragg pulses have been demonstrated [Mül08]. The quadratic scaling is
an advantage compared to most other interferometer schemes to measure the photon recoil
[Wic02, Cla06b], which scale linearly with the number of scattered photons. Other advan-
tages are that the atoms in all interferometer paths are in the same internal state, which
makes many systematics common-mode, like for example the AC Stark shift.

4.3.2 Estimates of statistical and systematic errors

The experiment by Gupta et al. [Gup02] was a proof-of-principle experiment, intended to
demonstrate the contrast interferometry method. The measured value of α had a statistical
error of 7 ppm and deviated by a factor of 2·10−4 from the accepted value. The sensitivity was
limited by uncontrollable phase shifts due to the BEC mean-field energy and laser intensity
noise, and the accuracy was limited by the mean-field energy [Gup03]. In our setup, we can
tune the scattering length to zero and strongly suppress the atom-atom interactions. I will
here estimate what errors would affect an α measurement with our system.

Shot noise

Phase fluctuations due to atom shot noise is a fundamental limit to the precision one can
obtain in a single shot. Assuming that Nat = 105 atoms contribute to the signal, the phase
error is [Gup03] ∆Φsn ≈ 2/

√
Nat ≈ 6.3 mrad. The total phase measured for N = 12 and

interferometer time T = 50 ms is Φ = 8N2ωrecT ≈ 7.5 · 106 rad and ∆Φsn/Φ ≈ 8.5 · 10−9. To
get down to 1 ppb precision, one would need to average over ≈ 70 shots, which would take
about 12 minutes in the current setup.

Laser intensity fluctuations

If the intensity of the standing wave changes so that the Bragg pulse is not a perfect π-
pulse, not only does the population in the different interferometer arms change, there is also
a change in the offset phase φoff in equation (4.21). Shot-to-shot drifts in laser intensity will
then translate into fluctuations of the measured interferometer phase and affect the precision.
This error can be estimated to [Büc03b]

∆Φint ≈
4π
3

(1 + δ)2, (4.22)
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where δ is the relative drift in laser intensity. An intensity variation as small as 0.2 % would
still change the interferometer phase by 17 mrad, leading to a relative phase error of 2.3 · 10−8

for N = 12 and T = 50 ms.

Gouy phase

For a plane wave, the wave vector is exactly k = 2π/λ. For a Gaussian beam, the phase along
the beam axis evolves as φ = kz − ζ(z) where ζ(z) = tan−1( z

zR
) is the so called Gouy phase

(zR is the Rayleigh length) [Sal91]. This means that the effective wave vector keff
z = dφ

dz is not
equal to k. At the beam focus, it is shifted such that

keff
z − k

k
≈ 2
k2w2

0

(4.23)

for a beam with waist (1/e2-radius)w0. Since ωrec ∝ k2, the recoil frequency is thereby shifted
by

∆ωrec

ωrec
= 2

∆k
k
≈ 1.9 · 10−8 (4.24)

for a beam with 2 mm waist. One can get a smaller Gouy phase shift by shifting the inter-
action region away from the focus, but then the wavefront is curved which also leads to a
shift of the effective k vector. In [Cla06b], the Gouy phase shift and the wavefront curva-
ture for a 2 mm beam lead to a systematic error of 16.4 ppb with an uncertainty of 8 ppb.
Although a BEC is much smaller than the ≈ 800 µm diameter thermal cloud in [Cla06b]
and the wavefront curvature therefore should be less of a problem, systematics due to the
curved wavefront of the Gaussian beam is one of the main hurdles that needs to be overcome
to reach an accuracy on the ppb level.

Mean-field shift

The mean-field energy and chemical potential for a condensate was discussed in section 2.1.2.
For a cloud with peak density n and scattering length a, the chemical potential for a BEC in
the Thomas-Fermi regime released from a harmonic trap is according to equations (2.19),
(2.20) and (2.25)

µ =
16π~2na

7m
. (4.25)

Typical values for a Cs BEC are a density of n = 1013 cm−3 and a scattering length a = 210 a0,
which would lead to the phase evolving with frequency ωint = µ/~ ≈ 2π · 60 Hz. This can be
compared with the 133Cs recoil frequency ωrec ≈ 2π ·2070 Hz, and one immediately sees that
the mean-field energy can cause large errors. Any imbalance between the interferometer
arms will lead to a shift in the measured interferometer phase. Shot-to-shot atom number
fluctuations will limit the precision and a systematic imbalance will lead to a systematic
phase shift. If the imbalance is x, the phase shift will be

∆Φint

Φ
=

xωint2T
8N2ωrecT

=
xωint

4N2ωrec
(4.26)

With an imbalance x = 5%, ∆Φint/Φ would be 2.5 · 10−6 for N = 12.
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4. Bloch oscillations and interaction-induced dephasing

In the experiment of Gupta et al., the mean-field shift was probably the main factor limit-
ing both precision and accuracy. With the control over the scattering length demonstrated in
this chapter, this error can be suppressed by many orders of magnitude. Switching the scat-
tering length to 0.1 a0 before the interferometer pulses are applied would reduce the error to
∆Φmf

Φ ≈ 1 · 10−9. Reducing the density could lower the error even more.
It is necessary to have a very homogenous magnetic field to reach these low scattering

lengths during the whole evolution time of the interferometer. The outer arms of the inter-
ferometer are up to 350 µm apart 50 ms after splitting the BEC and the magnetic field needs
to be constant on the mG level over this distance.

Magnetic dipole-dipole interaction

As discussed in section 4.2.3, the magnetic dipole-dipole (MDD) interaction becomes non-
negligible when the scattering length is small. The ratio of mean-field energy from the con-
tact interaction and the mean-field energy from the MDD interaction is [Gio03]

Emf,MDD

Emf,contact
= εddf(κ)

(
3 cos2 ϕ− 1

2

)
, (4.27)

where εdd is the dimensionless parameter characterizing the relative strength of the MDD
interaction defined in equation (4.14), κ is the aspect ratio of the BEC and ϕ is the angle be-
tween the magnetic field and the BEC axis. f(κ) is a function that is zero for a spherical BEC,
approaches 1 in the limit of an elongated cigar-shaped BEC and−2 in the limit of a pancake-
shaped BEC. For 0.1 a0 scattering length, εdd ≈ 6. For a cigar-shaped BEC with aspect ratio 2,
f(κ) ≈ 0.5 and the mean-field shift due to MDD interactions is about 3 times larger than the
contact interaction shift, or 3 ·10−9. This could be reduced by either creating a more spherical
BEC (in a crossed dipole trap, that would require elliptical beams) or changing the angle of
the magnetic field with regard to the BEC axis.

Magnetic field inhomogeneity

For symmetry reasons, errors due to stray magnetic bias fields and gradients are suppressed.
The measurement is only sensitive to the magnetic field curvature B′′. The energy due to the
curvature is EB(t) = −3

4µBB
′′x(t)2 and the extra phase picked up is therefore

∆ΦB = −2
~

∫ T

0

3
4
µBB

′′
(
N~kt
m

)2

dt (4.28)

= −µBB
′′N2~k2T 3

2m2
(4.29)

= −µBB
′′N

2ωrecT
3

m
, (4.30)

assuming that the velocity change due to the curvature is negligible. This gives a relative
error of

∆ΦB

Φ
=
µBB

′′T 2

8m
. (4.31)

It should be possible to null the magnetic field curvature to the order of 1 G/cm2, which
would lead to a relative error of≈ 1.3 · 10−10 for an interferometer time T of 50 ms. Since the
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Error source Estimated relative error (ppb)
Atom shot noise 8.5
Laser intensity fluctuations 23
Mean-field shift (210 a0) 2500
Mean-field shift (0.1 a0) 1
Magnetic dipole-dipole interaction 3
Gouy phase shift 19
Magnetic field curvature 0.13
Beam alignment 0.9

Table 4.1: Summary of the estimated statistical and systematic errors affecting the contrast interfer-
ometer.

error scales quadratically with T , systematics due to the field curvature might be a limiting
factor for longer interferometer times.

It is also worth noting that this systematic prohibits the use of levitation during the mea-
surement. According to equation (2.32), a levitating gradient automatically leads to a curva-
ture of≈ 7 · 108 G/cm2, which would lead to an error of almost 10 % for T = 50 ms! Even for
T = 1 ms, the relative error would be more than 10−5.

Beam alignment

The standing wave needed for the Kapitza-Dirac and Bragg pulses is created by two counter-
propagating beams. A misalignment of these beams by an angle θ will change the effective
wave vector k by

∆k
k

= 1− cos
θ

2
≈ θ2

2
. (4.32)

From equation (4.17) we can deduce a relative error

∆ωrec

ωrec
= 2

∆k
k

= θ2. (4.33)

Other experiments [Cla06a] have demonstrated a misalignment below 30 µrad, which would
correspond to a relative error of 9 · 10−10. If necessary, active beam alignment [Mül05] could
further reduce this error.

Summary

The estimated statistical and systematic errors are compared in table 4.3.2. Although this
is not an exhaustive study of all possible error sources, it gives a good picture of the main
challenges to make a precise and accurate α measurement with a BEC contrast interferome-
ter. With the scattering length being tuned to zero, the main error contributions come from
technical sources, especially the laser beams creating the standing wave. If the laser inten-
sity could be stabilized to 0.2 %, the statistical error could be expected to be around 23 ppb
per shot. Since it takes about 10 s to create a BEC in our setup, a sensitivity of 5 ppb would
be attained in ≈ 20 shots or 3.5 minutes, and 1 ppb precision could be reached in 1.5 h.
The main systematic error would come from the Gouy phase shift. Although a competitive
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4. Bloch oscillations and interaction-induced dephasing

measurement of α would be a difficult and time-consuming task requiring a purpose-built
apparatus, we intend to make a proof-of-principle measurement with the current setup. A
laser system capable of doing the required Bragg and Kapitza-Dirac pulses has already been
built [Mar07a].

It is very clear that for atoms without a tunable scattering length, errors due to the mean-
field energy dwarf all other errors. With a scattering length that is precisely tunable close to
zero, the mean-field shifts would not be the primary issue any more. This is one of the main
messages of this thesis.

80



5
Coherent dephasing of Bloch

oscillations

In the previous chapter, we saw that atom-atom interactions lead to dephasing of Bloch os-
cillations. We will now demonstrate that, in the limit of a strong applied force, this dephas-
ing causes the condensate wave function to develop an interference pattern within the first
Brillouin zone. In contrast to other matter wave interference experiments, where particle-
particle interactions are expected to lead to uncontrollable phase shifts and form a source of
decoherence, the dynamics here are driven by the interactions. This illustrates an important
point: this dephasing is a coherent process that can be controlled and even reversed using
an external potential or a Feshbach resonance.

5.1 Theory

In this section, a simple analytic model for the dephasing of Bloch oscillations will be devel-
oped. It is a simplified version of a model described in [Wit05].

5.1.1 Dephasing in the limit of a strong force

In section 3.1.4, it was shown that the evolution of a BEC in a 1D optical lattice subject to an
external force can be described by a discrete nonlinear Schrödinger equation of the form

i~
∂cj
∂t

= J (cj−1 + cj+1) +
(
µloc

j (cj) + V trap
j + Fdj

)
cj , (5.1)

where cj =
√
Nje

iφj is the complex amplitude of the wave function at lattice site j. In the
case where the force F is large, this model can be further simplified. When the difference
in potential energy between neighboring lattice sites, Fd, is much larger than the tunneling
matrix element J , tunneling between lattice sites is strongly suppressed. The hopping term
coupling adjacent lattice sites can then be neglected and the number of atoms at a site is fixed
to its initial value. The time dependence of the system is now only determined by the phase
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5. Coherent dephasing of Bloch oscillations

evolution of the local wave functions, and equation (5.1) can be rewritten as

~
dφj

dt
= µloc

j (cj) + V trap
j + Fdj. (5.2)

As seen in equation (3.34), the local chemical potential µloc
j can be calculated from the density

distribution as
µloc

j = U1|cj | =
√

mω⊥g√
2ππσlat

|cj |. (5.3)

When the lattice is adiabatically loaded, µloc
j can also be calculated in a much simpler way.

In the Thomas-Fermi approximation of the BEC ground state (see section 3.1.5), the local
chemical potential mirrors the external trapping potential,

µloc
j = µ− V trap

j . (5.4)

This has one important consequence; contrary to what one could believe from equation (5.3),
the local chemical potential is not dependent on the scattering length used at loading, as long
as the lattice loading is sufficiently adiabatic and the condensate stays in the ground state. On
the other hand, after an external force is applied and the density distribution is frozen, the
local chemical potential can be changed according to equation (5.3) by, for example, changing
the scattering length.

Figure 5.1: If the lattice is adiabatically loaded and the condensate stays in the ground state, the local
chemical potential mirrors the external trapping potential.

Knowing µloc
j , we can now calculate the BEC wave function for our system. The lattice

is adiabatically loaded, the chemical potential mirrors the trap potential at loading and we
therefore have µloc

j = µ − 1
2mω

2
zd

2j2. Bloch oscillations are induced by applying a force and
shutting the dipole trap off, and we have V trap

j = 0. The phase at lattice site j will then start
to evolve as

~
dφj

dt
= −αintj

2 + Fdj, (5.5)

where αint = 1
2mω

2
zd

2 and a global phase due to µ has been neglected. Following the discus-
sion in section 4.1, we can then write the wave function in momentum space as

Φ(p, t) =
∑

j

cjwj(p) = w0(p)
∑

j

cje
−ipkd/~. (5.6)
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Using cj(t) = cj(0)eφj(t) and converting to quasimomentum space by dividing by the Wan-
nier function, we have

Φ(q, t) =
∑

j

cj(0)ei(−αintj
2+Fdj)t/~e−ijqd/~

=
∑

j

cj(0)e−iαintj
2t/~e−i(q−Ft)jd/~. (5.7)

As previously discussed, the term linear in j describes a translation in quasimomentum
space, causing Bloch oscillations. Now there is also a new term quadratic in j, coming from
the spatially quadratic interaction potential, which leads to a dephasing between lattice
sites. How does this affect the quasimomentum distribution? As visualized in figure 5.2a,
the quadratic dephasing initially leads to a broadening of the Bloch oscillating wave func-
tion. Figure 5.2b shows how the wave function behaves for longer evolution times (here,
the linear term leading to Bloch oscillations has been omitted, to better visualize the effect
of the quadratic dephasing). We see that the wave function does not only broaden, but the
interference of the wave functions at the different lattice sites gives rise to a complex pattern.
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Figure 5.2: (a) The evolution of the quasimomentum distribution of a Bloch oscillating interacting
BEC according to the model of equation (5.7) (b) Effect of the interaction term on the
quasimomentum distribution for longer time scales.

5.1.2 Shift in oscillation period due to the lattice position

In the derivation of equation (5.7), it was assumed that the local chemical potential is of the
form µloc

j = αj2. However, if the center of the external harmonic confinement is not directly
over one lattice site, this has to be slightly modified to µloc

j = α(j + δ)2, where δ ∈ [0, 1]
describes an offset of the trap center with respect to one of the lattice minima. Equation (5.5)
for the phase evolution then has to be modified to

~
dφ

dt
= Fdj + α(j + δ)2

= (Fd+ 2αδ)j + αj2 + const. (5.8)
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5. Coherent dephasing of Bloch oscillations

The offset results in an additional term linear in j and can be seen as adding a modification to
the applied force F . In the experiment, we have Fd� 2α and the modification is small, but
not negligible. In practice, it is very challenging to stabilize the external trap position with
respect to the location of the lattice wells. This means that the quasimomentum distribution
of two subsequent experimental realizations will look equal, except that the center of the
distribution will be shifted to due to the effective force being slightly different.

5.1.3 From the 1D model to a 2D absorption picture

Absorption pictures taken in our experiment after a long expansion time show the momen-
tum distribution of the wave function integrated over one direction,

F (px, pz) =
∫
|Ψ(p)|2dpy. (5.9)

To compare our simple model with the absorption pictures, we need to calculate this quan-
tity. The total 3D wave function in momentum space can be written as a sum of a Wannier
function in the vertical (z-) direction and a Thomas-Fermi wave function in the radial (ρ-)
direction,

Ψ(p, t) =
∑

j

cj(t)e−ijpzd/~ΦW (pz)ψTF (pρ, Nj). (5.10)

The Thomas-Fermi wave functions ψTF are dependent on the atom number and equation
(5.10) cannot be directly simplified. It is however straightforward to evaluate equations (5.9)
and (5.10) numerically.

5.2 Experimental realization

5.2.1 Experimental parameters

The setup for studying the coherent dephasing is essentially identical to the setup described
in chapter 4. The only substantial difference is that we work with a dipole trap that is about
4 times tighter in the vertical direction, which makes the dephasing faster.

The experiments are performed with a BEC of up to 1.5 · 105 atoms created in a dipole
trap with trap frequencies 2π × (39, 5, 39) Hz. The scattering length is set to 210 a0. The
trap is tightened to 2π × (41, 13, 39) Hz and at the same time the optical lattice oriented
along the vertical direction is raised to 8 ER within 1 s. The slow ramp makes sure that the
BEC is loaded adiabatically in the lattice, even with respect to transversal breathing modes.
After loading, the BEC is cigar-shaped with Thomas-Fermi radii (9,28,8) µm. This means that
approximately 35 lattice sites are occupied, with up to 7500 atoms in the central site.

As before, Bloch oscillations are induced by turning off the magnetic levitation while si-
multaneously ramping down the power in the horizontal dimple beam in 0.3 ms. The coils
producing the levitation gradient also add a small homogenous magnetic field. Therefore,
shutting off these coils slightly changes the magnetic field at the position of the atomic sam-
ple, and the scattering length is changed to 190 a0. After a period of evolution in the lattice,
the vertical dimple beam and the lattice are adiabatically ramped down in 1 ms.
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Figure 5.3: Interaction-induced matter wave interference. (a) Absorption images showing the quasi-
momentum distribution as a function of time. (b) The evolution of the quasimomentum
wave function evolution according to the simple model in equation (5.7). The pictures are
simulated absorption images calculated as described in section 5.1.3. αint has been rescaled
by a factor 0.9 to account for the reduction in density due to the transversal dynamics, see
text.

5.2.2 Structure of a dephased cloud in quasimomentum space

According to the simple model discussed in section 5.1.1, the dephasing of of the BEC due to
interactions should give rise to interference patterns in quasimomentum space. We test this
by taking absorption pictures of the dephased condensate after different times of evolution
in the lattice. The pictures are taken after 80 ms of levitated expansion, where the vertical
trapping beam was slowly ramped down over 50 ms to reduce the expansion in the horizon-
tal direction. Figure 5.3a shows the result of this experiment. During the first couple of Bloch
cycles, the wave function broadens and spreads out in the first Brillouin zone. After about
14 Bloch cycles, interference fringes start to develop at the edge of the wave function. The
fringes later grow inwards, and after about 26 cycles cover the whole Brillouin zone. The
evolution of the pattern can be followed over more than 100 Bloch cycles, corresponding to
over 60 ms.

We find that the distance between the interference maxima is reproducible, but the over-
all position of the pattern will be slightly shifted from one experimental run to the next. This
can be attributed to the subtle effect described in the previous chapter; the exact location of
the lattice minima with respect to the dipole trap minimum will cause a slight change of the
Bloch frequency.

The images obtained in the experiment can be compared with the simple analytical
model from section 5.1.1. For our experimental parameters, Fd ≈ 1.3ER ≈ h × 1740 Hz,
J ≈ 0.038ER ≈ h × 40 Hz and αint ≈ 2.1 · 10−3ER ≈ h · 2.8 Hz. The evolution of the wave
function is very well reproduced when we reduce αint by a factor 0.9. This scale factor ac-
counts primarily for the fact that our model assumes that there is no transversal dynamics. In
the experiment, this is not the case. Turning off the horizontal trapping beam when the Bloch

85



5. Coherent dephasing of Bloch oscillations

oscillations start excites a radial breathing mode (there is no breathing along the vertical axis
since tunneling between lattice wells is prohibited). The breathing reduces the density and
modulates it in time. Reducing αint is a simple way of taking this into account. Although not
a complete description of the experiment, our simple model captures the essential physics:
The mean-field interactions lead to a phase shift that is quadratic with respect to the lattice
site number. As a result of this phase shift, the interference of the different lattice site wave
functions leads to a momentum broadening and later an interference pattern. The emergence
of an interference pattern and its agreement with the theoretical model demonstrates that the
interaction-induced dephasing is a coherent process.
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Figure 5.4: Left: Contrast of the interference fringes emerging during free expansion after the trap is
switched off. The BEC has been dephased over 40 Bloch cycles. The contrast is defined as
(Imax − Imin) / (Imax + Imin), where Imax(Imin) is the average of the maxima (minima)
of the central peak structure. Right: Absorption pictures and integrated column density
for two different expansion times.

To observe the interference structure with high contrast, two key features of our imaging
procedure are important. First, the scattering length has to be switched to near zero during
expansion. This minimizes interactions during expansion, which otherwise lead to mean-
field induced broadening of the cloud. Second, the time of free expansion must be long, such
that the size of the imaged cloud is much larger than the size of the condensate in the trap,
and the absorption image really shows the momentum distribution. This is illustrated in fig-
ure 5.4. However, if the expansion time is too long, the atom cloud becomes very dilute and
the signal-to-noise ratio goes down. We found 80 ms expansion time to be a good compro-
mise, allowing both high contrast fringes and low-noise pictures. Throughout this chapter,
this is the expansion time used unless otherwise indicated.

5.2.3 Cancelation of dephasing through an external potential

The dephasing of the BEC in our system is due to the interaction potential. Equation (5.2)
suggests that it should be possible to counteract the interaction potential using a suitable
external potential. We can easily test this by switching the dipole trap depth to a new value
during the Bloch oscillations, instead of shutting the trap off as in the previous case. The
result of this experiment can be seen in figure 5.5. Figure 5.5a and 5.5b show absorption
pictures taken after 40 Bloch oscillations. Without a compensating potential, the BEC has
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dephased and the interference structure can be seen. However, with the right strength of the
compensating potential, Bloch oscillations are still clearly visible. This is further quantified
in figure 5.5c, which plots the rms-width of the quasimomentum distribution. The width is
minimized if the laser power of the trap is close to the one used at loading. This means that,
in contrast to most previously performed experiments, the best strategy for seeing Bloch
oscillations in a system with interactions is to not turn off the trap and instead only apply a
constant force.

Figure 5.5: Absorption images showing the quasimomentum distribution after 40 Bloch oscillations
for phase π (a) and phase 0 (b) and the quasimomentum rms-width (c) as a function of
the external confinement strength, normalized to the strength after loading. (d) Evolution
of the momentum distribution for the case when no compensating potential is present,
showing fast broadening. (e) When the effect of the mean-field potential is canceled by an
external potential, Bloch oscillations are visible for a much longer time.

This effect is straightforward to understand. When the lattice is loaded, the atoms dis-
tribute themselves such that the local chemical potential is the same at every lattice site, as
illustrated in figure 5.6. If the trap is turned off when the Bloch oscillations are started, both
a linear (from the force) and a quadratic (from the atom-atom interactions) potential is im-
parted on the atoms. By keeping the trap on, only a linear potential is applied which leads
to clean Bloch oscillations.

For how long can one observe Bloch oscillations when the interaction potential is opti-
mally compensated? Figure 5.5e shows how the quasimomentum distribution evolves with
time when interactions are optimally compensated. We see that the Bloch oscillations are
visible for about 150 Bloch cycles. This is an order of magnitude longer than for the case
without a compensating potential, shown in figure 5.5d. Here, after about 15 Bloch cycles,
the wave function is already so broad that it is hard to follow the Bloch oscillations. It is also
interesting to study the way the wave function dephases when the compensating potential
is added. Instead of broadening, the width of the central peak initially stays the same. Over
time, the peak is slowly depopulated, while the population in a broad background distribu-
tion increases. After about 100 Bloch cycles, the central peak starts to develop side lobes or
splits in two, with the exact shape varying from one experimental run to the next.
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Figure 5.6: Illustration of the local chemical potential during Bloch oscillations. Left: When the lat-
tice is loaded, the BEC arranges itself such that the local chemical potential is constant.
Middle: The trap is turned off when Bloch oscillations are started. The local chemical po-
tential gets a parabolic shape, leading to dephasing. Right: The dipole trap is not turned
off, and the local chemical potential varies linearly, leading to Bloch oscillations without
dephasing.

Other sources of dephasing

According to our simple model, there should be no dephasing when the effect of interactions
is compensated with the external potential. What effects not included in the model limit
the number of Bloch oscillations one can observe? I will discuss several possibilities: Radial
breathing, dynamical instabilities and beyond-mean-field effects leading to decoherence of
the phase on a single lattice site.

Radial breathing

Our simple model assumes that there is no motion in the radial direction. However, radial
breathing modes are excited when the Bloch oscillations are started, especially in the case
where the external harmonic trapping potential is turned off, leading to a change of the ex-
ternal confinement. The radial breathing, modulating the density and therefore the interac-
tion energy, could couple the different degrees of freedom and lead to additional dephasing.
When the interaction energy is compensated by the external potential as in figure 5.5e, the
external confinement is not changed when the Bloch oscillations are started, and only a small
radial excitation due to the magnetic field switching is visible. It is therefore unlikely that this
is the source for the residual dephasing observed.

Dynamical instabilities

Not all solutions to the Gross-Pitaevskii equation are stable. There are cases where the eigen-
frequencies of the Bogoliubov modes of the system exhibit complex values. Small perturba-
tions of the wave function grow exponentially over time, and these excitations ultimately
lead to heating and destruction of the condensate. This kind of instability is called a dynam-
ical instability.

When no external force is present, Bloch states that are close to the edge of the Brillouin
zone are dynamically unstable [Wu01, Wu03, Fal04, DS05]. Does this picture still hold when
an external force is applied? We can examine this effect by inducing Bloch oscillations as
before, but vary the external force by applying different levitating magnetic field gradients.
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Figure 5.7 shows an example of Bloch oscillations with a small force. With an acceleration
of about 0.07 g, coherence is destroyed as soon as the edge of the Brillouin zone is reached
and the distribution in quasimomentum space becomes evenly distributed. For a larger ac-
celeration of 0.14 g, the condensate partly “survives” the first crossing of the Brillouin zone
edge, but after the second crossing coherence is completely lost. This agrees with the find-
ings in [Cri04], where the first crossing of the Brillouin zone edge was investigated for a few
different lattice accelerations.

Figure 5.7: Bloch oscillations of an interacting BEC with a small external force, corresponding to an
acceleration of 0.07 g and 0.14 g, respectively. The scattering length is about 190 a0.

In [Cri04], the interpretation of this result was that with a larger acceleration, the conden-
sate spends less time in the unstable region at the edge of the Brillouin zone, and therefore
excitations do not have as much time to grow. However, stability analysis of a simple 1D
model [Zhe04] indicates that this picture may be too simple. Instead, if the applied force is
large enough that the potential energy difference between two adjacent lattice sites is large
compared to the interactions, characterized by the local chemical potential, the condensate
is stable in all regions of the Brillouin zone. The stability criterion is

Fd > 3.03µloc. (5.11)

If the force is smaller than the critical force Fc = 3.03µloc/d, the tunneling strength becomes
important. The stability criterion is then

Fd/µloc > 4.186
√
J/µloc. (5.12)

The region of stability is plotted in figure 5.8. In the experiments presented in this chapter,
with 1g acceleration and a lattice depth of 8ER, we have Fd/µloc ≈ 2.38 and

√
J/µloc ≈ 0.24.

This point is marked in the figure, and it is within the stable region.
Figure 5.9 shows the condensate quasimomentum wave function after forces of different

magnitude have been applied for a fixed amount of time, 30 ms. For this evolution time, the
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Figure 5.8: Regions of stability for a Bloch oscillating BEC. The vertical line marks the critical force
Fc = 3.03µloc/d and the diagonal line is Fd = 4.186

√
J/µloc. The cross marks the position

corresponding to the parameters used in the experiments described in this chapter when
the acceleration is 1 g.

condensate has had time to undergo many Bloch oscillations and for both the smaller and
the larger accelerations, approximately the same time has been spent crossing the edge of the
Brillouin zone. However, for accelerations . 0.4 g, the atoms are homogeneously distributed
over the Brillouin zone. For larger accelerations the interference pattern appears, a sign of
coherent evolution. This is consistent with the model put forward in [Zhe04].

Beyond-mean-field effects, on-site phase diffusion

Until now, we have assumed that we are in a regime where mean-field theory is applicable,
and the system can be described in a Gross-Pitaevskii framework. Going beyond the mean-
field treatment, several factors can lead to dephasing. For example, the number of atoms at
each lattice site is not a fixed number, but the many-body ground state exhibits number fluc-
tuations. For low lattice depths, where µloc/J � 1, the wave function at an individual lattice
site can be constructed as a superposition of different number states as |Ψ〉 =

∑
f(n) |n〉

with the distribution f(n) being Poissonian with a width σ(N) =
√
N , where N is the atom

number [Jav99].
When the Bloch oscillations are started by a applying a potential gradient, tunneling

is suppressed and the lattice sites become isolated from each other. The many-body wave
function can be written as a product state of the wave functions at the individual lattice sites,
which evolve independent of each other. The single-site contribution to the wave function
will evolve as

|Ψ(t)〉 =
∑

n

f(n)e−iE(n)t/~ |n〉 , (5.13)

whereE(n) is the energy corresponding to the number state |n〉. This means that the initially
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Acceleration
0.002 g 0.5 g 1 g

Figure 5.9: Absorption pictures showing the quasimomentum distribution after an external force was
applied for 30 ms. In the first picture, the force is so small that the edge of the Bril-
louin zone has not yet been reached, and the condensate is still intact. If the force is in-
creased, the condensate has passed the edge of the Brillouin zone and is destroyed by
a dynamical instability. However, above approximately 0.4 g acceleration, corresponding
to Fd/µloc ≈ 4

√
J/µloc, a clear interference pattern is visible, indicating the absence of

dynamical instabilities. In this region the dephasing is coherent.

well-defined phase will diffuse with time. In the limit of large atom numbers E(n) can be
linearized, and it can be shown that the dephasing then happens with a decoherence time
[Ima97, Li07].

τcoh =
~N

µlocσ(N)
=

~
√
N

µloc
. (5.14)

In our system each lattice site contains a 2D condensate, and the local chemical potential at
a lattice site then is µloc(N) = U1

√
N , with U1 defined in equation (3.34). This leads to the

surprising consequence that the decoherence time becomes independent of atom number
and simply reads τcoh = h/U1.

However, with a deeper lattice the relation σ(N) =
√
N no longer holds. The combi-

nation of interactions and decreased tunneling make number fluctuations energetically un-
favourable. The uncertainty in atom number becomes sub-Poissonian [Jav99],

σ(N) =
√
N

(
1

1 + µloc

2J

)1/4

. (5.15)

This is called number squeezing. Using the same reasoning as above, the coherence time now
becomes

τcoh =
h
√
N

µloc

(
1 +

µloc

2J

)1/4

=
h

U1

(
1 +

U1

√
N

2J

)1/4

. (5.16)

Note that even with the correction due to number squeezing, the coherence time depends
very weakly on the atom number. In the limit of large N , it scales as N1/8. However, in our
system, the correction due to number squeezing is still important. The decoherence time is
20 ms for our experimental parameters, a substantial difference to the 10 ms decoherence
time one calculates when not taking number squeezing into account.

The decoherence time we calculate is on the same order of magnitude as the time it takes
for the wave function in our system to dephase, as seen in figure 5.5. We believe that the
on-site phase diffusion and other beyond-mean-field effects, such as the interaction with a
remnant thermal cloud, cause the residual dephasing we observe in our experiment.
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5. Coherent dephasing of Bloch oscillations

5.2.4 Rephasing of a dephased condensate

Another interesting demonstration of the coherence in our system is to rephase a dephased
condensate, in the spirit of spin-echo techniques known from nuclear magnetic resonance
experiments. The idea is to turn off interactions and apply the external potential, thereby
letting the lattice sites experience a potential with opposite sign, causing the phase evolution
to “run backwards” until the the condensate is recovered. However, since a sudden switch
of the scattering length excites very strong breathing in the horizontal direction, we employ
a slightly modified protocol where the switching is more gentle and reduces breathing.

Using the same procedure to load the lattice and start the Bloch oscillations as in the
previous experiments, we let the BEC Bloch oscillate with the dipole trap ramped down in
4 ms and the scattering length set to 214 a0 for 35 Bloch cycles. The scattering length is then
ramped to 10 a0 within 10 ms. At the same time the dipole trap is ramped up in 4 ms to
approximately the same depth as was used during loading.

As can be seen in figure 5.10, the wave function then refocuses and the initial BEC peak is
recovered 24 Bloch cycles after the scattering length ramp. The shift in the Bloch frequency
due to the trap positioning causes the quasimomentum distribution to shift around from
one experimental run to the next. We recorded about 10 distributions for each evolution
time and selected those which where symmetrical, corresponding to Bloch cycle phase φ = 0
or φ = π, where we define the phase of the Bloch oscillation such that φ = 0 corresponds to
the BEC wave function being centered in the middle of the Brillouin zone. As can be seen
in the absorption pictures in the figure, there is still considerable horizontal breathing, but
the rephasing nevertheless works very well. This further confirms that the initial broadening
and dephasing has been coherent.

5.2.5 Decay and revival of Bloch oscillations

Until now, the dephasing of the Bloch oscillating condensate has been induced through inter-
actions. We also have the possibility to switch off atom-atom interactions and “artificially”
induce dephasing through an external potential, the dipole trap. The decoherence mecha-
nisms listed in section 5.2.3 no longer apply, and our simple analytical model is valid over
a long time. This allows not only to observe the dephasing, but also to see a revival of the
Bloch oscillations.

With interactions turned off and a dipole trap with trap frequency ωz along the lattice
direction, the phase evolution at lattice site j is

~φj = Fdjt+
1
2
mω2

zd
2j2t. (5.17)

If we wait long enough, the dephasing term will be a multiple of 2π for all j - the lattice sites
have come back in phase, the original wave function is recovered and Bloch oscillations can
again be seen [Pon06]. This happens when 1

2mω
2
zd

2t/~ = 2π. Less obvious is that the original
wave function also will be recovered at the earlier time TR when 1

2mω
2
zd

2TR/~ = π. This can
be shown with a simple calculation. The wave function after a time TR is

Ψ(q, TR) =
∑

j

cj(0)e−iπj2
e−iqjd/~ (5.18)
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Figure 5.10: A fully dephased BEC is rephased back into a narrow momentum distribution by switch-
ing interactions close to zero and applying an external harmonic potential, rewinding the
phase at the different lattice sites. The black solid lines show quasimomentum distribu-
tions corresponding to Bloch cycle phase 0, separated in time by two Bloch oscillations
or about 1.15 ms. The red solid lines correspond to quasimomentum distributions half
a Bloch oscillation later (cycle phase π). The images are absorption images correspond-
ing to the adjacent quasimomentum distributions. Note the excitation along the radial
direction in the images.

93



5. Coherent dephasing of Bloch oscillations

(for simplicity, the phase term leading to Bloch oscillations has been omitted). Using the
relation e−iπj2

= (−1)j2
= (−1)j = e−iπj , this can be rewritten as

Ψ(q, TR) =
∑

j

cj(0)e−iπje−iqjd/~

=
∑

j

cj(0)e−i(q+~k)jd/~

= Ψ(q + ~k, 0). (5.19)

We see that the original wave function is recovered, only with the quasimomentum shifted
by ~k. This means that we would expect a revival of the dephased Bloch oscillations after
the time

TR =
h

mω2
zd

2
. (5.20)

Expressed in number of Bloch oscillations, the value is

NR =
F

mω2
zd

=
g

ω2
zd
. (5.21)

Figure 5.11: Decay and subsequent revival of Bloch oscillations. The rms-width of the momentum
distribution is plotted as a function of the number of Bloch oscillations for Bloch cycle
phase 0 (white circles) and π (black circles). Absorption images corresponding to N = 1,
70, 140, 210 and 280 Bloch oscillations are also shown.

We perform an experiment with a non-interacting Bloch oscillating BEC where a dipole
trap with trap frequency ωz = 40(1) Hz is applied. The result is shown in figure 5.11. The
BEC is quickly dephased, but after about 280 Bloch cycles, Bloch oscillations are again visible.
This is consistent with the expected value of NR = 292(15) Bloch cycles. Note that after half
the revival time, two clouds can be seen Bloch oscillating. It can be shown that after a time
TR/k, k copies of the original wave function will appear. This is called the fractional Talbot
effect [Ber96, Kap00].

The uncertainty in dipole trap position relative to the lattice sites, which slightly affects
the Bloch period (see section 5.1.2), becomes increasingly important for longer evolution
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5.2. Experimental realization

times. Using equation (5.8), one finds that the positioning of the dipole trap adds an extra
phase factor which at the time of the revival is 2πδ. Since we cannot control the trap position-
ing, the phase of the Bloch oscillation shifts from one experimental realization to the next,
and the data in figure 5.11 has been obtained by acquiring many images and selecting those
corresponding to cycle phase 0 or π.

The phase of the Bloch oscillation at the time of the first revival gives information on the
trap position relative to the lattice with a precision only limited by how precisely the phase
can be measured. This means that one can measure the trap positioning to a fraction of a
wavelength! With active stabilization of the dipole trap beam pointing and interferometric
stabilization of the lattice phase, one could investigate this effect in more detail. This would
be an interesting endeavour.
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6
Outlook

In the framework of this thesis, an apparatus allowing experiments with a tunable quan-
tum gas in an optical lattice was developed. We have demonstrated a precise control over
atom-atom interactions, and this work opens up a whole realm of opportunities for future
experiments. I will here outline a few interesting possibilities for future work, some of which
have already been implemented at the time of writing.

Quantum gases of deeply bound molecules

Cs has a very rich molecular structure and a quantum gas of Cs2 molecules can be created
out of a Cs BEC by sweeping the magnetic field over a Feshbach resonance [Her03]. These
weakly bound “Feshbach molecules” are not collisionally stable and one attractive goal has
been to find an efficient way of populating deeply bound states, especially the rovibronic
ground state, which should be stable against two-body loss. Coherent transfer from one
molecular state to another can be accomplished using a two-photon transition and the stim-
ulated adiabatic rapid passage (STIRAP) technique. A transfer from the most weakly bound
vibrational level to the next bound level, with a binding energy of 640 MHz, was demon-
strated last year in the Innsbruck Rb experiment [Win07b].

A transfer to a more deeply bound molecular state poses two major challenges. First, the
deeply bound target state has a binding energy on the order of 140 THz. The STIRAP tech-
nique requires the two transfer lasers to be phase coherent, despite being detuned from each
other by many THz. Second, the weakly bound starting state has a large spatial extent and
the wave function overlap with the spatially small target state is low. We managed to over-
come these problems by performing spectroscopy to identify levels with adequate transition
rates [Dan08a] and by referencing the transfer lasers to a frequency comb. As illustrated
in figure 6.1, we were then able to perform a STIRAP transfer of Feshbach molecules into
the |v = 73, J = 2〉 state, a state bound by 32 THz, with about 80 % efficiency and no dis-
cernible heating [Dan08b]. With the addition of two more transfer lasers, a further STIRAP
step makes it possible to reach the rovibronic ground state. We have identified a suitable
intermediate state for the transfer [Mar08], and preliminary experiments have reached a
transfer efficiency for the second step of about 75 %.

The availability of an optical lattice in the apparatus could help increase the efficiency of
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Figure 6.1: Illustration of STIRAP transfer of Cs2 molecules from a weakly bound state to a deeply
bound state, adapted from [Dan08b]. (a) Molecular level scheme for Cs2. Molecules are
transfered from the weakly bound vibrational level |v = 155〉 of the singlet X1Σ+

g poten-
tial to the deeply bound |v = 73〉 level using a two-photon STIRAP process, with level
|v′ ≈ 225〉 of the electronically excited 0+

u potential as an intermediate transfer state. (b)
Number of |v = 155〉 molecules detected as a function of STIRAP time τ . After about
15 µs, all Feshbach molecules have been transfered to |v = 73, J = 2〉, a state which cannot
be directly detected. After 30 µs, 65 % of the molecules have been transferred back into
|v = 155〉, indicating a single pass transfer efficiency of 80 %. (c) Schematic timing of the
STIRAP transfer process. (d) Round-trip transfer efficiency as a function of detuning ∆2

of transfer laser L2, with laser L1 on resonance.
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the initial Feshbach molecule production. The creation of a Mott insulator state [Jak98, Gre02]
with two atoms per lattice site allows production of Feshbach molecules with high efficiency
and with strongly suppressed collisional losses [Tha06, Vol06]. A high number of Feshbach
molecules would be an excellent starting point for the creation of a BEC of ground state
molecules.

One-dimensional systems, Tonks-Girardeau gas

A two-dimensional optical lattice can be raised to create an array of tight tube-shaped traps.
If the lattice is deep enough that the vibrational level spacing in the tight direction is much
larger than the temperature and the chemical potential of the atomic sample, radial exci-
tations are “frozen out” and the dynamics is one-dimensional. A key parameter in such a
quasi-1D system is γ, the ratio of interaction energy to kinetic energy [Pet00]. In the weakly
interacting regime where γ � 1, a quantum degenerate system is a Bose-Einstein conden-
sate. The regime where γ � 1 is called the Tonks-Girardeau regime, where the system
can be described as a gas of point-like impenetrable bosons and acquires fermionic prop-
erties [Gir60]. The ability to tune the scattering length makes it possible to reach deep into
this regime, and at the time of writing, a Tonks-Girardeau gas with γ ≈ 50 has been re-
alized in our lab. We have investigated how the frequency of the lowest compressional
mode of the gas varies with the scattering length, which also allowed us to reach beyond
the Tonks-Girardeau regime and demonstrate a so-called super-Tonks gas [Ast05]. In the fu-
ture, the ability to add a further lattice along the tubes makes it possible to investigate the
commensurate-incommensurate transition [Büc03a].

Contrast interferometer at zero scattering length

The technique to strongly suppress atom-atom interactions demonstrated in this thesis has
interesting applications in atom interferometry. The high brightness of a BEC combined with
its narrow spatial and momentum spread would constitute an ideal source for a matter wave
interferometer. Unfortunately, because of the high density in a BEC, interactions lead to
phase diffusion and can cause systematic frequency shifts due to unwanted density gra-
dients, limiting the performance of the interferometer. This limitation could be overcome
using the precise control over the interaction strength demonstrated in this work.

As discussed in section 4.3, a BEC contrast interferometer can be used to measure the
photon recoil frequency for Cs, from which the fine structure constant α can be determined.
A previous implementation [Gup02] was severely limited in sensitivity and accuracy by
interaction shifts. The laser setup needed to implement such a contrast interferometer has
already been implemented [Mar07a] and we plan to do a proof-of-principle experiment
demonstrating the suppression of interaction shifts in the near future.

Three-body loss in an optical lattice

In an gas with density n, the two-body collision rate is proportional to 〈n2〉. When a BEC is
loaded into a 3D optical lattice, the high peak densities at the lattice sites lead to an effective
increase in the two-body collision rate, as discussed in section 3.1.5. The number of three-
body collisions, proportional to 〈n3〉, are even more increased. Combined with the intrinsic
high three-body loss in Cs, this makes it possible to achieve very large three-body loss rates.
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6. Outlook

Paradoxically, large three-body loss rates are expected to decrease the atom loss from the
lattice, because tunneling to create a triply occupied lattice site is strongly suppressed, a
form of quantum Zeno effect. The strong suppression of triply occupied lattice sites can be
viewed as an effective large three-body interaction, which makes it possible to engineer new
quantum phases [Dal08].
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Nägerl, Control of Interaction-Induced Dephasing of Bloch Oscillations, Phys. Rev. Lett.
100, 080404 (2008).
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Control of Interaction-Induced Dephasing of Bloch Oscillations
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We report on the control of interaction-induced dephasing of Bloch oscillations for an atomic Bose-
Einstein condensate in an optical lattice. We quantify the dephasing in terms of the width of the
quasimomentum distribution and measure its dependence on time for different interaction strengths
which we control by means of a Feshbach resonance. For minimal interaction, the dephasing time is
increased from a few to more than 20 thousand Bloch oscillation periods, allowing us to realize a BEC-
based atom interferometer in the noninteracting limit.

DOI: 10.1103/PhysRevLett.100.080404 PACS numbers: 03.75.Dg, 05.30.Jp, 34.50.�s, 37.10.Jk

Ultracold atomic systems have initiated a revolution in
the field of precision measurements. Laser cooled thermal
samples are used for ultrahigh resolution laser spectros-
copy [1], are at the heart of modern atomic fountain clocks
[2,3], and allow for the realization of matter-wave inter-
ferometers for high-precision inertial sensing [4] and high-
precision determination of fundamental constants [5].
Atomic Bose-Einstein condensates (BEC), the matter-
wave analog to the laser, combine high brightness with
narrow spatial and momentum spread. In general, the
resolution is limited only by the quantum mechanical
uncertainty principle, and BECs could thus serve as ideal
sources for precision measurements and, in particular, for
matter-wave interferometers [6]. Atom-atom interactions,
however, have to be taken into account, as they lead to
collisional dephasing and give rise to density dependent
mean-field shifts in the interferometric signal. It is thus
advisable to either operate a BEC-based atom interferome-
ter in the dilute density limit, possibly sacrificing a high
signal-to-noise ratio, or to find ways of reducing or even
nulling the strength of the interaction altogether. Precisely
the latter is feasible in the vicinity of magnetically induced
Feshbach resonances where the atomic s-wave scattering
length and hence the strength of the atom-atom contact
interaction go through a zero crossing [7]. It is thus pos-
sible to experimentally investigate the reduction and even
disappearance of interaction-induced effects on the inter-
ferometric signal as the scattering length is tuned towards
zero by means of an externally controlled magnetic field.

A paradigm atom interferometric effect is the well-
known phenomenon of Bloch oscillations [8]. Bloch oscil-
lations for the mean quasimomentum are the result of
single atom interference as the atomic wave packet, subject
to a constant force, is Bragg reflected in the presence of a
periodic optical lattice potential. They have been observed
for ultracold thermal samples [5,8–10], for atoms in inter-
acting BECs [11,12], and for ensembles of noninteracting
quantum-degenerate fermions [12]. For the case of the
interacting BEC, strong dephasing is found as evidenced
by a rapid broadening and apparent smearing out of the

momentum distribution in the first Brillouin zone, limiting
the observation of Bloch oscillations to a few cycles for
typical atomic densities in a BEC. In addition, the mea-
sured initial width of the momentum distribution is com-
parable to the extent of the Brillouin zone, as interaction
energy is converted into kinetic energy upon release of the
BEC from the lattice potential, thus greatly reducing the
contrast of the oscillations [12].

In this Letter, we report on the control of interaction-
induced dephasing of Bloch oscillations for a BEC in a
vertically oriented optical lattice under the influence of
gravity. Control is obtained by means of a zero -crossing
for the atomic s-wave scattering length a. We observe the
transition from an interacting BEC to a noninteracting
BEC by measuring the rate of dephasing, given by the
change of the width of the momentum distribution, as a
function of a. We identify a clear minimum for the dephas-
ing which we associate with the zero crossing for a. At the
minimum, more than 2� 104 oscillations can be observed
with high contrast, and the zero crossing can be determined
with high precision. For our measurements at nonzero
scattering length, we greatly reduce broadening of the
momentum distribution by rapidly switching the interac-
tion strength to zero upon release from the lattice potential.
Our measurements indicate that BECs can indeed be used
as a source for precision atom interferometry, as effects of
the interaction can be greatly reduced. For a noninteracting
BEC, we intentionally induce dephasing by means of a
weak optical force gradient and observe collapse and re-
vivals of Bloch oscillations.

The starting point for our experiments is an essen-
tially pure BEC with typically 1� 105 Cs atoms in the
jF � 3; mF � 3i hyperfine ground state sublevel confined
in a crossed-beam dipole trap generated by one vertically
(L1, with 1=e2-beam diameter 256 �m) and one more
tightly focused horizontally (L2, with diameter 84 �m)
propagating laser beam at a wavelength near 1064 nm.
We support the optical trapping by magnetic levitation
against gravity [13]. For BEC preparation, we basically
follow the procedure described in Refs. [13,14]. The
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strength of the interaction can be tuned by means of a broad
Feshbach resonance with a pole at �11:7 G. The reso-
nance causes a zero crossing for the scattering length a
near an offset magnetic field value of 17 G with a slope of
61 a0=G [15]. Here, a0 denotes Bohr’s radius. The lattice
potential is generated by a vertically oriented standing
laser wave generated by retro-reflection, collinear with
L1, but with much larger diameter of 580 �m. This allows
independent control of lattice depth and radial (i.e., hori-
zontal) confinement. The light comes from a home-built
single-mode fiber amplifier [16] seeded with highly-stable
light at � � 1064:494 6�1� nm. We turn on the optical
lattice potential exponentially to a depth of 7:9ER within
1000 ms, where ER � h2=�2m�2� � kB � 64 nK is the
photon recoil energy and m is the mass of the Cs atom.
The slow ramp assures that the BEC is adiabatically loaded
into the lowest Bloch band of the lattice, and it avoids
horizontal excitations. We load between 40 to 65 lattice
sites, depending on the initial vertical extent of the BEC.
We then reduce the power in L2 to zero within 300 �s.
Subsequently, the magnetic field gradient needed for levi-
tation is ramped down, and a bias magnetic field is tuned to
the desired value within 100 �s. For the present experi-
ments, we adjust a in the range from �2 to 300 a0 with
magnetic bias fields from 17 to 23 G. The step in a leads to
some unavoidable horizontal excitation as a result of the
change of the Thomas-Fermi profile. We control the aver-
age bias field to about 1 mG. The confinement of the BEC
in the lattice as given by L1 gives horizontal trapping
frequencies in the range of 5 to 10 Hz. We then let the
atoms evolve in the lattice under the influence of the
gravitational force for variable hold time T. Finally, we
switch off the horizontal confinement and ramp the lattice
depth adiabatically to zero within 300 �s to measure the
momentum distribution by the standard time-of-flight tech-
nique, taking an absorption picture on a CCD camera. For
some of the data, we turn on the magnetic levitation field to
allow for longer expansion times up to 100 ms. To mini-
mize broadening of the distribution as a result of interac-
tion, we switch the scattering length to zero during the
release and the initial time-of-flight.

We observe persistent Bloch oscillations when mini-
mizing the effect of interactions at a magnetic field value
of 17.12 G (see below). Figures 1(a)–1(d) show the evo-
lution of the momentum distribution during the first, the
1000th, the 10 000th, and the 20 000th Bloch cycle.
Initially, the momentum distribution exhibits narrow
peaks. Their full width �p [17] is as narrow as about
0:15@k, where k � 2�=�. Very little broadening along
the vertical direction is seen after the first 1000 cycles.
Initial excitation of horizontal motion as a result of ramp-
ing the power in L2 and switching the scattering length
leads to some horizontal spreading. After 20 000 cycles,
the distribution has started to spread out noticeably along
the vertical direction.

Figure 2 highlights the high number of Bloch oscilla-
tions, which we can observe for the case of minimal
interaction strength. It shows how the strongest peak of
the momentum distribution cycles through the first
Brillouin zone with the typical sawtooth behavior [8].
More than 20 000 cycles can easily be followed. From a
fit to the data, we determine the Bloch period to
0.575 380 7(5) ms. Assuming that no additional forces act
on the sample, the local gravitational constant is g �
9:803 821�9� m=s2. The error is statistical only. While we
took care to minimize magnetic field gradients, we expect
them to be the dominant contribution to the systematic
error.

In order to quantify the dephasing of Bloch oscillations,
we determine for each Bloch period the width �p of the
momentum distribution at the instant in time when the peak
of the distribution is centered at zero momentum, i.e., for
the central picture of each series shown in Fig. 1.
Figure 3(a) displays �p up to the 300th Bloch cycle for
different interaction strengths ranging from 0 to 300 a0.
For minimal interaction strength (a � 0 a0), we see no
broadening of the distribution. Broadening can clearly be

FIG. 1. Long-lived Bloch oscillations for a noninteracting
BEC with Cs atoms in the vertical lattice under the influence
of gravity. Each picture shows one Bloch cycle in successive
time-of-flight absorption images corresponding to the momen-
tum distribution at the time of release from the lattice. Displayed
are the first (a), the 1000th (b), the 10 000th (c), and the 20 000th
(d) Bloch cycle for minimal interaction near the zero crossing for
the scattering length.

FIG. 2 (color online). Position of the strongest peak in the
momentum distribution as a function of the number N of Bloch
oscillations (dots). More than 20 000 cycles can be followed with
high contrast. A fit to the data (solid curve) yields a Bloch period
of 0.575 380 7(5) ms.
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seen for a � 25 a0, and the rate of broadening then in-
creases with increasing interaction strength. For a �
50 a0, the width �p saturates within the chosen observa-
tion time to a value of about 1:3@k as the momentum
distribution completely fills the first Brillouin zone [18].
To a good approximation, we find that �p initially in-
creases linearly with time. In Fig. 3(b), we plot �p as a
function of interaction strength for various fixed numbers
of Bloch cycles. �p appears to scale with the square root of
the interaction strength. Both observations agree well with
a simple model for the dephasing of Bloch oscillations,
which predicts �p /

���

a
p
T [19] for sufficiently short times

T. In order to verify this model, we have performed nu-
merical calculations solving the one-dimensional Gross-
Pitaevskii equation in the presence of an optical lattice
under the influence of gravity for the typical parameters
of our experiment according to the method detailed in
Ref. [20]. Via Fourier transform of the spatial wave func-
tion, we determine the momentum distribution and its
width. As shown in Fig. 3 (solid lines), we find very
good agreement with our measurements with no adjustable
parameters when we add a constant offset of 0:1@k to all

the numerical curves. This offset takes into account resid-
ual interactions during release from the lattice as a result of
the finite magnetic switching speed, which leads to some
artificial broadening of the distribution. We attribute the
systematic discrepancy for the N � 50 data in Fig. 3(b) to
the horizontal motion which leads to modulations in the
density that adds a modulation onto �p also seen in
Fig. 3(a).

To find the value for the magnetic field that gives mini-
mal broadening, we measure �p after 6951 cycles in the
vicinity of the crossing. Figure 4 plots �p as a function of
magnetic field. It shows a clear minimum, which we expect
to correspond to the zero crossing for the scattering length.
From a Gaussian fit, we determine the center position of
the minimum to be at 17.119(2) G. The one-sigma error
takes into account our statistical error in magnetic field
calibration. To our knowledge, this is the most precise
determination of a minimum for the elastic cross section
in ultracold atom scattering. We believe that our measure-
ments are limited by the ambient magnetic field noise,
leading to a finite width for the distribution of the scattering
length. In fact, a reduction of the atomic density gives
longer decay times for the Bloch oscillations. Note that
in the scattering length regime considered here, the effect
of the (magnetic) dipole-dipole interaction [21] should
start to play a role.

Our capability to observe Bloch oscillations on extended
time scales without interaction-induced dephasing allows
us to study the effect of deliberately imposed dephasing.
For this, we apply a linear force gradient rF correspond-
ing to harmonic trapping at � � 40�1� Hz along the verti-
cal direction by turning on laser beam L2 during the hold
time. Figure 5 shows the widths �p for two cycle phases
separated by � as a function of the number N of Bloch
cycles. The two phases correspond to the single- resp.
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FIG. 4. Broadening of the momentum distribution as a result of
6951 Bloch oscillations near the zero crossing for the scattering
length. The width �p is plotted as a function of magnetic field
(dots). The solid line is a Gaussian fit with a rms-width of
4.5 mG. The fit is centered at 17.119(2) G. The zero for the
scattering length scale on top was chosen to agree with this
value.
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FIG. 3 (color online). Width �p of the momentum distribution
for different interaction strengths. (a) Evolution of �p as a
function of the number N of Bloch cycles for different values
of the scattering length (a � 0, 25, 50, 100, and 300a0 from
bottom (full circles) to top (open squares). The solid curves are
derived from a numerical model calculation, see text. (b) Width
�p for a fixed number of cycles N � 1 (full circles), 25 (full
squares), 50 (full diamonds), 100 (open circles), 150 (open
squares), and 200 (open diamonds) as a function of scattering
length. The solid line represents the model calculation. All error
bars correspond to � 1 standard deviation resulting from 7
measurements. The data and the simulations correspond to the
following parameters: lattice depth: 7:9ER, scattering length
during lattice loading: 210 a0, trapping frequencies in L1 and
L2: 10 and 8 Hz, atom number in the BEC: 5� 104.
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symmetric double-peaked distribution. Both widths rapidly
increase resp. decrease to the same value of 1:3@k within
about N � 30 oscillations. Here the ensemble is dephased.
It then remains dephased for about 200 cycles. Partial
rephasing at intermediate times not reflected in the widths
can be seen from the absorption images. Revival of the
oscillations [22] happens around N � 280 when the values
for both widths separate again [23]. This number agrees
well with the expected value of Nrev � 292�15� given by
Nrev � Fgrav=�rFd� � mg=�m!2d�, where Fgrav is the
gravitational force, ! � 2��, and d � �=2 is the lattice
spacing. Subsequently, the widths collapse again to the
common value. In further measurements, we see up to
four collapses and revivals.

In summary, we have demonstrated the control of
interaction-induced dephasing near a zero crossing for
the scattering length. On the crossing, we have realized a
noninteracting BEC, which allows us to observe more than
20 000 Bloch cycles, indicating a matter-wave coherence
time of more than 10 s. The broadening of the momentum
distribution agrees well with results from theoretical mod-
els. We believe that the number of observable Bloch cycles
is limited by residual interactions as a result of magnetic
field noise. Our results open up exciting new avenues for
precision measurements with quantum-degenerate gases.
For example, it is now possible to perform sensitive mea-
surements of forces on short length scales, such as the
Casimir-Polder force near a dielectric surface [24].
Future experimental work can now address the nature of
the dephasing [25] by studying structure in the momentum
distribution.

A similar experiment on long-lasting Bloch oscillations
and control of the interaction strength has recently been
performed with a BEC of 39K atoms at LENS, Italy [26].
We thank A. Daley for theoretical support and for help with
setting up the numerical calculations and A. Buchleitner
and his group for useful discussions. We are grateful to
A. Liem and H. Zellmer for valuable assistance in setting
up the 1064 nm fiber amplifier system. We acknowledge
contributions by P. Unterwaditzer and T. Flir during the
early stages of the experiment. We are indebted to
R. Grimm for generous support and gratefully acknowl-
edge funding by the Austrian Ministry of Science and
Research (BMWF) and the Austrian Science Fund (FWF).
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involve further star formation or self-gravity–driven
accretion. Assuming that all the gas would accrete
directly onto the black hole on a viscous time scale
(21) on the order of 107 years yields an average
mass accretion rate on the order of 10−4 M⊙/year
for the 104 M⊙ cloud and 10−3 M⊙ /year for the
105 M⊙ cloud. This gives a maximum accretion
luminosity on the order of 1043 ergs/s, or about
1% of the Eddington luminosity. This addition-
al source of radiation, and that from the newly
formed stars, could increase the gas tempera-
ture in the disk and thus increase the fragment
masses.

Our simulations show that an infalling mo-
lecular cloud can indeed form an eccentric disk
around a supermassive black hole, and that al-
though the tidal force of the black hole will dis-

rupt the cloud, it does not destroy the small-scale
structures that seed the disk fragmentation. Fur-
thermore, the compressional heating of the in-
falling gas results in the formation of a population
of stars biased toward higher masses. The stellar
masses depend crucially on the mass of the in-
falling cloud and on its impact parameter, allow-
ing for a variety of final outcomes. The initial
disk eccentricity alsomeans that the stars can form
with initial eccentricities and, if the molecular
cloud is sufficiently massive, the stars that form
may be extremely massive. This is therefore a
viable mechanism for forming the rings of young,
massive stars within ~0.1 pc of the galactic center.
What is still unclear, however, is the origin of the
infalling cloud and the probability of the small
impact parameter that is required.
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Quantum Gas of Deeply Bound
Ground State Molecules
Johann G. Danzl,1* Elmar Haller,1 Mattias Gustavsson,1 Manfred J. Mark,1 Russell Hart,1
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Molecular cooling techniques face the hurdle of dissipating translational as well as internal
energy in the presence of a rich electronic, vibrational, and rotational energy spectrum. In our
experiment, we create a translationally ultracold, dense quantum gas of molecules bound by more
than 1000 wave numbers in the electronic ground state. Specifically, we stimulate with 80%
efficiency, a two-photon transfer of molecules associated on a Feshbach resonance from a
Bose-Einstein condensate of cesium atoms. In the process, the initial loose, long-range electrostatic
bond of the Feshbach molecule is coherently transformed into a tight chemical bond. We
demonstrate coherence of the transfer in a Ramsey-type experiment and show that the molecular
sample is not heated during the transfer. Our results show that the preparation of a quantum gas
of molecules in specific rovibrational states is possible and that the creation of a Bose-Einstein
condensate of molecules in their rovibronic ground state is within reach.

Ultracold samples of molecules are ideal-
ly suited for fundamental studies in phys-
ics and chemistry, ranging from few-body

collisional physics (1–4), ultracold chemistry

(5), and high-resolution spectroscopy (6, 7) to
quantum gas preparation, molecular Bose-Einstein
condensation (8), and quantum processing (9).
For many of the proposed experiments, full con-

trol over the molecular wave function in specific
deeply bound rovibrational states is needed. High
densities are required for molecular quantum gas
studies. Only in the rovibronic ground state (the
lowest vibrational and rotational energy level
of the electronic ground state) is collisional sta-
bility assured. However, direct molecular cool-
ing toward high phase-space densities seems yet
out of reach (10), whereas techniques such as
Feshbach association (11) and photoassociation
(12) either produce molecules exclusively in
weakly bound rovibrational levels or suffer from
low production rates and low state selectivity.

To produce a quantum gas of molecules in
their absolute ground state, Jaksch et al. (13)
proposed a scheme for homonuclear alkali
molecules in which the technique of stimulated
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Fig. 3. Mass function of the stars formed in the
simulation illustrated in Fig. 1. The stars form with
masses close to 0.1 M⊙ but grow quickly through
gas accretion. The mass function therefore has a
peak at ~0.8 M⊙, above which it has a power-law
form with a slope comparable to that of the
Salpeter slope, illustrated by the diagonal line.
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Fig. 4. Mass function of the stars formed in the
simulation illustrated in Fig. 2. The mass func-
tion is extremely top-heavy and appears to have
two populations of stars: one population of mas-
sive stars with masses from 10 M⊙ to 100 M⊙,
and another with masses between 1 M⊙ and
10 M⊙.
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two-photon transfer is repeatedly applied to
molecules associated from a high-density sam-
ple of ultracold atoms. The initially very loosely
bound molecules are transferred in successive
steps to the rovibrational ground state of the
singlet X 1Sþ

g molecular potential. The advan-
tages of this scheme are that it is fully coherent,
not relying on spontaneous processes, and that
it involves only a very small number of inter-
mediate levels. It promises that a ground state
binding energy typically of 0.5 eV can be
carried away without heating the molecular
sample. It essentially preserves phase-space den-
sity, allowing the molecular sample to inherit
the high initial phase-space density from the
atomic sample. However, to realize this scheme,
several challenges have to be met. First, there
is a large difference in internuclear separation
that has to be bridged: The overlap between
the radial wave function of the least bound
molecules and the radial wave functions of

deeply bound molecular levels is extremely
low, potentially leading to prohibitively low
transition rates for the two-photon transitions.
Second, the scheme requires the identification
of suitable intermediate molecular levels while
strictly avoiding parasitic excitations. Third, a
large difference in binding energy has to be
overcome. On a more technical side, the lasers
driving the two-photon transitions at widely
different wavelengths need to have extremely
low relative short-term phase jitter and high long-
term frequency stability to allow for coherence
and reproducibility. In important experiments,
Winkler et al. (14) and, recently, Ospelkaus et al.
(15) demonstrated highly efficient two-photon
transfer into lower-lying molecular levels start-
ing from weakly bound dimer molecules, which
were associated from ultracold atoms on a
Feshbach resonance (11). However, the trans-
ferred molecules are still weakly bound. Their
binding energy, on the order of the atomic hy-

perfine splitting, is <10−4 of the binding energy
of the rovibrational ground state, and wave func-
tion overlap with this state is still negligible.

In this experiment, we demonstrate the cru-
cial step toward full control of the molecular
wave function and toward the formation of a
Bose-Einstein condensate (BEC) of molecules
in their rovibronic ground state by linking weak-
ly bound molecular states with deeply bound
rovibrational states. We coherently transfer an
ultracold quantum gas of weakly bound cesium
Feshbach molecules to the rovibrational level
|n = 73, J = 2> of the singlet X 1Sþ

g potential,
bound by 1061 cm−1 (or h × 31.81 THz, where h
is Planck’s constant), corresponding to more than
one-fourth of the binding energy of the rovibra-
tional ground state. To achieve this result, we over-
come low wave function overlap by using a
suitable intermediate excited molecular state
while avoiding excitation into loss channels,
and we reference the transfer lasers to a frequen-
cy comb, allowing us to flexibly bridge binding-
energy differences of more than 1000 cm−1.

Figure 1 shows the energy of the relevant
molecular and atomic states. Our experiment
starts with a cigar-shaped BEC of cesium atoms
in the lowest hyperfine sublevel F = 3, mF = 3
in an optical dipole trap. For BEC production,
we essentially follow the procedure detailed in
(16). For Feshbach molecule production out of
the BEC, we ramp up the offset magnetic field
from the initial value of 2.1 mT to ~5.0 mT in
10 ms. We then ramp down, sweeping across
a d-wave Feshbach resonance at 4.8 mT after
~1 ms, as shown in Fig. 1B (17, 18). Our proce-
dure [see (17)] gives an ultracold and dense
sample of up to 11,000 molecules every 10 s at
densities above 1 × 1011 cm−3. For the state-
transfer experiments discussed here, we do not
separate the molecules from the original BEC.
Upon lowering the magnetic field, the mole-
cules are transferred from the initial state |d> to
a still weakly bound s-wave molecular state |s>
of the lowest hyperfine channel (F1 = 3, F2 = 3)
via an avoided crossing (18). The index i = 1, 2
denotes the ith atom.

Upon further lowering the magnetic field
to about 2.2 mT, the molecules enter into a
closed channel s-wave molecular state |a> via
a second, broad avoided crossing (18). This state
belongs to the uppermost hyperfine channel (F1 =
4, F2 = 4) and thus has an effective binding
energy of more than 2 × hnCs. Here, nCs ≈ 9.19
GHz is the Cs clock frequency. Similar to |s>,
this state is a mixture of the X 1Sþ

g ground state
and the lowest triplet a3Sþ

u state, coupled by
hyperfine interaction, and it has zero rotational
angular momentum. At a field of 1.9 mT, it has
a binding energy of 5 MHz × h, with respect
to the F = 3, mF = 3 two-atom asymptote (18).
As one might expect, we find that optical
transition rates as measured below are improved
when using this effectively more deeply bound
state as the initial state for two-photon transfer
instead of state |s>. We shut off the trap and
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Fig. 1. (A) Molecular level scheme for Cs2. Molecules in a weakly bound Feshbach level are transferred
to rovibrational level |n = 73, J = 2> of the singlet X1Sg

+ potential with a binding energy of 1061 cm−1

in a two-photon STIRAP process with wavelengths near 1126 and 1006 nm via the 225th level of the
electronically excited (A1Su

+ − b3Pu)0u
+ potentials. The X1Sg

+ potential has about 155 vibrational
levels. a0 is the Bohr radius. (B) Zeeman diagram showing the energy of all relevant weakly bound
molecular levels for initial Feshbach molecular state preparation (18). The binding energy is given with
respect to the F = 3, mF = 3 two-atom asymptote. The molecules are produced on a d-wave Feshbach
resonance at 4.8 mT (inset) and then transferred to the weakly bound s-wave state |s> on an avoided
state crossing. Further lowering of the magnetic offset field to 1.9 mT transfers the molecules from state
|s> to state |a>, the starting state for the STIRAP transfer. (C) STIRAP transfer scheme (19). The
molecules are transferred from the initial state |a> to the final state |g> = |n = 73, J = 2> by means of
two overlapping laser pulses for which laser L2 is pulsed on before L1. The detunings and Rabi
frequencies of Li are Di and Wi, i = 1, 2.
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perform all subsequent experiments in free
flight. This does not affect the particle density
immediately but reduces it during the later detec-
tion procedure, which takes about 6 ms, to avoid
collisions between atoms and weakly bound
dimers and, hence, loss. We detect molecules
in |a> via states |s> and |d> by first applying a
magnetic field gradient for atom-molecule Stern-
Gerlach separation, then reversing the magnetic
field ramp, and finally dissociating them on the
Feshbach resonance at 4.8 mT and imaging the
resulting atoms (17).

Efficient two-photon transfer via the stimu-
lated Raman adiabatic passage (STIRAP) tech-
nique (14, 19) relies on a suitable choice for the
excited state |e>. In our case, this state must
have singlet character so that it can be used as a
transfer state to deeply bound levels of the
X 1Sþ

g potential. In general, it must be well sep-
arated from other states, which otherwise could
be off-resonantly excited. It should thus be sit-
uated far to the red of the excited S1=2 þ P1=2

potential asymptote to avoid the high density
of excited molecular states near that asymptote.
We have performed optical loss spectroscopy
starting from state |a> in the wavelength range
of 1120 to 1130 nm, ~2300 cm−1 to the red of
the cesium D1 line. For this measurement, we
recorded the number of remaining molecules in |a>
as a function of excitation wavelength and found
two progressions of lines, which we assign to the
potential curves of the mixed (A1Sþ

u − b3Pu)0
þ
u

excited states and to the (1)3Sþ
g excited state,

respectively. For the present experiments, we
choose for |e> a level of the 0þu progression that
is 8879.63(1) cm−1 above the F = 3, mF = 3
two-atom asymptote, corresponding to a transi-
tion wavelength of 1126.173(1) nm (Fig. 1A).
We measure all wavelengths on a home-built
wave meter. We identify this previously un-
known level as the 225th one of the 0þu sys-
tem, with an uncertainty of two in the absolute
numbering.

The ground state level |g> with vibrational
quantum number n = 73 is well known from
conventional molecular spectroscopy (20, 21).
However, its binding energy, as well as the
binding energy of all deeply bound vibrational
levels, has only been known with an uncertainty
of ~T0.45 cm−1 before the present experiments
(21). We search for |g> by simultaneously ex-
citing the transition from |a> to |e> with laser L1
and the one from |e> to |g> with laser L2. The
two light fields create a molecule-molecule dark
state. The molecules initially in |a> are lost un-
less the second laser L2 is on two-photon res-
onance, provided that the Rabi frequency W2

on the second transition is ≥W1, the Rabi fre-
quency on the first transition. For coherence,
stability, and reproducibility, we lock both lasers
to independent narrow-band optical resonators,
which we reference to an optical frequency
comb (22). The comb is not calibrated but it
allows precise differential frequency measure-
ments and provides long-term stability needed

for systematic line searches (23). We find the
resonance condition with vibrational level n =
73 at 1005.976(1) and 1005.982(1) nm, cor-
responding to rotational quantum numbers J =
0 and 2. Identification of J is possible because
the rotational energy splitting is well known.
Figure 2, A and B, shows typical molecular

dark resonances when we set L2 on resonance
and step the detuning D1 of L1 near 1126.173 nm.
Figure 2C shows a dark resonance involving n =
73, J = 2 using a different excited molecular state
|e′>, which is excited with L1 near 1123.104 nm.

Figure 2, D to F, shows dark resonances
involving the neighboring vibrational levels n =
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a three-level model calculation matched to the data giving W1 = 2p × 2 kHz
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and W2 =

2p × 11 kHz
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I2/(mW/cm2)

p
for a pulse time of 5 ms at intensities of I1 = 4 × 105 mW/cm2 for L1 and I2 =

2 × 105 mW/cm2 for L2, assuming a laser linewidth of 2 kHz.
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71 and 72. These X 1Sþ
g levels were easily

found based on previously acquired Cs2 spec-
tra (21). We determine the binding energy of
these levels, with respect to the atomic F1 = 3,
F2 = 3 asymptote at zero magnetic field, to be
1060.9694(10), 1088.3101(10), and 1115.9148(10)
cm−1 for n = 73, 72, and 71 with J = 0, respec-
tively. The binding energy of the rovibrational
ground state n = 0 is thus 3628.7053(14) cm−1,
which represents an improvement in precision
of more than two orders of magnitude com-
pared with the previous determination (21).
Fitting the data for the dark resonances with a
three-level model taking into account off-
resonant excitations and laser linewidths, we
determine the molecular transition strengths as
given by the normalized Rabi frequencies for
the transitions |a> to |e> and |e> to |n = 73, J = 2>
to be W1 = 2p × 2 kHz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ðmW=cm2Þp

and
W2 = 2p × 11 kHz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ðmW=cm2Þp

, respective-
ly. A comparison with a typical atomic transition
strength of Wa = 2p × 5 MHz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I=ðmW=cm2Þp

giving |W1/Wa|
2 < 10−6 reflects the minuteness of

the wave function overlap.
We are now in a position to carry out co-

herent transfer using the STIRAP technique.
For |g> we choose the vibrational level with n =
73, J = 2. This level will allow us to reach the
rovibrational ground state n = 0, J = 0 with a
second STIRAP step in view of the selection
rule DJ = 0, T2. STIRAP uses a counterintui-
tive overlapping pulse sequence in which L2 is
pulsed on before L1. As is well known (19),
STIRAP relies on the existence of a dark state
of the form |D> = a(t)|a> + b(t)|g> (here, a(t)
and b(t) are time-dependent amplitudes with
|a(t)|2 + |b(t)|2 = 1). With sufficient adiabat-
icity, the function |a(t)|2 decreases smoothly
from 1 to 0, while the function |b(t)|2 increases
smoothly from 0 to 1. The initial state |a> is
thus rotated via |D> into the final state |g>. The
criterion for adiabaticity is tpW

2 >> (2p)2G,
where tp is the pulse overlap time, W ≈ W1 ≈ W2

is the peak Rabi frequency during the pulse, and

G ≈ 2p × 4 MHz is the (spontaneous) decay
rate from the upper state |e>, as determined from
our loss measurements. This criterion is quite
stringent, in particular, in view of the low wave
function overlap that enters into W. An upper
(experimental) limit for tp is given by the relative
laser coherence time for L1 and L2. We choose tp
to be ~10 ms. For detection, we apply the re-
verse STIRAP sequence after a waiting time
tw ≈ 10 ms to transfer the molecules back into |a>.
During this time we leave laser L1 on to assure
that all possible residual population in state |a> is
removed.

We perform double STIRAP ~3 ms after
the production of the Feshbach molecules and
1 ms after shutting off the trap. Figure 3A shows
the molecular population in |a> as a function
of the STIRAP time t, and Fig. 3B shows the
timing sequence for the double-transfer scheme.
For recording the time evolution of the popula-
tion, we interrupt the transfer process after time
t and measure the remaining population in |a>.
The molecules in |a> initially disappear during
the first STIRAP sequence. They are now in level
|n = 73, J = 2> of the singlet X 1Sþ

g potential.
Then a large fraction of them returns in the
course of the reverse STIRAP sequence. For
this particular measurement both lasers are on
resonance. The peak Rabi frequencies are W1 ≈
2p × 3MHz andW2 ≈ 2p × 6MHz.We typically
obtain an overall efficiency >65% for the double-
transfer process, corresponding to single-pass ef-
ficiencies >80%, assuming equal efficiencies for
both passes. Figure 3C shows the double-pass
efficiency as a function of detuningD2 of laser L2.
Simulations for the three-level system show that the
~800-kHz full width at half maximum (FWHM)
of the efficiency curve is compatible with a com-
bination of laser power broadening and Fourier
broadening. Our simulations also show that higher
transfer efficiencies can be expected for an op-
timized STIRAP pulse sequence in which both
peak Rabi frequencies are equal. Molecules not
transferred by STIRAP are resonantly excited to

|e> and then lost from our three-level system by
spontaneous emission into a multitude of ground
state levels.

We demonstrate coherence of the transfer pro-
cess in a Ramsey-type experiment (14), halting
the transfer process by simultaneously shutting
off both lasers 12 ms into the first STIRAP se-
quence when a balanced superposition of |a>
and |g> has been created with |a(t)|2 ≈ 1/2 ≈ |b(t)|2.
After a hold time th we resume the STIRAP
transfer, with the roles of lasers L1 and L2 re-
versed. Thus, for th = 0 the population will
simply be rotated back into the initial state. A
three-level calculation shows that the population
in the initial state |a> is expected to oscillate at the
rate of the two-photon detuning |D2 − D1|/(2p).
Figure 4A shows the initial state population for
D1 ≈ 0 and D2 ≈ 2p × 113 kHz as a function of
th. The population oscillates at a frequency of
|D2−D1|/(2p), however with marked increase in
phase jitter on the time scale of 30 ms. We
attribute this apparent loss of phase coherence
to a slow relative frequency drift of lasers L1
and L2, leading to a slightly different two-
photon detuning from one experimental run to
the next. In Fig. 4A, we have added a region
indicating a frequency jitter of T6 kHz. This
value is compatible with the present long-term
stability of our lasers. The frequency drift does
not affect an individual STIRAP process because
the transfer efficiency is very robust against laser
detuning, as shown in Fig. 3C.

We now show that the molecular sample is
not heated during the transfer process and is
indeed in the quantum gas regime. Specifically,
we measure and compare the rate of expansion
of the molecular sample in state |a> with and
without the double-transfer process. In our re-
gime, the energy scale for expansion is usually
set by the mean field of the BEC, resulting in
typical expansion energies for the atoms in the
range from kB × 2 nK to kB ×10 nK (where kB
is Boltzmann's constant), depending on the
strength of the atomic interaction (24). We find
that the initial magnetic field ramping excites
collective motion of the BEC in the form of a
breathing mode as a result of a change in the
mean field potential due to a change in atomic
interaction strength (16). The breathing is trans-
formed into expansion of the sample when the
trap is shut off. We follow the expansion by
monitoring the change of the Thomas-Fermi
radius r of the sample. Figure 4B shows this
radius along the horizontal direction as a func-
tion of expansion time with and without STIRAP.
Without STIRAP, we obtain from a linear fit
an expansion rate of dr/dt = 1.0(1) mm/s,
corresponding to an energy of kB × 14(4) nK.
With STIRAP, the rate is dr/dt = 0.7(1) mm/s,
corresponding to an energy of kB × 7(2) nK.
Both values are compatible with a separate
measurement of the expansion of the atomic
BEC for the same magnetic field ramp. In-
terestingly, the rate for the case with STIRAP
is lower. We speculate that STIRAP with the

Fig. 4. (A) Ramsey-type experiment. The population in the initial state |a> oscillates as the hold time th
(during which both transfer lasers are off) is increased. The solid line is a sinusoidal fit to the data up to th =
20 ms. Its frequency f is 115(2) kHz, in good agreement with the expected value of 113 kHz. The thin lines
are borders to a region that is given by varying f by T6 kHz, illustrating the estimated jitter in the two-
photon detuning |D2 − D1|. (B) Comparison of the rate of expansion in the horizontal direction for the
molecular sample without and with STIRAP transfer. The top curve (circles) shows the Thomas-Fermi radius r
of the molecular sample as a function of expansion time without STIRAP. The linear fit gives a rate of
expansion of dr/dt= 1.0(1) mm/s, corresponding to an energy of kB × 14(4) nK. The bottom curve (squares)
shows the expansion after double STIRAP with dr/dt = 0.7(1) mm/s, corresponding to kB × 7(2) nK. Error
bars indicate the 1s error in the determination of the cloud radius.
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tightly focused laser beams L1 and L2 preferen-
tially transfers molecules in the center of the
sample and is hence responsible for some selec-
tion in velocity space.

It should now be possible to add a second
STIRAP step for transfer into the rovibrational
ground state n = 0, J = 0. A suitable two-photon
transition at readily available laser wavelengths
is via the 68th excited state level of the 0þu
potential near 1329 nm (up) and 991 nm (down)
with comparatively good wave function overlap
at the level of |W/Wa|

2 ≈ 10−4. We expect that
searching for dark resonances will be straight-
forward, as now all two-photon transition energies
are known with an uncertainty of 10−3 cm−1.
Molecules in n = 0, J = 0 cannot further decay
into a lower state upon a two-body collision, and
they are thus expected to allow the formation of
an intrinsically stable molecular BEC. The high
speed of our STIRAP transfer will allow us to
perform in situ as well as time-of-flight imaging
for direct characterization of the spatial and mo-
mentum distribution of the molecular ensemble.

With our technique, any low-lying vibrational
state can be coherently populated in a controlled
fashion with full control over the rotational quan-
tum number, allowing, for instance, state-specific
collisional studies and high-precision molecular
spectroscopy with possible implications for fun-
damental physics (6, 7). Our procedure can be
adapted to other species, in particular to hetero-
nuclear alkali dimers such as RbCs (25) and
KRb (15) for the creation of dipolar quantum
gases (26). For heteronuclear alkali dimers, a
single two-photon transfer step might suffice as

a result of favorable wave function overlap (27).
We expect that the combination of our technique
with Feshbach molecule production out of a Mott-
insulator state in a three-dimensional lattice (28)
will increase the initial Feshbach molecule pro-
duction efficiency, avoiding collective excitations
as a result of magnetic field ramping and inhibit-
ing collisional loss, and will provide full control
over all internal and external quantum degrees of
freedom of the ground state molecules.
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Observation of Atomic Diffusion
at Twin-Modified Grain
Boundaries in Copper
Kuan-Chia Chen,1* Wen-Wei Wu,2* Chien-Neng Liao,1† Lih-Juann Chen,1 K. N. Tu3

Grain boundaries affect the migration of atoms and electrons in polycrystalline solids, thus
influencing many of the mechanical and electrical properties. By introducing nanometer-scale
twin defects into copper grains, we show that we can change the grain-boundary structure and
atomic-diffusion behavior along the boundary. Using in situ ultrahigh-vacuum and high-resolution
transmission electron microscopy, we observed electromigration-induced atomic diffusion in the
twin-modified grain boundaries. The triple point where a twin boundary meets a grain boundary
was found to slow down grain-boundary and surface electromigration by one order of magnitude.
We propose that this occurs because of the incubation time of nucleation of a new step at the
triple points. The long incubation time slows down the overall rate of atomic transport.

Grain boundaries affect many physical
properties of polycrystalline solids. For
example, reduction of grain size is known

to improve the mechanical strength of metals,
governed by the Hall-Petch equation (1, 2). A
large-angle tilt-type grain boundary can short-
circuit atomic diffusion, which has been the most
serious reliability issue in Al interconnects in mi-

croelectronics technology. The atomic structure
of a grain boundary is controlled by the mis-
orientation between the two grains forming the
grain boundary. Balluffi et al. have made bi-
crystals of Au thin films and varied systemati-
cally the tilt or twist angle in the bicrystals for
studying the correlation between formation ener-
gy and atomic structure of grain boundaries (3, 4).

Generally speaking, the higher the grain-boundary
misorientation angle, the higher the atomic diffu-
sivity. Thus, by modifying the structure of a grain
boundary, it should be possible to control the
atomic diffusion along the grain boundary.

Lu et al. have synthesized a high density of
nanotwins in pure Cu foils by pulsed electro-
deposition (5). The average grain size in the Cu
foils is ~400 nm, and the high-density twins have
a peak at 15 nm in twin-lamella size distribution.
The Cu foil shows a 10-fold improvement of the
mechanical strength relative to a large-grained
Cu, and the foil remains ductile but its electrical
resistance did not significantly change. High me-
chanical strength and low electrical resistivity are
desired properties for interconnecting wires in
integrated circuits from the consideration of the
resistive-capacitive delay, electromigration (EM),
and stress migration (6–8). EM is enhanced
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Abstract One possible way to produce ultracold, high-
phase-space-density quantum gases of molecules in the
rovibronic ground state is given by molecule association
from quantum-degenerate atomic gases on a Feshbach
resonance and subsequent coherent optical multi-photon
transfer into the rovibronic ground state. In ultracold
samples of Cs2 molecules, we observe two-photon dark
resonances that connect the intermediate rovibrational
level |v=73, J=2 > with the rovibrational ground state
|v=0, J=0 > of the singlet X1Σ+

g ground state poten-
tial. For precise dark resonance spectroscopy we exploit
the fact that it is possible to efficiently populate the level
|v= 73, J = 2 > by two-photon transfer from the disso-
ciation threshold with the stimulated Raman adiabatic
passage (STIRAP) technique. We find that at least one
of the two-photon resonances is sufficiently strong to al-
low future implementation of coherent STIRAP transfer
of a molecular quantum gas to the rovibrational ground
state |v=0, J=0 >.

1 Introduction

Laser cooling of atoms and the production of quantum
degenerate atomic Bose and Fermi gases have revolution-
ized the field of atomic physics [1]. For molecular sys-
tems, ultralow temperatures and high phase space den-
sities are much more difficult to achieve. Laser cooling
of molecules has not yet been demonstrated, and with
alternative cooling and slowing techniques such as buffer
gas cooling and Zeeman slowing high phase space densi-
ties are yet out of reach [2–4]. In photoassociation experi-
ments from magneto-optical traps, [5–9], cold samples of
deeply bound molecules in the lowest vibrational levels

Correspondence to: johann.danzl@uibk.ac.at

have been created. Yet, the phase space densities are far
away from the quantum degenerate regime. In the limit
of extremely weak binding, molecular Bose-Einstein con-
densation could be achieved [10] by using the trick of
first cooling an atomic Fermi gas to high phase space
densities and subsequently associating pairs of atoms
to molecules. For molecules composed of Fermions, col-
lisional stability of the highly excited molecules is as-
sured as a result of a Pauli blocking effect. Here, we are
interested in ultracold and dense molecular systems in
specific deeply bound rovibrational levels. Such samples
are of high interest for fundamental studies in physics
and chemistry, ranging from ultracold chemistry [11] and
few-body collisional physics [12,13] to high resolution
spectroscopy [14,15], to applications in quantum pro-
cessing [16], and to the formation of dipolar quantum
gases and dipolar Bose-Einstein condensates [17,18]. For
these experiments full control over the molecular wave
function is desired. In addition, high densities are re-
quired for molecular quantum gas studies. Only in the
rovibronic ground state, i.e. the lowest energy level of the
electronic ground state, is collisional stability assured.

For the production of molecular quantum gases in
the absolute ground state, we follow a scheme in which
the technique of stimulated two-photon transfer is re-
peatedly applied to molecules associated on a Feshbach
resonance from a high-density sample of ultracold atoms
such as a Bose-Einstein condensate (BEC). The initially
very loosely bound molecules are to be transferred in a
few successive steps to the rovibrational ground state,
acquiring more and more binding energy. The scheme
has several advantages. It is fully coherent, not relying
on spontaneous processes, allowing high state selectiv-
ity, and it involves only a comparatively small number
of intermediate levels. The scheme is expected to allow
the removal of a ground state binding energy of typi-
cally 0.5 eV for an alkali dimer without appreciably heat-
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ing the molecular sample. It essentially preserves phase
space density and coherence of the particle wave func-
tion, allowing the molecular sample to inherit the high
initial phase space density from the atomic sample. Ide-
ally, the scheme will ultimately result in the formation of
a molecular BEC. A major challenge is given by the low
radial wave function overlap between successive molecu-
lar levels, potentially leading to prohibitively low transi-
tion rates for the two-photon transitions that could only
be compensated by the use of further (smaller) transfer
steps.

In a crucial experiment, Winkler et al. [19] demon-
strated that coherent two-photon transfer by means of
the stimulated Raman adiabatic passage (STIRAP) tech-
nique [20] can efficiently be implemented with quantum
gases of weakly bound Feshbach molecules. In this work,
the transferred molecules, in this case Rb2, were still
weakly bound with a binding energy of much less than
10−4 of the binding energy of the rovibrational ground
state. In particular, wave function overlap of the final
level with the rovibrational ground state is negligible.
Nevertheless, an important result of this experiment was
the demonstration that, even with excitation near the
excited S+P asymptote, parasitic excitation of unwanted
molecular transitions by the STIRAP laser beams could
largely be avoided. Recently, Danzl et al. [21] showed effi-
cient coherent STIRAP transfer into deeply bound rovi-
brational levels in the quantum gas regime. More specifi-
cally, transfer into the rovibrational level |v=73, J=2 >
of the singlet X1Σ+

g molecular potential of the Cs dimer
was demonstrated. This level is bound by 1061 wavenum-
bers, more than one-fourth of the binding energy of the
rovibrational ground state. Here, as usual, v and J de-
note the vibrational and rotational quantum numbers,
respectively. This intermediate level was chosen as to
give a balanced distribution for the wave function over-
lap in a four-photon transfer scheme to the ground state,
i.e. to assure that all four dipole transition moments are
of comparable magnitude. This level could thus serve as
a transfer state towards the rovibrational ground state
|v = 0, J = 0 >, allowing coherent ground state trans-
fer with two two-photon transitions. Also recently, Ni
et al. [22] could demonstrate transfer all the way into
the rovibrational ground state |v=0, J=0 > of the sin-
glet X1Σ+ molecular potential in a quantum gas of KRb
molecules. The transfer could be achieved in a single step
as a result of the favorable run of the excited state poten-
tials in the case of heteronuclear alkali dimers [23]. Also,
the lowest rovibrational level of the Rb2 triplet a3Σ+

u

potential could recently be populated in the quantum
gas regime using the STIRAP technique [24].

Here, in an ultracold and dense sample of Cs mole-
cules, we present two-photon dark resonances connect-
ing the rovibrational level |v = 73, J = 2 > of the Cs
dimer singlet X1Σ+

g molecular potential with the rovi-
brational ground state |v = 0, J = 0 >. Starting from
|v = 73, J = 2 >, we first perform molecular loss spec-
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Fig. 1 Molecular level scheme for Cs2. Molecules in a weakly
bound Feshbach level |1>= |v ≈ 155 > (not resolved near
the 6S+6S asymptote) are transferred to the rovibrational
level |3>= |v = 73, J = 2> of the singlet X1Σ+

g ground
state potential with a binding energy of 1061 cm−1 by a two-
photon STIRAP process [21] involving lasers L1 and L2 near
1126 nm and 1006 nm. The following two-photon transition
from |3> to |5>= |v = 0, J = 0> and also to |v = 0, J =
2> is then probed by lasers L3 and L4 near 1350 nm and
1000 nm, respectively. Level |2> is the 225th level of the
electronically excited coupled (A1Σ+

u −b3Π0u) 0+
u potentials.

Here, we probe suitable candidate levels for |4>, connecting
|3> to |5>. These candidate levels also belong to the 0+

u

coupled state system and include levels with coupled channel
vibrational numbers v′=57 to 68. The position of the vertical
arrows is not meant to reflect the internuclear distance at
which the transition takes place.

troscopy by laser excitation in the wavelength range from
1329 nm to 1365 nm to search for and identify suitable
excited state levels of the mixed (A1Σ+

u − b3Π0u) 0+
u

excited molecular potentials. These levels are 9893 to
10091 wavenumbers above the rovibronic ground state,
corresponding to a wavelength range from 1011 nm to
991 nm for the transition to the rovibronic ground state.
We then perform dark state spectroscopy by simultane-
ous laser irradiation near 1350 nm and 1000 nm. We find
several dark resonances, from which we derive normal-
ized transition strengths and find that at least one of
the two-photon transitions is favorable for ground state
transfer.

2 Molecular energy levels and laser transitions

Fig.1 shows the energy of the relevant Cs2 molecular
states and the optical transitions for our transfer scheme.
State |1> is the initial weakly bound Feshbach state that
we populate out of an atomic BEC of Cs atoms via Fesh-
bach association [25]. For the transfer from |1> to the
ro-vibrational ground state |5>= |v = 0, J = 0 >, three
intermediate levels |2>, |3>, and |4> are needed. All five
molecular levels are coupled by two two-photon transi-
tions in a distorted M-shaped configuration as shown in
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Fig. 2 5-level distorted M-scheme. The one-photon-
detunings and Rabi frequencies of Li are ∆i and Ωi, i =
1, 2, 3, 4. For STIRAP to |v = 73, J = 2 > the detunings for
L1 and L2 are ∆1 ≈ 0 ≈ ∆2.

Fig.2. Levels |2> and |4> belong to the excited mixed
(A1Σ+

u − b3Π0u) 0+
u potentials. We have identified level

|2> as the 225th one of the coupled 0+
u system, with an

uncertainty of 2 in the absolute numbering, and |3> is
the level with v = 73 and J = 2 of the X1Σ+

g ground
state potential [21]. A two-photon laser transition with
laser L1 at 1126 nm and laser L2 at 1006 nm couples |1>
to |3> via |2>. There are now several possibilities for
coupling |3> to |5>, differing in the choice of the excited
state |4>. The aim of this work is to identify a suit-
able state |4> from the (A1Σ+

u − b3Π0u) 0+
u potentials

with sufficient wave function overlap with both |3> and
|5>. We search for state |4> in the energy range of 9893
to 10091 wavenumbers above the rovibrational ground
state |5>. Molecular structure calculations as outlined in
Sec. 4 show that in this range there are candidate states
for |4> that have dipole transition matrix elements with
both |3> and |5> of comparable magnitude, allowing op-
timum STIRAP performance. The wavelengths for the
lasers L3 and L4 driving the associated two-photon tran-
sition are near 1350 nm and 1000 nm, respectively. We
derive all laser light for driving the molecular transitions
from highly stable, widely tunable diode laser systems
with kHz linewidths. For short term stability, the lasers
are all locked to narrow-band optical resonators. For long
term stability, the optical resonators are referenced to an
infrared, fiber-laser-based frequency comb, covering the
wavelength range from about 980 nm to about 2000 nm.

3 Preparation of a molecular quantum gas in
v=73, J =2

Our sample preparation procedure follows Ref. [21]. In
summary, we first produce a cigar-shaped BEC of typ-
ically 1.5 × 105 cesium atoms in the lowest hyperfine
sublevel F = 3, mF = 3 in a crossed optical dipole trap.
As usual, F is the atomic angular momentum quantum
number, and mF its projection. The trapping light at
1064.5 nm is derived from a single-frequency, highly-

stable Nd:YAG laser. Using a d-wave Feshbach reso-
nance at 4.8 mT [26] we then produce a quantum gas
of weakly bound Feshbach molecules out of the BEC
[25]. For this, we first ramp the magnetic field from the
BEC production value of 2.0 mT to 4.9 mT, slightly
above the Feshbach resonance. The molecules are pro-
duced on a downward sweep at a typical sweep rate of
0.025 mT/ms. The resulting ultracold sample contains
up to 11000 molecules, immersed in the bath of the re-
maining BEC atoms. For the present experiments we
shut off the trap and perform all subsequent measure-
ments in free flight. This reduces the particle density,
in particular during the later detection stage of the ex-
periment, and hence reduces atom-molecule collisional
loss, thus increasing the molecular signal. Following two
avoided state crossings while further sweeping the mag-
netic field to lower values, we transfer the molecules via a
weakly bound, open channel s-wave molecular state into
the still weakly bound, closed channel s-wave molecu-
lar state |1> by magnetic field ramping [21]. This is
the starting state for the subsequent optical transfer. As
with all other weakly bound Feshbach states, it belongs
to both the X1Σ+

g ground state potential and the lowest
triplet a3Σ+

u potential and is hence of mixed character.
It has zero rotational angular momentum. At a field of
1.9 mT, it has a binding energy of 5 MHz×h, where h
is Planck’s constant, with respect to the F = 3,mF = 3
two-atom asymptote [26]. We detect molecules in |1> by
reverse magnetic field ramping, leading to dissociation
on the Feshbach resonance at 4.8 mT, and by subsequent
imaging of the resulting atoms [25].

We transfer the molecules from |1> to the rovibra-
tional level |3>= |v=73, J=2 > with the STIRAP tech-
nique [21]. For this, about 3 ms after molecule produc-
tion, with the magnetic field ramping completed, laser
L2 at 1006 nm is pulsed on first and then laser L1 at
1126 nm. Both lasers are on resonance within a few kHz.
The pulse overlap time is about 10 µs. With peak Rabi
frequencies of Ω1 ≈ 2π×3 MHz and Ω2 ≈ 2π×6 MHz
we transfer about 80 % of the molecules to |3>. We find
that the molecular sample is not heated as a result of the
STIRAP transfer. A residual kinetic energy on the order
of kB × 10 nK comes from the expansion energy of the
initial atomic sample. Our current procedure allows us
to produce a sample of up to 8000 molecules in state |3>
every 12 s. For the loss spectroscopy as detailed below,
we irradiate the molecules in |3> with light near 1350
nm for a certain waiting time. We then measure the frac-
tion of molecules that have remained in |3>. For this,
we transfer the remaining molecules back to |1> using
the reverse STIRAP process and determine the number
of molecules in |1>. Without irradiation with light near
1350 nm we transfer more than 65% of the molecules
from |1> to |3> and back to |1> [21].
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Fig. 3 Loss resonances for excitation near 1351 nm from
|3>= |v = 73, J = 2 > of the X1Σ+

g ground state potential.
(A) Loss of molecules in |3> as a function of laser detuning
∆3 near 1351 nm after a waiting time of 20µs. The solid line
represents a model calculation matched to the data yielding
an excited state natural linewidth of 2π× 2 MHz. (B) Time
dependence of molecular loss on resonance at 1351 nm for
two different laser intensities. (1) 270 ± 80 mW/cm2, (2) 570
± 80 mW/cm2. The fitted exponential decay gives the decay
constants τ = 26± 4 µs for 270 mW/cm2 and τ = 14± 2 µs
for 570 mW/cm2.

4 Loss spectroscopy

Prior to the present experiments, the energies of the lev-
els with predominant A1Σ+

u character in the region of
interest were established to about ± 0.06 cm−1 by fits
[27] to data obtained by Fourier transform spectroscopy
(FTS) at Laboratoire Aimé Cotton (LAC) using tran-
sitions to the X1Σ+

g state. However, the predominantly
b3Π0u levels were only known to about± 2 cm−1 because
this region was above that for which data was obtained
from 23∆1g → b3Π0u emission [28], but lower than the
regime where b3Π0u levels acquire sufficient singlet char-
acter (by spin-orbit mixing) to be observed in the FTS
work. Paradoxically, the predominantly b3Π0u levels are
of special interest here because they happen to have sig-
nificant singlet character over regions of the internuclear
distance that are most important for transitions of in-
terest in this work.

The coupled channel calculations used to character-
ize the level structure of the strongly interacting A1Σ+

u

and b3Π0u states employed methods developed from pre-
vious work on A and b states of K2 [29,30], RbCs [31],
Na2 [32], and Rb2 [33]. The DVR approach [34] was used
to calculate eigenvalues primarily for two coupled chan-
nels, although some information on b3Π1u was found
in the FTS data from LAC. Similar computational ap-
proaches, differing in the detailed numerical methods,
have been applied recently also to the A and b states of
NaRb [35].

Because of the initial ± 2 cm−1 uncertainty in the
positions of b3Π0u levels of interest, we decided to per-
form a systematic, broad-range search around expected
transition energies in the wavelength range from 1329
nm to 1365 nm. For this, we perform double STIRAP
from |1> to |3> and back with a waiting time of typ-
ically τ = 1 ms. During the waiting time, we irradiate
the sample with laser L3 at an estimated intensity of

5 · 104 mW/cm2. Laser L3 is a diode laser with grat-
ing feedback. On the timescale of our experiment, the
resonator of the laser is sufficiently stable, allowing sys-
tematic tuning of the laser without locking the laser to
its external resonator. We step the laser frequency in
units of typically 20 MHz by tuning the piezo element
on the grating. We monitor the laser wavelength with a
home-built wavemeter at approximately 300 MHz accu-
racy. For the initial broad range line search we increased
the repetition rate of the experiment by stopping evapo-
rative cooling slightly before condensation sets in. While
stepping the laser, taking data points essentially at the
cycle rate corresponding to the sample production time,
we look for a dip in the molecule number. Once such a
dip is found, typically consisting of a few data points,
we perform a more precise scan by locking the laser to
the external, highly-stable resonator and then the ex-
ternal resonator to the infrared frequency comb. This
allows us to detune the laser with kHz precision. Fig.3
(A) shows a typical loss resonance near 1351 nm. We re-
duce the laser intensity such that on resonance at most
80% of the molecules are lost within 20 µs. From such
measurements the transition strength as given by the
normalized Rabi frequency and the natural linewidth of
the excited state can be deduced. The typical width of
the excited state molecular levels that we have identi-
fied is 2π × 2 MHz, in agreement with typical expected
lifetimes. Fig.3 (B) shows a measurement of the time de-
pendence of the molecular loss. Here, we step the wait-
ing time τ from 0 to 50 µs, while the laser is kept on
resonance. In total, we have found 7 excited levels be-
longing to the (A1Σ+

u − b3Π0u) 0+
u coupled state sys-

tem. They are listed in Table 1 along with the dominant
overall character (either A1Σ+

u state or b3Π0u state) of
the vibrational wave function as determined from the
coupled state calculations. Within the wavelength range
from 1329 nm to 1365 nm, theory predicts the existence
of 5 more states of the 0+

u coupled state system, whose
energies are also displayed in Table 1. For most of them,
the wave function overlap is not expected to be favor-
able for STIRAP transfer to X 1Σ+

g |v= 0 >. However,
an improved model of the energy level structure, based
on all the data except one FTS point with a large resid-
ual, fits the observed transitions to a rms residual error
of 0.02 cm−1, indicating that additional resonances can
be found with searches over very limited ranges of laser
frequency.

5 Dark resonances with |v=0, J =0 > and
|v=0, J =2 >

In our recent work [21] we could greatly improve the
value for the binding energy of the rovibrational ground
state |5>= |v = 0, J = 0 > by determining the binding
energy of |v=73 > and using well-known data from con-
ventional molecular spectroscopy [36,37]. Our measure-
ment was limited by the calibration of our wavemeter,
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not allowing us to determine the number of the teeth of
the frequency comb, and by the precision of the spec-
troscopy data. Searching for |5 > in dark state spec-
troscopy is now a straightforward task as only a range
of about 0.002 wavenumbers needs to be scanned. We
do this by exciting the transitions from |3 > to |4 >
with laser L3 and from |4> to |5> with laser L4 si-
multaneously. The intensity for L4 is typically 5 · 104

mW/cm2. As is well known, the two light fields create a
molecule-molecule dark state. The molecules initially in
|3> are lost unless laser L4 is on two-photon resonance,
provided that the Rabi frequency Ω4 on the fourth tran-
sition is equal to or greater than Ω3, the Rabi frequency
on the third transition. We look for the resonance con-
dition with the rovibrational ground state |v=0, J=0 >
for some of the excited levels that we found above. Ta-
ble 1 lists the observed transition wavelengths. We check
that we can identify the level with rotational quantum
number J = 2 as the rotational energy splitting is well
known. Fig.4 shows typical molecular dark resonances
when we set L4 on resonance and step the detuning ∆3

of L3 near 1350 nm. From a three-level model matched to
the data for the dark resonances, taking into account off-
resonant excitations and laser line widths, we determine
the molecular transition strengths as given by the nor-
malized Rabi frequencies. One of the two-photon tran-
sitions appears to be a particularly good candidate for
STIRAP ground state transfer. It involves the excited
state level |4> with vibrational number v′ = 61 of the
(A1Σ+

u −b3Π0u) 0+
u coupled state system. For the transi-

tion from |3> to |4> and from |4> to |5> the normalized

Rabi frequencies are Ω3 =2π×6 kHz
√
I/(mW/cm2) and

Ω4 =2π×5 kHz
√
I/(mW/cm2), respectively. These val-

ues carry an estimated error of 50% as the laser beam
parameters for L3 and L4 are not well determined. A
comparison with a typical atomic transition strength of

Ωa =2π×5 MHz
√
I/(mW/cm2) giving |Ω3/Ωa|2 ≈ 10−6

and |Ω4/Ωa|2 ≈ 10−6 reflects the minuteness of the wave
function overlap. Nevertheless, their value is sufficient for
STIRAP as seen in our recent work [21]. Also, they are
of similar magnitude. This facilitates STIRAP, for which
the peak Rabi frequencies should be approximately equal
for optimum performance.

6 Conclusion

We observe several two-photon dark resonances that con-
nect the intermediate rovibrational level |v=73, J=2 >
of the X1Σ+

g ground state potential with the rovibra-
tional ground state level |v= 0, J = 0 >. At least one of
the two-photon transitions is sufficiently strong for im-
plementing STIRAP to |v = 0, J = 0 > in the quantum
gas regime, paving the way for the realization of a BEC
of ground state molecules. STIRAP can in principle be
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Fig. 4 Dark resonances involving X1Σ+
g state levels |v =

73, J=2 > and |v=0 > for two different intermediate levels.
(A and B) Dark resonances with X1Σ+

g |v= 0, J = 0 > and
|v=0, J=2 > involving the 0+

u excited state level |v′=63, J=
1 > at an excitation wavelength near 1345 nm. (C and D)
Dark resonances with X1Σ+

g |v= 0, J = 0 > and |v= 0, J =
2 > involving the excited state level |v′ = 61, J = 1 > at an
excitation wavelength near 1351 nm. The solid line in (D)
is the result of a model calculation, solving the three-level
master equation including laser bandwidth and loss, matched

to the data giving Ω3 =2π×6 kHz
√
I/(mW/cm2) and Ω4 =

2π×4 kHz
√
I/(mW/cm2) for X1Σ+

g |v = 0, J = 2 >. The
corresponding calculation for X1Σ+

g |v = 0, J = 0 > yields

2π×5 kHz
√
I/(mW/cm2).

implemented in two ways, either in the form of two se-
quential two-photon STIRAP steps, or in the form of
four-photon STIRAP [38,39]. An attractive strategy for
the production of a BEC of ground state molecules re-
lies on the addition of an optical lattice. Starting from
an atomic BEC, pairs of atoms at individual lattice sites
are produced in a superfluid-to-Mott-insulator transition
[40]. These pairs can then be very efficiently associated
on a Feshbach resonance and subsequently transfered to
the rovibronic ground state with STIRAP. The lattice
has the advantage of shielding the molecules against in-
elastic collisions during the association process and sub-
sequent state transfer. As proposed by Jaksch et al. [41],
dynamical melting of the lattice should ideally result in
the formation of a BEC of molecules in the rovibronic
ground state in a Mott-insulator-to-superfluid-type tran-
sition.
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Table 1 Levels of the excited 0+
u coupled state system in the

region 9893 cm−1 to 10091 cm−1 above X1Σ+
g |v=0, J=0 >.

The first column gives the coupled channel vibrational num-
bers of the individual levels. Levels marked with ∗ have not
been searched for and the level energies given are those deter-
mined from the coupled channels calculations. The column
labeled ’C’ gives the predominant contribution to the over-
all vibrational wave function, which is either predominantly
A1Σ+

u or predominantly b3Π0u, indicated by A and b, re-
spectively. The number in brackets gives the order within the
two progressions of levels with either predominantly A1Σ+

u

or predominantly b3Π0u character. Both the |J=1 > and the
|J = 3 > rotational levels were identified for all oberved ex-
cited state levels. The wavemeter accuracy gives a typical un-
certainty in wavelength of ±0.002 nm, which translates into
±0.011 cm−1 uncertainty in the value for the energy above
|v= 0, J = 0 >. The energy relative to X1Σ+

g |v= 0, J = 0 >
of experimentally determined levels is based on the measured
excitation wavelength from X1Σ+

g |v = 73, J = 2 > and the
X1Σ+

g |v = 73 > level energy from Ref. [37], which intro-
duces an additional uncertainty of 0.001 cm−1. Deexcitation
wavelengths are obtained from dark resonance spectroscopy
involving the respective intermediate excited state level and
the rovibronic ground state X1Σ+

g |v=0, J=0 >. n. m.: not
measured

v′ C J Excitation
wavelength
from
X1Σ+

g |v=
73, J = 2 >
[nm]

Energy
above
X1Σ+

g |v=
0, J = 0 >
[cm−1]

De-
excitation
wavelength
to X1Σ+

g

|v = 0, J =
0 > [nm]

57 A (7) 1 1365.148 9893.002 n. m.
57 A (7) 3 1365.131 9893.094 n. m.
∗58 b (50) 0 1362.893 9905.126 n. m.
∗59 A (8) 0 1357.748 9932.927 n. m.
60 b (51) 1 1357.091 9936.497 n. m.
60 b (51) 3 1357.071 9936.606 n. m.
61 b (52) 1 1351.367 9967.707 1003.240
61 b (52) 3 1351.347 9967.816 n. m.
∗62 A (9) 0 1350.388 9973.068 n. m.
63 b (53) 1 1345.725 9998.729 1000.128
63 b (53) 3 1345.705 9998.839 n. m.
∗64 A (10) 0 1343.082 10013.351 n. m.
65 b (54) 1 1340.162 10029.576 997.052
65 b (54) 3 1340.143 10029.682 n. m.
66 A (11) 1 1335.833 10053.759 994.653
66 A (11) 3 1335.816 10053.853 n. m.
∗67 b (55) 0 1334.675 10060.249 n. m.
68 b (56) 1 1329.257 10090.794 991.003
68 b (56) 3 1329.238 10090.902 n. m.
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Tiemann, Phys. Rev. A 75, 042503 (2007).

36. W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W.
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One possibility for the creation of ultracold, high-phase-space-density quantum gases
of molecules in the rovibronic ground state relies on first associating weakly-bound
molecules from quantum-degenerate atomic gases on a Feshbach resonance and then
transfering the molecules via several steps of coherent two-photon stimulated Raman
adiabatic passage (STIRAP) into the rovibronic ground state. Here, in ultracold sam-
ples of Cs2 Feshbach molecules produced out of ultracold samples of Cs atoms, we
observe several optical transitions to deeply bound rovibrational levels of the excited
0+

u molecular potentials with high resolution. At least one of these transitions, although
rather weak, allows efficient STIRAP transfer into the deeply bound vibrational level
|v = 73> of the singlet X1Σ+

g ground state potential, as recently demonstrated [1].
From this level, the rovibrational ground state |v= 0, J = 0> can be reached with one
more transfer step. In total, our results show that coherent ground state transfer for
Cs2 is possible using a maximum of two successive two-photon STIRAP processes or
one single four-photon STIRAP process.

1 Introduction

Ultracold and dense molecular samples in specific deeply bound rovibrational levels are
of high interest for fundamental studies in physics and chemistry. They are expected to
find applications in high resolution spectroscopy and fundamental tests [2, 3], few-body
collisional physics [4, 5], ultracold chemistry [6], quantum processing [7], and in the
field of dipolar quantum gases and dipolar Bose-Einstein condensation [8, 9]. Ideally,
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full control over the molecular wave function is desired, i.e. full (quantum) control
over the internal and external degrees of freedom of the molecules. High phase space
densities are needed for molecular quantum gas studies. For many of the envisaged
studies and applications, initial preparation of the molecular sample in the rovibronic
ground state, i.e. the lowest energy level of the electronic ground state, is desired.
Only in this state one can expect sufficient collisional stability.

But how is it possible to produce dense samples of ultracold molecules in the rovi-
brational ground state? Laser cooling of atoms, which has lead to the production of
quantum degenerate atomic Bose and Fermi gases [10], can so far not be adapted to
the case of molecular systems as suitable cycling transitions are not available. Versatile
non-optical cooling and slowing techniques such as buffer gas cooling and Stark deceler-
ation in combination with molecule trapping [11, 12, 13] have been developed, but high
molecular densities and in particular high phase space densities are yet to be reached.
An alternative route to producing ultracold molecular samples is given by first produc-
ing ultracold atomic samples and then associating molecules out of the atomic sample.
While this technique is so far limited to the production of selected species of dimer
molecules, it has the advantage that ultra-low temperatures and high particle densi-
ties are easily inherited from the atomic precursor sample. There are essentially two
association techniques, photoassociation [14] and magnetically induced Feshbach asso-
ciation [15, 16]. In photoassociation experiments [17, 18, 19, 20], ultracold samples of
deeply bound molecules have been created. Additional techniques such as vibrational
cooling [19] should allow selective pumping into the rovibrational ground state and
open up the prospect for high molecular phase space densities. In Feshbach association
experiments [21, 22], high-density samples of weakly bound molecules are produced.
For dimer molecules composed of Fermions, collisional stability of the highly excited
molecules is assured as a result of a Pauli blocking effect, and molecular Bose-Einstein
condensation could be achieved in the limit of extremely weak binding [23].

Here, we are interested in combining the techniques of Feshbach association and
coherent molecular state transfer to produce quantum gases of molecules in the rovi-
brational ground state |v = 0, J = 0> of the lowest electronic state. As usual, v and
J are the vibrational and rotational quantum numbers, respectively. The molecules,
produced on a Feshbach resonance and hence initially very loosely bound, are to be
transferred in a few successive steps of coherent two-photon laser transfer to the rovi-
brational ground state, acquiring more and more binding energy in each step. The
general idea is sketched in Fig.1A for the case of Cs2. Each two-photon step involves
an excited state level. Population transfer into this level needs to be avoided to prevent
loss due to spontaneous emission. One possibility is to use the technique of stimulated
Raman adiabatic passage (STIRAP) [24], which is very robust and largely insensitive
to laser intensity fluctuations. The scheme has several advantages. First, production
of Feshbach molecules out of a quantum degenerate atomic sample can be very effi-
cient [25]. Second, the optical transition rate on the first transition starting from the
Feshbach molecules is greatly enhanced in comparison to the free atom case. Further,
the scheme is fully coherent, not relying on spontaneous processes, allowing high state
selectivity, and involving only a comparatively small number of intermediate levels.
A ground state binding energy of typically 0.5 eV for an alkali dimer can be removed
essentially without heating the molecular sample, as the differential photon recoil using
pairwise co-propagating laser beams driving the two-photon transitions is very small.
If losses and off-resonant excitations can be avoided, the scheme essentially preserves
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phase space density and coherence of the initial particle wave function, allowing the
molecular sample to inherit the high initial phase space density from the atomic pre-
cursor sample.

Certainly, several challenges have to be met: Going from weakly bound Feshbach to
tightly bound ground state molecules corresponds to a large reduction in internuclear
distance. Consequently, the radial wave function overlap between successive levels
is small, and a compromise has to be found between the number of transitions and
the minimum tolerable wave function overlap. To keep the complexity of the scheme
low, one or at most two two-photon transitions are desirable. Accordingly, suitable
intermediate levels have to be identified that allow a balanced division of wave function
overlap, as given by the Franck-Condon factors, between the different transitions. For
example, for a four-photon transition scheme with Cs2 as shown in Fig.1A the Franck-
Condon factors are all on the order of 10−6. We emphasize that the identification of the
first excited level and hence of the first transition starting from the Feshbach molecules
is of crucial importance. Detailed calculations determining the wave function overlap
are generally missing, and estimates on the Franck-Condon factors using hypothetical
last bound states of either the singlet or triplet potentials of an alkali dimer molecule
do not necessarily reflect the transition dipole moments adequately. In addition, for
electronic molecular states or energy regions where spectroscopic data is missing, the
precise energy of the excited state levels above the atomic threshold is known only
with a large uncertainty, which can approach the vibrational spacing of up to a few
nanometers. Hence, considerable time has to be spent on searching for weak transitions
starting from the initial Feshbach molecules.

In a pioneering experiment, Winkler et al. [26] demonstrated that the STIRAP
technique can efficiently be implemented with quantum gases of weakly bound Fesh-
bach molecules. In this work, the transferred molecules, in this case Rb2, were still
weakly bound with a binding energy of less than 10−4 of the binding energy of the
rovibronic ground state, and the intermediate excited state level was close to the
excited-atom asymptote. Here, we observe several optical transitions starting from a
weakly bound Feshbach level to deeply bound rovibrational levels of the mixed excited
(A1Σ+

u−b3Πu) 0+
u molecular potentials of the Cs2 molecule in a wavelength range from

1118 to 1134 nm, far to the red of the atomic D1 and D2 transitions. The Cs2 molec-
ular potentials are shown in Fig.1A. We observe the levels as loss from an ultracold
sample of Cs2 Feshbach molecules as shown in Fig.1B. We observe two progressions,
one that we attribute to the (A1Σ+

u−b3Πu) 0+
u potentials and one that we associate

to the triplet (1)3Σ+
g potential. From the loss measurements, we determine the transi-

tion strengths and find that the stronger transitions should be suitable for STIRAP to
an intermediate, deeply bound rovibrational level of the singlet X1Σ+

g potential with
v= 73. Recently, we could implement STIRAP into |v= 73, J = 2> [1]. For the case
of the dimer molecule KRb, Ni et al. [27] could demonstrate quantum gas transfer
all the way into the rovibrational ground state |v = 0, J = 0> of the singlet X1Σ+

molecular potential. Here, the transfer could be achieved in only a single step as a
result of the favorable run of the excited state potentials, which is generally the case
for heteronuclear molecules composed of alkali atoms [28]. Also recently, transfer to
the rovibrational ground state level of the lowest triplet a3Σ+

u state of Rb2 could be
achieved [29].
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2 Preparation of a sample of weakly bound Feshbach
molecules

We produce ultracold samples of molecules on two different Feshbach resonances, one
near 1.98 mT and one near 4.79 mT [30]. In both cases, essentially following the
procedure detailed in Ref.[31], we first produce an ultracold sample of typically 2×105

Cs atoms in the lowest hyperfine sublevel F =3, mF =3 in a crossed optical dipole trap.
As usual, F is the atomic angular momentum quantum number, and mF its projection
on the magnetic field axis. The trapping light at 1064.5 nm is derived from a single-
frequency, highly-stable Nd:YAG laser. The offset magnetic field value for evaporative
cooling is 2.1 mT. We support optical trapping by magnetic levitation with a magnetic
field gradient of 3.1 mT/cm. We then produce weakly bound Feshbach molecules out
of the atomic sample [22]. We produce a sample every 8 s, i.e. our spectroscopic
measurements are performed at a rate of one data point every 8 s. In order to be
able to search for optical transitions over large frequency ranges it is advantageous
to work with the shortest possible sample preparation times. For this reason we stop
evaporative cooling slightly before the onset of Bose-Einstein condensation (BEC),
which also makes sample preparation somewhat less critical. The temperature of the
initial atomic sample is then typically about 100 nK. At higher temperatures and hence
lower phase space densities the molecule production efficiency is reduced, so that there
is a trade off between ease of operation and molecule number. We note that for our
ground state transfer experiments reported in Ref.[1] we produce a pure atomic BEC
at the expense of longer sample preparation times.

The spectrum of weakly-bound Feshbach levels near the two-free-atom asymptote
is shown in Fig.2 [30]. For molecule production at the Feshbach resonance at 4.79 mT,
we first ramp the magnetic field from the BEC production value to 4.9 mT, about 0.1
mT above the Feshbach resonance. We produce the molecular sample on a downward
sweep at a typical sweep rate of 0.025 T/s. The resulting ultracold sample contains
up to 11000 molecules, immersed in the bath of the remaining ultracold atoms. The
resonance at 4.79 mT is a d-wave resonance [30], and hence the molecules are initially
of d-wave character, i.e. ` = 2, where ` is the quantum number associated with the
mechanical rotation of the nuclei. However, there is a weakly bound s-wave Feshbach
state (|s>= |`= 0>) belonging to the open scattering channel right below threshold.
This state couples quite strongly to the initial d-wave state, resulting in an avoided
state crossing (as shown in the inset to Fig.2), on which the molecules are transferred
to the s-wave state |s> upon lowering the magnetic field [30, 1]. Upon further lowering
the magnetic field to less than 2.0 mT, the molecules acquire more and more character
of a closed channel s-wave state on a second, very broad avoided crossing. Here, we
perform spectroscopy in this transition range from open channel to closed channel s-
wave character. At a magnetic field value of 2.0 mT, the binding energy of the molecules
is near 5 MHz×h with respect to the F = 3,mF = 3 two-atom asymptote, where h is
Planck’s constant.

For molecule production at the Feshbach resonance at 1.98 mT, we simply ramp
the magnetic field down from the initial BEC production value. Again, we produce an
ultracold molecular sample with about 11000 molecules. The molecules in |g> have
g-wave character, i.e. `=4. When we lower the magnetic field to 1.6 mT, the binding
energy of the molecules is also near 5 MHz×h with respect to the F = 3,mF = 3
two-atom asymptote.
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For spectroscopy, we release the molecules from the trap after magnetic field ramp-
ing is completed and perform all subsequent experiments in free flight without any
other light fields on except for the spectroscopy laser.

For molecule detection in both cases, we reverse the magnetic field ramps [22]. The
g-wave molecules are dissociated on the g-wave Feshbach resonance at 1.98 mT, and
the s-wave molecules are dissociated on the d-wave Feshbach resonance at 4.79 mT.
Prior to the reverse magnetic field ramp, we apply a magnetic field gradient of 3.1
mT/cm for about 5 ms to separate the molecular sample from the atomic sample in
a Stern-Gerlach-type experiment. Finally, we detect atoms by standard absorption
imaging. The minimum number of molecules that we can detect is on the order of 200
molecules.

3 Spectroscopy

We perform optical spectroscopy on Feshbach molecules in the wavelength region
around 1125 nm. Based on selection rules, there are two sets of electronically ex-
cited states that we address in the spectroscopic measurements presented here, namely
the (A1Σ+

u−b3Πu) 0+
u coupled state system and the purely triplet (1)3Σ+

g state. We
first discuss transitions to the 0+

u coupled state system. Transitions to the latter state
are discussed in Sec. 3.2.

3.1 Transitions to the (A1Σ+
u−b3Πu) 0+

u coupled electronically
excited states

For ground state transfer, we are primarily interested in transitions from Feshbach
levels to rovibrational levels of the (A1Σ+

u−b3Πu) 0+
u electronically excited states. In

the heavy alkali dimers, most notably in Cs2, the A1Σ+
u state and the b3Πu state are

strongly coupled by resonant spin-orbit interaction [32, 33], yielding the 0+
u coupled

states in Hund’s case (c) notation. The singlet component of the 0+
u states allows us to

efficiently couple to deeply bound X1Σ+
g state levels, specifically to the |v=73, J=2>

level of the ground state potential, as has recently been shown in a coherent transfer
experiment [1]. We have chosen to do spectroscopy in the wavelength range of 1118
nm to 1134 nm above the 6S 1

2
+6S 1

2
dissociation threshold of the Cs2 dimer. This

corresponds to a detuning of roughly 2300 cm−1 from the cesium D1 line and to an
energy range of approximately 12572 cm−1 to 12450 cm−1 above the rovibronic ground
state X1Σ+

g |v = 0, J = 0>. This region was chosen in order to give a balanced
distribution of transition strengths in a 4-photon transfer scheme to the rovibronic
ground state. In addition, the wavelengths of the four lasers used in the transfer
experiments were chosen such that they lie within the wavelength range covered by the
infrared fiber-based frequency comb that we use as a frequency reference in the state
transfer experiments.

The transitions of interest here lie outside the energy regions for which Fourier
transform spectroscopic data was obtained at Laboratoire Aimé Cotton from transi-
tions to the X1Σ+

g state [34]. The vibrational progression of the 0+
u states is highly

perturbed by the resonant spin-orbit coupling and exhibits an irregular vibrational
spacing. Molecular structure calculations are complicated by the spin-orbit coupling
and calculated term values are highly sensitive to the coupling. Prior to the experiments
discussed here the absolute energies of the vibrational levels of the (A1Σ+

u−b3Πu) 0+
u
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excited state levels were poorly known in the region of interest from 1118 nm to 1134
nm. We therefore perform a broad range search by irradiating the weakly-bound Fesh-
bach molecules at a fixed wavelength for a certain irradiation time τ of up to τ=6 ms
and by recording the number of remaining molecules as a function of laser frequency.
In one run of the experiment one particular laser frequency is queried. We thus take
data points at the repetition rate of our experiment, which is given by the sample
preparation time of 8 seconds. Based on the available laser intensity from L1 and an
estimate of the dipole transition moments for the strongest expected lines, we chose
a frequency step size of about 100 MHz to 150 MHz for initial line searching. We
obtain the laser light at 1118 nm to 1134 nm from a grating-stabilized external cavity
diode laser. For coarse frequency scanning, the laser is free running and tuned via a
piezoelectric element on the grating of the laser. For more precise measurements, we
lock the laser to a narrow-band optical resonator that can be tuned via a piezoelectric
element. Fig.3 A shows a typical loss spectrum starting from Feshbach state |s> for
excitation near 1126 nm, measured at a magnetic field of 1.98 mT. In this particular
case we find three resonances, which we associate with the rotational splitting of the
excited state level, J = 5, 3, 1, where J is the rotational quantum number. Based on
molecular structure calculations we identify this level as the 225th one of the 0+

u pro-
gression with an uncertainty of about two in the absolute numbering. We zoom in on
these three transitions in Fig.3 B, C, and D and record loss resonances at reduced laser
intensity in order to avoid saturation of the lines. For these measurements, the laser is
locked to the narrow-band optical resonator and the resonator in turn is stabilized to
the optical frequency comb to assure reproducibility and long term frequency stability.
As one can expect, the loss is strongest on the transition to the |J = 1> level, and it
is weakest on the transition to |J = 5>. The width of all lines gives an excited state
spontaneous decay rate of around 2π× 2 MHz, in agreement with the typical expected
lifetimes of excited molecular levels. The transition to |J = 1> shown in Fig.3 D is
of special interest to the current work. It has been used as intermediate excited state
level for coherent transfer to X1Σ+

g |v=73, J=2> in our recent experiments [1].
By fitting to a series of such measurements, obtained with different laser intensities,

a two level model that takes into account decay from the upper level, we determine the
transition strength as given by the normalized Rabi frequency. As a result of optical
excitation, for small saturation the number N of Feshbach molecules decays as a func-
tion of laser detuning ∆1 according to N(∆1) = N0 exp (−τΩ2

1/(Γ(1 + 4π2∆2
1/Γ

2))),
where N0 is the molecule number without laser irradiation and τ is the irradiation
time. From the fit we obtain the Rabi frequency on resonance Ω1 and the excited state
spontaneous decay rate Γ. We determine the normalized Rabi frequency to Ω1 =2π×2

kHz
√
I/(mW/cm2) for |J=1>, where I is the laser intensity. This value is sufficient

to perform STIRAP given the available laser power [1]. The corresponding transi-

tion strengths for |J = 3> and |J = 5> are Ω1 = 2π×0.3 kHz
√
I/(mW/cm2) and

Ω1 =2π×0.1 kHz
√
I/(mW/cm2), respectively. The absolute values of these transition

strengths bear an estimated uncertainty of 20 % because the laser beam parameters
for the spectroscopy laser are not well determined.

We also record the time dependence of the molecular loss on some of the stronger
lines. For this, we step the laser irradiation time τ from 0 to 150 µs, while laser L1 is
kept on resonance. The result is shown in Fig.4 A for the transition at 1126.173 nm
for two different values of the excitation laser intensity.
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We note that the transition strength for a particular line starting from Feshbach
level |s> strongly depends on the value of the magnetic field, as evidenced in Fig.4 B.
Loss resonances for the transition at 1126.173 nm at 1.9 mT and 2.2 mT are shown.
For ground state transfer [1], we choose a magnetic field of around 1.9 mT, which is
somewhat below the magnetic field region where state |s> is strongly curved, but above
the avoided state crossing with state |g2>, as seen in Fig.2. The pronounced bending
of |s> is the result of a strong avoided crossing between two s-wave Feshbach levels
[30]. For magnetic field values beyond 3.0 mT the level |s> can be associated to the
F1 =3, F2 =3 asymptote, where Fi, i=1, 2, is the atomic angular momentum quantum
number of the i-th atom, respectively. Below 2.0 mT the level |s> can be associated
to the F1 = 4, F2 = 4 asymptote. It is hence of closed channel character and much
more deeply bound with respect to its potential asymptote, effectively by twice the
atomic hyperfine splitting, improving the radial wave function overlap with the excited
state levels. This increases the transition strength. Trivially, the resonance frequency
is shifted as the binding energy is reduced for larger magnetic field values. Coupling to

the excited state level is reduced from Ω1 = 2π×2 kHz
√
I/(mW/cm2) to Ω1 = 2π×1

kHz
√
I/(mW/cm2) when the magnetic field is changed from 1.9 mT to 2.2 mT.

As will be discussed in Sec.4 it is advantageous to be able to choose different Fesh-
bach states as a starting state for ground state transfer experiments. Therefore, we
probe transitions from Feshbach level |g> to (A1Σ+

u−b3Πu) 0+
u levels. Fig.5 shows

loss resonances to the same excited state levels as shown in Fig.3, only that now the
initial Feshbach level is |g> instead of |s>. In this case, the transition to |J = 3> is
the strongest, while the transition to |J = 1> is very weak, but can be detected. A
comparison of the transition strengths from |g> to the excited state level |J = 3>,

giving Ω1 = 2π×1 kHz
√
I/(mW/cm2) versus |s> to |J = 1> giving Ω1 = 2π×2 kHz√

I/(mW/cm2) shows that level |g> could also be potentially used as a starting level
for coherent population transfer to deeply bound levels of the ground state but requires
longer STIRAP times in order to assure sufficient adiabaticity [24]. The |J=3> excited
state level in turn couples to |J=2> in the ground state, the level used in our previous
work [1].

In addition to the transition near 1126 nm we find a series of other excited state
levels that we assign to the (A1Σ+

u−b3Πu) 0+
u coupled state system. These are listed

in Table 1. The assignment to either the (A1Σ+
u−b3Πu) 0+

u system or to the (1)3Σ+
g

electronically excited state discussed below is primarily based on the spacing between
neighboring vibrational levels and in addition on the pattern of loss resonances associ-
ated with each particular vibrational level. Resonant spin-orbit coupling in the case of
the 0+

u states leads to an irregular vibrational spacing. In contrast, the (1)3Σ+
g state

is not perturbed by spin-orbit interaction and therefore has a regular vibrational pro-
gression. The levels near 1126 nm and near 1123 nm have been used to detect dark
resonances with deeply bound levels of the X1Σ+

g state [1]. The ability to couple to
these essentially purely singlet ground state levels unambiguously assigns the corre-
sponding excited state levels to the 0+

u system. The data given in Table 1 does not
represent a fully exhaustive study of the (A1Σ+

u−b3Πu) 0+
u coupled states in the wave-

length range of interest. In fact, for the most part we observe those levels of the 0+
u

system that have a dominant A1Σ+
u state contribution, as determined from molecular

structure calculations.
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3.2 Transitions to the (1)3Σ+
g electronically excited state

The Feshbach levels that serve as starting levels for the spectroscopy are of mixed X1Σ+
g

and a3Σ+
u character. In the wavelength range explored here, excitation to the (1)3Σ+

g

electronically excited triplet state is possible from the a3Σ+
u component of the Feshbach

molecules. In fact, for a heavy molecule as Cs2, the (1)3Σ+
g state is better described by

the two separate electronic states 0−g and 1g, denoted by Hund’s case (c) notation. The
(1)3Σ+

g has been previously studied by Fourier transform spectroscopy [35]. This state
is not of prime interest for the present work as transitions from this state down to the
X1Σ+

g ground state are expected to be strongly suppressed, but would be important
for STIRAP transfer into the rovibrational ground state level of the shallow triplet
a3Σ+

u potential [29]. Certainly, it is important to be able to distinguish rovibrational
levels belonging to the (1)3Σ+

g state from the ones belonging to the 0+
u system, because

otherwise time would be wasted in searching for ground state dark resonances that are
very weak or even do not exist. Fig.6 A shows a typical loss spectrum for one of the
lines that we detected near 1127.37 nm. Due to hyperfine splitting, levels of triplet
character exhibit a much richer substructure than the 0+

u levels used for ground state
transfer. Several components can be identified as a result of rotational and excited
state hyperfine splitting. Zoomed-in regions are shown in Fig.6 B, C, D, and E. We
have observed a regularly spaced series of optical transitions which we attribute to the
(1)3Σ+

g excited state as listed in Table 1. The level energies are well reproduced by
the Dunham coefficients determined in Ref.[35]. The vibrational numbering used here
is the same as in that work. However, it relies on the absolute energy position of the
potential, Te, which was not determined precisely in Ref. [35]. By fixing Te to the
value given in Ref. [35] we get good agreement with our data.

4 Conclusion

We have performed optical spectroscopy starting from weakly bound Cs2 Feshbach
molecules into deeply bound rovibrational levels of the mixed excited state 0+

u system
and the excited triplet (1)3Σ+

g state. At least one of the observed transitions, namely
the one at 1126.173 nm starting from the Feshbach level |s > to the excited level
|v′=225, J=1> of the 0+

u system, at an offset magnetic field value of 1.9 mT, is strong
enough to allow efficient STIRAP transfer into deeply bound rovibrational levels of
the singlet X1Σ+

g ground state potential. The use of this transition for STIRAP has
recently been demonstrated in Ref.[1]. In that work, the deeply bound rovibrational
level |v=73, J=2> of the X1Σ+

g ground state potential was populated in the molecular
quantum gas regime with 80% efficiency. The rovibrational ground state |v=0, J=0>
of the X1Σ+

g ground state potential can thus be reached from the atomic threshold
with a maximum of two two-photon STIRAP transfers. Dark resonances connecting
|v=73, J=2> to |v=0, J=0> have recently been observed [36], and two-step STIRAP
into |v = 0, J = 0> has recently been implemented [37]. For future experiments, the
use of Feshbach level |g> as the initial state might be advantageous. Level |g> can be
more easily populated, as the Feshbach resonance connected to this level is at a low
magnetic field value of 1.98 mT [30], where the atomic background scattering length
has a moderate value of 155 a0, where a0 is Bohr’s radius. The use of this resonance
avoids excitation of collective motion of the atomic BEC as a result of a large mean field
interaction near the Feshbach resonance at 4.79 mT [1], where the atomic background
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scattering length is about 935 a0. The transition starting from level |g> appears to be
strong enough to allow STIRAP, this time via the excited state level |v′=225, J=3>
of the 0+

u system. An attractive strategy for the production of a BEC of ground state
molecules relies on the addition of a three-dimensional optical lattice. Starting from the
atomic BEC, pairs of atoms at individual lattice sites can be produced in a superfluid-
to-Mott-insulator transition [38] with high efficiencies of almost 50% [39]. These pairs
can then be very efficiently associated on a Feshbach resonance [40] and subsequently
transferred to the rovibronic ground state with STIRAP. The lattice has the advantage
of shielding the molecules against inelastic collisions during the association process and
subsequent state transfer. In particular, it should allow long STIRAP pulse durations,
allowing us to resolve the weak hyperfine structure of ground state molecules [41]. As
proposed by Jaksch et al. [42], dynamical melting of the Mott-insulator state should
ideally result in the formation of a BEC of molecules in the rovibronic ground state in
a Mott-insulator-to-superfluid-type transition.

5 Acknowledgements

We are indebted to R. Grimm for generous support and we thank T. Bergeman, H.
Salami, J. Hutson, J. Aldegunde, and E. Tiemann for valuable discussions. We grate-
fully acknowledge funding by the Austrian Ministry of Science and Research (BMWF)
and the Austrian Science Fund (FWF) in form of a START prize grant and by the
European Science Foundation (ESF) in the framework of the EuroQUAM collective
research project QuDipMol. R.H. acknowledges support by the European Union in
form of a Marie-Curie International Incoming Fellowship (IIF).

9



References

[1] J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Bouloufa, O.
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Table 1: Observed excited state levels in the wavelength range from 1118 nm to 1134
nm. Transitions were measured from Feshbach state |s> to the first electronically
excited state, addressing both (A1Σ+

u−b3Πu)0+
u levels and (1)3Σ+

g levels. Levels are
given according to the excitation wavelength (WL) from |s>, which essentially corre-
sponds to the F =3,mF =3 two-atom asymptote. The data is taken at a magnetic field
of 1.98 mT. Wavemeter accuracy is about 0.001 nm. The energy of these levels above
the rovibronic ground state X1Σ+

g |v=0, J =0> is given in the second column, where
the binding energy of the rovibronic ground state is taken from Ref.[1]. The assign-
ment to either the coupled (A1Σ+

u−b3Πu)0+
u system or to the (1)3Σ+

g is based on the
vibrational spacing and similarities in the substructure of the levels. The levels marked
with ∗ have been used for dark resonance spectroscopy coupling to deeply bound lev-
els of the X1Σ+

g state [1]. The ability to couple to such levels unambiguously reflects
an important singlet component stemming from the A1Σ+

u state and therefore clearly
assigns these levels to the 0+

u system. The quantum numbers given for the 0+
u levels

are coupled channels quantum numbers derived from molecular structure calculations
and bear an uncertainty of two in the absolute numbering. The calculations show that
these levels have about 70% A1Σ+

u state contribution. Two further levels observed near
1120.17 nm and 1117.16 nm that belong to the 0+

u progression are not given in the table
since no further measurements have been done on these levels. The level near 1129.5
nm exhibits a somewhat richer structure than the other levels assigned to 0+

u and than
exemplified in Fig. 3. Levels assigned to the (1)3Σ+

g state form a regular vibrational
progression and show a more complex substructure than the levels attributed to the
0+

u system, as exemplified in Fig. 6. For these levels, the transition wavelength to one
of the most prominent features is given, since an in-depth analysis of the rotational
and hyperfine structure remains to be done. The vibrational numbering for the (1)3Σ+

g

levels is the same as in Ref [35].

WL [nm] Energy above Assignment
X1Σ+

g |v=0>
[cm−1]

1132.481 12458.875 0+
u |v′=221, J=1>

1129.492 12482.245 0+
u

1126.173∗ 12508.332 0+
u |v′=225, J=1>

1123.104∗ 12532.598 0+
u |v′=226, J=1>

1133.680 12449.536 (1)3Σ+
g |v′=32>

1130.510 12474.274 (1)3Σ+
g |v′=33>

1127.379 12498.838 (1)3Σ+
g |v′=34>

1124.274 12523.334 (1)3Σ+
g |v′=35>

1121.196 12547.756 (1)3Σ+
g |v′=36>

1118.155 12572.013 (1)3Σ+
g |v′=37>
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Fig. 1 (A) Simplified molecular level scheme for Cs2 showing the relevant ground
state and excited state potentials involved in rovibrational ground state
transfer. Molecules in a weakly bound Feshbach level |1>= |v≈155> (not
resolved near the 6S 1

2
+ 6S 1

2
two-atom asymptote, but shown in Fig.2) are

to be transferred to the rovibrational ground state level |5>= |v=0, J=0>
of the singlet X1Σ+

g potential with a binding energy of 3629 cm−1 by two
sequential two-photon STIRAP processes involving lasers L1 and L2 near
1126 nm and 1006 nm and lasers L3 and L4 near 1351 nm and 1003 nm.
The intermediate ground state level |3>= |v= 73, J = 2> has a binding
energy of 1061 cm−1. (B) Probing candidate levels for |2> belonging to
the electronically excited coupled (A1Σ+

u−b3Πu) 0+
u potentials. Here, we

search for |2> in loss spectroscopy with laser L1 in a region near 8890
cm−1 above the 6S 1

2
+ 6S 1

2
asymptote, corresponding to an excitation

wavelength range of 1118 to 1134 nm. The wiggly arrow indicates loss
from the excited levels due to spontaneous emission. Also shown is the
excited (1)3Σ+

g potential, for which we find several levels.

Fig. 2 Initial Feshbach molecule production: Zeeman diagram showing the en-
ergy of weakly bound Feshbach levels [30] and the Feshbach resonances
(FR) used in the present work. The binding energy is given with respect
to the F = 3,mF = 3 two-atom asymptote. The molecules are produced
either on a d-wave Feshbach resonance at 4.79 mT (see inset) and then
transferred to the weakly bound s-wave state |s> on an avoided state
crossing, or on a g-wave Feshbach resonance at 1.98 mT, resulting in
molecules in level |g>. In the first case, further lowering of the magnetic
offset field to below 2.0 mT changes the character of the |s> level from
open-channel to closed-channel dominated [30]. The levels |s> and |g>
are both candidate levels for the initial level |1> shown in Fig.1. For
completeness, further g-wave Feshbach levels, |g1>, |g2>, and |g3> are
shown. Level |g2> connects |g> to |s> and can be used for Feshbach
state transfer [30]. Level |g3> is a further interesting candidate level for
|1> with low nuclear spin contribution [30].

Fig. 3 Loss resonances for excitation from the initial Feshbach level |s> to the
0+

u system. (A) Typical scan showing the relative number of molecules in
|s> as a function of laser wavelength λ1 near 1126 nm. Three resonances
can be identified, corresponding to |J = 5>, |J = 3>, and |J = 1>, from
left to right. The sample is irradiated with laser light at an intensity
of 1 × 106 mW/cm2 for τ = 200 µs. The laser is locked to a narrow
band optical resonator that is tuned via a piezoelectric element with a
step size of approximately 40 MHz. Wavelength is measured on a home-
built wavemeter. The molecule number is normalized to the atom number
measured in the same individual realization of the experiment to cancel
out fluctuations that stem from shot-to-shot atom number fluctuations
and then normalized to unity. (B), (C), and (D) show measurements of
the three individual lines with |J = 5>, |J = 3>, and |J = 1> at reduced
intensity in order to avoid saturation. The solid lines represent fits as
described in the text. The spectroscopy laser is stabilized to an optical
resonator and the resonator is in turn referenced to an optical frequency
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comb, which allows precise and reproducible tuning of the frequency. The
transition to |J=1> in panel (D) is recorded at an intensity of 1.5× 104

mW/cm2 (circles) and 6 × 103 mW/cm2 (triangles), (B) and (C) are
recorded at 1 × 106 mW/cm2 and 2 × 105 mW/cm2, respectively. The
pulse duration is τ = 10 µs.

Fig. 4 Loss of molecules for excitation near 1126.173 nm from Feshbach level |s>.
(A) Time dependence of molecular loss on resonance at 1126.173 nm for
two different laser intensities, 5.7 × 105 mW/cm2 (circles) and 2.1 × 105

mW/cm2 (triangles). The magnetic offset field is 1.9 mT. The fitted
exponential decay gives the decay constants τd = 9.7±0.6 µs (circles) and
τd = 25.5± 1 µs (triangles). (B) Loss of molecules in |s> as a function of
laser detuning ∆1 near 1126 nm with an irradiation time of τ = 10µs for
two values of the magnetic field, 1.9 mT (circles) and 2.2 mT (triangles).
In both cases, the excited state spontaneous decay rate was determined to
≈ 2π×2 MHz. At higher magnetic fields, Feshbach level |s> acquires more
open-channel character, reducing radial wave function overlap with the
excited rovibrational levels. The shift in transition frequency is essentially
the result of the change in binding energy as seen in Fig. 2.

Fig. 5 Loss resonances for excitation from the initial Feshbach level |g>. (A),
(B), and (C) show the loss for excitation to |J = 5>, |J = 3>, and
|J = 1>, corresponding to the resonances shown in Fig.3. The laser
intensities are 1.5×104 mW/cm2 for panel (A) and for the circles in panel
(B). The second resonance in (B) (triangles) is measured with 5.6× 103

mW/cm2. (C) The line at 1126.173 nm is measured at 1×106 mW/cm2.
All measurements are done with an irradiation time of τ = 10 µs. From
a series of such measurements at different intensities we determine the
line strengths for |J = 5>, |J = 3>, and |J = 1> to Ω1 = 2π×1 kHz√
I/(mW/cm2), Ω1 = 2π×1 kHz

√
I/(mW/cm2), and Ω1 = 2π×0.1 kHz√

I/(mW/cm2), respectively.

Fig. 6 Loss of molecules for excitation near 1127.17 nm from Feshbach level
|s> to the triplet (1)3Σ+

g state. (A) represents a broad scan with laser
irradiation at an intensity of 5×105 mW/cm2 for τ = 100 µs at a step size
of 20 MHz. A rich structure due to rotation and excited state hyperfine
splitting can be seen which is qualitatively different from the spectrum
shown in Fig.3. The lines are greatly broadened by the high intensity
and long irradiation time. The spectroscopy laser is locked to a narrow
band optical resonator that is stepped via a piezoelectric element. Scans
of about 750 MHz were recorded as a function of piezo voltage on the
resonator. Voltage was converted to wavelength for each scan by a linear
interpolation. (B)-(E) represent scans over some of the observed features
at a reduced intensity of 8 × 104 mW/cm2 and an irradiation time of
τ = 10 µs in order to reduce broadening of the lines. The step size is
about 7 MHz. Resonator piezo voltage is converted to frequency with
an estimated error of 10 %. The absolute wavelength accuracy is limited
by wavemeter calibration to 0.001 nm, the relative accuracy is about a
factor of 10 better. The vertical arrows indicate weak lines that have
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been verified in additional scans with higher power. In panel (E) the
power was somewhat increased for an additional measurement (triangles)
that emphasizes such a weak line.
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Figure 1: (A) Simplified molecular level scheme for Cs2 showing the relevant ground
state and excited state potentials involved in rovibrational ground state transfer.
Molecules in a weakly bound Feshbach level |1>= |v ≈ 155> (not resolved near the
6S 1

2
+ 6S 1

2
two-atom asymptote, but shown in Fig.2) are to be transferred to the

rovibrational ground state level |5>= |v = 0, J = 0> of the singlet X1Σ+
g potential

with a binding energy of 3629 cm−1 by two sequential two-photon STIRAP processes
involving lasers L1 and L2 near 1126 nm and 1006 nm and lasers L3 and L4 near 1351
nm and 1003 nm. The intermediate ground state level |3>= |v = 73, J = 2> has a
binding energy of 1061 cm−1. (B) Probing candidate levels for |2> belonging to the
electronically excited coupled (A1Σ+

u−b3Πu) 0+
u potentials. Here, we search for |2>

in loss spectroscopy with laser L1 in a region near 8890 cm−1 above the 6S 1
2

+ 6S 1
2

asymptote, corresponding to an excitation wavelength range of 1118 to 1134 nm. The
wiggly arrow indicates loss from the excited levels due to spontaneous emission. Also
shown is the excited (1)3Σ+

g potential, for which we find several levels.
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Figure 2: Initial Feshbach molecule production: Zeeman diagram showing the energy
of weakly bound Feshbach levels [30] and the Feshbach resonances (FR) used in the
present work. The binding energy is given with respect to the F =3,mF =3 two-atom
asymptote. The molecules are produced either on a d-wave Feshbach resonance at 4.79
mT (see inset) and then transferred to the weakly bound s-wave state |s> on an avoided
state crossing, or on a g-wave Feshbach resonance at 1.98 mT, resulting in molecules in
level |g>. In the first case, further lowering of the magnetic offset field to below 2.0 mT
changes the character of the |s> level from open-channel to closed-channel dominated
[30]. The levels |s> and |g> are both candidate levels for the initial level |1> shown
in Fig.1. For completeness, further g-wave Feshbach levels, |g1>, |g2>, and |g3> are
shown. Level |g2> connects |g> to |s> and can be used for Feshbach state transfer
[30]. Level |g3> is a further interesting candidate level for |1> with low nuclear spin
contribution [30].
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Figure 3: Loss resonances for excitation from the initial Feshbach level |s> to the
0+

u system. (A) Typical scan showing the relative number of molecules in |s> as a
function of laser wavelength λ1 near 1126 nm. Three resonances can be identified,
corresponding to |J = 5>, |J = 3>, and |J = 1>, from left to right. The sample is
irradiated with laser light at an intensity of 1×106 mW/cm2 for τ = 200 µs. The laser
is locked to a narrow band optical resonator that is tuned via a piezoelectric element
with a step size of approximately 40 MHz. Wavelength is measured on a home-built
wavemeter. The molecule number is normalized to the atom number measured in the
same individual realization of the experiment to cancel out fluctuations that stem from
shot-to-shot atom number fluctuations and then normalized to unity. (B), (C), and
(D) show measurements of the three individual lines with |J = 5>, |J = 3>, and
|J=1> at reduced intensity in order to avoid saturation. The solid lines represent fits
as described in the text. The spectroscopy laser is stabilized to an optical resonator and
the resonator is in turn referenced to an optical frequency comb, which allows precise
and reproducible tuning of the frequency. The transition to |J = 1> in panel (D) is
recorded at an intensity of 1.5×104 mW/cm2 (circles) and 6×103 mW/cm2 (triangles),
(B) and (C) are recorded at 1×106 mW/cm2 and 2×105 mW/cm2, respectively. The
pulse duration is τ = 10 µs.
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Figure 4: Loss of molecules for excitation near 1126.173 nm from Feshbach level |s>.
(A) Time dependence of molecular loss on resonance at 1126.173 nm for two different
laser intensities, 5.7× 105 mW/cm2 (circles) and 2.1× 105 mW/cm2 (triangles). The
magnetic offset field is 1.9 mT. The fitted exponential decay gives the decay constants
τd = 9.7±0.6 µs (circles) and τd = 25.5±1 µs (triangles). (B) Loss of molecules in |s>
as a function of laser detuning ∆1 near 1126 nm with an irradiation time of τ = 10µs
for two values of the magnetic field, 1.9 mT (circles) and 2.2 mT (triangles). In both
cases, the excited state spontaneous decay rate was determined to ≈ 2π × 2 MHz.
At higher magnetic fields, Feshbach level |s> acquires more open-channel character,
reducing radial wave function overlap with the excited rovibrational levels. The shift
in transition frequency is essentially the result of the change in binding energy as seen
in Fig. 2.
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Figure 5: Loss resonances for excitation from the initial Feshbach level |g>. (A), (B),
and (C) show the loss for excitation to |J = 5>, |J = 3>, and |J = 1>, corresponding
to the resonances shown in Fig.3. The laser intensities are 1.5 × 104 mW/cm2 for
panel (A) and for the circles in panel (B). The second resonance in (B) (triangles) is
measured with 5.6×103 mW/cm2. (C) The line at 1126.173 nm is measured at 1×106

mW/cm2. All measurements are done with an irradiation time of τ = 10 µs. From a
series of such measurements at different intensities we determine the line strengths for

|J = 5>, |J = 3>, and |J = 1> to Ω1 = 2π×1 kHz
√
I/(mW/cm2), Ω1 = 2π×1 kHz√

I/(mW/cm2), and Ω1 =2π×0.1 kHz
√
I/(mW/cm2), respectively.
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Figure 6: Loss of molecules for excitation near 1127.17 nm from Feshbach level |s>
to the triplet (1)3Σ+

g state. (A) represents a broad scan with laser irradiation at an
intensity of 5× 105 mW/cm2 for τ = 100 µs at a step size of 20 MHz. A rich structure
due to rotation and excited state hyperfine splitting can be seen which is qualitatively
different from the spectrum shown in Fig.3. The lines are greatly broadened by the high
intensity and long irradiation time. The spectroscopy laser is locked to a narrow band
optical resonator that is stepped via a piezoelectric element. Scans of about 750 MHz
were recorded as a function of piezo voltage on the resonator. Voltage was converted to
wavelength for each scan by a linear interpolation. (B)-(E) represent scans over some
of the observed features at a reduced intensity of 8× 104 mW/cm2 and an irradiation
time of τ = 10 µs in order to reduce broadening of the lines. The step size is about
7 MHz. Resonator piezo voltage is converted to frequency with an estimated error of
10 %. The absolute wavelength accuracy is limited by wavemeter calibration to 0.001
nm, the relative accuracy is about a factor of 10 better. The vertical arrows indicate
weak lines that have been verified in additional scans with higher power. In panel
(E) the power was somewhat increased for an additional measurement (triangles) that
emphasizes such a weak line.

22



Interference of Interacting Matter Waves

Mattias Gustavsson1, Elmar Haller1, Manfred J. Mark1, Johann G. Danzl1,
Russell Hart1, Andrew J. Daley2,3, Hanns-Christoph Nägerl1
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The phenomenon of matter wave interference lies at the heart of quantum

physics. It has been observed in various contexts in the limit of non-interacting

particles as a single particle effect. Here we observe and control matter wave

interference that is driven by interparticle interactions. In our matter wave

interferometer, the macroscopic many-body wave function of an interacting

atomic Bose-Einstein condensate develops a regular interference pattern, al-

lowing us to detect and directly visualize the effect of interaction-induced phase

shifts as time progresses. We demonstrate in a matter wave spin-echo-type ex-

periment that the nonlinear phase evolution is a highly coherent process.

Matter wave interference has been observed since de Broglie’s postulate and the develop-
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ment of quantum mechanics for various systems, e.g. for electrons (1), neutrons (2), atoms and

molecules (3). Macroscopic matter wave interference was first directly observed in the case

of two independent atomic Bose-Einstein condensates (BEC) that were brought to overlap (4).

This experiment established the notion of the BEC as a macroscopic matter wave and coined the

expression of the atom laser in analogy to the laser for the case of photons. Matter wave interfer-

ometry (5,6) exploits matter wave interference to sensitively map relative phase shifts imparted

on the de Broglie waves onto population differences, which can then be directly measured. In

principle, a crucial role for all matter wave interferometers is played by particle-particle inter-

actions (6, 10). It is commonly expected that such interactions lead to uncontrollable phase

shifts and dephasing and form a source of decoherence. Matter wave interferometers, in partic-

ular for applications to precision measurements, are thus operated in the dilute single particle

limit (7–9). BEC-based atom interferometers (11) are expected to benefit from the extremely

low momentum spread and exceptional brightness of the BEC, but they readily enter the non-

linear matter wave regime as a result of the interaction-induced mean field potential. A possible

solution is to operate BEC-based interferometers in the non-interacting limit (12,13) by exploit-

ing the cancellation of the scattering phase shift near a scattering resonance. This condition,

however, is difficult or impossible to fulfill for most atomic species.

Here we demonstrate a BEC-based multipath atom interferometer where the dynamics is

dominated by interaction-induced phase shifts. We realize the multipath interferometer by

loading an interacting BEC into an optical lattice potential along one dimension, coherently

splitting the BEC into several parts that are then each subject to different linear and nonlinear

phase shifts. The linear phase shifts due to the gravitational force lead to the the well-known

phenomenon of Bloch oscillations (14,15), while the interaction-induced nonlinear phase shifts

cause the macroscopic momentum wave function to first spread as a function of time and then,

surprisingly, to exhibit high-contrast interference. We demonstrate a high degree of coherence
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by reversing the nonlinear phase evolution and refocusing the BEC momentum wave function.

A crucial ingredient of our experiments is the capability to tune a, the atomic scattering length

which determines the strength of the interaction, by means of a Feshbach resonance (16). In

particular, a can be switched to zero to stop the interaction driven part of the evolution in the

interferometer or to perform high resolution wave function imaging in momentum space.

When our BEC is loaded into the 1D optical lattice with spacing d, the main features of the

system dynamics are largely described, as we will show below in our experiment, by a discrete

nonlinear equation (DNLE) in one dimension (17). In brief, this equation can be obtained by

expanding the condensate wave function from the Gross-Pitaevskii equation, Ψ, in a basis of

wavefunctions Ψj(z, r⊥) centered at individual lattice sites j, Ψ(z, r⊥, t) =
∑

j cj(t)Ψj(z, r⊥).

Here, z is the coordinate along the (vertical) lattice direction, r⊥ is the transverse coordinate,

and cj(t) are time-dependent complex amplitudes. Due to the small interaction energies in our

system, the atoms are restricted to move in the lowest Bloch band and we can write Ψj(r⊥, z) =

w
(j)
0 (z)Φ⊥(ρj, r⊥), where w

(j)
0 (z) are the lowest-band Wannier functions localized at the j-th site

and Φ⊥(ρj, r⊥) is a radial wave function depending on the peak density ρj at each site (17). By

inserting this form into the Gross-Pitaevskii equation and integrating out the radial direction,

the DNLE is obtained,

ih̄
∂cj

∂t
= J(cj−1 + cj+1) + Eint

j (cj)cj + Vjcj. (1)

Here, J/h̄ is the tunneling rate between neighboring lattice sites, Vj = Fd j + V trap
j describes

the combination of a linear potential with force F and an external, possibly time-varying trap-

ping potential V trap
j , and Eint

j (cj) is the nonlinear term due to interactions.

In our experiment, we first load the BEC into the vertical lattice and then allow the gravi-

tational force to tilt the lattice potential. We thus enter the limit Fd � J , in which tunneling

between sites is inhibited and the on-site occupation numbers |cj|2 are constant, determined by
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the initial density distribution. The time-dependence of the system is then given by the relative

phases of each cj , and the time-dependent 1D wave function Ψ̃(q, t) in quasi-momentum space

q acquires a particularly simple form (18):

Ψ̃(q, t) =
∑
j

cj(t)e
−iqjd =

∑
j

cj(0)e
−i(Fdj+V trap

j +Eint
j )t/h̄e−iqjd

=
∑
j

cj(0) e−i(q+Ft
h̄

)jd e−i(βtr(j−δ)2−αint(j−δ)2)t/h̄ (2)

Here, we have assumed that the external potential is harmonic and is given by V trap
j = βtr(j −

δ)2, where βtr = mω2
trd

2/2 characterizes the strength of the potential with trapping frequency

ωtr along z for a particle with mass m, and δ ∈ [0, 1] describes a possible offset of the potential

center with respect to one of the lattice minima along the z-direction. For the interaction term,

the spatial dependence is also parabolic, reflecting the fact that we initially load a BEC in the

Thomas-Fermi regime. Hence, initially αint = mω2
lod

2/2, where ωlo is the trapping frequency

during loading of the lattice, as long as the scattering length is kept constant. In the experiments

below, δ is the only parameter that we do not fully control. It is constant on the timescale of a

single experimental run, but it drifts over the course of minutes as the position of the horizontally

propagating laser beam generating the trapping potential is not actively stabilized.

Equation (2) has a simple interpretation. The terms in the exponent linear in j result in

Bloch oscillations (14, 15) with angular frequency Fd/h̄ (19). The nonlinear components pro-

portional to j2 lead to a dephasing of Bloch oscillations, resulting in a time-varying interference

pattern for the macroscopic matter wave, as we will demonstrate below. The key here in our

experiments is that we have full control over these nonlinear terms, not only over βtr via the ex-

ternal trapping potential, but also over the interaction term characterized by αint, via the initial

density distribution, and, more importantly, via the scattering length a. By tuning the scattering

length from its initial value a to a′ (16), we can ramp αint to a new value α′
int, which can in

particular be set to zero for a=0 (20). Nonlinear phase terms for matter waves are well known
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in single particle quantum mechanics. They play an important role for matter wave Talbot inter-

ferences (5, 21) and can be visualized in terms of so-called matter wave quantum carpets (22).

In these contexts, the phase terms arise from propagation. In our case, the nonlinear phase terms

for αint 6=0 arise from interactions and thus lead to a density dependent many-body effect in the

multipath atom interferometer.

Our experimental approach initially follows the procedure described in Ref. (12). In brief,

within 10 s we produce an essentially pure, tunable BEC (16) in the Thomas-Fermi limit with

up to 1.5×105 Cs atoms in a crossed-beam dipole trap generated by a vertically (L1) and a more

tightly focused horizontally (L2) propagating laser beam. The BEC is cigar-shaped with the long

axis oriented along the direction of L2. The trap frequencies are (ωx, ωy, ωz)=2π × (39, 5, 39)

Hz, where x denotes the horizontal direction perpendicular to L2, y is the axial direction along

L2, and z is the vertical direction. We magnetically control a in the range between 0 a0 and

300 a0 with a resolution of about 0.1 a0 (12), where a0 is the Bohr radius. For BEC production,

we work at a=210 a0. Initially, we support the optical trapping by magnetic levitation against

gravity (16). As shown in Figure 1A we superimpose the optical lattice with d = λ/2 = π/k

along the vertical direction, where λ=1064.5 nm is the wavelength of the lattice light and k =

2π/λ its wavenumber. To load the BEC into the lattice, we stiffen the horizontal confinement

within 1 s, leading to trap frequencies of 2π × (41, 13, 39) Hz, and at the same time turn on the

lattice potential exponentially to a depth of 8ER. Here, ER = h2/(2mλ2) = kB×64 nK is the

photon recoil energy and m the mass of the Cs atom. The BEC is thus gently loaded into the

lattice, occupying about 25 to 35 lattice sites, with up to 7000 atoms at the central site.

We effectively start the multipath atom interferometer and hence the evolution of the in-

teracting macroscopic wave function when we induce Bloch oscillations in the lowest band of

the lattice by turning off magnetic levitation and ramping down the power in L2 within 0.3 ms.

With Fd/h̄ ≈ 2π × 1740 Hz and J/h̄ ≈ 2π × 40 Hz the on-site occupation numbers |cj|2 are
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fixed to their initial values. After an evolution time τ , we close the interferometer by ramping

down the lattice in 1 ms and directly image the (vertical) quasi-momentum distribution in the

first Brillouin zone (BZ). The ramp is adiabatic with respect to the bandgap and maps quasi-

momentum onto real momentum (23), which is measured by taking an absorption image on a

CCD camera after a period of free expansion. We minimize broadening of the distribution as

a result of interactions by switching a to zero during the release and the initial expansion (12).

Figure 1B shows absorption images with the characteristic cycling pattern for the first Bloch

cycle (14). The Bloch period is about 0.58 ms. The peaks have a root mean square (rms) width

of 0.2h̄k and are thus well separated. Figure 1C shows the evolution of the quasi-momentum

distribution for cycle phase φ = 0, corresponding to the first image in Figure 1B, for the case

of an interacting BEC with a = 190 a0 at an initial peak density of n = 4 × 1013 atoms/cm3,

occupying about 35 lattice sites after loading. The wave function spreads out in the BZ within

about N =18 cycles. Surprisingly, after about N =22 cycles, an interference pattern is observ-

able, which, as time progresses, acquires a maximum contrast of typically 75%. The pattern

becomes visible after extended time-of-flight. Figure 1D shows how the contrast emerges for

N = 40 cycles. It takes more than 100 ms of expansion for the interference pattern to acquire

full contrast (24). Magnetic levitation is needed during the expansion to prevent the BEC being

accelerated by gravity and falling out of the field of view. Our imaging technique allows us to

resolve structure in momentum space on a scale below 0.1h̄k in a single shot absorption image.

To study this matter wave interference pattern we further follow the evolution of the wave

function by taking successive snap shots of the quasi-momentum distribution after completion

of an integer number of Bloch cycles. Figure 2A shows how the interference pattern changes

in time. It first develops at the edges of the BZ and later becomes clearly visible at the center

of the BZ, while the number of interference maxima and minima changes as time progresses.

For the chosen parameters, we can follow the evolution of the pattern for more than N = 100
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Bloch cycles, corresponding to times beyond 60 ms. This is about a factor 10 longer than the

timescale for the initial broadening. We find that the number of maxima and minima and their

location in the interference pattern as measured after fixed evolution time τ depend on the initial

atomic density, on the strength of the interaction, and on the number of occupied lattice sites.

We also find that the measured quasi-momentum distribution for a given τ is reproducible from

one experimental realization to the next, except that the pattern appears slightly shifted within

the BZ over the course of minutes. We attribute this to a drift of δ, the offset of the lattice

minima from the dipole trap center, which leads to a small change of the Bloch frequency (19).

We do not actively stabilize the vertical position of L2 with respect to the lattice, and hence

temperature variations in the laboratory slowly change δ.

To understand the interference structure and its evolution in time, we apply the simple ana-

lytical model from Equation (2), which holds in the limit J =0, for our experimental parameters.

A numerical integration of the one-dimensional DNLE given in Equation (1) gives essentially

identical results and confirms the validity of the J = 0 limit. Figure 2B shows the interference

pattern according to the analytical model. The qualitative evolution determined by the model is

very well reproduced, when we reduce αint by a factor of 0.9 compared to the value deduced

from our experimental parameters. This scale factor accounts primarily for the fact that our

simple one-dimensional model does not take into account any horizontal dynamics. In particu-

lar, switching off L2 when starting the evolution leads to excitation of a radial breathing mode

in the horizontal plane, reducing the density at each site and modulating it in time. To a first

approximation, rescaling of αint accounts for this. Nevertheless, the agreement between our ex-

periment and the analytical model indicates that the dominant driving mechanism for the wave

function spreading and interference is the result of the nonlinear phase evolution. In particular,

phase coherence is not lost, in contrast to previous experiments (25). We test this coherence and

the applicability of our simple analytical model in more detail in two experiments below.
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First, Equation (2) suggests that the effect of interactions can be cancelled by application of

the initial loading potential. Indeed, cancellation of dephasing by choosing αint ≈ βtr allows

us to observe persistent (linear) Bloch oscillations for an interacting BEC. Figure 3A and 3B

show the quasi-momentum distribution as a function of the power in L2, which determines

βtr, after 40 Bloch cycles and cycle phase θ = π and θ = 0, respectively. When the external

potential does not balance the effect of interactions (αint 6= βtr), the condensate wave function

is dephased and spread over the whole BZ in less than N = 20 cycles as before. When it agrees

with the initial loading potential, Bloch oscillations are clearly visible. Compared with the

case without a compensating potential, we now see that the time over which Bloch oscillations

can be observed is greatly extended. The transition from a dephased to a non-dephased wave

function as a function of confinement strength is quantified in Figure 3C, where the rms-width

∆p of the singly-peaked quasi-momentum distribution for N = 40 is plotted as a function of

the laser power in L2. Figures 3D and 3E show the time evolution of the quasi-momentum

distribution without and with the compensating potential while all other parameters are kept the

same. Figure 3D essentially shows the initial broadening of the distribution as described before.

Interestingly, the condensate wave function as shown in Figure 3E dephases in a completely

different way. Initially, the central peak shows no broadening. It is slowly depopulated, while a

much broader background distribution is increasingly populated. After about 100 oscillations,

the shape of the central peak starts to develop side lobes or splits in two, with the exact shape

varying from one experimental run to the next. The timescale for the loss of interference is

a factor 10 larger than the timescale on which the dephasing and hence the initial broadening

takes place in the uncompensated case.

Second, we perform a matter wave spin-echo-type experiment. We initially proceed as

shown in Figure 2, letting the wave function evolve for a time corresponding to about N = 40

Bloch cycles until it is fully dephased and shows, upon measurement, a regular interference
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structure. We then essentially remove the effect of interactions by ramping to a=10 a0 within

10 ms. By not switching the interaction entirely off and by ramping comparatively slowly we

avoid excessive excitation of the radial breathing mode as a result of the change in the mean

field potential at each site. At the same time, we gradually turn on the harmonic potential

as given by the horizontal dipole trapping laser beam L2 within 4 ms to approximately the

same depth as during the initial BEC loading phase. From Equation (2) we expect that the

wave function now experiences a phase shift with a quadratic spatial dependence with opposite

sign, allowing us to reverse the evolution and to recover the initial condition. Figure 4 shows

the resulting quasi-momentum distributions. As time progresses, the wave function indeed

refocuses while it continues to perform Bloch oscillations. As we do not control the value of

δ for a particular run, we record about 10 distributions for each evolution time and select those

that are symmetrical, corresponding to cycle phase φ = 0 or φ = π. For the chosen strength of

the potential, refocusing happens after about 24 Bloch cycles after the ramp of a. This confirms

that the initial broadening and dephasing mechanism must have been coherent. We note that

we cannot avoid some excitation of the radial breathing mode as seen in the absorption images

given in Figure 4.

Our results raise several important questions: To what extent can matter wave interferometry

be performed in the presence of interactions? What sets the timescale for the eventual loss

of interference contrast? Certainly, our simple analytic model does not predict any loss of

contrast. In particular, it should be possible to completely eliminate the effect of interactions

with the compensating external potential. However, there are several effects not included in

the model that could cause the residual dephasing we observe. Motion in the radial direction,

which causes the density and therefore the interaction energy to change over time, could lead to

mixing of the different degrees of freedom and hence to additional dephasing. This might apply

to our matter wave spin-echo experiment, but in the experiment where we compensate by means
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of the external potential there is hardly any radial excitation and this effect should not play a

role. The appearance of dynamical instabilities (26–28) can be ruled out, as our experimental

parameters are outside the unstable region. Going beyond the mean-field treatment, a variety

of factors can lead to dephasing. For example, at each lattice site there exists a superposition

of number states, accumulating different phases corresponding to their respective interaction

energies (29, 30). This leads to an effective dephasing, as the phase on a particular lattice site

becomes ill-defined. Basic estimates (29,30) indicate a dephasing time of about 130 ms for our

system, on the same order as we observe.

These experiments constitute a clear demonstration of coherent dynamics in an interacting

macroscopic quantum system. This coherence affords a large degree of control over the system,

as demonstrated by the possibility to rephase the wave function using an external potential in

order to reverse dephasing due to interactions. The control demonstrated here has potential

application in matter-wave interferometry, and such a degree of control over the mean-field

evolution also opens the possibility to probe beyond-mean-field effects in atom interferometers.
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Fig. 1. A Experimental configuration: The tunable BEC is formed at the intersection of the

vertical guide laser beam L1 and a horizontal trapping beam L2. The lattice is oriented along

the vertical direction. Gravity, g, is initially compensated by means of a magnetic force gra-

dient, ∇B. B Imaging the first Brillouin zone (BZ): One cycle of Bloch oscillations for a

non-interacting BEC as seen in time-of-flight absorption imaging showing narrow peaks cy-

cling through quasi-momentum space for cycle phases φ=0, π/4, π/2, ..., to 2π. C Broadening

of the distribution and development of an interference pattern for an interacting BEC for φ=0

after N =2 to 26 Bloch cycles. D Contrast of matter wave interference emerging during time-

of-flight expansion for a BEC that completely fills the BZ after N = 40 Bloch cycles. We
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define the contrast as (Imax − Imin)/(Imax + Imin), where Imax (Imin) is the average value of

the maxima (minima) of the central peak structure. The error bars are the 1σ statistical error

as each data point is the average contrast of 10 experimental runs. The insets show measured

quasi-momentum distributions integrated along the transverse direction at two expansion times

as indicated.
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Fig. 2. Interaction induced macroscopic matter wave interference. A Experimental results

showing the quasi-momentum distribution as a function of time given in units of the Bloch

period. The absorption images are taken in steps of 4 Bloch cycles for a BEC with an initial

peak density of n=4× 1013 atoms/cm3 loaded into about 35 lattice sites with a=190 a0. Each

image corresponds to a single realization of the experiment. B The quasi-momentum wave

function evolution according to Equation (2) for βtr = 0 (no external trap) for n = 4 × 1013

atoms/cm3 loaded into 35 lattice sites with a = 190 a0. The images are obtained from the

1D quasi-momentum distribution combined with the appropriate site-dependent Thomas-Fermi

profiles in the radial direction. αint is slightly rescaled to account for the reduction in density

due to transversal dynamics, see text. In A, some additional broadening, largely due to the

presence of the horizontal trapping potential during expansion (24), can be seen.
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Fig. 3. Cancellation of interaction induced dephasing and observation of persistent Bloch

oscillations. Absorption images showing the quasi-momentum distribution for cycle phase θ=π

(A) and θ=0 (B) after N =40 Bloch cycles and (C) momentum width ∆p for θ=0 as a function

of confinement strength, normalized to the confinement strength at loading. D Momentum

distribution for θ = 0 as a function of the number N of Bloch cycles when no compensating

potential is present, showing fast broadening. E The evolution of the momentum distribution

for the case of optimum cancellation of interactions.
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Fig. 4. Matter wave spin-echo-type experiment: Rephasing of the BEC from a fully dephased

wave function back into a narrow distribution after switching interactions to near zero and

turning on an external potential. Time progresses from front to back. The black solid lines

correspond to selected quasi-momentum distributions that refocus into the characteristic singly-

peaked distribution (cycle phase φ=0), see text. They are separated in time by 1.15 ms or about

two Bloch cycles, and they are offset for clarity. The red solid lines correspond to selected

distributions that refocus into the characteristic double-peaked distribution (cycle phase φ=π).

The images are absorption images corresponding to the adjacent quasi-momentum distributions.

Some radial excitation can be seen.
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